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Abstract—Collaborations among various entities, such as com-
panies, research labs, AI agents, and edge devices, have become
increasingly crucial for achieving machine learning tasks that
cannot be accomplished by a single entity alone. This is likely
due to factors such as security constraints, privacy concerns, and
limitations in computation resources. As a result, Collaborative
Learning has been gaining momentum. However, a significant
challenge in practical applications of Collaborative Learning
is how to effectively incentivize multiple entities to collaborate
before any collaboration occurs. In this study, we propose ICL, an
architectural framework for Incentivized Collaborative Learning,
and provide insights into the critical issue of when and why
incentives can improve collaboration performance. We showcase
the concepts of ICL to specific use cases in federated learning,
assisted learning, and multi-armed bandit, corroborating with
both theoretical and experimental results.

I. INTRODUCTION

Motivation. Over the past decade, Artificial Intelligence
(AI) has achieved significant success in engineering and
scientific domains, e.g., robotic control [1], natural language
processing [2], and computer vision [3]. With this trend, a
growing number of entities, e.g., governments, hospitals, com-
panies, and edge devices, are integrating AI models into their
workflows to facilitate data analysis and enhance decision-
making. While a variety of standardized Machine Learning
(ML) models are readily available for entities to implement
AI tasks, model performance heavily depends on the quality
and availability of local training data, models, and computation
resources [4]. For example, a local bank’s financial model may
be constrained by the small size of its subjects and the number
of feature variables. However, this bank could possibly im-
prove its model by integrating additional observations and fea-
ture variables from other banks or industry sectors. Therefore,
there is a strong need for collaborative learning that allows
entities to enhance their model performance while respecting
the proprietary nature of local resources. This has motivated
recent research on learning frameworks, such as Federated
Learning (FL) [5, 6] and Assisted Learning (AL) [7], which
can improve learning performance from distributed data. ML
entities, similar to humans, can collaborate to accomplish tasks
that benefit each participant. However, these entities possess
local ML resources that can be highly heterogeneous in terms
of training procedures, computation cost, sample size, and data
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Fig. 1: Overview of ICL

quality. A key challenge in facilitating such collaborations is
understanding the motivations and incentives that drive entities
to participate in the first place. An effective incentive mech-
anism is crucial for facilitating a “benign” collaboration in
which high-quality entities are suitably motivated to maximize
the overall benefit [8].

Limitation of state-of-the-art approaches. The need to
deploy collaborative learning systems in the real world has
motivated the development of incentive mechanisms in FL.
However, these incentive mechanisms are designed only to
fulfill specific needs for a narrow set of applications as each
application has unique requirements and processes [9, 10].
This requires spending development time and cost as well
as research hours on creating an incentive mechanism for
every new application [11–14]. This is particularly due to
the lack of any generic incentive framework that can be
used for a wider spectrum of applications. Furthermore, the
existing literature has studied different aspects of incentives
in particular application cases, e.g., using contract theory to
set the price for participating in FL, or evaluating contributions
for reward or penalty allocation, which we will review in Sub-
section II. However, understanding when and why incentive
mechanism design can enhance collaboration performance is
under-explored.

Key insights. In this work, we aim to address these chal-
lenges by developing a generic incentivized framework for
Collaborative Learning (ICL) to abstract common application
scenarios. For this task, we first observe the common roles
of all actors in a broad spectrum of collaborative learning
applications. As illustrated in Fig. 1, a set of learners play
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three roles as the game proceeds: 1) candidates, who decide
whether to participate in the game based on a pricing plan,
2) participants, whose final payment, which can be negative
if interpreted as a reward, depends on the pricing plan and
actual outcomes of collaboration, and 3) active participants,
who jointly realize a collaboration gain to be enjoyed by all
participants. The system-level goal is to promote high-quality
collaborations for an objective. Examples of the collaboration
gain include improved models, predictability, and rewards.

Solution. Driven by the above observations, we propose the
following design principles of incentives to benefit collabora-
tion: (1) Each participant can simultaneously play the roles of
contributor and beneficiary of the collaboration gain. (2) Each
participant will pay to participate in return for a collaboration
gain if the improvement over its local gain outweighs its
participation cost. (3) The pricing plan determines each entity’s
participation cost and can be positive or non-positive, tailored
to reward those who contribute positively and charge those
who hinder collaboration or disproportionately benefit from
it. (4) The system for collaboration may incur a net zero
cost, while still engaging entities to achieve the maximum
possible collaborative gains. Our framework provides a unified
understanding for the modular design of incentives from a
system design perspective. We will show how incentives can
be used to reduce exploration complexity and create win-win
situations for participants from collaboration.

Contributions. We make three main contributions through
this work. First, we propose a generic framework for ICL
along with design principles. These collectively formalize the
role of incentives in learning, ensuring that eligible entities
are motivated to actively foster collaboration and benefit all
the participants. Second, we showcase the adaptability of ICL
by integrating it into diverse collaborative learning scenarios,
including Federated Learning (FL), Assisted Learning (AL),
and Multi-Armed Bandits (MAB). Our approach emphasizes
the framework’s versatility and modularity, illustrating its
potential to enhance a broad spectrum of applications, which
in turn could result in significant savings in time, cost, and
resources. Lastly, through a series of experimental studies,
we validate our theoretical constructs and provide practical
insights. Specifically, our results highlight the pivotal role of
well-designed pricing and selection strategies in minimizing
exploration costs in learning environments, ultimately foster-
ing mutually beneficial outcomes for all participants.

