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ABSTRACT

The problem of estimating the spectral density matrix f(w) of a multivariate time series is revisited
with special focus on the frequencies w = 0 and w = π. Recognizing that the entries of the spectral
density matrix at these two boundary points are real-valued, we propose a new estimator constructed
from a local polynomial regression of the real portion of the multivariate periodogram. The case
w = 0 is of particular importance, since f(0) is associated with the large-sample covariance matrix
of the sample mean; hence, estimating f(0) is crucial in order to conduct any sort of statistical
inference on the mean. We explore the properties of the local polynomial estimator through theory
and simulations, and discuss an application to inflation and unemployment.

Keywords Flat-top lag-windows, Function Estimation, Kernel smoothing, Local Polynomials, Long-run variance,
Sample mean

1 Introduction

Suppose X1, . . . , Xn are observations from the (strictly) stationary vector-valued sequence {Xt, t ∈ Z} having mean
µ = EXt, and well-defined autocovariance sequence

γ(h) = E
[
(Xt+h − µ)(Xt − µ)′

]
;

here both µ and γ(·) are typically unknown. Let m denote the dimension of Xt, and let Xt,k denote the kth component
of Xt for 1 ≤ k ≤ m.

Under typical weak dependence conditions, the spectral density matrix evaluated at point w ∈ [−π, π] can be defined
as

f(w) =
1

2π

∞∑

h=−∞

e−iwhγ(h);

see Hannan (1970), Brillinger (1981), Rosenblatt (1985), Brockwell and Davis (1991), and Hamilton (1994). The
spectral density matrix is m×m—dimensional, and is Hermitian, i.e., f(w)

∗
= f(w), where ∗ denotes the conjugate

transpose operation. The Hermitian property ensures that f(w) has m real eigenvalues. Moreover, the spectral density
matrix f(w) is non-negative definite for each w ∈ [−π, π], i.e., the eigenvalues of f(w) are non-negative.

Typical estimators of µ and γ(h) are the sample mean X̄n = n−1
∑n

t=1 Xt and sample autocovariance γ̂(h) =

n−1
∑n−|h|

t=1 (Xt+|h| − X̄n)(Xt − X̄n)
′

respectively; note that γ̂(h) is defined to be zero when |h| ≥ n. Under
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appropriate weak dependence and moment conditions—see e.g. Rosenblatt (1985) or Wu (2005)— the Central Limit
Theorem (CLT) holds true, namely

√
n(X̄n − µ)

L
=⇒ Nm(0,Ω) as n → ∞ (1)

where
L

=⇒ denotes convergence in law, Nm is the m–dimensional normal distribution, and Ω = 2πf(0). It is apparent
that accurate estimation of f(0) is an important problem, as it is tantamount to accurate estimation of Ω, the large-
sample covariance matrix of the sample mean. It is also apparent that f(0) has all its elements real-valued (even the
off-diagonal ones).

Nonparametric estimation of f(w) in the univariate case (m = 1) has its origins in the pioneering work of Bartlett
(1946), Daniell (1946), and Parzen (1957, 1961). More recent developments involve using the so-called flat-top lag
windows that ensure the fastest possible rate of convergence; see Politis and Romano (1995), Politis (2001, 2003),
Paparoditis and Politis (2012), McElroy and Politis (2014), and McMurry and Politis (2015).

In the multivariate case m > 1, early developments can be found in Hannan (1970) and the references therein. The
subject was cast in the limelight in the econometrics literature via influential papers by Newey and West (1987, 1994),
Andrews (1991), Andrews and Monahan (1992), and West (1997). More recently, Politis (2011) constructed a non-
negative definite estimator of the spectral density matrix f(w) based on the aforementioned flat-top lag windows.

All the above works developed estimators of f(w) that are valid for any w ∈ [−π, π]; plugging in w = 0, would yield
the desired estimator of f(0) (and of Ω). Nevertheless, it was recently discovered that the case w = 0 is special, and
deserves special treatment. Focusing on the univariate case, McElroy and Politis (2022) argued that the even symmetry
of the (univariate) f(w) makes w = 0 act as a boundary point in the nonparametric estimation of function f(w); the
same is true for the points w = ±π. Hence, a local polynomial regression would be advantageous on the boundary, and
may yield an improvement over the usual kernel smoothing; this is indeed true but one has to use a local polynomial
of order (at least) two, since f ′(0) = 0 due to the even symmetry of f(w).

In the paper at hand, we investigate to what extent we can exploit the boundary effect at w = 0 to construct an
improved estimator of f(0) (and of Ω) in the multivariate case. Section 2 lays the groundwork, while Section 3
presents the proposed methodology that is based on local quadratic regression on the periodogram ordinates. Section
4 presents asymptotic consistency results, while Section 5 addresses some practical aspects, including the important
facet of ensuring a non-negative definite matrix estimator. Section 6 contains some finite-sample simulations, and
Section 7 gives a real data application on the U.S. Consumer Price Index (CPI) and Unemployment Rate (UR).

2 Improved estimation of the spectral density matrix

Let fjk(w) denote element j, k of the spectral density matrix f(w). Note that the diagonal entries of f(w) correspond
to univariate spectral densities. In fact, fkk(w) is the spectral density of the kth component time series of {Xt}, i.e.,
the sequence {Xt,k, t ∈ Z}. As such, fkk(w) is a real-valued, non-negative, and symmetric function for w ∈ [−π, π].
However, the off-diagonal elements of f(w) are, in general, complex-valued.

Univariate spectral density estimation techniques can be applied to estimate the diagonal elements of f(w). For exam-
ple, one can use traditional kernel smoothing or local quadratic regression—see Ch. 9 of McElroy and Politis (2022)
for an overview and recent developments. However, the off-diagonal entries correspond to the cross-spectral densities
of two component time series, and the univariate techniques cannot be directly applied without some modification. For
one thing, the cross-spectral density can be complex-valued, and univariate spectral density estimation techniques rely
on the target being real, non-negative, and an even function of the frequency w.

