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Scalable Subsampling Inference for Deep Neural Networks
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Deep neural networks (DNN) has received increasing attention in machine learning applications in the last

several years. Recently, a non-asymptotic error bound has been developed to measure the performance of

the fully connected DNN estimator with ReLU activation functions for estimating regression models. The

paper at hand gives a small improvement on the current error bound based on the latest results on the

approximation ability of (forward) DNN. More importantly, however, a non-random subsampling technique–

scalable subsampling–is applied to construct a ‘subagged’ DNN estimator. Under regularity conditions, it is

shown that the subagged DNN estimator is computationally efficient without sacrificing accuracy for either

estimation or prediction tasks. Beyond point estimation/prediction, we propose different approaches to build

confidence and prediction intervals based on the subagged DNN estimator. In addition to being asymptotically

valid, the proposed confidence/prediction intervals appear to work well in finite samples. All in all, the scalable

subsampling DNN estimator offers the complete package in terms of statistical inference, i.e., (a) computational

efficiency; (b) point estimation/prediction accuracy; and (c) allowing for the construction of practically useful

confidence and prediction intervals.

1 INTRODUCTION

In the last several years, machine learning (ML) methods have been developed rapidly fueled by

ever-increasing amounts of data and computational power. Among different ML methods, a popular

and widely-used technique is Neural Networks (NN) that models the relationship between inputs

and outputs through layers of connected computational neurons. The idea of applying such a

biology-analogous framework can be traced to the work of [17].

At the end of the 20th century, people focused on the feed-forward Shallow Neural Networks

(SNN) with sigmoid-type activation functions. An SNN has only one hidden layer but is shown

to possess the universal approximation property, i.e., it can be used to approximate any Borel

measurable function from one finite dimensional space to another with any desired degree of

accuracy—see [6, 12] and references within. However, the SNN practical performance left much to

be desired. In the last ten or so years, Deep Neural Networks (DNN) received increased attention

due to their great empirical performance.

Although DNN have become a state-of-the-art model, their theoretical foundation is still in

development. Notably, [27, 28] explored the approximation ability of DNN
1
for any function 𝑓 that

belongs to an Hölder Banach space; here, the sigmoid-type activation functions are now replaced by

ReLU-type functions to avoid the gradient vanishing problem. The aforementioned work showed

that the optimal error of the DNN estimator 𝑓DNN can be uniformly bounded, i.e.,

| |𝑓 − 𝑓DNN | |∞ = 𝑂

(
𝑊 −2𝜉/𝑑

)
; (1)

here, 𝜉 is some smoothness measurement of the target function 𝑓 : R𝑑 → R —see Section 4 for a

formal definition;𝑊 is the size of a neural network 𝑓DNN, i.e., the total number of parameters; and

𝑑 is the dimension of the function inputs.

However, the bound (1) is not useful in practice. The reason is three-fold: (a) it requires a

discontinuous weight assignment to build the desired DNN, so it is not feasible to train such

1
All DNNs considered in this paper have the forward property, which implies that the input, hidden neurons and output are

connected in an acyclic relationship.

Manuscript accepted by ACM/IMS Journal of Data Science.



Scalable Subsampling Inference for Deep Neural Networks2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2

DNN with usual gradient-based methods; (b) the structure of the DNN might not be the standard

fully connected form so finding the satisfied specific structure becomes another difficult; most

importantly, (c) this error bound is on the optimal estimation we can achieve from a finely designed

DNN. It fails to tell us any story about the situation of applying the DNN estimator to solving

real-world problems.

For example, what is the performance of the DNN to estimate a regression function with 𝑛

independent samples {(𝑌,𝑿𝑖 )}𝑛𝑖=1 generated from an underlying true model 𝑓 ? It is easy to see

that the error 𝜀 of 𝑓DNN in sup-norm can be arbitrarily small if we allow𝑊 to be arbitrarily large

based on Eq. (1). However, this optimal performance is hardly achievable and only represents the

theoretically best estimation. What we attempt to do in this paper is to determine an empirically

optimal 𝑓DNN with samples {(𝑌,𝑿𝑖 )}𝑛𝑖=1 and then explore its estimation and prediction inference.

Guided by this spirit, people usually think 𝑓DNN as an𝑀-estimator and set different loss functions

for various purposes:

𝑓DNN ∈ arg min

𝑓𝜃 ∈FDNN

1

𝑛

𝑛∑︁
𝑖=1

𝐿(𝑓𝜃 (𝒙𝑖 ), 𝑦𝑖 ); (2)

here FDNN is a user-chosen space that contains all DNN candidates; 𝐿(·, ·) is the loss function, e.g.,
Mean Squared Errors loss for the regression problem with real-valued output, i.e., 𝐿(𝑓𝜃 (𝒙𝑖 ), 𝑦𝑖 ) =
(𝑓𝜃 (𝒙𝑖 ) − 𝑦𝑖 )2/2; {(𝑦, 𝒙𝑖 )}𝑛𝑖=1 are realizations of {(𝑌,𝑿𝑖 )}𝑛𝑖=1.
In the paper at hand, we consider DNN-based estimation and prediction inference in the data-

generating model: 𝑌𝑖 = 𝑓 (𝑿𝑖 ) + 𝜖𝑖 ; here, the 𝜖𝑖 are independent, identically distributed (i.i.d.) from

a distribution 𝐹𝜖 that has mean 0 and variance 𝜎2—we will use the shorthand 𝜖𝑖 ∼ i.i.d. (0, 𝜎2).
Consequently, 𝑓 (𝒙𝑖 ) = E(𝑌𝑖 |𝑿𝑖 = 𝒙𝑖 ). Furthermore, the regression function 𝑓 (·) will be assumed to

satisfy some smoothing condition which will be specified later. Note that the additive model with

heteroscedastic error: 𝑌𝑖 = 𝑓 (𝑿𝑖 ) + 𝑔(𝑿𝑖 ) · 𝜖𝑖 can be analyzed similarly by applying two DNNs, one

to estimate 𝑓 (·) and one for 𝑔(·).
From a nonparametric regression view, it is well-known that the optimal convergence rate of

the estimation for a 𝑝-times continuously differentiable regression function of a 𝑑-dimensional

argument is 𝑛2𝑝/(2𝑝+𝑑 )—see [22]. If we assume the regression function belongs to a more general

Hölder Banach space, we can define a non-integer 𝜉 = 𝑝 + 𝑠 to represent the smoothness order

of 𝑓 ; here 0 < 𝑠 ≤ 1 is the Hölder coefficient. The optimal rate of non-parametric estimation can

also be extended to such non-integer smoothness order; see Condition 3

′
and Definition 2 of [16].

Focusing on DNN estimation, the optimal and achievable error bound on the 𝐿2 norm of 𝑓DNN is

𝑂 (𝑛−𝜉/(𝜉+𝑑 ) · log8 (𝑛)) with a high probability; this bound is due to [9] but the rate appears slower

than the optimal rate that we can attain. Besides, although 𝑓DNN will become more accurate as the

sample size increases, training DNN becomes very time-consuming. Moreover, it is infeasible to

load massive data into a PC or even a supercomputer since its node memory is also limited in the

computation process as pointed out by [30].

In this paper, we first give a small improvement on the bound of [9] using the latest results on

the DNN approximation ability. Then, we resolve the computational issue involving huge data

by applying the Scalable Subsampling technique of [20] to create a set of subsamples and then

build a so-called subagging DNN estimator 𝑓
DNN

. Under regularity conditions, we can show that

the subagging DNN estimator 𝑓
DNN

could possess a faster convergence rate than a single DNN

estimator 𝑓DNN trained on the whole sample. Lastly, using the same set of subsamples, we can build

a Confidence Interval (CI) for 𝑓 based on 𝑓
DNN

. Due to the prevalent undercoverage phenomenon of

CIs with finite samples, we propose two ideas to improve the empirical coverage rate: (1) we enlarge

the CI by replacing the standard deviation estimation in the margin of errors with a term which is
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close to an estimation of mean square error; the explicit analysis on the effects of this replacement

is given in Section 4.3.1; (2) we take an iterated subsampling method to build a specifically designed

CI which is a combination of pivot-CI and quantile-CI; see the concrete steps in Algorithm 2.

Beyond estimation inference, we also perform predictive inference (with both point and interval

predictions).

Outline: The paper is organized as follows. In Section 2, we give a short introduction to the

structure of DNN. In Section 3, we describe the methodology of scalable subsampling. Subsequently,

the performance of the subagging DNN estimator and its associated confidence/prediction intervals

are analyzed in Section 4 and Section 5. Simulation and empirical studies are given in Section 6 and

Section 7, respectively. We conclude this paper in Section 8. Proofs are given in Appendix: A. Other

additional materials are put in Appendix: B.

Contributions:We summarize our main contributions as follows:

1 Taking advantage of the latest approximation result about DNN, we refine the high proba-

bility non-asymptotic error bound of one specific type of DNN. Its extension to a general

DNN estimator is straightforward.

2 Under simple and mild conditions, we show that the non-asymptotic error bound can be

further improved with the help of the recently proposed scalable subsampling technique.

Moreover, our subagging DNN-based estimator is more computationally efficient than

training DNNs with various sizes on a whole dataset.

3 Beyond the refinement of the error bound of the DNN estimator in the mean square sense,

we propose a scaling-down bias order estimation method, which is of independent interest

and may be useful in other problems.

4 We give a comprehensive discussion on how to make a practically useful Confidence Interval

(CI) with a DNN estimator, especially for finite sample cases. In addition, we distinguish the

difference between CI and Prediction interval (PI) and show our PI is asymptotically valid

under mild conditions.

RelatedWork: The comparisons of our method to mostly related work will be drawn throughout

this paper. Here, we give a summary. The fundamental idea of scalable subsampling shares a similar

spirit with the divide-and-conquer approach originally applied in the algorithm to decrease the

computational complexity; see [5, 8, 13]. In short, the initial divide-and-conquer approach consists of

three steps: (1) Divide the problem into a number of subproblems; (2) Conquer the subproblems; (3)

Combine all solutions of subproblems. In the machine learning community, the divide-and-conquer

idea can be integrated with DNNs for various purposes. For example, [10] applied a Recurrent

neural network (RNN) which is made up of some small RNNs to improve the accuracy of language

identification; [7] decomposed a challenging problem of determining the number and locations of

acoustic point sources into several subproblems which DNNs can solve. However, these applications

are mostly concerned with the algorithm or DNN structure design and lack theoretical validation.

With careful discussion regarding theory and practical implementation, we show that our scalable

subsampling approach can improve the error bound of DNN on the estimation of target functions in

the regression setting. In this perspective, our method is also related to the bagging and subagging

ideas that were proposed by [3] and [4], respectively. Along with the bagging idea, the prediction or

estimation accuracy with DNN model can be improved in solving real-world problems; see [11, 14]

for example. However, even the classical subagging estimator could be computationally infeasible

with a massive dataset. On the other hand, our scalable subsampling estimator is more efficient

since it is based on non-random subsamples and can control the overlapping level of different

subsamples.
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4

Notations: We will use the following norms: ∥𝑔∥𝐿2 (𝑿 ) := E[𝑔(𝑿 )2]1/2; ∥𝑔∥∞ := sup𝒙 |𝑔(𝒙) |.
Also, we employ the notation 𝑎𝑛 = Θ (𝑑𝑛) to denote “exact order”, i.e., that there exist two constants
𝑐1, 𝑐2 satisfying 𝑐1 · 𝑐2 > 0, and 𝑐1𝑑𝑛 ≤ 𝑎𝑛 ≤ 𝑐2𝑑𝑛 . We also use E𝑛 [·] to represent the sample average

operator.

2 STANDARD FULLY CONNECTED DEEP NEURAL NETWORK

For completeness, we now briefly introduce the fully connected forward DNN, and each layer has a

number of hidden units that are of the same order of magnitude. This type of DNN is the so-called

Multi-layer Perceptron (MLP). Since an MLP has more structure restrictions than a general forward

DNN, its estimation error bound will be larger than the variant with a general DNN. Besides, with

the fact a DNN can be embedded into an MLP, the proof of the error bound with an MLP is one step

further than the proof of the error bound with a general DNN. Thus, we will give new theoretical

results regarding the error bound of MLP estimators on some target functions. Our theory can be

extended to general forward DNN estimators straightforwardly. To simplify notations, we refer to

the DNN as the MLP with the ReLU activation function; see more discussions in Remark 4.1. In

short, the DNN can be viewed as a parameterized family of functions. Its structure mainly depends

on the input dimension 𝑑 , depth 𝐿 ∈ N, width 𝑯 ∈ N𝐿 and the output dimension. The depth 𝐿

describes how many hidden layers a DNN possesses; the width 𝑯 = (𝐻1, . . . , 𝐻𝐿) represents the
number of neurons in each hidden layer. The fully connected property indicates that each hidden

neuron receives information from all hidden neurons at the previously hidden layer in a functional

way.

Formally, if we let 𝒖𝑙 = (𝑢𝑙,1, . . . , 𝑢𝑙,𝐻𝑙
)𝑇 to represent all number of neurons at the 𝑙-th hidden

layer for 𝑙 = 0, . . . , 𝐿 + 1; here, 𝒖0 represents the input vector (𝑥1, . . . , 𝑥𝑑 )𝑇 and 𝒖𝐿+1 is the output.
Therefore, we can pretend that the input layer and the output layer are the 0-th and (𝐿 + 1)-th
hidden layers, respectively. Then, 𝑢𝑙,𝑖 = 𝜎 (𝒖𝑇𝑙−1𝒘𝑙−1,𝑖 + 𝑏𝑙−1,𝑖 ) for 𝑙 = 1, . . . , 𝐿 and 𝑖 = 1, . . . , 𝐻𝑙 ; here

𝒘𝑙−1,𝑖 ∈ R𝐻𝑙−1
is the weight vector which connects the (𝑙 − 1)-th hidden layer and the neuron 𝑢𝑙,𝑖 ;

𝑏𝑙−1,𝑖 ∈ R is the corresponding intercept term; 𝜎 (·) is the so-called activation function and we

take the ReLU function in this paper. To get the output layer, we just take 𝑢𝐿+1,𝑖 = 𝒖𝑇
𝐿
𝒘𝐿,𝑖 + 𝑏𝐿,𝑖

for 𝑖 = 1, . . . , 𝐻𝐿+1; here 𝐻𝐿+1 is equal to the output dimension. To express the functionality of the

DNN in a more concise way, we can stack {𝒘𝑇
𝑙−1,𝑖 }

𝐻𝑙

𝑖=1
by row to get𝑾𝑙−1 ∈ R𝐻𝑙 × R𝐻𝑙−1

and collect

{𝑏𝑙−1,𝑖 }𝐻𝑙

𝑖=1
to be a vector 𝒃𝑙−1 for 𝑙 = 1, . . . , 𝐿 + 1. Subsequently, we can treat the DNN as a function

that takes the input 𝒙 and returns output in the below way:

𝑓DNN (𝒙) =𝑾𝐿 (𝜎 (𝑾𝐿−1 (· · ·𝜎 (𝑾2𝜎 (𝑾1𝜎 (𝑾0𝒙 + 𝒃0) + 𝒃1) + 𝒃2) · · · ) + 𝒃𝐿−1) + 𝒃𝐿 .

