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Abstract
This work introduces a Byzantine resilient so-

lution for learning low-dimensional linear rep-

resentation. Our main contribution is the de-

velopment of a provably Byzantine-resilient Alt-

GDmin algorithm for solving this problem in a

federated setting. We argue that our solution

is sample-efficient, fast, and communication-

efficient. In solving this problem, we also intro-

duce a novel secure solution to the federated sub-

space learning meta-problem that occurs in many

different applications.

1. Introduction
Multi-task representation learning refers to the problem of

jointly estimating the model parameters for a set of re-

lated tasks. This is typically done by learning a common

“representation” for all of their source vectors (feature vec-

tors). This learned representation can then be used for solv-

ing the meta-learning or learning-to-learn problem: learn-

ing model parameters in a data-scarce environment. This

strategy is referred to as “few-shot” learning. In recent

work (Du, Hu, Kakade, Lee, & Lei, 2020), a very interest-

ing low-dimensional linear representation was introduced

and the corresponding low rank matrix learning optimiza-

tion problem was defined. However, (Du et al., 2020) as-

sumed that this optimization problem (see eq. (1)), which

is non-convex, can be correctly solved. It is mentioned

that it should be possible to solve it by solving a nuclear

norm based convex relaxation of it. However, there are

no known guarantees to ensure that the solution to the re-

laxation is indeed also a solution of the original problem.

Moreover, convex relaxations are known to be very slow to

solve (compared with direct iterative solutions) (Jain, Kar,

et al., 2017; Netrapalli, Jain, & Sanghavi, 2013): these need

order 1/
√
ε number of iterations to obtain an ε accurate

solution. In follow-up work, (Tripuraneni, Jin, & Jordan,
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2021) studied a special case in which all the source vectors

for the different tasks are the same. It introduced a method

of moments estimator that is faster, but needs many more

samples; sample complexity grows as 1/ε2.

In interesting parallel works (Nayer & Vaswani, 2023, on

arXiv since Feb. 2021; Collins, Hassani, Mokhtari, &

Shakkottai, 2021), a fast and communication-efficient GD-

based algorithm, that was referred to as Alternating GD and

Minimization (AltGDmin) and FedRep respectively, was

introduced for solving the mathematical problem given in

(1), when the available number of training samples per task

is much lesser than the regression vector length. Follow-

up work (Vaswani, 2024) improved the guarantees for Alt-

GDmin while also simplifying the proof. AltGDmin and

FedRep algorithms are identical except for the initialization

step. AltGDmin uses a better initialization and hence also

has a better sample complexity by a factor of r. The latter

(FedRep) paper referred to the problem of (1) as multi-task

linear representation learning. The former (AltGDmin) pa-

per used federated sketching, dynamic MRI (Babu, Lin-

gala, & Vaswani, 2023) as motivating applications. It also

solved the phaseless generalization of (1) called low rank

phase retrieval. In older work (Nayer & Vaswani, 2021;

Nayer, Narayanamurthy, & Vaswani, 2020, 2019), an alter-

nating minimization (AltMin) solution to this problem was

developed and analyzed as well. Since (1) is a special case

of this more general problem, this AltMin solution also

solves (1). All these works study the centralized setting or

the attack-free federated setting. Other somewhat related

works include (Shen, Ye, Kang, Hassani, & Shokri, 2023;

Tziotis, Shen, Pedarsani, Hassani, & Mokhtari, 2022). A

longer version of the mathematical problem being solved in

this work (Byzantine resilient low rank column-wise com-

pressive sensing) is at (Singh & Vaswani, 2024).

1.1. Contributions

We adapt the altGDmin algorithm described above to show

how it can solve the multi-task linear representation learn-

ing and few shot learning problems. Our main contribu-

tion is the development of a provably Byzantine-resilient
AltGDmin-based solution for solving this problem in a

federated setting. Our solution is communication-efficient

along with being fast and sample-efficient. In this setting,

resilience to adversarial attacks on some nodes is an impor-
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tant requirement. The most general attack is the Byzantine

attack. For this, the attacking nodes can collude; and all the

attacking nodes know the outputs of all the nodes, the algo-

rithm being implemented by the center, and the algorithm

parameters.

In solving the above problem, we introduce a novel solu-

tion approach, called Subspace Median, for combining sub-

space estimates from multiple federated nodes when some

of them can be malicious. This approach and its guaran-

tee (Lemma 3.1) are of independent interest for developing

a secure solution to the federated subspace learning meta-

problem that occurs in many applications – (online) PCA,

subspace tracking, initializing many sparse recovery, low

rank matrix recovery, or phase retrieval problems.

1.2. Related Work

Few-shot learning is applied across various tasks such as

image classification (Vinyals, Blundell, Lillicrap, Wierstra,

et al., 2016), sentiment analysis from short texts (Yu et al.,

2018), and object recognition (Fei-Fei, Fergus, & Perona,

2006), with much of the focus on practical experimentation

over theoretical development (Snell, Swersky, & Zemel,

2017; Ravi & Larochelle, 2016; Sung et al., 2018; Boudiaf

et al., 2020). Representation learning, a significant method

within this field, has been highlighted in several studies

(Sun, Shrivastava, Singh, & Gupta, 2017; Goyal, Maha-

jan, Gupta, & Misra, 2019), though they often fall short of

providing algorithmic guarantees for provably solving the

representation learning problem (Du et al., 2020; Baxter,

2000; Maurer, Pontil, & Romera-Paredes, 2016; Tripura-

neni et al., 2021; Tripuraneni, Jordan, & Jin, 2020; Y. Li,

Ildiz, Papailiopoulos, & Oymak, 2023). Recent work by

(Collins et al., 2021) and (Nayer & Vaswani, 2023, on

arXiv since Feb. 2021; Vaswani, 2024) developed a prov-

able algorithm to solve the low-dimensional linear repre-

sentation learning problem, although they do not consider

Byzantine attacks. There are other line of works which

extends the low-dimensional linear representation learning

problem (Shen et al., 2023), which focuses on Differen-

tial Privacy. The algorithm CENTAUR, presented in their

work, aligns with the server and client procedures outlined

in the study by (Collins et al., 2021), with the notable ad-

dition of the Gaussian mechanism. The work presented in

(Tziotis et al., 2022) addresses the challenge of stragglers.