II. RELATED WORK

To address collaborative learning challenges, existing stud-
ies have focused on various aspects, such as security [15],
privacy [16], fairness [17], personalization [18], model hetero-
geneity [19], and lack-of-labels [20]. However, a fundamental
question remains: why would participants want to join col-
laborative learning in the first place? This has motivated an
active line of research to use incentive schemes to enhance
collaboration. We briefly review them below.

Promoter of incentives. Who want to design mechanisms
to incentivize participants and initiate a collaboration? From

this angle, existing work can be roughly categorized in two
classes: server-centric, meaning that a collaboration is initiated
by a server who owns the model and aims to incentivize
edge devices to join model training [13, 21], and participant-
centric where the incentives are designed at the participants’
interest [22].

Different goals of incentives. What is the objective of an
incentive mechanism design? Most existing work on incen-
tivized collaborative learning, in particular FL, have adopted
some common rules for incentive mechanism design, e.g.
incentive compatibility and individual rationality [13]. The
eventual objective for incentivized collaboration is often maxi-
mizing profit from the perspective of the incentive mechanism
designer, which is either the coordinator (also called “server”,
“platform”) [13] or the participants (also called “clients” in
FL) [22]. Another commonly studied objective is maximizing
global model performance in FL, which can be commercial-
ized and turned into profit [23]. Other objectives being studied
include budget balance [14], computational efficiency [12],
fairness [24], and Pareto efficiency [23].

Overall, the role of incentives in collaborative learning has
inspired many recent studies on bringing economic concepts to
design learning platforms. Most existing work has focused on
FL, especially mobile edge computing scenarios. Nonetheless,
the need for collaboration extends beyond FL, as shown in [24]
which studied synthetic data generation based on collaborative
data sharing, and [8] which developed an AL framework where
an entity being assisted is bound to assist others based on im-
plicit mechanism design. Moreover, incentives in collaborative
learning is under-studied in two critical aspects. Firstly, how to
design incentives under a unified architecture, considering the
existing work often focuses on specific application scenarios?
Secondly, when and why do incentives improve collaboration
performance? Prior work has often focused on designing
an incentive as a separate problem based on an existing
collaboration scheme, instead of treating incentive as part of
the learning itself. These gaps motivated this work on ICL.

III. ICL DESIGN

A. System Overview

In this section, we provide an overview of the ICL formu-
lation. As illustrated in Fig. 1, a collaboration consists of four
stages. In Stage 1, the coordinator sets a pricing plan based on
prior knowledge of the candidates’ potential gains (e.g., from
previous rounds), and each candidate decides whether to be a
participant by committing a payment at the end of this round.
In Stage 2, the coordinator collects participants’ information
(e.g., their estimated gains) and uses a selection plan to choose
the active participants. In Stage 3, the active participants
collaborate to produce an outcome, which is enjoyed by
all participants (including non-active ones). In Stage 4, the
coordinator charges according to the pricing plan, the realized
collaboration gain, and individual gains of active participants.
Here, a gain (e.g., decrease in test loss) is assumed to be a
function of the realized outcome (e.g., trained model).
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B. ICL components

The ICL system includes two parties: candidate entities and
coordinator. For notational convenience, we will first introduce
a single-round game and extend it in Section IV.

Candidates. Consider M candidates indexed by [M ]
∆
=

{1, . . . ,M}. In an ICL game, each candidate m can potentially
produce an outcome xm ∈ X , such as a model parameter.
Any element in X can be mapped to a gain Z ∈ R, e.g.,
reduced prediction loss. But such a gain will not necessarily be
realized unless the candidate becomes an active collaborator
of the game. At the beginning of a game, a candidate will
receive a pricing plan from the coordinator specifying the cost
of participating in the game and use that to decide whether to
become a participant of the game. If a candidate participates,
it has the opportunity to be selected as an active participant.
All active participants will then collaborate to produce an
outcome (e.g., model or prediction protocol), which also
generates a collaboration gain. This outcome is distributed
among all participants to benefit them. At the end of the
game, all participants must pay according to the pre-specified
pricing plan, with the actual price depending on the realized
collaboration gain.

We let IP and IA denote the set of participants and active
participants, respectively (so IA ⊆ IP ⊆ [M ]). Given the
above, an entity has a consumer-provider bi-profile, meaning
that it can serve as a consumer who wishes to benefit from
and also a provider who contributes to the collaboration.

Coordinator. A coordinator, e.g., company, government
agency, or platform, orchestrates the game by performing the
following actions in order: determine a pricing plan of the
participation costs based on initial information collected from
candidates, select active participants from those candidates that
have chosen to become participants, realize the collaboration
gain, and charge the participants according to the gain. The
coordinator can be a virtual entity rather than a physical one.

Collaboration gain. Given active participants represented
by IA, the collaborative gain is a function of their individual
outcomes, denoted by G : (xm,m ∈ IA) 7→ zIA ∈ R. This gain
will be enjoyed by all participants and the coordinator, e.g., in
the form of an improved model distributed by the coordinator.
We also use G : xm 7→ zm ∈ R, m ∈ [M ], to denote the gain
of an individual outcome.

Pricing plan. The pricing plan is a function from R|IA|+1 to
R|IP| that maps the collaboration gain and individual gains of
active participants to a cost needed to participate in the game:

P : (z, zm,m ∈ IA) 7→ (cj , j ∈ IP), (1)

where z denotes the realized collaboration gain. In practice,
we may parameterize P so that it is low for active and
good-performing entities, medium for non-active entities, and
high for active and laggard/disruptive entities, a point we
will demonstrate in the experiments. We assume that the
active participants will share their individual gains, namely
zm,m ∈ IA, so that all other participants’ cost can be
evaluated. The P will provide incentives to each candidate

to decide to participate or not. As such, we denote the set of
participants by IP = Incent(P).