We can understand that the function 𝑓DNN(𝒙) maps 𝒙 to the 1-st hidden layer and then map the

1-st hidden to the 2-nd hidden layer and so on iteratively with weights {𝑾𝑙 }𝐿𝑙=0, {𝒃𝑙 }
𝐿
𝑙=0

and the

activation function 𝜎 (·). We can then compute the total number of parameters in a DNN by the

formula𝑊 =
∑𝐿
𝑖=0 (𝐻𝑖 ·𝐻𝑖+1 +𝐻𝑖+1). A simple DNN is presented in Fig. 1. It has a constant width of

4 and a depth of 2.
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5

Fig. 1. The illustration of a fully connected DNN with 𝐿 = 2, 𝐻 = 4 and𝑊 = 37, and input dimension 𝑑 = 2

and output dimension 1.

3 SCALABLE SUBSAMPLING

Scalable subsampling is one type of non-stochastic subsampling technique proposed by [20]. Assume

that we observe the sample {𝒁1, . . . ,𝒁𝑛}; then, scalable subsampling relies on 𝑞 = ⌊(𝑛 − 𝑏)/ℎ⌋ + 1

number of subsamples 𝐵1, . . . , 𝐵𝑞 where 𝐵 𝑗 = {𝒁 ( 𝑗−1)ℎ+1, . . . , 𝒁 ( 𝑗−1)ℎ+𝑏}; here, ⌊·⌋ denotes the floor
function, and ℎ controls the amount of overlap (or separation) between 𝐵 𝑗 and 𝐵 𝑗+1. In general, the

subsample size 𝑏 and the overlap ℎ are functions of 𝑛, but these dependencies will not be explicitly

denoted, e.g.,

𝑏 = Θ(𝑛𝛽 ) ; ℎ = 𝑎 · 𝑏,

where 0 < 𝛽 < 1 and 𝑎 > 0. More importantly, tuning 𝑏 and ℎ can make scalable subsampling

samples have different properties. For example, if ℎ = 1, the overlap is the maximum possible; if

ℎ = 0.2𝑏, there is 80% overlap between 𝐵 𝑗 and 𝐵 𝑗+1; if ℎ = 𝑏, there is no overlap between 𝐵 𝑗 and

𝐵 𝑗+1 but these two blocks are adjacent; if ℎ = 1.2𝑏, there is a block of about 0.2𝑏 data points that

separate the blocks 𝐵 𝑗 and 𝐵 𝑗+1.
The bagging idea was initially proposed by [3], where the subsample is bootstrapped (sampling

with replacement) with the same size as the original sample. As revealed by that work, the main

benefit of taking this technique is that the mean-squared error (MSE) of the bagging estimator

can decrease, especially for unstable estimators that may change a lot with different samples, e.g.,

neural networks and regression trees. There are ample works about combining the neural networks

with the bagging technique to improve its generalization performance; e.g., see applications in the

work of [11, 14] for references. However, the drawback of the original bagging method is that the

estimation process needs to be performed with 𝑛-size bootstrap resamples many times which is

infeasible with massive data. [4] proposed the subagging idea which is based on all subsamples

as opposed to bootstrap resamples. However, even choosing a single random subsample could be

computationally challenging when 𝑛 is large. As pointed out in [23], drawing a random sample

of size 𝑏 from 𝑛 items using the Sparse Fisher-Yates Sampler takes 𝑂 (𝑏) time and space which

corresponds to optimal time and space complexity for this problem.

Facing such computational dilemmas, scalable subsampling and subagging as proposed by [20]

can be seen as an extension of the Divide-and-Conquer principle—see e.g. [13]. Moreover, in

addition to the computational savings, scalable subagging may yield an estimator that is not less

(and sometimes more) accurate than the original; the following example illustrates such a case.

Example 3.1 (Kernel-smoothed function estimation). A remarkable example from the work

of [20] is the scalable subagging kernel estimator. Suppose our goal is estimating the value of

function 𝑔 at a specific point; here, the function 𝑔 can be a probability density, spectral density,

or other function that is estimated in a nonparametric setting. Denote the estimand 𝜃 and its
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corresponding kernel-smoothed estimator
ˆ𝜃𝑛 based on the whole sample, and assume that

ˆ𝜃𝑛
satisfies the following conditions:

(1) E( ˆ𝜃 2𝑛) < ∞ for all 𝑛;

(2) 𝑛𝛾 (E( ˆ𝜃𝑛) −𝜃 ) → 𝐶 and Var(𝑛𝛼 ˆ𝜃𝑛) → 𝜎2 as 𝑛 → ∞, where𝐶 is a non-zero constant, 𝜎2 > 0

and 𝛾 > 𝛼 > 0.

Define the scalable subagging estimator as:

¯𝜃𝑏,𝑛,𝑆𝑆 = 𝑞−1
𝑞∑︁
𝑖=1

ˆ𝜃𝑏,𝑖 ,

here 𝑞 is the total number of subsamples and
ˆ𝜃𝑏,𝑖 is the non-parametric estimator based on the 𝑖-th

subsample 𝐵𝑖 . To achieve the fastest convergence rate of ¯𝜃𝑏,𝑛,𝑆𝑆 we may let 𝛽 = 1

1+2(𝛾−𝛼 ) . As a result,

the Mean Squared Error (MSE )of the scalable subagging estimator
¯𝜃𝑏,𝑛,𝑆𝑆 is Θ(𝑛−2𝛾/(1+2(𝛾−𝛼 ) ) ); see

Lemma 4.1 of [20] for a detailed discussion. To achieve such a convergence rate in the context of

nonparametric estimation, the crucial point is using an undersmoothed bandwidth on the subsam-

ple statistics. To elaborate, suppose we are employing a non-negative (second-order) kernel for

smoothing in which case the MSE-optimal bandwidth is Θ
(
𝑛−1/5

)
. To conduct efficient subagging,

however, the
ˆ𝜃𝑏,𝑖 should be computed using an undersmoothed bandwidth of order 𝑜

(
𝑏−1/5

)
. For

example, if we choose the bandwidth for
ˆ𝜃𝑏,𝑖 to be Θ

(
𝑏−1/4

)
instead, then the choices 𝛼 = 3/8,

𝛾 = 1/2, ℎ = 𝑂 (𝑏), and 𝑏 = Θ
(
𝑛𝛽

)
with 𝛽 = 0.8 implies that the rate of convergence of

¯𝜃𝑏,𝑛,𝑆𝑆 is

𝑛2/5. This rate is not only faster than the rate of
ˆ𝜃𝑛 that used the sub-optimal bandwidth Θ

(
𝑛−1/4

)
;

it is actually the fastest rate achievable by any estimator that uses a non-negative kernel with

its associated MSE-optimal bandwidth. Nevertheless,
¯𝜃𝑏,𝑛,𝑆𝑆 can be computed faster than

ˆ𝜃𝑛 , and

may thus be preferable. In addition to the asymptotic results, the simulation study of [20] reveals

that the error of the scalable subsampling estimator can actually be smaller than the full-sample

nonparametric estimator with its own optimal bandwidth choice.

In the next section, we will introduce how to compute the scalable subsampling DNN estimator.

Then, we will show that our aggregated DNN estimator could possess a smaller MSE than the

optimal DNN estimator trained on the whole sample, under some conditions. We also discuss some

specifically designed confidence intervals to measure the estimation accuracy via the approaches

mentioned in Section 1.

4 ESTIMATION INFERENCE WITH DNN

Although the DNN has captured much attention in practice, its theoretical validation is still in

development. Recently, [9] gave a high-probability non-asymptotic error bound to measure the

performance of the DNN estimator under two regularity assumptions. In short, the error of using

𝑓DNN to estimate 𝑓 comes from two sources: (1) the stochastic error, which measures the difference

of 𝑓DNN and the best one in a DNN class FDNN; (2) the approximation error, which measures how

well the target function 𝑓 can be approximated by a DNN which comes from FDNN concerning

some specific loss, i.e., the approximation ability of FDNN. The work of [9] hinges on using a DNN to

estimate functions belonging to Sobolev space w.r.t. 𝐿∞ norm. To sync with the latest results on the

approximation ability of DNNs, we consider estimating functions in an Hölder space. This change

brings benefits two-fold: (1) In practice, the Hölder space is a more appropriate and direct space for

our target function if it possesses some smoothness property. In other words, the smoothness of our

target function in Hölder space can be described thoroughly; (2) we can decrease the approximation

error by applying the latest results on the approximation ability of DNNs for function in Hölder
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7

space from [28]. It turns out that we can finally get a precise 𝑓DNN; see [8] for a detailed discussion

of Hölder and Sobolev spaces. We present our assumptions below:

• A1: The regression data are i.i.d. copies of 𝒁 = (𝑌,𝑿 ) ∈ Y × [−1, 1]𝑑 , where 𝑿 has a

continuous distribution, and Y ⊂ [−𝑀,𝑀] for some positive constant𝑀 . Correspondingly,

we set the space of all DNN candidate functions to be FDNN = {𝑓𝜃 : | |𝑓𝜃 | |∞ ≤ 2𝑀};
• A2: The target regression function 𝑓 lies in the Hölder space C𝑘,𝛼

(
[−1, 1]𝑑

)
which is the

space of 𝑘 times continuously differentiable functions on [−1, 1]𝑑 having a finite norm

defined by

∥ 𝑓 ∥C𝑘,𝛼 ( [−1,1]𝑑) = max

 max

k: |k | ≤𝑘
max

x∈[−1,1]𝑑

���𝐷k 𝑓 (x)
��� , max

k: |k |=𝑘
sup

x,y∈[−1,1]𝑑
x≠y

��𝐷k 𝑓 (x) − 𝐷k 𝑓 (y)
��

∥x − y∥𝛼

 ,
where the smoothness index is 𝜉 = 𝑘 + 𝛼 with an integer 𝑘 ≥ 0 and 0 < 𝛼 ≤ 1.

• A3: The sample size 𝑛 is larger than (2𝑒𝑀)2 ∨Pdim(𝑓DNN) where Pdim(𝑓DNN) is the pseudo-
dimension of 𝑓DNN which satisfies:

𝑐 ·𝑊𝐿 log(𝑊 /𝐿) ≤ Pdim(𝑓DNN) ≤ 𝐶 ·𝑊𝐿 log𝑊,

with some universal constants 𝑐,𝐶 > 0 and Euler’s number 𝑒; see [1] for details.

Remark. We can weaken the assumption on the domain of 𝑿 to [−𝐶𝑥 ,𝐶𝑥 ]𝑑 for some constant 𝐶𝑥 ,
i.e., we can work on a compact domain of 𝑿 ; see also the proof of [28].

As shown in [9], with 𝐻1 = 𝐻2 = · · · = 𝐻𝐿 = Θ(𝑛
𝑑

2(𝜉+𝑑 )
log

2 𝑛), 𝐿 = Θ(log𝑛), the 𝐿2 norm loss and

empirical mean squared error of the deep fully connected ReLU network estimator from Eq. (2) can

be bounded with probability at least 1 − exp

(
−𝑛

𝑑
𝜉+𝑑

log
8 𝑛

)
, i.e.,


𝑓DNN − 𝑓




2
𝐿2 (𝑋 )

≤ 𝐶1 ·
{
𝑛
− 𝜉

𝜉+𝑑
log

8 𝑛 + log log𝑛

𝑛

}
,

and E𝑛

[(
𝑓DNN − 𝑓

)
2

]
= Θ

(


𝑓DNN − 𝑓



2
𝐿2 (𝑋 )

)
;

(3)

here 𝐶1 > 0 is a constant which is independent of 𝑛 and may depend on 𝑑,𝑀 , and other fixed

constants.

Obviously, the 𝐿2 norm error bound in (3) is sub-optimal compared to the fastest convergence

rate we can achieve for nonparametric function estimation. With the latest approximation theory

on DNNs, we can improve the error bound in Eq. (3) by decreasing the power of the log(𝑛) term.

Meanwhile, this faster rate is satisfied with a narrower DNN. We give our first theorem about the

convergence rate of 𝑓DNN below.

Theorem 4.1. Under assumptions A1 to A3, width 𝐻 = Θ(𝑛
𝑑

2(𝜉+𝑑 )
log𝑛), and depth 𝐿 = Θ(log𝑛).

Then, the 𝐿2 norm loss of the deep fully connected ReLU network estimator Eq. (2) can be bounded
with probability at least 1 − exp

(
−𝑛

𝑑
𝜉+𝑑

log
6 𝑛

)
, i.e.,


𝑓DNN − 𝑓




2
𝐿2 (𝑋 )

≤ 𝐶2 ·
{
𝑛
− 𝜉

𝜉+𝑑
log

6 𝑛 + log log𝑛

𝑛

}
; (4)

here 𝐶2 > 0 is another constant.
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8

It appears that the above gives the fastest rate obtainable based on the current literature. Later,

we will show how this error bound can be further improved by applying the scalable subagging

technique under some mild conditions.

Remark 4.1. The improvement implied by Theorem 4.1 can also be applied to Corollaries 1 and 2 of
[9] to improve the corresponding error bounds. Corollaries 1 and 2 of [9] discuss the error bound of
general forward DNN.