To combat the straggler effect, the paper introduces a novel

sampling mechanism that utilizes a “doubling” strategy.

Geometric Median is one of the aggregation method to han-

dle Byzantine attacks. (Chen, Su, & Xu, 2017) develops

non-asymptotic analysis in stochastic gradient descent uti-

lized the geometric median of means, giving convergence

guarantees under specific conditions. Follow-up work uses

coordinate-wise mean and trimmed-mean estimators (Yin,

Chen, Kannan, & Bartlett, 2018) but with assumption

of bounded variance and coordinate-wise bounded skew-

ness (or coordinate-wise sub-exponential) on the gradient

distribution. (Alistarh, Allen-Zhu, & Li, 2018; Allen-

Zhu, Ebrahimian, Li, & Alistarh, 2020) provided non-

asymptotic guarantees for Byzantine resilient stochastic

gradient descent, assuming a consistent set of Byzantine

nodes across iterations.

Some studies have explored heterogeneous data distribu-

tions, establishing results within bounds of heterogeneity

(Pillutla, Kakade, & Harchaoui, 2019; Data & Diggavi,

2021; L. Li, Xu, Chen, Giannakis, & Ling, 2019; Ghosh,

Hong, Yin, & Ramchandran, 2019). While (Regatti, Chen,

& Gupta, 2022; Lu, Li, Chen, & Ma, 2022; Cao, Fang, Liu,

& Gong, 2020; Cao & Lai, 2019; Xie, Koyejo, & Gupta,

2019) use detection methods to manage heterogeneous gra-

dients with a trusted dataset at central server.

1.3. Problem Set up

First consider the centralized setting. Suppose that there are

q source tasks, each task k ∈ [q] associated with a distri-

bution over the input-output space X × Y , where X ⊆ �n

and Y ⊆ �. The aim is to learn prediction functions for

all tasks simultaneously, leveraging a shared representation

ϕ : X → Z that maps inputs to a feature space Z . We

let the representation function class be Low-Dimensional

Linear Representations i.e., {x �→ UTx|U ∈ �n×r} (Du

et al., 2020). An example is the two-layer ReLU neural

network. The goal is to find the optimal representation ϕ∗,

represented by U∗ and the true linear predictors b∗k for all

tasks k ∈ [q] to minimize the difference between the pre-

dicted and actual outputs. Arranging the m input features

for task k as rows of an m× n matrix Xk, and the outputs

in an m× 1 vector yk, we have the following model

Y = [y1,y2, ...,yq] := [X1U
∗b∗1, ...,XqU

∗b∗q ] + V

where V is the modeling error that is assumed to be i.i.d.

zero mean Gaussian with variance σ2
v . We have assumed an

r-dimensional linear model for the regression coefficients,

i.e., θ∗
k = U∗b∗k, with r � min(n, q). In other words, the

n×q regression coefficients’ matrix Θ∗ = U∗B∗ is rank r.

Our goal is to learn the column span of the n×r matrix U∗

(and in the process also learn Θ∗), from the m × q matrix

Y . We assume that all the feature vectors for all the tasks

are i.i.d. standard Gaussian, i.e., all the Xks are i.i.d. and

have i.i.d. standard Gaussian entries. Solving this problem

requires solving

min
Ũ∈�n×r

B̃∈�r×q

q∑
k=1

‖yk −XkŨ b̃k‖2 (1)

In the federated setting, we assume that there are a total of

L nodes. Each observes a different disjoint subset (m̃ =
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m/L) of rows of Y . Denoting the set of rows observed at

node � by S�, this means that S�s are disjoint and ∪L
�=1S� =

[q]. At most τL nodes can be Byzantine with τ < 0.4. The

nodes can only communicate with the center.

In this work, all U matrices are n × r and are used

to denote the subspaces spanned by their columns. We

use ‖.‖ to denote the (induced) �2 norm and ‖.‖F for

the Frobenius norm. For U1,U2 with orthonormal

columns, we use SD2(U1,U2) := ‖(I − U1U1
�)U2‖

or SDF (U1,U2) := ‖(I − U1U1
�)U2‖F to quantify

the Subspace Distance (SD). Clearly SDF (U1,U2) ≤√
rSD2(U1,U2).

2. Centralized Multi-task Representation
Learning and Few Shot Learning

Below, we first give the AltGDmin algorithm from (Nayer

& Vaswani, 2023, on arXiv since Feb. 2021) to learn U∗.

This is also similar to the FedRep algorithm of (Collins

et al., 2021), with the difference only being that the Alt-

GDmin initialization is better (has a better sample com-

plexity). Next, we give details about few-shot learning.

2.1. Multi-task Linear Representation Learning

Recall that the goal is to minimize f(U ,B) :=∑q
k=1 ‖yk − XkUbk‖2 where B = [b1, ..., bq]. Alt-

GDmin (Nayer & Vaswani, 2023, on arXiv since Feb.