Profit. For each party, the profit will consist of two com-
ponents: monetary profit from participation fees and gain-
converted profit from collaboration gains. More specifically,
let cm denote the final participation cost for entity m. Let the
Utility-Income (UI) function z 7→ U(z) determine the amount
of income uniquely associated with any particular gain Z. We
suppose the UI function is the same for participants and the
system. Then, the profit of client m is

PROFITm
∆
= 1m∈IP · (−cm + U(zIA)− U(zm)), (2)

where zIA

∆
= G(xm,m ∈ IA), and the last term contrasts with

its standalone learning. We define the system-level profit as the
overall income from participation,

∑
m∈IP

cm, weighted plus
the amount converted from collaboration gain, U(zIA), namely

PROFITsys
∆
= λ

∑
m∈IP

cm + U(zIA), (3)

where λ ≥ 0 is a pre-specified control variable that balances
the monetary income and collaboration gain. We can regard
the system-level profit as the coordinator’s profit.

Coordinator’s profit. One may put additional constraints
on the coordinator’s monetary income

∑
m∈IP

cm. A particular
case is to restrict that

∑
m∈IP

cm = 0, which may be inter-
preted that the system does not need actual monetary income
but rather uses the mechanism for model improvement. This
is typical in coordinator-free decentralized learning (to revisit
in Section IV-B).

Selection plan. The coordinator will select the active par-
ticipants IA from IP based on a set of available information,
denoted by I. We assume that the I consists of the coordina-
tor’s belief of the distributions of xm (namely the realizable
gain) for each client m in IP. The selection plan is a function
that maps from I and IP to a set IA ⊆ IP, denoted by

S : (I, IP) 7→ IA. (4)

This can be a randomized map, e.g., when each participant is
selected with a certain probability (Section III-D2). In practice,
I may refer to the coordinator’s estimates of the underlying
distribution of xm, m ∈ IP, based on historical performance
on the participant side.

Objective of mechanism design. Our objective in design-
ing a collaboration mechanism is to maximize the system-
level profit under constraints tied to candidates’ individual
incentives, which will be revisited in Section III-D. The
maximization is over the pricing plan P and selection plan
S . With the earlier discussions, the objective is

max
P,S

E
{
λ
∑
m∈IP

cm + U(zIA)

}
, where (5)

cm is specified by P in (1), zIA = G(xm,m ∈ IA), (6)
IA = S(I, IP), s.t. IP = Incent(P). (7)

We will elaborate on (7) in Section III-C.
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Interpretation of the objective. We discuss three interest-
ing cases of the objective. First, when λ = 1, the objective
is equivalent to maximizing the overall profit. Second, when
λ = 0, the objective is to improve the modeling through
a collaboration mechanism. In this case, the system has
no interest in the participation income but only provides a
platform to incentivize the non-active to pay for the gain
obtained by the active. Since the system need not pay for
any participants, it is natural to assume the “zero-balance”
constraint

∑
m∈IP

cm = 0. Thus, we have

Objective: max
P,S

E{U(zIA)}. (8)

Third, as λ → ∞, the objective reduces to maximizing the
system profit, maxP,S E{

∑
m∈IP

cm}. Intuitively, the collab-
oration gain should still be reasonable to attract sufficiently
many participants. Lastly, the following proposition shows
that by properly replacing the λ, the system’s objective can
be interpreted as an alternative objective that combines the
system’s and participants’ gains.

Proposition 1. Let λ′ ∆= λ−1
|IP|+1 . The Objective (5) where λ′ is

replaced with λ is equivalent to maximizing the average social
welfare defined by (PROFITsys +

∑
m∈IP

PROFITm)/(|IP|+1).

C. Incentives of participation

We study the incentives of collaboration from the candi-
dates’ perspectives. First, we will elaborate on (7) here. For
each candidate, the incentive to become a participant is the
larger profit of receiving the collaboration gain compared
with realizing a gain on its own. Then, candidate m has the
incentive to participate in the game if and only if

Incentm : E
{
−cm + U(zIA)− U(zm)

}
≥ 0, (9)

where zIA and cm were introduced in (6) and (7). Here,
E denotes the expectation regarding the random quantities,
including the active participant set and the realized gains.

Inaccurate candidate. A candidate may have its own
expectation Em in place of E in (9) when making its decision.
In this case, if the candidate is overly confident about the
collaboration gain – its expected z tends to be larger than
the actual, either intentionally or not – it will participate in
the game. The system can have a further screening of it: 1)
if this participant is selected as an active participant, it will
likely suffer from a penalty since its realized gain will be seen
by the coordinator, which will implicitly give feedback as an
incentive to that candidate; 2) if not selected, it will become
an inactive participant, which will contribute to the system’s
profit but not harm the collaboration. In this way, a candidate
will have a limited extent to harm the system.

D. Mechanism design for the ICL game

The idea of mechanism design in economic theory is to
devise mechanisms to jointly regulate the decisions of multiple
parties in a game to eventually attain a system’s desired goal
(see, e.g., [25]). In our ICL game, the system’s desired goal is
to maximize (5), and the mechanisms to design include P and

S . Section III-C discussed the incentives from the candidates’
view. This subsection studies the mechanism designs from the
system’s perspective.

