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Deep neural networks (DNN) has received increasing attention in machine learning applications in the last
several years. Recently, a non-asymptotic error bound has been developed to measure the performance of
the fully connected DNN estimator with ReLU activation functions for estimating regression models. The
paper at hand gives a small improvement on the current error bound based on the latest results on the
approximation ability of (forward) DNN. More importantly, however, a non-random subsampling technique-
scalable subsampling—is applied to construct a ‘subagged’ DNN estimator. Under regularity conditions, it is
shown that the subagged DNN estimator is computationally efficient without sacrificing accuracy for either
estimation or prediction tasks. Beyond point estimation/prediction, we propose different approaches to build
confidence and prediction intervals based on the subagged DNN estimator. In addition to being asymptotically
valid, the proposed confidence/prediction intervals appear to work well in finite samples. All in all, the scalable
subsampling DNN estimator offers the complete package in terms of statistical inference, i.e., (a) computational
efficiency; (b) point estimation/prediction accuracy; and (c) allowing for the construction of practically useful
confidence and prediction intervals.

1 INTRODUCTION

In the last several years, machine learning (ML) methods have been developed rapidly fueled by
ever-increasing amounts of data and computational power. Among different ML methods, a popular
and widely-used technique is Neural Networks (NN) that models the relationship between inputs
and outputs through layers of connected computational neurons. The idea of applying such a
biology-analogous framework can be traced to the work of [17].

At the end of the 20th century, people focused on the feed-forward Shallow Neural Networks
(SNN) with sigmoid-type activation functions. An SNN has only one hidden layer but is shown
to possess the universal approximation property, i.e., it can be used to approximate any Borel
measurable function from one finite dimensional space to another with any desired degree of
accuracy—see [6, 12] and references within. However, the SNN practical performance left much to
be desired. In the last ten or so years, Deep Neural Networks (DNN) received increased attention
due to their great empirical performance.

Although DNN have become a state-of-the-art model, their theoretical foundation is still in
development. Notably, [27, 28] explored the approximation ability of DNN! for any function f that
belongs to an Holder Banach space; here, the sigmoid-type activation functions are now replaced by
ReLU-type functions to avoid the gradient vanishing problem. The aforementioned work showed
that the optimal error of the DNN estimator fhnn can be uniformly bounded, i.e.,

1 = fornlles = O (W2/7) M

here, £ is some smoothness measurement of the target function f : R¥ — R —see Section 4 for a
formal definition; W is the size of a neural network fpnn;, i.e., the total number of parameters; and
d is the dimension of the function inputs.

However, the bound (1) is not useful in practice. The reason is three-fold: (a) it requires a
discontinuous weight assignment to build the desired DNN, so it is not feasible to train such

1AIl DNNs considered in this paper have the forward property, which implies that the input, hidden neurons and output are
connected in an acyclic relationship.
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DNN with usual gradient-based methods; (b) the structure of the DNN might not be the standard
fully connected form so finding the satisfied specific structure becomes another difficult; most
importantly, (c) this error bound is on the optimal estimation we can achieve from a finely designed
DNN. It fails to tell us any story about the situation of applying the DNN estimator to solving
real-world problems.

For example, what is the performance of the DNN to estimate a regression function with n
independent samples {(Y, X;)}", generated from an underlying true model f? It is easy to see
that the error ¢ of fonn in sup-norm can be arbitrarily small if we allow W to be arbitrarily large
based on Eq. (1). However, this optimal performance is hardly achievable and only represents the
theoretically best estimation. What we attempt to do in this paper is to determine an empirically
optimal E)NN with samples {(Y, X;)}7, and then explore its estimation and prediction inference.

Guided by this spirit, people usually think fhny as an M-estimator and set different loss functions
for various purposes:

€ FDNN

fonn € argfgmin % ; L(fo(x:),y:); (2)

here Fpnn is a user-chosen space that contains all DNN candidates; L(-, -) is the loss function, e.g.,
Mean Squared Errors loss for the regression problem with real-valued output, i.e., L(fp(x;), y;) =
(fo(xi) — yi)?/2; {(y, x;)}, are realizations of {(Y, X;)}7 .

In the paper at hand, we consider DNN-based estimation and prediction inference in the data-
generating model: Y; = f(X;) + ¢;; here, the ¢; are independent, identically distributed (i.i.d.) from
a distribution F, that has mean 0 and variance o>—we will use the shorthand €; ~ i.i.d. (0, ¢?).
Consequently, f(x;) = E(Y;|X; = x;). Furthermore, the regression function f(-) will be assumed to
satisfy some smoothing condition which will be specified later. Note that the additive model with
heteroscedastic error: Y; = f(X;) + g(X;) - € can be analyzed similarly by applying two DNNs, one
to estimate f(-) and one for g(-).

From a nonparametric regression view, it is well-known that the optimal convergence rate of
the estimation for a p-times continuously differentiable regression function of a d-dimensional
argument is n?/(2*@ _gee [22]. If we assume the regression function belongs to a more general
Holder Banach space, we can define a non-integer & = p + s to represent the smoothness order
of f; here 0 < s < 11is the Holder coefficient. The optimal rate of non-parametric estimation can
also be extended to such non-integer smoothness order; see Condition 3" and Definition 2 of [16].
Focusing on DNN estimation, the optimal and achievable error bound on the L, norm of ]%NN is
O(n=¢/(&*4) . 1og®(n)) with a high probability; this bound is due to [9] but the rate appears slower
than the optimal rate that we can attain. Besides, although ﬁ)NN will become more accurate as the
sample size increases, training DNN becomes very time-consuming. Moreover, it is infeasible to
load massive data into a PC or even a supercomputer since its node memory is also limited in the
computation process as pointed out by [30].

In this paper, we first give a small improvement on the bound of [9] using the latest results on
the DNN approximation ability. Then, we resolve the computational issue involving huge data
by applying the Scalable Subsampling technique of [20] to create a set of subsamples and then
build a so-called subagging DNN estimator ]_‘DNN. Under regularity conditions, we can show that
the subagging DNN estimator ]_FDNN could possess a faster convergence rate than a single DNN
estimator ﬁ;NN trained on the whole sample. Lastly, using the same set of subsamples, we can build
a Confidence Interval (CI) for f based on ]_‘DNN. Due to the prevalent undercoverage phenomenon of
CIs with finite samples, we propose two ideas to improve the empirical coverage rate: (1) we enlarge
the CI by replacing the standard deviation estimation in the margin of errors with a term which is
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close to an estimation of mean square error; the explicit analysis on the effects of this replacement
is given in Section 4.3.1; (2) we take an iterated subsampling method to build a specifically designed
CI which is a combination of pivot-CI and quantile-CL; see the concrete steps in Algorithm 2.
Beyond estimation inference, we also perform predictive inference (with both point and interval
predictions).

Outline: The paper is organized as follows. In Section 2, we give a short introduction to the
structure of DNN. In Section 3, we describe the methodology of scalable subsampling. Subsequently,
the performance of the subagging DNN estimator and its associated confidence/prediction intervals
are analyzed in Section 4 and Section 5. Simulation and empirical studies are given in Section 6 and
Section 7, respectively. We conclude this paper in Section 8. Proofs are given in Appendix: A. Other
additional materials are put in Appendix: B.

Contributions: We summarize our main contributions as follows:

1 Taking advantage of the latest approximation result about DNN, we refine the high proba-
bility non-asymptotic error bound of one specific type of DNN. Its extension to a general
DNN estimator is straightforward.

2 Under simple and mild conditions, we show that the non-asymptotic error bound can be
further improved with the help of the recently proposed scalable subsampling technique.
Moreover, our subagging DNN-based estimator is more computationally efficient than
training DNNs with various sizes on a whole dataset.

3 Beyond the refinement of the error bound of the DNN estimator in the mean square sense,
we propose a scaling-down bias order estimation method, which is of independent interest
and may be useful in other problems.

4 We give a comprehensive discussion on how to make a practically useful Confidence Interval
(CI) with a DNN estimator, especially for finite sample cases. In addition, we distinguish the
difference between CI and Prediction interval (PI) and show our PI is asymptotically valid
under mild conditions.

Related Work: The comparisons of our method to mostly related work will be drawn throughout
this paper. Here, we give a summary. The fundamental idea of scalable subsampling shares a similar
spirit with the divide-and-conquer approach originally applied in the algorithm to decrease the
computational complexity; see [5, 8, 13]. In short, the initial divide-and-conquer approach consists of
three steps: (1) Divide the problem into a number of subproblems; (2) Conquer the subproblems; (3)
Combine all solutions of subproblems. In the machine learning community, the divide-and-conquer
idea can be integrated with DNNs for various purposes. For example, [10] applied a Recurrent
neural network (RNN) which is made up of some small RNNs to improve the accuracy of language
identification; [7] decomposed a challenging problem of determining the number and locations of
acoustic point sources into several subproblems which DNNs can solve. However, these applications
are mostly concerned with the algorithm or DNN structure design and lack theoretical validation.
With careful discussion regarding theory and practical implementation, we show that our scalable
subsampling approach can improve the error bound of DNN on the estimation of target functions in
the regression setting. In this perspective, our method is also related to the bagging and subagging
ideas that were proposed by [3] and [4], respectively. Along with the bagging idea, the prediction or
estimation accuracy with DNN model can be improved in solving real-world problems; see [11, 14]
for example. However, even the classical subagging estimator could be computationally infeasible
with a massive dataset. On the other hand, our scalable subsampling estimator is more efficient
since it is based on non-random subsamples and can control the overlapping level of different
subsamples.
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Scalable Subsampling Inference for Deep Neural Networks4 4

Notations: We will use the following norms: ||gll,x) = E[9(X)?]V%; |lgllw = sup, [g(x)].
Also, we employ the notation a, = © (d,) to denote “exact order”, i.e., that there exist two constants
¢, ¢z satisfying ¢y - ¢; > 0, and ¢1d,, < a, < cad,. We also use E, [+] to represent the sample average
operator.