To elaborate, let γjk(h) denote the j, k—th entry of γ(h), i.e., γjk(h) = Cov[Xt+h,j, Xt,k]. Then, the cross-spectral
density between components j and k is

fjk(w) =
1

2π

∞∑

h=−∞

e−iwhγjk(h) =
1

2π

∞∑

h=−∞

cos(wh)γjk(h)− i
1

2π

∞∑

h=−∞

sin(wh)γjk(h).

The first term on the right hand side is the real part of the cross-spectrum (sometimes called the cospectrum), whereas
the second term is i times the imaginary part (sometimes called the quadrature spectrum when multiplied by −1). In
general this imaginary part is non-trivial, although it can be zero (for example, if every γ(h) is symmetric), and is
always zero for w = 0,±π as already mentioned. The real part need not be non-negative—see Example 11.6.2 of
Brockwell and Davis (1991)—but it is always an even function of w.

The local quadratic regression technique of McElroy and Politis (2022) was proposed to give improved accuracy
of univariate spectral densities near frequencies w = 0,±π. Since the univariate spectral density has reflectional
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symmetry about the vertical axes at w = 0,±π, one can develop a Taylor series expansion in the neighborhood of
such frequencies and obtain higher order accuracy; this Taylor series expansion has to be of order two (or higher)
because the linear term vanishes due to the even symmetry. Our current proposal is to apply the same technique to the
real part of the cross-spectral density for w = 0,±π.

Our concrete proposal in order to estimate the spectral density matrix f(w) is given below:

i. To estimate f(w) for w 6= 0,±π we utilize the flat-top estimation methodology detailed in Politis (2011);
this includes a data-dependent bandwidth choice as well as a modification ensuring an estimator that is a
non-negative definite matrix.

ii. If w = 0 or ±π, then the diagonal entries of f(w) are estimated using the local quadratic regression tech-
nique of McElroy and Politis (2022); the off-diagonal entries (i.e., the m2 −m cross-spectral densities) are
estimated by applying the same local quadratic regression technique to the real part of the spectrum—since
the imaginary part of the cross-spectal density is zero for w = 0,±π. A data-dependent bandwidth choice
and a non-negative definite modification is also constructed.

Since part (i) is already well-known, we focus on part (ii) in what follows.

3 Local quadratic estimation at the boundaries

In the Introduction, it was alluded that weak dependence conditions are typically needed. For our work, we will
consider the following assumption:

Assumption A(p): The spectral density matrix f(w) is well-defined, and its j, k element fjk(w) is p-times continu-
ously differentiable for all real w, and for all j, k.

From here on and throughout this paper, we will assume Assumption A(p) holds for some integer p ≥ 2. Note that
f(w) (and its derivatives) are periodic functions with period 2π; therefore, our attention focuses on w ∈ [−π, π]. It is
easy to see that if

∑∞
h=−∞ |h|p|γjk(h)| < ∞ for a non-negative integer p, then fjk(w) is indeed p-times continuously

differentiable; see Proposition 6.1.5 of McElroy and Politis (2020).

The periodogram matrix is defined as I(w) = (2π)−1
∑∞

h=−∞ e−iwhγ̂(h); let Ijk(w) denote its j, k element, i.e.,

Ijk(w) = (2π)−1
∑∞

h=−∞ e−iwhγ̂jk(h). A traditional spectral density estimator f̂(w) is obtained by means of

smoothing the periodogram over the Fourier frequencies ws = 2πs/n, i.e.,

f̂(w) =
1

2πn

∑

s∈Jn

ΛM (ws)I(w + ws) (2)

where the index set Jn consists of n consecutive integers as follows:

Jn = {−n−1
2 , . . . , 0, . . . , n−1

2 } if n is odd, and

Jn = {−n
2 + 1, . . . , 0, . . . , n2 } if n is even.

In equation (2), ΛM (w) = (2π)−1
∑∞

s=−∞ eiwsλ( s
M ) is the so-called spectral window or kernel; it is based on λ(x),

which is a fixed even function—called the lag window. Note that ΛM (w) becomes more concentrated around the origin
as the parameter M increases with the sample size n. However, the kernel bandwidth fraction defined as δ = M/n
will typically be assumed to decrease as n increases.

Consider element j, k of eq. (2), i.e.,

f̂jk(w) =
1

2πn

∑

s∈Jn

ΛM (ws)Ijk(w + ws). (3)

Focusing on the case where w = θ with θ = 0 or ±π, recall that f̂jk(θ) is real-valued; hence, we can use just the real
part of Ijk(w + ws) in equation (3), i.e.,

f̂jk(θ) =
1

2πn

∑

s∈Jn

ΛM (ws)R[Ijk(θ + ws)], (4)

where R[·] denotes the real part. Note that in case j = k, taking the real part is superfluous since Ikk(w) is real;
however, we will use eq. (4) as it holds in general.

3
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Under standard assumptions, the periodogram ordinates Ijk(ws) for s ∈ Jn are approximately independent, and
R[Ijk(w)] has even symmetry around θ. Hence, equation (4) is tantamount to applying (weighted) local averaging
on a nonparametric regression of R[Ijk(w)] as a function of w with data points being the pairs (R[Ijk(ws)], ws) for
s ∈ Jn.

Due to the even symmetry of ΛM and the real part of the cross periodogram,w = 0 effectively acts as a boundary point
in the nonparametric regression of the periodogram ordinates R[Ijk(w)], and the same is true for the points w = ±π
due to the periodicity of I(w). To see why, note that in such a case equation (4) reduces to a one-sided sum since the
summands less than θ are exactly the same as the summands greater than θ. It is well known that local polynomial
regression is better than plain local (weighted) averaging at boundary points. Therefore, we propose local polynomial
fitting of periodogram ordinates instead of local averaging in order to estimate fjk(θ).

