CaliQEC: In-situ Qubit Calibration for Surface Code Quantum

Xiang Fang
University of California San Diego
La Jolla, USA
x8fang@ucsd.edu

Jixuan Ruan
University of California San Diego
La Jolla, USA
j3ruan@ucsd.edu

Andrew Sornborger
LANL
Los Alamos, USA
sornborg@lanl.gov

Error Correction
Keyi Yin

University of California San Diego
La Jolla, USA
keyin@ucsd.edu

Dean Tullsen
University of California San Diego
La Jolla, USA
tullsen@ucsd.edu

Ang Li
PNNL
Richland, USA
ang.li@pnnl.gov

Yuchen Zhu

University of California San Diego
La Jolla, USA
ax009822@acsmail.ucsd.edu

Zhiding Liang
Rensselaer Polytechnic Institute
Troy, USA
liangz9@rpi.edu

Travis Humble

Quantum Science Center, Oak Ridge

National Laboratory
Oak Ridge, USA

Yufei Ding
University of California San Diego
La Jolla, USA
yufeiding@ucsd.edu

Abstract

Quantum Error Correction (QEC) is essential for fault-tolerant,
large-scale quantum computation. However, error drift in qubits
undermines QEC performance during long computations, neces-
sitating frequent calibration. Conventional calibration methods
disrupt quantum states, requiring system downtime and rendering
in situ calibration impractical. To address this challenge, we pro-
pose QECali, a novel framework that enables in situ calibration for
surface codes. Our evaluation demonstrates that QECali introduces
modest qubit overhead and negligible increases in execution time,
offering the first practical solution for in situ calibration in surface
code based quantum computation.

CCS Concepts

« Computer systems organization — Quantum computing; «
Hardware — Quantum error correction and fault tolerance.

Keywords

Quantum error correction, Qubit Calibration

ACM Reference Format:

Xiang Fang, Keyi Yin, Yuchen Zhu, Jixuan Ruan, Dean Tullsen, Zhiding
Liang, Andrew Sornborger, Ang Li, Travis Humble, Yufei Ding, and Yunong
Shi. 2025. CaliQEC: In-situ Qubit Calibration for Surface Code Quantum
Error Correction. In Proceedings of the 52nd Annual International Symposium

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1261-6/25/06

https://doi.org/10.1145/3695053.3731042

humblets@ornl.gov

Yunong Shi
AWS Quantum Technologies
New York, USA
shiyunon@amazon.com

on Computer Architecture (ISCA °25), June 21-25, 2025, Tokyo, Japan. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3695053.3731042

1 Introduction

Quantum Error Correction (QEC) [26, 42, 55, 59] is essential to
enable large-scale Fault-Tolerant Quantum Computing (FTQC) suit-
able for practical applications [13, 60]. Among various QEC schemes,
surface codes [8, 12, 16, 20, 44] have emerged as the leading solution
and have been successfully implemented on various quantum hard-
ware [1, 2, 9, 72]. Surface codes work by encoding logical qubits
into redundant physical qubits arranged in a 2D square or hexago-
nal lattice, effectively reducing the error rate of the logical qubits
if the physical error rate remains below a certain threshold [20].
With increasing code size, surface codes provide exponential sup-
pression of logical errors. Recent experiments on superconducting
devices [11, 32] demonstrated this error suppression for the first
time [2], underscoring the practical applicability of surface codes.

Despite their demonstrated effectiveness, surface codes are highly
sensitive to noise levels — small increases in physical error rates
can require substantial expansion in code size to maintain the same
logical error rate [21]. Consequently, maintaining a low and stable
physical error rate is essential to ensure the effectiveness of surface
codes during long computations. However, qubit and gate condi-
tions degrade over time, leading to increased physical error rates—a
phenomenon known as error drift [56, 71]. Fig. 1(a) shows the error
drift observed on an IBM quantum computer [17]: after just one
day, over 90% of single qubit gates exhibit error rates exceeding
the threshold of surface codes. Theoretical estimates suggest that
practical quantum applications are expected to run for hours or
even days [7, 23, 40, 45], assuming a fixed error rate. However,