2 STANDARD FULLY CONNECTED DEEP NEURAL NETWORK

For completeness, we now briefly introduce the fully connected forward DNN, and each layer has a
number of hidden units that are of the same order of magnitude. This type of DNN is the so-called
Multi-layer Perceptron (MLP). Since an MLP has more structure restrictions than a general forward
DNN, its estimation error bound will be larger than the variant with a general DNN. Besides, with
the fact a DNN can be embedded into an MLP, the proof of the error bound with an MLP is one step
further than the proof of the error bound with a general DNN. Thus, we will give new theoretical
results regarding the error bound of MLP estimators on some target functions. Our theory can be
extended to general forward DNN estimators straightforwardly. To simplify notations, we refer to
the DNN as the MLP with the ReLU activation function; see more discussions in Remark 4.1. In
short, the DNN can be viewed as a parameterized family of functions. Its structure mainly depends
on the input dimension d, depth L € N, width H € NI and the output dimension. The depth L
describes how many hidden layers a DNN possesses; the width H = (Hy, ..., Hy) represents the
number of neurons in each hidden layer. The fully connected property indicates that each hidden
neuron receives information from all hidden neurons at the previously hidden layer in a functional
way.

Formally, if we let u; = (ug1,. .., ul,Hl)T to represent all number of neurons at the [-th hidden
layer for [ = 0,...,L + 1; here, u, represents the input vector (xi, .. .,xd)T and uy 4 is the output.
Therefore, we can pretend that the input layer and the output layer are the 0-th and (L + 1)-th
hidden layers, respectively. Then, u;; = G("lT_lwl—l,i +b_y;)forl=1,...,Landi=1,...,H; here
wi_1; € RHi-1 is the weight vector which connects the (I — 1)-th hidden layer and the neuron uLi;
bi—1; € R is the corresponding intercept term; o(-) is the so-called activation function and we
take the ReLU function in this paper. To get the output layer, we just take up41; = quL,i +br;
fori=1,...,H4q; here Hyyq is equal to the output dimension. To express the functionality of the
DNN in a more concise way, we can stack {wlT_Ll.}i’1 by row to get W;_; € RHt x RHi-1 and collect

{bl—l,i}fill to be a vector by_; for [ = 1,..., L + 1. Subsequently, we can treat the DNN as a function
that takes the input x and returns output in the below way:

Jonn (x) = Wi (o(Wi—1 (- - - o(Wo0 (Wio(Wox + bo) + b1) +b2) -+ ) +br—1) +by.
We can understand that the function fpnn(x) maps x to the 1-st hidden layer and then map the
1-st hidden to the 2-nd hidden layer and so on iteratively with weights {W; }{‘zo, {bl}leo and the
activation function o(-). We can then compute the total number of parameters in a DNN by the

formula W = Zf:() (H; - Hiy1 + Hyy1). A simple DNN is presented in Fig. 1. It has a constant width of
4 and a depth of 2.
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Scalable Subsampling Inference for Deep Neural Networks5 5

Fig. 1. The illustration of a fully connected DNN with L = 2, H =4 and W = 37, and input dimension d = 2
and output dimension 1.

.
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3 SCALABLE SUBSAMPLING

Scalable subsampling is one type of non-stochastic subsampling technique proposed by [20]. Assume
that we observe the sample {Z3, ..., Z,}; then, scalable subsampling relies on g = | (n — b)/h] + 1
number of subsamples By, ..., B; where B; = {Z(j_1)h+1, - ., Z(j-1)h+b}; here, | -] denotes the floor
function, and h controls the amount of overlap (or separation) between B; and Bj,;. In general, the
subsample size b and the overlap h are functions of n, but these dependencies will not be explicitly
denoted, e.g.,

b=0(nf); h=a-b,

where 0 < f < 1and a > 0. More importantly, tuning b and h can make scalable subsampling
samples have different properties. For example, if h = 1, the overlap is the maximum possible; if
h = 0.2b, there is 80% overlap between B; and Bj,y; if h = b, there is no overlap between B; and
Bj.1 but these two blocks are adjacent; if h = 1.2b, there is a block of about 0.2b data points that
separate the blocks B; and Bj,;.

The bagging idea was initially proposed by [3], where the subsample is bootstrapped (sampling
with replacement) with the same size as the original sample. As revealed by that work, the main
benefit of taking this technique is that the mean-squared error (MSE) of the bagging estimator
can decrease, especially for unstable estimators that may change a lot with different samples, e.g.,
neural networks and regression trees. There are ample works about combining the neural networks
with the bagging technique to improve its generalization performance; e.g., see applications in the
work of [11, 14] for references. However, the drawback of the original bagging method is that the
estimation process needs to be performed with n-size bootstrap resamples many times which is
infeasible with massive data. [4] proposed the subagging idea which is based on all subsamples
as opposed to bootstrap resamples. However, even choosing a single random subsample could be
computationally challenging when n is large. As pointed out in [23], drawing a random sample
of size b from n items using the Sparse Fisher-Yates Sampler takes O(b) time and space which
corresponds to optimal time and space complexity for this problem.

Facing such computational dilemmas, scalable subsampling and subagging as proposed by [20]
can be seen as an extension of the Divide-and-Conquer principle—see e.g. [13]. Moreover, in
addition to the computational savings, scalable subagging may yield an estimator that is not less
(and sometimes more) accurate than the original; the following example illustrates such a case.

ExaMPLE 3.1 (KERNEL-SMOOTHED FUNCTION ESTIMATION). A remarkable example from the work
of [20] is the scalable subagging kernel estimator. Suppose our goal is estimating the value of
function g at a specific point; here, the function g can be a probability density, spectral density,
or other function that is estimated in a nonparametric setting. Denote the estimand 6 and its
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Scalable Subsampling Inference for Deep Neural Networks6 6

corresponding kernel-smoothed estimator 6, based on the whole sample, and assume that 6,
satisfies the following conditions:

(1) E(62) < oo for all n;
(2) n¥(E(6,) —0) — C and Var(n®0,) — o? as n — oo, where C is a non-zero constant, 6% > 0
andy > a > 0.

Define the scalable subagging estimator as:

q

_ IR

Opnss =q Z Op.is
p

here q is the total number of subsamples and éb,,- is the non-parametric estimator based on the i-th
subsample B;. To achieve the fastest convergence rate of Q_b’n’ ss we may let f = m. As aresult,
the Mean Squared Error (MSE )of the scalable subagging estimator 0y, 55 is ©(n2/(#2(r=@)); see
Lemma 4.1 of [20] for a detailed discussion. To achieve such a convergence rate in the context of
nonparametric estimation, the crucial point is using an undersmoothed bandwidth on the subsam-
ple statistics. To elaborate, suppose we are employing a non-negative (second-order) kernel for
smoothing in which case the MSE-optimal bandwidth is ® (n_l/ %). To conduct efficient subagging,
however, the f,; should be computed using an undersmoothed bandwidth of order o (b='/%). For
example, if we choose the bandwidth for éb’i to be © (b_l/ 4) instead, then the choices « = 3/8,
y=1/2,h=0(b),and b = © (nﬁ) with B = 0.8 implies that the rate of convergence of 0y, 55 is

n?/3. This rate is not only faster than the rate of §, that used the sub-optimal bandwidth © (n~'/4);
it is actually the fastest rate achievable by any estimator that uses a non-negative kernel with
its associated MSE-optimal bandwidth. Nevertheless, 0;, n.ss can be computed faster than Gn, and
may thus be preferable. In addition to the asymptotic results, the simulation study of [20] reveals
that the error of the scalable subsampling estimator can actually be smaller than the full-sample
nonparametric estimator with its own optimal bandwidth choice.

In the next section, we will introduce how to compute the scalable subsampling DNN estimator.
Then, we will show that our aggregated DNN estimator could possess a smaller MSE than the
optimal DNN estimator trained on the whole sample, under some conditions. We also discuss some
specifically designed confidence intervals to measure the estimation accuracy via the approaches
mentioned in Section 1.

4 ESTIMATION INFERENCE WITH DNN

Although the DNN has captured much attention in practice, its theoretical validation is still in
development. Recently, [9] gave a high-probability non-asymptotic error bound to measure the
performance of the DNN estimator under two regularity assumptions. In short, the error of using
]%NN to estimate f comes from two sources: (1) the stochastic error, which measures the difference
of ]%NN and the best one in a DNN class #pnn; (2) the approximation error, which measures how
well the target function f can be approximated by a DNN which comes from Fpnn concerning
some specific loss, i.e., the approximation ability of Fpnn. The work of [9] hinges on using a DNN to
estimate functions belonging to Sobolev space w.r.t. Lo, norm. To sync with the latest results on the
approximation ability of DNNs, we consider estimating functions in an Holder space. This change
brings benefits two-fold: (1) In practice, the Holder space is a more appropriate and direct space for
our target function if it possesses some smoothness property. In other words, the smoothness of our
target function in Holder space can be described thoroughly; (2) we can decrease the approximation
error by applying the latest results on the approximation ability of DNNs for function in Holder
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Scalable Subsampling Inference for Deep Neural Networks7 7

space from [28]. It turns out that we can finally get a precise ]%NN; see [8] for a detailed discussion
of Holder and Sobolev spaces. We present our assumptions below:

e Al: The regression data are ii.d. copies of Z = (Y,X) € Y x [~1,1]%, where X has a
continuous distribution, and Y c [-M, M] for some positive constant M. Correspondingly,
we set the space of all DNN candidate functions to be Fpnn = {fo : |1 folleo < 2M};

e A2: The target regression function f lies in the Holder space C** ([~1, 1]¢) which is the

space of k times continuously differentiable functions on [-1,1]¢ having a finite norm
defined by

max  sup [D*f(x) - D*f(y)]

kelkl=k o[ 24y lIx = yll*
X#y

5

= max 4y max max
1Nl g (1,174 Jnax  max

where the smoothness index is ¢ = k + a with an integer k > 0and 0 < o < 1.
o A3: The sample size n is larger than (2eM)? v Pdim( fpnn) where Pdim( fonn) is the pseudo-
dimension of fpnn which satisfies:

¢-WLlog(W/L) < Pdim(fpnn) < C-WLlogW,
with some universal constants ¢, C > 0 and Euler’s number e; see [1] for details.

REMARK. We can weaken the assumption on the domain of X to [—Cy, Cx]? for some constant Cy,
i.e., we can work on a compact domain of X; see also the proof of [28].

As shown in [9], withHy =H,=---=H| = G)(n2<f+d> log® n), L = ©(log n), the L, norm loss and
empirical mean squared error of the deep fully connected ReLU network estimator from Eq. (2) can

be bounded with probability at least 1 — exp (—ni%i log® n), ie,

”fDNN f

5

{n_ffd log®n + —loglog n}
LZ(X) n

®)

and E, [(fDNN f) ] (”fDNN f LZ(X))
here C; > 0 is a constant which is independent of n and may depend on d, M, and other fixed
constants.