Because of the even symmetry (and periodicity) ofR[fjk(w)], and the equally spaced data pointsws, local linear fitting
would be equivalent to local averaging when w = θ. A local quadratic (without a linear term, due to the symmetry)
can be fitted instead; for a small value of the bandwidth fraction δ ∈ (0, 0.5), consider the Taylor approximation

R[fjk(w)] ≈ a0 + b0w
2 for w ∈ [−2πδ, 2πδ], (5)

which can be used to estimate fjk(0), as well as the approximation

R[fjk(w)] ≈ a1 + b1(w − π)2 for w ∈ [π − 2πδ, π + 2πδ] (6)

to estimate fjk(π). Since fjk(−π)=fjk(π), we do not have to address the case w = −π separately.

Our proposal then is summarized in the following algorithm:

Algorithm 3.1

(i) Let â0 and b̂0 be the estimators of a0 and b0 in eq. (5) based on a (possibly weighted) regression of R[Ijk(w)]
on a constant and a quadratic term w2. The data to be used in this regression areR[Ijk(w1)], . . . ,R[Ijk(wM )]
where wM is the largest Fourier frequency less or equal to 2πδ; since wM = 2πM/n ≤ 2πδ, it follows that
M = [δn] where [·] denotes the integer part.

(ii) Similarly, â1 and b̂1 are the estimators of a1 and b1 in eq. (6) based on a (possibly weighted) regression

of R[Ijk(w)] on a constant and a quadratic term (w − π)
2
. The data to be used in this regression are the

R[Ijk(ws)] with indices corresponding to the M largest elements of the set Jn.

(iii) Finally, f̃jk(0) = â0 is the proposed new estimator of fjk(0), and f̃jk(π) = â1 is the proposed estimator

of fjk(π). Furthermore, our preliminary estimator of f(θ) is the matrix f̃(θ) with j, k element f̃jk(θ); this
matrix estimator will be corrected towards positive definiteness in Section 5 in order to construct our improved
estimator of the long-run covariance matrix Ω.

If Assumption A(p) holds with p > 2, then a higher order polynomial (with only even powers) can also be used
instead of the simple quadratics (5) and (6), the goal again being to estimate the respective intercept terms; the details
are straightforward and thus omitted. As will be shown in the next section, to achieve consistent estimation in either of
the above cases, we would need δ → 0 but δn → ∞ as n → ∞, which is equivalent to M → ∞ but with M/n → 0.

4 Asymptotic results

For the purposes of deriving some asymptotic results, we formulate the additional Assumption B below.

Assumption B: Suppose {Xt} is a strictly stationary time series that is either a linear process (with MA(∞) coeffi-
cients that have square summable matrix norm, and inputs having a finite fourth moment for each component), or has
autocumulant functions satisfying the summability condition (B1) of Taniguchi and Kakizawa (2000, p.55).

Throughout this section, we will consider estimation of fjk(θ) for two fixed values of j, k.

4.1 Fitting via Ordinary Least Squares (OLS)

The Ordinary Least Squares (OLS) regression estimator of a0 and b0 (or a1 and b1) at one of the boundary frequencies

θ takes the form (X′
X)

−1
X

′
Y, where X has a first column of M ones and a second column of M values given by

4
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(θ − ws)
2
; here, the ws are the Fourier frequencies falling in the interval [θ − 2πδ, θ + 2πδ] ∩ (0, π]. Also Y is a

vector with entries R[Ijk(ws)], the periodogram evaluated at this set of Fourier frequencies. To determine the Fourier
frequencies that are used, note that by even symmetry at the boundaries we only need to focus on the interval [0, π], and
the scenario for θ = −π is the same as for θ = π. Hence, for θ = 0 we consider the set ofws ∈ (0, 2πδ], or 1 ≤ s ≤ M
with M = [δn]. Note that we do not use s = 0 in the regression, because the periodogram we employ is mean-centered,
implying that I(0) = 0. For θ = π, we consider the set of ws ∈ [θ − 2πδ, π], or [n/2]−M + 1 ≤ s ≤ [n/2]. We can

take the lower bound to be [n/2− nδ] instead of [n/2]−M + 1 for purposes of asymptotic analysis. Let
P−→ denote

convergence in probability.

Theorem 4.1 Assume Assumptions A(4) and B. Let f̃jk(θ) = [1, 0]′(X′
X)

−1
X

′
Y. Then,

f̃jk(θ)
P−→ fjk(θ)

as M → ∞ and n → ∞ but with M/n → 0.

Proof: We focus on the case of θ = 0, as θ = ±π is similar with some notation changes. Denote the entries of the

symmetric matrix M−1
X

′
X by c0 (upper left), c2 (upper right), and c4 (lower right). Then c2ℓ = M−1

∑M
s=1 w

2ℓ
s .

Letting g(w) = (c4 − c2w
2)/(c4 − c22), the OLS estimator can be written f̃jk(θ) = M−1

∑M
s=1 g(ws)R[Ijk(ws)].

As a first step, note that we can replace the sample mean centering in Ijk (recall that it is the Fourier transform of

the sample autocovariances, which are centered by the sample mean Xn) by the true mean at the cost of OP (n
−1)

terms, following the arguments in Proposition 9.6.4 of McElroy and Politis (2020) – adapted in a straightforward
manner from the univariate peridogram to the cross-periodogram, using Assumption B. Next, define the matrix-valued
function ϕ(w) = .5g(w)(eke

′
j + eje

′
k), where ej and ek are the jth and kth unit vectors of dimension m. Because

R[Ijk(ws)] = .5(Ijk(ws) + Ikj(ws)), it follows that f̃jk(θ) = M−1
∑M

s=1 tr(ϕ(ws) I(ws)). Recall that δ = M/n,

so we can write f̃jk(θ) = δ−1n−1
∑n

s=1 1{[0,2πδ]}(ws)tr(ϕ(ws) I(ws)); since ϕ(w)
′
= ϕ(w) and I is centered by

the true mean, we can adapt the argument used in Lemma 3.1.1(i) of Taniguchi and Kakizawa (2000) for each fixed
δ > 0, obtaining

lim
δ→0

lim sup
n→∞

P [|f̃jk(θ) − f̄ δ
jk(θ)| > ǫ] = 0

for every ǫ > 0, where f̄ δ
jk(θ) = δ−1n−1

∑n
s=1 1{[0,2πδ]}(ws)tr(ϕ(ws) f(ws)). Since c2ℓ → (2πδ)

2ℓ
/(2ℓ + 1) as

n → ∞ and θ = 0, it follows that limn→∞ g(2πδx) = (9−15x2)/4. Then limn→∞ f̄ δ
jk(θ) = f δ

jk(θ) for every δ > 0,

where

f δ
jk(θ) =

∫ 1

0

(9− 15x2) (fjk(2πδx) + fkj(2πδx))/8 dx.