2021; Collins et al., 2021; Vaswani, 2024) proceeds

as follows. We first initialize U as explained below;

this is needed since the our optimization problem is

clearly non-convex. After this, at each iteration, we

alternatively update U and B as follows: (1) Keep-

ing U fixed, update B by solving minB f(U ,B) =
minB

∑q
k=1 ‖yk − XkUbk‖2. (2) Keeping B fixed,

update U by a GD step, followed by orthonormalizing

its columns: U+ ← QR(U − η∇Uf(U ,B))). Here

∇Uf(U ,B) =
∑

k∈[q] X
�
k (XkUbk − yk)b

�
k , η is the

step-size for GD. We initialize U by (Nayer & Vaswani,

2023, on arXiv since Feb. 2021) computing the top r sin-

gular vectors of

Θ0 :=
∑
k

X�
k (yk)trunce

�
k , ytrunc := (y ◦ �|y|≤√

α)

Here α := 9κ2μ2
∑

k ‖yk‖2/mq. Here and below, ytrunc

refers to a truncated version of the vector y obtained by ze-

roing out entries of y with magnitude larger than α (the no-

tation �z≤α returns a 1-0 vector with 1 where zj < α and

zero everywhere else, and z1 ◦ z2 is the Hadamard product

(.* operation in MATLAB)). The algorithm is summarized

in Algorithm 1. We can show the following.

Theorem 2.1 ((Vaswani, 2024)). Assume σ2
v = 0 and

that maxk ‖b∗k‖ ≤ μ
√
r/qσ1(Θ

∗) for a constant μ ≥ 1

(incoherence of right singular vectors of Θ∗). Let κ de-
note the ratio of the first to the r-th singular value of
Θ∗. Consider Algorithm 1 with η = 0.4/mσ∗

1
2 and T =

Cκ2 log(1/ε). If mq ≥ Cκ6μ2(n + q)r(κ2r + log(1/ε))
and m ≥ Cmax(log n, log q, r) log(1/ε), then, with prob-
ability (w.p.) at least 1−n−10,SD2(U ,U∗) ≤ ε and ‖θk−
θ∗
k‖ ≤ ε‖θ∗

k‖ for all k ∈ [q].

The time cost is mqnr · T = Cκ2mqnr log(1/ε). The
communication cost is nr per node per iteration.

This result shows that, as long as the total number of sam-

ples per task, m, is roughly order nr2/q, the learning er-

ror decays exponentially with iterations even with a step-

size η being a numerical constant (fast decay). Thus, after

T = Cκ2 log(1/ε) iterations, SD(U ,U∗) ≤ ε, i.e. the

low-dimensional subspace is accurately learned.

Treating κ, μ as numerical constants and assuming n ≈ q,

notice that the AltGDmin sample complexity is mq �
nrmax(r, log(1/ε)). On the other hand, FedRep (Collins

et al., 2021) needs to assume mq � nr2 max(r, log(1/ε))
which is worse by a factor of r. In fact this complex-

ity is comparable to that for the AltMin solution from

(Nayer & Vaswani, 2021) that solved this problem and

its LRPR generalization. The older result of (Nayer &

Vaswani, 2023, on arXiv since Feb. 2021) for AltGDmin

needed mq � nr2 log(1/ε). This is worse by a factor of

max(1, r/ log(1/ε)).

The FedRep guarantee is worse because its initialization

involves computing U0 as top r singular vectors of the ma-

trix
∑

ki y
2
kixkix

�
ki�(y

2
ki ≤ (9κ2μ2

∑
ki y

2
ki/mq)), and

its analysis of the GD step is not as tight as can be (sim-

ilar to that of (Nayer & Vaswani, 2023, on arXiv since Feb.

2021)). The advantage of the result of (Collins et al., 2021)

was (i) a slightly better dependence κ, and (ii) it studied the

low rank column-wise sensing problem in the σ2
v �= 0 set-

ting, while the result of (Vaswani, 2024) assumes σ2
v = 0.

As we explain in the remark given next, this result can eas-

ily extend to the σ2
v �= 0 setting as well with no change to

its sample complexity.

Remark 2.2 (Theorem 2.1 with σ2
v �= 0). Assume ev-

erything from Theorem 1 and that 0 < σ2
v ≤ c

‖Θ∗‖2
F

q .

Let εnoise := Cqκ2 σ2
v

σ∗
1
2 . Then, SD2(U ,U∗) ≤

max(ε, εnoise). In words, the error decays exponentially

until it reaches the (normalized) “noise-level”, but saturates

after that.

2.2. Few-Shot Learning

Few-shot learning refers to learning in data-scarce environ-

ments (Du et al., 2020). Once an estimate U for the true

representation U∗ is obtained, the problem simplifies to

learning a predictor function bk : �r → � defined on �r
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and specialized for each task k. Now, each source task can

easily compute the local predictor b∗k using the available

samples, as r � m.

We want to bound the excess risk of the learned predic-

tor on target task new. We are given mnew input, output

training data pairs arranged into an m × n matrix Xnew,

and an m × 1 vector ynew and we need to solve the re-

gression problem. However, this is data-scarce setting, i.e.,

mnew � n and consequently without the low-dimensional

linear representation, it is impossible to solve the regres-

sion problem. However, using the learned U , we can easy

learn an r-dimensional vector of regression coefficients as

long as mnew > r. Excess risk on the learned predictor

is given by ‖x�
newθ

∗
new + vnew − x�

newUbnew‖, where

θ∗
new = U∗b∗new.

We compute bnew as bnew = (XnewU)†ynew. Here, U is

the final estimate from the AltGDmin algorithm described

above. M † := (M�M)−1M�. We can prove the fol-

lowing for it.

