SwitchQNet: Optimizing Distributed Quantum Computing for
Quantum Data Centers with Switch Networks

Hezi Zhang
hezi@ucsd.edu
University of California
San Diego, USA

Keyi Yin
keyin@ucsd.edu
University of California
San Diego, USA

Ramana Rao Kompella
rkompell@cisco.com
Cisco Quantum Lab
San Jose, USA

Abstract

Distributed Quantum Computing (DQC) provides a scalable ar-
chitecture by interconnecting multiple quantum processor units
(QPUs). Among various DQC implementations, quantum data cen-
ters (QDCs) — where QPUs in different racks are connected through
reconfigurable optical switch networks — are becoming feasible
in the near term. However, the latency of cross-rack communica-
tions and dynamic switch reconfigurations poses unique challenges
to communications in QDCs, significantly increasing the overall
latency, thereby also reducing the overall fidelity. In this paper,
we address these challenges by introducing a novel compiler that
optimizes scheduling of communications across the program and
network layers. Our evaluation shows that it reduces the overall
latency by 8.02x over prior approaches with a small overhead and
can be integrated with quantum error correction (QEC) to facilitate
fault-tolerant quantum computing (FTQC). We have open-sourced
our codes at https://zenodo.org/records/15377656.

CCS Concepts

« Computer systems organization — Architectures; Other
architectures; Quantum computing;

Keywords

Distributed Quantum Computing (DQC), Quantum Data Center
(QDC), Compilation

ACM Reference Format:

Hezi Zhang, Yiran Xu, Haotian Hu, Keyi Yin, Hassan Shapourian, Jia-
peng Zhao, Ramana Rao Kompella, Reza Nejabati, and Yufei Ding. 2025.
SwitchQNet: Optimizing Distributed Quantum Computing for Quantum
Data Centers with Switch Networks. In Proceedings of the 52nd Annual

Please use nonacm option or ACM Engage class to enable CC licensesm

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, June 21-25, 2025, Tokyo, Japan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1261-6/2025/06

https://doi.org/10.1145/3695053.3731046

Yiran Xu
yix072@ucsd.edu
University of California
San Diego, USA

Hassan Shapourian
hshapour@cisco.com
Cisco Quantum Lab
San Jose, USA

Reza Nejabati
rnejabat@cisco.com
Cisco Quantum Lab

San Jose, USA

Haotian Hu
hah041@ucsd.edu
University of California
San Diego, USA

Jiapeng Zhao
penzhao2@cisco.com
Cisco Quantum Lab
San Jose, USA

Yufei Ding
yufeiding@ucsd.edu
University of California
San Diego, USA

International Symposium on Computer Architecture (ISCA °25), June 21-25,
2025, Tokyo, Japan. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3695053.3731046

1 Introduction

Distributed quantum computing (DQC) [3, 18, 19, 24, 28] has emerged
as a promising approach to address scalability challenges in quan-
tum computing. By enabling quantum communication between
multiple quantum processing units (QPUs), DQC extends the capa-
bilities of single-chip systems to multi-node architectures. Among
various implementations of DQC, quantum data centers (QDCs)
[5,7, 41, 45, 46, 51] have gained significant attention from industry
as a practical near-term solution. Unlike early visions of DQC that
focused on long-distance quantum communication across cities,
QDCs aim to connect multiple QPUs within a local range of a single
room or facility [30, 34, 49, 50, 59]. Their relatively short communi-
cation distances and controlled environment mitigate photon loss
and various noise, making them well-suited for near-term compu-
tational needs.

Recently, an emerging scalable architecture has been proposed
[59] for local QDCs, aligning with near-term hardware capabilities.
As shown in Fig. 1, it connects multiple racks of QPUs via a dynamic
optical network with reconfigurable optical switches, which, unlike
long-range DQC settings, requires no memory on each switch.
Cross-rack switches (core switches), depicted in orange in Fig. 1,
can leverage existing classical optical switch technology, while
only a small number of specialized quantum switches, depicted in
blue, need to be deployed on top of racks (ToR switches) to enable
EPR pair generation for quantum communication. This significantly
enhances the practicality and cost-efficiency of QDCs, making them
a more viable DQC infrastructure in the near future.

The primary bottleneck in DQC lies in inter-QPU communica-
tion, which is significantly slower and more error-prone than QPU
computation. Existing software solutions [29, 31, 37, 70, 71] aim to
reduce latency and improve fidelity by minimizing the number of
EPR pairs required by communication. However, these approaches

https://zenodo.org/records/15377656
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3695053.3731046
https://doi.org/10.1145/3695053.3731046
https://doi.org/10.1145/3695053.3731046

ISCA 25, June 21-25, 2025, Tokyo, Japan

[| [!
Al A2 Bl B2 Cl C2 D1 D2
Rack A Rack B Rack C Rack D

Figure 1: QDC with QPUs connected by a switch network.

show substantial inefficiencies when applied to the QDC architec-
ture due to two key factors. First, the distinction between classical
core switches and quantum ToR switches requires converters to
facilitate their interaction. This added complexity results in a higher
latency (~10 ms) for cross-rack EPR pair generation than in-rack
EPR pair generation (~0.1 ms). Second, each switch reconfiguration
introduces an additional latency of ~ 1 ms, due to the need to sup-
press photon loss. Therefore, frequent switch reconfigurations can
significantly extend communication latency, especially for in-rack
communications.

18.2% N Al

y

| 32.7%

i‘
(7%

B in-rack latency
reconfig latency
cross-rack latency

(@) (b)

Figure 2: (a) Number percentages of in-rack and cross-rack
EPR pairs. (b) Latency percentages of in-rack EPR pair gen-
eration, reconfiguration and cross-rack EPR pair generation.

B #in-rack EPR
#cross-rack EPR

In Fig. 2, we illustrate the communication budget by profiling
the quantum workload across different operations. Specifically, we
first count the required number of in-rack and cross-rack EPR pairs,
then isolate the contributions of different operations to the overall
latency by: (1) setting the latency of both in-rack communication
and reconfiguration to 0, attributing all latency to cross-rack com-
munication; (2) setting only the latency of in-rack communication
to 0, attributing the latency difference between the two cases to
reconfiguration. As shown in Fig. 2, while cross-rack EPR pairs
constitute only 18.2% of the total required EPR pairs, they account
for 62.7% of the overall latency, with reconfigurations contributing
an additional 32.7%. This implies that cross-rack communication
and frequent switch reconfigurations substantially increase latency,
which would also degrade the overall fidelity due to the increased
qubit decoherence over time.

Hezi Zhang, Yiran Xu, Haotian Hu, Keyi Yin, Hassan Shapourian, Jiapeng Zhao, Ramana Rao Kompella, Reza Nejabati, Yufei Ding

To address these challenges in QDCs, a co-optimization across
the program layer and the network layer is required in terms of
EPR pair scheduling. Existing DQC systems, such as long-range
repeater networks [8, 17, 52], decouple the scheduling of EPR pairs
and the generation of them into a program layer and a network
layer, with the scheduler merely considering the program-layer
communication demands and the network layer being responsi-
ble for generating the scheduled EPR pairs according to current
bandwidth and resource availability. However, given the known
computation tasks for QDCs, the compiler can schedule EPR pair
generations by considering both the upcoming communication de-
mands of the quantum program and the bandwidth and resource
availability on switches and QPUs. In this way, a larger optimiza-
tion space can be enabled for hiding the latencies of cross-rack
communication and switch reconfiguration.

At a high level, this co-optimization is achievable by leveraging
two key quantum features. First, in quantum systems, preparation
of EPR pairs can be decoupled from actual communications, as
they do not carry any program data. Even if the switches in QDCs
are memoryless, these EPR pairs can be stored temporarily on
QPUs by allocating a portion of computation qubits as buffer [70].
This storage allows for a flexible look-ahead scheduling of EPR
pairs, which allows for optimized timing of EPR generation when
combining an analysis of program patterns with a management
of buffer resources. Second, an EPR pair between source s and
destination d can be generated by merging multiple pre-existing
EPR pairs along a path between s and d, referred to as entanglement
swapping. Unlike that in repeater networks, entanglement swapping
on QPUs can be performed fast and deterministically by gates
and measurements. With an awareness of bandwidth and buffer
availability, this can enable a more efficient network exploitation
through a flexible strategy that generates EPR pairs by part.

However, leveraging these features in a compiler is highly non-
trivial. First, they can introduce fidelity overheads in two ways.
(1) The storage of EPR pairs in buffer can bring a risk of decoher-
ence, causing the fidelity of EPR pairs to decrease over time. (2) The
strategy of generating EPR pairs by part necessitates generation of
additional EPR pairs, which can compromise the overall fidelity as
EPR generations are more error-prone than gates on QPUs. These
fidelity overheads impose stricter constraints on QDCs than classi-
cal data centers (DCs), preventing a straightforward application of
pre-fetching techniques in classical DCs. Second, the flexibilities
in scheduling can lead to complications such as deadlocks (i.e., gen-
erations of EPR pairs need to wait for each other’s consumption)
and buffer congestion (i.e., required buffer occupied by data qubits
or other EPR pairs). These need to be eliminated in the compilation
stage to ensure successful program execution.

To this end, we present an efficient compiler to strategically lever-
age those quantum features, striking a balance between latency
reduction and fidelity overhead, while eliminating the risks of dead-
lock and buffer congestion. The compiler analyzes the programs by
identifying gate dependencies, looking ahead into near-future gates
and extracting their requirements for EPR pairs. With an awareness
of the network heterogeneity and the availability of bandwidth
and buffer resources, these EPR pairs are then scheduled with the
following two optimizations.

SwitchQNet: Optimizing Distributed Quantum Computing for Quantum Data Centers with Switch Networks

First, it parallelizes cross-rack EPR pair generations by split-
ting them into parts, with each split resulting in a new cross-rack
pair and some additional in-rack pairs (referred to as post-split EPR
pairs). In this way, even if the source or destination QPU of an
EPR pair is busy, a substitute cross-rack EPR pair can be generated
between the source and destination racks through a same-rack QPU
with the busy QPU. Once the busy QPU becomes available, it can
communicate with that same-rack QPU by generating an additional
in-rack EPR pair promptly, thereby completing the generation of
the original cross-rack EPR pair through an entanglement swap-
ping. To mitigate the fidelity overhead brought by additional
in-rack EPR pairs, we prepare multiple copies of each post-split in-
rack EPR pair and enhance its fidelity by entanglement distillation
[11, 38] using the extra copies.

Second, it further hides the latency of the additional in-
rack EPR pairs, either from split or for distillation, by a collective
generation of them, so that they are prevented from becoming a
new communication bottleneck. That is, given that the latency
of reconfiguration is much longer than that of in-rack EPR pair
generation, we can collect in-rack EPR pairs between the same
QPUs and generate them together when the channel between the
QPUs is available. In this way, we reduce the average latency of
in-rack EPR pair generation by avoiding frequent reconfiguration.
The collection of in-rack EPR pairs is guided by the look-ahead
program analysis of our compiler. This program-aware guidance
reduces the wait time of both in-rack and cross-rack EPR pairs
before their usage, thereby minimizing the fidelity overhead
brought by the storage of prepared EPR pairs.

To prevent potential deadlocks and buffer congestion caused
by the flexible scheduling, we propose a resource managing ap-
proach that is aware of bandwidth and buffer status. It consists of
several rules for scheduling and splitting EPR pairs, along with a
retry mechanism for EPR scheduling. These rules mitigate the risk
of deadlock and buffer congestion by adapting to current bandwidth
availability and ensuring enough buffer size for future EPR pairs,
leaving only rare cases that are hard to avoid. When those rare
cases happen, we resolve them by incorporating an efficient retry
mechanism that downgrades the scheduling strategy to a more con-
servative one which ensures a deadlock-free and congestion-free
scheduling.