Finally, using Assumption A(4), we have f δ
jk(θ) → fjk(0)

∫ 1

0
(9− 15x2)/4 dx = fjk(θ). Using

|f̃jk(θ)− fjk(θ)| ≤ |f̃jk(θ) − f̄ δ
jk(θ)|+ |f̄ δ

jk(θ)− f δ
jk(θ)| + |f δ

jk(θ)− fjk(θ)|
and the above estimates, we obtain the desired convergence in probability (following the argument of the proof of
Theorem 25.5 of Billingsley (1995)) and letting δ → 0 as n → ∞. q.e.d

Recall that the bandwidth fraction is δ = M/n, which is assumed to tend to zero in the above. However, a fixed
bandwidth fraction calculation can be most informative, as the pioneering work of Kiefer and Vogelsang (2002, 2005)
has shown; see also McElroy and Politis (2014). We now provide an asymptotic analysis of bias and variance in terms
of a fixed δ, which will help develop an expression for the optimal bandwidth fraction. To simplify the calculation, we
will work under the assumption of a Gaussian time series. However, the Gaussian assumption is not unduly limiting
here, as the extra factors associated with potentially non-Gaussian data are asymptotically negligible; see McElroy and
Politis (2022) for a full discussion. Define

F2p = M−1
M∑

s=1

(θ − ws)
2p

(
fjk(ws)

2
+ fkj(ws)

2
+ 2fjj(ws)fkk(ws)

)
, (7)

G2p = M−1
M∑

s=1

(θ − ws)
2pR[fjk(ws)], (8)

and c2ℓ = M−1
∑M

s=1 (θ − ws)
2ℓ

.

5
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Proposition 4.1 Suppose {Xt} is a strictly stationary Gaussian time series satisfying the Assumption A(4). Then

Var[f̃jk(θ)] = δ−1n−1 c24F0 − 2c4c2F2 + c22F4

4(c4 − c22)
2 + o(n−1)

and

Bias[f̃jk(θ)] =
c4G0 − c2G2

c4 − c22
− fjk(θ) +O(n−1)

as n → ∞ for a fixed δ.

Proof: We focus on the case of θ = 0, as θ = ±π is similar with some notation changes. Note that Assumption
A(4) implies the autocovariances satisfy the summability condition (B1) of Taniguchi and Kakizawa (2000), and the
higher order autocumulants are zero because the process is Gaussian; hence Assumption B holds, and we can apply
arguments from the proof of Theorem 4.1 to conclude that

E[f̃jk(θ)] = O(n−1) +M−1
M∑

s=1

tr(ϕ(ws) f(ws))

= O(n−1) +
1

2M

M∑

s=1

g(ws)(fjk(ws) + fkj(ws))

= O(n−1) +
1

M

M∑

s=1

g(ws)R[fjk(ws)].

Using the definition of G2p given in (8), and g(w) = (c4−c2w
2)/(c4−c22), we obtainE[f̃jk(θ)] = O(n−1)+(c4G0−

c2G2)/(c4 − c22), which yields the stated bias result. Adapting Lemma 3.1.1 of Taniguchi and Kakizawa (2000) to
the case where frequencies ws ∈ [0, π], and using the fact that the process is Gaussian, the asymptotic variance of

M−1
∑M

s=1 tr(ϕ(ws) I(ws)) is given by

1

M2

M∑

s=1

tr(f(ws)ϕ(ws)f(ws)ϕ(ws)) =
1

4M2

M∑

s=1

g(ws)
2 (

f2
jk(ws) + f2

kj(ws) + 2fjj(ws)fkk(ws)
)
,

ignoring terms that are o(n−1). Expanding the square of g(ws) and using (7), we obtain the stated variance expression
since M ≈ δn. q.e.d.

The Mean Squared Error (MSE) of f̃jk(θ) equals the squared bias plus the variance. The value of δ that minimizes the
MSE can be calculated numerically, given the quantities F0, F2, F4, G0, G2, and fjk(θ). However, these quantities are
unknown in practice; a pilot estimator, such as the flat-top spectral estimator of Politis (2011), can be used to estimate
them – yielding a data-based estimate of the optimal value of δ by plugging the pilot estimators into the MSE formula.

Such an empirically estimated δ, which may be depend on j and k, will be denoted by δ̂jk; see Section 5 for explicit
details.

4.2 Fitting via Weighted Least Squares (WLS)

Consider a positive kernel function K with domain [0, 1]; usually the kernel is taken to be symmetric about zero,
but we focus on one-sided kernels due to our analysis at the boundaries of the frequency domain. Define Kδ(x) =

(2πδ)
−1

K(x/(2πδ)), so that Kδ becomes a function on [0, π]. Then, we can define WLS weights via Kδ(θ − ws)
for 1 ≤ s ≤ M , and we let W be a diagonal matrix with diagonal entries given by Kδ(θ − ws) for s = 1, . . . ,M .

The WLS estimator of fjk(θ) can be obtained based on the matrix expression (X′
WX)

−1
X

′
WY, where X and Y

have been defined in the previous section. Note that the OLS is a special case of WLS in the case of equal weights,
i.e. letting K(x) = 2πδ.

Theorem 4.2 Assume Assumptions A(4) and B. Let f̃jk(θ) = [1, 0]
′
(X′

WX)
−1

X
′
WY. Then,

f̃jk(θ)
P−→ fjk(θ)

as M → ∞ as n → ∞ but with M/n → 0.

