
CaliQEC: In-situ!bit Calibration for Surface Code!antum
Error Correction

Xiang Fang
University of California San Diego

La Jolla, USA
x8fang@ucsd.edu

Keyi Yin
University of California San Diego

La Jolla, USA
keyin@ucsd.edu

Yuchen Zhu
University of California San Diego

La Jolla, USA
ax009822@acsmail.ucsd.edu

Jixuan Ruan
University of California San Diego

La Jolla, USA
j3ruan@ucsd.edu

Dean Tullsen
University of California San Diego

La Jolla, USA
tullsen@ucsd.edu

Zhiding Liang
Rensselaer Polytechnic Institute

Troy, USA
liangz9@rpi.edu

Andrew Sornborger
LANL

Los Alamos, USA
sornborg@lanl.gov

Ang Li
PNNL

Richland, USA
ang.li@pnnl.gov

Travis Humble
Quantum Science Center, Oak Ridge

National Laboratory
Oak Ridge, USA

humblets@ornl.gov

Yufei Ding
University of California San Diego

La Jolla, USA
yufeiding@ucsd.edu

Yunong Shi
AWS Quantum Technologies

New York, USA
shiyunon@amazon.com

Abstract
Quantum Error Correction (QEC) is essential for fault-tolerant,
large-scale quantum computation. However, error drift in qubits
undermines QEC performance during long computations, neces-
sitating frequent calibration. Conventional calibration methods
disrupt quantum states, requiring system downtime and rendering
in situ calibration impractical. To address this challenge, we pro-
pose QECali, a novel framework that enables in situ calibration for
surface codes. Our evaluation demonstrates that QECali introduces
modest qubit overhead and negligible increases in execution time,
o!ering the "rst practical solution for in situ calibration in surface
code based quantum computation.

CCS Concepts
• Computer systems organization → Quantum computing; •
Hardware → Quantum error correction and fault tolerance.

Keywords
Quantum error correction, Qubit Calibration

ACM Reference Format:
Xiang Fang, Keyi Yin, Yuchen Zhu, Jixuan Ruan, Dean Tullsen, Zhiding
Liang, Andrew Sornborger, Ang Li, Travis Humble, Yufei Ding, and Yunong
Shi. 2025. CaliQEC: In-situ Qubit Calibration for Surface Code Quantum
Error Correction. In Proceedings of the 52nd Annual International Symposium

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731042

on Computer Architecture (ISCA ’25), June 21–25, 2025, Tokyo, Japan. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3695053.3731042

1 Introduction
Quantum Error Correction (QEC) [26, 42, 55, 59] is essential to
enable large-scale Fault-Tolerant Quantum Computing (FTQC) suit-
able for practical applications [13, 60]. Among variousQEC schemes,
surface codes [8, 12, 16, 20, 44] have emerged as the leading solution
and have been successfully implemented on various quantum hard-
ware [1, 2, 9, 72]. Surface codes work by encoding logical qubits
into redundant physical qubits arranged in a 2D square or hexago-
nal lattice, e!ectively reducing the error rate of the logical qubits
if the physical error rate remains below a certain threshold [20].
With increasing code size, surface codes provide exponential sup-
pression of logical errors. Recent experiments on superconducting
devices [11, 32] demonstrated this error suppression for the "rst
time [2], underscoring the practical applicability of surface codes.

Despite their demonstrated e!ectiveness, surface codes are highly
sensitive to noise levels — small increases in physical error rates
can require substantial expansion in code size to maintain the same
logical error rate [21]. Consequently, maintaining a low and stable
physical error rate is essential to ensure the e!ectiveness of surface
codes during long computations. However, qubit and gate condi-
tions degrade over time, leading to increased physical error rates—a
phenomenon known as error drift [56, 71]. Fig. 1(a) shows the error
drift observed on an IBM quantum computer [17]: after just one
day, over 90% of single qubit gates exhibit error rates exceeding
the threshold of surface codes. Theoretical estimates suggest that
practical quantum applications are expected to run for hours or
even days [7, 23, 40, 45], assuming a "xed error rate. However,

https://orcid.org/0009-0009-8902-7464
https://orcid.org/0009-0005-7563-271X
https://orcid.org/0009-0009-2331-6183
https://orcid.org/0009-0007-1828-1719
https://orcid.org/0000-0003-3174-9316
https://orcid.org/0000-0002-7568-0165
https://orcid.org/0000-0001-8036-6624
https://orcid.org/0000-0003-3734-9137
https://orcid.org/0000-0002-9449-0498
https://orcid.org/0000-0002-8716-5793
https://orcid.org/0000-0002-0824-6107
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731042
https://doi.org/10.1145/3695053.3731042


ISCA ’25, June 21–25, 2025, Tokyo, Japan Xiang Fang, et al.

in practice, error drift can signi"cantly undermine computational
reliability, making such long computations infeasible.

Calibration [35, 39, 65, 66, 69] is the process of "ne-tuning quan-
tum hardware to maintain low physical error rates and counteract
error drift. Quantum hardware installations frequently calibrate
their devices-often several times a day-to keep qubits and gates
aligned with optimal conditions. Calibration involves three key
steps: characterization, control parameter adjustment, and valida-
tion. Importantly, the calibration process disrupts quantum states,
making qubits under calibration unavailable for computation.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (hour)

10°2

5 £ 10°3

6 £ 10°3

7 £ 10°3

8 £ 10°3

9 £ 10°3

P
hy

si
ca

l
er

ro
r

ra
te

With Calibration

Without Calibration

Fitted

Calibration

Threshold

10°24 £ 10°3 6 £ 10°3 2 £ 10°2

Error rate

0.0

1.3

2.6

3.9

5.2

6.5

D
en

si
ty

Threshold

Overdrifted

(a) (b)
Figure 1: Error drift on an IBM’s device: (a) Calibration main-
tains low physical error rates. (b) Without calibration, a ma-
jority of qubits exceed the threshold after 24 hours.

The fundamental challenge in surface code based quantum com-
putation lies at the intersection of two competing requirements:
maintaining consistently low physical error rates (through calibra-
tion) while simultaneously preserving quantum information for
ongoing computation. This tension motivates our central research
question: How can we integrate runtime calibration with ongoing
computation while maintaining the protection level of surface codes?

A natural starting point draws inspiration from classical comput-
ing systems, where memory access must be coordinated with peri-
odic DRAM refresh cycles [28]. Just as memory refresh temporarily
interrupts access to maintain data integrity, qubit calibration re-
quires periodic access to physical qubits while trying to preserve
quantum information.

However, key di!erences exist between the classical and quan-
tum settings. While classical memory can be refreshed at the bit
level, quantum error correction creates a critical constraint: indi-
vidual physical qubits cannot be naively removed for calibration
without catastrophic error propagation. Simply mirroring classical
strategies leads to a conservative approach, which we term Logical
Swap for Calibration (LSC): transferring entire logical qubits to an-
cillary regions via logical SWAP operations before calibrating their
physical components (Fig. 2c). This classically inspired approach
su!ers from two fundamental limitations. First, unlike classical
bit copying, quantum logical SWAP operations require complex
sequences of physical operations or quantum teleportation proto-
cols [8, 44], introducing substantial overhead in both ancilla qubit
count and execution time. Second, there is a critical granularity
mismatch—calibration operates at the physical qubit level, while
computation occurs at the logical qubit level. Since physical qubits
drift at varying rates (Fig. 1b), LSC ine#ciently forces entire logical
qubits to pause when a single physical qubit requires calibration,
leading to high overheads that scale withworst-case behavior. Other
methods, such as [34], claim in-situ calibration but essentially rely

on speculative estimation of control parameters rather than physi-
cal calibration. The derived parameters are often suboptimal and
fail to meet the stringent physical error rates required for QEC.

To address these limitations, we proposeQECali (Fig. 2d), a novel
QEC framework that enables in-situ runtime calibration concurrent
with ongoing computation, while maintaining the same level of
QEC protection provided by surface codes. This approach eliminates
the substantial overhead associated with quantum state transfer
and ancillary qubit preparation required by LSC. Furthermore, it
operates in a !ne-grained manner, precisely isolating over-drifted
physical qubits for calibration without stalling the entire logical
qubit, e!ectively resolving the granularity mismatch issue of LSC.

The advantages of QECali are rooted in a key insight: Surface
codes allow for strategic runtime updates to their code structures, en-
abling qubit isolation while preserving logical information. This is
enabled by a theoretical tool known as code deformation [10, 67, 70].
Originally proposed for implementing logical operations on surface
codes, we creatively repurpose it to address the con$icts between
calibration and QEC-protected computation. Speci"cally, we apply
the theory of code deformation to the most prevalent hardware
architectures—square and hexagonal lattices [5, 17, 33]—and de-
sign novel code deformation instruction sets for these architectures
(Sec. 6). These instruction sets enable two complementary oper-
ations: selective qubit isolation, which creates temporary bound-
aries to separate the calibrating qubits and program-running qubits,
and dynamic code enlargement, which slightly expands a!ected
patches to maintain QEC capabilities during the calibration process.
QECali combines this instruction set with intelligent scheduling
(Sec. 4, 5) to create an e#cient, automated calibration system while
preserving the original QEC protection level.

Our evaluation on both simulation and real quantum hardware
demonstrates QECali’s e!ectiveness across di!erent architectures
and use cases. On practical quantum benchmarks such as quantum
chemistry applications, QECali maintains sub-threshold error rates
with only 12-15% additional physical qubits and negligible impact
on execution time, reducing retry risk by up to 85% compared to
baselines. Component-wise analysis shows that QECali’s adaptive
scheduling achieves 91% reduction in calibration operations while
minimizing space-time overhead. Our experiments on Rigetti and
IBM processors validate QECali’s key insight, showing that code
deformation can e!ectively control error propagation.

In summary, this paper makes the following contributions:

• We propose a novel framework, QECali, that enables in-
situ calibration and concurrent QEC-protected computation,
achieving the desired retry risk level with minimal qubit
count overhead and negligible execution time overhead.

• We design and formalize novel surface code deformation
instruction sets for calibration on square and heavy-hexagon
topologies supporting the QECali framework.

• We develop an adaptive scheduling method to e#ciently co-
ordinate calibration operations across physical qubits while
e!ectively balancing various constraints.

• We introduce key device metrics—calibration times, drift
rates, and crosstalk—to characterize quantum hardware, pro-
viding critical insights for optimizing calibration schedules
and predicting performance.



CaliQEC: In-situ!bit Calibration for Surface Code!antum Error Correction ISCA ’25, June 21–25, 2025, Tokyo, Japan

CalibrationIsolate Reintegrate

Isolate

Calibration

...

Error Drift

Calibration Calibration

· In-situ 
· Concurrent
· Fine-grained

(a) Error drift

(b) Larger distance
+ No calibration

Time

Time

(c) Potential solution: Logical Swap for Calibration (LSC)

(d) QECali: Integrate Calibration with QEC-protected Computation

Low 
Space-Time
Overhead

· Transferred 
· Sequential
· Coarse-grained

Large 
Space-Time
Overhead

Transfer Transfer

Syndrome
qubit

Data qubit

Drifted
qubit

Measured
qubit

Logical
qubit

Z-Stabilizer

X-Stabilizer

Calibration
Transfer

Program Execution

Execution

Calibration

Execution

Calibration
Transfer

Program Execution

ExecutionExecution

Calibration

Program Execution

1 2 1 2

1

2

2

2

2

1

22

Figure 2: Comparison of QECali and LSC. (a) Error drift pattern in physical qubits. (b) Increased code distance approach. (c) LSC,
a coarse-grained approach with high overhead. (d) QECali enables in situ calibration.

2 Background
This section provides an overview of surface codes and their defor-
mation operations, and background on error drift and calibration.