We have the following bound on the expected value of the

excess risk (ER) for the few-shot learning task. Recall from

(Du et al., 2020) that �[ER(U , bnew] = �[(y− ŷ)2] where

y = θ∗
new

�x+ v and we predict it as ŷ = b�newU
�x with

bnew as given by the last step of Algorithm 1 and U is the

output of its learning representation step.

Corollary 2.3. Let U be the final output of the learning
steps of Algorithm 1. If mnew ≥ Cmax(r, log q, log n),
then, the excess risk �[ER(U , bnew] = ‖θ∗−Ubnew‖2+
σ2
v ≤ Cmax(σ2

v , ε‖b∗new‖2).

Notice that, with just order r samples, we are able to learn

the regression coefficients for n-dimensional features.

3. Resilient Federated Multi-Task and
Few-Shot Learning

Recall the federated setting problem from Sec. 1.3: there a

total of L federated nodes and we assume that at most τL
of them may be Byzantine with τ < 0.4. Denote the set of

good (non-Byzantine) nodes by Jgood. Equivalently, this

means that |Jgood| > (1− τ)L.

We develop a solution approach for making AltGDmin

Byzantine resilient that relies on the geometric median

(GM). The most challenging part in doing this is modify-

ing the initialization step. For the rest of the algorithm,

we can borrow ideas from the existing extensive literature

on Byzantine resilient GD discussed earlier. One popular

approach in this area is to replace the summation in the

gradient computation step by a “median” for vector-valued

quantities. A well-studied one is the geometric median

(GM) (Minsker, 2015; Chen et al., 2017), which we will

use. The minimization step for update of columns of B can

Algorithm 1 Few-Shot Learning via altGDmin. Let M† :=
(M�M)−1M�.

1: Input: yk,Xk, k ∈ [q]
2: Parameters: GD step size, η; Number of iterations, T
3: Sample-split: Partition the data into 2T + 1 equal-

sized disjoint sets: y
(τ)
k ,X

(τ)
k , τ = 0, 1, . . . 2T .

Learning Representation:
4: Initialization:
5: set α ← 9κ2μ2 1

mq

∑
ki

∣∣yki

∣∣2,

6: Using yk ≡ y
(0)
k ,Xk ≡ X

(0)
k ,

7: set yk,trunc(α) ← yk,trnc := trunc(yk, α),

8: set Θ0 ← (1/m)
∑
k∈[q]

X�
k yk,trunc(α)e

�
k

9: set U0 ← top-r-singular-vectors of Θ0

10: GDmin iterations:
11: for t = 1 to T do
12: Let U ← Ut−1.

13: Using yk ≡ y
(t)
k ,Xk ≡ X

(t)
k ,

14: set bk ← (XkU)†yk, θk ← Ubk for all k ∈ [q]

15: Using yk ≡ y
(T+t)
k ,Xk ≡ X

(T+t)
k , compute

16: set ∇Uf(U ,B) =
∑

k X
�
k (XkUbk − yk)b

�
k

17: set Û+ ← U − (η/m)∇Uf(U ,Bt).

18: compute Û+ QR
= U+R+.

19: Set Ut ← U+.

20: end for

Few-shot Learning: Prediction on new source
21: bnew ← (XnewU)†ynew

22: θnew ← Ubnew

be done locally at the nodes. These are also used only in

the local partial gradient computation and hence never need

to be transmitted to the center. We should mention though

that the analysis of the GD step is not a direct extension of

existing ideas because of the important differences between

our problem and most standard problems. In our problem,

the GD step is not a standard GD or projected GD step for

a given cost function.

For L data vectors, z1, z2, . . . , zL, the geometric median

(GM) is defined as zgm = minz
∑L

�=1 ‖z�−z‖. Here and

below, ‖.‖ with a subscript denotes the l2 norm. The GM

cannot be computed in closed form but various algorithms

exist to accurately approximate it.

3.1. GM-based Resilient Spectral Initialization:
Subspace Median and Subspace Median of Means

This consists of two steps. First a resilient estimate of the

truncation threshold α = C̃
mq

∑
k

∑
i y

2
ki needs to be com-

puted. For this, we use the scalar median of means of the

partial estimates computed by each node. Next, we need to

4
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compute U0 which is the matrix of top r left singular vec-

tors of Θ0. Node � has data to compute the n × q matrix

(Θ0)�, defined as

(Θ0)� :=

q∑
k=1

(Xk)�
�((yk)�)trunce

�
k , (2)

Observe that Θ0 =
∑

�(Θ0)�/L. If all nodes were good,

we would use this fact to implement the federated power

method (PM) for this case: starting with a random initial-

ization U , this involves iterating the following: compute

V :=
∑

� V�/L (where V� = (Θ0)�
�U ) in a federated

fashion, followed by computing Ũ+ =
∑

�(Θ0)�V /L in

a federated fashion, and then obtain U+ = QR(Ũ+) at

the center. To deal with Byzantine attacks, the most obvi-

ous solution is to replace the averaging at the center by the

GM. However, this works with high probability only if all

the (Θ0)�’s are extremely accurate estimates of Θ∗ 1. This

further implies that its required sample complexity is very

large. We provide a detailed discussion of this fact for the

simpler PCA problem in Sec. 4 and Table 1.