Our contributions in this paper can be summarized as the fol-
lowing:

e We propose a compiler to overcome communication chal-
lenges in QDCs through a flexible scheduling that is aware
of both program patterns and network resources, while pre-
venting potential deadlock and buffer congestion brought
by the flexibility.

e We improve the communication efficiency by overlapping
the latencies of cross-rack communications, at the cost of in-
curring additional in-rack communications, with the latency
of in-rack communications further reduced by a collective
generation.

o We minimize the fidelity overhead by incorporating entangle-
ment distillation for the additional in-rack communications
and reducing the wait time of prepared EPR pairs through a
program-aware guidance.

ISCA 25, June 21-25, 2025, Tokyo, Japan

e Through a comprehensive simulation with practical hard-
ware parameters, we demonstrate an 8.02X reduction in com-
munication latency over previous approaches while main-
taining a low fidelity overhead.

2 Background and Related Work

2.1 Quantum Communication Protocols

Communication between different QPUs can be achieved through
EPR pairs (wavy lines in Fig. 3) established between the QPUs with
different protocols. The Cat protocol [72] (Fig. 3(a)) can realize
a block of remote control gates sharing the same control qubit
without transferring data from a QPU to another. In contrast, the
teleportation (TP) protocol (Fig. 3(b)) allows any pattern of remote
gates by transferring a data qubit from a QPU to another through
teleportation (from g to ¢, in Fig. 3(b)).

QPUA Cat-entangler Cat-disentangler

0O Unitary UBTta:;y i
! [e]e)

@ O Block o

QPUB

(a) Cat protocol (b) Teleportation protocol

Figure 3: (a) Cat protocol and (b) TP protocol for realizing
inter-QPU gates with inter-QPU EPR pairs.

2.2 Quantum Data Center (QDC)

QDC networks As illustrated by Fig. 4, a QDC connects QPUs
through a local optical network consisting of optical fibers and
reconfigurable optical switches. Edges in the network present pos-
sible physical channels connecting nodes (i.e., switches and QPUs)
through optical fibers. Channel capacity can be increased via multi-
plexing, e.g., multiple optical fibers or multiple wavelengths through
a single fiber, represented by an edge weight w > 1. For instance,
Fig. 4(b)(c) demonstrate a case of edge weight 2 where each pair of
nodes are connected by 2 fibers.

Optical switch The reconfiguration latency of switches ranges
from multiple of 100 ns to 100 ms, with the latency increasing with
the number of ports [63]. Moreover, a faster switch reconfiguration
also leads to an increased photon loss [63]. For switches with about
16 X 16 ports (or 32 ports), the reconfiguration latency is typically
~ 1 ms with a photon loss rate around 1 dB [65], while the latency
of larger switches 1024 X 1024 ports commercially available are
typically around 100 - 200ms. In this paper, we will adopt the value
of 1 ms if not stated otherwise. Each ToR switch can be equipped
with Bell-state measurement (BSM) devices to facilitate EPR pair
generation. These BSM devices can be shared among QPUs in the
same rack by ToR reconfiguration, as shown in Fig. 4(c).

EPR pair generation As depicted in Fig. 4(d), the generation of
EPR pairs requires dedicated communication qubits on each QPU
with spin-photon interface between the stationary communication

ISCA 25, June 21-25, 2025, Tokyo, Japan

Frequency
Conversion

Bell-state

Measurement

@ Communication
Qubit

[]

@]

'
'

'

'

'

'

'

- csz csz sa [
arc] [aFc] QFC QFC '

'

'

'

'

'

'

Data
Qubit

Buffer
Qubit

Core
Switch

ToR
Switch

Rack C Rack D .
(a) Data center [

QPU

Figure 4: (a) A QDC network with (b) classical core switches
and (c) quantum ToR switches equipped with a QFC on each
outward port and some BSMs. (d) Each QPU has two dedicated
communication qubits and many computation qubits, with
the computation qubits in the light blue box indicating a
buffer initially allocated on the QPU.

qubits and flying photonic qubits. Fig. 5 illustrates the EPR gener-
ation protocol [14, 51], where optical switches are eliminated for
simplicity.

@ Pulse

>(Cavit
K@E BSM K@E @W — $ @ Comm Qyubn

QPU I QPU2
(@) @M@ EPR Pair

W& ’\/\/“”‘JW’ @ e Frequency

QI(-(—QI(Conversion
QFEC-QFC-] $ a o gate
BSM
- NIR Photon
K@E K@E o 1‘9:_

QPU 1 Al Telecom Photon

Figure 5: In-rack EPR pair generation: physical process (a)
and corresponding circuit (b). Cross-rack EPR pair genera-
tion: physical process (c) and corresponding circuit (d).

For in-rack communication, as shown Fig. 5(a), communication
qubits are prepared in the superposition state v [1) + V1 — « |])
and then driven the spin to emit a photon via spontaneous emission,
leading to an entangled spin-photon state. Next, the two photonic
qubits are directed towards a beam splitter and are eventually mea-
sured by the two single-photon detectors, as depicted in the pink
box. We only post-select the single detection events to project
the spin-spin state into |¢4) = (|Tl) + |Tl))/V2. This effectively
implements a BSM with 2a(1 — «) success probability. Fig. 5(b)
shows the equivalent quantum circuit, where the emission pro-
cess effectively acts as a CNOT gate between the spin and pho-
tonic qubit. For cross-rack communication, the protocol is similar
but requires quantum frequency converters (QFCs), as shown in
Fig. 5(c)(d). This is because our ToR switches and BSM devices oper-
ate at the near-infrared (NIR) where commercially available optical
fiber or switches are not optimized (in terms of the photon loss
rate). To extend the communication range to other racks, we con-
vert the NIR photon into telecom regime and back via bidirectional
QFCs [12, 13, 40, 58, 68].

Hezi Zhang, Yiran Xu, Haotian Hu, Keyi Yin, Hassan Shapourian, Jiapeng Zhao, Ramana Rao Kompella, Reza Nejabati, Yufei Ding

EPR rate and fidelity We now estimate the rates and fidelity
for in-rack and cross-rack EPR pair generation with some hardware
parameters available from the literature. We note that our EPR
generation process is probabilistic due to the probabilistic BSM and
due to photon loss during transmission from spin to fiber and as
they travel through the switches. Hence, the success probability
is found to be p = 2an where « is the initial state parameter and
n < 1 denotes the overall photon transmission rate (i.e., overall
photon loss rate is 1 — n). As a result, we consider a repeat-until-
success protocol which keeps trying to generate an EPR pair until
getting a positive signal in the BSM. Let 7y be the operation time
for each attempt, then the average time for a successful EPR pair
generation is 7 = 7g/p. Considering hardware parameters [51, 58,
64,76] a = 0.05,n = 0.1 (i.e, 10 dB loss), and ;! ~ 1 MHz, we
obtain rror = 0.1 ms for in-rack EPR pair generation. For the cross-
rack communication, the EPR generation rate is reduced by a factor
of 100 (i.e., 20 dB additional loss) as the transmission rate is further
reduced due to the signal attenuation in the second NIR switch, and
two QFC devices, leading to Tipter = 10 ms.

For EPR fidelity, because of false positive signals, we obtain a
noisy Bell state in the form of p = (1 — a) |¢+) (P+] + ¢ |TT) (TTI,
and the resulting fidelity is then given by F = 1 — a. With @ =
0.05, we obtain Fror = 0.95 for in-rack EPR pair generation. We
further assume that the fidelity is dropped by another 10% due
to conversion infidelity in QFCs [40, 64, 76], resulting in a lower
fidelity Finter = 0.85 for cross-rack EPR pair generation.

2.3 Related Work

DQC compilation Over the last few years, various compilers have
been developed for DQC. Some previous work optimizes qubit
placement [4, 9, 10, 25-27, 77] or optimizes communications when
routing program qubits among QPUs [29, 31, 37, 70, 71]. These
approaches are orthogonal to our compiler and can be combined
with our optimizations. Some compilers [56, 66] have also been pro-
posed to implement DQC without inter-QPU communications by
cutting large circuits into smaller ones and running them on differ-
ent devices, yet they require non-scalable classical post-processing.
Furthermore, recent work [39] has proposed an efficient implemen-
tation of surface code for DQC. Our work can be considered as
a higher-level optimization than it, as each of our qubits can be
considered as either a physical qubit or a logical qubit.
Long-range quantum repeater networks Long-range quan-
tum communication leverages quantum repeaters to mitigate sig-
nificant photon loss over extended distances, requiring specialized
memory qubits and quantum devices at each repeater for prob-
abilistic entanglement swapping. Previous work have proposed
architecture designs to ensure scalability of repeater networks for
random workload (e.g., congestion-free on repeater memories, size-
independent threshold for error-corrected entanglement, distance-
independent communication rates [21, 22, 54, 55]). Moreover, recent
work has proposed making quantum repeater networks compati-
ble with classical networks by designed protocols on the control
plane [73]. However, these repeater networks are designed for long-
range quantum communication rather than local-range efficient
quantum computing. In contrast, QDCs operate within shorter
distances, eliminating the need for repeaters, and can leverage

SwitchQNet: Optimizing Distributed Quantum Computing for Quantum Data Centers with Switch Networks

ISCA 25, June 21-25, 2025, Tokyo, Japan

; @= [B——

@6

(@) Quantum program

3 :> V Entangle
(@) = [#2] é

X

Entangle
T ©

Al A2 Biy NV B2

In-rack

(b) Quantum data center

(d) In-rack communication collection

In-rack Cross-rack
Cross-rack Ergalnﬁi : Iinltz(x)nr%ll :
Cross-rack Entangle | | :
/ o CNOT gate
Svf‘fclhn‘:f’ é ~0.01 ms
7 N (negligible)
(c) Quantum Program with trivial entanglement
Al Cross-rack
State
Cross-rack Distillation |
Cross-rack Entangle | | ... —) . Cross-rack|| | ... |......
Entangle
N A\ O
Entangle
B2 g
.W Store in cache __—7 . -

(e) Cross-rack communication split

Figure 6: Deployment of a quantum program (a) on to a quantum data center (b). The in-rack communication time is reduced
from 3.3 ms (c) to 1.3 ms (d) by a collection. The overall communication time is reduced from 23.3 ms (d) to 12.4 ms (e) by splitting
a congested cross-rack communication into a non-congested cross-rack communication and an in-rack communication, where
the in-rack one can be distilled at a low cost to enhance its fidelity.

off-the-shelf optical switches with minimal quantum devices. This
makes them better suited for meeting computational needs with
near-term hardware capabilities. For repeater networks, EPR distri-
bution protocols [42, 54, 60, 74, 75] have been designed to maximize
EPR throughput by strategically selecting successful links among
memory qubits. However, these protocols are tailored for repeater
networks and reduce to simple shortest-path searches in memo-
ryless QDCs, thus cannot address the unique challenges of QDCs
effectively.

Classical DC While classical and quantum data centers (DCs)
[1, 67] both exhibit hierarchical network structures with higher
cost for cross-rack communication than in-rack communication,
their underlying communication models are fundamentally dif-
ferent in terms of data replicability and fidelity sensitivity. These
differences impose stricter constraints on QDCs and necessitate
more sophisticated compilation techniques.