2.1 FTQC with Surface Code
Surface Code Basics. The surface code is a leading candidate for
realizing FTQC due to its simple 2D grid structure and high error
threshold (1%) [12, 20]. Fig. 3a presents a typical surface code patch,
where multiple physical qubits encode a single logical qubit. The
physical qubits are divided into data qubits (black dots), which store
the logical quantum state, and syndrome qubits (white dots), which
collect error information from neighboring data qubits. The surface
code can also be implemented on a hexagonal topology, as shown
in Fig. 3b, which re$ects the architecture of some current hardware
platforms (IBM’s devices [17]). Unlike in the square lattice, where
each stabilizer uses a single ancilla qubit as the syndrome qubit,
the stabilizers in the heavy-hexagon structure use seven ancilla
qubits arranged in an "S" shape to form a bridge connecting the
four data qubits, as shown in Fig. 3(c). This "S"-shaped arrangement
provides the connectivity needed to extract error syndromes while
mitigating the frequency crowding issue.
QEC with Surface Codes. Each syndrome qubit is linked to a sta-
bilizer [24, 25, 55], a Pauli operator involving adjacent data qubits,
as shown in Fig.3b,c. The red and green colors indicate the two
stabilizer types, comprising exclusively 𝐿 - or 𝑀 -Pauli operators,
respectively. The syndrome qubits provide measurement outcomes
of these stabilizers, producing error syndromes to guide error cor-
rection. However, some errors can alter the logical state without

being detected by stabilizer measurements, known as logical er-
rors, resulting in program failure. The logical error rate (LER) is
closely tied to the code distance, de"ned as the minimum number
of single-qubit errors required to cause a logical error. The code
distance of a perfect surface code equals the number of data qubits
along its edge (a distance-5 surface code in Fig. 3a). The LER decays
exponentially with increasing code distance, provided the physical
error rate remains below a certain threshold. For further detail,
see [16, 20, 36].
FTQCwith SurfaceCodes.Current surface code architectures [44]
for FTQC arrange code patches on a plane with interspace equal to
the code distance 𝑁 , as shown in Fig.3(e). This interspace functions
as a communication channel, enabling logical operations such as
CNOT gates and state transfer (Fig. 3(e)(f)) via lattice surgery and
code deformation [10, 14, 29, 31, 67]. Its width is set to 𝑁 to maintain
the same level of QEC protection as the code patches. For a detailed
introduction, see [8, 19, 44].

2.2 Deformation of Surface Codes
Code deformation [10, 67, 70] is a key technique in surface codes
that modi"es the shape of the code patch to achieve speci"c func-
tions. This subsection introduces four key deformation instructions
that, when combined, isolate qubits from the code patch while
preserving the encoded quantum information and QEC capability,
enabling calibration without disrupting ongoing computation.
1. DataQ_RM. As illustrated in Fig. 4a, to remove the data qubit 𝑂,
it combines the original stabilizers into larger “superstabilizers”
that exclude 𝑂 [6, 53, 62, 63]. These superstabilizers, along with the
remaining stabilizers, enable QEC to continue on the code patch
consisting of the remaining qubits during subsequent QEC cycles.



ISCA ’25, June 21–25, 2025, Tokyo, Japan Xiang Fang, et al.

(a)

(b)

(c) (d)

Ancilla Path State
Transfer

(e)

(f)

Figure 3: (a)(d) Surface codes on a square and hexagon lattice.
(b)(c) Stabilizers of surface codes on two lattices. (e)(f) Layout
for surface-code-based FTQC. Logical operations (e.g., logical
CNOT in (e), logical state transfer in (f)) are enabled through
the communication channel between the patches.

To reintegrate the data qubit 𝑂 into the system, they are reset to
state |0↑ or |+↑ and the stabilizers of the original code are measured,
restoring the original structure.
2. SyndromeQ_RM. As shown in Fig. 4b, to remove the syndrome
qubit 𝑂, the qubits involved in the stabilizer associated with 𝑂 are
measured in the 𝐿 - or 𝑀 -basis, depending on the stabilizer type.
The stabilizers are then updated to form “superstabilizers” that
exclude 𝑂 and are used in subsequent QEC cycles. Reintegrating
the syndrome qubit into the system is accomplished by measuring
the original stabilizers.
3. PatchQ_RM. This operation shrinks the code patch at the bound-
ary by measuring the qubits to be excluded in either the 𝑀 - or
𝐿 -basis, depending on the stabilizer they are associated with. To
reintegrate the isolated qubits, they are reset to |0↑ or |+↑ and the
original stabilizer (the red one in Fig. 4c) is measured.
4. PatchQ_AD. This operation expands the code patch at the bound-
ary by preparing the qubits to be included in appropriate states (|0↑
or |+↑) and measuring the new stabilizer. In the example shown
in Fig. 4d, the qubits are initialized in the |0↑ state, and a new
𝐿 -stabilizer (red) is measured.

DataQ_RM SyndromeQ_RM
Super-

stabilizers
Super-

stabilizers(a) (b)

PatchQ_RM(c)

PatchQ_AD(d)

Figure 4: Four key deformation operations. (a) Data qubit
removal, (b) Syndrome qubit removal, (c) Patch shrinkage at
the boundary, and (d) Patch expansion at the boundary.

By combining DataQ_RM, SyndromeQ_RM, and PatchQ_RM, vari-
ous patterns of drift-a!ected qubits can be isolated from the code
patch. Repeated application of PatchQ_AD enables the desired code
enlargement, restoring QEC capability after qubit isolation. More-
over, fault tolerance during code deformation is maintained using
decoding approaches similar to those in regular surface codes [15,
18], with adjustments for dynamically changing stabilizers and
syndrome transitions [53, 64, 67, 68]. Optimized decoders can e#-
ciently handle these changes, ensuring minimal impact on decoding
time [14, 43]. For a more comprehensive introduction to the defor-
mation framework in surface codes, refer to [10, 67, 70].

2.3 Error Drift and Calibration
Error Drift. QEC schemes often assume a static error model where
error rates remain constant. However, on real hardware, error rates
$uctuate over time, potentially exceeding the QEC threshold—a
phenomenon known as error drift [56, 58, 71]. In superconducting
devices, a primary cause of error drift is the unwanted coupling of
qubits to two-level systems (TLS) [38, 49, 51], along with thermal
$uctuations in Josephson junctions [27], unpaired electrons [28, 38],
and environmental noise [48, 50]. TLS defects, inherent to the fab-
rication process, occur randomly and are di#cult to characterize or
predict, leading to unique and heterogeneous impacts on each qubit.
These factors cause qubit parameters (e.g., 𝑃1 and 𝑃2 coherence
times) to vary unpredictably, necessitating frequent characteriza-
tion and recalibration to maintain optimal performance.
Calibration. Calibration [5, 35, 37, 41, 46, 54, 57, 66, 69] is the
process of readjusting control parameters (such as the duration
and frequency of control pulses) for qubit operations to maintain
optimal performance, speci"cally, low error rates. This process is
lengthy, often taking several hours (e.g., 4 hours in [5]) to ensure
accuracy. Moreover, the calibration order for di!erent qubits must
be carefully scheduled to mitigate crosstalk issues [52]. Importantly,
calibration requires qubits to be in speci"c states for measurement,
preventing them from storing information or supporting computa-
tion during calibration. As a result, calibration typically halts the
program, making concurrent calibration and computation impossi-
ble and limiting the duration of reliable computations.

3 Overview
QECali achieves e#cient in-situ calibration through three coordi-
nated stages, as depicted in Fig. 5:
Preparation time. This stage thoroughly characterizes the quan-
tum hardware, capturing key parameters for each gate, including
calibration duration, drift rate, and calibration crosstalk (Section 4).
This foundational data serves as a basis for optimizing our calibra-
tion strategies.
Compilation time. This stage aims to determine all the calibration
processes based on the hardware characterization obtained during
preparation stage. This stage consists of two steps.
Drift-based Calibration Grouping (Sec. 5.2). Based on gate parame-
ters, we de"ne calibration workloads by determining each gate’s
frequency and duration. Gates with similar drift characteristics are
grouped into calibration intervals to avoid overlapping workloads,
which could cause excessive distance loss from deformation.
Intra-Group Calibration Scheduling (Sec. 5.3): Within each interval,
we sequence the calibration workloads based on their dependencies



CaliQEC: In-situ!bit Calibration for Surface Code!antum Error Correction ISCA ’25, June 21–25, 2025, Tokyo, Japan

On-going Computation
Calibrate

Calibrate

Quantum Hardware

Calibration Grouping (Sec. 5.2)

Device Modeling (Sec.4)

Cali Profile: Gate

Calibration Workloads

, , ,

, , ...
Duration Frequency Crosstalk

Calibration Scheduling (Sec. 5.3)

Calibration Execution 

Deform Opt. Para.

Deform

Deform

Opt. Para.

Opt. Para.
Preparation Time

Compilation Time

Deformation
Instruction
Set (Sec. 6) Runtime

Calibrate

Figure 5: Overview of QECali: a deformation-based calibration framework.

and crosstalks. This scheduling minimizes the total calibration time
while maintaining computational e#ciency.
Runtime. The runtime follows the calibration schedule generated
during compile time (Section 5), triggering the corresponding cali-
bration operations for designated gates at speci"ed intervals. For
each gate, it executes the associated code deformation instructions
from the QECali instruction set (Section 6). Meanwhile, logical com-
putations on deformed logical qubits continue uninterrupted, with
all operations pre-calculated during compile time.

4 Preparation-time Device Characterization
To enable optimized calibration scheduling, QECali "rst character-
izes the quantum device pre-compilation by measuring and extract-
ing key metrics of each qubit operations. These include:
Calibration Time (𝑃cali): We measure each gate’s calibration dura-
tion through repeated experiments, as this directly impacts sched-
uling e#ciency. Typically, individual gate calibration takes a few
minutes, while full-device calibration spans several hours [4, 37].
Drift Rate (𝑃drift): We characterize the error drift of a gate 𝑄 using
the following exponential scaling model:

𝑅 (𝑄, 𝑆) = 𝑅0 [𝑄] · 10𝐿/𝑀drift [𝑁] (1)

where 𝑅 (𝑄, 𝑆) is the error rate at time 𝑆 , 𝑅0 [𝑄] is the initial error
rate, and 𝑃drift [𝑄] is the drift time constant, representing the time
required for the error rate to increase tenfold. We adopt this ex-
ponential model as it best "ts our experimental data from IBM’s
real machine (Fig.1) and is consistent with prior studies [56, 57], al-
though some references report a linear drift model [4]. Speci"cally,
we perform hourly measurements using the interleaved random-
ized benchmarking method [47], conducting three sets of tests with
[1, 10, 20, 50, 100, 150, 250, 400] repetitions. The resulting gate error
data is "tted to Eqn. (1) to determine 𝑃drift. Notably, this model can
be replaced with other models based on speci"c hardware condi-
tions and determine calibration periods for each gate accordingly,
while the scheduling method in Sec. 5 remains applicable.

Calibration Crosstalk (nbr(𝑄)): We introduce a new method to
identify qubits a!ected by each gate’s calibration using the circuit in
Fig. 6. For each gate 𝑄, we initialize nearby qubits to random states,
perform calibration, and measure their "nal states. Qubits exhibit-
ing deviations beyond a threshold are added to nbr(𝑄), indicating
crosstalk interference. Importantly, these qubits nbr(𝑄) are isolated
along with the calibrating qubit during calibration, creating a pro-
tective barrier between calibrating and program-running qubits.
After calibration, the isolated qubits are reset to |0↑ or |+↑ before
reintegration into the system (Sec. 2.2), ensuring that calibration
does not interfere with ongoing computations.

These metrics form the foundation for QECali’s compilation-
time scheduler (Section 5) and runtime execution engine, enabling
generation of calibration schedules that optimize the critical trade-
o!s between frequency, parallelism, and interference. Moreover, a
full calibration process is usually conducted before the program
begins in practice, allowing device characterization parameters to
be obtained. This makes this preparation stage an integral part of
the overall computation process without adding extra time.

Random State

...

Random State...

Cross-Resonance
Tomography

Figure 6: Circuit characterizing calibration crosstalk.

5 Compilation-time Calibration Scheduling
5.1 Problem Formulation
For reliable execution of large-scale quantum programs, we must
maintain the logical error rate (LER) below a target value (say
LERtar) throughout computation. Formally, this requires LER(𝑆) ↓



ISCA ’25, June 21–25, 2025, Tokyo, Japan Xiang Fang, et al.