4.1 Scalable subagging DNN estimator

We first review the idea of scalable subagging and explain how this technique can be com-

bined with DNN estimation. We focus on the regression problem and assume we observe sample

{(𝑌1,𝑿1), . . . , (𝑌𝑛,𝑿𝑛)}.
Analogously to the subagging kernel-smoothed estimator of Example 3.1, we can define the

subagging DNN estimator as:

𝑓
DNN

(𝑿 ) = 1

𝑞

𝑞∑︁
𝑗=1

𝑓DNN,𝑏, 𝑗 (𝑿 ); (5)

here, 𝑞 = ⌊(𝑛−𝑏)/ℎ⌋ +1, and 𝑓DNN,𝑏, 𝑗 (·) is the minimizer of the empirical loss function in Eq. (2) just

using the data in the 𝑗-th subsample namely𝐵 𝑗 = {(𝑌( 𝑗−1)ℎ+1,𝑿 ( 𝑗−1)ℎ+1), . . . , (𝑌( 𝑗−1)ℎ+𝑏,𝑿 ( 𝑗−1)ℎ+𝑏)}.
In this subsection, we consider ℎ = 𝑏.

In nonparametric function estimation where the estimation is performed through the kernel

technique, the bandwidth can control the bias order of the kernel-smoothed estimator. As shown

in Example 3.1, the optimal convergence rate can be recovered by combining scalable subagging

trick and undersmoothing bandwidth. Similarly, in the context of neural network estimation, the

whole architecture of a DNN controls its smoothness similar to the role of the shape (order) of a

kernel. The depth and width of a DNN play the role of tuning parameters similar to the bandwidth

of a kernel. Moreover, according to the prevailing wisdom, a deeper DNN may possess a lower bias;

this conjecture was confirmed by [26] with ResNet on some image datasets.

However, as far as we know, there is no theoretical result that explains the relationship between

bias and the width/depth of a DNN. Here, we make the below assumptions to restrict the order of

the bias of 𝑓DNN:

• A4: E(𝑓DNN(𝒙) − 𝑓 (𝒙)) = 𝑂 (𝑛−Λ/2) uniformly in 𝒙 for some constant Λ > 0.

To boost the scalable subagging method, a fundamental preliminary condition is that the bias of

the estimator is comparatively negligible to its standard deviation—see [20] for details. Thus, we

further impose an additional assumption on the order of bias:

• A5: The bias exponent in Assumption A4 satisfies the inequality: Λ >
𝜉

𝜉+𝑑 .

We claim that assumptions A4 and A5 can be achievable due to the fact that as revealed in [28],

the approximation ability in the uniform sup-norm of a DNN can be as fast as𝑊 −2𝜉/𝑑
. Although this

rate is not instructive in practice, the existence of a DNN that satisfies the bias order requirements

A4 and A5 is possible. To see its feasibility, let 𝑛 =𝑊 𝜅𝐿 log𝑊 such that A3 is satisfied. Let’s assume

that 𝑓DNN can be trained as the optimal one indicated by sup-norm. This assumption is solely about

an optimization problem whose difficulty is beyond the scope of this paper. Ignoring the slowly

changing term, it is easy to see A4 and A5 are satisfied when 1 < 𝜅 <
4(𝜉+𝑑 )
𝑑

.

We should also notice that practitioners tend to build a large DNN whose size is larger than

the sample size. i.e., the DNN interpolates the sample in the modern machine-learning practice.
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9

Interestingly, such an over-parameterized estimator breaks the classical understanding of the bias-

variance trade-off since its generalization performance can even be better than a DNN which lies

in the under-parameterized regime. Actually, this phenomenon is described as the double-descent

of the risk by [2]. Thus, A4 and A5 are achievable when we consider DNNs with an overwhelming

number of parameters, i.e.,𝑊 > 𝑛 so that the bias in A4 can be as low as 𝑂 (𝑊 −2𝜉/𝑑 ); however,
assumption A3 may fail which means the consistency property of the DNN estimator may be lost.

It is interesting to explore whether the scalable subsampling can work for DNN estimators in an

over-parameterized regime; we leave this to future work.

Remark 4.2. In this paper, we focus on applying the scalable subagging technique to DNNs whose
size is less than the sample size but it is straightforward to extend our methodology to a large DNN.
However, as a sacrifice, the consistency property of 𝑓DNN to 𝑓 may not be held. We leave this extension
to future work. We just give a preliminary analysis from the computability aspect at this moment.
As we can expect, the saving of computational cost from applying scalable subagging will be more
significant for executing estimation with a large DNN. To see this fact, let’s assume that we consider a
DNN with size𝑊 = Θ(𝑛𝜙 ), 𝜙 > 1. Then, the computational complexity will be mainly determined by
how many manipulations (e.g., forward calculation and backward updating) we carry out to train the
DNN. The total number of manipulations is also affected by the batch size and the number of epochs.
Thus, we summarize that the total number of manipulations is 𝑂 (𝑛 ·𝑊 · 𝐸); here 𝐸 represents the
number of epochs, i.e., the number of complete passes of the training through the algorithm. It is fair to
assume that the complexity is in the order of 𝑛𝜙+1 := 𝑛𝜑 . When the size of the DNN is larger than the
sample size, 𝜑 > 2. Thus, for the subagging estimator, the computational complexity is approximately
to be 𝑂 (𝑛𝛽𝜑𝑞) = 𝑂 (𝑛1+𝛽 (𝜑−1) ). The ratio of 𝑛1+𝛽 (𝜑−1) over 𝑛𝜑 is 𝑛−(𝜑−1) (1−𝛽 ) . Thus, for a fixed 𝛽 , the
larger 𝜑 to be, the more computation can be saved by deploying the subagging technique.

Aggregating all the above, the following theorem quantifies the error bound of the scalable

subagging DNN estimator of Eq. (5):

Theorem 4.2. Assume A1 to A5, and let 𝛽 = 1

1+Λ− 𝜉

𝜉+𝑑
. Then, with probability at least (1 −

exp(−𝑛
𝑑

𝜉+𝑑
log

6 𝑛))𝑞 the error bound of the subagging estimator Eq. (5) in 𝐿2 norm is:


𝑓 DNN − 𝑓



2
𝐿2 (𝑋 )

≤ 𝑛
−Λ

Λ+ 𝑑
𝜉+𝑑 L(𝑛),

where L(𝑛) is a slowly varying function involving a constant and all log(𝑛) terms.

Remark 4.3. Choosing 𝛽 = 1

1+Λ− 𝜉

𝜉+𝑑
in Theorem 4.2 ensures that the square bias term will be

always relatively negligible compared to the variance which is important for the success of scalable
subsampling; see related discussion in Remark 4.4.

Note that the final accuracy of DNN heavily depends on many other factors in practice, e.g.,

which optimizer we choose in the training stage, which parameter initialization strategy we take,

and how large the batch size should be. Thus, a solely theoretical rate is insufficient to verify

the superiority of the scalable subsampling DNN estimator. We then deploy simulation studies in

Section 6 to provide supplementary evidence.

4.2 Estimation of the bias order of DNN estimator

Although Theorem 4.2 shows the possibility of getting a smaller error bound, it depends on the

bias exponent Λ which is typically unknown. In this subsection, we propose two approaches to

estimate the value of Λ via subsampling. As far as we know, it is the first attempt to quantify the

bias of the DNN estimator.



Scalable Subsampling Inference for Deep Neural Networks10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

First note that A4 implies that, for any 𝑖 , E(𝑓DNN,𝑏,𝑖 (𝒙) − 𝑓 (𝒙)) = 𝑂 (𝑛−𝛽Λ/2). Since 𝑓
DNN

(𝑿 ) =
1

𝑞

∑𝑞

𝑗=1
𝑓DNN,𝑏, 𝑗 (𝑿 ), it follows that the bias of 𝑓

DNN
(𝒙) is 𝑂 (𝑛−𝛽Λ/2), so we can write���E(𝑓

DNN
(𝒙) − 𝑓 (𝒙))

��� = 𝑐𝑏 · 𝑏−Λ/2 + 𝑜 (𝑏−Λ/2). (6)

Recall that 𝑓
DNN

(𝑿 ) was built based on subsamples of size 𝑏. If we have another DNN estimator

𝑓DNN,𝑏0 (𝒙) trained on sample of size 𝑏0, then its bias will be 𝑐𝑏 · 𝑏−Λ/20
+ 𝑜 (𝑏−Λ/2

0
). Then,���E (

𝑓
DNN

(𝒙) − 𝑓 (𝒙)
)��� = ���E (

𝑓
DNN

(𝒙) − 𝑓DNN,𝑏0 (𝒙) + 𝑓DNN,𝑏0 (𝒙) − 𝑓 (𝒙)
)���

=

���E (
𝑓
DNN

(𝒙) − 𝑓DNN,𝑏0 (𝒙)
)
+ E

(
𝑓DNN,𝑏0 (𝒙) − 𝑓 (𝒙)

)��� . (7)

If 𝑏 → ∞ and 𝑏/𝑏0 → 0, the bias of 𝑓
DNN

(𝒙) is asymptotically determined by the first term on the

r.h.s. of Eq. (7). So we can try to estimate

���E (
𝑓
DNN

(𝒙) − 𝑓DNN,𝑏0 (𝒙)
)��� to approximate the l.h.s. of

Eq. (7).

Ideally, if we have a large enough sample, we can carve out 𝑀 non-overlapping (or partially

overlapping) 𝑏0-size subsamples and compute {𝑓 (𝑖 )
DNN,𝑏0

(𝒙)}𝑀𝑖=1. If we further separate each 𝑏0-size

subsample intomultiple non-overlapping (or partially overlapping)𝑏-size subsamples, {𝑓 (𝑖 )
DNN

(𝒙)}𝑀𝑖=1
can be built and each 𝑓

(𝑖 )
DNN

(𝒙) possesses the same bias order as our desired DNN estimator.

Subsequently, the bias of 𝑓
DNN

(𝒙) can be estimated by the samplemean of {𝑓 (𝑖 )
DNN

(𝒙)−𝑓 (𝑖 )
DNN,𝑏0

(𝒙)}𝑀𝑖=1.
We can then use this information to estimate the value of Λ. By the law of large numbers, we can get

accurate bias estimation as𝑀 → ∞. However, as we can easily see, this approach is computationally

heavy and requires a large dataset.

Consequently, we propose another way to perform the bias estimation; we will call it scaling-down
estimation method. To elaborate, recall that our goal is estimating the bias of 𝑓

DNN
(𝒙) that was

built based on subsamples of size 𝑏. Consider different DNN estimators 𝑓DNN,𝑏1 (𝒙) and 𝑓DNN,𝑏2 (𝒙)
which are trained on samples of size 𝑏1 and 𝑏2 respectively; here 𝑏1 ≪ 𝑏 and 𝑏2 ≪ 𝑏1. As before,

A4 implies that the bias of 𝑓DNN,𝑏𝑖 (𝒙) is 𝑐𝑏 · 𝑏
−Λ/2
𝑖

+ 𝑜 (𝑏−Λ/2
𝑖

) for 𝑖 = 1, 2. Then, a key observation is

that:���E (
𝑓DNN,𝑏𝑖 (𝒙) − 𝑓 (𝒙)

)��� = ���E (
𝑓DNN,𝑏𝑖 (𝒙) − 𝑓 DNN (𝒙) + 𝑓 DNN (𝒙) − 𝑓 (𝒙)

)���
=

���E (
𝑓DNN,𝑏𝑖 (𝒙) − 𝑓 DNN (𝒙)

)
+ E

(
𝑓
DNN

(𝒙) − 𝑓 (𝒙)
)��� , for 𝑖 = 1, 2.

(8)

Due to the relationship between 𝑏,𝑏1, 𝑏2, the bias of 𝑓DNN,𝑏𝑖 (𝒙) is dominated by the first term on

the r.h.s. of Eq. (8). We then have two different estimates of the bias of 𝑓DNN,𝑏𝑖 (𝒙), namely:

𝐵𝑖 =

����� 1𝑞𝑖 𝑞𝑖∑︁
𝑗=1

(
𝑓
( 𝑗 )
DNN,𝑏𝑖

(𝒙) − 𝑓
DNN

(𝒙)
)����� , for 𝑖 = 1, 2.

Fixing the value of 𝑖 , {𝑓 ( 𝑗 )
DNN,𝑏𝑖

(𝒙)}𝑞𝑖
𝑗=1

is value of 𝑓DNN,𝑏𝑖 (𝒙) computed from the 𝑗 th subsample of size

𝑏𝑖 carved out the whole sample; as before, these subsamples can be non-overlapping or partially

overlapping and their number is denoted by 𝑞𝑖 . Ignoring the 𝑜 (·) term in Eq. (6), we can solve the

following system of equations to approximate both 𝑐𝑏 and Λ:{
𝐵1 = 𝑐𝑏 · 𝑏−Λ/21

𝐵2 = 𝑐𝑏 · 𝑏−Λ/22
.

(9)
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Taking logarithms in Eq. (9) turns it into a linear system in 𝑐𝑏 and Λ. Finally, we can estimate the

bias of 𝑓
DNN

(𝒙) by scaling down 𝐵1 by a factor (𝑏/𝑏1)−Λ/2, i.e., the bias of 𝑓 DNN (𝒙) is approximately

𝐵1 · (𝑏/𝑏1)−Λ/2. We summarize this procedure in Algorithm 1.

Algorithm 1 Scaling-down bias estimation of DNN estimator

Step 1 Fix a subsample size 𝑏, and compute 𝑓
DNN

(𝒙) at point 𝒙 .
Step 2 Fix two subsample sizes 𝑏1 ≪ 𝑏 and 𝑏2 ≪ 𝑏1, and separate the whole sample into 𝑞1 and

𝑞2 number of 𝑏1-size and 𝑏2-size subsamples, respectively. Compute {𝑓 ( 𝑗 )
DNN,𝑏𝑖

(𝒙)}𝑞𝑖
𝑗=1

at

𝒙 for 𝑖 = 1, 2.

Step 3 Solve Eq. (9) to get 𝑐𝑏 and Λ.

Step 4 Estimate the bias of 𝑓
DNN

(𝒙) by 𝐵1 · (𝑏/𝑏1)−Λ/2.