In classical DCs, data can be freely replicated, stored indefinitely,
and retransmitted without fidelity degradation. Consequently, tech-
niques such as pre-transmission, dynamic rerouting, and flexible
buffer management are highly effective. In contrast, communica-
tion in QDCs rely on EPR pairs that can be stored for only limited
time, and consumed only once, rendering classical approaches in-
effective. Furthermore, while classical DCs can reduce cross-rack
communication by rerouting data through in-rack paths with neg-
ligible impact, QDCs require additional in-rack EPR pairs when
splitting communication paths. Each additional in-rack EPR gener-
ation introduces fidelity overhead, creating a fundamental trade-off
between latency reduction and fidelity maintenance.

Our compilation framework addresses these quantum-specific
constraints by enabling collective and parallel EPR generation, ap-
plying entanglement distillation to mitigate fidelity degradation,
ensuring deadlock- and congestion-free scheduling in the compila-
tion stage to guarantee program progress. These techniques have no

direct classical analogue and are essential to achieving low-latency,
high-fidelity communication in QDCs.

3 Motivation

This section introduces the optimizations in our compiler with
a motivating example, including collective generation of in-rack
EPR pairs and parallelized generation of cross-rack EPR pairs. To
facilitate these two optimizations, techniques for resolving deadlock
and buffer congestion are also required, which will be introduced
with more technical details in the next section.

Fig. 6(c) demonstrates an example of scheduling EPR pair gen-
erations without a look-ahead analysis of the program pattern. It
deploys a circuit in Fig. 6(a) to the QDC in Fig. 6(b), scheduling EPR
pair generations (depicted as rectangles in Fig. 6(c)) right before
they are needed by inter-QPU CNOT gates, with switch reconfigu-
ration represented by the shaded rectangles in Fig. 6(c). Specifically,
each line in Fig. 6(c) represents a qubit on a different QPU, with the
three gates between QPU B; and B; requiring in-rack EPR pairs
and the other two gates requiring cross-rack EPR pairs according
to Fig. 6(b). Adopting latencies of in_rack = 0.1 ms, reconfig = 1 ms
and cross_rack = 10 ms, neglecting the much shorter gate execution
time, the execution of the 5 remote gates requires 25.3 ms in total
(Fig. 6(c)). As will be seen, this can be reduced to 12.4 ms with the
following optimizations (Fig. 6(d)(e)).

The first optimization is the collective generation of near-future
in-rack EPR pairs, which reduces their average latency by avoiding
frequent switch reconfigurations. Through a look-ahead into the
program, the compiler finds that three in-rack pairs between QPU
By and By are needed in the near future (blue rectangles), which
takes 0.3 ms only. However, the switch reconfigurations for enabling
the optical channel for three times takes 3 ms (shaded rectangles
before the blue ones). To reduce this overhead, it schedules the
generations of these three in-rack EPR pairs collectively, as shown

ISCA 25, June 21-25, 2025, Tokyo, Japan

by the consecutive blue rectangles in Fig. 6(d). These generated EPR
pairs are then stored temporarily in the buffer before usage. With
this collection, the time for generating the three in-rack EPR pairs
is reduced from 3.3 ms to 1.3 ms, with the overall communication
time reduced from 25.3 ms to 23.3 ms.

The second optimization is the parallelization of near-future
cross-rack EPR pairs, which maximizes the utilization of network
bandwidth by splitting congested EPR pairs into non-congested
ones. In Fig. 6(d), generations of the two cross-rack EPR pair (Az, B1)
and (A, B1) are sequential, as QPU By can communicate with only
one other QPU at a time (assuming edge weight = 1). That is, in
Fig. 6(b), the green path conflicts with the red dashed path. To
parallelize them, we can split the congested EPR pair (Aj, B1) by
allowing Bj to borrow bandwidth from By, a QPU in the same rack
as Bj. Specifically, the cross-rack EPR pair (A1, B;) is split into a
new cross-rack EPR pair (Aj, Bz) and an additional in-rack EPR
pair (B1, Bz), followed by an entanglement swapping between these
two pairs once they are both prepared. In this way, we can generate
the new cross-rack EPR pair (A1, Bz) in parallel with the originally
conflicted (A2, B1) and store it in the buffer, while scheduling an
additional in-rack EPR pair (B, B2) in the collective generation, as
shown in Fig. 6(d). This further reduces the overall latency from
23.3 ms (Fig. 6(d)) to 12.4 ms (Fig. 6(e)).

As the split of cross-rack communication incurs additional in-
rack EPR pairs, it poses a risk of reducing the overall fidelity of
quantum computing. To mitigate this, we enhance the fidelity of
these additional in-rack EPR pairs by scheduling multiple copies
of each and implementing entanglement distillation among them,
as shown in Fig. 6(e). This can be achieved with a low cost as the
multiple copies can be scheduled collectively with other in-rack EPR
pairs. Given that in-rack EPR pairs have a 95% fidelity, a distillation
by two copies results in an EPR pair of > 96.5% fidelity (where we
approximated our input states as Werner states with 93.6% success
probability [11, 38]). This fidelity can be further enhanced by using
more copies. Note that cross-rack EPR pairs and original (non-split)
in-rack EPR pairs can also be distilled upon requests. This can be
easily accommodated by our framework, which is equivalent to an
increased latency of EPR pair generation.

4 Framework Design

4.1 Preprocessing

Our compiler can be used in combination with previous compilers
[70, 71] that reduce the required EPR pairs. Considering the dy-
namic reconfigurability of QDCs, these compilers for static network
topology should be applied by assuming a full connection between
QPUs. In our experiments of Section 5, we will combine with the
buffer-aware compilation technique in [70]. Its output is a list of
required EPR pairs, with corresponding QPUs and communication
protocols specified (i.e., Cat vs. TP, see Section 2).

To leverage its minimization of EPR pairs, we transform its out-
put to serve as input to our compiler through preprocessing. Specif-
ically, we convert this EPR list to a directed acyclic graph (DAG)
by imposing dependencies among them, with each node in DAG
representing an EPR pair, and each directed edge representing a
dependency. Specifically, whenever the involved QPUs of two EPR

Hezi Zhang, Yiran Xu, Haotian Hu, Keyi Yin, Hassan Shapourian, Jiapeng Zhao, Ramana Rao Kompella, Reza Nejabati, Yufei Ding

pairs overlap, we add an edge from the earlier one in the output list
to the later one.

This DAG needs to be utilized appropriately by our compiler, as
the imposed dependency can deviate from the real dependency due
to the following reasons. First, even if two EPR pairs are indepen-
dent according to the DAG, they may not be able to be scheduled
concurrently due to bandwidth contention. Second, even if two
EPR pairs are dependent according to the DAG, they may be able to
be scheduled concurrently, as the overlapped QPUs between them
may have multiple communication qubits to generate both pairs.
However, these inaccurate dependencies can be used as a rough
guidance in our scheduling process, with the above cases handled
automatically by our compiler.

4.2 EPR Scheduling

This subsection introduces the conditions for EPR pair scheduling,
with in-rack collection introduced in the explanation of in-rack vs.
cross-rack EPR pairs. Due to the limited communication qubits and
network bandwidth, at each time slice it depends on four conditions
to decide whether an EPR between two QPUs can be scheduled. We
will first list them as below and then explain.

Scheduling Conditions:

(1) Hard: available communication qubits on both QPUs
(2) Hard: available BSMs on the rack of either QPU

(3) Hard: available optical channel between the QPUs
4)

4) Soft: buffer_size + avail_comm > threshold - not_in_front_layer

(threshold > #comm_qubits per QPU) on both QPUs

Hard vs. soft conditions The first three conditions are manda-
tory resource requirements for EPR generation. By checking these
conditions for a certain EPR pair, we ensure that this EPR pair can
be supplied at the moment by the network. That is, an EPR pair
between QPU A and B can be generated only if there are available
communication qubits on both A and B, there is an available BSM
on the ToR switch of either A’s rack or B’s rack, and there is an
available path in the network between A and B.

The fourth condition is optional, depending on whether the EPR
pair is in the front layer of the DAG (i.e., not_in_front_layer = True /
False), as explained later. It aims to prioritize the buffer utilization of
front-layer EPR pairs to mitigate buffer congestion, which not only
improves the overall compilation performance, but also reduces the
incurrence of retries that will be introduced in Section 4.5.

In-rack vs. cross-rack Due to our collective in-rack EPR pair
generation strategy, the third condition can be different when ap-
plied to in-rack and cross-rack EPR pairs. For a cross-rack EPR
pair between QPU A and B, this condition requires an available
optical channel between A and B that is not occupied by any other
communication. For an in-rack EPR pair, this condition is checked
in two steps. We first check whether this EPR pair can share an
occupied channel with other in-rack EPR pairs between A and B. If
so, we combine it with those EPR pairs by scheduling it right after
them. If not, we then check if there is an available optical channel
that is not occupied by any other communication.

Front layer vs. non-front layer The fourth condition only
applies to EPR pairs that are not in the front layer of the DAG.
For EPR pairs in the front layer, we allow their generations as
long as the three mandatory conditions are satisfied, since they are

SwitchQNet: Optimizing Distributed Quantum Computing for Quantum Data Centers with Switch Networks

ISCA 25, June 21-25, 2025, Tokyo, Japan

(a) scheduling of a single split

goal: (A1, B1) to: Al busy, gen (A2, B1)

t;: Alidle, gen (A1, A2) release buffer

e 1
[Azl|[azl =

(b) deadlock caused by multiple splits

goal: (A1, B1), (A1, B2) to: Al busy, gen (A2, B1), (A2, B2)

o] Jfex]

(=3l |]

[
=

t,: A2 full, fail to gen (A1, A2) t,: A2 full, fail to gen (A1, A2)

)| _ (=)

no available buffer

| [
o)) X e

no available buffer

(e)| |(o=] (]
B e d

[O} A2 B2]

L8| |lo=] [= &H o
projected_buffer = 2
(c) buffer congestion caused by TP
goal: (A1, B1), TP (B2 > A2) to: Al busy, gen (A2, B1), (A2, B2)
(e)| ((o=] ()| (o>]
% <

[W%] e] [=S Hloe |

projected_buffer = 2

O available buffer O—0O O—O EPR pairs

t;: TP (B2 > A2) t,: A2 full, fail to gen (A1, A2)
| (=) || (=]
—>
A2 2 X A a2y 2
[ol lod‘ I 0% [06’ I

no available buffer
© data qubit O entanglement swapping

Figure 7: (a) A normal EPR split. (b) Deadlock caused by multiple EPR splits. (c) Buffer congestion caused by TP communication.

required by the program urgently. However, for those not in the
front layer, which are less urgent, we add this condition to mitigate
buffer congestion, requiring the total number of available buffer
qubits and available communication qubits on each involved QPU
to exceed an adjustable threshold.

4.3 Cross-rack EPR Split

This subsection introduces the conditions for EPR pair split. While
cross-rack split can help maximize the utilization of network band-
width, its flexibility can bring a risk of deadlocks or buffer conges-
tion when the involved QPUs do not have enough buffer available.
As a result, we impose the following conditions to mitigate this risk,
first listing them and then explain. For the rare cases that cannot
be prevented by these conditions, they will be resolved by our retry
mechanism that will be introduced in Section 4.5.
Split Conditions:

e Hard: available communication qubits on another QPU in
the same rack as the busy QPU

e Soft: projected_buffer — reserved_buffer > mppy for each
QPU involved in the post-split EPR pairs

Hard Condition The hard condition ensures that there are
available communication qubits on another QPU in the same rack
as the busy QPU. We illustrate the hard condition by an example in
Fig. 7(a). When a QPU A; is busy, the cross-rack EPR pair (A;, B1)
can be split into a new cross-rack pair (A2, B1) and an additional
in-rack pair (A, Az). This requires that QPU Aj in the same rack

as A1 has an available communication qubit. This split is followed
by an entanglement swapping that merges the two pairs into the
required EPR pair (A1, B1) and a buffer release after (Ay, By) is
consumed by communication.