1) Pricing plan, from candidates to participants: From
the system’s view, we can cast the M candidates and the
coordinator as the parties in a game. Consider the following
strategy choices of each party. Each candidate m has two
choices: whether to participate or not, represented by bm

∆
=

1m∈IP ∈ {0, 1}; the coordinator has a choice of the pricing and
selection plans, denoted by (P ,S). Following the notation in
(4), for a set of participants that exclude m, denoted by I(−m)

P ,
we let I(−m)

A
∆
= S(I, I(−m)

P ) and IA
∆
= S(I, I(−m)

P ∪{m}). We
have the following condition under a Nash equilibrium.

Theorem 1 (Equilibrium condition). The condition to attain
Nash equilibrium is

Incentm : E
{
−cm + U(zIA)− U(zm)

}
≥ 0, iff. m ∈ IP, (10)

Incentsys : E
{
λcm + U(zIA)− U(zI(−m)

A
)
}
≥ 0, iff. m ∈ IP. (11)

Pricing as a part of the collaborative learning. A critical
reader may wonder why not price participants directly based
on the realized gains, which we refer to as post-collaboration
pricing, e.g., using the Shapley value [18, 26]. The main
distinction is that our studied pricing plan can not only gen-
erate profit or reallocate resources on the system side but also
influence collaboration gains. Specifically, the pricing plan can
screen higher-quality candidates to allow the coordinator to
improve model performance in the subsequent collaboration.
For instance, consider the case where the sole purpose is to
maximize collaboration gain, namely λ = 0. In this situation,
an entity m violating the condition in (11) is treated as a
laggard, and cm can be designed accordingly to ensure this
client will not participate, as per violating (10).

2) Selection plan, from participants to active participants:
We introduce a general probabilistic selection plan. Assume
the information transmitted from participant m is a distribution
of xm, denoted by Pm for all m ∈ IP. Suppose the system
expects to select ρ ∈ (0, 1] proportion of the participants.
Consider a probabilistic selection plan that will select each
client m in IP with probability qm ∈ [0, 1]. Let q = [qm]m∈IP .
We thus have the constraint

q ∈ Q(ρ, IP)
∆
=

{
q :

∑
m∈IP

qm = ρ|IP|
}
. (12)

Let bm denote an independent Bernoulli random variable with
P(bm = 1) = qm, or bm ∼ B(qm). Then, conditional on
the existing participants IP, maximizing any system objective,
e.g., (5) and (8), will lead to a particular law of client selection
represented by q. For example, for the objective (8), we may
solve the following problem. q∗ = argmaxq∈Q(ρ,IP) U(q)

∆
=

E
{
U(zIA) = U(G(xm,m ∈ IA))

}
, where the expectation is

over bm ∼ B(qm), xm ∈ Pm, and IA = {m ∈ IP : bm = 1}.
We will show specific examples in Section IV. The existing
works have examined client sampling from perspectives other
than incentives, such as minimizing gradient variance [27].
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Free-rider and adversarial participants. A free-rider is
an entity m with a low local gain zm but hopes to participate
to enjoy the collaboration gain realized by other more capable
participants with a relatively small participation cost. To that
end, the entity may deliberately inform the system of a poor
Pm so that the system, if following the above-optimized
selection plan, will not select it as active. Consequently, the
free-rider’s actual local gain will not be revealed and may
not suffer a high participation cost. This case motivates us
to adopt a random selection to a certain extent in selecting
the active participants. More specifically, suppose every par-
ticipant m ∈ IP will have at least a ρ̄ > 0 probability of
being selected to be active. Then, it expects to pay at least
ρ̄ · E{cm} = ρ̄ · P(z, zi, i ∈ IA) in return for an additional
model gain of E{U(zIA) − U(zm)}, where IA contains m.
Thus, it is not worth the entity m’s participation should
the system design a cost function that meets the following:
ρ̄ · E{P(z, zm,m ∈ IA)} ≥ E{U(zIA) − U(zm)} for all zm
overly small. For example, the coordinator may impose a high
cost whenever the realized local gain zm revealed after the
collaboration exceeds a pre-specified threshold. On the other
hand, there may be an adversarial participant with a poor local
gain but informs the system of an excellent Pm so that the
system will select it to be active. In such cases, the same
argument regarding the choice of the pricing plan applies, so
no adversarial entity would dare to risk paying an excessively
high cost after participation.

Random sampling for noninformative scenarios. We
show that if the system is noninformative, random sampling
can be close to the optimal selection. Suppose the information
from participant m is the mean and variance of xm ∈ R,
denoted by µm, σ2 for m ∈ IP. A large σ2 means less
information. The result below shows random sampling is close
to the optimal for large σ.
Proposition 2. Assume the gain is defined by G(x) ∆

= −E(x−
µ)2, where µ represents the underlying parameter of interest,
and the participants’ weights ζm’s are the same. Assume that
σ2/(|IP| ·maxm∈IP(µm − µ)2) → ∞ as |IP| → ∞.
Then, we have U(q)/U(q∗) →p 1 as |IP| → ∞.

IV. USE CASES OF ICL
In this section, we present example use cases of ICL. Addi-

tional use cases, detailed theory, and experimental evaluations
are available in the arXiv version [28].