Subspace-Median. Since the GM is defined for quantities

whose distance can be measured using the vector l2 norm

(equivalently, matrix Frobenius norm), it cannot be directly

used for subspaces (or their basis matrices): these do not

lie in on a Euclidean space (but instead on the Stiefel mani-

fold). To understand this simply, notice that U ,−U specify

the same subspace even though ‖U − (−U)‖F = 2
√
r �=

0. Notice though that the Frobenius norm between the pro-

jection matrices of two subspaces is also a measure of sub-

space distance: ‖PU−PU∗‖F =
√
2SDF (U ,U∗) (Chen,

Chi, Fan, Ma, et al., 2021, Lemma 2.5). Here PU := UU�

is the projection matrix for subspace U (assumes U has or-

thonormal columns). We use this idea to develop a simple

but useful approach called the “Subspace Median”: Node

� computes Û� as the top r singular vectors of the matrix

(Θ0)� that it has data for, and sends it to the center. If

node � is good, then Û� already has orthonormal columns;

however if the node is Byzantine, then it is not. The center

first orthonormalizes the columns of all the received Û�:

1The reason for this is that it computes the GM of the node
outputs V� = (Θ0)

�
� U at each iteration including the first one.

At the first iteration, U is a randomly generated matrix and
thus, w.h.p., this is a bad approximation of the desired subspace
span(U∗). Consequently, unless the various (Θ0)�’s are very
close approximations of Θ∗, the different V�’s are likely to be
bad approximations of span(B∗). In particular, this means that
the estimates at the different nodes may be quite different even
for all the good nodes. As a result, their GM is unable to distin-
guish between the good and Byzantine ones, and, there is a good
chance it approximates the Byzantine one(s). A similar argument

can be repeated for Ũ�s and so on. Thus, unless all the (Θ0)�’s
are very close approximations of Θ∗ (and hence very similar),
there is a good chance that the subspace estimates do not improve
over iterations.

U� = QR(Û�) for all � ∈ [L]. It then computes the projec-

tion matrices PU�
:= U�U

�
� , � ∈ [L], followed by vector-

izing them, computing their GM, and then converting the

GM into a matrix. Denote this by Pgm. Finally, the center

finds the � for which PU�
is closest to Pgm in Frobenius

norm and outputs the corresponding U�. Denote this U� by

Uout We can show the following for this estimator

Lemma 3.1. (Subspace Median) Suppose that |Jgood| ≥
(1−τ)L for a τ < 0.4. If min�∈Jgood

Pr(SDF (U�,U
∗) ≤

δ) ≥ 1 − p. Then, with probability at least 1 − c0 −
exp(Lψ(0.4− τ, p)), SDF (Uout,U

∗) ≤ 23δ.

Here ψ(a, b) := (1− a) log 1−a
1−b + a log a

b is the binary KL
divergence.

Subspace Median of Means. A median-based estimator

can be robust to almost 50% outliers (here Byzantine at-

tacks), but, as is well known, the use of median also wastes

samples. In our context, this means that the estimate of

each node needs to be accurate enough. If the maximum

number of Byzantine nodes is known to be much lesser

than 50%, a better approach is to use the median of means

(MoM) estimator. We explain how to develop this for our

problem. For a parameter L̃ ≤ L, we would like to form

L̃ mini-batches of ρ = L/L̃ nodes; w.l.o.g. ρ is an integer.

For the �-th node in the ϑ-th mini-batch we use the short

form notation (ϑ, �) = (ϑ− 1)ρ+ �, for � ∈ [ρ].

In our setting, combining samples means combining the

rows of (Xk)� and (yk)� for ρ nodes to obtain (Θ0)(ϑ) with

k-th column given by
∑ρ

�=1(Xk)
�
(ϑ,�)(yk,trunc)(ϑ,�)/ρ.

To compute this in a communication-efficient and private

fashion, we use a federated power method for each of

the L̃ mini-batches. The output of each of these power

methods is U(ϑ), ϑ ∈ [L̃]. Then we do subspace-

median on U(ϑ), ϑ ∈ [L̃] to obtain the final subspace

estimate Uout. To explain the federation details sim-

ply, we explain them for ϑ = 1. The power method

needs to federate U ← QR((Θ0)(1)(Θ0)
�
(1)U) =

QR(
∑ρ

�′=1(Θ0)�′(
∑ρ

�=1(Θ0)
�
� U)). This needs two steps

of information exchange between the nodes and center at

each power method iteration. In the first step, we compute

V =
∑

�∈[ρ](Θ0)�
�U , and in the second one we compute

Ũ =
∑

�∈[ρ](Θ0)�V , followed by its QR decomposition.

We summarize the complete algorithm in Algorithm 2.

Guarantee. We can prove the following. It needs to as-

sume that the same set of τL nodes are Byzantine for all the

power method iterations needed for the initialization step2.

Theorem 3.2 (Initialization via Subs-MoM). Assume σ2
v =

0 and that maxk ‖b∗k‖ ≤ μ
√
r/qσ1(Θ

∗) for a con-
stant μ ≥ 1. Consider Algorithm 2 with Tgm =

2This can be relaxed if we instead assume that a much tighter
bound on the number of bad nodes per iteration.
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C log( L̃r
δ0
), Tpow = Cκ2 log( n

δ0
). Assume that the set of

Byzantine nodes remains fixed for all iterations in this al-
gorithm and is of size at most τL with τ < 0.4L̃/L. If
m̃q ≥ C L̃

L · κ6μ2(n+ q)r2/δ20 , then

Then, w.p. at least 1 − c0 − exp(−L̃ψ(0.4 − τ, n−10 +
exp(−c(n+ q))))− L exp(−c̃m̃qδ20/r

2κ4)

SDF (U
∗,Uout) ≤ δ0

The communication cost per node is order nr log( n
δ0
). The

computational cost at any node is order nqr log( n
δ0
) while

that at the center is n2L̃ log3(L̃r/δ0).

The extension of the above result for the σ2
v �= 0 case will

be straightforward and can be proved using the same ideas

as those used for Remark 2.2.

