Synaptic delays shape dynamics and function in multimodal neural motifs
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In neuroscience, delayed synaptic activity plays a pivotal and pervasive role in influencing synchronization, oscilla-
tion, and information-processing properties of neural networks. In small rhythm-generating networks, such as central
pattern generators (CPGs), time-delays may regulate and determine the stability and variability of rhythmic activity,
enabling organisms to adapt to environmental changes, and coordinate diverse locomotion patterns in both function
and dysfunction. Here, we examine the dynamics of a three-cell CPG model in which time-delays are introduced into
reciprocally inhibitory synapses between constituent neurons. We employ computational analysis to investigate the
multiplicity and robustness of various rhythms observed in such multi-modal neural networks. Our approach involves
deriving exhaustive two-dimensional Poincaré return maps for phase-lags between constituent neurons, where stable
fixed points and invariant curves correspond to various phase-locked and phase-slipping/jitter rhythms. These rhythms
emerge and disappear through various local (saddle-node, torus) and non-local (homoclinic) bifurcations, highlighting

the multi-functionality (modality) observed in such small neural networks with fast inhibitory synapses.

Time-delays are crucial for synergistically regulating
rhythms and can affect the stability and variability of
small rhythm-generating neural networks, such as central
pattern generators (CPGs). They influence the timing of
signaling between neurons and can determine the types
and outcomes of rhythmic activity in a CPG under vari-
ous environmental conditions. With varying time-delays,
the CPG can exhibit either multistability or mono-stability
in its kinetic behaviors, including diverse bifurcation phe-
nomena and changes in rhythmic patterns. Even in sim-
ple biological neural network models, multistable bursting
rhythms can arise due to the introduction of time-delays.
Advanced parallel computing techniques are employed to
derive and parametrically continue a computational fam-
ily of Poincaré return maps for phase-lags between three
constituent neurons. The attractors of these maps, such
as stable fixed points and invariant curves, directly influ-
ence and determine oscillatory outcomes in both biologi-
cally plausible and phenomenological models of rhythmic
neural networks. With this computational approach gen-
erating large and accurate datasets, we can thoroughly ex-
plore how time-delays dictate which stable rhythmic pat-
terns can coexist, emerge, or vanish, specifically due to
underlying bifurcation mechanisms. Subject to intrinsic
mechanisms, these seemingly simple three-cell networks
can produce a rich variety of multistable rhythmic states,
including phase-locked burst pacemakers, traveling-wave
or peristaltic patterns, and even chimeras in which one cell
repeatedly phase-slips relative to the other two, which re-
main phase-locked over time. Additionally, more unusual
behaviors may occur, such as robust synchronous oscilla-
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tions of all three cells and ''phase jitter'' (small phasic os-
cillations) in bursting rhythms. We elucidate the detailed
transition mechanisms between these rhythms, includ-
ing saddle-node, various pitch-fork, secondary Andronov-
Hopf, and torus bifurcations, along with heteroclinic con-
nections.

I. INTRODUCTION

Central pattern generators (CPGs)!~!? are small neural net-

works composed of coupled neurons that autonomously gen-
erate and regulate various rhythmic motor activities in ani-
mals, including heartbeat, respiration, mastication, and loco-
motion. Though structurally simple, CPGs exhibit significant
complexity. They can produce stable oscillations through en-
dogenous burst generators or network-level mechanisms. A
prime example is the lobster pyloric CPG, which rhythmi-
cally controls the contraction and relaxation of stomach mus-
cles. Typically, CPGs are composed of fundamental units like
the half-center oscillator (HCO), consisting of two symmet-
rically arranged neurons that inhibit each other, resulting in
alternating anti-phase bursting patterns'>!4. Current research
focuses on the rhythmic dynamics, transitions, and bifurca-
tions in three-cell neural networks formed by interconnected
HCO circuits with delayed and fast inhibitory synapses. Vari-
ous three-cell biological circuits have been previously identi-
fied as fundamental building blocks for larger neural networks
regulating various types of locomotion'3~19.

Neuronal activity is a complex, collaborative process in-
volving interactions and coupling relationships among numer-
ous neurons. This collaboration is essential for executing var-
ious operational tasks within specific regions of the nervous
system. Coupling relationships encompass both electrical sig-
nal transmission and chemical signal transfer at synapses. Due
to the speed of nerve conduction, synaptic transmission time,
and the time required for neuronal information processing,
inevitable delays occur in signal transmission between con-
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FIG. 1. Four key network configurations with inhibitory delayed synapses. (A) Unidirectional clockwise motif (CC) with a single delayed
synapse connecting cell 1 to cell 2. (B) Unidirectional CC motif with all three delayed synapses. (C) Bi-directional motif with delayed
synapses between cells 1 and 2. (D) Bidirectionally homogenous motif with all delayed inhibitory synapses. The addition of time-delays is

indicated by dashed lines in the accompanying diagram.

stituent neurons?’~28. These delays play a crucial role in the
dynamic behavior and function of the nervous system, par-
ticularly in central pattern generators (CPGs). The presence
of delays may induce changes in network rhythms and transi-
tions between them in response to perturbations. For example,
in respiratory control, CPGs must switch between different
breathing patterns, such as quiet and deep breathing®®-*°. This
switching process relies on precise delay regulation to ensure
that the rhythm and intensity of breathing adapt to the body’s
needs.

Concerning neural oscillatory networks with time-delayed
coupling, it was suggested in Refs.>!3? that time-delays may
enhance neural synchronization. Furthermore, as was found in
Refs.3>34 that the length of time-delay may have significantly
different effects on synchronization. Additionally, delays can
contribute to the emergence of multistability>>=7. For in-
stance, in gait control, CPGs facilitate transitions between dis-
tinct locomotion patterns, such as walking, trotting, and run-
ning, each corresponding to a stable rhythmic state’®3°. Ad-
justing delays enables smooth transitions between these stable
states, allowing for complex movement patterns. Thus, under-
standing the mechanisms and roles of delays is essential for
uncovering the fundamental principles of CPG function and
advancing neuro-engineering technologies, for example, bio-
inspired robotics.