6
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Proof: The proof follows the same structure as the proof of Theorem 4.1; we provide a few details for the θ = 0

case. Setting c̃2ℓ = M−1
∑M

s=1 Kδ(ws)w
2ℓ
s , the weighting function for WLS is now g̃(w) = (c̃4 − c̃2w

2)/(c̃4c̃0 −
c̃22). The rest of the proof is the same with g̃ in lieu of g, and we find that limn→∞ g̃(2πδx) = (2πδ)(K(4) −
K(2)x

2)/(K(4)K(0) − K2
(2)), since c̃2ℓ → (2πδ)

2ℓ−1
K(2ℓ) as n → ∞, where K(2ℓ) =

∫ 1

0
K(u)u2ℓdu. Then we

update the expression for f δ
jk(θ) with

2πδ

∫ 1

0

(
K(4) −K(2)x

2

K(4)K(0) −K2
(2)

)
Kδ(2πδx)(fjk(2πδx) + fkj(2πδx)/2 dx,

which tends to fjk(θ) as δ → 0 using Assumption A(4). This completes the proof. q.e.d.

As before, asymptotic bias and variance expressions akin to the OLS case can be worked out, which now depend
upon the function K . However, we now need to allow for δ → 0 in order to simplify the weights. To see why, let

K(s) =
∫ 1

0
K(u)usdu and K̃(s) =

∫ 1

0
[K(u)]2 us du. For the case θ = 0 we obtain

M−1
X

′
WX ≈

[
(2πδ)

−1
K(0) (2πδ)K(2)

(2πδ)K(2) (2πδ)
3
K(4)

]
;

a similar approximation can be worked out for the case θ = π.

Proposition 4.2 Suppose {Xt} is a strictly stationary Gaussian time series satisfying Assumption A(4). Then,

Var[f̃jk(θ)] = O(δ−2n−2) + o(n−1)

+δ−1n−1
(
fjk(θ)

2
+ fkj(θ)

2
+ 2fjj(θ)fkk(θ)

) K2
(4)K̃(0) − 2K(4)K(2)K̃(2) +K2

(2)K̃(4)

(K(0)K(4) −K2
(2))

2

and

Bias[f̃jk(θ)] =
[Rfjk]

(4)(θ)

24
(2πδ)

4

(
K2

(4) −K(6)K(2)

K(4)K(0) −K2
(2)

)
+ o(δ4) +O(n−1)

when δ → 0 as n → ∞ in such a way that δn → ∞.

Proof: Following the proofs of Theorem 4.1 and Proposition 4.1, the estimator can be written as f̃jk(θ) =

M−1
∑M

s=1 tr(ϕ(ws)I(ws)) up to OP (n
−1) terms, where ϕ(w) = .5g̃(w)Kδ(w)(eke

′
j + eje

′
k) and g̃(w) =

(c̃4− c̃2w
2)/(c̃4c̃0− c̃22). Recall that c̃2ℓ = M−1

∑M
s=1 Kδ(ws)w

2ℓ
s , and as n → ∞ this has a limit of (2πδ)

2ℓ−1
K(2ℓ).

Then E[f̃jk(θ)] = O(n−1) + (c̃4G̃0 − c̃2G̃2)/(c̃4c̃0 − c̃22), where G̃2p = M−1
∑M

s=1 (θ − ws)
2pKδ(ws)R[fjk(ws)].

Since R[fjk(w)] = γjk(0) +
∑

h≥1(γjk(h) + γjk(−h)) cos(hw), this is a real even function of w, which we denote

by rjk(w) for short. Then via Assumption A(4) we have a Taylor expansion around θ = 0:

rjk(w) = rjk(0) +
1

2
r
(2)
jk (0)w2 +

1

24
r
(4)
jk (0)w4 + o(w4),

where r
(2)
jk (0) and r

(4)
jk (0) denote the second and fourth derivatives of rjk at zero, respectively. Plugging this into the

formula for G̃2p, and using

M−1
M∑

s=1

w2ℓ
s Kδ(ws) = (2πδ)

2ℓ−1
M−1

M∑

s=1

(s/M)
2ℓ
K(s/M) → (2πδ)

2ℓ−1
K(2ℓ),

we find that up to o(δ2p+3) terms G̃2p is asymptotically given by

(2πδ)
2p−1

K(2p)fjk(0) +
1

2
(2πδ)

2p+1
K(2p+2)r

(2)
jk (0) +

1

24
(2πδ)

2p+3
K(2p+4)r

(4)
jk (0).

Therefore E[f̃jk(θ)], up to O(n−1) and o(δ4) terms, is

fjk(0) +
1

24
r
(4)
jk (0)(2πδ)

4

(
K2

(4) −K(2)K(6)

K(4)K(0) −K2
(2)

)
,
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which yields the stated result for the bias. The variance calculation follows the same argument used in the proof of
Proposition 4.1, yielding (up to terms o(n−1))

1

4M2

M∑

s=1

g̃(ws)
2
Kδ(ws)

2 (
f2
jk(ws) + f2

kj(ws) + 2fjj(ws)fkk(ws)
)
.

By Assumption A(4) we can replace f2
jk(ws)+f2

kj(ws)+2fjj(ws)fkk(ws) by its value at θ = 0, and take it out of the

summation at the cost of adding error terms that are O(M−2). The remaining summation can then be approximated
using

M−1
M∑

s=1

w2ℓ
s K2

δ (ws) = (2πδ)2ℓ−2M−1
M∑

s=1

(s/M)2ℓK(s/M)2 → (2πδ)2ℓ−2K̃(2ℓ),

and hence the stated variance expression is obtained. q.e.d.

Proposition 4.2 quantifies the advantage of the local quadratic regression at the boundaries as the Bias[f̃jk(θ)] becomes

of order δ4. Notably, traditional methods of estimating fjk(θ) will have bias that is O(δ2) under Assumption A(4);
these include all 2nd order kernels employed by Andrews (1991) but not the Bartlett kernel used by Newey and West
(1987), whose bias is O(δ). Interestingly, the flat-top kernel estimator proposed by Politis (2011) will also have bias
that is O(δ4) under Assumption A(4), but the constant of proportionality is not tractable so as to afford us an analytic
comparison; an empirical comparison is carried out in Section 6. We can summarize these results in the following
corollary.