Soft Condition The soft condition aims to ensure that there is
enough buffer on the involved QPUs to generate all the post-split
EPR pairs. In the soft condition, the projected_buffer of a QPU is
defined as the buffer size it would have if all currently scheduled
EPR pairs were consumed by the execution of corresponding com-
munications. This reflects the maximum buffer size available in
the near term. When calculating this variable, if an EPR pair is
scheduled for a Cat protocol, the buffer size of each involved QPU
should increase by 1 after the communication. In contrast, if the
EPR pair is scheduled for a TP protocol with data teleported from
QPU A to QPU B, then the buffer size of A should increase by 2
after the communication, while the buffer size of B should remain
unchanged, as the released buffer qubit on B would be occupied by
the teleported data qubit.

With this variable, a basic (but not sufficient) condition for EPR
split is that the projected_buffer on each QPU should at least be
able to accommodate all EPR pairs induced by an individual split,
i.e., projected_buffer > mgpy, with mgpy being the number of
post-split EPR pairs each involved QPU needs to store. For example,
if an EPR pair (A, B) is split into (A, A’) and (A’, B), then there
should be my = mg = 1 and my4 = 2, as each of A and B needs to
store only one EPR pair, while A’ needs to store two EPR pairs.

ISCA 25, June 21-25, 2025, Tokyo, Japan

However, this basic condition is not sufficient to prevent deadlock
caused by multiple EPR splits. We illustrate this deadlock risk with
an example in Fig. 7(b). The two orange EPR pairs (A1, A2) and
(Agz, By) are the post-split pairs of an EPR pair (A1, B1), while the
two blue EPR pairs (A, Az) and (Az, B2) are the post-split pairs
of an EPR pair (A1, B2). Supposing QPU A; has projected_buffer =
2, while the two post-split cross-rack pairs are scheduled to be
generated simultaneously, then the post-split in-rack EPR pairs
would never have a chance to be scheduled due to a deadlock. This
is because the orange in-rack pair will be waiting for buffer release
from the blue cross-rack pair, which requires the blue in-rack pair
to be generated first; while the blue in-rack pair will be waiting
for buffer release from the orange cross-rack pair, which in turn
requires the orange in-rack pair to be generated first.

To accommodate simultaneous splits of multiple EPR pairs, we
need to prevent such deadlock by reserving enough buffer size
on QPUs. Specifically, for each EPR split, we reserve mgpy buffer
qubits from projected_buffer until the post-split EPR pairs are all
scheduled, with mgpy being the number of post-split EPR pairs on
each involved QPU as explained earlier. This is implemented by
tracking a variable reserved_buffer on each QPU, which is initiated
as 0. For each split, we increase the reserved_buffer of each QPU by
mopy when the first post-split EPR pair of this split is scheduled,
then decrease them by mgpy once all post-split pairs of this split
are scheduled. With this reservation, the condition for an EPR split
becomes projected_buffer — reserved_buffer > mgpy.

4.4 Post-split distillation

Since the split of cross-rack communications requires additional in-
rack EPR pairs, it reduces the overall fidelity since the fidelity of EPR
pairs is much lower than the local gates on each QPU. To improve
the overall fidelity, we incorporate an entanglement distillation for
the post-split in-rack EPR pairs. Given the 95% fidelity of in-rack
EPR pairs, a distillation of two EPR pairs enhances the fidelity to >
96.5%. However, the additional EPR pair required by the distillation
also needs to occupy a buffer qubit on the QPU. As a result, if an
EPR pair (A, B) is split into (A, A”) and (A’, B), then we should
increase mopy tomg =2, my =3 and mg = 1.

When k-pair distillation is considered, a feasible strategy is dis-
tilling with the k — 1 sacrificed pairs sequentially [38, 43], as these k
pairs are generated sequentially through an in-rack optical channel.
This strategy reduces the total wait time of EPR pairs, prevent-
ing the sacrificed EPR pairs from error exposure, and is efficient
in buffer utilization, i.e., the reserved mopu does not need to be
further increased as the k — 1 sacrificed EPR pairs can reuse the
same buffer qubit sequentially. Depending on QPU performance,
it may be worthy to wait for the generation of all the k pairs and
conduct a parallel distillation [35]. In this case, mgopy should be
further increased tomy =k, mgq =k +1and mg = 1.

4.5 Algorithm

This subsection describes the overall algorithm of our compiler,
which provides each QPU and switch with a deadlock-free and
congestion-free communication schedule that dictates their oper-
ations at each time slice. Specifically, the compiler optimizes the

Hezi Zhang, Yiran Xu, Haotian Hu, Keyi Yin, Hassan Shapourian, Jiapeng Zhao, Ramana Rao Kompella, Reza Nejabati, Yufei Ding

communication time slice by time slice, looking ahead into near-
future EPR demand of each time slice, performing in-rack collection
and cross-rack split, scheduling EPR pairs through the proposed
conditions to prevent deadlocks and buffer congestion. For the rare
cases that could not be prevented, it retries the scheduling with a
conservative strategy that ensures the elimination of any deadlock
or buffer congestion.

Look-ahead scheduling At each time slice ty, our compiler
looks into the subgraph of the first [layers of the DAG, maximizing
the number of scheduled EPR pairs greedily. This scheduling con-
sists of two rounds, with the first round for the scheduling of regular
EPR pairs and the second round for EPR split and the scheduling of
post-split EPR pairs.

In the first round, it tries scheduling each node in the subgraph
in the ascending order of their layers. If the EPR pair represented
by a node satisfies the scheduling conditions, then we schedule it,
removing the node and updating the dependencies between the
remaining nodes in the subgraph. Otherwise, we continue with
the next node until no EPR pair in the first [layers satisfies the
conditions.

Then we conduct a second round of scheduling if network band-
width remains. Specifically, we try splitting each node in the re-
maining subgraph in the ascending order of node layer. If an EPR
pair satisfies the split conditions, we split the EPR pair, scheduling
the post-split cross rack pair and adding the post-split in-rack pairs
into the subgraph. Then we continue to the next node in the up-
dated subgraph until all nodes in the subgraph are traversed. After
that, we repeat these two rounds for time slice ¢y + 1.

Auto retry While the conditions for scheduling and EPR split
can significantly mitigate deadlock and buffer congestion, it is still
possible that they may occur occasionally. For example, in Fig. 7(c),
the green EPR pair is for a TP communication that teleports a qubit
from Bj to Ay. While a qubit on Az would be released after EPR
pair (A, By) is consumed by this TP communication, this released
qubit would be taken by the teleported data, making the remaining
buffer size insufficient for generating (Aj, A2) and (Ag, B1), i.e., the
post-split EPR pairs of (A1, By).

To completely eliminate deadlocks and buffer congestion in the
compilation, we implement an automatic retry mechanism that
reverts to a saved state and retries scheduling with a gradually
more conservative strategy if a deadlock or congestion occurs. The
most conservative approach would be a strict on-demand EPR pair
generation, which follows the exact order of EPR pair generations
set by the pre-processing stage, scheduling the generation of each
EPR pair right before it is required by an inter-QPU communication.
This ensures a deadlock-free and congestion-free scheduling in the
worst case.

While ensuring progress, the strict on-demand strategy signifi-
cantly limits opportunities for parallelizing cross-rack communica-
tions. To improve this, we enhance the strategy into a buffer-assisted
on-demand strategy that allows parallelization of communications
between non-overlapping QPU pairs through buffer utilization.
Specifically, this strategy checks the list of EPR pairs provided by
the pre-processing in their strict order. If an EPR pair, say between
A and B, satisfies the hard scheduling conditions, it then schedules
and stores this EPR pair if either its predecessors do not involve A
and B or if those predecessors are also successfully scheduled. Note

SwitchQNet: Optimizing Distributed Quantum Computing for Quantum Data Centers with Switch Networks

that this strategy does not guarantee deadlock-free and congestion-
free communication as the strict on-demand strategy does.

To summarize, whenever a failure occurs, our retry mechanism
first reverts to a previously saved state and applies this buffer-
assisted on-demand strategy. If the issue persists, it then falls back
to the strict on-demand strategy to ensure progress.

5 Evaluation
5.1 Experiment Setup

Architecture setups In the primary experiment, we evaluate our
framework on the CLOS network architecture [1, 67] as shown in
Fig. 1, with 25% of the total computation qubits reserved as buffer,
as listed in Table 1. Each QPU is assumed to have two communica-
tion qubits. To allow all communication qubits in a rack to work in
parallel, we assume each ToR switch to have #BSMs = 2x #QPUs /
rack and each switch to be a #BSMs X #BSMs switch (or 2x #BSMs
ports), We take a look-ahead depth of 10, adopting 0.1ms, 1ms and
10ms as the latencies of in-rack EPR pair generation, switch config-
uration and cross-rack EPR pair generation respectively, according
to Section 2. The settings of experiments are listed in Table 1. These
parameters will be further varied in subsequent experiments.

Table 1: Program and architecture settings

Benchmark #rack #QPUs/ | #Data Buffer | Comm
rack Qubits / | Size / | Qubits/
QPU QPU QPU
program-480 4 4 30 10 2
program-608 4 4 38 12 2
program-720 4 4 45 15 2
program-360 4 3 30 10 2
program-480 4 4 30 10 2
program-600 4 5 30 10 2
program-720* 4 6 30 10 2
program-240 4 3 20 7 2
program-540 9 3 20 7 2
program-960 16 3 20 7 2
spine-leaf-720 6 4 30 10 2
fat-tree-960 8 4 30 10 2

Benchmark programs We select a set of benchmark programs
including building blocks of quantum applications and practical
quantum algorithms: multi-control target gate (MCT) [48], Quan-
tum Fourier transform (QFT) [57], Grover’s Algorithm (Grover) [20],
Ripple-Carry Adder (RCA) [23]. Among them, MCT represents key
non-Clifford operations essential for universality and benchmarks
the efficiency of multi-qubit gate decomposition. QFT and RCA
[57] are crucial components of Shor’s algorithm [61] as well as
other applications in signal processing [6, 47] and cryptography [2].
Grover’s Algorithm (Grover) [36] is also an important algorithm,
which can provide quadratic quantum speed up for unstructured
search problems. For Grover’s algorithm, we consider the secret
string with all ones and repeat the iteration by 100 times. More-
over, we increase the complexity of the RCA circuit by repeating
the adder for 100 iterations, which effectively adapts it to a sum
calculation.

Metrics We evaluate the compilation performance with four
metrics. The first is the overall communication latency of compiled

ISCA 25, June 21-25, 2025, Tokyo, Japan

programs, abbreviated as ‘latency’, normalized by the latency of
switch reconfiguration. We ignore the computation time within
each QPU as it is much faster than inter-QPU communication.

The second and the third metrics together measure the fidelity
overhead. Specifically, the second metric is the EPR overhead, in-
dicating the number of additional distilled EPR pairs, arising from
communication split, in a weighted manner. According to the 15%
and 5% infidelity of cross-rack and in-rack EPR pairs (see Section 2),
we count them by weights 1 and 0.33, respectively. For the distilled
in-rack EPR pairs, we count each of them by a weight 0.23 based
on their < 3.5% infidelity. The third metric is the average wait time
of EPR pairs in buffer, which is also normalized by reconfiguration
latency. We list these two overheads separately as the effect of
wait time depends on the coherence time of computation qubits,
which is not decided by the network but varies with different QPU
technology.