https://orcid.org/0009-0009-8902-7464
https://orcid.org/0009-0005-7563-271X
https://orcid.org/0009-0009-2331-6183
https://orcid.org/0009-0007-1828-1719
https://orcid.org/0000-0003-3174-9316
https://orcid.org/0000-0002-7568-0165
https://orcid.org/0000-0001-8036-6624
https://orcid.org/0000-0003-3734-9137
https://orcid.org/0000-0002-9449-0498
https://orcid.org/0000-0002-8716-5793
https://orcid.org/0000-0002-0824-6107
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731042
https://doi.org/10.1145/3695053.3731042

ISCA 25, June 21-25, 2025, Tokyo, Japan

in practice, error drift can significantly undermine computational
reliability, making such long computations infeasible.

Calibration [35, 39, 65, 66, 69] is the process of fine-tuning quan-
tum hardware to maintain low physical error rates and counteract
error drift. Quantum hardware installations frequently calibrate
their devices-often several times a day-to keep qubits and gates
aligned with optimal conditions. Calibration involves three key
steps: characterization, control parameter adjustment, and valida-
tion. Importantly, the calibration process disrupts quantum states,
making qubits under calibration unavailable for computation.

6.5
. 1
A With Calibration ! -== Threshold

1077 e Without Calibration ~ ® ! Overdrifted
o Fitted ® »2 !
2 BN Calibration :

= sx10'] === Threshold o -
Ei e o E [
= I
] S t
Z s « I
£ e < :
I
red g4 13 I
A A [l
10 Y 7Y 1
A K [}
0. L .
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 Ax107 6x107% 10 2x 1072
Time (hour) Error rate

(@ (b)
Figure 1: Error drift on an IBM’s device: (a) Calibration main-
tains low physical error rates. (b) Without calibration, a ma-
jority of qubits exceed the threshold after 24 hours.

The fundamental challenge in surface code based quantum com-
putation lies at the intersection of two competing requirements:
maintaining consistently low physical error rates (through calibra-
tion) while simultaneously preserving quantum information for
ongoing computation. This tension motivates our central research
question: How can we integrate runtime calibration with ongoing
computation while maintaining the protection level of surface codes?

A natural starting point draws inspiration from classical comput-
ing systems, where memory access must be coordinated with peri-
odic DRAM refresh cycles [28]. Just as memory refresh temporarily
interrupts access to maintain data integrity, qubit calibration re-
quires periodic access to physical qubits while trying to preserve
quantum information.

However, key differences exist between the classical and quan-
tum settings. While classical memory can be refreshed at the bit
level, quantum error correction creates a critical constraint: indi-
vidual physical qubits cannot be naively removed for calibration
without catastrophic error propagation. Simply mirroring classical
strategies leads to a conservative approach, which we term Logical
Swap for Calibration (LSC): transferring entire logical qubits to an-
cillary regions via logical SWAP operations before calibrating their
physical components (Fig. 2c). This classically inspired approach
suffers from two fundamental limitations. First, unlike classical
bit copying, quantum logical SWAP operations require complex
sequences of physical operations or quantum teleportation proto-
cols [8, 44], introducing substantial overhead in both ancilla qubit
count and execution time. Second, there is a critical granularity
mismatch—calibration operates at the physical qubit level, while
computation occurs at the logical qubit level. Since physical qubits
drift at varying rates (Fig. 1b), LSC inefficiently forces entire logical
qubits to pause when a single physical qubit requires calibration,
leading to high overheads that scale with worst-case behavior. Other
methods, such as [34], claim in-situ calibration but essentially rely

Xiang Fang, et al.

on speculative estimation of control parameters rather than physi-
cal calibration. The derived parameters are often suboptimal and
fail to meet the stringent physical error rates required for QEC.