LERtar for all 𝑆 . The calibration schedule directly impacts this re-
quirement by in$uencing the physical error rates: frequent cali-
bration helps maintain lower physical error rates, which in turn
supports a lower LER.

For a distance-𝑁 surface code to achieve the target LERtar, the
average physical error rate must not exceed a corresponding target,
denoted as 𝑅tar. Thus, each gate g must be calibrated within its
drift time 𝑃drift,𝑂tar [𝑄]—the time it takes for 𝑄’s error rate to reach
𝑅tar. To meet the reliability requirement, the calibration interval
for 𝑄 must satisfy 𝑃𝑁 ↓ 𝑃drift,𝑂tar [𝑄]. The drift time 𝑃drift,𝑂tar [𝑄] can
vary signi"cantly depending on the speci"c gate and hardware
characteristics, ranging from hours to days.

While frequent calibration is necessary for maintaining low
LER, parallel calibration comes with substantial costs. Moreover,
calibration-induced crosstalk between neighboring qubits further
constrains the degree of parallelization possible.

To balance these competing requirements, we formulate our
optimization objective as:

min
∑
𝑁

1
𝑃𝑁

subject to 𝑃𝑁 ↓ 𝑃drift,𝑂tar [𝑄],︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
drift constraint

|𝑇𝐿 | ↓ 1,↔𝑆︸⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌︸
crosstalk constraint

where 𝑃𝑁 is the calibration period for gate g, 𝑇𝐿 is the set of gates
in 𝑇 being calibrated at time 𝑆 , and 𝑇 represents a set of gates that
cannot be calibrated simultaneously due to crosstalk. It aims to
minimize calibration frequency, for reducing qubit overhead, while
respecting both drift time limits and crosstalk constraints.

5.2 Drift-based Calibration Grouping
To solve this problem, we propose a heuristic solution that achieves
high optimization quality with fast compilation speed. This com-
pilation is performed before the program runs, taking only a few
seconds, which is negligible compared to the program’s execution
time. Our approach groups gates with similar drift characteristics
to share calibration intervals, e!ectively discretizing the scheduling
space while respecting device physics. Speci"cally, we select a base
calibration interval 𝑈𝑃Cali and assign each gate 𝑄 to a calibration
group 𝑈𝑁 according to:

𝑈𝑁 ·𝑃Cali ↓ 𝑃drift,𝑂tar [𝑄] < (𝑈𝑁 + 1) ·𝑃Cali (2)

This grouping strategy o!ers several advantages. First, gates
within group 𝑈𝑁 share the same calibration cycle𝑃𝑁 = 𝑈𝑁 ·𝑃Cali, sim-
plifying scheduling. Once the grouping is completed, the schedule
for each group is determined: during the 𝑈-th interval, only gates
belonging to Group 𝑈𝑁 are executed (where 𝑈 mod 𝑈𝑁 = 0). Second,
this grouping enables opportunities for parallel scheduling of cali-
brations, as all gates within a group can be scheduled at any time
within their assigned interval 𝑃Cali. Third, it simpli"es the issue
of crosstalk, as we only need to address crosstalk within a single
group. Crosstalk between groups is avoided since groups assigned
to the same interval are trivially scheduled sequentially. In contrast,
a naive approach without grouping can lead to crosstalk issues. As
shown in Fig. 7(a), this method calibrates each gate individually
until it reaches the error threshold. While it minimizes the overall
calibration frequency, it may schedule gates with crosstalk interfer-
ence simultaneously, causing con$icts. In summary, the resulting

Group 1 Group 2

Group 1 Group 2 Group 3

(a) 

(b) 

(c) 

Crosstalk

Figure 7: Impact of 𝑃Cali on calibration frequency.

calibration frequency is:∑
𝑁

1
𝑃𝑁

=
1

𝑃Cali

∑
𝑃

𝑉𝑃
𝑈

(3)

where 𝑉𝑃 denotes the number of gates in the k-th group.
Optimal Choice of Group Duration 𝑃Cali: The choice of base
calibration interval 𝑃Cali signi"cantly impacts grouping e#ciency.
While one might intuitively set 𝑃Cali to the minimum drift time
min𝑁𝑃drift,𝑂tar [𝑄], this often leads to suboptimal groupings. Con-
sider the example in Fig. 7(b): with 𝑃Cali = 5𝑊, gates 𝑄1, 𝑄2, and 𝑄3
form Group 1 while gates 𝑄4 and 𝑄5 form Group 2, resulting in 0.80
calibrations per hour. However, setting 𝑃Cali = 4𝑊, though increas-
ing 𝑄1’s calibration frequency, enables better distribution of other
gates into groups with lower frequencies, reducing overall cost to
0.66 calibrations per hour Fig. 7(c). To clarify, the calibration tasks
will be executed periodically according to 𝑃𝑄𝑅𝑆𝑇 . Fig. 7 illustrates
di!erent grouping strategies but does not depict the scheduling of
calibration tasks.

Algorithm 1: Calibration Group Assignment
Input: Gate set 𝑋 , Drift time 𝑃drift,𝑂tar [𝑄]
Output: Calibration groups 𝑋𝑌𝑍𝑎𝑅 [𝑈]

1 𝑃min = min𝑁𝑃drift,𝑂tar [𝑄]
2 𝑃Cali = 𝑃min
3 for 𝑄 ↗ 𝑋 do
4 𝑈 =

⌈
𝑃drift,𝑂tar [𝑄]/𝑃min

⌉
5 𝑃 = 𝑃drift,𝑂tar [𝑄]/𝑈
6 if 𝑏𝑌𝑐𝑂(𝑋,𝑃Cali) > 𝑏𝑌𝑐𝑂(𝑋,𝑃 ) then
7 𝑃Cali = 𝑃
8 end
9 end

10 Initialize 𝑋𝑌𝑍𝑎𝑅 [𝑈]
11 for 𝑄 ↗ 𝑋 do
12 𝑈 =

⌊
𝑃drift,𝑂tar [𝑄]/𝑃Cali

⌋
13 Add 𝑄 into 𝑋𝑌𝑍𝑎𝑅 [𝑈]
14 end
15 return 𝑋𝑌𝑍𝑎𝑅 [𝑈]



CaliQEC: In-situ!bit Calibration for Surface Code!antum Error Correction ISCA ’25, June 21–25, 2025, Tokyo, Japan

The optimal 𝑃Cali tends to occur when some 𝑃drift,𝑂th [𝑄] values
align with integer multiples of 𝑃Cali. If alignment does not occur,
𝑃Cali can be increased without altering the grouping, thereby reduc-
ing the calibration frequency as described in Eq. (3). To determine
the optimal value, we employ Algorithm 1, traversing the values of
𝑃drift,𝑂tar [𝑄]/𝑈 for each gate, particularly those slightly smaller than
the minimum drift time 𝑃min. The 𝑃Cali that minimizes the calibra-
tion frequency is then selected. In cases where multiple intervals
yield similar or identical calibration frequencies, a larger interval
is preferred. A larger𝑃Cali allows for grouping more gates together,
providing longer scheduling windows, increased $exibility for intra-
group scheduling, and greater opportunities for parallelism.
Targeted Physical Error Rate Determination: Algorithm 1 as-
sumed that the targeted physical error rate, 𝑅tar, was known. Here
we describe how our compiler determines 𝑅tar based on the available
physical qubit resources. Surface codes with larger code distances
possess stronger error correction capabilities, allowing them to
tolerate higher 𝑅tar while maintaining the same targeted logical
error rate (LERtar).

The LER for a distance-𝑁 surface code is given by [19]:

LER(𝑁, 𝑅tar) = 𝑑

(
𝑅tar
𝑅th

) (𝑈+1)/2
, (4)

where 𝑑 is a constant speci"c to the quantum error correction
(QEC) code, typically around 0.03 for the rotated surface code. Here,
𝑅th represents the physical error threshold for the surface code,
approximately 0.01 under the circuit-level noise model.

To guarantee program "delity, the condition LER ↓ LERtar must
be satis"ed. With Eq. (1) and Eq. (4), this condition can be simpli"ed:(

log
𝑅th
𝑅0

↘ log
𝑅tar
𝑅0

)
· 𝑁 ≃ 𝑒, (5)

where 𝑒 is a positive constant dependent on LERtar and 𝑑 . Impor-
tantly, this condition can only be satis"ed if 𝑅tar < 𝑅th, which aligns
with the intuitive requirement that no gate’s error rate should ex-
ceed the physical error threshold during program execution.

Given a "xed number of physical qubits, the compiler calculates
the maximum allowable code distance𝑁 that "ts within the resource
constraints. It then determines the largest 𝑅tar that satis"es the
target LERtar while ensuring LER(𝑆) ↓ LERtar throughout program
execution. This approach balances the trade-o!s between code
distance, 𝑅tar, and physical qubit resources. Larger code distances
exponentially suppress logical error rates but require more physical
qubits. Conversely, higher 𝑅tar allows for longer drift times and less
frequent calibration but relies on more robust error correction. By
leveraging these trade-o!s, our compiler optimizes 𝑅tar and 𝑁 to
achieve reliable and resource-e#cient program execution.

5.3 Intra-Group Calibration Scheduling
After assigning calibrations to each time period 𝑃Cali and determin-
ing which gates should be calibrated simultaneously, the next step
involves "nding an appropriate code deformation process to isolate
these gates. Generally, for each gate, we apply code deformer to
isolate all its a!ected neighboring qubits, enabling a region suit-
able for calibration. However, performing this sequentially may
lead to excessive calibration time overhead, potentially causing the
calibration time of a gate, 𝑆cali, to exceed the calibration cycle 𝑃Cali.

In this section, we analyze three challenges associated with cali-
bration scheduling and propose an adaptive calibration scheduling
approach to address them.
(1) Dependence between calibrations: Certain two-qubit gate
calibrations may depend on the results of one-qubit gate calibra-
tions. We address this by clustering such gates and scheduling their
calibration collectively. This dependency typically arises from over-
lapping positions, i.e.,c their neighboring qubits 𝑉𝑓𝑌 (𝑄) are highly
overlapped. Code deformation to isolate these shared qubits facili-
tates the simultaneous calibration of multiple gates in the cluster.
(2) Crosstalk between calibrations: Crosstalk during calibrations
prevents all calibrations from running simultaneously. To maximize
calibration parallelism and minimize calibration time, we design a
greedy scheduling. This approach sorts gate calibrations based on
the size of their a!ected qubits. Starting with the largest, we select
as many calibrations as possible without introducing crosstalk.
When no more gates can be calibrated concurrently, we generate
code deformation instructions for the selected gates and begin a
new batch. This process is repeated until all gates are calibrated.
(3) Trade-o! between calibration time and code distance loss:
Code deformation reduces the code distance. To preserve the "-
delity of the original code, the code must be enlarged to restore
the original code distance. Calibrating more gates simultaneously
requires isolating larger regions, leading to greater distance loss
and increased physical qubit overhead for enlargement. To balance
this trade-o!, we de"ne a new metric to evaluate scheduling: the
space-time overhead of the enlarged region: Cost = ω𝑁

∑
𝑁 𝑆cali [𝑄].

For each ω𝑁 , we calculate the cost by constraining the greedy sched-
uling strategy to ensure that the code deformation for simultaneous
calibrations does not exceed the maximal tolerable distance loss ω𝑁 .
The optimal scheduling is then chosen based on this evaluation.

6 The QECali Instruction Set
A critical challenge in runtime calibration is the ability to isolate
physical qubits for calibration without compromising the surface
code’s error correction capability. To address this challenge, QE-
Cali provides carefully designed instruction sets that enable safe
transformation of the code structure during calibration.

Table 1 provides an overview of the two instruction sets. For
surface codes on square lattices, QECali adopts the instruction
set from [70], originally designed for handling defective qubits
in surface codes. We identi"ed that these instructions—DataQ_RM,
SyndromeQ_RM, PatchQ_RM, and PatchQ_AD—can be repurposed for
calibration, enabling selective qubit isolation while preserving error
correction properties. For the details of these instructions, we refer
readers to Section 2.2 or [70].