Proof. This follows by using Lemma 3.1 along with

the Davis Kahan sinΘ theorem and concentration

bounds from (Vershynin, 2018) applied to analyze

the output of each node. We apply the latter two

to Φ(ϑ) =
∑ρ

�=1(Θ0)(ϑ,�)(Θ0)
�
(ϑ,�)/ρ and Φ∗ =

�[(Θ0)�|α]�[(Θ0)�|α]� for ϑ ∈ [L̃].

3.2. GM-based Resilient Federated GDmin Iterations

We can make the altGDmin iterations resilient as follows.

In the minimization step, each node computes its own esti-

mate (bk)� of b∗k as follows:

(bk)� = ((Xk)�U)†(yk)�, k ∈ [q]

Each node then uses this to compute its estimate of the gra-

dient w.r.t. U as ∇f� =
∑

k∈S�
(Xk)

�
� ((Xk)�U(bk)� −

(yk)�)(bk)
�
� . The center receives the gradients from the

different nodes, computes their GM and uses this for the

projected GD step. Since the gradient norms are not

bounded, the GM computation needs to be preceded by the

thresholding step.

To improve sample complexity (while reducing Byzantine

tolerance), we can replace GM of the gradients by their GM

of means: form L̃ batches of size ρ = L/L̃ each, compute

the mean gradient within each batch, compute the GM of

the L̃ mean gradients. Use appropriate scaling. We sum-

marize the GMoM algorithm in Algorithm 3. The GM case

corresponds to L̃ = L. Given a good enough initialization,

a small enough fraction of Byzantine nodes, enough sam-

ples m̃q at each node at each iteration, we can prove the

following for the GD iterations.

Lemma 3.3. (AltGDmin-SubsMoM: Error Decay) Con-
sider Algorithm 3 with sample-splitting, and with step-
size η ≤ 0.5/σ∗

1
2. If, at each iteration t, m̃q ≥

C1κ
4μ2(n + r)r2(L̃/L), m̃ > C2 max(log q, log n);

Algorithm 2 Byz-AltGDmin-Learn: Initialization step.

1: Input: Batch ϑ : {(Xk)�,Y�, k ∈ [q]}, � ∈ [L]
2: Parameters: Tpow, Tgm,

3: Nodes � = 1, ..., L

4: Compute α� ← C̃
m̃q

∑
k ‖(yk)�‖2, with C̃ = 9κ2μ2.

5: Central Server
6: α ← Median{α(ϑ)}L̃ϑ=1, where α(ϑ) =∑ρ

�=1 α(ϑ,�)/ρ
7: Central Server
8: Let U0 = Urand where Urand is an n× r matrix with

i.i.d standard Gaussian entries.

9: for τ ∈ [Tpow] do
10: Nodes � = 1, ..., L

11: Compute V� ← (Θ0)
�
� (U(ϑ))τ−1 for � ∈ (ϑ−1)ρ+

[ρ], ϑ ∈ [L̃]. Push to center.

12: Central Server
13: Compute V(ϑ) ←

∑ρ
�=1 V(ϑ−1)ρ+�

14: Push V(ϑ) to nodes � ∈ (ϑ− 1)ρ+ [ρ].
15: Nodes � = 1, ..., L
16: Compute U� ←

∑
k(Θ0)�V(ϑ) for � ∈ (ϑ − 1)ρ +

[ρ], ϑ ∈ [L̃]. Push to center.

17: Central Server
18: Compute U(ϑ) ← QR(

∑ρ
�=1 U(ϑ−1)ρ+�)

19: Let (U(ϑ))τ ← U(ϑ). Push to nodes � ∈ (ϑ− 1)ρ+
[ρ].

20: end for
21: Central Server (implements Subspace Median on

U(ϑ), ϑ ∈ [L̃])
22: Orthonormalize: Uϑ ← QR((Uϑ)0), ϑ ∈ [ρ]
23: Compute PUϑ

← UϑU
�
ϑ , ϑ ∈ [ρ]

24: Compute GM: Pgm ← approxGM{PUϑ
, ϑ ∈ [ρ]}

(Use (Cohen, Lee, Miller, Pachocki, & Sidford, 2016,

Algorithm 1) with parameter Tgm).

25: Find ϑbest = argminϑ ‖PUϑ
− Pgm‖F

26: Output Uout = Uϑbest

if τ < 0.4L̃/L; and if the initial estimate U0 satis-
fies SDF (U

∗,U0) ≤ δ0 = 0.1/κ2, then w.p. at
least 1 − c0 − t

[
Ln−10 + exp(−Lψ(0.4− τ, n−10))

]
,

SDF (U
∗,Ut+1) ≤ δt+1 :=

(
1− (ησ∗

1
∗2) 0.12κ2

)t+1
δ0

We prove this lemma in the long version (Singh & Vaswani,

2024, Section V). The complete algorithm is obtained

by using Algorithm 3 initialized using Algorithm 2 with

sample-splitting. Combining Theorem 3.2 and Lemma

3.3, and setting η = 0.5/σ∗
1
2 and δ0 = 0.1/κ2, we can

show that, at iteration t + 1, SDF (U
∗,Ut+1) ≤ δt+1 =

(1− 0.06/κ2)t+10.1/κ2 whp. Thus, in order for this to be

≤ ε, we need to set T = Cκ2 log(1/ε). Also, since we are

using fresh samples at each iteration (sample-splitting), this

also means that our sample complexity needs to be multi-

plied by T . We have the following final result.
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Algorithm 3 Byz-AltGDMin-Learn: Complete algorithm

1: Obtain U0 using Algorithm 2.