A. ICL for Federated Learning
Federated learning (FL) [5, 6] is a popular distributed learn-

ing framework where the main idea is to learn a joint model
using the averaging of locally learned model parameters. Its
original goal is to exploit the resources of massive edge
devices (also called “clients”) to achieve a global objective
orchestrated by a central coordinator (“server”) in a way that
the training data do not need to be transmitted. In line with FL,
we suppose that at any particular round, the outcome of client
m, xm, represents a model. The collaboration will generate
an outcome in an additive form: zIA

∆
= G(xm,m ∈ IA) =

G(
∑

i∈IA
ζixi/

∑
i∈IA

ζi), where ζi’s are the pre-determined

unnormalized positive weights associated with all the candi-
dates, e.g., according to the sample size [6] or uncertainty
quantification [29]. Let IP

∆
= [K], where K ≤ M is the number

of participants, and M is the number of candidates.

Algorithm 1 Incentivized Federated Learning
Input: Datasets D1:M distributed on M local clients, active rate ρ ∈

(0, 1], number of rounds T , objective parameter λ, clients’
unnormalized weights ζ1:M , test loss L, pricing plan Pθ :
(z, zm,m ∈ IA) 7→ (cj , j ∈ IP), where θ = [θ1, θ2] is the
unknown parameter, cj

∆
= A1(z; θ1) + 1j∈IAA2(z− zm; θ2),

and A1, A2 are pre-specified functions, server’s test dataset
Dtest, sigmoid function σs : v 7→ (1+ e−v/s)−1 where s > 0
is a hyperparameter, learning rate η > 0 for optimizing θ.
Recall that τm,t ≤ t denotes the last round when the client
m was active before round t.

Output: Server’s updated model x̄t, overall realized profit
λ
∑

m∈IP,t
c∗m,t + U(x̄t), t = 1, . . . , T

Initialization: θ0, x̄0, z̄0
∆
= G(x̄0)

System executes:
for each round t = 1, . . . , T do

θt
∆
= (θ1,t, θ2,t)←ServerStrategy(z̄τm,t , zm,τm,t , x̄τm,t ,

xτm,t , ζm,m ∈ [M ], θt−1)
Distribute Pt ≡ Pθt to all M clients
bm,t ← ClientStrategy(Pt, zm,τm,t , z̄t−1),m ∈ [M ]
IP,t ← {m ∈ [M ] : bm,t = 1}
IA,t ← randomly samplemax(⌊ρ · |IP,t|⌋, 1) active clients

from IP,t
for each client m ∈ IA,t in parallel do

Distribute the server’s model parameter x̄t−1 to local
client m

xm,t ← ClientUpdate(Dm, x̄t−1) // use any standard
local update

Send xm,t to the server
end
Receive model parameters from active clients, and calculate
x̄t = (

∑
m∈IA,t

ζm)−1 ∑
m∈IA,t

ζmxm,t

Calculate the collaboration gain z̄t = G(xm,t,m ∈ IA) and
broadcast to all candidate clients

Calculate the individual gain of each active participant
zm,t = G(xm,t) and return it to the associated client m

Participant m pays c∗m,t
∆
= A1(z̄t; θ1,t) +1m∈IA,t ·A2(z̄t−

zm,t; θ2,t), for all m ∈ IP,t
end

ServerStrategy (z̄τm,t , zm,τm,t , x̄τm,t , xτm,t , ζm,m ∈ [M ], θt−1):
Define objective function of θ to maximize:

Ot(θ) =

M∑
m=1

σs(δm,t) ·
{
λ · cm,t(θ)

− ζm∑
j∈IA,τm,t

ζj
· f ′(x̄τm,t) · (x̄τm,t − xm,τm,t)

}
,

cm,t(θ)
∆
= A1(z̄τm,t ; θ1) + ρ ·A2(z̄τm,t − zm,τm,t ; θ2) (13)

δm,t
∆
= U(z̄t−1)− U(zm,τm,t)− cm,t(θ) (14)

where f is defined by

f(x)
∆
= U

(
−L(x,Dtest)

)
. (15)

Return θt ← θt−1 + η · ∇θOt(θt−1)
ClientStrategy (Pt, zm,τm,t , z̄t−1):

Return bm,t
∆
= 1δm,t>0, where δm,t is the same as in (14) but

with θ = θt
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1) Large-participation approximation: Suppose the selec-
tion plan is based on a random sampling of IP with a given
probability, say ρ ∈ (0, 1), for each participant to be active.
Assume bm, for m ∈ [K], are IID Bernoulli random variables
with P(bm = 1) = ρ. Let U ◦ G denote the composition
of U and G, and (U ◦ G)′ its derivative. Then, we have the
following result to approximate the equilibrium conditions in
Section III-D under a large number of participating clients.
Let ζ̄IP and x̄IP denote all the participants’ average of ζ

and weighted average of X , namely ζ̄IP

∆
= (

∑
i∈IP

ζi)/|IP|,
x̄IP

∆
= (

∑
i∈IP

ζixi)/(
∑

i∈IP
ζi).

2) Iterative mechanism design: To optimize the mecha-
nism in practice, the server cannot evaluate the collaboration
gain G(xm,m ∈ IA) due to its complex dependency on
the individual outcomes xm. Alternatively, the server can
optimize its mechanism by maximizing the surrogate of the
collaboration gain. The determination of the pricing plan will
involve multiple candidates’ choices. Since a practical FL
system involves multiple rounds, we suppose each client will
use the results from the previous rounds to approximate the
current strategy set and make decisions.

In Algorithm 1, we give a more specific incentivized FL
setup and operational algorithm based on the development in
Section IV-A. The general Objective (5) could be regarded
as a collaboration game in any particular round of FL. As
FL consists of multiple rounds, we use the previous rounds
as a basis for each candidate client to decide whether to
participate in the current round. We use a subscript t to
highlight the dependence of a quantity on the FL round. For
example, the outcome xm will be replaced with xm,t for
round t. Derivations and further discussions of Algorithm 1
are included in [28].