Il. METHODS

In this study, we use a generalized FitzHugh-Nagumo
(gFN) model proposed in Refs.*** to construct a family
of delayed three-cell networks. More specifically, the two-
dimensional gFN model captures some key features of typ-
ical Hodgkin-Huxley (HH)-type square-wave bursters. This
model emphasizes the essential characteristics of rhythm-
generating circuits, enabling the stable generation of required
dynamics without relying on specific neuronal and synaptic
models. The simplicity of the gFN equations makes them par-
ticularly suitable for computational studies, especially those
involving GPU-based exploration of parameters and initial
conditions. We investigate how time-delays influence the
generation and stability of various rhythms, including phase-
locked states, periodic phase slips, and chimera-like behav-
iors. By modulating these delays, different neural activity pat-
terns emerge, revealing the underlying mechanisms of CPG
function across various physiological states. A key feature

of multifunctional CPGs is their ability to generate multiple
rhythmic outcomes within the same circuitry and transition
between these rhythms'®#47. Mathematical modeling and
computational simulations serve as powerful tools for explor-
ing the dynamics of small rhythmic neural networks, espe-
cially multi-modal or multi-functional ones.

The technique introduced in Ref.*® has been effectively
used to detect nonlocal bifurcations of bursting polyrhythms
in small networks of weakly coupled neurons*>*- While
a previous study>* proposed a simpler neural network for sta-
bility analysis, and recent work>® introduced a slow synapse
model with high filtering efficiency and short time-delays, the
effects of such delays in synaptic connections, both inhibitory
and excitatory, in such neural networks remain yet to be fully
explored. This paper addresses this gap by thoroughly in-
vestigating three-cell neural circuits with delayed inhibitory
synapses.

Fitzhugh-Nagumo-like cells in biological sciences, also
known historically and chronologically as generic relaxation
oscillators in physics, provide a mathematical generalization
of Hodgkin-Huxley-type models, capturing common dynam-
ical features observed in biological neurons. The generalized
Fitzhugh-Nagumo (gFN) model*® used here incorporates ad-
ditional dynamical and temporal features to more realistically
replicate the behavior of biological bursters, both in isolation
and under perturbations. Using this gFN neuron model, we
investigate a family of several 3-cell networks, described by
the following coupled ODE system:
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Here, the i,;, neuron’s state is described by its fast membrane
voltage V, and a slow recovery or gating variable & (like in
the Hodgkin-Huxley formalism); € is the inverse of a time
constant that regulates the slow dynamics in the gFN neuron
(0 < € < 1); the control parameter I, is an applied current,
which is set to I,,, = 0.4 for all three neurons, (unless other-
wise specified as in the caption to Fig. 2.) Constants V; and
k determine and shape the relative positions and shapes of the
cubic and sigmoidal nullclines given by V = 0 and & = 0, re-
spectively. The default values of the parameters are k = 10,
€ = 0.3, and V) = 0, which is also the level of the synaptic
threshold V;, in the equation (3) below. Driving or presynap-
tic neurons are active as long as their voltage V; >V, = O:
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FIG. 2. (A) Symmetric Poincaré return map for the phase-lags, Aj; and A;3, between the neurons is represented on unit square and features
six fixed points (FPs): one repeller at (0,0) labelled with (light blue) o, five attractors labeled with blue, red, green dots e, located near the
default values (Ajp,A13) = (1/2,1/2), (0,1/2),(1/2,0) referred to as pacemakers (PM), along with black and purple dots (CW) and counter-
clockwise (CCW) traveling waves (TW) FPs situated near (1/3,2/3) and (2/3,1/3), resp. The black crosses x represent saddles, whose
separatrices partition the attraction basins (with matching colors) of the stable FPs, while arrows represent the directions of the forward phase
trajectories of the map. (B) Phase-lags, 12('11 ) and 13('1') are defined as the delays between upstrokes in the voltage traces of the reference blue cell
1 and the following green cell 2 and red cell 3, normalized over the network period. (B1) The phase-locked PM rhythm and (B2) the CC TW

rhythm corresponding, resp., to the stable black and blue FPs of the map in panel A. Parameters: I,p, = 0.419 and gj; = 0.0015.

FIG. 3. The Poincaré return map corresponding to a unidirectional
CW motif (see Figs. 1A and B with no delay (a = 0). There are
total six FPs in it: two repellers, at (0,0) and (1/3,2/3), labelled
with o (light blue), one attractor labeled with e and three saddles
labelled with x that determine attraction basin(s) of FPs. The stable
purple CCW TW at (2/3,1/3) is the global attractor determining the
mono-stable dynamics of the motif generating the only sequential
(I = 3 — 2) rhythm. A cyan hollow circle (o) surrounded by three
saddles (x) nearby represents a repelling CW TW FP corresponding
to a non-observable rhythm (1 — 2 — 3).

they are assumed to slow down or inhibit the driven or postsy-
naptic neurons by the fast, uni-directional synapses described

by the fast threshold modulation (FTM) given by

Gji (VjaVi) = 8ji (Vrev — V,-)F(Vj) )
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without or with some varying time-delay regulated by the bi-
furcation parameter D. The FTM formalism provides a clear
distinction between active "on" and driven "off" states of a
neuron. The coupling function I"(V;) = 1 when the voltage
V; exceeds the synaptic threshold Vi, =0, and I'(V;) = 0 if
V; < Vin . The coupling strength is controlled by the maximal
conductance g;; with its default value is 0.001, unless other-
wise specified, to ensure weak coupling in the network. The
synapse can be inhibitory or excitatory depending on the level
of the reversal potential V,,,: if V., < V; always, say -1.5, it
is inhibitory; elevating the level to +1.5 makes the synapse
excitatory.