To address these limitations, we propose QECali (Fig. 2d), a novel
QEC framework that enables in-situ runtime calibration concurrent
with ongoing computation, while maintaining the same level of
QEC protection provided by surface codes. This approach eliminates
the substantial overhead associated with quantum state transfer
and ancillary qubit preparation required by LSC. Furthermore, it
operates in a fine-grained manner, precisely isolating over-drifted
physical qubits for calibration without stalling the entire logical
qubit, effectively resolving the granularity mismatch issue of LSC.

The advantages of QECali are rooted in a key insight: Surface
codes allow for strategic runtime updates to their code structures, en-
abling qubit isolation while preserving logical information. This is
enabled by a theoretical tool known as code deformation [10, 67, 70].
Originally proposed for implementing logical operations on surface
codes, we creatively repurpose it to address the conflicts between
calibration and QEC-protected computation. Specifically, we apply
the theory of code deformation to the most prevalent hardware
architectures—square and hexagonal lattices [5, 17, 33]—and de-
sign novel code deformation instruction sets for these architectures
(Sec. 6). These instruction sets enable two complementary oper-
ations: selective qubit isolation, which creates temporary bound-
aries to separate the calibrating qubits and program-running qubits,
and dynamic code enlargement, which slightly expands affected
patches to maintain QEC capabilities during the calibration process.
QECali combines this instruction set with intelligent scheduling
(Sec. 4, 5) to create an efficient, automated calibration system while
preserving the original QEC protection level.

Our evaluation on both simulation and real quantum hardware
demonstrates QECali’s effectiveness across different architectures
and use cases. On practical quantum benchmarks such as quantum
chemistry applications, QECali maintains sub-threshold error rates
with only 12-15% additional physical qubits and negligible impact
on execution time, reducing retry risk by up to 85% compared to
baselines. Component-wise analysis shows that QECali’s adaptive
scheduling achieves 91% reduction in calibration operations while
minimizing space-time overhead. Our experiments on Rigetti and
IBM processors validate QECali’s key insight, showing that code
deformation can effectively control error propagation.

In summary, this paper makes the following contributions:

e We propose a novel framework, QECali, that enables in-
situ calibration and concurrent QEC-protected computation,
achieving the desired retry risk level with minimal qubit
count overhead and negligible execution time overhead.

e We design and formalize novel surface code deformation
instruction sets for calibration on square and heavy-hexagon
topologies supporting the QECali framework.

e We develop an adaptive scheduling method to efficiently co-
ordinate calibration operations across physical qubits while
effectively balancing various constraints.

e We introduce key device metrics—calibration times, drift
rates, and crosstalk—to characterize quantum hardware, pro-
viding critical insights for optimizing calibration schedules
and predicting performance.

CaliQEC: In-situ Qubit Calibration for Surface Code Quantum Error Correction

ISCA 25, June 21-25, 2025, Tokyo, Japan

Error Drift (S)
oL AL] ' o o o o! <] o o o o o o o0 o o'
o|o o ! — o o 1|¢L> \ |'¢'L> e o o > ¢ o - Transferred
= P4 ; [o]o ‘7‘7 1rrar;sfe} L olofofon . o|lofo]o -*Iﬂ'rar;sfehrI olofofo I ot - Sequential
' 5o o|lo|lo|o]o H tolofofo]o 50— o ofofd, - Coarse-grained
°4° °4’ : oEo. ofofofofectidlo]o[o]o o.ojo olo \o o!
oloflo|o|o ' e o o ' e o o '
, \ o o o|o|o|o]o ' 1ololofo]o o o o KQ o [ot
° ° °° : oo o 2Execution | o'+ o YExecution [, °,°,°, 2calibration [, !
(a) Error drift LT o R T
1 = , 2 calibration = . 2 calibration Large
——¢——¢— ransfer ransfer .
[o] \AJ) o VA |2 Program Execution 2 Pprogram Execution Sopace;r"ze
I - ‘ vernea
ottt ‘? . k (c) Potential solution: Logical Swap for Calibration (LSC)
—o0
oclo|o|o|@]o ‘ o ‘ o (
o o o o o o o o i o i
‘7 |’¢’L>) J Execution W)L)} Execution]
olo|lo|o|o o‘o‘o I’lﬁ) o o|lo|o|o|o o ololo) - In-situ
o o o o o i oflofo|o ofo|o|o]o ofo]o T o|o - Concurrent
(b) Larger distance olololo|® olo|o|o|@|o]o > 1ol ®o|o . - Fine-grained
+ No calibration ofofofo]fo ' ofo ofo]o S|lo|ol|fo]o anm
T o : e - O - e ofolo st TR IoTe1-
Ko qubit [Logli)cal , . A ¥, Isolate” , X Calibration * . Reintegraté . %3 Calibration o
' qubit '
1 @ Data qubit !
' Drifted [z-stabilizer : Program Execution Low
N J : ! Space-Time
' qubit o Calibration Calibration P
! - Measureq LX-Stabilizer: e Overhead
, ! >
I qubit 1L (d) QECali: Integrate Calibration with QEC-protected Computation),