Obviously, the L, norm error bound in (3) is sub-optimal compared to the fastest convergence
rate we can achieve for nonparametric function estimation. With the latest approximation theory
on DNNs, we can improve the error bound in Eq. (3) by decreasing the power of the log(n) term.
Meanwhile, this faster rate is satisfied with a narrower DNN. We give our first theorem about the

convergence rate of fpnn below.

THEOREM 4.1. Under assumptions A1 to A3, width H = @(nz(gd) logn), and depth L = ©(logn).
Then, the Ly norm loss of the deep fully connected ReLU network estimator Eq. (2) can be bounded
d

with probability at least 1 — exp (—n% log® n), ie.,

il

loglogn
=1 4
- } @)

_E
n & log’n+
LZ(X)

here Cy > 0 is another constant.
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Scalable Subsampling Inference for Deep Neural Networks8 8

It appears that the above gives the fastest rate obtainable based on the current literature. Later,
we will show how this error bound can be further improved by applying the scalable subagging
technique under some mild conditions.

REMARK 4.1. The improvement implied by Theorem 4.1 can also be applied to Corollaries 1 and 2 of
[9] to improve the corresponding error bounds. Corollaries 1 and 2 of [9] discuss the error bound of
general forward DNN.

4.1 Scalable subagging DNN estimator

We first review the idea of scalable subagging and explain how this technique can be com-
bined with DNN estimation. We focus on the regression problem and assume we observe sample
{(Yl’ XI)» s (Ym Xn)}

Analogously to the subagging kernel-smoothed estimator of Example 3.1, we can define the
subagging DNN estimator as:

q —
Sfonng,j (X); (5)
Jj=1

Fonn(X) = é

here,q = [(n—b)/h]+1,and ]%NN,b,j(-) is the minimizer of the empirical loss function in Eq. (2) just
using the data in the j-th subsample namely B; = {(Y(j_1)n+1, X(j—1)he1)s - - -» (Y(j=1)htts X(j=1)hb) }-
In this subsection, we consider h = b.

In nonparametric function estimation where the estimation is performed through the kernel
technique, the bandwidth can control the bias order of the kernel-smoothed estimator. As shown
in Example 3.1, the optimal convergence rate can be recovered by combining scalable subagging
trick and undersmoothing bandwidth. Similarly, in the context of neural network estimation, the
whole architecture of a DNN controls its smoothness similar to the role of the shape (order) of a
kernel. The depth and width of a DNN play the role of tuning parameters similar to the bandwidth
of a kernel. Moreover, according to the prevailing wisdom, a deeper DNN may possess a lower bias;
this conjecture was confirmed by [26] with ResNet on some image datasets.

However, as far as we know, there is no theoretical result that explains the relationship between
bias and the width/depth of a DNN. Here, we make the below assumptions to restrict the order of

the bias of ]%NN:
o A4: E(]%NN(x) - f(x)) = O(n~"/?) uniformly in x for some constant A > 0.

To boost the scalable subagging method, a fundamental preliminary condition is that the bias of
the estimator is comparatively negligible to its standard deviation—see [20] for details. Thus, we
further impose an additional assumption on the order of bias:

e A5: The bias exponent in Assumption A4 satisfies the inequality: A > %.

We claim that assumptions A4 and A5 can be achievable due to the fact that as revealed in [28],
the approximation ability in the uniform sup-norm of a DNN can be as fast as W ~2¢/4, Although this
rate is not instructive in practice, the existence of a DNN that satisfies the bias order requirements
A4 and A5 is possible. To see its feasibility, let n = W*Llog W such that A3 is satisfied. Let’s assume
that ﬁgNN can be trained as the optimal one indicated by sup-norm. This assumption is solely about
an optimization problem whose difficulty is beyond the scope of this paper. Ignoring the slowly
changing term, it is easy to see A4 and A5 are satisfied when 1 < x < @.

We should also notice that practitioners tend to build a large DNN whose size is larger than
the sample size. i.e., the DNN interpolates the sample in the modern machine-learning practice.
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Interestingly, such an over-parameterized estimator breaks the classical understanding of the bias-
variance trade-off since its generalization performance can even be better than a DNN which lies
in the under-parameterized regime. Actually, this phenomenon is described as the double-descent
of the risk by [2]. Thus, A4 and A5 are achievable when we consider DNNs with an overwhelming
number of parameters, i.e., W > n so that the bias in A4 can be as low as O(W‘zg/d); however,
assumption A3 may fail which means the consistency property of the DNN estimator may be lost.
It is interesting to explore whether the scalable subsampling can work for DNN estimators in an
over-parameterized regime; we leave this to future work.

REMARK 4.2. In this paper, we focus on applying the scalable subagging technique to DNNs whose
size is less than the sample size but it is straightforward to extend our methodology to a large DNN.
However, as a sacrifice, the consistency property ofﬁ;NN to f may not be held. We leave this extension
to future work. We just give a preliminary analysis from the computability aspect at this moment.
As we can expect, the saving of computational cost from applying scalable subagging will be more
significant for executing estimation with a large DNN. To see this fact, let’s assume that we consider a
DNN with size W = ©(n?), ¢ > 1. Then, the computational complexity will be mainly determined by
how many manipulations (e.g., forward calculation and backward updating) we carry out to train the
DNN. The total number of manipulations is also affected by the batch size and the number of epochs.
Thus, we summarize that the total number of manipulations is O(n - W - E); here E represents the
number of epochs, i.e., the number of complete passes of the training through the algorithm. It is fair to
assume that the complexity is in the order of n?*' := n?. When the size of the DNN is larger than the
sample size, ¢ > 2. Thus, for the subagging estimator, the computational complexity is approximately
to be O(nf?q) = O(n"*F=1) . The ratio of n'*F(*=1) over n?® is n=(¢=V=F) Thys, for a fixed B, the
larger ¢ to be, the more computation can be saved by deploying the subagging technique.

Aggregating all the above, the following theorem quantifies the error bound of the scalable
subagging DNN estimator of Eq. (5):

THEOREM 4.2. Assume Al to A5, and let f = 1 . Then, with probability at least (1 —

l+A—m

d
exp(—nZ+ log® n))? the error bound of the subagging estimator Eq. (5) in Ly norm is:
o1, o, =% 200
— <n E+d n),
Fon =1,
where L(n) is a slowly varying function involving a constant and alllog(n) terms.
REMARK 4.3. Choosing f = L— in Theorem 4.2 ensures that the square bias term will be
T&d
always relatively negligible compared to the variance which is important for the success of scalable
subsampling; see related discussion in Remark 4.4.

Note that the final accuracy of DNN heavily depends on many other factors in practice, e.g.,
which optimizer we choose in the training stage, which parameter initialization strategy we take,
and how large the batch size should be. Thus, a solely theoretical rate is insufficient to verify
the superiority of the scalable subsampling DNN estimator. We then deploy simulation studies in
Section 6 to provide supplementary evidence.

4.2 Estimation of the bias order of DNN estimator

Although Theorem 4.2 shows the possibility of getting a smaller error bound, it depends on the
bias exponent A which is typically unknown. In this subsection, we propose two approaches to
estimate the value of A via subsampling. As far as we know, it is the first attempt to quantify the
bias of the DNN estimator.
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First note that A4 implies that, for any i, E(]%NN,b,i(x) — f(x)) = O(n=PMN?), Since ]_‘DNN(X) =
611 Z?:l Sfonng,j(X), it follows that the bias of f\(x) is O(n=P72), so we can write

[EFomn(®) = F(@)] = co - b2 406742, ©)

Recall that f(X) was built based on subsamples of size b. If we have another DNN estimator
JfONN b, (%) trained on sample of size by, then its bias will be ¢, - bSA/Z + o(b(;A/z). Then,

2 (Fom0) = £3))| = B (Fom () = Forcn () + Foroin () = £
= [B (Forn () = ornsn () + B (Fornn (1) = £

If b — oo and b/by — 0, the bias of j_“DNN(x) is asymptotically determined by the first term on the

™)

rh.s. of Eq. (7). So we can try to estimate ’E (]_”DNN(x) - ﬁ)NN,bg (x))| to approximate the Lh.s. of

Eq. (7).
Ideally, if we have a large enough sample, we can carve out M non-overlapping (or partially
£00)

overlapping) by-size subsamples and compute {f;

DNN.bp (x)}?ﬁl. If we further separate each by-size

subsample into multiple non-overlapping (or partially overlapping) b-size subsamples, {]_CI(;ILN (x)}M
can be built and each ]_‘](;ILN(x) possesses the same bias order as our desired DNN estimator.

Subsequently, the bias of j_“DNN (x) can be estimated by the sample mean of {?&N (x)- j?];(f\?N bo (x) }?;1 "
We can then use this information to estimate the value of A. By the law of large numbers, we can get
accurate bias estimation as M — co. However, as we can easily see, this approach is computationally
heavy and requires a large dataset.

Consequently, we propose another way to perform the bias estimation; we will call it scaling-down
estimation method. To elaborate, recall that our goal is estimating the bias of f DNN(x) that was

built based on subsamples of size b. Consider different DNN estimators fDNN b, (x) and fDNN by (%)
which are trained on samples of size b; and b, respectively; here by < b and b, < b;. As before,
A4 implies that the bias of fonwnp, (%) is cp - bl._A/ 24 o(bi_A/ 2) for i = 1, 2. Then, a key observation is
that:

& (o () = £0)| = [E( Forn () = P () + Frna () = £

= [E (Forniin () — Fonn ()) + B (Fonn () = F )|, fori = 1,2, ©

Due to the relationship between b, by, b, the bias of ﬁ)NN,bi (x) is dominated by the first term on
the r.h.s. of Eq. (8). We then have two different estimates of the bias of fynnp, (x), namely:

Z (fgIJ\I)Nb (x )_]_CDNN(x)) ,

B; = fori=1,2.

Fixing the value of i, { gIJ\I)N b, (%) };ﬁl is value of ﬁDNN,b,- (x) computed from the jth subsample of size
b; carved out the whole sample; as before, these subsamples can be non-overlapping or partially
overlapping and their number is denoted by ¢;. Ignoring the o(+) term in Eq. (6), we can solve the

following system of equations to approximate both ¢, and A:

E] =Cp b Alz (9)
Bz =Cp- b A/Z
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Taking logarithms in Eq. (9) turns it into a linear system in ¢, and A. Finally, we can estimate the
blas offDNN(x) by scaling down B, by a factor (b/by) /2, i.e., the bias offDNN(x) is approximately
1 - (b/by)™/2. We summarize this procedure in Algorithm 1.