The fourth metric is retry overhead, which indicates the compi-
lation time overhead caused by the retry mechanism. Specifically,
this is defined as the ratio between the total number of time steps
tried in the compilation process and the number of time steps in the
compilation result. Hence this value would be 1 if no retry occurs
in the compilation.

Baseline Due to the lack of optimized compilers for the emerging
hierarchical QDC architecture [59], we construct our baseline by
combining state-of-the-art compilation techniques for general DQC
[70] with shortest-path buffer-assisted on-demand EPR generation.
First, similar to the preprocessing step in Section 4.1, we obtain
a list of EPR pairs required by each benchmark program, with
the number of those EPR pairs minimized through a buffer-aware
compilation pass [70], where the buffer size is set to the same as
our framework. Then, we schedule the generation of each EPR
pair with the buffer-assisted on-demand strategy as explained in
Section 4.5. Although in principle, this strategy does not ensure
deadlock-free and congestion-free communication as the strict on-
demand strategy does, we did not observe fatal issues with this
strategy during experiments.

5.2 Primary Experiment Result

Outperformance Table 2 presents the comparison of our frame-
work with the baseline as the number of qubits per QPU increases,
as the number of QPU per rack increases and as the number of
racks increases. Besides CLOS, we also include two other commonly
used network topologies, i.e., spine-leaf topology [67] and fat tree
topology [21]. It can be seen that our compiler significantly reduces
the overall latency, with an average improvement factor of 8.02.

The results of the baseline stay stable with #qubits per QPU, as
the increase of #qubits per QPU of primarily affects QPU computa-
tion rather than inter-QPU communication. Only the QFT results
of the baseline vary with #qubits per QPU, since it has a denser
communication pattern than other benchmarks. In contrast, the la-
tency of our compiler varies with #qubits per QPU, as the allocated
buffer size increases with #qubits per QPU. This leads to a slightly
increased improvement as #qubits per QPU increases.

The improvement of our compiler increases with #QPUs per
rack, showing the ability of our compiler to mitigate the bandwidth
contention caused by the increased #QPUs. It also increases with

ISCA 25, June 21-25, 2025, Tokyo, Japan

Hezi Zhang, Yiran Xu, Haotian Hu, Keyi Yin, Hassan Shapourian, Jiapeng Zhao, Ramana Rao Kompella, Reza Nejabati, Yufei Ding

Table 2: Performance of our compiler and the baseline. Units of latency and wait time are the latency of switch reconfiguration.

Experiment | Benchmark Baseline: | Ours: Improv. | #cross-rack | #in-rack Ours: #distilled | EPR Baseline: | Ours: Additional | Retry
Latency | Latency | Factor EPR (15% | EPR (5% | EPR (3.5% infi- | Over- Wait Wait Wait Time | Over-
infidelity) infidelity) | delity) head Time Time head
MCT-480 2,312 485 4.77X 15 240 13 3.09% 1.98 6.75 4.77 1.00
MCT-608 2,312 454 5.09% 15 240 15 3.55% 1.98 6.36 4.39 1.00
MCT-720 2,312 382 6.05% 15 240 16 3.78% 1.98 8.23 6.25 1.00
QFT-480 121,728 16,693 7.29% 1,080 2,970 1,133 11.32% 1.30 6.87 5.57 1.00
QFT-608 155,960 20,781 7.50% 1,368 3,762 1,452 11.44% 1.26 6.92 5.66 1.00
Increase QFT-720 194,526 24,670 7.89% 1,620 4,455 1,772 11.75% 1.00 7.77 6.77 1.00
#qubits/QPU | Grover-480 156,213 26,943 5.80x 1,800 7,200 1,927 9.67% 2.08 8.73 6.65 1.00
Grover-608 150,702 27,412 5.50% 1,800 7,200 1,933 9.70% 1.87 9.54 7.67 1.00
Grover-720 156,213 25,883 6.04x 1,800 7,200 2,122 10.55% 2.08 9.14 7.06 1.00
RCA-480 92,259 9,169 10.06x 603 2,412 630 9.46% 0.03 8.49 8.46 1.00
RCA-608 92,259 9,304 9.92x 603 2,412 650 9.73% 0.03 8.57 8.54 1.00
RCA-720 92,226 9,395 9.82x 603 2,404 658 9.86% 0.01 9.78 9.77 1.00
MCT-360 1,476 468 3.15% 15 144 15 5.26% 3.03 5.81 2.78 1.00
MCT-480 2,312 485 4.77% 15 240 13 3.09% 1.98 6.75 4.77 1.00
MCT-600 3,214 634 5.07x 15 432 12 1.73% 1.17 5.30 4.13 1.00
MCT-720* 4,413 921 4.79% 15 624 11 1.14% 0.87 5.27 4.40 1.00
QFT-360 78,300 13,504 5.80x 810 1,500 715 11.30% 1.48 6.27 4.79 1.00
QFT-480 121,728 16,693 7.29% 1,080 2,970 1,133 11.32% 1.30 6.87 5.57 1.00
QFT-600 169,831 20,041 8.47x 1,350 4,920 1,559 10.85% 1.14 7.00 5.86 1.00
Increase QFT-720* 216,372 23,362 9.26X 1,620 7,350 1,915 9.89% 1.20 7.63 6.43 1.00
#QPUs/rack | Grover-360 140,813 29,717 4.74% 1,800 4,800 1,594 9.86% 2.03 9.96 7.93 1.00
Grover-480 156,213 26,943 5.80x 1,800 7,200 1,927 9.67% 2.08 8.73 6.65 1.00
Grover-600 171,613 25,438 6.75% 1,800 9,600 2,057 8.76% 2.08 8.77 6.68 1.00
Grover-720* 187,013 24,580 7.61x 1,800 12,000 2,178 8.06% 2.07 8.85 6.77 1.00
RCA-360 83,470 10,127 8.24x 603 1,608 531 9.81% 0.03 9.69 9.66 1.00
RCA-480 92,259 9,169 10.06x 603 2,412 630 9.46% 0.03 8.49 8.46 1.00
RCA-600 101,048 8,916 11.33% 603 3,216 683 8.69% 0.03 8.68 8.64 1.00
RCA-720* 109,837 8,592 12.78x 603 4,020 710 7.86% 0.03 8.78 8.75 1.00
MCT-240 1,575 490 3.21x 15 144 14 4.93% 2.74 4.66 1.92 1.00
MCT-540 6,514 3,069 2.12x 99 900 52 2.95% 3.12 5.14 2.03 115
MCT-960 15,369 5,415 2.84x 255 2,304 170 3.73% 3.21 5.44 2.23 1.22
QFT-240 50,195 9,663 5.19%x 540 1,000 389 9.41% 1.61 6.25 4.64 1.00
QFT-540 212,522 28,694 7.41x 2,640 4,900 1,802 8.96% 2.36 6.28 3.93 1.00
Increase QFT-960 564,973 58,482 9.66X 8,100 15,400 4,250 6.97% 3.05 6.61 3.56 1.00
#racks Grover-240 147,468 34,265 4.30% 1,800 4,800 1,248 7.89% 1.00 9.54 8.54 1.01
Grover-540 365,312 38,648 9.45% 4,800 10,800 3,071 7.86% 0.99 8.63 7.65 1.00
Grover-960 665,612 39,969 16.65% 9,000 19,200 4,576 6.48% 0.98 7.99 7.01 1.00
RCA-240 83,470 11,050 7.55% 603 1,608 432 8.13% 0.03 8.91 8.88 1.00
RCA-540 213,523 12,666 16.86% 1,608 3,618 853 6.61% 0.08 7.10 7.02 1.00
RCA-960 399,478 13,240 30.17x 3,015 6,432 924 4.01% 0.03 7.03 7.00 1.00
MCT-720 4,611 1,008 4.57% 39 600 33 3.12% 2.24 6.60 4.36 1.00
Spine-leaf QFT-720 249,317 34,657 7.19% 2,400 6,570 1,767 8.24% 1.77 9.89 8.12 1.00
topology Grover-720 242,013 34,357 7.04x 3,000 10,800 2,001 6.61% 2.22 11.63 9.42 1.00
RCA-720 149,316 11,418 13.08x 1,005 3,618 679 6.69% 0.03 10.36 10.33 1.00
MCT-960 6,910 2,497 2.77% 63 960 30 1.79% 2.44 5.82 3.38 2.34
Fat-tree QFT-960 421,181 49,568 8.50x 4,200 11,610 3,107 8.24% 1.99 9.40 7.41 1.00
topology Grover-960 327,813 39,193 8.36% 4,200 14,400 2,420 5.90% 2.28 12.80 10.52 1.00
RCA-960 206,373 12,639 16.33x 1,407 4,824 896 6.48% 0.03 10.52 10.49 1.00

#racks, exhibiting the capability of our compiler of effectively utiliz-
ing the increased cross-rack bandwidth. These results demonstrate
the scalability of our compiler. Furthermore, the improvement fac-
tors of the other two network topologies are at a similar level with
CLOS network, which demonstrates the general applicability of our
compiler to various network topologies.

Overhead It can also be seen from Table 2 that these improve-
ments are achieved with a small overhead. First, our compiler re-
quires the generation of 7.41% more (weighted) EPR pairs on av-
erage, which decreases as the #QPUs per rack or #racks increases.

Second, our compiler increases the wait time of generated EPR pairs
in the buffer by only 6.51x reconfiguration latency on average. This
wait time is acceptable since it is even less than the latency of
generating one cross-rack EPR pair. Third, the retry overhead is
very close to 1 for most programs, indicating that the retry rarely
occurs in the compilation. Only one of the programs (i.e., MCT-960
in fat-tree topology) presents a relative high retry overhead of 2.34.
This is because a very early scheduled EPR pair generation caused
a buffer congestion for very late EPR pairs, causing the compiler to
retry multiple times.

SwitchQNet: Optimizing Distributed Quantum Computing for Quantum Data Centers with Switch Networks

ISCA 25, June 21-25, 2025, Tokyo, Japan

122.o><j/ . 155.0»4/ 2 ‘
jfan o
> PEE || 390k i i
C o6k —e— MCT 10.4x QFT 7.5% —e— Grover 6.2% —e— RCA 10.2x
2 - MCT-baseline ! | 205k QFT-baseline i] 33.0k --e- Grover-baseline i 11.0k --e- RCA-baseline i
© :
0.3k 17.5k 27.0k
Ok 10 15 20 25 30 35 40 45 K3 3 7 6 11 13 15 17 10 %3 35 7 9 1w o135 o7 1 %3 5 7 9 1 o135 o171
buffer size buffer size buffer size buffer size
(a1) (a2) (a3) (a4)
z,ak}? PSPPI 121.0»4/1 160.0kj/.._.._.m.m._.._..,_._,‘_,.,,,.,4,.,,., B e)
. : 3.9x 2.4x '
> 0.6k 31.0k : 70.0kq !
2 QFT 7.6x; —e— Grover 6.1x —e RCA 10.4x
9 o5k 24.0k QFT-baseline 50.0k --e- Grover-baseline] 15.0k -~ RCA-baseline :
© :
0.4k{ —o— MCT 17.0k 30.0k 9.0k
--&- MCT-baseline
T35 7 5 11 13 15 70 T 33356780tz % 13323567861z 2% 137343567 800111213
look-ahead depth look-ahead depth look-ahead depth look-ahead depth
(b1) (b2) (b3) (b4)

Figure 8: Performance improvement of our compiler varying with (a) buffer size and (b) look-ahead depth.