6.1 The QECali Instruction Set for the
Heavy-Hexagon Topology

Modern quantum processors, including IBM’s devices, utilize a
heavy-hexagon topology (Fig. 3(d)). Existing code deformation in-
structions are designed for square lattices and cannot be directly
applied to heavy-hexagon architectures. However, since square
lattice instructions are fundamentally based on gauge "xing the-
ory [10, 67], this theory provides a foundation for adapting defor-
mation techniques to heavy-hexagon structures. Building on an



ISCA ’25, June 21–25, 2025, Tokyo, Japan Xiang Fang, et al.

Data Qubit
Ancilla Qubit
Isolated Qubit

(a) Ancilla Bridge

(b) Hev-Hex Surface Code

(c) AncQ_RM_HorDeg2 Qd (d) AncQ_RM_VerDeg2 Qb (e) AncQ_RM_Deg3 Qc

(f) DataQ_RM Q0 (g) PatchQ_RM S0, XL (h) PatchQ_RM S0, XL

Figure 8: Code deformation instruction set for the surface code on the heavy-hexagon structure.

in-depth study of gauge "xing, we have designed and formalized a
dedicated instruction set speci"cally for heavy-hexagon topologies.

Table 1: QECali instruction sets for square and heavy-
hexagon surface codes

Code Topology Instructions

Square DataQ_RM, SyndromeQ_RM,
PatchQ_RM, PatchQ_AD

Heavy-Hexagon
DataQ_RM, AncQ_RM_HorDeg2,
PatchQ_RM, AncQ_RM_VerDeg2
PatchQ_AD, AncQ_RM_Deg3,

Key Distinctions of the Topology: The heavy-hexagon topology
has two key features that render the square lattice instructions
inadequate:
1. Non-uniform ancilla roles: As shown in Fig. 8(a), the seven ancilla
qubits associated with each stabilizer can be classi"ed into two
distinct types: (1) Degree-3 nodes (𝑂𝑅,𝑂𝑉 ,𝑂𝑊 ,𝑂𝑁), which connect to
three other qubits, including one data qubit. (2) Degree-2 nodes
(𝑂𝑈 ,𝑂𝑋 ,𝑂𝑌 ), which connect to two other ancilla qubits. Degree-3
nodes directly connect to data qubits, while degree-2 nodes act
as bridges to link them. This functional di!erence necessitates
di!erent code deformation instructions to ensure the deformed
code remains functional after isolating speci"c ancilla qubits.
2. Shared ancilla qubits: As shown in Fig. 8(a), ancilla qubits associ-
ated with one stabilizer can also be shared with others. For instance,
in Fig. 8(b), the 𝐿 -stabilizer 𝑔0 and the 𝑀 -stabilizer 𝑄1 share three
ancilla qubits. This overlap implies that isolating a single ancilla
qubit may impact multiple stabilizers simultaneously which makes
designing code deformation instructions under these circumstances
becomes more complex.
Design Principles: The heavy-hexagon structure presents unique
opportunities for code deformation compared to the square lattice.

We outline the key principle that guided the design of our instruc-
tion set — leveraging residual connectivity: when an ancilla qubit is
removed, the remaining structure often retains partial connectiv-
ity between data qubits. By utilizing this residual connectivity, we
replace the original stabilizer with a product of smaller, localized
measurements. This approach minimizes disruption to the over-
all code structure and preserves a greater number of stabilizers,
ensuring robust error correction.
The Instructions: Building on the design principles outlined above,
we redesign three square lattice instructions to adapt them to the
heavy-hexagon architecture. Additionally, we introduce three dis-
tinct instructions of AncQ_RM category, each speci"cally tailored to
remove ancilla qubits based on their unique positions and connec-
tivity within the heavy-hexagon device.
(1) AncQ_RM_HorDeg2: This instruction targets a degree-2 horizon-
tal ancilla qubit 𝑂𝑈 , as illustrated in Fig. 8(c). Removing 𝑂𝑈 divides
the 𝐿 -stabilizer 𝑔0 into two parts, 𝑔⇐0 = 𝐿1,2 and 𝑔⇐⇐0 = 𝐿3,4, form-
ing two new gauge measurements that replace the original stabi-
lizer 𝑔 = 𝑔⇐0𝑔

⇐⇐
0 . Additionally, the removal transforms the nearby

𝑀 -stabilizers 𝑄2 and 𝑄3 into new gauges, which combine to form a
new 𝑀 -super-stabilizer 𝑄2𝑄3.
(2) AncQ_RM_VerDeg2: This instruction removes a degree-2 vertical
ancilla qubit 𝑂𝑋 , as shown in Fig. 8(d). Unlike the horizontal case, 𝑂𝑋
is shared by the 𝐿 -stabilizer 𝑔0 and the 𝑀 -stabilizer 𝑄1. Removing
𝑂0 divides 𝑔0 into a three-qubit gauge 𝑔⇐0 = 𝐿2,3,4 and a single-
qubit gauge 𝐿1. Similarly, 𝑄1 is divided into a three-qubit gauge
𝑄⇐1 = 𝑀5,6,1 and a single-qubit gauge 𝑀2. These divisions also a!ect
the nearby 𝑀 -stabilizer 𝑄2 and 𝐿 -stabilizer 𝑔1, transforming them
into new gauges. Collectively, these changes result in a new 𝐿 -
super-stabilizer 𝐿1𝑔⇐0𝑔1 and a new 𝑀 -super-stabilizer 𝑀2𝑄⇐1𝑄2.
(3) AncQ_RM_Deg3:This instruction removes a degree-3 ancilla qubit
𝑂𝑉 , as illustrated in Fig. 8(e). Similar to AncQ_RM_VerDeg2, 𝑂𝑊 is
shared by the 𝐿 -stabilizer 𝑔0 and the 𝑀 -stabilizer 𝑄1. The removal
of 𝑂0 leaves 𝑄1 unchanged, dividing it into two parts: 𝑄⇐1 = 𝑀5,6,1
and a single-qubit gauge 𝑀2. However, removing 𝑂0 divides 𝑔0 into
three components: a two-qubit gauge 𝑔⇐0 = 𝐿3,4 and two single-qubit



CaliQEC: In-situ!bit Calibration for Surface Code!antum Error Correction ISCA ’25, June 21–25, 2025, Tokyo, Japan

gauges𝐿1 and𝐿2. After this division, both𝐿2 and𝑀2 exist as single-
qubit gauges for qubit 𝑂2. This indicates that 𝑂2 becomes a gauge
qubit isolated from the surface code, which should be removed. The
removal of 𝑂2 further impacts the nearby 𝑀 -stabilizers 𝑄2 and 𝑄3,
as well as the 𝐿 -stabilizer 𝑔1, deforming and transforming them
into new gauges. Collectively, these modi"cations result in a new
𝐿 -super-stabilizer 𝐿1𝑔⇐0𝑔

⇐
1 and a new 𝑀 -super-stabilizer 𝑄⇐1𝑄2𝑄

⇐
3.

(4) DataQ_RM, PatachQ_RM, PatachQ_ADD: These three instructions
deform the surface code in a manner similar to those for the square
lattice (Fig. 4), ensuring that the stabilizers in the deformed code
remain unchanged. However, because the heavy-hexagon surface
code features unique ancilla bridges in its stabilizer circuits, it is
also necessary to deform the ancilla bridges associated with the
a!ected stabilizers during the deformation process.

The new instruction set not only make the deformation compat-
ible with heavy-hexagon structures but also leverage the structure
of the ancilla bridge to create more "ne-grained strategies.

7 Experimental Setup
7.1 Setting and benchmark
Evaluation setting.We evaluate QECali through both hardware
experiments and simulation-based analysis. Our hardware exper-
iments are conducted on two quantum processors with distinct
topologies: Rigetti’s Ankaa-2 processor with square lattice con-
nectivity and IBM’s Eagle processor with heavy-hex connectivity.
For large-scale logical error analysis, we employ the Stim quan-
tum error simulator for surface code simulation [22] along with
Pymatching [30] for error correction. Program compilation utilizes
the lattice surgery framework [29] and implements logical T gates
through magic state distillation [19].
Benchmark programs.We evaluate QECali using quantum pro-
grams designed for most promising applications in quantum chem-
istry andmaterials science. Our benchmarks includeHubbardmodel
simulation [3], which provides essential insights into strongly corre-
lated electronic systemswith direct applications to high-temperature
superconductivity; FeMo-co catalyst analysis [40] , which addresses
the critical industrial challenge in nitrogen "xation; and Jellium
simulation [61] , which serves as a fundamental model for under-
standing electronic structure in materials. Program variants are
denoted by su#xes indicating problem size (e.g., Hubbard-16 for a
16-qubit system).
Metric. We evaluate QECali using four metrics. The physical qubit
count encompasses all qubits required for the quantum program,
including data qubit blocks for logical encoding, ancilla qubits
for CX operations, and resource states for T gate implementation.
Execution time measures the total runtime for program completion,
with QEC cycle time set to 1𝑕𝑔 (standard in FTQC studies [10, 35, 52,
56]), including all quantum operations and error correction cycles.
Logical error rate (LER) represents the probability of logical errors
occurring per quantum error correction (QEC) cycle for a logical
surface code qubit. It re$ects the e!ectiveness of error correction
for physical errors, with a lower LER indicating superior fault-
tolerant performance. Retry risk [23] quanti"es the probability of
encountering uncorrectable logical errors, providing a measure of
program reliability and the likelihood of requiring computation

restart. In general, it’s computed by LER multiplied with the total
number of logical operations.

Figure 9: Probability distribution of error drift.

7.2 Error model
Physical error model. We adopt a standard circuit-level noise
model [20, 22] where quantum operations are subject to di!erent
error channels: single-qubit gates experience depolarizing errors,
two-qubit gates undergo two-qubit depolarizing errors, and mea-
surement and reset operations are a!ected by Pauli-X errors, each
with probability 𝑅 . Initially, all operations start with a uniform error
rate 𝑅 = 10↘𝑍 , where X is chosen to be 10× below the surface code
threshold (1%). This initialization represents an ideally calibrated
device state.
Error Drift Model. Based on our measurements of IBM’s 127-
qubit Eagle processor, we observe that physical error rates increase
exponentially over time, following the relation:

𝑅 (𝑋, 𝑆) = 𝑅 (𝑋, 0)10𝐿/𝑀 (𝑎 )

where 𝑅 (𝑋, 𝑆) is the error rate of operation or qubit 𝑋 at time 𝑆 ,
𝑅 (𝑋, 0) is the initial calibrated error rate, and𝑃 (𝑋) is the operation-
speci"c drift time constant—the time required for the error rate to
increase by a factor of 10. Our characterization shows that these
drift time constants vary signi"cantly across the device, following
a log-normal distribution with a mean of 14.08 hours (Fig. 9). This
heterogeneity stems from variations in qubit connectivity, gate im-
plementation complexity, and device characteristics, necessitating
individual calibration schedules for di!erent device components.
Future Error Model.We account for potential advancements in
hardware technology that may slow error drift or, equivalently,
extend the constant 𝑃 (𝑋). The reference [11] indicate that the
physical "delity of superconducting devices can be improved from
99.9% to 99.99%. We assume that the error drift e!ect will improve
proportionally, leading to a longer calibration period. Speci"cally,
a one-order-of-magnitude improvement in error rate translates to
a doubling of the calibration duration. To model this, we assume
a future error scenario where 𝑃 (𝑋) follows a log-normal distribu-
tion with a doubled mean of 28.016. Our framework is evaluated
under this future error model to demonstrate its adaptability and
continued utility in evolving hardware environments.

7.3 Baseline Assumptions
In this section, we introduce the key assumptions of two baselines
and our framework QECali.
Baseline 1. No calibration. In this case, benchmarks run without
any calibration. This approach minimizes qubit resources and exe-
cution time, but leads to an expected retry risk approaching 100%
due to error drift.



ISCA ’25, June 21–25, 2025, Tokyo, Japan Xiang Fang, et al.