Time-delays are an inherent characteristic of neural signal
transmission in biological systems. Their inclusion in CPG
models is essential for accurately simulating biological signal
propagation and enhancing the models’ biological plausibil-
ity. Specifically, when the time-delay equals k7 (where k is an
integer and T is the network period), the system’s phase rela-
tionship remains unaffected, mirroring the behavior observed
without time-delays. However, time-delays that are not inte-
ger multiples of period T can significantly alter the phase rela-
tionship, potentially leading to phase misalignment and other
complex dynamic behaviors. With this in mind, we introduce
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FIG. 4. Transformations in the 2D return map corresponding to the unidirectional CC motif in Figs. 1A as the time-delay is increased in
the synapse connecting the blue cell 1 with the green cell 2. (A-C) The transitioning map with two attractors including a stable FP (light
green) emerging through a saddle-node bifurcation occurring near the origin, and the dominant (red PM) FP, corresponding to two observable
rhythms with. (D) The motif becomes a mono-stable one with its phase-locked (1 — 3 — 2) rhythm corresponding to the CCW TW FP
(purple) at (2/31/3). The CW FP at (1/3,2/3) is a saddle with three stable and three unstable separatrices (sets) corresponding to a co-existing
but non-observable rhythm in the motif. Black crosses x represent saddles including a complex, structurally unstable one at (1/3,2/3) with
six separatrices as black lines hand-drawn and superimposed with the numerical map, while cyan hollow circles represent unstable (repelling)
FPs, and arrows indicate the directions of the forward phase trajectories of the map. Parameters: o = (0.3,0.5,0.7,0.9).

synaptic time-delays into the 3-cell neural network as follows:
“4)

where 0 < o < 1 is a factor scaling down the network period T
remaining around 3.63 (in some abstract time units), provided
the coupling remains weak.

In what follows we will demonstrate that these 3-cell gFN
networks can exhibit a variety of stable phase-locked rhythms,
including traveling waves, characterized by sequential cell fir-
ing, and pacemakers, where one cell effectively inhibits the
other two and fires in anti-phase. The symmetric connec-
tions within the network lead to the coexistence of multiple
rhythms, a consequence of the cyclic arrangement of the cells.
We analyze the stability of these cyclic rhythms using the
Poincaré return map for phase-lags between the constituent
oscillatory neurons. Specifically, we define the phase-lag be-
tween cells as the difference in time between their burst initi-
ations, identified by a threshold voltage crossing from below.

To analyze bursting and rhythmic spiking in central pattern
generator (CPG) networks, we employ an oscillatory network
computational toolkit. This toolkit simplifies the analysis by
reducing it to a bifurcation analysis of phase-lags between

D=a-T,

oscillatory neurons, performed using corresponding Poincaré
return maps. The phase space structure of these maps pro-
vides a comprehensive characterization of the CPG network’s
functional properties. Because CPG-generated rhythms (rep-
resented by the coupled gFN system (3)) are recurrent, we can
define Poincaré return maps based on the phase-lags between
spike/burst onsets of the constituent neurons.

To examine the stability of different recurrent rhythms
generated in a network, we utilize the Poincaré return map
method. Initially, we introduce the computational concept and
define the phase-lags between the constituent cells, which are
determined at specific times when the cells crossed the thresh-
old voltage from below, indicating the start of a burst. The
phase-lag of a cell is then defined as the delay in its burst ini-
tiation relative to that of the reference cell 1, normalized over
the bursting period. We define the relative n-th phase-lags,

Ag;) and Agg) of cells 2 and 3, respectively, as follows:

O
Tl(n) . Tfnfl) 3 Tl(n) . Tfnfl)

(&)

where TJW, (j = 2,3) denotes the time at which the j-th cell
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FIG. 5. (A) The voltage traces and (B) time progressions of phase-lags Aj2 and A3 associated with the (purple) stable FP of the return map
for the CW motif with the single delayed synapse. The darker and lighter colors of the voltage traces V, and V3 in (A) and the phase-lag
progressions in (B) correspond to shorter and longer time-delays as ¢ is discretely increased from 0 through 0.7.

reaches the threshold voltage, 6,;, = 0, from below at the n-th
bursting cycle, see Figs. 2B1 and B2.

Now, we define and examine how the structure of the
Poincaré return map IT: P, — P,+1 (on mod 1) of phase points

P, = (A@,A@) in the forward trajectory {AS?,A%)} de-

pends on the time-delay A(I';) (j = 2,3) in the burst initiation

between the neurons of the network.

The trajectories may converge to stable fixed points, whose
coordinates in the map correspond to the rhythms with specific
locked phase-lags, or converge to stable invariant circles on
the torus (the unit square), which correspond to distinct rhyth-
mic patterns characterized by periodically varying phase-lags.
The presence of single or multiple attractors in the corre-
sponding 2D return map is a de-facto proof that the given neu-
ral network is either a dedicated or a multi-functional/modal
one.

The 2D return map of phase-lags, Il : P, — P,+1, can be
represented in the following formal form:

n+1 n n n
Aiz )= A(m) +ufi (Agz)’A§3)) ) ©
ALY = Al + s (a4,

where ; represents the coupling strength and f;, are some
undetermined coupling functions. Their zeros f; = f, = 0 are
the fixed points of the map AY;) = A%Jrl) = Ai';). Similar to the
phase reset curves, these functions can be graphically evalu-

ated from the simulated return maps {AYQ,AS’?} presented in
this study.

Poincaré return maps serve as effective "blueprints" of net-
work dynamics and the stability of thythmic activity, and have
become a valuable tool in computational neuroscience. These
maps are typically constructed from voltage traces by identi-
fying successive voltage maxima or minima, or by analyzing
interspike intervals. Using f; as a quantile dF /d¢;;, one can
possibly reconstruct effective "phase potentials" or coupling
functions F(Aj2,A;3) = C that unambiguously determine the
dynamics of the network. This allows for the identification of
its critical points, which correspond to the attractors, repellers,
and saddles within the atlas. Furthermore, scaling f; enables
the prediction of bifurcations caused by various perturbations
including delays, thereby forecasting the resultant changes in
the overall rhythmic outcome of the network.

(n)

A forward trajectory {AY;),AB } of the map runs on a 2D

torus, which, when flattened, is represented by a unit square.
Phase-lag values such as 0 (or 1 in mod 1), and 0.5 signify in-
phase and anti-phase, resp., relationship between the reference
cell 1 and two others.