Corollary 4.1 Suppose {Xt} is a strictly stationary Gaussian time series satisfying Assumption A(4). Then,

MSE[f̃jk(θ)] = O(δ8) +O(δ−1n−1),

whose order of magnitude is minimized when δ ∼ Cn−1/9 for some constant C > 0. Using such a choice of δ, the
matrix estimator satisfies

f̃(θ) = f(θ) +OP (n
−4/9). (9)

5 Practical implementation

5.1 Data-based bandwidth choice

As in all nonparametric work, the choice of the bandwidth fraction δ has a strong impact on finite-sample results,
and influences the asymptotic performance as well. McElroy and Politis (2022) proposed a data-driven technique for
empirically selecting δ in the univariate case by minimizing the MSE. Since their method (which is the case j = k
of the present treatment) only depends upon the univariate spectral density being real and even (and not necessarily
non-negative), we can apply the same technique to the real portion of each cross-spectral density fjk. This application

yields a data-based estimator δ̂jk for each f̃jk(θ), by minimizing with respect to δ the MSE arising from the bias and

variance expressions in Proposition 4.1; we can collect them in a matrix δ̂ whose j, k entry is δ̂jk .

Therefore, in order to compute the MSE we need to evaluate expressions (7) and (8) respectively. Letting djk(w)
denote the determinant of the 2-by-2 spectral density matrix for the jth and kth series (i.e., djk(w) = fjj(w)fkk(w)−
fjk(w)fkj(w)), and noting that this function — as well as R[fjk(w)] = (fjk(w)+ fkj(w))/2 — is real-valued, it is a

simple matter to evaluate expression (7) without any complex arithmetic, as fjk(w)
2 + fkj(w)

2 + 2fjj(w)fkk(w) =

2djk(w) + 4(R[fjk(w)])
2
. The real and imaginary parts of fjk(w) are obtained from the cross-covariances via

R[fjk(w)] = γjk(0) +
∑

h≥1

(γjk(h) + γjk(−h)) cos(hw)

I[fjk(w)] =
∑

h≥1

(γjk(h)− γjk(−h)) sin(hw).

Similarly, the first formula can be applied to compute fjj(w) and fkk(w), since these are real; thence we obtain

djk(w) = fjj(w)fkk(w) − [Rfjk(w)]
2 − [Ifjk(w)]2,

since fjk(w)fkj(w) = |fjk(w)|2 = [Rfjk(w)]
2
+ [Ifjk(w)]2.

8
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As argued in Politis (2011), it is natural to allow bandwidth fraction to be customized/optimized to each entry of the
spectral density matrix, since the degree of autocorrelation and cross-correlation present (which dictates the optimal

selection of bandwidth) can vary among components. In other words, our matrix estimator f̃(θ) has j, k entry f̃jk(θ)

that is computed using its own optimal data-based bandwidth fraction δ̂jk . In practice this is extremely important,

since we have found that δ̂jk can vary widely for various j, k.

Remark 5.1 The numerical optimization required to find the minimizing δ̂jk requires some care, because MSE as a
function of δ can have an oscillatory pattern – inherited from sinusoidal terms of high frequency in the spectrum or

cospectrum. Finding a local minimum can lead to an inappropriate choice of δ̂jk, and substantially more bias than
would arise with the global minimum. We use a golden section search algorithm in our own implementation, but
recommend a complete grid search if resources permit.

5.2 Correction towards positive definiteness

Corollary 4.1 shows that the matrix estimator f̃(θ) converges to its target f(θ) at a fast rate. Recall that f(w) is

non-negative definite for all w. If f(θ) is positive definite (as it will typically be when θ = 0), it follows that f̃(θ)

will eventually (for large n) be positive definite as well. However, there is no guarantee that f̃(θ) will be non-negative
definite (let alone positive definite) in finite samples. A correction towards positive definiteness is therefore in order,
as proposed by Politis (2011), and further developed by McMurry and Politis (2015).

There are several ways to correct f̃(θ) towards positive definiteness. The simplest way is to use its eigenvalue de-

composition f̃(θ) = UDU ′, where U is a unitary matrix, and D is diagonal with jj element dj . Recall that f̃(θ)
is Hermitian, and therefore the eigenvalues dj are real; the question is whether they are all positive (or at least non-
negative).

For this reason, we can start by modifying the eigenvalues. Let d+j = max(dj , 0), and d
(ǫ)
j = max(dj , ǫ/n) for some

small ǫ > 0. We now define the matrices

f̃+(θ) = UD+U ′ and f̃ (ǫ)(θ) = UD(ǫ)U ′, (10)

where D+ and D(ǫ) are diagonal with jj element d+j and d
(ǫ)
j respectively. The matrix f̃+(θ) is non-negative definite,

and f̃ (ǫ)(θ) is positive definite by construction. However, as shown by Politis (2011), these two matrices share the

same fast rate of convergence with f̃(θ), i.e., equation (9) from Corollary 4.1 holds true with either f̃+(θ) or f̃ (ǫ)(θ)

in place of f̃(θ).

Remark 5.2 The above idea works well in practice if the multivariate time series {Xt} is comprised of univariate time
series that have approximately the same scale, i.e., the diagonal elements of γ(0) are of the same order of magnitude.
If not, the following modification may be helpful; we state it in connection to our original problem, viz. estimation of
the long-run covariance matrix Ω that appears in the CLT based on data X1, . . . , Xn as given in eq. (1).

1. Define new data Yt = Â(Xt−X̄n) for t = 1, . . . , n, where Â is diagonal with jj element equal to 1/
√
γ̂jj(0).

2. Use local quadratic regression on the new data Y1, . . . , Yn and the correction of the right-hand-side of eq.

(10) to estimate the spectral density matrix of {Yt} at the origin; denote that estimator by f̃
(ǫ)
Y (0).