Baseline 2. LSC. In this case, whenever a gate within a surface
code patch requires calibration, the logical state is transferred else-
where and moved back to its original location once calibration is
complete (Sec. 2.1). To accommodate these logical state transfers
while ensuring uninterrupted computation, LSC has to expand the
communication channels in both dimensions within the 2D surface-
code-based FTQC architecture (Sec. 2.1). This results in a roughly
4x qubit overhead compared to Baseline 1. While this estimate may
be somewhat conservative, reducing this qubit overhead would
either extend execution time due to limited channel availability or
necessitate complex scheduling strategies. Consequently, we adopt
a straightforward 2D expansion in LSC.
QECali. Our framework adopts the same layout as Baseline 1 but
increases the interspace by ω𝑁 to accommodate potential patch
enlargement during calibration, ensuring QEC capability is main-
tained. Here, ω𝑁 represents the maximum tolerable distance loss,
set to 4 in our experiments. This allows for either four single-qubit
isolations or the isolation of a larger region with a diameter of 4
qubits, depending on the crosstalk-a!ected qubits nbr(𝑄) identi-
"ed during device characterization (Sec. 4). At runtime, gates are
calibrated according to the pre-determined schedule (Sec. 5) us-
ing code deformation instructions. To preserve the target LER, the
code patch is dynamically enlarged to compensate for distance
loss. These operations occur concurrently with computation, in-
troducing negligible execution time overhead. While scheduling
calibrations earlier could prevent exceeding the target LER without
patch enlargement, accurately predicting the impact of distance
loss on LER and determining the optimal timing remains challeng-
ing, especially with irregular surface code structures. Therefore,
we opted for the current approach.

8 Evaluation
In this section, we evaluate QECali by comparing with two base-
lines, analyze the e!ects of individual components, and perform
experiments on real systems.

8.1 Overall Performance
We evaluated QECali against two baseline approaches: running
without calibration and using Logical Swap for Calibration (LSC),
under both the current and future error models described in Sec. 7.2.
Our experiments, presented in Table 2, use surface codes with
distances chosen to achieve target retry risk levels of 1% and 0.1%
and benchmarks described in Section 7. Our evaluation reveals four
critical observations:
1. Calibration is indispensable: attempting to run quantum pro-
grams without calibration leads to retry risks approaching 100%,
demonstrating the severe impact of error drift.While programs start
with low logical error rates, exponential drift in physical error rates
quickly compromises computation reliability, making successful
execution virtually impossible for long-running applications.
2. Coarse-grained calibration is impractical: Compared to the
solution with no calibration (Table 2), the LSC approach reduces the
retry risk to the target level but incurs a substantial 363% increase
in qubit count and a 20% longer execution time. These ine#cien-
cies arise from LSC’s need for a 2D layout expansion to enable
logical state transfer (Sec. 7.3), along with execution delays from

logical SWAPs and program stalls during calibration. Its coarse-
grained approach, dictated by the worst-performing qubits, further
exacerbates overhead as system size increases.
3. QECali achieves low overhead calibration: Compared to
the LSC solution, QECali sustains computation progress during cal-
ibration, dramatically reducing the 363% qubit overhead of LSC to
just 24% and eliminating execution time overhead entirely. By per-
forming in-situ calibration via code deformation, QECali avoids
the computational stalls and ancilla overhead associated with state
transfer approaches. Furthermore, QECali reduces retry risk by
79.4% compared to LSC, demonstrating the e!ectiveness of its "ne-
grained calibration strategy in preserving the system’s error cor-
rection capabilities and suppressing the retry risk.
4. In situ calibration remains essential even with improved
hardware: The lower half of Table 2 compares QECali with two
baselines under the future error model. In this scenario, LSC still in-
curs a signi"cant qubit count overhead (363%) because the physical
error rate eventually exceeds the threshold, necessitating logical
state transfers for calibration and requiring excessive additional
qubit resource. While slower error drift reduces the frequency of
calibration, LSC still su!ers from a 304% higher retry risk, despite
a modest increase in execution time. This analysis highlights that
evenwith reduced error drift in future systems, large-scale quantum
tasks will still require in situ calibration. The log-normal distribu-
tion of drift time constants 𝑃 (𝑋) across gates ensures that some
physical qubits will remain more vulnerable to drift. Our experi-
ments con"rm that even a small number of underperforming qubits
can signi"cantly increase logical error rates, reinforcing the impor-
tance of runtime calibration for reliable quantum computation.

8.2 Component-wise Analysis
We conducted a detailed analysis of QECali’s key components to
quantify their individual contributions to overall system perfor-
mance. This ablation study focuses particularly on our adaptive
calibration scheduling and resource management strategies.

0 2 4 6 8 10 12 14 16 18 20

Time (h)

10�4

10�3

L
og

ic
al

er
ro

r
ra

te

LERtar

Uncalibrated

Without enlargement

With enlargement

Figure 10: d=11 Logical error rate analysis with error drift.

8.2.1. In Situ Calibration’s Impact on LER
We evaluate the impact of the two critical deformation steps in

our calibration framework: qubit isolation and code enlargement.
In Fig. 10, we simulate the LER dynamics during calibration cy-

cles for a 𝑁 = 11 surface code. The red line represents the LER



CaliQEC: In-situ!bit Calibration for Surface Code!antum Error Correction ISCA ’25, June 21–25, 2025, Tokyo, Japan

Table 2: Comparison of performance for large scale programs

Error drift
Model

Benchmark No Calibration LSC QECali

Name # 𝑇𝐿 # 𝑃 # logical
qubit d # physical

qubit
Execution
time (hour)

Retry
risk

# physical
qubit

Execution
time (hour)

Retry
risk

# physical
qubit

Execution
time (hour)

Retry
risk

Current
model

Hubbard
-10-10 1.64 ⇒ 109 7.10 ⇒ 108 200 25 9.81 ⇒ 105 5.29 ⇑ 100% 4.65 ⇒ 106 5.74 11.3% 1.53 ⇒ 106 5.29 3.13%

27 1.14 ⇒ 106 5.50 ⇑ 100% 5.43 ⇒ 106 5.95 1.22% 1.62 ⇒ 106 5.50 0.38%
Hubbard
-20-20 5.3 ⇒ 1010 1.2 ⇒ 1010 800 29 5.28 ⇒ 106 91.3 ⇑ 100% 2.30 ⇒ 107 101.5 7.35% 7.11 ⇒ 106 91.3 1.88%

31 6.03 ⇒ 106 94.3 ⇑ 100% 2.63 ⇒ 107 108.5 0.79% 8.38 ⇒ 106 94.3 0.20%
jellium
-250 8.23 ⇒ 109 1.10 ⇒ 109 250 39 2.74 ⇒ 106 177 ⇑ 100% 1.29 ⇒ 107 190.5 8.65% 4.87 ⇒ 106 177 2.40%

41 3.03 ⇒ 106 182 ⇑ 100% 1.42 ⇒ 107 195.95 0.91% 5.38 ⇒ 106 182 0.24%
jellium
-1024 1.25 ⇒ 1012 4.30 ⇒ 1010 1024 45 1.66 ⇒ 107 1870 ⇑ 100% 7.17 ⇒ 107 2010.4 3.69% 2.22 ⇒ 107 1870 0.88%

47 1.81 ⇒ 107 2140 ⇑ 100% 7.82 ⇒ 107 2300 0.39% 2.42 ⇒ 107 2140 0.09%

Grover-100 6.8 ⇒ 109 5.4 ⇒ 1010 100 41 1.35 ⇒ 106 220 ⇑ 100% 6.81 ⇒ 106 236.5 6.16% 3.03 ⇒ 106 220 0.98%
43 1.48 ⇒ 106 237 ⇑ 100% 7.49 ⇒ 106 243.67 0.92% 3.33 ⇒ 106 237 0.11%

Future
model

Hubbard
-10-10 1.64 ⇒ 109 7.10 ⇒ 108 200 25 9.81 ⇒ 105 5.29 ⇑ 100% 4.65 ⇒ 106 5.29 3.13% 1.36 ⇒ 106 5.29 3.13%

27 1.14 ⇒ 106 5.50 ⇑ 100% 5.43 ⇒ 106 5.50 0.38% 1.59 ⇒ 106 5.50 0.38%
Hubbard
-20-20 5.3 ⇒ 1010 1.2 ⇒ 1010 800 29 5.28 ⇒ 106 91.3 ⇑ 100% 2.30 ⇒ 107 94.7 7.35% 6.26 ⇒ 106 91.3 1.88%

31 6.03 ⇒ 106 94.3 ⇑ 100% 2.63 ⇒ 107 97.8 0.79% 7.16 ⇒ 106 94.3 0.20%
jellium
-250 8.23 ⇒ 109 1.10 ⇒ 109 250 39 2.74 ⇒ 106 177 ⇑ 100% 1.29 ⇒ 107 183.3 8.65% 3.73 ⇒ 106 177 2.40%

41 3.03 ⇒ 106 182 ⇑ 100% 1.42 ⇒ 107 188.83 0.91% 4.12 ⇒ 106 182 0.24%
jellium
-1024 1.25 ⇒ 1012 4.30 ⇒ 1010 1024 45 1.66 ⇒ 107 1870 ⇑ 100% 7.17 ⇒ 107 1960 3.69% 1.93 ⇒ 107 1870 0.88%

47 1.81 ⇒ 107 2140 ⇑ 100% 7.82 ⇒ 107 2220 0.39% 2.10 ⇒ 107 2140 0.09%

Grover-100 6.8 ⇒ 109 5.4 ⇒ 1010 100 41 1.35 ⇒ 106 220 ⇑ 100% 6.81 ⇒ 106 228.25 6.16% 2.10 ⇒ 106 220 0.98%
43 1.48 ⇒ 106 237 ⇑ 100% 7.49 ⇒ 106 245.89 0.92% 2.31 ⇒ 106 237 0.11%

threshold, indicating the maximum allowable LER to maintain the
desired retry risk level. The blue, green, and orange lines illustrate
LER dynamics under three scenarios: (1) no calibration, (2) qubit
isolation + calibration, and (3) qubit isolation + code enlargement +
calibration. The results demonstrate: (1) Without calibration, the
LER increases exponentially due to error drift. (2) With qubit iso-
lation and calibration but no code enlargement, the LER brie$y
spikes above the threshold due to distance loss from qubit isola-
tion, though it eventually falls below the threshold after calibration.
(3) The complete QECali scheme, incorporating both qubit isola-
tion and code enlargement, quickly restores error protection and
keeps the LER consistently below the threshold. Importantly, this
compensation mechanism of QECali proves highly e#cient: the
code distance reduction (ω𝑁) during calibration requires only a
𝑁 + ω𝑁 expansion, resulting in 14% additional physical qubits. This
modest overhead can be further optimized by adjusting calibration
intervals to minimize distance loss. Moreover, since compensation
qubits are only needed during calibration, they can be shared across
di!erent logical qubits through our $exible layout scheme. This
sharing reduces the net qubit overhead to 6%, while maintaining
sub-threshold logical error rates throughout computation.
8.2.2. Impact of Drift-based Calibration GroupingWe compare
three calibration grouping strategies: (1) Ideal grouping, where each
gate is calibrated only when its error reaches the threshold, (2)
Uniform calibration, where all qubits are calibrated whenever any
qubit requires calibration, and (3) QECali’s adaptive grouping. Our
evaluation shows that QECali reduces the total number of calibra-
tion operations by 3.63x to 11.1x compared to uniform calibration
(Fig. 11), signi"cantly lowering operational overhead without com-
promising error protection. This reduction stems from avoiding
unnecessary calibrations of stable qubits. Instead, QECali leverages
the natural variation in qubit stability, as evidenced by the normal
distribution of drift rates (Fig. 11), and assigns calibration schedules
based on individual drift patterns.
8.2.3. Impact of Intra-Group Calibration Scheduling

Calibration scheduling must balance speed against qubit over-
head: more parallel calibrations reduce execution time but require
more compensation qubits. Neither purely sequential nor fully par-
allel approaches are optimal for practical systems.