Algorithm 1 Scaling-down bias estimation of DNN estimator

Step 1 Fix a subsample size b, and compute ]_‘DNN(x) at point x.

Step 2 Fix two subsample sizes b; < b and b, < by, and separate the whole sample into g; and
q2 number of b;-size and b,-size subsamples, respectively. Compute {]’”;I]\I)N b, (x) }?;1 at
xfori=1,2.

Step 3  Solve Eq. (9) to get ¢, and A.

Step4 Estimate the bias of f(x) by By - (b/by) /2.

4.3 Confidence intervals

Beyond point estimation, it is important to quantify DNN estimation accuracy; this can be done via
a standard error or —even better— via a Confidence Interval (CI). More specifically, for a point of
interest X = x, we hope to find a CI which satisfies:

P(B, < f(x) <By) =1-8

here P should be understood as the conditional probability given X = x; B; and B, are lower and
upper bound for f(x) that are functions of the DNN estimator; § is the significance level. Since we
can have different CI constructions having the same §, we are also interested in the CI length (CIL)
which is defined as CIL = B, — B;. We aim for a (conditional) CI that is the most accurate (in terms
of its coverage being close to 1 — §) but with the shortest length.

Analogously to Example 3.1, we assume the variance term of the DNN estimator trained with
sample size n and evaluated at x:

B1 Var(n®fonn(x)) — 0% > 0 as n — .
Generally speaking, we have two choices to build CI for f(x): (1) Pivot-CI (PCI), the type of CI
obtained by estimating the sampling distribution of a pivotal quantity, e.g. the estimator centered
at its expectation; (2) Quantile-CI (QPI), the type of CI based on quantiles of the estimated sampling
distribution of the (uncentered) estimator of interest. More details are given in the example below.

ExampLE 4.1 (TypEs orF CI). For any unknown quantity 6 estimated by 6, we may build a scalable
subagging estimator Qb nss =¢q~ Z Gb ; to approximate it. To construct a CI for 6 based on Gb n.SS>
we are aided by the CLT of [20], i.e.,

kn(Gpmss — 0) > N(CpC2), asn — oo, (10)

under mild conditions; here C,, and C% are the mean and variance of limiting distribution, respec-
tively, and x,, = n 5L 2

The form of the PCI based on CLT (10) depends crucially on whether C,, = 0 or not; see the
next two subsections for details. On the other hand, the QCI is easier to build but it has its own
deficiencies. In the context of this example, it is tempting to create a QCI for 6 by taking the §/2
and 1 — §/2 quantile values of the empirical distribution of the points {01, .. ., éb,q}. However, the
resulting CI will be too conservative, i.e., its coverage will be (much) bigger than 1 — §. The reason

1-B+2ap
2We note a typo in [20] where k,, was incorrectly writtenasn™ " 2 .
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is that the empirical distribution of {0, . .., éb,q} is approximating the sampling distribution of
estimator 0, which has bigger variance than that of the target 0,,. We could try to re-scale the
empirical distribution of {éb,l, ces équ} as in classical subsampling—see [21]. We still consider the
QClI in the simulation studies. As expected, this QCI is the most conservative one; see details in
Section 6.

4.3.1 PCl in the case where C, = 0. If C;, = 0, i.e,, when the square bias is relatively negligible
compared to the variance in estimation, we can rely on Eq. (10) to build a PCI for the true function

~ . _ 2
f at a point x. All we need is a consistent estimator of CZ, e.g., C2 = b**q~' 31 (Gb,l— - 0;,3,1555) )
In that case, a PCI for 0 based on the CLT can be written as:

—~

Opnss £ z1-5/2* Co Ky s (11)
where z;_gs/; is the 1 — §/2 quantile of the standard normal distribution.
Observing that there is a common term nP% in k, and C,, we can estimate C,, - x, ! as a whole

rather than computing x, and 6?, separately. As a result, we can get a simplified PCI based on
Eq. (11) as follows:

?DNN(X) *2z1-5/2 - Mo (12)

~ - — 2
here M, = C, - ;! which can be approximated by \/ql >, (fDNN’b,i(x) - fDNN(x)) /n%. Note
that the building of the CI does not require the knowledge of a which is the order of the variance
term in B1. However, the estimation C, may not be accurate when q is small since it is only an
average of g terms. As a result, the PCI according to Eq. (12) may undercover the true model values.
Thus, we may relax the desired property of CI. Instead of requiring the exact coverage rate of a CI

to be 1 — §, we seek a CI such that:
P(B; < f(x) <B,) >1-6. (13)
Thus, the optimal candidate will be the CI which has the shortest length and guarantees the lowest
coverage rate larger than 1 — 9. To satisfy Eq. (13), we may enlarge the CI appropriately by replacing
C2 with C2 = C2 + (fpan (%) — y)% here y = f(x) +e.
It is appealing to think that C is close to the MSE of fpyy (). However,

q 2 q 2
- 1 ~ 1 ~
(foxn(x) —y)* = (5 Z(fDNN,b,i(x) - y)) = (ZI Z (fDNN,b,i(x) —f(x)) - 6) -
i=1 i=1
When g is large, (j_”DNN(x) —-y)? — (Cy — €)* where C,, is the bias of ?DNN(x). Therefore, C2 is
not exactly the MSE, but it can still be used to enlarge the CI to some extent. We can then define
another PCI as:

J_(DNN(x) *2Z1-5)2 - M, (149)
where

g, _ 2 _
My = J ) (i@ = Fon(®)) /11 + Fony (6) = 1) m1=F4205. (15)
i=1
Since the order of the variance term « is involved in the above terms, we consider two extreme
situations in the simulation sections: (1) We take 2« = 0 which is a most enlarged case; or (2) take
2a = 1 which is a mildly enlarged case.
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REMARK 4.4 (THE CONDITION TO GUARANTEE C,, = 0). According to Eq. (10), C;, = 0 is satisfied as

long as p > m under A5. If we take f = 1+A1 = in Theorem 4.2, we can find that the condition for
T

Cy = 0 is always satisfied. This is not surprising due to A5 imposing the requirement on the convergence
rate of the bias term. However, as explained in Remark 4.3, this § is not the optimal one to generate
the smallest error bound. Thus, we could arrive at a stage where the orders of the squared bias and
variance are the same once we know a. Due to the high variability of training a DNN in practice, we
introduce a method in Section 4.3.2 to build CI appropriately under the situation that C,, # 0, which
serves for cases where the bias is not relatively negligible.

4.3.2  PCl in the case where C,, # 0. It is worthwhile to discuss how can we build a PCI for scalable
subsampling DNN estimator when C,, # 0. Note that [20] proposed an iterated scalable subsampling
technique that is applicable in the case C,, # 0. While this technique is also applicable in the case
C, = 0, we may prefer the construction of Section 4.3.1 since it is less computer-intensive. However,
we should notice that the additional computational burden brought by iterated subsampling is
negligible when n — oo; see analysis in the below Remark.

REMARK (COMPLEXITY ANALYSIS OF ITERATED SUBSAMPLING). For the computational issue of the
iterated subsampling stage, the total time of training all DNN estimators ,;Ij\,)Mb!i forie{1,...,q}
and j € {1,...,q’} (iterated subsampling stage) is less than the time of training all DNN estimators
in the first subsampling stage, i.e., ﬁ)NN,b’i forie{1,...,q}. We can see the reason by analyzing the
computational complexity of the iterated subsampling stage. In total, we need to trainq-q' = o(n'F")
number of models with sample size nP’. As the assumption we made in Remark 4.2, the complexity of
training a DNN is mainly determined by its size, sample size and the number of epochs, so the training
time of the iterated stage is around q - q" - O - nf*) = O(n™*F") when the sample size is close to the
size of DNN. Similarly, we can analyze that the complexity of training DNNs in the first subsampling
stage is around O(n'*F). Since B < 1, the complexity of the first subsampling stage will dominate the
iterated stage when n is large enough. In other words, the complexity cost of applying the iterated
subsampling technique is negligible when we are dealing with a huge dataset.

For completeness, we present the iterated subsampling here in the remark below.

REMARK 4.5 (ITERATED SUBSAMPLING). With the same notations in Example 4.1, we can perform the
iterated subsampling in three steps: (1) Let b = |_nﬁJ, then apply the scalable subsampling technique to
sample X, ..., X, and get q subsets {B,-}?zl. Compute 0y, , ss; we call it “first stage subsampling”; (2)
Take another subsample size b’ = | b? | and apply scalable subagging method again to all {Bi}?zl, ie,as
if B; where the only data at hand and make subagging estimator for each,Bi subsamples; such subagging
sty hereq = [(b—b') /W] +1.
As a result, we can get q number of {0y ss:}1,; we call it “iterated stage subsampling™: (3) Find

the subsampling distribution Ly pss(z) = ¢~ ' XL, 1{xp (Op b5 — Opnss) < z}; kp is a function of

estimator Oy j, ss.; is computed by averaging q' estimators {6

b. In the context of DNN estimation, we use ]’”EJ{[)N“ to represent the DNN estimator in the iterated
subsampling stage on the j-th subsamples from the i-th subsample in the first stage subsampling.

Denote J,(z) = P(x,(0pnss — 0) < z), and J(z) is the limit of J,(z) as n — oo; recall that (10)
implied that J(z) is Gaussian. Proposition 2.1 of [20] shows that Ly ; ss(z) converges to J(z) in
probability for all points of continuity of J(z). Due to Eq. (10), J(z) is continuous everywhere,
and therefore the convergence is uniform. Thus, both Ly j, ss(z) and J,(z) converge in a uniform
fashion to J(z) in probability which implies that:

P
sup |Ly b,s55(2) = Ju(2)| = 0, as n — co. (16)
z
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Thus, iterated subsampling can be used to estimate the distribution J,. We can build the Clin a
pivotal style without explicitly referring to the form of J that involves the two unknown parameters.
A further issue is that normality might not be well represented in J, since it is based on an average
of g quantities; having a large g requires a huge n. To compensate for the data size requirement, we
take a specific approach to build CI which can be considered as a combination of PCI and QCI to
some extent. Algorithm 2 describes all the steps to construct the CI for f at a point x based on the
subagging DNN estimator and iterated subsampling method.