B. ICL for Assisted Learning

Assisted learning (AL) [7, 8, 30, 31] is a decentralized
learning framework that allows organizations to autonomously
improve their learning quality within only a few assistance
rounds and without sharing local models, objectives, or data.
AL has primarily focused on vertically partitioned data, where
entities possess data with distinct feature variables collected
from the same cohort of subjects. Recently, AL has been
extended to support organizations with horizontally partitioned
data based on the idea of transmitting model training tra-
jectories, within applications to reinforcement learning [32],
in which the assisting agent has diverse environments, and
unsupervised domain adaptation [33], where the assisting
agent possesses supplementary data domains.

Unlike FL schemes, AL is 1) decentralized in that there
is no global model to be shared or synchronized among all
the entities in the training and 2) assistance-persistent in the
sense that an entity still needs the output from other entities
in the prediction stage. From the perspective of incentivized
collaboration, the above naturally leads to two considerations
with complementary insights into the pricing and selection
plans compared with FL in Section IV-A.

• Consideration 1: Autonomous incentive design without
a coordinator. Since each entity can initiate and terminate
assistance, it is natural to consider a coordinator-free scenario,
where entities can autonomously reach a consensus on collab-
oration partners based on their pricing plans.
• Consideration 2: Limited information for incentive design.

In AL, an entity aims to seek assistance to enhance prediction
performance without sharing proprietary local models. Thus,
we suppose the communicated information for collaboration
is limited to gains (z) rather than outcomes (x).

To put it into perspective, we will study a three-entity setting
in Section IV-B1 to develop insights into the incentive that
allows for a consensus on collaboration in Stage 1 (Fig. 1).
In Section IV-B2, we will further study a multi-entity setting
where multiple less-competitive participants are allowed to
enter Stage 2 to enjoy the collaboration gain, but they will
not compete for being active participants.

1) Consensus of competing candidates: In this section, we
study three candidate entities, Alice, Bob, and Carol, and
suppose each candidate aims to maximize its profit. Suppose
a collaboration round can only consist of two entities. Then,
the collaboration will only occur when two out of the three,
say Alice and Bob, can maximally assist each other. From
Alice’s perspective, Carol is less competitive than Bob, and
meanwhile, from Bob’s perspective, Carol is less competitive
than Alice. We will provide conditions to reach a consensus.
Suppose each entity has its own payment plan: entity i will
pay a price pi(z − zi) for any given collaboration gain z
and its local gain zi, for all i ∈ [M ]. So, if entities i and j
collaborate, the actual price i will pay is pi(z−zi)−pj(z−zj).
The goal of each entity is to maximize the expected gain-
converted profit minus the participation cost, namely the
quantity in (2). For simplicity, suppose pi(∆z) = ci ·∆z and
U(z) = u · z. Let µi,j

∆
= E(U(zi,j)) denote the expected

income of the collaboration gain formed by entities i and j,
and µj←i

∆
= E(U(zi,j) − U(Zj)) the additional gain brought

by i to j.
2) Consensus of non-competing candidates: We will further

study a multi-entity setting where multiple less-competitive
participants are allowed to enjoy the collaboration gain, but
they will not compete for being active participants. The ob-
jective is to develop an incentive to maximize the collaboration
gain, namely Objective (8), that will eventually benefit all the
participants. For ease of presentation, we will consider only
one active participant (namely |IA| = 1). In general, we may
regard a set of participants as one “mega” participant. Follow-
ing the above two considerations of AL, we will first study the
following setup. Suppose K entities decide to participate in a
collaboration, where one of them will be selected to realize
the collaboration gain. For example, if participant m is active,
it will realize a model gain zm ∼ G(xm), where xm ∼ Pm

is the potential outcome of participant m. Let P∗m denote the
distribution of zm induced by Pm for m ∈ [K] and suppose
they are the shared information among participants. In line
with Consideration 1, the system is set to have a zero balance,
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namely
∑

m∈[K] cm = 0. Following the notation in (1), we
consider the following particular pricing plan:

P : z 7→ C(z)1j ̸∈IA − (K − 1)C(z)1j∈IA , j ∈ IP, (16)

where C is non-decreasing so that a larger gain is associated
with a larger cost. In other words, each of the K − 1 non-
active participants will pay a cost of C(z), which depends on
the realized z, to the active participant. Then, the condition
to reach a consensus among participants is the existence of a
participant, say participant 1, such that when it is active, (i) the
collaboration gain is maximized, and (ii) every participant sees
that its individual profit is maximized, as formalized below.

Theorem 2. Assume U is a pre-specified non-decreasing
function. Consider the pricing plan in (16) where C can be
any non-negative and non-decreasing function. Let µm

∆
=

EP∗
m
{U(zm)} denote the expected gain of participant m

when it is active, m ∈ [K]. The necessary and sufficient
condition for reaching a pricing consensus is the existence
of a participant, say participant 1, that satisfies µ1 − uj ≥
EP∗

1
{C(z1)} + EP∗

j
{(K − 1)C(zj)} for all j ̸= 1. If we

further assume the linearity U(z) ∆
= u ·z and C(z) = c ·z, this

inequality becomes c ≤ minj ̸=1 u·(µ1−µj)/(µ1+(K−1)µj).

V. EXPERIMENTAL STUDIES

A. Experimental Setup for Federated Learning

In this study, we used the following experimental setup.
Data. We evaluate the FashionMNIST [34], CIFAR10 [35],

and CINIC10 [36] datasets. In Table I, we present the key
statistics of each dataset.