Figure 11: Reduction in calibration count through adaptive
calibration assignment.

To quantify this trade-o!, we evaluate scheduling strategies
using a space-time overhead metric: Overhead = ω𝑁 ⇒ 𝑃 (Cali),
where ω𝑁 represents the temporary reduction in code distance
during calibration, and 𝑃 (Cal) is the total calibration time. This
metric captures both the spatial cost (additional physical qubits
needed for code compensation, which scales as O(ω𝑁)) and temporal
cost (duration of reduced error protection) of the calibration process.

We compare three scheduling approaches: sequential calibration,
which processes one gate at a time; bulk calibration, which cali-
brates as many gates as dependencies allow and achieves maximal
parallelism; and QECali’s adaptive scheduling, which optimizes the
parallelism-overhead trade-o!.

Our results (Fig. 12) show that QECali reduces space-time over-
head by 2.89 times compared to sequential calibration and 3.8 times
compared to bulk calibration. This improvement demonstrates



ISCA ’25, June 21–25, 2025, Tokyo, Japan Xiang Fang, et al.

that naive approaches to parallelization can be counterproduc-
tive—either consuming excessive qubit resources (bulk) or requiring
unnecessarily long calibration times (sequential). QECali’s adaptive
scheduling "nds an e!ective balance, minimizing both resource
requirements and calibration duration.

d=7 d=11 d=17 d=23 d=27

Code Distance

1

5

10

15

20

O
ve

rh
ea

d

Sequential

Bulk

QECali

Figure 12: Space-time overhead of calibration of code with
di!erent code distance

8.3 QECali on real quantum device
Real quantum devices present additional challenges: non-uniform
gate "delities, complex error correlations, and hardware-speci"c
constraints. To validate QECali’s practicality, we implement 𝑁 = 3
surface codes on two state-of-the-art quantum processors with
distinct architectures: (1) Rigetti Ankaa-2 with a square lattice
architecture, and (2) IBM-Rensselaer with heavy-hexagon architec-
ture. We compare three scenarios: (1) optimal (“Original” column),
(2) drifted, where a single gate’s (either single-qubit or two-qubit
gate) calibration parameters are replaced by those drifted after 8
hours (“drifted 1Q” and “drifted 2Q” columns), and (3) drifted + qubit
isolation (two “isolated drifted” columns).

Figure 13: Logical error rate of a 𝑁 = 3 surface code on Rigetti
Ankaa-2 and IBM-Rensselaer

Standard surface code on Rigetti Ankaa-2: Our results (Fig. 13)
reveal that even a single uncalibrated gate increases the LER by
41.6% for a single-qubit gate and 135.5% for a two-qubit gate. In

contrast, QECali’s qubit isolation and recalibration strategy incurs
only a minor LER increase during calibration: 13.1% for single-
qubit gates and 21.0% for two-qubit gates. This demonstrates that
isolating high-error-rate qubits a!ected by error drift e!ectively
suppresses the LER, requiring only a modest qubit overhead for
code enlargement to restore QEC capability to the original LER level.
Without isolating drifted qubits, signi"cantly more qubits would
be needed for enlargement, as the LER di!erence between drifted
qubits (“drifted 1Q” and “drifted 2Q” columns) and the optimal
ones (“Original” column) is much larger than that between the
drift-removed qubits (“isolate drifted 1Q” and “isolated drifted 2Q”
columns) and the optimal ones.
Heavy-hex surface code on IBM-Rensselaer: We observe simi-
lar results on the IBM-Rensselaer device. The drift of a single gate
increases the LER by 55.0% for single-qubit gates and 178.2% for
two-qubit gates. In contrast, removing the drifted qubits limits the
LER increase to just 22.8% and 33.6%, signi"cantly reducing the
qubit resources required to restore the original QEC protection
level. Notably, this device is more sensitive to drifted errors than
the Rigetti Ankaa-2 device, as evidenced by the larger LER increases
(55.0% and 178.2% compared to 41.6% and 135.5%). We speculate
that this heightened sensitivity arises from the heavy-hex topol-
ogy, where two-qubit gates are shared across multiple stabilizer
measurements, amplifying the e!ect of individual gate errors.

These real-device experiments con"rm that qubit isolation is an
e!ective strategy for addressing drifted errors, requiring minimal
qubit overhead for code enlargement. By combining qubit isolation
with code enlargement, the LER can be kept su#ciently low to
safeguard ongoing computation while enabling e#cient calibration.

9 Conclusion
We present QECali to enable in-situ calibration of physical qubits
while maintaining QEC in surface codes. Through selective qubit
isolation and dynamic code enlargement, QECali achieves concur-
rent calibration and computation while preserving error correction
capabilities. As quantum systems scale and computation times in-
crease, QECali’s approach to resource management provides a prac-
tical foundation for maintaining reliable quantum error correction
during extended computations.

Acknowledgments
We thank the anonymous reviewers for their constructive feedback
and AWS Cloud Credit for Research. This work is supported in
part by NSF 2048144, NSF 2422169, NSF 2427109. This material
is based upon work supported by the U.S. Department of Energy,
O#ce of Science, National Quantum Information Science Research
Centers, Quantum Science Center (QSC). This research used re-
sources of the Oak Ridge Leadership Computing Facility (OLCF),
which is a DOE O#ce of Science User Facility supported under
Contract DE-AC05-00OR22725. This research used resources of the
National Energy Research Scienti"c Computing Center (NERSC), a
U.S. Department of Energy O#ce of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract
No. DE-AC02-05CH11231. The Paci"c Northwest National Labo-
ratory is operated by Battelle for the U.S. Department of Energy
under Contract DE-AC05-76RL01830.



CaliQEC: In-situ!bit Calibration for Surface Code!antum Error Correction ISCA ’25, June 21–25, 2025, Tokyo, Japan

References
[1] 2023. Suppressing quantum errors by scaling a surface code logical qubit. Nature

614, 7949 (2023), 676–681.
[2] Rajeev Acharya, Laleh Aghababaie-Beni, Igor Aleiner, Trond I. Andersen, Markus

Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Nikita Astrakhantsev, Juan
Atalaya, Ryan Babbush, Dave Bacon, Brian Ballard, Joseph C. Bardin, Johannes
Bausch, Andreas Bengtsson, Alexander Bilmes, Sam Blackwell, Sergio Boixo,
Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton,
David A. Browne, Brett Buchea, Bob B. Buckley, David A. Buell, Tim Burger,
Brian Burkett, Nicholas Bushnell, Anthony Cabrera, Juan Campero, Hung-Shen
Chang, Yu Chen, Zijun Chen, Ben Chiaro, Desmond Chik, Charina Chou, Jahan
Claes, Agnetta Y. Cleland, Josh Cogan, Roberto Collins, Paul Conner, William
Courtney, Alexander L. Crook, Ben Curtin, Sayan Das, Alex Davies, Laura De
Lorenzo, Dripto M. Debroy, Sean Demura, Michel Devoret, Agustin Di Paolo, Paul
Donohoe, Ilya Drozdov, Andrew Dunsworth, Clint Earle, Thomas Edlich, Alec
Eickbusch, Aviv Moshe Elbag, Mahmoud Elzouka, Catherine Erickson, Lara Faoro,
Edward Farhi, Vinicius S. Ferreira, Leslie Flores Burgos, Ebrahim Forati, Austin G.
Fowler, Brooks Foxen, Suhas Ganjam, Gonzalo Garcia, Robert Gasca, Élie Genois,
William Giang, Craig Gidney, Dar Gilboa, Raja Gosula, Alejandro Grajales Dau,
Dietrich Graumann, Alex Greene, Jonathan A. Gross, Steve Habegger, John Hall,
Michael C. Hamilton, Monica Hansen, Matthew P. Harrigan, Sean D. Harrington,
Francisco J. H. Heras, Stephen Heslin, Paula Heu, Oscar Higgott, Gordon Hill,
Jeremy Hilton, George Holland, Sabrina Hong, Hsin-Yuan Huang, Ashley Hu!,
William J. Huggins, Lev B. Io!e, Sergei V. Isakov, Justin Iveland, Evan Je!rey,
Zhang Jiang, Cody Jones, Stephen Jordan, Chaitali Joshi, Pavol Juhas, Dvir Kafri,
Hui Kang, Amir H. Karamlou, Kostyantyn Kechedzhi, Julian Kelly, Trupti Khaire,
Tanuj Khattar, Mostafa Khezri, Seon Kim, Paul V. Klimov, Andrey R. Klots, Bryce
Kobrin, Pushmeet Kohli, Alexander N. Korotkov, Fedor Kostritsa, Robin Kothari,
Borislav Kozlovskii, John Mark Kreikebaum, Vladislav D. Kurilovich, Nathan
Lacroix, David Landhuis, Tiano Lange-Dei, Brandon W. Langley, Pavel Laptev,
Kim-Ming Lau, Loïck Le Guevel, Justin Ledford, Kenny Lee, Yuri D. Lensky,
Shannon Leon, Brian J. Lester, Wing Yan Li, Yin Li, Alexander T. Lill, Wayne
Liu, William P. Livingston, Aditya Locharla, Erik Lucero, Daniel Lundahl, Aaron
Lunt, Sid Madhuk, Fionn D. Malone, Ashley Maloney, Salvatore Mandrá, Leigh S.
Martin, Steven Martin, Orion Martin, Cameron Max"eld, Jarrod R. McClean, Matt
McEwen, Seneca Meeks, Anthony Megrant, Xiao Mi, Kevin C. Miao, Amanda
Mieszala, Reza Molavi, Sebastian Molina, Shirin Montazeri, Alexis Morvan, Ramis
Movassagh, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles
Neill, Ani Nersisyan, Hartmut Neven, Michael Newman, Jiun How Ng, Anthony
Nguyen, Murray Nguyen, Chia-Hung Ni, Thomas E. O’Brien, William D. Oliver,
Alex Opremcak, Kristo!er Ottosson, Andre Petukhov, Alex Pizzuto, John Platt,
Rebecca Potter, Orion Pritchard, Leonid P. Pryadko, Chris Quintana, Ganesh
Ramachandran, Matthew J. Reagor, David M. Rhodes, Gabrielle Roberts, Eliott
Rosenberg, Emma Rosenfeld, Pedram Roushan, Nicholas C. Rubin, Negar Saei,
Daniel Sank, Kannan Sankaragomathi, Kevin J. Satzinger, Henry F. Schurkus,
Christopher Schuster, Andrew W. Senior, Michael J. Shearn, Aaron Shorter, Noah
Shutty, Vladimir Shvarts, Shraddha Singh, Volodymyr Sivak, Jindra Skruzny,
Spencer Small, Vadim Smelyanskiy, W. Clarke Smith, Rolando D. Somma, So"a
Springer, George Sterling, Doug Strain, Jordan Suchard, Aaron Szasz, Alex Sztein,
Douglas Thor, Alfredo Torres, M. Mert Torunbalci, Abeer Vaishnav, Justin Var-
gas, Sergey Vdovichev, Guifre Vidal, Benjamin Villalonga, Catherine Vollgra!
Heidweiller, Steven Waltman, Shannon X. Wang, Brayden Ware, Kate Weber,
Theodore White, Kristi Wong, Bryan W. K. Woo, Cheng Xing, Z. Jamie Yao,
Ping Yeh, Bicheng Ying, Juhwan Yoo, Noureldin Yosri, Grayson Young, Adam
Zalcman, Yaxing Zhang, Ningfeng Zhu, and Nicholas Zobrist. 2024. Quantum
error correction below the surface code threshold. arXiv:2408.13687 [quant-ph]
https://arxiv.org/abs/2408.13687

[3] Daniel P Arovas, Erez Berg, Steven A Kivelson, and Srinivas Raghu. 2022. The
hubbard model. Annual review of condensed matter physics 13, 1 (2022), 239–274.

[4] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al.
2019. Quantum supremacy using a programmable superconducting processor.
Nature 574, 7779 (2019), 505–510.