5.3 Choice of Hyper-parameters

Buffer size We illustrate the effect of varying buffer size while
keeping all other parameters the same as program-480 in Table 1.
Fig. 8(a) shows the overall latency of baseline and our compiler as
the buffer size increases. The latency of our compiled programs
first decreases with the buffer size and then becomes stable, with
the improvement factor first increasing and then becoming stable.
The turning points of QFT, Grover and RCA are around 7, which
takes 7/(30 + 7) = 18.9% of the total #qubits per QPU. In contrast,
the turning point of MCT is around 20, which is much larger than

other benchmarks. This is because MCT is much more dominated
by in-rack communications than other benchmarks. It can benefit
from a larger buffer size, as in-rack EPR pairs can be collected and
stored in the buffer with less restriction by network bandwidth.
Look-ahead depth We also illustrate the effect of varying
look-ahead depth while keeping all other parameters the same
as program-480 in Table 1. Fig. 8(b) shows the overall latency of
baseline and our compiler as the look-ahead depth increases. The la-
tency of our compiler first decreases with the look-ahead depth and
then becomes stable, with the improvement factor first increasing

3.2k —— MCT 150.0k QFT 00,0k e Grover 1000k —
) --&: MCT-baseline QFT-baseline . e Groverbaseline | gq g ! - --&: RCA-baseline
. 130.0k . : B
> 2.7k L I 160.0k . .
3 Bx 3.8 60.0k
€ 2 SO s s s + [110.0¢] | 20,0k X
- ' N CIERCEEEI [P @errrnaanns ?
© 1.0 § 85x | 40.0 i 8.0k 40.0k |
: 9.0x | 8.7x
0.5k | 20.0k | 40.0k 20.0k| *~ 4
0.0k 23 4 5 5 00k 23 4 5 5 00k 2 3 4 5 5 00k 2 3, 4 5 6
communication qubit number communication qubit number communication qubit number communication qubit number
(al) (a2) (a3) (ad)
4.0k
e MCT 270.0k QFT 400.0k{ _o_ Grover 240.0k{ __ pca
3.0k --®- MCT-baseline QFT-baseline i --e- Grover-baseline --e- RCA-baseline
=7 e i |210.0k | |300.0k L i |180.0k -
9 .. o 5x 1 |
g 20k e I 1400k 56X 1200.0 . — 0% 1150.0k
o o] ; s
1.0k{ 4.9x 70.0k{ 100.0k{ ¢ || 60.0k
| 6.8x ;_’Gx_/_*_*_—l
0.0k 5 10 15 20 25 30 0.0k 5 10 15 20 25 30 0.0k 5 10 15 20 25 30 0.0k 5 10 15 20 25 30
cross-rack / reconfig cross-rack / reconfig cross-rack / reconfig cross-rack / reconfig
(b1) (b2) (b3) (b4)
4.0k{ —*— MCT 160.0k QFT 240.0k{ —s— Grover —e— RCA
--e:- MCT-baseline QFT-baseline . --e-- Grover-baseline . 120.0k{ --®-- RCA-baseline
> 3.0k 120.0k | 180.0k g e - /
9 . : ronrieet : .
S S e PR o I | | 80.0k{ !
B 2.0kf o e . 80.0k{ | 6.5x/ | 120.0k 6.0x| |
© 34 - 16.1x : 15.8x 19, :
1.0k] | 40.0k{ | 60.0k | 400k |
0.0k S O N o S o 0.0k S O N o N N 0.0k S O o o S o 0.0 S o o S ‘e
Q'Qg'\’ 07”_ oF o° 9?’ Ny 092,\ °,'L. N o° 9% Ny Qgg-\ e’-"_ oF N 9?) A 092-\’ 0’}_ oF N 9‘~b AP
in-rack / reconfig in-rack / reconfig in-rack / reconfig in-rack / reconfig
(c1) (c2) (c3) (c4)

Figure 9: Performance improvement of our compiler varying with (a) #communication qubits per QPU, (b) cross-rack EPR
latency and (c) in-rack EPR latency (both normalized by reconfiguration latency).

ISCA 25, June 21-25, 2025, Tokyo, Japan

and then becoming stable. Similar to buffer size, the turning point
of MCT is larger than other benchmarks. It can benefit from a larger
look-ahead depth, as an increased look-ahead depth leads to an
increased collection of its more dominant in-rack communications.

5.4 Sensitivity Analysis

This subsection provides a sensitivity analysis for various hardware
parameters, demonstrating the adaptability of our compiler to a
varying EPR supply (i.e., the number of communication qubits per
QPU and the latencies of cross-rack and in-rack EPR generation) and
avarying EPR quality (i.e., fidelity of cross-rack, in-rack and distilled
EPR pairs). Since only the ratios between different latencies and
fidelity matter, cross-rack and in-rack latency will be normalized
by reconfiguration latency, while cross-rack and distilled in-rack
fidelity will be normalized by the original in-rack fidelity.

Communication qubit number We illustrate the effect of
varying #communication qubits per QPU by increasing it from 1 to
6, keeping all other parameters the same as program-480 in Table 1.
As shown in Fig. 9(a), the overall latency of both baseline and our
compiler decreases first and then becomes stable, which naturally
arises from the increased bandwidth by communication qubits.
The improvement factor of our compiler first increases and then
becomes stable, which demonstrates its more effective utilization
of network bandwidth than the baseline.

Cross-rack EPR latency We illustrate the effect of varying the
latency of cross-rack EPR pair generation by increasing its ratio to
reconfiguration latency from 5 to 30, keeping all other parameters
the same as program-480 in Table 1. As shown in Fig. 9(b), the

Hezi Zhang, Yiran Xu, Haotian Hu, Keyi Yin, Hassan Shapourian, Jiapeng Zhao, Ramana Rao Kompella, Reza Nejabati, Yufei Ding

overall latency of both baseline and our compiler increases with
cross-rack latency. These trends arise naturally from the fact that a
longer cross-rack EPR latency leads to a longer overall latency. The
improvement factor of our compiler decreases with an increased
cross-rack latency, but remains significant even if cross-rack latency
is as large as 30X reconfiguration latency.

In-rack EPR latency We illustrate the effect of varying the
latency of in-rack EPR pair generation by increasing its ratio to
reconfiguration latency from 0.05 to 1, keeping all other parameters
the same as program-480 in Table 1. As shown in Fig. 9(c), the
overall latency of both baseline and our compiler increases with in-
rack latency. These trends arise naturally from the fact that a longer
in-rack EPR latency leads to a longer overall latency. In contrast to
cross-rack latency, the improvement factor of our compiler slightly
increases with the in-rack latency.

Relative cross-rack fidelity We analyze the effect of varying
the fidelity of cross-rack EPR pairs. We fix the fidelity of in-rack EPR
pairs to 95%, varying the fidelity of cross-rack EPR pairs from 75% to
95%, with the ratio between cross-rack and in-rack ones being from
0.79 to 1. All other parameters are kept the same as program-480 in
Table 1. As shown in Fig. 10(a), the EPR overhead of our compiler
slightly increases as this fidelity ratio becomes closer to 1. This
is because our compiler adopts a tradeoff of incurring additional
for hiding latencies of cross-rack communications. With a smaller
fidelity distinction between cross-rack and in-rack pairs, the cost
of additional in-rack EPR pairs would appear more significant.

Relative distilled in-rack fidelity We also analyze the effect of
varying the fidelity of distilled in-rack EPR pairs, as the distillation

22

16

) —— MCT FT —e— Grover —— RCA
R 44 i Q 16
3 E E . E
o 41 < T 14 2 T
< £l |16 £ £ |12 £
5 I I 12 I I
3.8 ~ ¥ ~ x
3 g |] g 110 g
; & ¥ v
&35 g 110 g |10 4 g
w S S S 8 S
0.79 0.84 0.89 0.95 1.00 079 0.84 0.89 0.95 1.00 ©0.79 0.84 0.89 0.95 1.00 0.79 0.84 0.89 0.95 1.00
relative cross-rack fidelity relative cross-rack fidelity relative cross-rack fidelity relative cross-rack fidelity
(al) (a2) (a3) (a4)
51— T T
X —e— MCT 16 QFT —e— Grover 12{ —— RCA
S 4 - 12
©s E E E o E
< = =)) o
- s 2 8{ 8 £
o, 81 1 5 6 S
> 2 I I i
(e} =} el
ol 2 af 2 4 E 3 2
o il 2 G o
ol 0 ° oS ol
1.00 1.01 1.02 1.03 1.04 1.00 1.01 1.02 1.03 1.04 1.00 1.01 1.02 1.03 1.04 1.00 1.01 1.02 1.03 1.04
relative distilled in-rack fidelity relative distilled in-rack fidelity relative distilled in-rack fidelity relative distilled in-rack fidelity
(b1) (b2) (b3) (b4)
r 40.0k
0.6k 12.0k
05K g o o o e — 200k ‘ oK M M
e c 15.0k] | 9.0k
g 0.4k g g ig 24.0k 5 5
=i = prarj
% 03k 2 10.0k g 16.0k{ = 6.0k| @
=02k B 3 i} 2
0.1k o 5.0k{ T 8.0k{ © 3.0k1 o
' 2 —— MCT e QFT e —e— Grover e —— RCA
0.0k 3 3 4 5 6 7 8 9 10 %1 3 3 4 5 6 7 & 9 10 °% 7 3 4 5 & 7 8 & 10 °% 2 3 4 5 6 7 8 9 10
#EPR pair per distillation #EPR pair per distillation #EPR pair per distillation #EPR pair per distillation
(c1) (c2) (c3) (c4)

Figure 10: Fidelity overhead of our compiler varying with (a) cross-rack fidelity and (b) distilled in-rack fidelity (both relative to
the original in-rack fidelity). (c) The overall latency varying with in-rack distillation through different numbers of EPR pairs.

SwitchQNet: Optimizing Distributed Quantum Computing for Quantum Data Centers with Switch Networks

ISCA 25, June 21-25, 2025, Tokyo, Japan

Table 3: QEC Integration: performance of our compiler and the baseline with surface code of distance 5.

Experiment | Benchmark- | Baseline: | Ours: Improv. | #cross-rack | #in-rack Ours: #distilled | EPR Baseline: | Ours: Additional | Retry
#alg_qubits Latency | Latency | Factor EPR (15% | EPR (5% | EPR (3.5% infi- | Over- Wait Wait Wait Time | Over-
infidelity) infidelity) | delity) head Time Time head
MCT-64 145,202 35,859 4.05% 1,920 7,680 2,621 12.01% 0.00 2.40 2.40 1.00
?;:;ifzce QFT-64 1,239,922 | 277,850 4.46X 15,360 3,840 19,889 21.81% 0.00 5.02 5.02 1.00
d=5) Grover-64 18,482 2,718 6.80% 120 480 180 13.04% 0.00 1.31 1.31 1.00
RCA-64 16,777 3,965 4.23% 180 720 249 12.15% 0.43 3.02 2.59 1.00

can be improved by advancing distillation protocols or sacrificing
more EPR pairs for the distillation. We fix the fidelity of in-rack
EPR pairs to 95%, varying the fidelity of distilled in-rack EPR pairs
form 95% to 99.5%, with the ratio between distilled in-rack and (non-
distilled) in-rack ones being from 1 to 1.047. All other parameters are
kept the same as program-480 in Table 1. As shown in Fig. 10(b), the
EPR overhead of our compiler decreases rapidly with this fidelity
ratio. That means if we can distill the additional in-rack EPR pairs
to a high enough fidelity, the fidelity overhead brought by them
will become negligible.

#EPR pairs per distillation While the fidelity of distilled in-
rack EPR pairs can be enhanced by sacrificing more EPR pairs,
the generation of these sacrificed EPR pairs can also increase the
overall latency. However, our experiments show that this increase
is not significant. This is because all the sacrificed EPR pairs are
in-rack pairs, which can be generated collectively in our compiler.
As shown in Fig. 10(c), the overall latency is increased by only 7.4%
on average as the number of EPR pairs used in each distillation
increases from 1 (i.e., no distillation) to 10.