4.3 Confidence intervals

Beyond point estimation, it is important to quantify DNN estimation accuracy; this can be done via

a standard error or –even better– via a Confidence Interval (CI). More specifically, for a point of

interest 𝑿 = 𝒙 , we hope to find a CI which satisfies:

P(𝐵𝑙 ≤ 𝑓 (𝒙) ≤ 𝐵𝑢) = 1 − 𝛿 ;
here P should be understood as the conditional probability given 𝑿 = 𝒙 ; 𝐵𝑙 and 𝐵𝑢 are lower and

upper bound for 𝑓 (𝒙) that are functions of the DNN estimator; 𝛿 is the significance level. Since we

can have different CI constructions having the same 𝛿 , we are also interested in the CI length (CIL)

which is defined as CIL = 𝐵𝑢 − 𝐵𝑙 . We aim for a (conditional) CI that is the most accurate (in terms

of its coverage being close to 1 − 𝛿) but with the shortest length.

Analogously to Example 3.1, we assume the variance term of the DNN estimator trained with

sample size 𝑛 and evaluated at 𝒙 :

B1 Var(𝑛𝛼 𝑓DNN(𝒙)) → 𝜎2 > 0 as 𝑛 → ∞.

Generally speaking, we have two choices to build CI for 𝑓 (𝒙): (1) Pivot-CI (PCI), the type of CI
obtained by estimating the sampling distribution of a pivotal quantity, e.g. the estimator centered

at its expectation; (2) Quantile-CI (QPI), the type of CI based on quantiles of the estimated sampling

distribution of the (uncentered) estimator of interest. More details are given in the example below.

Example 4.1 (Types of CI). For any unknown quantity 𝜃 estimated by
ˆ𝜃𝑛 , we may build a scalable

subagging estimator
¯𝜃𝑏,𝑛,𝑆𝑆 = 𝑞−1

∑𝑞

𝑖=1
ˆ𝜃𝑏,𝑖 to approximate it. To construct a CI for 𝜃 based on ¯𝜃𝑏,𝑛,𝑆𝑆 ,

we are aided by the CLT of [20], i.e.,

𝜅𝑛 ( ¯𝜃𝑏,𝑛,𝑆𝑆 − 𝜃 )
𝑑→ 𝑁 (𝐶𝜇,𝐶2

𝜎 ), as 𝑛 → ∞, (10)

under mild conditions; here 𝐶𝜇 and 𝐶
2

𝜎 are the mean and variance of limiting distribution, respec-

tively, and 𝜅𝑛 = 𝑛
1−𝛽+2𝛼𝛽

2 .
2

The form of the PCI based on CLT (10) depends crucially on whether 𝐶𝜇 = 0 or not; see the

next two subsections for details. On the other hand, the QCI is easier to build but it has its own

deficiencies. In the context of this example, it is tempting to create a QCI for 𝜃 by taking the 𝛿/2
and 1 − 𝛿/2 quantile values of the empirical distribution of the points { ˆ𝜃𝑏,1, . . . , ˆ𝜃𝑏,𝑞}. However, the
resulting CI will be too conservative, i.e., its coverage will be (much) bigger than 1 − 𝛿 . The reason

2
We note a typo in [20] where 𝜅𝑛 was incorrectly written as 𝑛−

1−𝛽+2𝛼𝛽
2 .
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is that the empirical distribution of { ˆ𝜃𝑏,𝑖 , . . . , ˆ𝜃𝑏,𝑞} is approximating the sampling distribution of

estimator
ˆ𝜃𝑏 which has bigger variance than that of the target

ˆ𝜃𝑛 . We could try to re-scale the

empirical distribution of { ˆ𝜃𝑏,1, . . . , ˆ𝜃𝑏,𝑞} as in classical subsampling—see [21]. We still consider the

QCI in the simulation studies. As expected, this QCI is the most conservative one; see details in

Section 6.

4.3.1 PCI in the case where 𝐶𝜇 = 0. If 𝐶𝜇 = 0, i.e., when the square bias is relatively negligible

compared to the variance in estimation, we can rely on Eq. (10) to build a PCI for the true function

𝑓 at a point 𝒙 . All we need is a consistent estimator of 𝐶2

𝜎 , e.g., 𝐶
2

𝜎 = 𝑏2𝛼𝑞−1
∑𝑞

𝑖=1

(
ˆ𝜃𝑏,𝑖 − ¯𝜃𝑏,𝑛,𝑆𝑆

)
2

.

In that case, a PCI for 𝜃 based on the CLT can be written as:

¯𝜃𝑏,𝑛,𝑆𝑆 ± 𝑧1−𝛿/2 ·𝐶𝜎 · 𝜅−1𝑛 , (11)

where 𝑧1−𝛿/2 is the 1 − 𝛿/2 quantile of the standard normal distribution.

Observing that there is a common term 𝑛𝛽𝛼 in 𝜅𝑛 and 𝐶𝜎 , we can estimate 𝐶𝜎 · 𝜅−1𝑛 as a whole

rather than computing 𝜅𝑛 and 𝐶2

𝜎 separately. As a result, we can get a simplified PCI based on

Eq. (11) as follows:

𝑓
DNN

(𝒙) ± 𝑧1−𝛿/2 ·𝑀𝜎 ; (12)

here𝑀𝜎 = 𝐶𝜎 ·𝜅−1𝑛 which can be approximated by

√︂
𝑞−1

∑𝑞

𝑖=1

(
𝑓DNN,𝑏,𝑖 (𝒙) − 𝑓 DNN (𝒙)

)
2

/𝑛
1−𝛽
2 . Note

that the building of the CI does not require the knowledge of 𝛼 which is the order of the variance

term in B1. However, the estimation 𝐶𝜎 may not be accurate when 𝑞 is small since it is only an

average of 𝑞 terms. As a result, the PCI according to Eq. (12) may undercover the true model values.

Thus, we may relax the desired property of CI. Instead of requiring the exact coverage rate of a CI

to be 1 − 𝛿 , we seek a CI such that:

P(𝐵𝑙 ≤ 𝑓 (𝒙) ≤ 𝐵𝑢) ≥ 1 − 𝛿. (13)

Thus, the optimal candidate will be the CI which has the shortest length and guarantees the lowest

coverage rate larger than 1−𝛿 . To satisfy Eq. (13), we may enlarge the CI appropriately by replacing

𝐶2

𝜎 with 𝐶2

𝜎 = 𝐶2

𝜎 + (𝑓
DNN

(𝒙) − 𝑦)2; here 𝑦 = 𝑓 (𝒙) + 𝜖 .
It is appealing to think that 𝐶2

𝜎 is close to the MSE of 𝑓
DNN

(𝒙). However,

(𝑓
DNN

(𝒙) − 𝑦)2 =
(
1

𝑞

𝑞∑︁
𝑖=1

(𝑓DNN,𝑏,𝑖 (𝒙) − 𝑦)
)
2

=

(
1

𝑞

𝑞∑︁
𝑖=1

(
𝑓DNN,𝑏,𝑖 (𝒙) − 𝑓 (𝒙)

)
− 𝜖

)
2

.

When 𝑞 is large, (𝑓
DNN

(𝒙) − 𝑦)2 → (𝐶𝜇 − 𝜖)2 where 𝐶𝜇 is the bias of 𝑓 DNN (𝒙). Therefore, 𝐶2

𝜎 is

not exactly the MSE, but it can still be used to enlarge the CI to some extent. We can then define

another PCI as:

𝑓
DNN

(𝒙) ± 𝑧1−𝛿/2 ·𝑀𝜎 , (14)

where

𝑀𝜎 =

√√
𝑞−1

𝑞∑︁
𝑖=1

(
𝑓DNN,𝑏,𝑖 (𝒙) − 𝑓 DNN(𝒙)

)
2

/𝑛1−𝛽 + (𝑓
DNN

(𝒙) − 𝑦)2/𝑛1−𝛽+2𝛼𝛽 . (15)

Since the order of the variance term 𝛼 is involved in the above terms, we consider two extreme

situations in the simulation sections: (1) We take 2𝛼 = 0 which is a most enlarged case; or (2) take

2𝛼 = 1 which is a mildly enlarged case.
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Remark 4.4 (The condition to guarantee 𝐶𝜇 = 0). According to Eq. (10), 𝐶𝜇 = 0 is satisfied as
long as 𝛽 > 1

1+Λ−2𝛼 under A5. If we take 𝛽 = 1

1+Λ− 𝜉

𝜉+𝑑
in Theorem 4.2, we can find that the condition for

𝐶𝜇 = 0 is always satisfied. This is not surprising due to A5 imposing the requirement on the convergence
rate of the bias term. However, as explained in Remark 4.3, this 𝛽 is not the optimal one to generate
the smallest error bound. Thus, we could arrive at a stage where the orders of the squared bias and
variance are the same once we know 𝛼 . Due to the high variability of training a DNN in practice, we
introduce a method in Section 4.3.2 to build CI appropriately under the situation that 𝐶𝜇 ≠ 0, which
serves for cases where the bias is not relatively negligible.

4.3.2 PCI in the case where𝐶𝜇 ≠ 0. It is worthwhile to discuss how can we build a PCI for scalable

subsampling DNN estimator when𝐶𝜇 ≠ 0. Note that [20] proposed an iterated scalable subsampling

technique that is applicable in the case 𝐶𝜇 ≠ 0. While this technique is also applicable in the case

𝐶𝜇 = 0, we may prefer the construction of Section 4.3.1 since it is less computer-intensive. However,

we should notice that the additional computational burden brought by iterated subsampling is

negligible when 𝑛 → ∞; see analysis in the below Remark.

Remark (Complexity analysis of iterated subsampling). For the computational issue of the
iterated subsampling stage, the total time of training all DNN estimators 𝑓 ( 𝑗 )DNN,𝑏,𝑖 for 𝑖 ∈ {1, . . . , 𝑞}
and 𝑗 ∈ {1, . . . , 𝑞′} (iterated subsampling stage) is less than the time of training all DNN estimators
in the first subsampling stage, i.e., 𝑓DNN,𝑏,𝑖 for 𝑖 ∈ {1, . . . , 𝑞}. We can see the reason by analyzing the
computational complexity of the iterated subsampling stage. In total, we need to train 𝑞 ·𝑞′ = 𝑂 (𝑛1−𝛽2 )
number of models with sample size 𝑛𝛽

2

. As the assumption we made in Remark 4.2, the complexity of
training a DNN is mainly determined by its size, sample size and the number of epochs, so the training
time of the iterated stage is around 𝑞 · 𝑞′ ·𝑂 (𝑛𝛽2 · 𝑛𝛽2 ) = 𝑂 (𝑛1+𝛽2 ) when the sample size is close to the
size of DNN. Similarly, we can analyze that the complexity of training DNNs in the first subsampling
stage is around 𝑂 (𝑛1+𝛽 ). Since 𝛽 < 1, the complexity of the first subsampling stage will dominate the
iterated stage when 𝑛 is large enough. In other words, the complexity cost of applying the iterated
subsampling technique is negligible when we are dealing with a huge dataset.

For completeness, we present the iterated subsampling here in the remark below.

Remark 4.5 (Iterated subsampling). With the same notations in Example 4.1, we can perform the
iterated subsampling in three steps: (1) Let 𝑏 =

⌊
𝑛𝛽

⌋
, then apply the scalable subsampling technique to

sample 𝑋1, . . . , 𝑋𝑛 and get 𝑞 subsets {𝐵𝑖 }𝑞𝑖=1. Compute ¯𝜃𝑏,𝑛,𝑆𝑆 ; we call it “first stage subsampling”; (2)
Take another subsample size𝑏′ = ⌊𝑏𝛽⌋ and apply scalable subagging method again to all {𝐵𝑖 }𝑞𝑖=1, i.e., as
if 𝐵𝑖 where the only data at hand andmake subagging estimator for each 𝐵𝑖 subsamples; such subagging
estimator ¯𝜃𝑏′,𝑏,𝑆𝑆,𝑖 is computed by averaging 𝑞′ estimators { ˆ𝜃 ( 𝑗 )

𝑏′,𝑏,𝑆𝑆,𝑖 }
𝑞′

𝑗=1
; here 𝑞′ = ⌊(𝑏 − 𝑏′)/ℎ′⌋ + 1.

As a result, we can get 𝑞 number of { ¯𝜃𝑏′,𝑏,𝑆𝑆,𝑖 }𝑞𝑖=1; we call it “iterated stage subsampling”; (3) Find
the subsampling distribution 𝐿𝑏′,𝑏,𝑆𝑆 (𝑧) = 𝑞−1

∑𝑞

𝑖=1
1

{
𝜅𝑏

(
¯𝜃𝑏′,𝑏,𝑆𝑆,𝑖 − ¯𝜃𝑏,𝑛,𝑆𝑆

)
≤ 𝑧

}
; 𝜅𝑏 is a function of

𝑏. In the context of DNN estimation, we use 𝑓 ( 𝑗 )DNN,𝑏,𝑖 to represent the DNN estimator in the iterated
subsampling stage on the 𝑗-th subsamples from the 𝑖-th subsample in the first stage subsampling.

Denote 𝐽𝑛 (𝑧) = P(𝜅𝑛 ( ¯𝜃𝑏,𝑛,𝑆𝑆 − 𝜃 ) ≤ 𝑧), and 𝐽 (𝑧) is the limit of 𝐽𝑛 (𝑧) as 𝑛 → ∞; recall that (10)

implied that 𝐽 (𝑧) is Gaussian. Proposition 2.1 of [20] shows that 𝐿𝑏′,𝑏,𝑆𝑆 (𝑧) converges to 𝐽 (𝑧) in
probability for all points of continuity of 𝐽 (𝑧). Due to Eq. (10), 𝐽 (𝑧) is continuous everywhere,
and therefore the convergence is uniform. Thus, both 𝐿𝑏′,𝑏,𝑆𝑆 (𝑧) and 𝐽𝑛 (𝑧) converge in a uniform

fashion to 𝐽 (𝑧) in probability which implies that:

sup

𝑧

��𝐿𝑏′,𝑏,𝑆𝑆 (𝑧) − 𝐽𝑛 (𝑧)�� 𝑝
→ 0, as 𝑛 → ∞. (16)
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Thus, iterated subsampling can be used to estimate the distribution 𝐽𝑛 . We can build the CI in a

pivotal style without explicitly referring to the form of 𝐽 that involves the two unknown parameters.