In what follows, we will examine the evolution of the
Poincaré return maps, such as in Fig. 2A and the structure of
its trajectories originating off a dense population (on a 30 x 30
grid) of initial phase-lags Aj» and A3, and hence discuss in-
directly properties of the corresponding 3-cell networks. By
computing long sequences of the circuit’s firing activity and
analyzing the resulting phase-lag iterates, the latter ones even-
tually settle into an attractor, which may be a fixed point [with

fixed coordinates Ag? and Ag? in Egs. (5)] in the 2D return
map; its coordinates correspond to a stable rhythmic outcome
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FIG. 6. Six snapshots of the Poincaré return maps corresponding to the unidirectional CC motif in Fig. 1B with all delayed synapses as
the o-parameter is increased. (A) The bistable map with a synchronous FP (yellow) near the origin and the CCW FP (purple). With further
increasing o the attraction basins of the synchronous FP and CCW TW FP become redistributed as the separating saddles move around the
unit square. (B) The basin of the TW FP shrinks as three nearby saddles approach to reverse its stability. (C) The repelling (in (B)) CW FP
at (1/32/3) (black) becomes stable due to a reverse bifurcation. (D) Its basin expands while the basin of the synchronous (yellow) FP shrinks
with a further o increase after three saddles approach the latter to make it unstable (E) The CCW FP (purple) regains its stability through a
reverse bifurcation, and (F) becomes the only attractor of the map and the dominating (1 — 3 — 2) rhythm of the motif; here the CW FP
is a complex, structurally unstable saddle with six separatrices, black lines hand-drawn and superimposed with the computed map. Black
crosses represent saddles, cyan hollow circles represent unstable FPs, and arrows indicate the directions of the phase trajectories of the maps.
Parameters: @ = (0.2,0.3,0.5,0.7,0.8,0.98).

erated by the network in question.

For a start, let us focus on the map presented in Fig. 2A.
This symmetric map for the homogenous 3-cell network with
no delay in synapses coupling the gFN-neurons at I,,; = 0.4
shows five, stable FPs, whose color-mapped attraction basins
are separated by stable sets (separatrices) of the 6 saddles
along with a repelling FP near the origin. Notice that the to-
tal number of such structurally stable FPs on the 2D torus is
always even, which allows all of them to annihilate in pairs
through saddle-node bifurcations. The coordinates of the sta-
ble FPs are indeed the phase-lags locked in the voltage traces
of the neurons. Specifically, due to the permutation symmetry
there are three, the so-called pacemaker (PM) rhythm where
one cell regardless of its color or index bursts in anti-phase
with the other two ones in sync; for example, the red FP
with the coordinates (0, 1), or equivalently (1,1/2), as the
Poincaré return map for the phase-lags A and A3 is defined
on mod 1. The other two PM are color-mapped in green and

FIG. 7. (A) The symmetric Poincaré return map with a zero delay
(o = 0) and (B) its magnified fragment depicted near the repelling
CW FP; borderlines between the attraction basins are determined by
the incoming or stable separatrices (invariant sets) of the nearby three
saddles labelled by x.

with the same phased-locked lags. All phase trajectories that
converge to the same fixed point are colored similarly, thus
highlighting its basin of attraction in the map. Smaller/larger
basins are associated with less/more observable rhythms gen-

blue as long as their coordinates remain close to (1/2, 0) and
(1/2,1/2), correspondingly. The other two stable fixed points
located at (1/3,2/3) and (2/3, 1/3) in the middle of the unit
square, correspond, respectively, to the sequential clockwise



FIG. 8. Six snapshots of the Poincaré return maps corresponding to the bidirectional motif (Fig. 1C) with delayed synapses between cells 1 and
2. (A) Introducing the delay unbalances the motif and forces the green and blue FPs to vanish simultaneously through simple SN-bifurcations,
leaving the map being dominated by the red PM FP in panel B. Further o-parameter increase also breaks down the CW and CCW symmetries
of the motif and hence annihilates the corresponding FPs with close saddles (x) through SN-bifurcations in panel C. As « increases from
0.5 to 0.7, the map demonstrates mono-stability due to a single periodic attractor — a stable invariant cycle (IC in grey), emerging through a
heteroclinic SN-bifurcations, that wrap around the torus and corresponds to periodic phase shifting (PS) between the neurons 1 and 2. (E) The
purple and blue FPs re-emerge in the map through a reverse heteroclinic SN-bifurcations and so did the red PM though a simple SN-one in
panel F to complete the full round as « is increased to its upper limits. Arrows represent the directions of the phase trajectories of the return

maps. Parameters: o = (0.04,0.05,0.3,0.5,0.8,0.98).

(I =2 —3) (CW) and counter-clockwise (1 — 3 — 2) travel-
ing waves (CCW TW) or peristaltic thythms stably produced
by the network. Note that if either one becomes unstable, say
for example, through a secondary torus bifurcation, the cor-
responding rhythm still exists but remains unstable or non-
observable in the network. Whenever a stable fixed point
(FP) is displaced from its original location by a delay or other
synaptic perturbations, we use a different color for its basin
of attraction to distinguish it from other stable and established
FPs (see the following section).

To conclude this section, we note that trajectories of ODE
system (1)-(2) are numerically integrated using a fourth-order
Runge-Kutta method with a constant step size. The volt-
age and phase-lag trajectories, initialized under various con-
ditions, are computed in parallel on a Tesla K40 GPU utiliz-
ing CUDA, while the visualizations are generated in Python.
The GPU parallelization lets one obtain such scans in seconds.
The constructed phase sequences generated by the network
change as time-delay is introduced and varied via the param-
eter a. This method enables the determination of the basins
of attraction for coexisting attractors and reveals the bifurca-
tions through which fixed points emerge, vanish, or lose their

stability. These crucial details would be less evident from an
analysis of the voltage traces alone.

I1l.  RESULTS

In the following analysis, we show how the inhibitory 3-cell
network, by leveraging time-delays, generates several stable
rhythmic patterns by alternating the active and inactive states
of its constituent cells. Our analysis focuses on weakly cou-
pled networks to maintain the visual continuity of the Poincaré
return map for the phase-lags between weakly coupled neu-
rons. The chosen sigmoidal shape of the slow A-nullcline
enables the system to exploit the bottleneck effect associated
with the saddle-node bifurcation, resulting in a diverse range
of rhythmic behaviors.

Below, we will present an in-depth bifurcation analysis on
several vital motifs of the 3-cell network discussed above:

(1) Unidirectionally clockwise-connected (CW) motif with a
single synapse delaying the cell 2, see Fig. 1(A).

(2) Unidirectionally clockwise (CW) motif with delayed
synapses, see Fig. 1(B).



FIG. 9.

Continued from Fig. 8B above: four identical panels are
stitched together to visualize and better understand how trajectories
populate and wrap around the phase torus, which is dominated by a
single red PM at (0,0.5). The saddles, located nearby, causes two
trajectories from close initial conditions to traverse different path-
ways (black lines hand-drawn and superimposed with the computed
map) leading toward to the red FP.