2: for t = 1 to T do
3: Nodes � = 1, ..., L
4: Set U ← Ut−1

5: (bk)� ← ((Xk)�U)†(yk)�, ∀ k ∈ [q]
6: (θk)� ← U(bk)�, ∀ k ∈ [q]
7: (∇fk)� ← ∑

k∈[q](Xk)
�
� ((Xk)�U(bk)� −

(yk)�)(bk)�
�, ∀ k ∈ [q]

8: Push ∇f� ←
∑

k∈[q](∇Ufk)�
9: Central Server

10: Compute ∇f(ϑ) ←
∑

�∈ϑ ∇f�
11: ∇fGM ← approxGMthresh(∇f(ϑ), ϑ =

1, 2, . . . L̃).
(Use (Cohen et al., 2016, Algorithm 1) with Tgm

iterations on {∇f(ϑ), ϑ ∈ [L̃] \ {� : ‖∇f(ϑ)‖ >
ω}})

12: Compute U+ ← QR(Ut−1 − η
ρm̃∇fGM )

13: return Set Ut ← U+. Push Ut to nodes.

14: end for

Theorem 3.4. (AltGDmin-SubsMoM: Complete guar-
antee) Assume σ2

v = 0 and that maxk ‖b∗k‖ ≤
μ
√
r/qσ1(Θ

∗) for a constant μ ≥ 1. Consider Algorithm
3 and the setting of Theorem 3.2 and Lemma 3.3. Set T =
Cκ2 log(1/ε). If m̃q ≥ Cκ4μ2(n + q)r2 log(1/ε)(L̃/L)
and m̃ > Cκ2 max(log q, log n) log(1/ε), then, w.p. at
least 1 − TLn−10, SDF (U

∗,U) ≤ ε, and ‖θk − θ∗
k‖ ≤

ε‖θ∗
k‖ for all k ∈ [q]. The communication cost per node is

order nr log(nε ). The computational cost at any node is or-
der nqr log(nε ) while that at the center is n2L̃ log3(L̃r/ε).

The extension of the above result for the σ2
v �= 0 case will

be straightforward and can be proved using the same ideas

as those used for Remark 2.2.

3.3. Numerical Experiments

In the Figure 1 we plot Error vs Iteration where Error =
SDF (U∗,U)√

r
. We report mean SDF over 100 Monte Carlo

runs. We compare Byz-Fed-AltGDmin-Learn (GMoM)

with the baseline algorithm - AltGDmin-Learn (Mean) in

the no attack setting. We also provide results for Byz-

Fed-AltGDmin-Learn (GM) for both values of Lbyz . All

these are compared in Figure 1. We also compare the ini-

tialization errors in Figure 1 Table. As can be seen Byz-

Fed-AltGDmin-Learn (GMoM) based initialization error is

quite a bit lower than that with Byz-Fed-AltGDmin-Learn

(GM). The same is true for the GDmin iterations.

Method Lbyz = 1 Lbyz = 2
Byz-Fed-AltGDmin-Learn (GM) 0.716(0.665) 0.717(0.667)

Byz-Fed-AltGDmin-Learn (GMoM) 0.477(0.457) 0.475(0.459)

0 50 100 150 200 250 300 350 400

Iteration

10-15

10-10

10-5

100

E
rr

or

Iteration vs Error

Mean(No attack)
GMoM L

byz
=2

GM L
byz

=2

GMoM L
byz

=1

GM L
byz

=1

Figure 1: Table: Initialization errors. We report
“maxSDF (meanSDF )” in each column. Figure: Byz-Fed-
AltGDmin-Learn (GMoM), AltGDmin-Learn (Mean), Byz-Fed-
AltGDmin-Learn (GM) for Lbyz = 1, 2; L = 18.

4. Resilient Federated PCA
Given q data vectors dk ∈ �n, that are zero mean, mutu-

ally independent, sub-Gaussian, and have covariance ma-

trices that share the same principal subspace, the goal is

to find this subspace. We can arrange the data vectors

into an n × q matrix, D := [d1,d2, . . .dq]. The data

is vertically federated, this means that each node � has

q� = q̃ = q
L dk’s. Denote the corresponding sub-matrix

of D by D�. Suppose that dk has covariance matrix Σ∗
k

of the form Σ∗
k

EVD
= [U∗,U∗

⊥,k]Sk[U
∗,U∗

⊥,k]
�: all the

covariance matrices share the same principal subspace U∗,

but the lower eigenvectors and all eigenvalues can be dif-

ferent. We use K to denote the maximum sub-Gaussian

norm (Vershynin, 2018, Chap 2) of Σ∗
k
−1/2dk for any

k ∈ [q]. The goal is to obtain a resilient estimate of the

r-dimensional subspace U∗ of �n in a federated setting.

The subspace median idea developed for initializing the

AltGDmin algorithm described earlier is in fact much more

generally applicable for a generic subspace learning meta-

problem: given L subspace estimates U� of an unknown

subspace U∗, one can compute their subspace median us-

ing the exact same idea as that given in Sec. 3.1. For PCA,

the individual node subspace estimates U� are computed as

the top r singular vectors of the data matrix D�.