[5] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell,
Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Court-
ney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gid-
ney, Marissa Giustina, Rob Gra!, Keith Guerin, Steve Habegger, Matthew P. Har-
rigan, Michael J. Hartmann, Alan Ho, Markus Ho!mann, Trent Huang, Travis S.
Humble, Sergei V. Isakov, Evan Je!rey, Zhang Jiang, Dvir Kafri, Kostyantyn
Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov,
Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh,
Salvatore Mandrà, Jarrod R. McClean, MatthewMcEwen, Anthony Megrant, Xiao
Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew
Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C.
Platt, Chris Quintana, Eleanor G. Rie!el, Pedram Roushan, Nicholas C. Rubin,
Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D.

Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie
Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019.
Quantum supremacy using a programmable superconducting processor. Nature
574, 7779 (Oct. 2019), 505–510. doi:10.1038/s41586-019-1666-5

[6] James M Auger, Hussain Anwar, Mercedes Gimeno-Segovia, Thomas M Stace,
and Dan E Browne. 2017. Fault-tolerance thresholds for the surface code with
fabrication errors. Physical Review A 96, 4 (2017), 042316.

[7] Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean,
Alexandru Paler, Austin Fowler, and Hartmut Neven. 2018. Encoding electronic
spectra in quantum circuits with linear T complexity. Physical Review X 8, 4
(2018), 041015.

[8] Michael Beverland, Vadym Kliuchnikov, and Eddie Schoute. 2022. Surface code
compilation via edge-disjoint paths. PRX Quantum 3, 2 (2022), 020342.

[9] Dolev Bluvstein, Simon J. Evered, Alexandra A. Geim, Sophie H. Li, Hengyun
Zhou, Tom Manovitz, Sepehr Ebadi, Madelyn Cain, Marcin Kalinowski, Dominik
Hangleiter, J. Pablo Bonilla Ataides, Nishad Maskara, Iris Cong, Xun Gao, Pe-
dro Sales Rodriguez, Thomas Karolyshyn, Giulia Semeghini, Michael J. Gullans,
Markus Greiner, Vladan Vuleti%, and Mikhail D. Lukin. 2024. Logical quantum
processor based on recon"gurable atom arrays. Nature 626, 7997 (01 Feb 2024),
58–65. doi:10.1038/s41586-023-06927-3

[10] Héctor Bombín andMiguel Angel Martin-Delgado. 2009. Quantummeasurements
and gates by code deformation. Journal of Physics A: Mathematical and Theoretical
42, 9 (2009), 095302.

[11] Sergey Bravyi, Oliver Dial, Jay M Gambetta, Darío Gil, and Zaira Nazario. 2022.
The future of quantum computing with superconducting qubits. Journal of
Applied Physics 132, 16 (2022).

[12] Sergey B Bravyi and A Yu Kitaev. 1998. Quantum codes on a lattice with boundary.
arXiv preprint quant-ph/9811052 (1998).

[13] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D.
Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas
P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. 2019. Quantum
Chemistry in the Age of Quantum Computing. Chemical Reviews 119, 19 (Oct.
2019), 10856–10915. doi:10.1021/acs.chemrev.8b00803

[14] Christopher Chamberland and Earl T Campbell. 2022. Universal quantum com-
puting with twist-free and temporally encoded lattice surgery. PRX Quantum 3,
1 (2022), 010331.

[15] Nicolas Delfosse and Naomi H Nickerson. 2021. Almost-linear time decoding
algorithm for topological codes. Quantum 5 (2021), 595.

[16] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. 2002. Topological
quantum memory. J. Math. Phys. 43, 9 (2002), 4452–4505.

[17] Brayden Thomas Edman. 2024. A Hardware-Focused Tour of IBM’s 127-Qubit
Eagle Processor. Vanderbilt Undergraduate Research Journal 14, 1 (2024).

[18] Austin G Fowler. 2013. Minimum weight perfect matching of fault-tolerant
topological quantum error correction in average 𝑏 (1) parallel time. arXiv
preprint arXiv:1307.1740 (2013).

[19] Austin G Fowler and Craig Gidney. 2018. Low overhead quantum computation
using lattice surgery. arXiv preprint arXiv:1808.06709 (2018).

[20] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Physical
Review A 86, 3 (2012), 032324.

[21] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Physical
Review A 86, 3 (2012), 032324.

[22] Craig Gidney. 2021. Stim: a fast stabilizer circuit simulator. Quantum 5 (2021),
497.

[23] Craig Gidney and Martin Ekerå. 2021. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. Quantum 5 (April 2021), 433. doi:10.22331/q-
2021-04-15-433

[24] Daniel Gottesman. 1996. Class of quantum error-correcting codes saturating the
quantum Hamming bound. Physical Review A 54, 3 (1996), 1862.

[25] Daniel Gottesman. 1998. The Heisenberg Representation of Quantum Computers.
arXiv:quant-ph/9807006 [quant-ph]

[26] Daniel Gottesman. 1998. Theory of fault-tolerant quantum computation. Physical
Review A 57, 1 (1998), 127.

[27] E. Gümü&, D. Majidi, D. Nikoli%, P. Raif, B. Karimi, J. T. Peltonen, E. Scheer, J. P.
Pekola, H. Courtois, W. Belzig, and C. B. Winkelmann. 2023. Calorimetry of a
phase slip in a Josephson junction. Nature Physics 19, 2 (2023), 196–200.

[28] Simon Gustavsson, Fei Yan, Gianluigi Catelani, Jonas Bylander, Archana Kamal,
Je!rey Birenbaum, David Hover, Danna Rosenberg, Gabriel Samach, Adam P.
Sears, Steven J. Weber, Jonilyn L. Yoder, John Clarke, Andrew J. Kerman, Fumiki
Yoshihara, Yasunobu Nakamura, Terry P. Orlando, and William D. Oliver. 2016.
Suppressing relaxation in superconducting qubits by quasiparticle pumping.
Science 354, 6319 (2016), 1573–1577.

[29] Daniel Herr, Franco Nori, and Simon J Devitt. 2017. Lattice surgery translation
for quantum computation. New Journal of physics 19, 1 (2017), 013034.

[30] Oscar Higgott. 2022. PyMatching: A Python package for decoding quantum
codes with minimum-weight perfect matching. ACM Transactions on Quantum
Computing 3, 3 (2022), 1–16.

https://arxiv.org/abs/2408.13687
https://arxiv.org/abs/2408.13687
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://arxiv.org/abs/quant-ph/9807006


ISCA ’25, June 21–25, 2025, Tokyo, Japan Xiang Fang, et al.

[31] Clare Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter. 2012.
Surface code quantum computing by lattice surgery. New Journal of Physics 14,
12 (2012), 123011.

[32] He-Liang Huang, Dachao Wu, Daojin Fan, and Xiaobo Zhu. 2020. Superconduct-
ing quantum computing: a review. Science China Information Sciences 63 (2020),
1–32.

[33] Petar Jurcevic, Ali Javadi-Abhari, Lev S Bishop, Isaac Lauer, Daniela F Bogorin,
Markus Brink, LaurenCapelluto, OktayGünlük, Toshinari Itoko, Naoki Kanazawa,
Abhinav Kandala, George A Keefe, Kevin Krsulich, William Landers, Eric P
Lewandowski, Douglas T McClure, Giacomo Nannicini, Adinath Narasgond,
Hasan M Nayfeh, Emily Pritchett, Mary Beth Rothwell, Srikanth Srinivasan,
Neereja Sundaresan, Cindy Wang, Ken X Wei, Christopher J Wood, Jeng-Bang
Yau, Eric J Zhang, Oliver E Dial, Jerry M Chow, and Jay M Gambetta. 2021.
Demonstration of quantum volume 64 on a superconducting quantum computing
system. Quantum Science and Technology 6, 2 (2021), 025020.

[34] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Je!rey, T. C. White, D. Sank,
J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Lucero,
M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher,
J. Wenner, and John M. Martinis. 2016. Scalable in situ qubit calibration during
repetitive error detection. Physical Review A 94, 3 (2016), 032321.

[35] Julian Kelly, Peter O’Malley, Matthew Neeley, Hartmut Neven, and John M Mar-
tinis. 2018. Physical qubit calibration on a directed acyclic graph. arXiv preprint
arXiv:1803.03226 (2018).

[36] Younghun Kim, Jeongsoo Kang, and Younghun Kwon. 2023. Design of quantum
error correcting code for biased error on heavy-hexagon structure. Quantum
Information Processing 22, 6 (2023), 230.

[37] Paul V. Klimov, Andreas Bengtsson, Chris Quintana, Alexandre Bourassa, Sabrina
Hong, Andrew Dunsworth, Kevin J. Satzinger, William P. Livingston, Volodymyr
Sivak, Murphy Yuezhen Niu, Trond I. Andersen, Yaxing Zhang, Desmond Chik,
Zijun Chen, Charles Neill, Catherine Erickson, Alejandro Grajales Dau, Anthony
Megrant, Pedram Roushan, Alexander N. Korotkov, Julian Kelly, Vadim Smelyan-
skiy, Yu Chen, and Hartmut Neven. 2024. Optimizing quantum gates towards
the scale of logical qubits. Nature Communications 15, 1 (2024), 2442.

[38] P. V. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett, R. Barends,
K. Arya, B. Chiaro, Yu Chen, A. Dunsworth, A. Fowler, B. Foxen, C. Gidney, M.
Giustina, R. Gra!, T. Huang, E. Je!rey, Erik Lucero, J. Y. Mutus, O. Naaman, C.
Neill, C. Quintana, P. Roushan, Daniel Sank, A. Vainsencher, J. Wenner, T. C.
White, S. Boixo, R. Babbush, V. N. Smelyanskiy, H. Neven, and John M. Martinis.
2018. Fluctuations of energy-relaxation times in superconducting qubits. Physical
review letters 121, 9 (2018), 090502.

[39] Paul V Klimov, Julian Kelly, JohnMMartinis, andHartmut Neven. 2020. The snake
optimizer for learning quantum processor control parameters. arXiv preprint
arXiv:2006.04594 (2020).

[40] Joonho Lee, Dominic W. Berry, Craig Gidney, William J. Huggins, Jarrod R.
McClean, Nathan Wiebe, and Ryan Babbush. 2021. Even More E#cient Quantum
Computations of Chemistry Through Tensor Hypercontraction. PRX Quantum 2
(Jul 2021), 030305. Issue 3. doi:10.1103/PRXQuantum.2.030305

[41] Tian-Ming Li, Jia-Chi Zhang, Bing-Jie Chen, Kaixuan Huang, Hao-Tian Liu,
Yong-Xi Xiao, Cheng-Lin Deng, Gui-Han Liang, Chi-Tong Chen, Yu Liu, Hao Li,
Zhen-Ting Bao, Kui Zhao, Yueshan Xu, Li Li, Yang He, Zheng-He Liu, Yi-Han Yu,
Si-Yun Zhou, Yan-Jun Liu, Xiaohui Song, Dongning Zheng, Zhong-Cheng Xiang,
Yun-Hao Shi, Kai Xu, and Heng Fan. 2024. High-precision pulse calibration of
tunable couplers for high-"delity two-qubit gates in superconducting quantum
processors. arXiv preprint arXiv:2410.15041 (2024).

[42] Daniel A Lidar and Todd A Brun. 2013. Quantum error correction. Cambridge
university press.

[43] Sophia Fuhui Lin, Eric C Peterson, Krishanu Sankar, and Prasahnt Sivarajah.
2024. Spatially parallel decoding for multi-qubit lattice surgery. arXiv preprint
arXiv:2403.01353 (2024).

[44] Daniel Litinski. 2019. A game of surface codes: Large-scale quantum computing
with lattice surgery. Quantum 3 (2019), 128.

[45] Daniel Litinski. 2023. How to compute a 256-bit elliptic curve private key with
only 50 million To!oli gates. arXiv preprint arXiv:2306.08585 (2023).

[46] Yiding Liu, Zedong Li, Alan Robertson, Xin Fu, and Shuaiwen Leon Song. 2023.
Enabling e#cient real-time calibration on cloud quantum machines. IEEE Trans-
actions on Quantum Engineering 4 (2023), 1–17.