3. Note that eq. (1) and consistency of γjj(0) imply that

√
n Ȳn

L
=⇒ Nm(0, AΩA) as n → ∞,

where A is a diagonal matrix with jj element equal to 1/
√
γjj(0).

4. Since 2πf̃
(ǫ)
Y (0) is an estimate of AΩA, we may finally estimate Ω by

Ω̂ = 2πÂ−1f̃
(ǫ)
Y (0)Â−1.

6 Simulations

Recall that Politis (2011) includes simulations showing the favorable performance of the flat-top matrix estimators as
compared to traditional estimators using non-negative kernels. In order to compare to the numerical results of Politis
(2011), we simulate the same data generating processes (DGP), and focus on the boundary frequencies w = 0,±π.

9
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The first DGP is defined as

Xt,1 = (1− .75L)−1Zt,1

Xt,2 = 2(1 + L)Zt,2,

whereL is the lag operator and {Zt} is a bivariate Gaussian white noise sequence with identity covariance matrix. Note
that no cross-sectional dependence exists in this process, and hence the cross-spectral density is zero. The spectral
density matrix is given by

f(w) =
1

2π

[
|1− .75e−iw|−2

0

0 4|1 + e−iw|2

]
. (11)

Evaluating at w = 0, we see that f(0) is an identity matrix scaled by 8/π; in particular, the two univariate spectral
densities have equal values at w = 0, although their shape in a neighborhood of the origin is somewhat different. At
frequency w = π, all entries of the spectral density matrix are zero except the first diagonal, which equals 8/49π.

The second DGP is defined as

Xt,1 = (1− L)Zt,1

Xt,2 = Xt+7,1 + (1 + .75L)
−1

Zt,2,

where {Zt} is as above. Here, there exists cross-sectional dependence through the second component process depend-
ing upon a future value (seven steps ahead) of the first component process. The spectral density matrix is given by

f(w) =
1

2π

[
|1− e−iw|2 e−i7w|1− e−iw|2

ei7w|1− e−iw|2 |1− e−iw|2 + |1 + .75e−iw|−2

]
. (12)

The lag seven dependence is manifested in the off-diagonal entries, through the terms e±i7w. Evaluating at w = 0 and
w = π, we obtain

f(0) =
1

2π

[
0 0
0 16/49

]
and f(π) =

1

2π

[
4 −4
−4 20

]

respectively. So although there is cross-sectional dependence between the series, this effect vanishes at frequency
w = 0; the dependence is non-vanishing (and negative) at w = π.

We simulated 104 Monte Carlo replications of each DGP (with n = 100, 500), and compared the flat-top estimator

to the local quadratic regression technique (with δ̂ determined empirically) as discussed in Sections 2 and 5. The
flat-top estimator employed the infinitely differentiable flat-top taper (McMurry and Politis, 2004), with the cef tuning
parameter (Politis, 2011) computed using ε = .01. Also, in the algorithm used to compute the flat-top bandwidth,
i.e., the Empirical Rule of Politis (2011), we set C0 = 2 and Kn = 5. Both estimates of f(0) were modified (when
necessary) to be non-negative definite, i.e., we employed the first of the two equations given in (10).

First DGP local quadratic flat-top

n Component Bias SD RMSE Bias SD RMSE

100
f11(0) -0.839 1.129 1.407 -0.048 1.769 1.770
f12(0) -0.002 0.456 0.456 0.005 0.676 0.676
f22(0) -0.197 0.677 0.705 0.010 0.908 0.908

500
f11(0) -0.275 0.758 0.807 0.000 0.926 0.926
f12(0) 0.001 0.198 0.198 0.000 0.265 0.265
f22(0) -0.099 0.327 0.342 0.001 0.359 0.359

Table 1: Bias, Standard Deviation, and RMSE for spectral density estimators at frequency θ = 0, for a bivariate
Gaussian process with spectral density (11). Sample size is n = 100, 500. Flat-top tapered estimation and local

quadratic spectral estimation is considered with estimated optimal window δ̂.

For the first DGP—where there is no cross-correlation—we see that the local quadratic estimator improves upon
the flat-top almost uniformly, over all matrix entries and either of the boundary frequencies w = 0, π; see Tables 1
and 2. Although the local quadratic has a higher bias than the flat-top, this is more than compensated by the lower
variability, leading to a lower RMSE (square root of MSE). As expected, both methods have improved performance as
n increases from 100 to 500; it appears that the improvement offered by the local quadratic is more pronounced at the
smaller sample size.

For the second DGP—where there exists a non-trivial cross-spectrum—when θ = 0, the local quadratic has superior
RMSE performance for f11(0) and f22(0); see Table 3. The two methods perform comparably for f12(0) when

10
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First DGP local quadratic flat-top

n Component Bias SD RMSE Bias SD RMSE

100
f11(π) -0.001 0.025 0.025 0.008 0.036 0.037
f12(π) 0.000 0.018 0.018 0.000 0.021 0.021
f22(π) 0.016 0.021 0.026 0.042 0.053 0.068

500
f11(π) -0.001 0.014 0.014 0.001 0.017 0.017
f12(π) 0.000 0.008 0.008 0.000 0.011 0.011
f22(π) 0.004 0.004 0.006 0.018 0.024 0.030

Table 2: Bias, Standard Deviation, and RMSE for spectral density estimators at frequency θ = π, for a bivariate
Gaussian process with spectral density (11). Sample size is n = 100, 500. Flat-top tapered estimation and local

quadratic spectral estimation is considered with estimated optimal window δ̂.

n = 100, while the flat-top gets a small edge when the sample is increased. Moreover, in the case θ = π Table 4
shows a similar superiority of the local quadratic over the flat-top—except for the case of f21(π) with n = 500, where
results are identical.