TABLE I: Statistics of datasets in our experiments

Datasets FashionMNIST CIFAR10 CINIC10

Training instances 60,000 50,000 20,000

Test instances 10,000 10,000 10,000

Features 784 1,024 1,024

Classes 10 10 10

Setting. Standard FL can be vulnerable to poor-quality or
adversarial clients. It is envisioned that a reasonable incentive
mechanism can enhance the robustness of FL training against
participation of these unwanted clients. To demonstrate this in-
tuition, we consider an extreme case where there exist Byzan-
tine attacks carried out by malicious or faulty clients [37].
We then demonstrate the robustness of the incentivized FL
(labeled as “ICL” in the results) against two types of Byzantine
attacks [38, 39]: random modification, which is a training data-
based attack [37, 40], and label flipping, which is a parameter-
based attack [41, 42]. Specifically, the random modification is
based on generating local model parameters from a uniform
distribution between −0.25 and 0.25, and the label flipping
uses cyclic alterations, such as changing ‘dog’ to ‘cat’, and
vice versa. Byzantine client ratios are adjusted to two levels:
{0.2, 0.3}. In the reported results below, Byzantine-0.2 refers
to a scenario where 20% of the total clients are adversarial. We

generate 100 clients using IID partitioning of the training part
of each dataset. Among participating clients, the server will
select 10% of clients as active clients per round. We adopt the
model architecture and hyperparameter settings similar to [43].

Pricing. We consider the pricing plan with

cj = A1(z; θ1) + 1j∈IAA2(z − zm; θ2)

= θ1 · z + 1j∈IAθ1 · z · (−1 + γσs(z − zm − θ2)).

Accordingly, we replace the calculation of cost in (13) with

cm,t(θ)
∆
= θ1 · z̄τm,t

(
1 + ρ · (−1 + γσs(z̄τm,t − zm,τm,t − θ2))

)
.

In our study, we conduct an ablation test with different
hyperparameters γ: 11, 101, and 2001. These are referred to as
ICL plans 1, 2, and 3 in the following results. A larger value of
γ implies a more substantial penalty for the under-performing
clients. The θ2 is initialized in each global communication
round using the Jenks natural breaks technique [44] and
optimized based on the objective function.

Profit. Recall that the profit of a client or the server
consists of monetary profit from participation fees and gain-
converted profit from collaboration gains. In FL, we define
the collaboration gain Zt as the negative test loss of the
updated server model at round t, so the larger, the better. More
specifically,

z̄t = G(xm,t,m ∈ IA) = −L(x̄t, Dtest)
∆
= −

∑
(input,output)∈Dtest

ℓ(input, output; x̄t),

where ℓ is the cross-entropy loss under the model parameter-
ized by x̄t. Likewise, the local gain of a client m is

zm,t = G(xm,t)
∆
= −L(xm,t, Dtest)

∆
= −

∑
(input,output)∈Dtest

ℓ(input, output;xm,t).

Notably, the test set only needs to be stored and operated
by the server, and the clients only need to access their own
historical gains and the server’s gains. We use λ = 0.1 and
U : z 7→ z (the identity map) in the experiment.

Results. We visualize the learning curves on each dataset in
Figures 2, 3, and 4. The model performance is assessed using
the top-1 accuracy on the test dataset. We also summarize the
best model performance in Tables II, III, and IV, respectively.

The following key points can be drawn from the results.
Firstly, in comparison with non-incentivized Federated Learn-
ing (FL) based on FedAvg, our proposed incentivized FL
(denoted as “ICL”) algorithm can deliver a higher and more
rapidly increasing model performance (representing Collab-
oration Gain in our context), as defined in (8). Across all
settings–including two types of adversarial attacks, two ratios
of adversarial clients, and three datasets–ICL with Pricing Plan
3 (ICL PP-3) consistently outperforms FedAvg by a significant
margin. On the other hand, ICL with pricing plan 1 (ICL
PP-1) underperforms, which is expected as it only imposes a
mild penalty on laggard/adversarial active clients. The results
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(a) RM, Byzantine-0.2 (b) RM, Byzantine-0.3 (c) LP, Byzantine-0.2 (d) LP, Byzantine-0.3

Fig. 2: Learning curves of ICL (incorporating three pricing plans) and FedAvg measured by Accuracy, assessed for random
modification (RM) label flipping (LP) attacks and two malicious client ratios (0.2 and 0.3), applied to the FashionMNIST.

(a) RM, Byzantine-0.2 (b) RM, Byzantine-0.3 (c) LP, Byzantine-0.2 (d) LP, Byzantine-0.3

Fig. 3: Learning curves of ICL (incorporating three pricing plans) and FedAvg measured by Accuracy, assessed for random
modification (RM) label flipping (LP) attacks and two malicious client ratios (0.2 and 0.3), applied to the CIFAR10.

(a) RM, Byzantine-0.2 (b) RM, Byzantine-0.3 (c) LP, Byzantine-0.2 (d) LP, Byzantine-0.3

Fig. 4: Learning curves of ICL (incorporating three pricing plans) and FedAvg measured by Accuracy, assessed for random
modification (RM) label flipping (LP) attacks and two malicious client ratios (0.2 and 0.3), applied to the CINIC10.

suggest that it is possible to significantly mitigate the influence
of malicious clients by precluding them from participating
in an FL round, given that the pricing penalty is sufficiently
large. Furthermore, the figures also indicate that the random
modification attack poses a more significant threat compared
to the label flipping attack, making it particularly difficult for
non-incentivized FedAvg to converge.