[47] Easwar Magesan, Jay M. Gambetta, B. R. Johnson, Colm A. Ryan, Jerry M. Chow,
Seth T. Merkel, Marcus P. Da Silva, George A. Keefe, Mary B. Rothwell, Thomas A.
Ohki, Mark B. Ketchen, and M. Ste!en. 2012. E#cient measurement of quantum
gate error by interleaved randomized benchmarking. Physical review letters 109,
8 (2012), 080505.

[48] John M Martinis. 2021. Saving superconducting quantum processors from de-
cay and correlated errors generated by gamma and cosmic rays. npj Quantum
Information 7, 1 (2021), 90.

[49] JohnM.Martinis, K. B. Cooper, R.McDermott, Matthias Ste!en,Markus Ansmann,
K. D. Osborn, K. Cicak, Seongshik Oh, D. P. Pappas, R. W. Simmonds, and Clare C.
Yu. 2005. Decoherence in Josephson qubits from dielectric loss. Physical review
letters 95, 21 (2005), 210503.

[50] Matt McEwen, Lara Faoro, Kunal Arya, Andrew Dunsworth, Trent Huang, Seon
Kim, Brian Burkett, Austin Fowler, FrankArute, Joseph C. Bardin, Andreas Bengts-
son, Alexander Bilmes, Bob B. Buckley, Nicholas Bushnell, Zijun Chen, Roberto
Collins, Sean Demura, Alan R. Derk, Catherine Erickson,Marissa Giustina, Sean D.
Harrington, Sabrina Hong, Evan Je!rey, Julian Kelly, Paul V. Klimov, Fedor
Kostritsa, Pavel Laptev, Aditya Locharla, Xiao Mi, Kevin C. Miao, Shirin Montaz-
eri, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Alex Opremcak,
Chris Quintana, Nicholas Redd, Pedram Roushan, Daniel Sank, Kevin J. Satzinger,
Vladimir Shvarts, Theodore White, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Yu Chen,
Vadim Smelyanskiy, John M. Martinis, Hartmut Neven, Anthony Megrant, Lev
Io!e, and Rami Barends. 2022. Resolving catastrophic error bursts from cos-
mic rays in large arrays of superconducting qubits. Nature Physics 18, 1 (2022),
107–111.

[51] ClemensMüller, Jared H Cole, and Jürgen Lisenfeld. 2019. Towards understanding
two-level-systems in amorphous solids: insights from quantum circuits. Reports
on Progress in Physics 82, 12 (2019), 124501.

[52] PrakashMurali, David CMcKay, Margaret Martonosi, and Ali Javadi-Abhari. 2020.
Software mitigation of crosstalk on noisy intermediate-scale quantum computers.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 1001–1016.

[53] Shota Nagayama, Austin G Fowler, Dominic Horsman, Simon J Devitt, and Rodney
Van Meter. 2017. Surface code error correction on a defective lattice. New Journal
of Physics 19, 2 (2017), 023050.

[54] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A.
Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z.
Chen, A. Fowler, B. Foxen, M. Giustina, R. Gra!, E. Je!rey, T. Huang, J. Kelly, P.
Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher,
J. Wenner, T. C. White, H. Neven, and J. M. Martinis. 2018. A blueprint for
demonstrating quantum supremacy with superconducting qubits. Science 360,
6385 (2018), 195–199.

[55] Michael A Nielsen and Isaac L Chuang. 2010. Quantum computation and quantum
information. Cambridge university press.

[56] Timothy Proctor, Melissa Revelle, Erik Nielsen, Kenneth Rudinger, Daniel Lobser,
Peter Maunz, Robin Blume-Kohout, and Kevin Young. 2020. Detecting and
tracking drift in quantum information processors. Nature communications 11, 1
(2020), 5396.

[57] Jiaan Qi and Hui Khoon Ng. 2021. Randomized benchmarking in the presence of
time-correlated dephasing noise. Physical Review A 103, 2 (2021), 022607.

[58] Gokul Subramanian Ravi, Kaitlin Smith, Jonathan M Baker, Tejas Kannan, Nathan
Earnest, Ali Javadi-Abhari, Henry Ho!mann, and Frederic T Chong. 2023. Nav-
igating the dynamic noise landscape of variational quantum algorithms with
QISMET. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2. 515–529.

[59] Peter W Shor. 1996. Fault-tolerant quantum computation. In Proceedings of 37th
conference on foundations of computer science. IEEE, 56–65.

[60] Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review 41, 2 (1999), 303–332.

[61] M. Springborg and Y. Dong. 2006. Chapter 4 The Jellium Model. In Metallic
Chains/Chains of Metals, Michael Springborg and Yi Dong (Eds.). Handbook of
Metal Physics, Vol. 1. Elsevier, 37–44. doi:10.1016/S1570-002X(06)01004-4

[62] Thomas M Stace and Sean D Barrett. 2010. Error correction and degeneracy in
surface codes su!ering loss. Physical Review A 81, 2 (2010), 022317.

[63] Thomas M Stace, Sean D Barrett, and Andrew C Doherty. 2009. Thresholds for
topological codes in the presence of loss. Physical review letters 102, 20 (2009),
200501.

[64] Armands Strikis, Simon C Benjamin, and Benjamin J Brown. 2023. Quantum
computing is scalable on a planar array of qubits with fabrication defects. Physical
Review Applied 19, 6 (2023), 064081.

[65] Swamit S Tannu and Moinuddin K Qureshi. 2019. Not all qubits are created
equal: A case for variability-aware policies for NISQ-era quantum computers. In
Proceedings of the twenty-fourth international conference on architectural support
for programming languages and operating systems. 987–999.

[66] Caroline Tornow, Naoki Kanazawa, William E Shanks, and Daniel J Egger. 2022.
Minimum quantum run-time characterization and calibration via restless mea-
surements with dynamic repetition rates. Physical Review Applied 17, 6 (2022),
064061.

[67] Christophe Vuillot, Lingling Lao, Ben Criger, Carmen García Almudéver, Koen
Bertels, and Barbara M Terhal. 2019. Code deformation and lattice surgery are
gauge "xing. New Journal of Physics 21, 3 (2019), 033028.

[68] Zuolin Wei, Tan He, Yangsen Ye, Dachao Wu, Yiming Zhang, Youwei Zhao,
Weiping Lin, He-Liang Huang, Xiaobo Zhu, and Jian-Wei Pan. 2024. Low-
Overhead Defect-Adaptive Surface Code with Bandage-Like Super-Stabilizers.
arXiv preprint arXiv:2404.18644 (2024).

[69] Nicolas Wittler, Federico Roy, Kevin Pack, Max Werninghaus, Anurag Saha Roy,
Daniel J Egger, Stefan Filipp, Frank KWilhelm, and ShaiMachnes. 2021. Integrated
tool set for control, calibration, and characterization of quantum devices applied
to superconducting qubits. Physical Review Applied 15, 3 (2021), 034080.

https://doi.org/10.1103/PRXQuantum.2.030305
https://doi.org/10.1016/S1570-002X(06)01004-4


CaliQEC: In-situ!bit Calibration for Surface Code!antum Error Correction ISCA ’25, June 21–25, 2025, Tokyo, Japan

[70] Keyi Yin, Xiang Fang, Travis S Humble, Ang Li, Yunong Shi, and Yufei Ding.
2024. Surf-Deformer: Mitigating dynamic defects on surface code via adaptive
deformation. (2024).

[71] Shuaining Zhang, Yao Lu, Kuan Zhang, Wentao Chen, Ying Li, Jing-Ning Zhang,
and Kihwan Kim. 2020. Error-mitigated quantum gates exceeding physical
"delities in a trapped-ion system. Nature communications 11, 1 (2020), 587.

[72] Youwei Zhao, Yangsen Ye, He-Liang Huang, Yiming Zhang, Dachao Wu, Huijie
Guan, Qingling Zhu, Zuolin Wei, Tan He, Sirui Cao, Fusheng Chen, Tung-Hsun
Chung, Hui Deng, Daojin Fan, Ming Gong, Cheng Guo, Shaojun Guo, Lianchen
Han, Na Li, Shaowei Li, Yuan Li, Futian Liang, Jin Lin, Haoran Qian, Hao Rong,
Hong Su, Lihua Sun, Shiyu Wang, Yulin Wu, Yu Xu, Chong Ying, Jiale Yu, Chen
Zha, Kaili Zhang, Yong-Heng Huo, Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu,
and Jian-Wei Pan. 2022. Realization of an error-correcting surface code with
superconducting qubits. Physical Review Letters 129, 3 (2022), 030501.

A Artifact Appendix
A.1 Abstract
The artifact contains the source code used to generate, simulate,
and evaluate the in-situ calibration methods presented in this pa-
per. Since certain results presented in this work utilized premium
quantum hardware that require access tokens, this artifact provides
a simulation method for certain tasks. Users who have access to
di!erent quantum hardware platforms can take the circuits gener-
ated within the artifact and manually execute them. The artifact
provides Jupyter notebooks and python "les to reproduce major
results in Figure 10, Figure 12, and Table 2.

A.2 Artifact check-list (meta-information)
• Program: Stim
• Run-time environment: Jupyter Kernel
• Hardware: AMD EPYC 9534 64-Core
• Execution: Stim circuit simulation
• Output: Error rate, space-time overhead, qubit usage, and related
metrics

• Experiments: Surface code and in-situ calibration simulation
• Howmuch disk space required (approximately)?: 1 GB to store
the artifact directory and python virtual environment.

• How much time is needed to prepare work"ow (approxi-
mately)?: 10 minutes

• How much time is needed to complete experiments (approxi-
mately)?: 1 hour

• Publicly available?: Yes
• Code licenses (if publicly available)?:MIT License
• Work"ow automation framework used?: Jupyter notebook
• Archived (provideDOI)?: https://doi.org/10.5281/zenodo.15104546

A.3 Description
A.3.1 How to access. The artifact is available on Zenodo
https://doi.org/10.5281/zenodo.15104546.

A.3.2 Hardware dependencies. The artifact relies on quantum cir-
cuit simulation available through the Stim. Any system which can
run python programs should be able to evaluate the artifact.

A.3.3 So!ware dependencies. The dependencies are listed within
requirements.txt.

A.4 Installation
The README.md contains detailed instructions to prepare the python
environment. After downloading the artifact zip!le, and extracting
the contents, the environment can be installed via:

# cd QECali_ISCA_Artifact
# pip install -r requirements.txt The user can then open the jupyter

lab with the command:
# jupyter lab
The jupyter notebook !les contain major results used in this paper.

A.5 Evaluation and expected results
The notebook space_time_overhead.ipynb contains examples how
the space time are computed using the results of the code defor-
mation and calibration time. The notebook stim_error.ipynb simu-
lates the logical error rate analysis with error drifts, utilizing real-
machine data including initial error rate and error growing rate. The
python "le evaluation.py calculates the error rate of application-
oriented benchmarks listed in Table 2. The calculation utilizes a cus-
tom simulator based on the path "nding process of lattice suggery.
A folder ben_gen_example is provided to generate benchmarks
in Table 2. Also, pre-generated benchmarks are stored in bench
folder. The python "le heavy_hex.py contains the simulation and
deformation of surface code on heavy-hex topology.

A.6 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-and-
badging-current

• https://cTuning.org/ae

https://doi.org/10.5281/zenodo.15104546
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Abstract
	1 Introduction
	2 Background
	2.1 FTQC with Surface Code
	2.2 Deformation of Surface Codes
	2.3 Error Drift and Calibration

	3 Overview
	4 Preparation-time Device Characterization
	5 Compilation-time Calibration Scheduling
	5.1 Problem Formulation
	5.2 Drift-based Calibration Grouping
	5.3 Intra-Group Calibration Scheduling

	6  The QECali Instruction Set 
	6.1 The QECali Instruction Set for the Heavy-Hexagon Topology

	7 Experimental Setup
	7.1 Setting and benchmark
	7.2 Error model
	7.3 Baseline Assumptions

	8 Evaluation
	8.1 Overall Performance
	8.2 Component-wise Analysis
	8.3 QECali on real quantum device

	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results
	A.6 Methodology