Algorithm 2 PCI of f(x) based on iterated subsampling

Step 1 Fix the subsample size b, compute ]_”DNN(x) at point x.
Step 2 Fix the subsample size b’ of iterated subsampling, perform necessary steps in Remark 4.5
to find

9
Lypss(z) =q" Z 1 {Kb (J_CDNN,i(x) - fDNN(x)) < Z} ;

here ]_‘DNN,i(x) = % 23;1 ,I;(I{I)N’b,i is the subagging DNN estimator on the i-th subsamples
in Step 1 at the point x.
Step 3 Denote the §/2 and 1 — §/2 quantile values of the distribution L ; ss(2) as by and b,,.

Step 4 Determine the PCI of f(x) by:
[?DNN(x) —bu/kn, ?DNN(x) — by /K]

In other words, we take B; = fan(X) = by/kn and By, = frnn (%) = by/kn.

Note that to construct the PCI (17) above, the values of k, and k; are required. Recall that
1-p+2af 1-p+2ap
Kn=n = and kp =nf o Although f is the practitioner’s choice, « is typically unknown.

Remark 4.6 explains how upper and lower bounds for & can be used in the PCI construction.

REMARK 4.6. In constructing the PCI (17) we can replace kp, by a larger value (say Kp) and replace
kn by a smaller value (say k, ) and the coverage bound of Eq. (13) would still be met. From Theorem 4.1,
the fastest rate of the variance decrease is of order O(n™1); so a could be as large as 1/2 in which

B _ &
Kp = nz. On the other hand, the slowest rate is influenced by n~ ¥4 ; if we pretend the smoothness of
the true model is equal to the input dimension (although it is actually smoother), we can take ¢ = 1/4
1-5/2
to computex, =n 2 .

5 PREDICTIVE INFERENCE WITH THE DNN ESTIMATOR

Most of the work in DNN estimation has applications in prediction although this is typically a point
prediction. However, as in the estimation case, it is important to be able to quantify the accuracy of
the point predictors which can be done via the construction of Prediction Intervals (PI); see related
work of [18, 24, 25, 29] on predictive inference with dependent or independent data.

Consider the problem of predicting a response Y; that is associated with a regressor value of
interest denoted by x, and its corresponding prediction interval. The L, optimal point predictor of
Yy is f(x0) which is well approximated by fpnn (x) as Theorem 4.2 shows. To construct a PI for
Yy, we need to take the variability of the errors into account since, conditionally on X, = x¢, we
have Yy = f(xo) + €.
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If the model f and the error distribution F. were both known, we could construct a PI which
covers Yy with 1 — § confidence level as follows:

[f(xo) + 26,5/2’f(x0) + Ze,1—§/2] 5 (18)

here z ;_s5/2 and z, 5/, are the 1 — §/2 and §/2 quantile values of F, respectively. Of course, we do
not know the true model f but we may replace it with our scalable subsampling DNN estimator
]_CDNN. In addition, F¢ is also unknown and must be estimated; a typical estimator is 1::E which is the
empirical distribution of residuals. To elaborate, we define I::e as follows:

—~ 1<
Fe(z) := - Z 1<z 1.)is the indicator function. 19)
i=1

& = f(xi) —?DNN(xi), fori=1,...,n.

To consistently estimate the error distribution F., we need to make some mild assumptions on
Fe, namely:

e B2: The error distribution F. has zero mean and is differentiable on the real line and
sup, pe(2z) < oo where p.(z) is the density function of error e.

The following Lemma can be proved analogously to the proof of Lemma 4.1 in [25].
LEMMA 5.1. Under A1-A5 and B1, we have sup, Ii(z) — Fe(2)] 2.
We can then apply the PI below to approximate the ‘oracle’ PI of Eq. (18):
Foan(%0) + Ze.s/2. Fonn (3%0) + Zea—s2 | ; (20)

here Z1_5/2 and Z, s/, are the 1 — §/2 and §/2 quantile values of 1?5 respectively. To construct this
PI in practice, we can rely on Algorithm 3 below:

Algorithm 3 PI of Y conditional on xq

Step 1 Train the subagging DNN estimator ]_‘DNN(~) and find the empirical distribution of
residuals F, as Eq. (19).

Step 2 Evaluate the subagging DNN estimator at x, to get ?DNN(xO).

Step 3 Determine 2. 5/, and Z¢1_s/ by taking lower §/2 and 1 — §/2 quantiles of I::e

Step 4 Construct PI as Eq. (20).

We claim that the PI in Eq. (20) is asymptotically valid (conditionally on X, = x), i.e., it satisfies

- N - N p
P (Yo € [fDNN(xo) +Ze5/2 fonn (%0) + Ze,l—é/z]) —1-6, (21)

where the above probability is conditional on X = xq. This statement is guaranteed by Theorem 5.1.

To describe it, denote Y = frn(x0) + €5 where € has the distribution F.

THEOREM 5.1. Under A1-A5 and B1-B2, the distribution of Y converges to the distribution of Y,
uniformly (in probability), i.e.,

P
SUP |Fys|xy=x (2) = Fy|xp=x, (2)| = 0, asn — co. (22)
z
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Although the PI in Eq. (20) is asymptotically valid, it may undercover Y; in the finite sample case.
This problem is mainly due to two reasons: (1) PI in Eq. (20) does not take the variability of model
estimation into account; and (2) the scale of the error distribution is typically underestimated by the
residual distribution with finite samples. For issue (1), we can rely on a so-called pertinent PI which
is able to capture the model estimation variability; this pertinence property is crucial, especially
for the prediction inference of time series data in which multiple-step ahead forecasting is usually
required. For issue (2), we can “enlarge” the residual distribution by basing it on the so-called
predictive (as opposed to fitted) residuals. Although the predictive residuals are asymptotically
equivalent to the fitted residuals, i.e., € in Eq. (19), the corresponding PI could have a better coverage
rate; see [19] for the formal definition of pertinent PI and predictive residuals.

In this paper, due to the computational issues in fitting DNN models, we only build the PI in
Eq. (20). Taking a fairly large enough sample size in Section 6, this PI works well, and its empirical
coverage rate is only slightly lower than that of the oracle.

6 SIMULATIONS

In this section, we attempt to check the performance of the scalable subagging DNN estimator
with simulation examples. More specifically, we consider two aspects of one estimator: (1) Time-
complexity, we take the running time of the training stage to measure its complexity for a fixed
hyperparameter setting, e.g., fixed number of epochs and batch size; (2) Estimation accuracy, we take
empirical MSE (mean square error)/MSPE (mean square prediction error) and empirical coverage
rate to measure the accuracy of point estimations/predictions and confidence/prediction intervals.
We deployed the simulation studies on the CentOS Linux 7 (Core) system. All simulations run
parallelly with 40 CPUs (Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz).

6.1 Simulations on point estimations

As shown in Section 4, the scalable subagging DNN estimator is more computationally efficient but
also more accurate meantime compared to the DNN estimator trained with the whole sample size
under some mild conditions. Here, we hope to verify such dominating performance with simulated
data. To perform simulations, we consider below models:

e Model-1: Y = 312, X; + ¢, where (X, ..., X10) ~ N(0,I).

e Model-2:Y = }21 i-X;+e, where (Xi,...,X10) ~ N(0,I).

e Model-3: Y = X? +sin(X; + X3) + €, where (X1, X2, X3) ~ N(0,I).

e Model-4:Y = X12 + sin( X3 + X3) + exp(—|Xy + Xs|) + €, where (X3, X5, X5, X4, X5) ~ N(0, I);

here I is an identity matrix with the correct dimension for each model; € is the standard normal
error. To be consistent with folk wisdom, we build ﬁ)NN,b,i with a relatively large depth to decrease
the bias. Meanwhile, we take the width as large as possible to make its size close to the sample
size so that A3 could be satisfied and we are in the under-parameterized region. In order to make a
comprehensive comparison between the scalable subsampling DNN (SS-DNN) estimator fy and
classical DNN estimators, we consider 5 DNN estimators which are trained with the whole sample
but with different structures:

(1) A DNN possesses the same depth and width as ﬁ)NN,b,i- We denote it “S-DNN”.

(2) A DNN possesses the same depth as J‘;)NNJ,J, but a larger width so that its size is close to
the sample size. We denote it “DNN-deep-1".

(3) A DNN possesses the same depth as E)NN,b,i, but a larger width so that its size is close to
half of the sample size. We denote it “DNN-deep-2”.
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(4) A DNN possesses only one hidden layer, but a larger width so that its size is close to the
sample size. We denote it “DNN-wide-1".

(5) A DNN possesses only one hidden layer, but a larger width so that its size is close to half of
the sample size. We denote it “DNN-wide-2".

We deploy DNN (1) to check the performance of a DNN with the same structure as f]‘)NN!b’i, but it is
trained with the whole dataset. We deploy DNNs (2) - (5) to challenge the scalable subsampling DNN
estimator with various wide or deep DNNs. We build the DNN estimator with PyTorch in Python. To
train all different DNNs, we use the stochastic gradient descent algorithm Adam developed by [15]
with a learning rate 0.01. In addition, we take the number of epochs and batch size to be 200 and
10 to make the DNN fully trained for the first and iterated subsampling stages, respectively. The
choice of batch size, the number of epochs and the base sample size is intended to make sure all five
DNN estimators can achieve a great estimation performance (this is revealed by Table 1, all errors
are small). Based on this fact, we then check the running time and the accuracy of different DNNs.
We use the function time.time() in Python to compute the running time of the training procedure,
namely Training Time.
To evaluate the point estimation performance, we apply two empirical MSE criteria:

MSE-I:% ;(ENN(-’Q‘) - y,-)2 ; MSE-Z:% ;(];];NN(XI') - f(xi))2§

here ]%NN() represents different DNN estimators and f(-) is the true regression function; {x;, y; }7,
are realizations of samples; we call it training data.

An estimator is optimal in MSE-1 criterion if its MSE-1 is closest to the sample variance of errors,
namely 62 = £ 37| €7; here {¢2}_ | are observed error values. An estimator is optimal in the MSE-2
criterion if its MSE-2 is closest to 0. We present MSE-1 and MSE-2 of different estimators in Table 1.
In addition, we also present 62 of the corresponding simulated sample as the benchmark to compare
the performance of different estimators according to the MSE-1 criterion.