A further issue is that normality might not be well represented in 𝐽𝑛 since it is based on an average

of 𝑞 quantities; having a large 𝑞 requires a huge 𝑛. To compensate for the data size requirement, we

take a specific approach to build CI which can be considered as a combination of PCI and QCI to

some extent. Algorithm 2 describes all the steps to construct the CI for 𝑓 at a point 𝒙 based on the

subagging DNN estimator and iterated subsampling method.

Algorithm 2 PCI of 𝑓 (𝒙) based on iterated subsampling

Step 1 Fix the subsample size 𝑏, compute 𝑓
DNN

(𝒙) at point 𝒙 .
Step 2 Fix the subsample size 𝑏′ of iterated subsampling, perform necessary steps in Remark 4.5

to find

𝐿𝑏′,𝑏,𝑆𝑆 (𝑧) = 𝑞−1
𝑞∑︁
𝑖=1

1

{
𝜅𝑏

(
𝑓
DNN,𝑖 (𝒙) − 𝑓 DNN (𝒙)

)
≤ 𝑧

}
;

here 𝑓
DNN,𝑖 (𝒙) = 1

𝑞′
∑𝑞′

𝑗=1
𝑓
( 𝑗 )
DNN,𝑏,𝑖

is the subagging DNN estimator on the 𝑖-th subsamples

in Step 1 at the point 𝒙 .
Step 3 Denote the 𝛿/2 and 1 − 𝛿/2 quantile values of the distribution 𝐿𝑏′,𝑏,𝑆𝑆 (𝑧) as 𝑏𝑙 and 𝑏𝑢 .
Step 4 Determine the PCI of 𝑓 (𝒙) by:

[𝑓
DNN

(𝒙) − 𝑏𝑢/𝜅𝑛 , 𝑓 DNN (𝒙) − 𝑏𝑙/𝜅𝑛] . (17)

In other words, we take 𝐵𝑙 = 𝑓 DNN (𝒙) − 𝑏𝑢/𝜅𝑛 and 𝐵𝑢 = 𝑓
DNN

(𝒙) − 𝑏𝑙/𝜅𝑛 .

Note that to construct the PCI (17) above, the values of 𝜅𝑛 and 𝜅𝑏 are required. Recall that

𝜅𝑛 = 𝑛
1−𝛽+2𝛼𝛽

2 and 𝜅𝑏 = 𝑛𝛽
1−𝛽+2𝛼𝛽

2 . Although 𝛽 is the practitioner’s choice, 𝛼 is typically unknown.

Remark 4.6 explains how upper and lower bounds for 𝛼 can be used in the PCI construction.

Remark 4.6. In constructing the PCI (17) we can replace 𝜅𝑏 by a larger value (say 𝜅𝑏 ) and replace
𝜅𝑛 by a smaller value (say 𝜅

𝑛
) and the coverage bound of Eq. (13) would still be met. From Theorem 4.1,

the fastest rate of the variance decrease is of order 𝑂 (𝑛−1); so 𝛼 could be as large as 1/2 in which

𝜅𝑏 = 𝑛
𝛽

2 . On the other hand, the slowest rate is influenced by 𝑛−
𝜉

𝜉+𝑑 ; if we pretend the smoothness of
the true model is equal to the input dimension (although it is actually smoother), we can take 𝛼 = 1/4
to compute 𝜅

𝑛
= 𝑛

1−𝛽/2
2 .

5 PREDICTIVE INFERENCEWITH THE DNN ESTIMATOR

Most of the work in DNN estimation has applications in prediction although this is typically a point

prediction. However, as in the estimation case, it is important to be able to quantify the accuracy of

the point predictors which can be done via the construction of Prediction Intervals (PI); see related

work of [18, 24, 25, 29] on predictive inference with dependent or independent data.

Consider the problem of predicting a response 𝑌0 that is associated with a regressor value of

interest denoted by 𝒙0 and its corresponding prediction interval. The 𝐿2 optimal point predictor of

𝑌0 is 𝑓 (𝒙0) which is well approximated by
¯𝑓𝐷𝑁𝑁 (𝒙0) as Theorem 4.2 shows. To construct a PI for

𝑌0, we need to take the variability of the errors into account since, conditionally on 𝑿0 = 𝒙0, we
have 𝑌0 = 𝑓 (𝒙0) + 𝜖0.
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If the model 𝑓 and the error distribution 𝐹𝜖 were both known, we could construct a PI which

covers 𝑌0 with 1 − 𝛿 confidence level as follows:[
𝑓 (𝒙0) + 𝑧𝜖,𝛿/2, 𝑓 (𝒙0) + 𝑧𝜖,1−𝛿/2

]
; (18)

here 𝑧𝜖,1−𝛿/2 and 𝑧𝜖,𝛿/2 are the 1 − 𝛿/2 and 𝛿/2 quantile values of 𝐹𝜖 , respectively. Of course, we do
not know the true model 𝑓 but we may replace it with our scalable subsampling DNN estimator

𝑓
DNN

. In addition, 𝐹𝜖 is also unknown and must be estimated; a typical estimator is 𝐹𝜖 which is the

empirical distribution of residuals. To elaborate, we define 𝐹𝜖 as follows:

𝐹𝜖 (𝑧) :=
1

𝑛

𝑛∑︁
𝑖=1

1𝜖𝑖≤𝑧 ; 1( ·) is the indicator function.

𝜖𝑖 = 𝑓 (𝒙𝑖 ) − 𝑓 DNN (𝒙𝑖 ), for 𝑖 = 1, . . . , 𝑛.

(19)

To consistently estimate the error distribution 𝐹𝜖 , we need to make some mild assumptions on

𝐹𝜖 , namely:

• B2: The error distribution 𝐹𝜖 has zero mean and is differentiable on the real line and

sup𝑧 𝑝𝜖 (𝑧) < ∞ where 𝑝𝜖 (𝑧) is the density function of error 𝜖 .

The following Lemma can be proved analogously to the proof of Lemma 4.1 in [25].

Lemma 5.1. Under A1-A5 and B1, we have sup𝑧 |𝐹𝜖 (𝑧) − 𝐹𝜖 (𝑧) |
𝑝
→ 0.

We can then apply the PI below to approximate the ‘oracle’ PI of Eq. (18):[
𝑓
DNN

(𝒙0) + 𝑧𝜖,𝛿/2, 𝑓 DNN(𝒙0) + 𝑧𝜖,1−𝛿/2
]
; (20)

here 𝑧𝜖,1−𝛿/2 and 𝑧𝜖,𝛿/2 are the 1 − 𝛿/2 and 𝛿/2 quantile values of 𝐹𝜖 , respectively. To construct this

PI in practice, we can rely on Algorithm 3 below:

Algorithm 3 PI of 𝑌0 conditional on 𝒙0

Step 1 Train the subagging DNN estimator 𝑓
DNN

(·) and find the empirical distribution of

residuals 𝐹𝜖 as Eq. (19).

Step 2 Evaluate the subagging DNN estimator at 𝒙0 to get 𝑓
DNN

(𝒙0).
Step 3 Determine 𝑧𝜖,𝛿/2 and 𝑧𝜖,1−𝛿/2 by taking lower 𝛿/2 and 1 − 𝛿/2 quantiles of 𝐹𝜖 .
Step 4 Construct PI as Eq. (20).

We claim that the PI in Eq. (20) is asymptotically valid (conditionally on 𝑿0 = 𝒙0), i.e., it satisfies

P
(
𝑌0 ∈

[
𝑓
DNN

(𝒙0) + 𝑧𝜖,𝛿/2, 𝑓 DNN (𝒙0) + 𝑧𝜖,1−𝛿/2
] )

𝑝
→ 1 − 𝛿, (21)

where the above probability is conditional on𝑿0 = 𝒙0. This statement is guaranteed by Theorem 5.1.

To describe it, denote 𝑌 ∗
0
= 𝑓

DNN
(𝒙0) + 𝜖∗0 where 𝜖∗0 has the distribution 𝐹𝜖 .

Theorem 5.1. Under A1-A5 and B1-B2, the distribution of 𝑌 ∗
0
converges to the distribution of 𝑌0

uniformly (in probability), i.e.,

sup

𝑧

���𝐹𝑌 ∗
0
|𝒙0=𝒙0

(𝑧) − 𝐹𝑌0 |𝒙0=𝒙0
(𝑧)

��� 𝑝
→ 0, as 𝑛 → ∞. (22)
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Although the PI in Eq. (20) is asymptotically valid, it may undercover 𝑌0 in the finite sample case.

This problem is mainly due to two reasons: (1) PI in Eq. (20) does not take the variability of model

estimation into account; and (2) the scale of the error distribution is typically underestimated by the

residual distribution with finite samples. For issue (1), we can rely on a so-called pertinent PI which

is able to capture the model estimation variability; this pertinence property is crucial, especially

for the prediction inference of time series data in which multiple-step ahead forecasting is usually

required. For issue (2), we can “enlarge” the residual distribution by basing it on the so-called

predictive (as opposed to fitted) residuals. Although the predictive residuals are asymptotically

equivalent to the fitted residuals, i.e., 𝜖 in Eq. (19), the corresponding PI could have a better coverage

rate; see [19] for the formal definition of pertinent PI and predictive residuals.

In this paper, due to the computational issues in fitting DNN models, we only build the PI in

Eq. (20). Taking a fairly large enough sample size in Section 6, this PI works well, and its empirical

coverage rate is only slightly lower than that of the oracle.

6 SIMULATIONS

In this section, we attempt to check the performance of the scalable subagging DNN estimator

with simulation examples. More specifically, we consider two aspects of one estimator: (1) Time-

complexity, we take the running time of the training stage to measure its complexity for a fixed

hyperparameter setting, e.g., fixed number of epochs and batch size; (2) Estimation accuracy, we take

empirical MSE (mean square error)/MSPE (mean square prediction error) and empirical coverage

rate to measure the accuracy of point estimations/predictions and confidence/prediction intervals.

We deployed the simulation studies on the CentOS Linux 7 (Core) system. All simulations run

parallelly with 40 CPUs (Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz).

6.1 Simulations on point estimations

As shown in Section 4, the scalable subagging DNN estimator is more computationally efficient but

also more accurate meantime compared to the DNN estimator trained with the whole sample size

under some mild conditions. Here, we hope to verify such dominating performance with simulated

data. To perform simulations, we consider below models:

• Model-1: 𝑌 =
∑

10

𝑖=1𝑋𝑖 + 𝜖 , where (𝑋1, . . . , 𝑋10) ∼ 𝑁 (0, 𝑰 ).
• Model-2: 𝑌 =

∑
10

𝑖=1 𝑖 · 𝑋𝑖 + 𝜖 , where (𝑋1, . . . , 𝑋10) ∼ 𝑁 (0, 𝑰 ).
• Model-3: 𝑌 = 𝑋 2

1
+ sin(𝑋2 + 𝑋3) + 𝜖 , where (𝑋1, 𝑋2, 𝑋3) ∼ 𝑁 (0, 𝑰 ).

• Model-4: 𝑌 = 𝑋 2

1
+ sin(𝑋2 + 𝑋3) + exp(−|𝑋4 + 𝑋5 |) + 𝜖 , where (𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5) ∼ 𝑁 (0, 𝑰 );

here 𝑰 is an identity matrix with the correct dimension for each model; 𝜖 is the standard normal

error. To be consistent with folk wisdom, we build 𝑓DNN,𝑏,𝑖 with a relatively large depth to decrease

the bias. Meanwhile, we take the width as large as possible to make its size close to the sample

size so that A3 could be satisfied and we are in the under-parameterized region. In order to make a

comprehensive comparison between the scalable subsampling DNN (SS-DNN) estimator 𝑓
DNN

and

classical DNN estimators, we consider 5 DNN estimators which are trained with the whole sample

but with different structures:

(1) A DNN possesses the same depth and width as 𝑓DNN,𝑏,𝑖 . We denote it “S-DNN”.

(2) A DNN possesses the same depth as 𝑓DNN,𝑏,𝑖 , but a larger width so that its size is close to

the sample size. We denote it “DNN-deep-1”.

(3) A DNN possesses the same depth as 𝑓DNN,𝑏,𝑖 , but a larger width so that its size is close to

half of the sample size. We denote it “DNN-deep-2”.
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(4) A DNN possesses only one hidden layer, but a larger width so that its size is close to the

sample size. We denote it “DNN-wide-1”.

(5) A DNN possesses only one hidden layer, but a larger width so that its size is close to half of

the sample size. We denote it “DNN-wide-2”.

We deploy DNN (1) to check the performance of a DNN with the same structure as 𝑓DNN,𝑏,𝑖 , but it is

trained with the whole dataset. We deploy DNNs (2) - (5) to challenge the scalable subsampling DNN

estimator with various wide or deep DNNs. We build the DNN estimator with PyTorch in Python. To
train all different DNNs, we use the stochastic gradient descent algorithm Adam developed by [15]

with a learning rate 0.01. In addition, we take the number of epochs and batch size to be 200 and

10 to make the DNN fully trained for the first and iterated subsampling stages, respectively. The

choice of batch size, the number of epochs and the base sample size is intended to make sure all five

DNN estimators can achieve a great estimation performance (this is revealed by Table 1, all errors

are small). Based on this fact, we then check the running time and the accuracy of different DNNs.

We use the function time.time() in Python to compute the running time of the training procedure,

namely Training Time.

To evaluate the point estimation performance, we apply two empirical MSE criteria:

MSE-1:

1

𝑛

𝑛∑︁
𝑖=1

(𝑓DNN (𝒙𝑖 ) − 𝑦𝑖 )2 ; MSE-2:

1

𝑛

𝑛∑︁
𝑖=1

(𝑓DNN (𝒙𝑖 ) − 𝑓 (𝒙𝑖 ))2;

here 𝑓DNN (·) represents different DNN estimators and 𝑓 (·) is the true regression function; {𝒙𝑖 , 𝑦𝑖 }𝑛𝑖=1
are realizations of samples; we call it training data.