Second DGP local quadratic flat-top

n Component Bias SD RMSE Bias SD RMSE

100
f11(0) 0.007 0.008 0.010 0.012 0.014 0.018
f12(0) -0.001 0.013 0.013 0.001 0.012 0.013
f22(0) 0.008 0.035 0.036 0.015 0.039 0.042

500
f11(0) 0.001 0.001 0.002 0.005 0.006 0.008
f12(0) 0.000 0.003 0.003 0.001 0.002 0.002
f22(0) 0.001 0.015 0.015 0.001 0.015 0.015

Table 3: Bias, Standard Deviation, and RMSE for spectral density estimators at frequency θ = 0, for a bivariate
Gaussian process with spectral density (12). Sample size is n = 100, 500. Flat-top tapered estimation and local

quadratic spectral estimation is considered with estimated optimal window δ̂.

Second DGP local quadratic flat-top

n Component Bias SD RMSE Bias SD RMSE

100
f11(π) -0.027 0.221 0.223 0.030 0.262 0.264
f12(π) 0.283 0.610 0.673 0.133 0.734 0.746
f22(π) -0.910 1.567 1.812 -0.337 2.104 2.131

500
f11(π) -0.024 0.083 0.086 0.001 0.092 0.092
f12(π) 0.110 0.336 0.353 0.003 0.353 0.353
f22(π) -0.433 0.880 0.981 -0.158 1.015 1.027

Table 4: Bias, Standard Deviation, and RMSE for spectral density estimators at frequency θ = π, for a bivariate
Gaussian process with spectral density (12). Sample size is n = 100, 500. Flat-top tapered estimation and local

quadratic spectral estimation is considered with estimated optimal window δ̂.

7 Real Data Application

Soaring inflation is of widespread interest, and the linkages to the unemployment rate are subtle; some may assert
these are necessarily inversely correlated, but there exist counter-examples, such as the post Great Recession epoch
of low inflation and low unemployment. We apply this paper’s method to recent estimates of mean inflation and
unemployment in order to highlight the possibilities for the proposed methodology, without seeking to wade into a
contentious and nuanced econometric topic that has numerous public policy implications.

To this end—of providing an illustration—we study the U.S. Consumer Price Index (CPI)1 and the U.S. Unemployment
Rate (UR)2. The common span for the two monthly time series is January 1948 through September 2022; applying
a log difference to CPI to obtain its growth rate (and multiplying by 12 ∗ 100 to convert CPI growth to an annual

1U.S. Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers: All Items in U.S. City Average [CPIAUCSL],
retrieved from FRED, Federal Reserve Bank of St. Louis on October 24, 2022.

2U.S. Bureau of Labor Statistics, Unemployment Rate [UNRATE], retrieved from FRED, Federal Reserve Bank of St. Louis on
October 24, 2022.
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percentage), we compose the two variables into a bivariate time series {Xt}. Note that both components of Xt are on
the same scale, so the possible re-scaling suggested in Remark 5.2 is not necessary.

We wish to examine a more recent period, wherein a stationary hypothesis is tenable; therefore we exclude the Covid-
19 epoch, and consider CPI growth and UR for January 2001 through December 2019, yielding n = 240. Over this
period the sample means for CPI growth and UR are 2.126% and 5.881%, respectively. Here, we investigate whether
the inflation rate and unemployment rate are significantly different from 3% and 5%, respectively. These thresholds
are chosen by the following reasoning: either a UR higher than 5% or an inflation rate higher than 3% may be cause
for concern, whereas lower values might be viewed positively—although some degree of unemployment (among those
persons in the labor force) and inflation is typically present (due to churn) even in a healthy labor market, as desirable
workers move freely between opportunities.

A null hypothesis for the bivariate mean µ can be tested by the bivariate sample mean X̄n, which under broad condi-
tions is asymptotically normal with asymptotic covariance matrix 2πf(0)/n; see eq. (1). Hence, to test H0 : µ = µ0

one can use the Wald statistic
n

2π
(X̄n − µ0)

′
f(0)−1 (X̄n − µ0),

where µ0 = [3%, 5%]′. As usual, the Wald test involves the 2-sided alternative µ 6= µ0, so it will reject H0 if either
UR and/or inflation differ from their respective threshold.

Under H0, the Wald statistic has an asymptotic χ2
2 distribution. Since f(0) is unknown, it is natural to estimate it and

compute the corresponding Wald statistic
n

2π
(X̄n − µ0)

′
f̂(0)

−1
(X̄n − µ0). (13)

By Slutsky’s Lemma, if f̂(0) is consistent for f(0), the above practical Wald statistic will also have an asymptotic χ2
2

distribution under H0.

We adopt this approach, using both the infinitely differentiable flat-top estimator and the local quadratic estimator.
Recall that in the previous section we had employed a non-negative definite modification of the resulting estimators.
Here, it is important to strengthen this to a positive definite modification since we will be computing the matrix inverse,

and any ill-conditioning in f̂(0) will cause gross numerical instabilities; we used ǫ = .01 in the construction given in
eq. (10). However, in our results it happened that all estimates are positive definite. The resulting flat-top and local
quadratic estimates are given by

f̂(0) =

[
42.17 112.23
112.23 348.28

]
and f̃(0) =

[
31.19 66.39
66.39 248.55

]

respectively. Using the flat-top estimator, the Wald test statistic (13) has a value of 8.61 with a p-value of 0.014,
indicating a strong rejection of the null. However, using the local quadratic estimator we obtain a Wald statistic value
of 3.61 and a p-value of 0.164, which does not lead to a rejection of H0.

We remark that the estimate of f21(0) has a substantial impact on the Wald statistic. Even though the diagonal entries
of the flat-top estimate of f(0) are larger than those of the local quadratic, the Wald statistic for the former is larger

due to the higher estimated coherence f21(0)/
√
f11(0)f22(0). Hence, there is a genuinely multivariate phenomenon

at work in this real data example.

In view of these vastly conflicting results the practitioner would be at a loss as to how to proceed. Nevertheless, our
simulations of Section 6 coupled with the extensive (univariate) simulations of McElroy and Politis (2022) indicate
that the local quadratic method of estimating f(0) is more accurate than the flat-top. Hence, the practitioner is advised
to adopt the local quadratic estimate of f(0), in which case the null hypothesis is not rejected; we conclude that the
economy is not out of balance (with respect to inflation and employment).
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