Beyond the point estimation measured on training data, we are also interested in the performance
of difference DNN estimators on test data. Thus, we generate new samples: {x, yo,i}fi 1; here we
take N = 2 - 10° to evaluate the prediction performance. Similarly, we consider two MSPEs and we
denote them MSPE-1 and MSPE-2 following:

N N
1 -~ 1 -~
MSPE-LN ;(fDNN(xo,i) —y01)%; MSPE-ZN ;(fDNN(xo,i) — f(x0))%

we expect that the best estimator on prediction tasks should have the smallest MSPE-2 and the
MSPE-1 which is closest to 6'3’0 = % Zﬁ\il (€0.i)?; here {fo,i}fil are observed error values for the test
data. We present all simulation results in Table 1; here empirical MSE/MSPE and Training Time (in
seconds) were computed as averages of 200 replications.

We can summarize several notable findings from the simulation results:

. ?DNN is always the most computationally efficient one, it is even faster than applying a
single DNN estimator with the same structure as ]%NNJ,,,- but trained on the whole sample.
Notably, our scalable subsampling procedure can save more than 50% running time of
applying DNN-deep-1 or DNN-wide-1 for Model-4 data with size 2 - 10%.

e According to the MSE-1, ?DNN is the most accurate one for all simulations. For example, the
MSE-1 of fpyy is around 40% closer® to 62 than the MSE-1 of DNN-deep-1 and DNN-deep-2

3Saying that the error E; is a% closer to &2 than the error E; means that | (E; — 62 Ey — 62%)] is a%.
y g € € €
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Table 1. MSE/MSPE and Training Time (in seconds) of different DNN models on various simulation datasets

with error terms.

1

2

3

Estimator:

SS-DNN

S-DNN

DNN-deep-1 DNN-deep-2 DNN-wide-1 DNN—Wi(;ie—Z

Model-1, n = 10%, 62 = 1.0011, 67 ; = 1.0003

6

7

Width [20,20] [20,20] [90,90] (60,60] (800] [400F
MSE-1 1.0034 1.0168 0.9975 1.0036 1.0136 1.015%
MSE-2 0.1011 0.0579 0.1039 0.0894 0.0466 0.0433°
MSPE-1 1.1020 1.0678 1.1299 1.1059 1.0543 1.0487"
MSPE-2 0.1019 0.0675 0.1296 0.1057 0.0540 0.0484
Training Time 209 225 403 303 373 274 1
14
15
Model-2, n = 10%, 62 = 1.0012, 67, = 1.0011 10
17
Width [20,20] [20,20] [90,90] (60,60] (800] [400],,
MSE-1 1.0506 1.1355 1.1314 1.1350 1.0768 1.0743,
MSE-2 0.1232 0.1625 0.1889 0.1839 0.1249 0.1194,
MSPE-1 1.1339 1.1469 1.1841 1.1737 1.1254 1.1237,
MSPE-2 0.1338 0.1468 0.1841 0.1736 0.1253 0.1238,
Training Time 224 240 417 320 376 280 ,,
24
25
Model-3, n = 10%, 62 = 0.9997,6% = 1.0001 2
Width [15,15,15] [15,15,15] [65,65,65] [45,45,45] [2000] (10007
MSE-1 1.0014 1.0361 1.0299 1.0308 1.0286 1.02908
MSE-2 0.0296 0.0536 0.0533 0.0522 0.0426 0.043¥
MSPE-1 1.0310 1.0565 1.0572 1.0571 1.0453 1.044%
MSPE-2 0.0310 0.0564 0.0572 0.0570 0.0453 0.0449!
Training Time 353 379 561 468 483 363 32
33
34
Model-4, n = 10%, 62 = 1.0014,67 ; = 1.0003 3
Width [151515]  [15,15,15] (65,6565]  [454545] [2000] [1000]
MSE-1 1.0243 1.0488 1.0318 1.0350 1.0457 1.046Q,
MSE-2 0.0757 0.0830 0.1076 0.0980 0.0729 0.0728
MSPE-1 1.0792 1.0878 1.1117 1.1048 1.0756 1.0752,
MSPE-2 0.0790 0.0875 0.1114 0.1045 0.0754 0.0749,
Training Time 359 376 560 471 551 394
Model-4, n = 2 - 10%, 62 = 0.9991,67 | = 0.9999 i:
Width [20,20,20] [20,20,20] [95,95,95] (65,65,65] [2800] (14003
MSE-1 1.0093 1.0483 1.0419 1.0438 1.0508 1.0508
MSE-2 0.0490 0.0653 0.0686 0.0675 0.0635 0.06358
MSPE-1 1.0501 1.0669 1.0692 1.0689 1.0622 1.0625
MSPE-2 0.0502 0.0670 0.0692 0.0689 0.0623 0.0626
Training Time 748 775 1684 1198 1549 998

Note: “width” represents the number of neurons of each hidden layer, e.g., [20, 20] means that there

are two hidden layers within the DNN and each has 20 neurons.
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for Model-2 data with 10* size, which is remarkable noticing that ]_‘DNN is trained with less
time. _

o According to the MSE-2, f can work best when the data is large enough for Models 3-4

which are non-linear. In particular, MSE-2 of fp,y is more than 20% less* than the MSE-2
of all other models for Model-4 data with size 2 - 10*.
For Model-2, the performance of fpyy is just slightly worse than the optimal estimator. For
Model-1, the performance of ]_‘DNN is still worse than the optimal estimator. We guess the
reason may be that the Model-1 and Model-2 are linear models. In this case, a wide DNN is
sufficient to mimic such a linear relationship.

e For MSPEs, fDNN works slightly worse than the optimal model for Model-1 and Model-2
cases, but it turns out to be the optimal one for Model-3 and Model-4 cases. This phenomenon
is consistent with the behavior of MSEs. More specifically, the MSPE-2 of ]_‘DNN is more than
207_oless than the MSPE-2 of all other models for Model-4 data with size 2 - 10%; the MSPE-1
of frnx is around 50% closer to 2, than the MSPE-1 of all other methods for Model-3 data
with 10* size.

e The model-selection step for “wide” or “deep” type DNN estimators is necessary but it is
obscure meanwhile; see DNN-wide-2 works better than DNN-wide-1 for the Model-2 MSE
case; however, the situation reverses for the Model-3 MSE case. This phenomenon occurs
for “Deep” type DNN estimators also; see the performance of S-DNN, DNN-deep-1 and
DNN-wide-2; there is no single one that beats the others uniformly. For MSPE, we can also
find such a reverse phenomenon. On the other hand, by applying the scalable subagging
estimator, we can avoid the model-selection difficulty and just make ]’ﬁ;NN,b’i deep and large
enough.

We also considered evaluating the ability of various DNN estimators to estimate regression
models solely, i.e., removing the error terms in the four simulation models above. Due to this
change, the MSE-1 error is equivalent to the MSE-2 error. We found that the SS-DNN is still the
most time-efficient estimator. It even runs faster than training S-DNN with the whole sample size.
Applying the scalable subagging method can gain more computational savings for training with a
larger sample size or a larger model. The SS-DNN is also the most accurate estimator except in the
case with 10* Model-4 simulated data. For this case, the accuracy of SS-DNN is slightly worse than
the estimator DNN-deep-1. We conjecture the reason is that Model-4 is relatively complicated so
a DNN with 3 depths and constant width 15 has a high bias. After increasing the sample size to
20000, the subagging estimator beats other models.

6.2 Simulations for Cl and PI

We continue using the four models in Section 6.1 to test the accuracy of multiple confidence and
prediction intervals defined in previous sections with scalable subagging DNN estimators. To make
sure we have enough subsamples to do iterated subsampling for CI, we take the sample size to be
2 - 10°, which implies g = 38 when 8 = 0.7. It further implies that the number of subsamples for
the iterated subagging stage is ¢ = |[n#!=#) | = 12. For developing the prediction interval, we take
the sample size to be 10* or 2 - 10%. To determine the structure of the subagging DNN estimator,
we keep the strategy summarized in the previous subsection, i.e., we make its size as close to the
sample size as possible no matter in the first or the iterated subsampling stage. We take the same
training setting with PyTorch to find j_”DNN (x0) as we have done in Section 6.1.

4Saying that the error E; is a% less than the error E; means that (E; — E;)/E; is negative and |(E; — E2)/Ez| = a%.
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We call the naive QCI which is determined by the equal-tail quantile of estimations {]%NN,h,l (x),
. ,]"I\)NN,b,q(x)} QCI-1; we should notice that this QCI may be too conservative as we explained
in Example 4.1; we call the QCI based on Eq. (17) QCI-2; we call the PCI based on Eq. (12) PCI-1;
we call the PCI based on Eq. (15) with taking 2a = 0, PCI-2; we call the PCI based on Eq. (15) with
taking 2a = 1, PCI-3; the PI represents the prediction interval defined in Eq. (20). For all CIs and
PI defined in previous sections, they have asymptotically validity conditional on the observation
X = x. We attempt to check the conditional coverage rate with simulations for finite sample cases.
To achieve this purpose, we fix 10 unchanged test points {(y1, x¢1), - .., (Yr10, X£,10)} Which are
different from training points for each simulation model; these 10 points can be recovered by setting
numpy.random.seed(0) and generate sample according to the model.

To evaluate the performance of (conditional) CI for each test point, we repeat the simulation
process K = 500 times and apply the below formulas to compute the empirical coverage rate (ECR)
and empirical length (EL) of different CIs for each test point:

K K
ECR; = Il( D L) lBrapBus) » ELj = % D [(Busj—Bryj),for j=1,...,10;
i=1 i=1
here f(x; ;) is the true model value evaluated at the j-th test data point; B, ; j and By; ; are the
corresponding upper and lower bounds of different Cls at the i-th replication for the j-th test point,
respectively. We take the nominal significance level § = 0.05. Simulation results are tabularized in
Table 2.

To evaluate the performance of (conditional) PI for each test point, the procedure is slightly
complicated and we summarize it in below four steps:

Step 1 Take the sample size n to be 10* or 2 - 10%; simulate K = 500 sample sets: {(yl.(k), xl.(k))lflzl}lki1
based on one of four simulation models.

Step 2 For each sample set, train the subsampling DNN estimator and build the prediction interval
for 10 test points by:

[?DNN(xt,j) + 25/2»?DNN(xt,j) +Z1-s/2], for j=1,...,10,

where Z ;_5/, and Z¢ 5/, are the 1 —6/2 and /2 quantile values of the empirical distribution
of the residuals, respectively.