(3) Bidirectionally connected motif with a delayed pair-wise
synapse with two equally delayed synapses between cell 1 and
cell 2, see Fig. 1C.

(4) Bidirectionally symmetric motif with all six equally de-
layed synapses, see Fig. 1D.

The introduction and variation of synaptic delays facilitate
the exploration of complex neural network dynamics, eluci-
dating the underlying mechanisms responsible for their evolv-
ing repertoire and properties.

A. Clockwise motif with a single delayed synapse

Here, we focus on varying the length of time-delay by
changing the ¢-parameter in the unidirectional CW motif
shown in Fig. 1(A) where the cell 1 is coupled by a delayed
inhibitory synapse with the following cell 2. Note that what-
ever findings are true for this motif are also applicable to
other such 3-cell networks with connections permuted sym-
metrically. The map in Fig. 3 with a single purple FP around
(2/3,1/3) demonstrates that the CCW TW rhythm is the only
one observed and generated by the unidirectional CW motif
with no delays. The occurrence of this sequential CW TW
cycle (1 — 2 — 3) implies that the activity of each following
neuron is only affected by the preceding one, thus resulting in
establishing a stable phase-locked relationship from the con-
sistent cyclical inhibition. Note that this result is somewhat

counter-intuitive that the given CW 3-cell motif produces the
only stable CCW rhythm. This result reinforces again and
further demonstrates that connectivity alone is insufficient to
predict network function without a thorough understanding of
the underlying mechanisms and intrinsic nonlinear dynamics
of its constituent neurons and synapses.

With a delay introduced in the single synapse one-way con-
necting the reference cell 1 with the cell 2, two snapshots
in Fig. 4A and B of the Poincaré return maps for phase-
lags clearly demonstrate what particular transformations the
given CW motif (represented in Fig. 1A) undergoes as the
a-parameter progressively increased. The originally mono-
stable motif (Fig. 3) becomes a bistable one as the map now
reveals two stable coexisting FPs whose spatial positions in
the unit square, [0, 1] x [0, 1], or the 2D phase torus, continu-
ously change with increasing the time-delay due to D,;, while
Dy3 = D31 = 0. Introducing and increasing the time-delay
causes the stable dominant FP (originally purple CCW TW at
(2/3,1/3) to move up and right from its initial position closer
to (1,1/2) in the map, see Fig. 4A). Accordingly, its basin is
re-colored in red as this position corresponds to the leading
and dominant pacemaker — the cell 3 of the network. This red
PM FP now co-exists with another stable FP around (0.2,0.1))
shown in light (fresh) green that has emerged though a simple
saddle-node bifurcation. Observe how the separatrices (stable
sets) of two saddles demarcate the borderlines between the at-
traction basins, large and small, of these coexisting FPs.

When the parameter «q; is increased further from 0.5
through 0.9, the comparison of the return maps in Figs. 3B
and C helps one figure out how these stable two FPs tran-
sition in the map. The red stable FP shifts further right on
the torus to re-emerge on the left of the map where it meets
with a saddle and annihilate through another saddle-node bi-
furcation. Meanwhile, the remaining stable (now black) FP
gets closer to the position near (2/3,1/3) where it regains
its original purple color corresponding to the CCW traveling
rhythm of this neural motif, as in its case with no delay, with
aqo-values close +1, see Figs. 3D. Consequently, the motif re-
verts to its expected monostable state, compare with the map
in Fig. (Fig. 3). However, there is a subtle yet principal dif-
ference in these two cases. One can see that in the former
case the CW FT is a repeller, whereas in the last case it is a
complex saddle with six separatrices (sets), three stable and
three unstable. This structurally unstable saddle is the result
of the merger of a stable or repelling FP with three nearby sad-
dles through a pitch-fork bifurcation (with four prongs) typi-
cal for equivariant systems with the S3-symmetry, as well as
the 1:3 resonance with a period-3 orbit on a circle due to ro-
tation through the 27 /3-angle>’. This saddle, should ;> be
brought closer +1 (or 0), will quickly decompose into the re-
peller and three surrounding saddles as Fig. 3 above reveals.

Note that the observed transitions are mediated by the de-
lay approaching a full period, thereby preserving the system’s
phase relationship. In this process, we observed the system
transition between two stable fixed points (FPs), with a cor-
responding shift in their locations. Therefore, the time-delay
affects not only the stability of the FPs but also their spatial
position, globally influencing the dynamic behavior of this 3-



cell motif.

Figure 5 illustrates the time progressions of voltages
recorded from all three neurons, as well as the correspond-
ing phase-lag progression as the delay is varied from o = 0
through o = 0.7. These diagrams are specifically based and
reflect on the movement of the stable (purple) CCW TW FP
shown in the map 4 to provide a detailed explanation of the
gradual changes of the phase-lags in the specific rhythm gen-
erated by the motif under specific time-delays. While the
time series representation presented in Fig. SA depicts the
motif’s temporal evolution prior to reaching a steady state,
Fig. 5B, illustrating the convergence of differing initial phase-
lag configurations to the stable, phase-locked states, manifests
a more comprehensive understanding of this mono-stable con-
vergence phenomenon.

B. Unidirectional CW motif with three delayed synapses

In this section, we study the dynamics of the unidirectional
CW motif (depicted in Fig. 1B) with three equally delayed
synapses. The six snapshots in Fig. 6 illustrate the evolution
of the Poincaré return maps, and hence of the given motif, as
delay due to the a-parameter is increased.

Figure 6A, computed with all three synapses initially de-
layed with o = 0.2, reveals the bistability in this motif where
the expected CCW TW (compare with Fig. 3 with no delay)
co-exists with a stable FP (yellow) at the origin that corre-
sponds to a fully synchronous state, i.e., Aj3 =0 and Aj3 = 0.
Note that such synchronous rhythms are typically observed
in small neural networks where all synapses are either elec-
tric or/and excitatory ones. Apparently, this and some longer
delays make fast inhibitory synapses act as excitatory ones.
Moreover, we can only hypothesize how this synchronous
FP becomes stable as intermediate transformation stages are
skipped as « is gradually increased with O to 0.2. There is ba-
sically a single bifurcation option that lets a repeller becomes
an attractor, which is an Andronov-Hopf bifurcation in sys-
tems with continuous time, or a secondary torus bifurcation in
systems with discrete time that gives rise to the onset of a peri-
odic orbit or an invariant curve, respectively. The former case
in the given Poincaré return maps for phase-lags will be dis-
cussed in the concluding result section of the paper, as detailed
as possible in a computational paper like ours. The presumed
torus bifurcation, subcritical or supercritical, giving rise to an
IC, is also accompanied by a heteroclinic connection between
all three saddles nearby through which the round IC emerges
from or terminates into. Needless to add that the discrete case
can be more complex, as one has to take into consideration
other factors, for example, a winding number on the IC that
can make it resonant before its possible breakdown, and so
forth.