5.5 Integration of QEC

We demonstrate the capability of our compiler to integrate QEC by
an experiment with programs encoded in surface code, one of the
most promising QEC codes [33]. We decompose programs into the
Clifford + T basis [53], implementing logical operations with lattice
surgery [44, 69], along with a magic state factory to facilitate logical
T gates [32]. Therefore, the logical qubits include both algorithmic
qubits required by the quantum program and additional qubits to
facilitate quantum computation (e.g., magic states for implementing
logical T gates [15]).

We adopt an architecture steup similar to the primary experi-
ment, which consists of 4 racks, with each rack containing 4 QPUs,
each QPU containing 2 communication qubits. Each benchmark
contains 64 algorithmic qubtis. On each QPU, 4 algorithmic qubits
of code distance d = 5 are arranged in a lattice, separated by ancilla
qubits with a spacing of d [44], surrounded by a magic state factory
at the periphery of the QPU. The EPR pairs can be stored with a
low resource overhead [16, 62] to prevent from decoherence, until
participating syndrome measurements [39]. Specifically, each QPU
has a buffer of 12 logical qubits with a code distance of 6, which are
encoded in the [[72,12,6]] LDPC code [16]. This leads to a buffer
qubit overhead that is much less than the number of qubits used
for computation.

As shown in Table 3, our framework achieves a reduction in
latency by an average factor of 4.89, with an average EPR pair
overhead of 14.75%, an average additional wait time of 2.83, and an

average retry overhead of 1.00 (i.e., no retry occurs). This demon-
strates the applicability of our framework in fault tolerant quantum
computing.

6 Conclusion

In this work, we provide in-depth analysis and discussion of the
compilation challenges of scaling up quantum computing with
QDCs based on reconfigurable optical switch network. We propose
a compiler that optimizes the quantum communication in QDCs
across both the program and network layers, which employs a look-
ahead EPR scheduling along with two key optimizations: collective
in-rack EPR pair generation and parallelized cross-rack EPR pairs
generation. This compiler reduces the overall communication la-
tency by a factor of 8.02, with an overhead of requiring 7.41% more
EPR generation and increasing the wait time of EPR pairs by 6.51x
switch reconfiguration latency. We also demonstrate its capability
of integrating QEC by an evaluation on surface code. Moreover,
we have open-sourced our codes to facilitate further research and
collaboration within the community.

7 Open-source Codes

Our codes have been open-sourced and can be downloaded from
https://zenodo.org/records/15377656.

Acknowledgments

We thank the anonymous reviewers for their constructive feedback.
This work is supported in part by Cisco Research, NSF 2048144,
NSF 2422169 and NSF 2427109.

References

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scal-
able, commodity data center network architecture. ACM SIGCOMM computer
communication review 38, 4 (2008), 63-74.

[2] Erdem Alkim, Léo Ducas, Thomas Péppelmann, and Peter Schwabe. 2016. Post-
quantum key {Exchange—A} new hope. In 25th USENIX Security Symposium
(USENIX Security 16). 327-343.

[3] Pablo Andr’es-Mart’inez and Chris Heunen. 2019. Automated distribution of
quantum circuits via hypergraph partitioning. Physical Review A (2019).

[4] Pablo Andres-Martinez and Chris Heunen. 2019. Automated distribution of
quantum circuits via hypergraph partitioning. Physical Review A 100, 3 (2019),
032308.

[5] James Ang, Gabriella Carini, Yanzhu Chen, Isaac Chuang, Michael Demarco,
Sophia Economou, Alec Eickbusch, Andrei Faraon, Kai-Mei Fu, Steven Girvin,
et al. 2024. ARQUIN: architectures for multinode superconducting quantum
computers. ACM Transactions on Quantum Computing 5, 3 (2024), 1-59.

[6] Alan Aspuru-Guzik, Anthony D Dutoi, Peter J Love, and Martin Head-Gordon.
2005. Simulated quantum computation of molecular energies. Science 309, 5741
(2005), 1704-1707.

[7] David Awschalom, Karl K Berggren, Hannes Bernien, Sunil Bhave, Lincoln D Carr,
Paul Davids, Sophia E Economou, Dirk Englund, Andrei Faraon, Martin Fejer,
et al. 2021. Development of quantum interconnects (quics) for next-generation
information technologies. Prx Quantum 2, 1 (2021), 017002.

ISCA 25, June 21-25, 2025, Tokyo, Japan

(8]

(9]

[10

[11]

[12

[13

[14

[15]

[16

[17]

[18

[19

[20]

[21]

[22

~
&

[24]

[25

[26]

[27]

[28

[29

[30]

[31

Koji Azuma, Sophia E Economou, David Elkouss, Paul Hilaire, Liang Jiang, Hoi-
Kwong Lo, and Ilan Tzitrin. 2022. Quantum repeaters: From quantum networks
to the quantum internet. arXiv preprint arXiv:2212.10820 (2022).

Jonathan M Baker, Casey Duckering, Alexander Hoover, and Frederic T Chong.
2020. Time-sliced quantum circuit partitioning for modular architectures. In
Proceedings of the 17th ACM International Conference on Computing Frontiers.
98-107.

Robert Beals, Stephen Brierley, Oliver Gray, Aram W Harrow, Samuel Kutin,
Noah Linden, Dan Shepherd, and Mark Stather. 2013. Efficient distributed quan-
tum computing. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 469, 2153 (2013), 20120686.

Charles H Bennett, Gilles Brassard, Sandu Popescu, Benjamin Schumacher, John A
Smolin, and William K Wootters. 1996. Purification of noisy entanglement and
faithful teleportation via noisy channels. Physical review letters 76, 5 (1996), 722.
Eric Bersin, Matthew Grein, Madison Sutula, Ryan Murphy, Yan Qi Huan, Mark
Stevens, Aziza Suleymanzade, Catherine Lee, Ralf Riedinger, David J Starling,
et al. 2024. Development of a Boston-area 50-km fiber quantum network testbed.
Physical Review Applied 21, 1 (2024), 014024.

Eric Bersin, Madison Sutula, Yan Qi Huan, Aziza Suleymanzade, Daniel R As-
sumpcao, Yan-Cheng Wei, Pieter-Jan Stas, Can M Knaut, Erik N Knall, Carsten
Langrock, et al. 2024. Telecom networking with a diamond quantum memory.
PRX Quantum 5, 1 (2024), 010303.

Hans KC Beukers, Matteo Pasini, Hyeongrak Choi, Dirk Englund, Ronald Hanson,
and Johannes Borregaard. 2023. Tutorial: Remote entanglement protocols for
stationary qubits with photonic interfaces. arXiv preprint arXiv:2310.19878 (2023).
Michael Beverland, Vadym Kliuchnikov, and Eddie Schoute. 2022. Surface code
compilation via edge-disjoint paths. PRX Quantum 3, 2 (2022), 020342.

Sergey Bravyi, Andrew W Cross, Jay M Gambetta, Dmitri Maslov, Patrick Rall,
and Theodore J Yoder. 2024. High-threshold and low-overhead fault-tolerant
quantum memory. Nature 627, 8005 (2024), 778-782.

H-J Briegel, Wolfgang Diir, Juan I Cirac, and Peter Zoller. 1998. Quantum re-
peaters: the role of imperfect local operations in quantum communication. Phys-
ical Review Letters 81, 26 (1998), 5932.

Angela Sara Cacciapuoti, Marcello Caleffi, Francesco Tafuri, Francesco Saverio
Cataliotti, Stefano Gherardini, and Giuseppe Bianchi. 2019. Quantum internet:
Networking challenges in distributed quantum computing. IEEE Network 34, 1
(2019), 137-143.

Marcello Caleffi, Michele Amoretti, Davide Ferrari, Daniele Cuomo, Jessica Illiano,
Antonio Manzalini, and Angela Sara Cacciapuoti. 2022. Distributed quantum
computing: a survey. arXiv:2212.10609 (2022).

Yu-Fang Chen, Kai-Min Chung, Ondfej Lengal, Jyun-Ao Lin, Wei-Lun Tsai, and Di-
De Yen. 2023. An Automata-based Framework for Verification and Bug Hunting
in Quantum Circuits (Technical Report). arXiv preprint arXiv:2301.07747 (2023).
Hyeongrak Choi, Marc G Davis, Alvaro G Iiiesta, and Dirk R Englund. 2023.
Scalable quantum networks: Congestion-free hierarchical entanglement routing
with error correction. arXiv preprint arXiv:2306.09216 (2023).

Hyeongrak Choi, Mihir Pant, Saikat Guha, and Dirk Englund. 2019. Percolation-
based architecture for cluster state creation using photon-mediated entanglement
between atomic memories. npj Quantum Information 5, 1 (2019), 104.

Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie Moul-
ton. 2004. A new quantum ripple-carry addition circuit. arXiv preprint quant-
ph/0410184 (2004). https://doi.org/10.48550/arXiv.quant-ph/0410184

Daniele Cuomo, Marcello Caleffi, and Angela Sara Cacciapuoti. 2020. Towards a
distributed quantum computing ecosystem. IET Quantum Communication 1, 1
(2020), 3-8.

Davood Dadkhah, Mariam Zomorodi, Seyed Ebrahim Hosseini, Pawel Plawiak,
and Xujuan Zhou. 2022. Reordering and partitioning of distributed quantum
circuits. IEEE Access 10 (2022), 70329-70341.

Omid Daei, Keivan Navi, and Mariam Zomorodi-Moghadam. 2020. Optimized
quantum circuit partitioning. International Journal of Theoretical Physics 59, 12
(2020), 3804-3820.

Zohreh Davarzani, Mariam Zomorodi-Moghadam, Mahboobeh Houshmand, and
Mostafa Nouri-Baygi. 2020. A dynamic programming approach for distributing
quantum circuits by bipartite graphs. Quantum Information Processing 19 (2020),
1-18.

C Delle Donne, M Iuliano, B Van Der Vecht, GM Ferreira, H Jirovska, TJW Van
Der Steenhoven, A Dahlberg, M Skrzypczyk, D Fioretto, M Teller, et al. 2025. An
operating system for executing applications on quantum network nodes. Nature
639, 8054 (2025), 321-328.

Stephen DiAdamo, Marco Ghibaudi, and James Cruise. 2021. Distributed quan-
tum computing and network control for accelerated vqe. IEEE Transactions on
Quantum Engineering 2 (2021), 1-21.

Duncan Earl, K Karunaratne, Jason Schaake, Ryan Strum, Patrick Swingle, and
Ryan Wilson. 2022. Architecture of a First-Generation Commercial Quantum
Network. arXiv preprint arXiv:2211.14871 (2022).

Davide Ferrari, Angela Sara Cacciapuoti, Michele Amoretti, and Marcello Calefi.
2021. Compiler design for distributed quantum computing. IEEE Transactions on

Hezi Zhang, Yiran Xu, Haotian Hu, Keyi Yin, Hassan Shapourian, Jiapeng Zhao, Ramana Rao Kompella, Reza Nejabati, Yufei Ding

Quantum Engineering 2 (2021), 1-20.

Austin G Fowler and Craig Gidney. 2018. Low overhead quantum computation
using lattice surgery. arXiv preprint arXiv:1808.06709 (2018).

Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Physical
Review A—Atomic, Molecular, and Optical Physics 86, 3 (2012), 032324.