Step 3 To check the performance of PIs for test points based on each sample set, simulate {y ;}*,
conditional on x; ; for j = 1,..., 10 pretending the true data-generating model is known
and check the empirical coverage rate and empirical length by below formulas:

13 . .
ECRi,J‘ = M Zl ]]'ys,je[Bl,i,j:Bu,i,j] s ELi,j = Bu,i,j - Bl,i,j: for J= 1,..., 10;1 =1,..., 500;
5=
By ; and B, ; ; are the corresponding upper and lower bounds of PI for the j-th test point
based on i-th sample set defined in Step 2; M = 3000.

Step 4 For j =1,...,10, estimate P(Y; € PI|X, = x,;) by the average of empirical coverage rate
of corresponding (conditional) PI on K sample sets, i.e., Average(ECR; ;) w.r.t. i; estimate
length of (conditional) PI for j-th test point by Average(EL; ;) w.r.t. i.

We take the nominal significance level § = 0.05. Simulation results are tabularized in Table 3.

REMARK (DIFFERENT LEVELS OF CONDITIONING). As explained in the work of [24], we have sev-
eral conditioning levels to measure the performance of PI or CI. What we consider in this paper
is Py := P(|Xo = x0) which shall be interpreted as the conditional probability on Xy, = xo. If
we consider the empirical coverage rate of ECR; j, it approximates another conditioning level, i.e.,
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Py := P(-|Xo = xo, {(Y}, Xj)}7:1); here { (Y}, Xj)}7:1 represents the whole sample. By Lemma 4 of [24],

ifAeo ({Xj};?zl, {Yj};.‘:I,Xf, YO) is an arbitrary measurable event, then E{(Y_ixxj)}}‘:lpz (A) =P (A).
Besides, 1 — § conditional coverage under Py will imply the marginal coverage Py := ExP;. This
unconditional coverage is implied by the popular Conformal Prediction method in the machine learning

community. Simulation studies show that our CIs and PIs also have great unconditional coverage.

We can summarize several findings based on simulation results:

e For the empirical coverage rate of quantile-type Cls, the naive QCI-1 over-covers true model
values as we expect. Also, the corresponding CI length is always larger than the length
of QCI-2 and it is actually the largest one among 5 different CIs. On the other hand, the
specifically designed QCI-2 returns ECRs that are closer to the specified confidence level
than QCI-1. Meanwhile, ECR of QCI-2 is larger than the nominal confidence level for almost
all test points since we take k, and k; according to the strategy in Remark 4.6 to enlarge
the CI.

o For the empirical coverage rate of pivot-type Cls, although the length of PCI-1 is the shortest
one, the ECR of PCI-1 is less than the nominal confidence level for almost all test points
since C2 may be underestimated and we may have the bias issue in practice. For the PCI-3
whose margin of error is enlarged in a mild way, although its ECR is always larger than
PCI-1, it still undercover true model value mostly. For the PCI-2 in which the margin of
error is enlarged in a most extreme way, it has a much better performance according to the
coverage rate but with a larger CI length as a sacrifice.

e We claim that the PCI-2 is the optimal CI candidate according to the overall performance
based on length and coverage rate. For example, considering the comparison between PCI-2
and QCI-2, we can find some cases in which both CIs have a close coverage rate but the
length of PCI-2 is less than 50% length of QCI-2. This phenomenon sustains all four models.
For the QCI-2, we conjecture it will be a good alternative if we have more samples so that
Ly p.ss(x) can approximate J,, (x) well in the iterated subsampling stage.

e For the prediction task, all PIs for four models and all test points have almost the same
coverage rate and length. Most ECRs are slightly less than the nominal confidence level
which is not a surprise since we omit the variability in the model estimation and the residual
distribution may underestimate the true error distribution for a finite sample case. For the
length of P1, all PIs’ lengths are close to 2 - zg 975 since the true error distribution is assumed
to be standard normal in simulations and we took equal-tail PI.
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Table 2. Empirical Coverage Rate and Empirical Length of different (conditional) Cls with various simulation

models.

Test point: 1 2 3 4 5 6 7 8 9 10
Model-1,n =2 - 10°

ECR

QCI-1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
QCI-2 0.988 0.984 0.998 1.000 0.984 0.932 0.998 0.984 0.994 0.976
PCI-1 0.938 0918 0.954 0.940 0.836 0.610 0.942 0.938 0.890 0.918
PCI-2 0.946 0.996 0.998 1.000 0.882 0.984 1.000 0.954 0.938 1.000
PCI-3 0.938 0922 0.958 0.960 0.836 0.616 0.948 0.938 0.890 0.928
EL

QCI-1 294 305 249 246 185 130 194 265 181 4.19
QCI-2 173 150 154 154 120 097 116 148 124 1.81
PCI-1 046 045 038 037 029 020 028 038 028 0.61
PCI-2 047 063 0.67 128 030 037 061 041 031 115
PCI-3 046 045 038 041 029 021 028 039 028 0.63
Model-2, n = 2 - 10°

ECR

QCI-1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
QCI-2 0.952 0.980 0.980 0.962 0.960 0.746 0.984 0.974 0.970 0.958
PCI-1 0.932 0952 0.954 00926 0.916 0.894 0.944 0.940 0.936 0.958
PCI-2 0.946 0.984 0.996 1.000 0.940 0.990 0.984 0.960 0.952 1.000
PCI-3 0.932 0956 0.958 0.948 0.916 0.898 0.950 0.940 0.936 0.964
EL

QCI-1 331 260 3.04 335 258 235 275 304 309 4.21
QCI-2 144 130 139 152 125 110 139 143 144 1.60
PCI-1 051 040 047 052 041 037 040 048 049 0.61
PCI-2 052 057 073 133 041 047 067 050 050 1.14
PCI-3 051 040 048 055 041 037 041 048 049 0.63
Model-3,n =2 - 10°

ECR

QCI-1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
QCI-2 0.998 1.000 1.000 0.998 0.996 0.974 0.996 0.998 1.000 1.000
PCI-1 0.858 0.920 0.728 0.920 0.804 0.880 0.930 0.918 0.914 0.920
PCI-2 1.000 0.938 1.000 1.000 1.000 0.948 0.964 0.998 0.932 0.988
PCI-3 0.920 0920 0.842 00924 0.820 0.882 0.930 0.922 0.914 0.922
EL

QCI-1 151 147 051 057 093 294 200 132 112 094
QCI-2 1.03 116 047 052 075 183 157 097 090 0.76
PCI-1 024 023 008 009 015 046 031 021 017 0.15
PCI-2 146 025 090 023 053 063 035 033 020 024
PCI-3 028 023 0.0 009 0.15 047 031 021 017 0.15
Model-4, n = 2 - 10°

ECR

QCI-1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
QCI-2 0.852 1.000 0.998 0.966 0.998 0.968 0.994 1.000 0.996 0.940
PCI-1 0.932 0.902 0.940 0912 0.928 0.938 0910 0.932 0590 0.776
PCI-2 0.980 1.000 0.986 0.996 0.998 0.948 1.000 0.998 1.000 1.000
PCI-3 0.936  0.948 0.942 0.920 0.938 0.938 0.936 0.940 0.614 0.780
EL

QCI-1 371 079 100 191 292 148 135 248 149 0.89
QCI-2 210 074 084 138 202 097 103 1.68 1.08 0.70
PCI-1 056 012 0.15 029 045 022 021 039 023 0.3
PCI-2 082 093 020 054 101 024 090 0.64 072 0.29
PCI-3 057 014 0.15 029 047 022 023 039 024 0.14
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Table 3. Empirical Coverage Rate and Empirical Length of (conditional) Pls with various simulation models.

Test point: 1 2 3 4 5 6 7 8 9 10
n=10%

Model-1:

EL =3.91

ECR: 0.929 0.934 0934 0931 0.939 0944 0.940 0.935 0.940 0.925
Model-2:

EL = 4.00

ECR: 0.936 0.938 0.938 0.935 0.942 0.945 0942 0.937 0.939 0.928
Model-3:

EL =3.93

ECR: 0.948 0.946 0.949 0.949 0.948 0.936 0.943 0.947 0.947 0.949
Model-4:

EL = 3.96

ECR: 0.901 0.951 0.950 0.943 0.938 0.949 0.949 0.943 0.947 0.950
n=2-10?

Model-1:

EL =3.91

ECR: 0.939 0.941 0.941 0940 0.945 0.946 0945 0.941 0.943 0.936
Model-2:

EL =3.95

ECR: 0.941 0.944 0942 0.943 0.945 0.947 0946 0.943 0.944 0.938
Model-3:

EL =3.92

ECR: 0.948 0.947 0.950 0.949 0.949 0.943 0945 0.948 0.948 0.949
Model-4:

EL =3.94

ECR: 0.921 0.950 0.950 0.945 0.941 0.948 0.949 0.944 0.947 0.949

7 EMPIRICAL STUDIES

In this section, we deploy an empirical study to verify the efficiency of the scalable subsampling
technique with real-world data. We take the Combined Cycle Power Plant (CCPP) dataset from the
UCI machine learning repository (https://archive.ics.uci.edu/dataset/294/combined+cycle+power+
plant). This dataset includes 9568 data points collected from a Combined Cycle Power Plant over 6
years (2006-2011). There are four predictors, hourly average ambient variables Temperature (T),
Ambient Pressure (AP), Relative Humidity (RH) and Exhaust Vacuum (V). The response variable is
the net hourly electrical energy output (EP) of the plant.

We split the whole dataset into a training set with 6000 data points and a test dataset with 3568 data
points by the function train_test_split from sklearn.model_selection. We set random_state=1to make
our results reproducible. We let the subagging DNN estimators have the structure [20, 15] which
means there are two hidden layers; one layer has 20 neurons and the other has 15 neurons. Similarly,
we let the S-DNN, DNN-deep-1, DNN-deep-2, DNN-wide-1 and DNN-wide-2 have structure [20, 15],
[60, 50, 50], [40, 30,30], [1000] and [500], respectively. We intend to set non-uniform hidden layers,
i.e.,, the number of neurons of all hidden layers is unequal. For the hyperparameter setting, we set
B = 0.6; number of epochs is 200; the minibatch size is 10; the learning rate is 0.005. To evaluate the
performance of different DNN estimators, we consider the standard MSE-1 and MSPE-1 on the test
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dataset. The MSE-2 and MSPE-2 criterion applied in Section 6 is not available since we do not know
the true underlying regression model for real-world data. Beyond the point predictions, we also
consider the 95% nominal level conditional PI with the scalable subsampling estimator ]_‘DNN(X )
being the pivot.