Moreover, we can also develop and analyze a subspace

median of means generalization of it well. This requires

some different ideas described next because, for the cur-

rent problem, we are assuming vertical federation. Pick

an integer L̃ ≤ L. In order to implement the “mean”

7



Byzantine Resilient and Fast Federated Few-Shot Learning

Methods→ SVD-ResCovEst ResPowMeth SubsMed PowMeth, no attack
(Minsker, 2015, Cor 4.3) Modification of (Minsker, 2015; Hardt & Price, 2014) (Proposed) (baseline)

Sample Comp for PCA n2L
ε2 max

(
n2r2, n

ε2

) · L nrL
ε2

nr
ε2

(lower bound on q)

Communic Cost n2 nr
σ∗
r

Δ log(nε ) nr nr
σ∗
r

Δ log(nε )

Compute Cost - node n2q� nq�r
σ∗
r

Δ log(nε ) nq�r
σ∗
r

Δ log(nε ) nq�r
σ∗
r

Δ log(nε )

Compute Cost - center n2L log3
(
Ln
ε

)
nrL

σ∗
r

Δ log(nε ) log
3
(
Ln
ε

)
n2L log3

(
Ln
ε

)
nrL

σ∗
r

Δ log(nε )

Table 1: Comparisons for solving the resilient federated PCA problem (Sec. 4). We compare the proposed Subspace
Median (SubsMed) algorithm with the two obvious (but bad) solutions – SVD-Resilient Covariance Estimation (SVD-
ResCovEst): SVD on GM of Covariance matrices, and Resilient Power Method (ResPowMeth): GM based modification
of the power method – and with the baseline (power method for a no-attack setting). Observe that SubsMed needs the
smallest sample complexity and has the lowest communication cost.

step, we need to combine samples from ρ = L/L̃ nodes,

i.e., we need to find the r-SVD of matrices D(ϑ) =

[D(ϑ,1),D(ϑ,2), . . . ,D(ϑ,ρ)], for all ϑ ∈ [L̃]; we are us-

ing the notation (ϑ, �) = (ϑ− 1)ρ+ �. This needs to be

done without sharing the entire data matrix. We do this by

implementing L̃ different federated power methods, each

of which combines samples from a different minibatch of

ρ nodes. The output of this step is L̃ subspace estimates

U(ϑ), ϑ ∈ [L̃]. These serve as inputs to a basic Subspace-

Median algorithm to obtain the final Subspace-MoM esti-

mator. L̃ = L is its subspace median special case.

Theorem 4.1 (Resilient Federated PCA). Consider Sub-
space Median of Means. For a Δ > 0, assume that
min�((σ

∗
r )� − (σ∗

r+1)�) ≥ Δ. Here Σ∗
� = 1

q̃

∑
k∈S�

Σ∗
k.

Assume that the set of Byzantine nodes remains fixed for all
iterations in this algorithm and the size of this set is at most
τL with τ < 0.4L̃/L. If

q ≥ CK4σ
∗
1
2

Δ2

nr

ε2
· L̃

then, then w.p. at least 1 − c0 − exp(−Lψ(0.4 −
τ, 2 exp(−n))), SDF (Uout,U

∗) ≤ ε. The communica-
tion cost is Tpownr = nr

σ∗
r

Δ log(nε ) per node. The com-

putational cost at the center is order n2L̃ log3
(

L̃r
ε

)
. The

computational cost at any node is order nq�rTpow.

Comparison with attack-free federated PCA. Observe

that the total sample complexity (lower bound on q) needed

by the above result to guarantee SDF (U
∗,U) ≤ ε is order

nrL̃/ε2. Here we are quantifying subspace distance using

SDF . However, even if we use the more common distance

measure SD2(U
∗,U) := ‖(I − UU�)U∗‖ and require

just SD2(U
∗,U) ≤ ε, this is the required sample com-

plexity. The reason is we need Frobenius norm is for the

GM computation. On the other hand, standard attack-free

PCA needs a sample complexity of only n/ε2 to guarantee

SD2(U
∗,U) ≤ ε (Vershynin, 2018, Remark 4.7.2). Our

complexity also has an extra factor of L̃; this is because we

are computing the individual node estimates using q̃ = q/L
data points and we need each of the node estimates to be

accurate (to ensure that their “median” is accurate). This

extra factor is needed also in other work that uses (geomet-

ric) median, e.g., in (Chen et al., 2017).

Two more obvious solutions for Resilient PCA and
why they fail. Consider the symmetric matrix Φ� :=
(Θ0)�(Θ0)�

�. In a centralized setting, the most obvious

solution to the above problem would be to compute the

GM of the vectorized matrices Φ� followed by obtaining

the principal subspace (r-SVD) of the GM matrix; this was

studied in (Minsker, 2015). However, in a federated set-

ting, this is communication inefficient because it requires

each node to share an n × n matrix. For the same reason

it is not private either. Moreover, this is extremely sample

inefficient; see Table 1. For a communication-efficient so-

lution, in the attack-free federated setting, one would use

the distributed power method (Golub & Van Loan, 1989;

Wu, Wai, Li, & Scaglione, 2018). A direct modification

of this to deal with attacks is to use its GM based modi-

fication: at each iteration, instead of summing the n × r
matrices, Ũ� := (Φ�U) received from each node, we com-

pute the GM of their vectorized versions. We refer to this

as Resilient Power Method (ResPowMeth). However, this

works w.h.p. only if all the Φ�’s are extremely accurate es-

timates of Φ∗ = Θ∗Θ∗� (Singh & Vaswani, 2024). We

summarize this discussion in Table 1.

5. Conclusions and Future Work
We developed a Byzantine-resilient, sample-, time-, and

communication-efficient solution, called Byz-AltGDmin,

for few shot learning. We also introduced a novel solu-

tion approach, called Subspace Median, for combining sub-

space estimates from multiple federated nodes when some

of them can be malicious. This is likely to be of indepen-

dent interest for developing a secure initialization approach

for various federated low rank matrix recovery, and sub-

space learning and tracking problems.

The few shot learning problem is almost synonymous with

the online subspace tracking problem studied in (Babu et

al., 2023) for real-time dynamic MRI. Mini-batch subspace

tracking ideas of this work can be useful for few shot learn-

ing as well. We will explore real data applications in future.
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