An estimator is optimal in MSE-1 criterion if its MSE-1 is closest to the sample variance of errors,

namely 𝜎̂2𝜖 = 1

𝑛

∑𝑛
𝑖=1 𝜖

2

𝑖 ; here {𝜖2𝑖 }𝑛𝑖=1 are observed error values. An estimator is optimal in the MSE-2

criterion if its MSE-2 is closest to 0. We present MSE-1 and MSE-2 of different estimators in Table 1.

In addition, we also present 𝜎̂2𝜖 of the corresponding simulated sample as the benchmark to compare

the performance of different estimators according to the MSE-1 criterion.

Beyond the point estimation measured on training data, we are also interested in the performance

of difference DNN estimators on test data. Thus, we generate new samples: {𝒙0,𝑖 , 𝑦0,𝑖 }𝑁𝑖=1; here we
take 𝑁 = 2 · 105 to evaluate the prediction performance. Similarly, we consider two MSPEs and we

denote them MSPE-1 and MSPE-2 following:

MSPE-1:

1

𝑁

𝑁∑︁
𝑖=1

(𝑓DNN (𝒙0,𝑖 ) − 𝑦0,𝑖 )2 ; MSPE-2:

1

𝑁

𝑁∑︁
𝑖=1

(𝑓DNN (𝒙0,𝑖 ) − 𝑓 (𝒙0,𝑖 ))2;

we expect that the best estimator on prediction tasks should have the smallest MSPE-2 and the

MSPE-1 which is closest to 𝜎̂2𝜖,0 =
1

𝑁

∑𝑁
𝑖=1 (𝜖0,𝑖 )2; here {𝜖0,𝑖 }𝑁𝑖=1 are observed error values for the test

data. We present all simulation results in Table 1; here empirical MSE/MSPE and Training Time (in

seconds) were computed as averages of 200 replications.

We can summarize several notable findings from the simulation results:

• 𝑓
DNN

is always the most computationally efficient one, it is even faster than applying a

single DNN estimator with the same structure as 𝑓DNN,𝑏,𝑖 but trained on the whole sample.

Notably, our scalable subsampling procedure can save more than 50% running time of

applying DNN-deep-1 or DNN-wide-1 for Model-4 data with size 2 · 104.
• According to the MSE-1, 𝑓

DNN
is the most accurate one for all simulations. For example, the

MSE-1 of 𝑓
DNN

is around 40% closer
3
to 𝜎̂2𝜖 than the MSE-1 of DNN-deep-1 and DNN-deep-2

3
Saying that the error 𝐸1 is 𝑎% closer to 𝜎̂2

𝜖 than the error 𝐸2 means that | (𝐸1 − 𝜎̂2

𝜖 ) |/| (𝐸2 − 𝜎̂2

𝜖 ) | is 𝑎%.
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Table 1. MSE/MSPE and Training Time (in seconds) of different DNN models on various simulation datasets
with error terms.

Estimator: SS-DNN S-DNN DNN-deep-1 DNN-deep-2 DNN-wide-1 DNN-wide-2

Model-1, 𝑛 = 10
4
, 𝜎̂2𝜖 = 1.0011, 𝜎̂2𝜖,0 = 1.0003

Width [20,20] [20,20] [90,90] [60,60] [800] [400]

MSE-1 1.0034 1.0168 0.9975 1.0036 1.0136 1.0151

MSE-2 0.1011 0.0579 0.1039 0.0894 0.0466 0.0433

MSPE-1 1.1020 1.0678 1.1299 1.1059 1.0543 1.0487

MSPE-2 0.1019 0.0675 0.1296 0.1057 0.0540 0.0484

Training Time 209 225 403 303 373 274

Model-2, 𝑛 = 10
4
, 𝜎̂2𝜖 = 1.0012, 𝜎̂2𝜖,0 = 1.0011

Width [20,20] [20,20] [90,90] [60,60] [800] [400]

MSE-1 1.0506 1.1355 1.1314 1.1350 1.0768 1.0745

MSE-2 0.1232 0.1625 0.1889 0.1839 0.1249 0.1194

MSPE-1 1.1339 1.1469 1.1841 1.1737 1.1254 1.1237

MSPE-2 0.1338 0.1468 0.1841 0.1736 0.1253 0.1238

Training Time 224 240 417 320 376 280

Model-3, 𝑛 = 10
4
, 𝜎̂2𝜖 = 0.9997,𝜎̂2𝜖,0 = 1.0001

Width [15,15,15] [15,15,15] [65,65,65] [45,45,45] [2000] [1000]

MSE-1 1.0014 1.0361 1.0299 1.0308 1.0286 1.0290

MSE-2 0.0296 0.0536 0.0533 0.0522 0.0426 0.0431

MSPE-1 1.0310 1.0565 1.0572 1.0571 1.0453 1.0449

MSPE-2 0.0310 0.0564 0.0572 0.0570 0.0453 0.0449

Training Time 353 379 561 468 483 363

Model-4, 𝑛 = 10
4
, 𝜎̂2𝜖 = 1.0014,𝜎̂2𝜖,0 = 1.0003

Width [15,15,15] [15,15,15] [65,65,65] [45,45,45] [2000] [1000]

MSE-1 1.0243 1.0488 1.0318 1.0350 1.0457 1.0460

MSE-2 0.0757 0.0830 0.1076 0.0980 0.0729 0.0728

MSPE-1 1.0792 1.0878 1.1117 1.1048 1.0756 1.0752

MSPE-2 0.0790 0.0875 0.1114 0.1045 0.0754 0.0749

Training Time 359 376 560 471 551 394

Model-4, 𝑛 = 2 · 104, 𝜎̂2𝜖 = 0.9991,𝜎̂2𝜖,0 = 0.9999

Width [20,20,20] [20,20,20] [95,95,95] [65,65,65] [2800] [1400]

MSE-1 1.0093 1.0483 1.0419 1.0438 1.0508 1.0508

MSE-2 0.0490 0.0653 0.0686 0.0675 0.0635 0.0635

MSPE-1 1.0501 1.0669 1.0692 1.0689 1.0622 1.0625

MSPE-2 0.0502 0.0670 0.0692 0.0689 0.0623 0.0626

Training Time 748 775 1684 1198 1549 998

Note: “width” represents the number of neurons of each hidden layer, e.g., [20, 20] means that there

are two hidden layers within the DNN and each has 20 neurons.
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for Model-2 data with 10
4
size, which is remarkable noticing that 𝑓

DNN
is trained with less

time.

• According to the MSE-2, 𝑓
DNN

can work best when the data is large enough for Models 3-4

which are non-linear. In particular, MSE-2 of 𝑓
DNN

is more than 20% less
4
than the MSE-2

of all other models for Model-4 data with size 2 · 104.
For Model-2, the performance of 𝑓

DNN
is just slightly worse than the optimal estimator. For

Model-1, the performance of 𝑓
DNN

is still worse than the optimal estimator. We guess the

reason may be that the Model-1 and Model-2 are linear models. In this case, a wide DNN is

sufficient to mimic such a linear relationship.

• For MSPEs, 𝑓
DNN

works slightly worse than the optimal model for Model-1 and Model-2

cases, but it turns out to be the optimal one forModel-3 andModel-4 cases. This phenomenon

is consistent with the behavior of MSEs. More specifically, the MSPE-2 of 𝑓
DNN

is more than

20% less than the MSPE-2 of all other models for Model-4 data with size 2 · 104; the MSPE-1

of 𝑓
DNN

is around 50% closer to 𝜎̂2𝜖,0 than the MSPE-1 of all other methods for Model-3 data

with 10
4
size.

• The model-selection step for “wide” or “deep” type DNN estimators is necessary but it is

obscure meanwhile; see DNN-wide-2 works better than DNN-wide-1 for the Model-2 MSE

case; however, the situation reverses for the Model-3 MSE case. This phenomenon occurs

for “Deep” type DNN estimators also; see the performance of S-DNN, DNN-deep-1 and

DNN-wide-2; there is no single one that beats the others uniformly. For MSPE, we can also

find such a reverse phenomenon. On the other hand, by applying the scalable subagging

estimator, we can avoid the model-selection difficulty and just make 𝑓DNN,𝑏,𝑖 deep and large

enough.

We also considered evaluating the ability of various DNN estimators to estimate regression

models solely, i.e., removing the error terms in the four simulation models above. Due to this

change, the MSE-1 error is equivalent to the MSE-2 error. We found that the SS-DNN is still the

most time-efficient estimator. It even runs faster than training S-DNN with the whole sample size.

Applying the scalable subagging method can gain more computational savings for training with a

larger sample size or a larger model. The SS-DNN is also the most accurate estimator except in the

case with 10
4
Model-4 simulated data. For this case, the accuracy of SS-DNN is slightly worse than

the estimator DNN-deep-1. We conjecture the reason is that Model-4 is relatively complicated so

a DNN with 3 depths and constant width 15 has a high bias. After increasing the sample size to

20000, the subagging estimator beats other models.

6.2 Simulations for CI and PI

We continue using the four models in Section 6.1 to test the accuracy of multiple confidence and

prediction intervals defined in previous sections with scalable subagging DNN estimators. To make

sure we have enough subsamples to do iterated subsampling for CI, we take the sample size to be

2 · 105, which implies 𝑞 = 38 when 𝛽 = 0.7. It further implies that the number of subsamples for

the iterated subagging stage is 𝑞 = ⌊𝑛𝛽 (1−𝛽 )⌋ = 12. For developing the prediction interval, we take

the sample size to be 10
4
or 2 · 104. To determine the structure of the subagging DNN estimator,

we keep the strategy summarized in the previous subsection, i.e., we make its size as close to the

sample size as possible no matter in the first or the iterated subsampling stage. We take the same

training setting with PyTorch to find 𝑓
DNN

(𝒙0) as we have done in Section 6.1.

4
Saying that the error 𝐸1 is 𝑎% less than the error 𝐸2 means that (𝐸1 − 𝐸2 )/𝐸2 is negative and | (𝐸1 − 𝐸2 )/𝐸2 | = 𝑎%.
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We call the naive QCI which is determined by the equal-tail quantile of estimations {𝑓DNN,𝑏,1 (𝒙),
. . . , 𝑓DNN,𝑏,𝑞 (𝒙)} QCI-1; we should notice that this QCI may be too conservative as we explained

in Example 4.1; we call the QCI based on Eq. (17) QCI-2; we call the PCI based on Eq. (12) PCI-1;

we call the PCI based on Eq. (15) with taking 2𝛼 = 0, PCI-2; we call the PCI based on Eq. (15) with

taking 2𝛼 = 1, PCI-3; the PI represents the prediction interval defined in Eq. (20). For all CIs and

PI defined in previous sections, they have asymptotically validity conditional on the observation

𝑿 = 𝒙 . We attempt to check the conditional coverage rate with simulations for finite sample cases.

To achieve this purpose, we fix 10 unchanged test points {(𝑦𝑡,1, 𝒙𝑡,1), . . . , (𝑦𝑡,10, 𝒙𝑡,10)} which are

different from training points for each simulation model; these 10 points can be recovered by setting

numpy.random.seed(0) and generate sample according to the model.

To evaluate the performance of (conditional) CI for each test point, we repeat the simulation

process 𝐾 = 500 times and apply the below formulas to compute the empirical coverage rate (ECR)

and empirical length (EL) of different CIs for each test point:

ECR𝑗 =
1

𝐾

𝐾∑︁
𝑖=1

1𝑓 (𝒙𝑡,𝑗 ) ∈ [𝐵𝑙,𝑖,𝑗 ,𝐵𝑢,𝑖,𝑗 ] , EL𝑗 =
1

𝐾

𝐾∑︁
𝑖=1

(𝐵𝑢,𝑖, 𝑗 − 𝐵𝑙,𝑖, 𝑗 ), for 𝑗 = 1, . . . , 10;

here 𝑓 (𝒙𝑡, 𝑗 ) is the true model value evaluated at the 𝑗-th test data point; 𝐵𝑢,𝑖, 𝑗 and 𝐵𝑙,𝑖, 𝑗 are the

corresponding upper and lower bounds of different CIs at the 𝑖-th replication for the 𝑗-th test point,

respectively. We take the nominal significance level 𝛿 = 0.05. Simulation results are tabularized in

Table 2.

To evaluate the performance of (conditional) PI for each test point, the procedure is slightly

complicated and we summarize it in below four steps:

Step 1 Take the sample size 𝑛 to be 10
4
or 2 · 104; simulate 𝐾 = 500 sample sets: {(𝑦 (𝑘 )

𝑖
, 𝒙 (𝑘 )
𝑖

)𝑛𝑖=1}𝐾𝑘=1
based on one of four simulation models.

Step 2 For each sample set, train the subsampling DNN estimator and build the prediction interval

for 10 test points by:

[𝑓
DNN

(𝒙𝑡, 𝑗 ) + 𝑧𝛿/2, 𝑓 DNN (𝒙𝑡, 𝑗 ) + 𝑧1−𝛿/2], for 𝑗 = 1, . . . , 10,

where 𝑧𝜖,1−𝛿/2 and 𝑧𝜖,𝛿/2 are the 1−𝛿/2 and 𝛿/2 quantile values of the empirical distribution

of the residuals, respectively.

Step 3 To check the performance of PIs for test points based on each sample set, simulate {𝑦𝑠,𝑗 }𝑀𝑠=1
conditional on 𝒙𝑡, 𝑗 for 𝑗 = 1, . . . , 10 pretending the true data-generating model is known

and check the empirical coverage rate and empirical length by below formulas:

ECR𝑖, 𝑗 =
1

𝑀

𝑀∑︁
𝑠=1

1𝑦𝑠,𝑗 ∈[𝐵𝑙,𝑖,𝑗 ,𝐵𝑢,𝑖,𝑗 ] , EL𝑖, 𝑗 = 𝐵𝑢,𝑖, 𝑗 − 𝐵𝑙,𝑖, 𝑗 , for 𝑗 = 1, . . . , 10; 𝑖 = 1, . . . , 500;

𝐵𝑙,𝑖, 𝑗 and 𝐵𝑢,𝑖, 𝑗 are the corresponding upper and lower bounds of PI for the 𝑗-th test point

based on 𝑖-th sample set defined in Step 2;𝑀 = 3000.