Fig. 6B reveals that this new yellow FP at the origin be-
comes nearly a global attractor of the map with a longer delay
with a = 0.3, after three saddles come close to blocking the
attraction basin of the CCW TW. Recall that the given attrac-
tor corresponds to the fully synchronous rhythm in the CW
motif under consideration.

As the time-delay becomes longer in Fig. 6C, the purple
CCW TW becomes a repeller, whereas oppositely the re-
pelling CW TW FP becomes stable through a two-step trans-
formation: first a heteroclinic triangle-shape connection be-
tween the saddles followed by a secondary torus bifurcation.
Increasing the time-delay in all three inhibitory synapses of
the motif causes the saddles move closer to the yellow FP to
first bound its basin in Fig. 6D, and secondly make it a re-
peller in Fig. 6D. Meanwhile, the reverse bifurcation sequence
brings the CCW TW attractor at (2/3, 1/3) back to the map.
When the delay becomes larger, the attraction domain of the
black CW TW FP starts to shrink, and at some critical a-value
it becomes unstable, so that the motif returns to its original
monostable state. Figure 6F depicts the very beginning of the
loss of stability of the CW FP where it becomes a complex
saddle with six separatrices at the moment of its merger with
three nearby saddles. Increasing ¢ from 0.98 to 1.0 restores
the status quo of this monostable unidirectional CW motif,
which as we have seen can be bistable when its synapses are
delayed within certain margins. Here, the motif can switch
between synchronous and traveling wave rhythms with per-
turbations applied to its targeted neuron(s).

C. Bidirectional motif with two synapses equally delayed

In such a motif, see its circuitry in Fig. 1C, the delay is in-
troduced and regulated in two reciprocally inhibitory synapses
between the cell 1 and cell 2. It is evident that this should
eventually break down the S3-symmetry of the network, which
is de-facto a prerequisite for the existence of the CW and
CCW TW rhythms, and of the PM rhythms led by the selected
cells.

Figure 7 depicts the return map for the phase-lags on the
bidirectional motif with no delays in its synapses. Here, the
CW and CCW rhythms cannot be observed as the correspond-
ing FPs in the map are unstable foci as one can observe from
the magnified section of the figure. It is easy to see from the
map, that such a symmetric motif can only generate three PM
rhythms with the same probability. Note that the map illus-
trate what is known as dynamical uncertainty: starting from
an initial phase difference close to either unstable FP, the tra-
jectory will spiral away heading toward one of the stable PM
FPs. Same is true for solutions close to the synchronous state
as well. This dynamical uncertainty has a significant impact
on the rhythmogenesis in such a motif: the traveling rhythms
are no longer observable, and after some transient this multi-
modal motif stabilizes into one of the three PM rhythms (see
Fig. 7B). External perturbations applied to targeted neurons
can trigger switches between the three robust rhythms.

Figure 8 shows the evolution of the Poincaré return maps
as o is increased from 0.2 through 0.98. A short delay is in-
troduced to two inhibitory synapses between the cells 1 and 2
in order to break down the S3-symmetry of this bi-directional
motif. This is documented in Figs. 8A and B showing that
both corresponding blue and green PM FPs undergo saddle-
node bifurcations that annihilate them along with two saddles.
One can see from Figs. 8B and C that the PM rhythm led by
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FIG. 10. Four snapshots of the Poincaré return map for the bi-directional motif in Fig. 1D illustrate its transformations as all synapses are
progressively delayed within a short range [0.05, 0.15]. (A) This symmetric motif is dominated by three PMs, coexisting with two stable (gray)
ICs (representing periodic phase-jitter phenomena) around repelling TW FPs that emerged through supercritical torus bifurcations. (B) As the
time-delay is increased, the stable ICs become dominant after the PF bifurcations transform the red, green and blue PM attractors into saddles
at same locations, (0,1/2), (1/2,0) and (1/2, 1/2), resp. With a longer time-delay, a saddle-node bifurcation occurs on the bisectrix near the
origin that makes it a stable (yellow) FP. (C) Its basin quickly increases in size at o = 0.13 after both stable ICs disintegrate when they reach
the saddle FPs. (D) Another SN-bifurcation eliminates the repeller and the saddle on the bisectrix after which the origin becomes the global
attractor of the map with two more repellers and three saddles. Arrows represent the directions of phase trajectories includes special ones

color-selected. Parameters: o = (0.05,0.1,0.13,0.15).

the red cell 3 remains the only one in the repertoire of this
motif, even though the TW FPs still exist in the map.

Throughout an extended parameter range o € [0.05,0.7],
the motif’s dynamics is dominated by the red PM rhythm cor-
responding to the stable red FP at (0,1/2) to which all trajecto-
ries converge by following different paths (black curves) with
variable converge rates, as seen Fig. 8B. To better understand
the transient dynamics of the motif, and using the property
that the map is defined on the phase torus on modulo 1, one
may find useful to consider four identical panels stitched to-
gether, as done in Fig. 9 , to visually inspect rather a "contin-
uous" trajectory behavior.

Figure 8D illustrates a qualitative change in the motif’s be-
havior. The previously observed rhythm with locked phases is
replaced by a rhythm characterized by periodically varying, or
shifting, phases. The map here has a single attractor which is
a stable invariant curve (IC) that wraps around the phase torus,
or the unit square from its bottom to the top, passes sequen-
tially throughout the "ghosts" of the four disappeared FPs: the
green PM one at (1/2,0), the CCW TW one at (2/3,1/3), the
blue PM one at (1/2,1/2) and the CW TW FP at (1/2,2/3)

to start over. In this case, the IC formation undergoes two
stages: two simultaneous SN-bifurcations through which both
TW FPs are eliminated, followed by the elimination of the red
FP thorough a homoclinic SN-bifurcation, whose stability is
inherited by the IC, which corresponds to the so-called phase
slipping thythm. Note that besides the stable IC, the map has
still two FPs: arepeller close to the origin and a saddle located
at the position of the red FP near (0,1/2) or (1,1/2). Should the
motif be perturbed differently, both FP may merge too and
vanish through another homoclinic SN-bifurcation to produce
a repelling IC. We can hypothesize further with perturbations
to force both ICs merge and disappear as well, so that the torus
will get covered densely by a single trajectory.