TABLE II: Best model prediction accuracy of ICL (incorpo-
rating three pricing plans) and FedAvg measured by Accuracy,
assessed for random modification (RM) and label flipping (LP)
attacks, with two malicious client ratios (0.2 and 0.3), applied
to the FashionMNIST dataset. “PP-1” uses the smallest
penalty for the underperforming clients.

Byzantine Method Random Modification Label Flipping

0.2 0.3 0.2 0.3

FedAvg 87.1 ± 0.1 86.5 ± 0.1 89.6 ± 0.0 89.3 ± 0.0
ICL PP-1 87.2 ± 0.0 86.4 ± 0.0 89.5 ± 0.1 89.0 ± 0.1
ICL PP-2 87.0 ± 0.0 86.4 ± 0.3 89.3 ± 0.1 89.4 ± 0.2
ICL PP-3 89.4 ± 0.0 89.2 ± 0.1 89.4 ± 0.1 89.2 ± 0.1

TABLE III: Best model prediction accuracy of ICL (incorpo-
rating three pricing plans) and FedAvg measured by Accuracy,
assessed for random modification (RM) and label flipping (LP)
attacks, with two malicious client ratios (0.2 and 0.3), applied
to the CIFAR10 dataset. “PP-1” uses the smallest penalty for
the underperforming clients.

Byzantine Method Random Modification Label Flipping

0.2 0.3 0.2 0.3

FedAvg 55.7 ± 0.4 50.1 ± 0.3 67.3 ± 0.2 66.9 ± 0.2

ICL PP-1 54.8 ± 0.2 42.0 ± 0.9 67.0 ± 0.4 66.9 ± 0.3

ICL PP-2 68.1 ± 0.0 67.0 ± 0.2 67.6 ± 0.1 67.1 ± 0.1

ICL PP-3 67.1 ± 0.2 66.4 ± 0.1 67.9 ± 0.2 67.4 ± 0.1

B. ICL for Assisted Learning

We provide an experimental study to corroborate the in-
sights in Section IV-B. The Inequality can be interpreted that
the total gain of entity 1 received from entity 2, which consists
of the collaboration-generated gain (u − c1)µ1,2 and the
pricing-based gain c2µ2←1, is no larger than that from entity 3.
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TABLE IV: Best model prediction accuracy of ICL (incorpo-
rating three pricing plans) and FedAvg measured by Accuracy,
assessed for random modification (RM) and label flipping (LP)
attacks, with two malicious client ratios (0.2 and 0.3), applied
to the CINIC10 dataset. “PP-1” uses the smallest penalty for
the underperforming clients.

Byzantine Method Random Modification Label Flipping

0.2 0.3 0.2 0.3

FedAvg 45.9 ± 0.8 41.0 ± 0.6 54.3 ± 0.4 53.8 ± 0.8

ICL PP-1 44.1 ± 0.0 38.6 ± 2.1 54.4 ± 0.3 53.9 ± 0.1

ICL PP-2 54.1 ± 0.0 41.2 ± 7.8 55.4 ± 0.8 54.7 ± 0.6

ICL PP-3 54.6 ± 0.0 54.7 ± 0.3 55.1 ± 0.6 54.2 ± 0.3

Fig. 5: Test error of Entity 1 in three settings. In Setting i, entity i

pays none (ci = 0) while entity j ̸= i pays with cj ̸= 0.

To show our pricing plan can promote mutually beneficial
collaboration, we apply ICL to the parallel assisted learning
(PAL) framework [8] to develop an incentivized PAL. More
detailed algorithms and experimental studies are included in
[28]. We show an experiment using real-world clinical data
MIMIC [45]. Suppose three divisions (Entity 1, 2, 3) collect
heterogeneous features from the same patients for different
tasks: predict the heart rate, systolic blood pressure, and length
of stay. In Setting i, Entity i does not provide an incentive
while the other two entities do. The results in Fig. 5 show that
in Setting 1, entity 1 does not gain much as it does not provide
incentives; in other two settings, it gains from collaborating
with the entity with mutual benefits.

C. Practical Guide on Implementing ICL
We synthesize empirical findings from three case studies to

offer pragmatic insights for ICL deployment [28].
• ICL’s versatility in diverse collaborative learning envi-

ronments necessitates case-specific adaptations. For instance,
applying the ICL equilibrium condition (Theorem 1) across
the three use cases yields distinct formulas and implications.

• Synergizing the pricing and selection plans can effectively
minimize learning exploration complexity, fostering mutually
beneficial outcomes in collaboration. In the absence of a
deliberate selection plan, such as the random selection in
FL, the pricing plan becomes pivotal in filtering suitable
collaborators.

• Collaboration consensus among participants can be
achieved independently of a central coordinator or financial
motivations within the system. Utilizing tokens, for instance,
facilitates decentralized collaboration while maintaining zero
balance at the system level.
• Collaboration gains differ based on whether gains are eval-

uated cumulatively over multiple rounds (as in multi-armed
bandit scenarios in [28]) or at a single point in time (as in
federated learning). Consequently, incentive plan optimization
must consider these contextual variances in striking tradeoffs
between exploration costs and gains.

VI. CONCLUSION

Collaboration among entities becomes increasingly impor-
tant for enhancing their performance. We proposed an in-
centive framework to study how entities can be properly
incentivized to create common benefits. There are several
limitations worth further investigation. For instance, future
studies could examine the functional forms of pricing plans,
use cases to promote model security [46, 47] and privacy [48],
and trade-offs between collaboration and competition.
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