Step 4 For 𝑗 = 1, . . . , 10, estimate P(𝑌0 ∈ 𝑃𝐼 |𝑿0 = 𝒙𝑡, 𝑗 ) by the average of empirical coverage rate

of corresponding (conditional) PI on 𝐾 sample sets, i.e., Average(ECR𝑖, 𝑗 ) w.r.t. 𝑖; estimate

length of (conditional) PI for 𝑗-th test point by Average(EL𝑖, 𝑗 ) w.r.t. 𝑖 .
We take the nominal significance level 𝛿 = 0.05. Simulation results are tabularized in Table 3.

Remark (Different levels of conditioning). As explained in the work of [24], we have sev-
eral conditioning levels to measure the performance of PI or CI. What we consider in this paper
is P1 := P(·|𝑿0 = 𝒙0) which shall be interpreted as the conditional probability on 𝑿0 = 𝒙0. If
we consider the empirical coverage rate of ECR𝑖, 𝑗 , it approximates another conditioning level, i.e.,
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P2 := P(·|𝑿0 = 𝒙0, {(𝑌𝑗 ,𝑿 𝑗 )}𝑛𝑗=1); here {(𝑌𝑗 ,𝑿 𝑗 )}𝑛𝑗=1 represents the whole sample. By Lemma 4 of [24],

if 𝐴 ∈ 𝜎
(
{X𝑗 }𝑛𝑗=1, {𝑌𝑗 }𝑛𝑗=1, 𝑋𝑓 , 𝑌0

)
is an arbitrary measurable event, then E{ (𝑌𝑗 ,𝑿 𝑗 ) }𝑛𝑗=1P2 (𝐴) = P1 (𝐴).

Besides, 1 − 𝛿 conditional coverage under P1 will imply the marginal coverage P0 := E𝑿P1. This
unconditional coverage is implied by the popular Conformal Prediction method in the machine learning
community. Simulation studies show that our CIs and PIs also have great unconditional coverage.

We can summarize several findings based on simulation results:

• For the empirical coverage rate of quantile-type CIs, the naive QCI-1 over-covers true model

values as we expect. Also, the corresponding CI length is always larger than the length

of QCI-2 and it is actually the largest one among 5 different CIs. On the other hand, the

specifically designed QCI-2 returns ECRs that are closer to the specified confidence level

than QCI-1. Meanwhile, ECR of QCI-2 is larger than the nominal confidence level for almost

all test points since we take 𝜅𝑛 and 𝜅𝑏 according to the strategy in Remark 4.6 to enlarge

the CI.

• For the empirical coverage rate of pivot-type CIs, although the length of PCI-1 is the shortest

one, the ECR of PCI-1 is less than the nominal confidence level for almost all test points

since 𝐶2

𝜎 may be underestimated and we may have the bias issue in practice. For the PCI-3

whose margin of error is enlarged in a mild way, although its ECR is always larger than

PCI-1, it still undercover true model value mostly. For the PCI-2 in which the margin of

error is enlarged in a most extreme way, it has a much better performance according to the

coverage rate but with a larger CI length as a sacrifice.

• We claim that the PCI-2 is the optimal CI candidate according to the overall performance

based on length and coverage rate. For example, considering the comparison between PCI-2

and QCI-2, we can find some cases in which both CIs have a close coverage rate but the

length of PCI-2 is less than 50% length of QCI-2. This phenomenon sustains all four models.

For the QCI-2, we conjecture it will be a good alternative if we have more samples so that

𝐿𝑏′,𝑏,𝑆𝑆 (𝑥) can approximate 𝐽𝑛 (𝑥) well in the iterated subsampling stage.

• For the prediction task, all PIs for four models and all test points have almost the same

coverage rate and length. Most ECRs are slightly less than the nominal confidence level

which is not a surprise since we omit the variability in the model estimation and the residual

distribution may underestimate the true error distribution for a finite sample case. For the

length of PI, all PIs’ lengths are close to 2 · 𝑧0.975 since the true error distribution is assumed

to be standard normal in simulations and we took equal-tail PI.
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Table 2. Empirical Coverage Rate and Empirical Length of different (conditional) CIs with various simulation
models.

Test point: 1 2 3 4 5 6 7 8 9 10

Model-1, 𝑛 = 2 · 105
ECR

QCI-1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

QCI-2 0.988 0.984 0.998 1.000 0.984 0.932 0.998 0.984 0.994 0.976

PCI-1 0.938 0.918 0.954 0.940 0.836 0.610 0.942 0.938 0.890 0.918

PCI-2 0.946 0.996 0.998 1.000 0.882 0.984 1.000 0.954 0.938 1.000

PCI-3 0.938 0.922 0.958 0.960 0.836 0.616 0.948 0.938 0.890 0.928

EL

QCI-1 2.94 3.05 2.49 2.46 1.85 1.30 1.94 2.65 1.81 4.19

QCI-2 1.73 1.50 1.54 1.54 1.20 0.97 1.16 1.48 1.24 1.81

PCI-1 0.46 0.45 0.38 0.37 0.29 0.20 0.28 0.38 0.28 0.61

PCI-2 0.47 0.63 0.67 1.28 0.30 0.37 0.61 0.41 0.31 1.15

PCI-3 0.46 0.45 0.38 0.41 0.29 0.21 0.28 0.39 0.28 0.63

Model-2, 𝑛 = 2 · 105
ECR

QCI-1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

QCI-2 0.952 0.980 0.980 0.962 0.960 0.746 0.984 0.974 0.970 0.958

PCI-1 0.932 0.952 0.954 0.926 0.916 0.894 0.944 0.940 0.936 0.958

PCI-2 0.946 0.984 0.996 1.000 0.940 0.990 0.984 0.960 0.952 1.000

PCI-3 0.932 0.956 0.958 0.948 0.916 0.898 0.950 0.940 0.936 0.964

EL

QCI-1 3.31 2.60 3.04 3.35 2.58 2.35 2.75 3.04 3.09 4.21

QCI-2 1.44 1.30 1.39 1.52 1.25 1.10 1.39 1.43 1.44 1.60

PCI-1 0.51 0.40 0.47 0.52 0.41 0.37 0.40 0.48 0.49 0.61

PCI-2 0.52 0.57 0.73 1.33 0.41 0.47 0.67 0.50 0.50 1.14

PCI-3 0.51 0.40 0.48 0.55 0.41 0.37 0.41 0.48 0.49 0.63

Model-3, 𝑛 = 2 · 105
ECR

QCI-1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

QCI-2 0.998 1.000 1.000 0.998 0.996 0.974 0.996 0.998 1.000 1.000

PCI-1 0.858 0.920 0.728 0.920 0.804 0.880 0.930 0.918 0.914 0.920

PCI-2 1.000 0.938 1.000 1.000 1.000 0.948 0.964 0.998 0.932 0.988

PCI-3 0.920 0.920 0.842 0.924 0.820 0.882 0.930 0.922 0.914 0.922

EL

QCI-1 1.51 1.47 0.51 0.57 0.93 2.94 2.00 1.32 1.12 0.94

QCI-2 1.03 1.16 0.47 0.52 0.75 1.83 1.57 0.97 0.90 0.76

PCI-1 0.24 0.23 0.08 0.09 0.15 0.46 0.31 0.21 0.17 0.15

PCI-2 1.46 0.25 0.90 0.23 0.53 0.63 0.35 0.33 0.20 0.24

PCI-3 0.28 0.23 0.10 0.09 0.15 0.47 0.31 0.21 0.17 0.15

Model-4, 𝑛 = 2 · 105
ECR

QCI-1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

QCI-2 0.852 1.000 0.998 0.966 0.998 0.968 0.994 1.000 0.996 0.940

PCI-1 0.932 0.902 0.940 0.912 0.928 0.938 0.910 0.932 0.590 0.776

PCI-2 0.980 1.000 0.986 0.996 0.998 0.948 1.000 0.998 1.000 1.000

PCI-3 0.936 0.948 0.942 0.920 0.938 0.938 0.936 0.940 0.614 0.780

EL

QCI-1 3.71 0.79 1.00 1.91 2.92 1.48 1.35 2.48 1.49 0.89

QCI-2 2.10 0.74 0.84 1.38 2.02 0.97 1.03 1.68 1.08 0.70

PCI-1 0.56 0.12 0.15 0.29 0.45 0.22 0.21 0.39 0.23 0.13

PCI-2 0.82 0.93 0.20 0.54 1.01 0.24 0.90 0.64 0.72 0.29

PCI-3 0.57 0.14 0.15 0.29 0.47 0.22 0.23 0.39 0.24 0.14
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Table 3. Empirical Coverage Rate and Empirical Length of (conditional) PIs with various simulation models.

Test point: 1 2 3 4 5 6 7 8 9 10

𝑛 = 10
4

Model-1:

EL = 3.91

ECR: 0.929 0.934 0.934 0.931 0.939 0.944 0.940 0.935 0.940 0.925

Model-2:

EL = 4.00

ECR: 0.936 0.938 0.938 0.935 0.942 0.945 0.942 0.937 0.939 0.928

Model-3:

EL = 3.93

ECR: 0.948 0.946 0.949 0.949 0.948 0.936 0.943 0.947 0.947 0.949

Model-4:

EL = 3.96

ECR: 0.901 0.951 0.950 0.943 0.938 0.949 0.949 0.943 0.947 0.950

𝑛 = 2 · 104
Model-1:

EL = 3.91

ECR: 0.939 0.941 0.941 0.940 0.945 0.946 0.945 0.941 0.943 0.936

Model-2:

EL = 3.95

ECR: 0.941 0.944 0.942 0.943 0.945 0.947 0.946 0.943 0.944 0.938

Model-3:

EL = 3.92

ECR: 0.948 0.947 0.950 0.949 0.949 0.943 0.945 0.948 0.948 0.949

Model-4:

EL = 3.94

ECR: 0.921 0.950 0.950 0.945 0.941 0.948 0.949 0.944 0.947 0.949

7 EMPIRICAL STUDIES

In this section, we deploy an empirical study to verify the efficiency of the scalable subsampling

technique with real-world data. We take the Combined Cycle Power Plant (CCPP) dataset from the

UCI machine learning repository (https://archive.ics.uci.edu/dataset/294/combined+cycle+power+

plant). This dataset includes 9568 data points collected from a Combined Cycle Power Plant over 6

years (2006-2011). There are four predictors, hourly average ambient variables Temperature (T),

Ambient Pressure (AP), Relative Humidity (RH) and Exhaust Vacuum (V). The response variable is

the net hourly electrical energy output (EP) of the plant.

We split thewhole dataset into a training set with 6000 data points and a test dataset with 3568 data

points by the function train_test_split from sklearn.model_selection. We set random_state=1 to make

our results reproducible. We let the subagging DNN estimators have the structure [20, 15] which
means there are two hidden layers; one layer has 20 neurons and the other has 15 neurons. Similarly,

we let the S-DNN, DNN-deep-1, DNN-deep-2, DNN-wide-1 and DNN-wide-2 have structure [20, 15],
[60, 50, 50], [40, 30, 30], [1000] and [500], respectively. We intend to set non-uniform hidden layers,

i.e., the number of neurons of all hidden layers is unequal. For the hyperparameter setting, we set

𝛽 = 0.6; number of epochs is 200; the minibatch size is 10; the learning rate is 0.005. To evaluate the

performance of different DNN estimators, we consider the standard MSE-1 and MSPE-1 on the test

https://archive.ics.uci.edu/dataset/294/combined+cycle+power+plant
https://archive.ics.uci.edu/dataset/294/combined+cycle+power+plant
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dataset. The MSE-2 and MSPE-2 criterion applied in Section 6 is not available since we do not know

the true underlying regression model for real-world data. Beyond the point predictions, we also

consider the 95% nominal level conditional PI with the scalable subsampling estimator 𝑓
DNN

(𝑿 )
being the pivot.

The MSE-1 and MSPE-1 results of different DNN estimators are presented in Table 4. From

there, the SS-DNN estimator shows the optimal performance according to the perspectives in

computational time and estimations/predictions accuracy. To evaluate the performance of the

conditional PI with the scalable subsampling estimator 𝑓
DNN

(𝑿 ) being the pivot, we consider

conditioning P2 for each test point, i.e., the probability to cover the true test point conditional on

each test predictors vector and the whole 6000 training data points. To better show the coverage

results, we sort all test data points in increasing order w.r.t. EP values. Then, we plot the sorted EP

values and their order indices with their corresponding PIs in Fig. 3; see the plot from Appendix:

B. To present the results more easily, we randomly sample 200 data points from the test dataset

and plot sorted EP values and their associated PIs in Fig. 2. We further consider the empirically

average coverage rate for all test points, i.e.,

∑
3568

𝑖=1 1(𝑦𝑖 ∈ PI𝑖 )/3568; 1 is the indicator function; 𝑦𝑖
is the 𝑖-th test point and PI𝑖 is its associated PI. We should notice that this average coverage rate

is dedicated to estimating the conditioning probability P(·|{(𝑌𝑗 ,𝑿 𝑗 )}𝑛𝑗=1); {(𝑌𝑗 ,𝑿 𝑗 )}𝑛𝑗=1 represents
the whole sample; 𝑛 = 6000 in this empirical study. It turns out that the overall average coverage

rate for all 3568 test points is 0.952 and the average PI length is 18.523.

Table 4. MSE/MSPE and Training Time (in seconds) of different DNN models on the EECP dataset.

Estimator: SS-DNN S-DNN DNN-deep-1 DNN-deep-2 DNN-wide-1 DNN-wide-2

Width [20,15] [20,15] [60,50,50] [40,30,30] [1000] [500]

MSE-1 24.153 46.044 30.511 29.427 39.877 32.006

MSPE-1 25.240 47.982 31.965 30.892 41.736 33.656

Training Time 94 95 132 121 99 88

Note: “width” represents the number of neurons of each hidden layer, e.g., [20, 15] means that there

are two hidden layers within the DNN, and one has 20 neurons and the other one has 15 neurons.
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Fig. 2. Sorted EP values of 200 randomly sampled test points in increasing order and their corresponding
conditional PIs with 𝑓 DNN (𝑿 ) being the pivot.

8 CONCLUSIONS

In this paper, we revisit the error bound of fully connected DNN with the ReLU activation function

on estimating regression models. By taking into account the latest DNN approximation results, we

improve the current error bound. Under some mild conditions, we show that the error bound of

the DNN estimator may be further improved by applying the scalable subsampling technique. As a

result, the scalable subsampling DNN estimator is computationally efficient without sacrificing

accuracy. The theoretical result is verified by simulation with various linear or non-linear regression

models and empirical studies.