Figure 8E validates our bifurcation scenario and shows that
the IC is replaced by the heteroclinic connection between two
saddle-node FPs that give rise to the two stable PM FPs lo-
cated on the IC ghost. Further increasing the delay with
o = 0.98 completes the cycle; here the map gains all three
stable PM FPs, including re-emergent red one, at the fixed,
pre-set locations.
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FIG. 11. A magnified fragment of the return map from Fig. 10A depicting a stable IC around the repelling CW FP at (Aj» =2/3 and
A3 =1/3). (B) The corresponding voltage traces and (C) the associated progressions of phase-lag jitters.
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FIG. 12. For panels of the Poincaré return map corresponding to the bi-directional motif in Fig. 1D with all six inhibitory synapses delayed
equally. (A) The motif with a short delay produces synchronous and two CW and CCW TW rhythms, corresponding, resp. to the stable FP
at the origin (0,0) and at (1/3,2/3) and (2/3,1/3). (B) The time progressions of phase-lags of the oscillatory neurons converging to the CW
and CCW TWs (B1) and synchronous (yellow) state (B2) in the symmetric triple-modal motif with delay due to fixed parameter o = 0.2. (C)
Longer delays make both TW FPs repelling through the torus bifurcation, and the synchronous rhythm only observable. (D) The TW FPs
regains stability after the origin lost it. (E) The Poincaré return map with five stable FPs for a nearly symmetric b-directional motif. Arrows
represent the directions of phase trajectories. Parameters: o = (0.2,0.6,0.7,0.98).

D. Bidirectional motif with all delayed synapses case.

Five panels of Fig. 10 presents four snapshots of the re-
This is the final motif, presented in Fig. 1D, with all six de- turn map operating corresponding to the bidirectional motif
layed and manipulated synapses that we analyze in this study with short time-delays due to small value of the a-parameter.



This symmetric motif is dominated by three PMs, coexist-
ing with two stable (gray) ICs around repelling TW FPs
that emerge simultaneously through supercritical torus bifur-
cations in Fig. 10A. These two ICs represent the phenom-
ena referred to as periodic "phase-jitter", i.e., the phase-lags
of the neurons oscillate stable around the values (1/3,2/3)
and 2/3,1/3, depending on their initial states; it is observed
in various coupled systems, including neural networks>® and
nonlinear optics’®>?. These two quasi-periodic orbits (ICs)
emerge off the CW and CCW TW FPs as the zoomed Fig. 1A
depicts. The time progression of the corresponding voltage
traces and phase-lags reflect the periodical variations rather
than fixed locked states, see Figs. 11B and C. One can foresee
from this figure that as the parameter is further increased, each
IC becomes a one-way heteroclinic orbit connecting three
nearby saddles after which it disintegrates.

Figure 10B reveals the further bifurcation unfolding of the
return map: both stable ICs increase in size and become dom-
inant attractors in the map after the PF bifurcations simulta-
neously transform the red, green and blue PM attractors into
saddles at same locations, (0,1/2), (1/2,0) and (1/2,1/2),
respectively. With a longer time-delay, a plain saddle-node
bifurcation occurs on the bisectrix near the origin that makes
it stable, see Figs. 10B-D. Its basin quickly increases in size
at oo = 0.13 after both stable ICs disintegrate when they reach
the saddle FPs. A following SN-bifurcation eliminates the re-
peller and the saddle on the bisectrix after which the origin be-
comes the global attractor of the map, which is de-facto proof
that the synchronous rhythm is the only one generated by this
motif.

Figure 12 showcasing the return maps is an extension of
Fig. 10 for the bi-directional motif with longer time-delays.
We can see that the TW FPs regain, loose and regain their
stability as the o-parameter is increased all the way up to
0.98, basically following the same bifurcation mechanisms
described above for the bi-directional motif with short delays,
which include forward and reverse torus and pitch-fork bifur-
cations. In between the synchronous rhythm solely determine
the repertoire of the given motif. Two stable foci (black and
purple at (Aj; = 1/3,A13 =2/3) and (A1 =2/3,A13=1/3),
resp.) existing in the map in Fig.12A disappear in Fig.12C so
that the yellow synchronous FP at the origin determines the
existence of the only robust rhythm generated by the mono-
stable neural motif. The motif becomes bi-stable with two TW
rhythms at longer delays (Fig.12D) before it becomes penta-
stable as & approaches its upper limit +1.

Recall that near a heteroclinic bifurcation, particularly one
yielding a stable, round invariant curve (IC), the period can
become arbitrarily large (logarithmically), as is determined by
the number of iterations required for phase points to traverse
a saddle. Consequently, phase jitter frequency slows signifi-
cantly near the heteroclinic connection. Figure 11 illustrates
this phase jitter in voltage waveforms (panel B) and phase-lag
oscillations (panel C).

We would like conclude this section by elaborating on
the torus and heteroclinic bifurcations in the extended phase
space presented in Fig. 13 that depicts the key transformation
stages occurring in the map (bi-directional motif) near the TW
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FPs, specifically close to the CW one at (1/2,2/3), as the -
parameter (time-delay) is varied between 0.02 and 0.2.

The bottom of the 3D bifurcation diagram is map where the
CW FP is a repeller at o¢ = 0.02, which is surrounded by three
saddles nearby. As « is initially increased, the saddles form a
one-way heteroclinic connection (purple curve) or cycle, that
gives rise to the onset of the stable round IC. As « is further
increased, the size of the stable IC starts increasing, and next
decreasing, so that it collapses into the CW FP and makes it
stable at 0.2 through a super-critical torus bifurcation. Once
can see a paraboloid-like surface foliated by the shrinking IC.
In this diagram, the solid and dashed lines represent the coor-
dinate parameters of the stable FP and saddle FP, respectively.

This bifurcation diagram offers deeper insights into the
semi-local dynamics of the bi-directional motif, thereby pro-
viding a valuable resource for a comprehensive understanding
of nonlinear interactions of the three coupled neurons. The
exact location of the bifurcations can be accurately identified
through a refinement process.