Scarlett Gauthier, Gayane Vardoyan, and Stephanie Wehner. 2023. A Control
Architecture for Entanglement Generation Switches in Quantum Networks. In
Proceedings of the 1st Workshop on Quantum Networks and Distributed Quantum
Computing. 38—44.

Craig Gidney. 2023. Tetrationally compact entanglement purification. arXiv
preprint arXiv:2311.10971 (2023).

Lov K Grover. 1996. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
212-219.

Thomas Hianer, Damian S Steiger, Torsten Hoefler, and Matthias Troyer. 2021.
Distributed quantum computing with QMPL In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1-13.

Ziyue Jia and Lin Chen. 2024. On fidelity-oriented entanglement distribution for
quantum switches. IEEE Journal on Emerging and Selected Topics in Circuits and
Systems (2024).

Junpyo Kim, Dongmoon Min, Jungmin Cho, Hyeonseong Jeong, Ilkwon Byun,
Junhyuk Choi, Juwon Hong, and Jangwoo Kim. 2024. A Fault-Tolerant Million
Qubit-Scale Distributed Quantum Computer. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. 1-19.

Can M Knaut, Aziza Suleymanzade, Y-C Wei, Daniel R Assumpcao, P-J Stas,
Yan Qi Huan, Bartholomeus Machielse, Erik N Knall, Madison Sutula, Gefen
Baranes, et al. 2024. Entanglement of nanophotonic quantum memory nodes in
a telecom network. Nature 629, 8012 (2024), 573—-578.

Nicholas LaRacuente, Kaitlin N Smith, Poolad Imany, Kevin L Silverman, and
Frederic T Chong. 2022. Modeling short-range microwave networks to scale
superconducting quantum computation. arXiv preprint arXiv:2201.08825 (2022).
Jian Li, Mingjun Wang, Kaiping Xue, Ruidong Li, Nenghai Yu, Qibin Sun, and
Jun Lu. 2022. Fidelity-guaranteed entanglement routing in quantum networks.
IEEE Transactions on Communications 70, 10 (2022), 6748-6763.

Jian Li, Mingjun Wang, Kaiping Xue, Ruidong Li, Nenghai Yu, Qibin Sun, and
Jun Lu. 2022. Fidelity-guaranteed entanglement routing in quantum networks.
IEEE Transactions on Communications 70, 10 (2022), 6748-6763.

Daniel Litinski. 2019. A game of surface codes: Large-scale quantum computing
with lattice surgery. Quantum 3 (2019), 128.

Junyu Liu, Connor T Hann, and Liang Jiang. 2023. Data centers with quantum
random access memory and quantum networks. Physical Review A 108, 3 (2023),
032610.

Junyu Liu and Liang Jiang. 2024. Quantum data center: Perspectives. IEEE
Network (2024).

Stephane Mallat. 1999. A wavelet tour of signal processing.

Dmitri Maslov, Gerhard W Dueck, D Michael Miller, and Camille Negrevergne.
2008. Quantum circuit simplification and level compaction. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 27, 3 (2008), 436-444.
Francesco Mazza, Marcello Caleffi, and Angela Sara Cacciapuoti. 2024. Quantum
LAN: On-demand network topology via two-colorable graph states. In 2024 In-
ternational Conference on Quantum Communications, Networking, and Computing
(OCNC). IEEE, 127-134.

Francesco Mazza, Caitao Zhan, Joaquin Chung, Rajkumar Kettimuthu, Marcello
Caleffi, and Angela Sara Cacciapuoti. 2024. Simulation of Entanglement-Enabled
Connectivity in QLANs using SeQUeNCe. arXiv preprint arXiv:2411.11031 (2024).
Christopher Monroe, Robert Raussendorf, Alex Ruthven, Kenneth R Brown, Peter
Maunz, L-M Duan, and Jungsang Kim. 2014. Large-scale modular quantum-
computer architecture with atomic memory and photonic interconnects. Physical
Review A 89, 2 (2014), 022317.

William J. Munro, Koji Azuma, Kiyoshi Tamaki, and Kae Nemoto. 2015. Inside
Quantum Repeaters. IEEE Journal of Selected Topics in Quantum Electronics 21, 3
(2015), 78-90. https://doi.org/10.1109/JSTQE.2015.2392076

Michael A Nielsen and Isaac L Chuang. 2010. Quantum computation and quantum
information. Cambridge university press.

Mihir Pant, Hari Krovi, Don Towsley, Leandros Tassiulas, Liang Jiang, Prithwish
Basu, Dirk Englund, and Saikat Guha. 2019. Routing entanglement in the quantum
internet. npj Quantum Information 5 (1): 1-9. arXiv preprint arXiv:1708.07142
(2019).

Ashlesha Patil, Mihir Pant, Dirk Englund, Don Towsley, and Saikat Guha. 2022.
Entanglement generation in a quantum network at distance-independent rate.
npj Quantum Information 8, 1 (2022), 51.

Tianyi Peng, Aram W Harrow, Maris Ozols, and Xiaodi Wu. 2020. Simulating
large quantum circuits on a small quantum computer. Physical review letters 125,
15 (2020), 150504.

https://doi.org/10.48550/arXiv.quant-ph/0410184
https://doi.org/10.1109/JSTQE.2015.2392076

SwitchQNet: Optimizing Distributed Quantum Computing for Quantum Data Centers with Switch Networks

[57]

[58]

[59]

[60]

[61

[62]

[63]

[64

[65

[66]

Lidia Ruiz-Perez and Juan Carlos Garcia-Escartin. 2017. Quantum arithmetic
with the quantum Fourier transform. Quantum Information Processing 16 (2017),
1-14.

Uday Saha, James D Siverns, John Hannegan, Qudsia Quraishi, and Edo Waks.
2023. Low-Noise Quantum Frequency Conversion of Photons from a Trapped
Barium Ion to the Telecom O-band. ACS Photonics 10, 8 (2023), 2861-2865.
Hassan Shapourian, Eneet Kaur, Troy Sewell, Jiapeng Zhao, Michael Kilzer, Ra-
mana Kompella, and Reza Nejabati. 2025. Quantum Data Center Infrastructures:
A Scalable Architectural Design Perspective. arXiv preprint arXiv:2501.05598
(2025).

Shougian Shi and Chen Qian. 2020. Concurrent entanglement routing for quan-
tum networks: Model and designs. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication. 62-75.

Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review 41, 2 (1999), 303-332.
Samuel Stein, Shifan Xu, Andrew W Cross, Theodore] Yoder, Ali Javadi-Abhari,
Chenxu Liu, Kun Liu, Zeyuan Zhou, Charles Guinn, Yufei Ding, et al. 2024.
Architectures for Heterogeneous Quantum Error Correction Codes. arXiv preprint
arXiv:2411.03202 (2024).

Michal Stepanovsky. 2019. A comparative review of MEMS-based optical cross-
connects for all-optical networks from the past to the present day. IEEE Commu-
nications Surveys & Tutorials 21, 3 (2019), 2928-2946.

L] Stephenson, D. P. Nadlinger, B. C. Nichol, Shuoming An, P. Drmota, Timothy G.
Ballance, K. Thirumalai, Joseph Francis Goodwin, David M. Lucas, and Chris
Ballance. 2019. High-Rate, High-Fidelity Entanglement of Qubits Across an
Elementary Quantum Network. Physical review letters 124 11 (2019), 110501.
https://api.semanticscholar.org/CorpusID:208268137

HUBER SUHNER. [n.d.]. “Polatis technology-directlight beam-steering all-
optical switch". https://www.polatis.com/polatis-all-optical-switch-technology-
lowestloss-highest-performancedirectlight-beam-steering.asp. Accessed: 2024.
Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, and Margaret
Martonosi. 2021. Cutqc: using small quantum computers for large quantum
circuit evaluations. In Proceedings of the 26th ACM International conference on
architectural support for programming languages and operating systems. 473-486.

[67]

[68]

[69

[71

[72

(73]

[74

k=
2

[76

(77

ISCA 25, June 21-25, 2025, Tokyo, Japan

Jon Tate, Pall Beck, Peter Clemens, Santiago Freitas, Jeff Gatz, Michele Girola,
Jason Gmitter, Holger Mueller, Ray O’Hanlon, Veerendra Para, et al. 2013. IBM
and Cisco: together for a world class data center. IBM Redbooks.

Tim van Leent, Matthias Bock, Florian Fertig, Robert Garthoff, Sebastian Eppelt,
Yiru Zhou, Pooja Malik, Matthias Seubert, Tobias Bauer, Wenjamin Rosenfeld,
et al. 2022. Entangling single atoms over 33 km telecom fibre. Nature 607, 7917
(2022), 69-73.

George Watkins, Hoang Minh Nguyen, Keelan Watkins, Steven Pearce, Hoi-Kwan
Lau, and Alexandru Paler. 2024. A high performance compiler for very large
scale surface code computations. Quantum 8 (2024), 1354.

Anbang Wu, Yufei Ding, and Ang Li. 2023. Qucomm: Optimizing collective
communication for distributed quantum computing. In Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture. 479-493.
Anbang Wu, Hezi Zhang, Gushu Li, Alireza Shabani, Yuan Xie, and Yufei Ding.
2022. Autocomm: A framework for enabling efficient communication in dis-
tributed quantum programs. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1027-1041.

Anocha Yimsiriwattana and Samuel] Lomonaco Jr. 2004. Generalized GHZ states
and distributed quantum computing. arXiv preprint quant-ph/0402148 (2004).

SJ Ben Yoo, Sandeep Kumar Singh, Mehmet Berkay On, Gamze Giil, Gregory S
Kanter, Roberto Proietti, and Prem Kumar. 2024. Quantum wrapper networking.
IEEE Communications Magazine 62, 3 (2024), 76-81.

Yangming Zhao and Chunming Qiao. 2021. Redundant entanglement provision-
ing and selection for throughput maximization in quantum networks. In IEEE
INFOCOM 2021-IEEE Conference on Computer Communications. IEEE, 1-10.
Yangming Zhao, Gongming Zhao, and Chunming Qiao. 2022. E2E fidelity aware
routing and purification for throughput maximization in quantum networks.
In IEEE INFOCOM 2022-IEEE Conference on Computer Communications. IEEE,
480-489.

Yiru Zhou, Pooja Malik, Florian Fertig, Matthias Bock, Tobias Bauer, Tim van
Leent, Wei Zhang, Christoph Becher, and Harald Weinfurter. 2024. Long-lived
quantum memory enabling atom-photon entanglement over 101 km of telecom
fiber. PRX Quantum 5, 2 (2024), 020307.

Mariam Zomorodi-Moghadam, Mahboobeh Houshmand, and Monireh Housh-
mand. 2018. Optimizing teleportation cost in distributed quantum circuits. Inter-
national Journal of Theoretical Physics 57 (2018), 848-861.

https://api.semanticscholar.org/CorpusID:208268137
https://www.polatis.com/polatis-all-optical-switch-technology-lowestloss-highest-performance%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Ddirectlight-beam-steering.asp
https://www.polatis.com/polatis-all-optical-switch-technology-lowestloss-highest-performance%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Ddirectlight-beam-steering.asp

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Quantum Communication Protocols
	2.2 Quantum Data Center (QDC)
	2.3 Related Work

	3 Motivation
	4 Framework Design
	4.1 Preprocessing
	4.2 EPR Scheduling
	4.3 Cross-rack EPR Split
	4.4 Post-split distillation
	4.5 Algorithm

	5 Evaluation
	5.1 Experiment Setup
	5.2 Primary Experiment Result
	5.3 Choice of Hyper-parameters
	5.4 Sensitivity Analysis
	5.5 Integration of QEC

	6 Conclusion
	7 Open-source Codes
	Acknowledgments
	References