Beyond the error analysis for point estimations and point predictions, we propose different

approaches to build asymptotically valid confidence and prediction intervals. More specifically, to

overcome the undercoverage issue of CIs with finite samples, we consider several methods to en-

large the CI. As shown by simulations, our point estimations/predictions and confidence/prediction

intervals based on scalable subsampling work well in practice. All in all, the scalable subsampling

DNN estimator offers the complete package in terms of statistical inference, i.e., (a) computa-

tional efficiency; (b) point estimation/prediction accuracy; and (c) allowing for the construction of

practically useful confidence and prediction intervals.

APPENDIX A: PROOFS

Proof of Theorem 4.1. This result can be easily shown based on the proof of Theorem 1 in

the work of [9]. We take the intermediate result from the final step of their proof: With probability

at least 1 − exp(−𝛾),


𝑓DNN − 𝑓




𝐿2 (𝑋 )

≤ 𝐶
(√︂

𝐻 2𝐿2 log (𝐻 2𝐿)
𝑛

log𝑛 +
√︂

log log𝑛 + 𝛾
𝑛

+ 𝜖𝑛

)
, (23)
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where𝐶 is an appropriate constant; in this proof,𝐶 represents appropriate constants and its meaning

may change according to the context; 𝜖𝑛 = ∥ 𝑓DNN − 𝑓 ∥∞; 𝑓DNN = argmin𝑓𝜃 ∈FDNN ∥ 𝑓𝜃 − 𝑓 ∥∞. By
Theorem 3.1 of [28] and Lemma 1 of [9], we can conclude that there is a standard fully connected

DNN whose depth and width satisfy below inequalities:

𝐻 ≤ 𝐶𝜖
− 𝑑

𝜉

𝑛 log (1/𝜖𝑛) ,
𝐿 ≤ 𝐶 · log (1/𝜖𝑛) ,

(24)

for any 𝜖𝑛 ; Furthermore, we can find the upper bound of 𝐻 2𝐿2 log
(
𝐻 2𝐿

)
based on Eq. (24):

𝐻 2𝐿2 log
(
𝐻 2𝐿

)
≤ 𝐶 · 𝜖

− 2𝑑
𝜉

𝑛 (log (1/𝜖𝑛))5 .

Subsequently, we rewrite the Eq. (23) as below:




𝑓DNN − 𝑓




𝐿2 (𝑋 )

≤ 𝐶
©­­«
√︄
𝜖
− 2𝑑

𝜉

𝑛 (log (1/𝜖𝑛))5

𝑛
log𝑛 +

√︂
log log𝑛 + 𝛾

𝑛
+ 𝜖𝑛

ª®®¬ . (25)

To optimize the bound, we can choose 𝜖𝑛 = 𝑛
− 𝜉

2(𝜉+𝑑 ) , 𝐻 = Θ(𝑛
𝑑

2(𝜉+𝑑 )
log𝑛), 𝐿 = Θ(log𝑛). This gives:


𝑓DNN − 𝑓





𝐿2 (𝑋 )

≤ 𝐶
(
𝑛
− 𝜉

2(𝜉+𝑑 )
log

3 𝑛 +
√︂

log log𝑛 + 𝛾
𝑛

)
. (26)

As a result, we get: 


𝑓DNN − 𝑓



2
𝐿2 (𝑋 )

≤ 𝐶
(
𝑛
− 𝜉

(𝜉+𝑑 )
log

6 𝑛 + log log𝑛 + 𝛾
𝑛

)
. (27)

Finally, we take 𝛾 = 𝑛
𝑑

𝑑+𝜉
log

6 (𝑛), which implies Theorem 4.1.

□

Proof of Theorem 4.2. Under A1-A5, we can analyze the expected square error for the

subagging DNN estimator as below:

E(𝑓
DNN

(𝑿 ) − 𝑓 (𝑿 ))2

= E

[
1

𝑞

𝑞∑︁
𝑖=1

𝑓DNN,𝑏,𝑖 (𝑿 ) − 𝑓 (𝑿 )
]
2

=
1

𝑞2
E

[
𝑞∑︁
𝑖=1

(
𝑓DNN,𝑏,𝑖 (𝑿 ) − 𝑓 (𝑿 )

)]2
=

1

𝑞2
E

[
𝑞∑︁
𝑖=1

(
𝑓DNN,𝑏,𝑖 (𝑿 ) − 𝑓 (𝑿 )

)
2

]
+ 1

𝑞2
E

[ ∑︁
𝑖, 𝑗,𝑖≠𝑗

(
𝑓DNN,𝑏,𝑖 (𝑿 ) − 𝑓 (𝑿 )

)
·
(
𝑓DNN,𝑏, 𝑗 (𝑿 ) − 𝑓 (𝑿 )

)]
.

(28)



Scalable Subsampling Inference for Deep Neural Networks27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

27

For the first term on the r.h.s. of Eq. (28), by the error bound ignoring the slowly varying term, we

can get:

1

𝑞2
E

[
𝑞∑︁
𝑖=1

(
𝑓DNN,𝑏,𝑖 (𝑿 ) − 𝑓 (𝑿 )

)
2

]
≤ 1

𝑞2
· 𝑞 ·𝑂

(
𝑛
− 𝛽𝜉

𝜉+𝑑
)

=
1

𝑞
𝑂

(
1

𝑛
𝛽𝜉

𝜉+𝑑

)
= 𝑂

(
1

𝑛
𝛽𝜉

𝜉+𝑑 +1−𝛽

)
;

(29)

this is satisfied with at least probability (1 − exp(−𝑛
𝑑

𝜉+𝑑
log

6 𝑛))𝑞 .
Ideally, we hope 𝛽 can take a small value to improve the error bound for Eq. (29). However, it is

restricted to do this since the bias of the subagging estimator will get increased once we take 𝛽

smaller and smaller. Thus, we need to consider the second term on the r.h.s. of Eq. (28). Start by

considering on specific pair:

E
[(
𝑓DNN,𝑏,𝑖 (𝑿 ) − 𝑓 (𝑿 )

)
·
(
𝑓DNN,𝑏, 𝑗 (𝑿 ) − 𝑓 (𝑿 )

)]
= E

[
E

[(
𝑓DNN,𝑏,𝑖 (𝑿 ) − 𝑓 (𝑿 )

)
·
(
𝑓DNN,𝑏, 𝑗 (𝑿 ) − 𝑓 (𝑿 )

) ����𝑿 ] ]
= E

[
E

[(
𝑓DNN,𝑏,𝑖 (𝑿 ) − 𝑓 (𝑿 )

) ����𝑿 ]
· E

[(
𝑓DNN,𝑏, 𝑗 (𝑿 ) − 𝑓 (𝑿 )

) ����𝑿 ] ]
.

(30)

The last equality is due to the independence between subsample 𝐵𝑖 and 𝐵 𝑗 . As we mentioned in the

main text, we face difficulty in determining the rate of the bias of the subagging estimator. Thus,

A4 and A5 are used to make additional assumptions on the bias term. We present A4 as below:

E(𝑓DNN(𝒙) − 𝑓 (𝒙)) = 𝑂 (𝑛−Λ/2) ; E(𝑓DNN,𝑏,𝑖 (𝒙) − 𝑓 (𝒙)) = 𝑂 (𝑛−𝛽Λ/2).

A5 then requires the bias order of 𝑓DNN satisfies the inequality: Λ >
𝜉

𝜉+𝑑 .

Then, we can find the order of Eq. (30) is:

E
[(
𝑓DNN,𝑏,𝑖 (𝑿 ) − 𝑓 (𝑿 )

)
·
(
𝑓DNN,𝑏, 𝑗 (𝑿 ) − 𝑓 (𝑿 )

)]
= 𝑂 (𝑛−𝛽Λ).

Combine these two pieces, we can analyze Eq. (28):

E(𝑓
DNN

(𝑿 ) − 𝑓 (𝑿 ))2

≤ 𝑂
(

1

𝑛
𝛽𝜉

𝜉+𝑑 +1−𝛽

)
+ 2 · 1

𝑞2
·
(
𝑞

2

)
·𝑂

(
1

𝑛𝛽Λ

)
= 𝑂

(
1

𝑛
𝛽𝜉

𝜉+𝑑 +1−𝛽

)
+𝑂

(
1

𝑛𝛽Λ

)
.

(31)

If the bias term is more negligible than the other term, i.e.,

𝛽Λ ≥ 𝛽𝜉

𝜉 + 𝑑 + 1 − 𝛽, 𝑖 .𝑒 ., 𝛽 ≥ 1

1 + Λ − 𝜉

𝜉+𝑑

.

The above lower bound satisfies the requirement of 𝛽 being positive. Then, Λ needs to be larger

than
𝜉

𝜉+𝑑 to make sure the lower bound of 𝛽 is less than 1 which is satisfied due to A5. Meanwhile,
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we want to take 𝛽 as small as possible, i.e., 𝛽 = 1

1+Λ− 𝜉

𝜉+𝑑
. This results in the error bound below:

E(𝑓
DNN

(𝑿 ) − 𝑓 (𝑿 ))2 ≤ 𝑂
(
𝑛

−Λ
Λ+ 𝑑

𝜉+𝑑

)
.

The fact that
Λ

Λ+ 𝑑
𝜉+𝑑

is larger than
𝜉

𝜉+𝑑 is guaranteed by the requirement that Λ >
𝜉

𝜉+𝑑 , i.e., A5

again.

□

Proof of Theorem 5.1. Since error 𝜖0 and 𝜖
∗
0
are independent to 𝒙0, we actually have sup𝑧 |

𝐹𝜖∗
0
|𝑿0=𝒙0

(𝑧) − 𝐹𝜖0 |𝑿0=𝒙0
(𝑧) |

𝑝
→ 0 based on Lemma 5.1. Thus, we can write:

sup

𝑧

|P(𝑌 ∗
0
− 𝑓

DNN
(𝒙0) ≤ 𝑧) − P(𝑌0 − 𝑓 (𝒙0) ≤ 𝑧) |

𝑝
→ 0, (32)

where P(·) represents P(·|𝑿0 = 𝒙0). We can start by considering the below expression:

sup

𝑧

|P(𝑌 ∗
0
− 𝑓 (𝒙0) ≤ 𝑧) − P(𝑌0 − 𝑓 (𝒙0) ≤ 𝑧) |

= sup

𝑧

|P(𝑌 ∗
0
− 𝑓 (𝒙0) ≤ 𝑧) − P(𝑌 ∗

0
− 𝑓

DNN
(𝒙0) ≤ 𝑧) + P(𝑌 ∗

0
− 𝑓

DNN
(𝒙0) ≤ 𝑧) − P(𝑌0 − 𝑓 (𝒙0) ≤ 𝑧) |

≤ sup

𝑧

|P(𝑌 ∗
0
− 𝑓 (𝒙0) ≤ 𝑧) − P(𝑌 ∗

0
− 𝑓

DNN
(𝒙0) ≤ 𝑧) | + sup

𝑧

|P(𝑌 ∗
0
− 𝑓

DNN
(𝒙0) ≤ 𝑧) − P(𝑌0 − 𝑓 (𝒙0) ≤ 𝑧) |.

(33)

For the first term on the r.h.s. of the above inequality, we have:

sup

𝑧

|P(𝑌 ∗
0
− 𝑓 (𝒙0) ≤ 𝑧) − P(𝑌 ∗

0
− 𝑓

DNN
(𝒙0) ≤ 𝑧) |

= sup

𝑧

|P(𝑌 ∗
0
− 𝑓

DNN
(𝒙0) + 𝑓 DNN (𝒙0) − 𝑓 (𝒙0) ≤ 𝑧) − P(𝑌 ∗

0
− 𝑓

DNN
(𝒙0) ≤ 𝑧)

= sup

𝑧

|𝐹𝜖∗
0

(𝑧 + 𝑓 (𝒙0) − 𝑓 DNN(𝒙0)) − 𝐹𝜖∗
0

(𝑧) |

= sup

𝑧

|𝐹𝜖∗
0

(𝑧 + 𝑓 (𝒙0) − 𝑓 DNN(𝒙0)) − 𝐹𝜖0 (𝑧 + 𝑓 (𝒙0) − 𝑓 DNN(𝒙0))

+ 𝐹𝜖0 (𝑧 + 𝑓 (𝒙0) − 𝑓 DNN (𝒙0)) − 𝐹𝜖0 (𝑧) + 𝐹𝜖0 (𝑧) − 𝐹𝜖∗
0

(𝑧) |

≤ sup

𝑧

|𝐹𝜖∗
0

(𝑧 + 𝑓 (𝒙0) − 𝑓 DNN (𝒙0)) − 𝐹𝜖0 (𝑧 + 𝑓 (𝒙0) − 𝑓 DNN(𝒙0)) |

+ sup

𝑧

|𝐹𝜖0 (𝑧 + 𝑓 (𝒙0) − 𝑓 DNN (𝒙0)) − 𝐹𝜖0 (𝑧) | + sup

𝑧

|𝐹𝜖0 (𝑧) − 𝐹𝜖∗
0

(𝑧) |.

(34)

We should notice that the first and third terms of the r.h.s. of Eq. (34) converge to 0 in probability.

For the middle term, since 𝑓
DNN

(𝒙0) converges to 𝑓 (𝒙0) in probability and sup𝑧 |𝑝𝜖0 (𝑧) | is assumed

to be bounded as B2, this term also converges to 0 in probability by applying the Taylor expansion.

Combining all the pieces, we have:

sup

𝑧

���𝐹𝑌 ∗
0
|𝑿0=𝒙0

(𝑧) − 𝐹𝑌0 |𝑿0=𝒙0
(𝑧)

��� 𝑝
→ 0. (35)

□

APPENDIX B: ADDITIONAL PLOTS

We present the sorted 3658 test points and corresponding conditional PIs in Fig. 3. The overall

average coverage rate for all 3568 test points is 0.952 and the average length is 18.523.
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29

Fig. 3. All sorted EP values in increasing order and their corresponding conditional PIs. The overall average
coverage rate for all 3568 test points is 0.952 and the average PI length is 18.523.
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