IV. CONCLUSIONS AND FUTURE DIRECTION

We conducted a case study on a 3-cell neural network
weakly coupled by delayed inhibitory synapses. Our goal
was to demonstrate the network’s capacity for diverse, of-
ten counter-intuitive, rhythmic outputs in response to time-
delay variations. These dynamic properties are determined by
both synaptic properties and individual neuron states. We an-
alyzed several key multi-modal motifs supporting both single
and multiple rhythms, depending on the synaptic time-delay.
We also explored potential switching mechanisms between ro-
bust rhythmic states in biological systems. Using phase-lags
between neurons, we computationally generated Poincaré re-
turn maps from multiple voltage traces, providing a powerful
framework for analyzing rhythmic behavior in small neural
networks with diverse synapses and circuitries. The use of
GPU computing enabled the rapid and parallel generation of
these return maps in seconds.

The computational tools presented here are designed to
reflect the common features of electrophysiological experi-
ments. Crucially, our approach requires only voltage record-
ings from the model cell, mirroring the typical constraints of
experimental settings. Our analysis is based on the phase de-
rived from this voltage, the primary measurable variable in ex-
periments. Furthermore, analogous to experimental protocols,
we control the initial phase distribution by precisely timed in-
hibition release of neurons relative to a designated reference
neuron. Our analysis relies exclusively on qualitative geomet-
ric methods from dynamical systems theory. While we use a
system of differential equations for illustrative purposes, these
methods can be applied directly to experimental data, obviat-
ing the need for explicit knowledge of the underlying model
equations. This approach, which analyzes phase-lag and re-
turn maps independent of the system’s mathematical descrip-
tion, can be generalized to a wide range of complex biological
and engineered systems. Examples include applications in en-
gineering, economics, population dynamics, dynamic mem-
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FIG. 13. This bifurcation diagram depicts key stages of the super-
critical torus (or secondary Andronov-Hopf) bifurcation and the het-
eroclinic bifurcation of the fixed points (FPs) within the ¢-extended
phase space. A paraboloid-shaped surface is foliated by the stable,
round invariant curve (IC) that emerges from the clockwise travel-
ing wave fixed point (CC TW FP). This invariant curve terminates in
a heteroclinic connection between three surrounding saddle points.
Subsequently, the invariant curve re-emerges and collapses back into
the original fixed point through two reverse bifurcations. Solid lines
represent the evolution of stable FPs, while dashed lines indicate un-
stable FPs.
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ory, animal decision-making®®, and the development of ef-
ficient robotic locomotion®~%3. These computational tech-
niques provide a powerful means to comprehensively examine
the rhythmic behavior exhibited by these networks.

Investigating rhythmic transitions necessitates manipulat-
ing the time lag of synaptic connections within different net-
work architectures. In biological systems, such manipula-
tions can be achieved by altering the transmission properties
of synapses through chemical interventions or external per-
turbations (current pulses). These diverse network structures
can generate a wide range of rhythmic behaviors, including
phase-locked ruptures coupled with pacemakers or traveling
waves, as well as cyclic phase-slip chimeras. Changes in net-
work parameters can induce a variety of bifurcations, such
as saddle-node, torus, and secondary Andronov-Hopf bifurca-
tions, leading to the emergence or disappearance of rhythmic
states and the gain or loss of their stability.

Our findings reveal that traveling wave dynamics are the
dominant characteristic of single-connected central pattern
generator (CPG) motifs. Increasing time-delays leads to tran-
sitions between distinct rhythmic patterns within the net-
work, with traveling waves becoming increasingly prevalent
at higher delay values. Significantly, this implies that the
introduction of time-delay in single connections is sufficient
to predict the range of rhythmic behaviors a given network
can generate, even without prior knowledge of the qualitative
mechanisms underlying rhythm generation, escape or release
phenomena, or the quantitative strength of synaptic connec-
tions. This predictive capability is essential for designing ver-
ifiable hypotheses in neurophysiological experiments that in-
vestigate diverse biological systems of coupled oscillators and
CPG circuits. Finally, we note that in central pattern genera-
tors, the mutual conversion between two fixed points via a
bifurcation frequently corresponds to the system transitioning
from one movement pattern to another, as observed in gait
transitions.

Central pattern generators (CPGs) play a crucial role in co-
ordinating limb movements in biological systems, enabling
transitions between different gaits. A clear example is the
shift from walking (a slow gait) to running (a fast gait) ob-
served in horses. This transition represents a shift between
distinct stable equilibrium points corresponding to each gait.
By analyzing bifurcation phenomena and constructing phase
diagrams, we can gain a deeper understanding of the underly-
ing mechanisms governing biological motion control. These
insights provide critical theoretical foundations for the design
and development of both bio-mechanical devices and bionic
robots. Our results demonstrate that a doubly connected net-
work, when subjected to a single time-delay, exhibits a strong
tendency to remain at a single equilibrium point for extended
periods. The introduction of the time-delay promotes syn-
chronization between cell 1 and cell 2, while also facilitat-
ing the emergence of phase slips, which allow the system
to transition between multiple stable points. Furthermore, in
this delayed, doubly connected network, we identified hetero-
clinic cycles. These cycles form the basis of the “no-winner
competition principle”, a mechanism that drives robust and
continuous behavioral repetitions in small neuronal networks.



We show that tracking invariant curves and heteroclinic cy-
cles within the phase-lag return maps enables the prediction
and detection of "hidden" bursting rhythms in the motif in
question. These bifurcation phenomena provide the neces-
sary theoretical framework for understanding the ubiquitous
phenomenon of phase jitter synchronization, which has been
widely reported in diverse applications across both physical
and life sciences.

Several avenues for future research emerge from this work.
First, incorporating time-delays into larger, modular neural
networks built from smaller subunits®* warrants investigation.
Second, utilizing biologically plausible Hodgkin-Huxley-type
bursters as neural motifs could offer new insights into the
resulting dynamical behaviors. Third, the application of
Poincaré return maps could facilitate a comprehensive explo-
ration of the full range of rhythmic patterns generated by a
given network. Finally, extending these findings to more com-
plex network architectures, including EI networks, and ex-
ploring the implications of the odd cycle rule® for determin-
ing the network’s oscillatory capacity promises to be a fruitful
direction for future research.
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