The MSE-1 and MSPE-1 results of different DNN estimators are presented in Table 4. From
there, the SS-DNN estimator shows the optimal performance according to the perspectives in
computational time and estimations/predictions accuracy. To evaluate the performance of the
conditional PI with the scalable subsampling estimator ?DNN(X) being the pivot, we consider
conditioning P, for each test point, i.e., the probability to cover the true test point conditional on
each test predictors vector and the whole 6000 training data points. To better show the coverage
results, we sort all test data points in increasing order w.r.t. EP values. Then, we plot the sorted EP
values and their order indices with their corresponding PIs in Fig. 3; see the plot from Appendix:
B. To present the results more easily, we randomly sample 200 data points from the test dataset
and plot sorted EP values and their associated PIs in Fig. 2. We further consider the empirically
average coverage rate for all test points, i.e., 3.22° 1(y; € PI;)/3568; 1 is the indicator function; y;
is the i-th test point and PI; is its associated PI. We should notice that this average coverage rate
is dedicated to estimating the conditioning probability P(-[{(Y}, X j)};'l:l); {(v;, X j)};?zl represents
the whole sample; n = 6000 in this empirical study. It turns out that the overall average coverage
rate for all 3568 test points is 0.952 and the average PI length is 18.523.

Table 4. MSE/MSPE and Training Time (in seconds) of different DNN models on the EECP dataset.

Estimator: SS-DNN S-DNN DNN-deep-1 DNN-deep-2 DNN-wide-1 DNN-wide-2

Width [20,15]  [20,15] [60,50,50] [40,30,30] [1000] [500]
MSE-1 24.153  46.044 30.511 29.427 39.877 32.006
MSPE-1 25.240 47.982 31.965 30.892 41.736 33.656
Training Time 94 95 132 121 99 88

Note: “width” represents the number of neurons of each hidden layer, e.g., [20, 15] means that there
are two hidden layers within the DNN, and one has 20 neurons and the other one has 15 neurons.
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Fig. 2. Sorted EP values of 200 randomly sampled test points in increasing order and their corresponding
conditional Pls with fpN(X) being the pivot.

8 CONCLUSIONS

In this paper, we revisit the error bound of fully connected DNN with the ReLU activation function
on estimating regression models. By taking into account the latest DNN approximation results, we
improve the current error bound. Under some mild conditions, we show that the error bound of
the DNN estimator may be further improved by applying the scalable subsampling technique. As a
result, the scalable subsampling DNN estimator is computationally efficient without sacrificing
accuracy. The theoretical result is verified by simulation with various linear or non-linear regression
models and empirical studies.

Beyond the error analysis for point estimations and point predictions, we propose different
approaches to build asymptotically valid confidence and prediction intervals. More specifically, to
overcome the undercoverage issue of Cls with finite samples, we consider several methods to en-
large the CI. As shown by simulations, our point estimations/predictions and confidence/prediction
intervals based on scalable subsampling work well in practice. All in all, the scalable subsampling
DNN estimator offers the complete package in terms of statistical inference, i.e., (a) computa-
tional efficiency; (b) point estimation/prediction accuracy; and (c) allowing for the construction of
practically useful confidence and prediction intervals.

APPENDIX A: PROOFS

ProoF oF THEOREM 4.1. This result can be easily shown based on the proof of Theorem 1 in
the work of [9]. We take the intermediate result from the final step of their proof: With probability
at least 1 — exp(—y),

H2L21 H2L log 1
SC(\/ﬁbgH\/ww), )
Ly (X) n n

.
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where C is an appropriate constant; in this proof, C represents appropriate constants and its meaning

may change according to the context; €, = ||fonn — flloo; fonn = argming,c g 1o — flleo- By
Theorem 3.1 of [28] and Lemma 1 of [9], we can conclude that there is a standard fully connected
DNN whose depth and width satisfy below inequalities:

_d
H < Ce, © log (1/e€,),
L <C-log(1/en),

(24)

for any €,; Furthermore, we can find the upper bound of H2L? log (H?L) based on Eq. (24):

_2d
H?L?log (H’L) < C- ¢, * (log(1/€))’.

Subsequently, we rewrite the Eq. (23) as below:

2d
\/en (log (1/en))” ., [lolognsy 1 o
Lo = " !

& d
To optimize the bound, we can choose €, = n &4, H = ©(n%¢ logn), L = ©(logn). This gives:

S [log1
Ao S C(n 2&d) log® n + W). (26)
2

s - £

-

As a result, we get:

HfDNN f (27)

<C (n_ﬁfii) log®n + loglogn +y y) .
Ly (X) n

Finally, we take y = nde log®(n), which implies Theorem 4.1.

Proor oF THEOREM 4.2. Under A1-A5, we can analyze the expected square error for the
subagging DNN estimator as below:

E(Fpnn(X) = £(X))?

_Q

2
=E| 2 Fowuns(X) —f(X)l

i=1

2
= 5% i(fDNNbl(m f(X))}
=;E Zq](fDNNMX) FOO) |+ S| S (Fowws () = 7)) - (o (X) - f(X))l_
i=1 i,j,i#]

(28)
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For the first term on the r.h.s. of Eq. (28), by the error bound ignoring the slowly varying term, we
can get:

q —
%E 2. (fDNN,b,i(X) —f(X))Zl < % g0 (n—f%)
1 1
=-0
.

1
pE ’
nmﬂ—ﬁ

this is satisfied with at least probability (1 — exp(—né*% log® n))9.

Ideally, we hope f can take a small value to improve the error bound for Eq. (29). However, it is
restricted to do this since the bias of the subagging estimator will get increased once we take
smaller and smaller. Thus, we need to consider the second term on the r.h.s. of Eq. (28). Start by
considering on specific pair:

B[ (Foss(X) = £00) - (Fornn s (X) = £ |

-5|e

(s (X) = 0 - (Forma (0 = £()) 'X” (30)

x|

The last equality is due to the independence between subsample B; and B;. As we mentioned in the
main text, we face difficulty in determining the rate of the bias of the subagging estimator. Thus,
A4 and A5 are used to make additional assumptions on the bias term. We present A4 as below:

E(ﬁ)NN(x) —f(x)) = O(n—A/Z) : E(f]‘DNN,b,i(x) —f(x)) — O(n—ﬁA/Z).

A5 then requires the bias order of ]%NN satisfies the inequality: A > ngd.
Then, we can find the order of Eq. (30) is:

B[ (Fowss() = F0) - (o s (0 = F00 )| = 0(n ).
Combine these two pieces, we can analyze Eq. (28):

E(fpan(X) — £(X))?

1 1 (q 1
<O|l——|+2-=-|}]-0|—
(néiiﬂﬂ) ¢ (2) (nﬁA) (31)

=0 ! +0 !
- n;%ﬂ—ﬁ npr |’

If the bias term is more negligible than the other term, i.e.,
1
IBAZ %+l—ﬂ, i.e.,ﬁZ —5
3 1+A- T

=E [E (ﬁ)NN,b,i(X) - f(X))

X] E [(J%NN,b,j<x> - )

The above lower bound satisfies the requirement of 8 being positive. Then, A needs to be larger
than &id to make sure the lower bound of f§ is less than 1 which is satisfied due to A5. Meanwhile,
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we want to take f as small as possible, i.e., f = = L. This results in the error bound below:

&+d

E(fpan(X) = f(X)? <0 (nmﬁild ) )

The fact that ﬁ is larger than &-id is guaranteed by the requirement that A > §'de, ie, A5

. &+d
again.
]
Proor oF THEOREM 5.1. Since error € and ; are independent to xo, we actually have sup, |
p .
Fet|xy=x, (2) = Fey|Xy=x,(2)| — 0 based on Lemma 5.1. Thus, we can write:

sup [P(Y; — Fonn(x0) < 2) = P(Yo = f(x0) < 2)| 5 0, (32)

where P(-) represents P(-| X, = x¢). We can start by considering the below expression:
sup [P(Yy — f(x0) < z) —=P(Yo — f(x0) < 2)|

= sup [P(Yy — f(x0) < 2) =P(Y} — frnn(¥0) < 2) +P(Yy — foan(%0) < 2) = P(Yy — f(x0) < 2)]

< sup [P(Yy = f(x0) < 2) = P(Yy = fn(x0) < 2)| +sup [P(Yy = fnn(%0) < 2) = B(Yo = f(x0) < 2)].

For the first term on the rh.s. of the above inequality, we have: o
sup [P(Y; = f(x0) < 2) = P(V; = fony (%) < 2)
= sup [P(Y; = Fonn(x0) + fon(x0) = f(x0) < 2) = PO = Fpy(%0) < 2)
= sup |Fej(z + f(x0) = fonn(x0)) = F; (2)
= sup |F; (2 + f(%0) = fonn(x0)) = Foy (2 + f(%0) = fnn(x0)) (34)

+ Fey (2 + f(x0) = fonn(%0)) = Fey(2) + Fe, (2) = Fe: (2)]
< sup [Fe: (z+ f(x0) = fan (%0)) = Fey (2 + £ (x0) = Fpn (%0))]

+ sup | Fe, (2 + £ (x0) = fn(%0)) = Fe,(2)| + sup | Fe, (2) — Fe; (2)].

We should notice that the first and third terms of the r.h.s. of Eq. (34) converge to 0 in probability.

For the middle term, since ]_‘DNN (x0) converges to f(xp) in probability and sup, |pe, ()| is assumed

to be bounded as B2, this term also converges to 0 in probability by applying the Taylor expansion.

Combining all the pieces, we have:
P
sup FY0*|X0=x0(Z) = Fy,|x,=x,(2)| = 0. (35)
z

]

APPENDIX B: ADDITIONAL PLOTS

We present the sorted 3658 test points and corresponding conditional PIs in Fig. 3. The overall
average coverage rate for all 3568 test points is 0.952 and the average length is 18.523.
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Fig. 3. All sorted EP values in increasing order and their corresponding conditional Pls. The overall average
coverage rate for all 3568 test points is 0.952 and the average Pl length is 18.523.
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