Figure 2: Comparison of QECali and LSC. (a) Error drift pattern in physical qubits. (b) Increased code distance approach. (c) LSC,
a coarse-grained approach with high overhead. (d) QECali enables in situ calibration.

2 Background

This section provides an overview of surface codes and their defor-
mation operations, and background on error drift and calibration.

2.1 FTQC with Surface Code

Surface Code Basics. The surface code is a leading candidate for
realizing FTQC due to its simple 2D grid structure and high error
threshold (1%) [12, 20]. Fig. 3a presents a typical surface code patch,
where multiple physical qubits encode a single logical qubit. The
physical qubits are divided into data qubits (black dots), which store
the logical quantum state, and syndrome qubits (white dots), which
collect error information from neighboring data qubits. The surface
code can also be implemented on a hexagonal topology, as shown
in Fig. 3b, which reflects the architecture of some current hardware
platforms (IBM’s devices [17]). Unlike in the square lattice, where
each stabilizer uses a single ancilla qubit as the syndrome qubit,
the stabilizers in the heavy-hexagon structure use seven ancilla
qubits arranged in an "S" shape to form a bridge connecting the
four data qubits, as shown in Fig. 3(c). This "S"-shaped arrangement
provides the connectivity needed to extract error syndromes while
mitigating the frequency crowding issue.

QEC with Surface Codes. Each syndrome qubit is linked to a sta-
bilizer [24, 25, 55], a Pauli operator involving adjacent data qubits,
as shown in Fig.3b,c. The red and green colors indicate the two
stabilizer types, comprising exclusively X- or Z-Pauli operators,
respectively. The syndrome qubits provide measurement outcomes
of these stabilizers, producing error syndromes to guide error cor-
rection. However, some errors can alter the logical state without

being detected by stabilizer measurements, known as logical er-
rors, resulting in program failure. The logical error rate (LER) is
closely tied to the code distance, defined as the minimum number
of single-qubit errors required to cause a logical error. The code
distance of a perfect surface code equals the number of data qubits
along its edge (a distance-5 surface code in Fig. 3a). The LER decays
exponentially with increasing code distance, provided the physical
error rate remains below a certain threshold. For further detail,
see [16, 20, 36].

FTQC with Surface Codes. Current surface code architectures [44]
for FTQC arrange code patches on a plane with interspace equal to
the code distance d, as shown in Fig.3(e). This interspace functions
as a communication channel, enabling logical operations such as
CNOT gates and state transfer (Fig. 3(e)(f)) via lattice surgery and
code deformation [10, 14, 29, 31, 67]. Its width is set to d to maintain
the same level of QEC protection as the code patches. For a detailed
introduction, see [8, 19, 44].

2.2 Deformation of Surface Codes

Code deformation [10, 67, 70] is a key technique in surface codes
that modifies the shape of the code patch to achieve specific func-
tions. This subsection introduces four key deformation instructions
that, when combined, isolate qubits from the code patch while
preserving the encoded quantum information and QEC capability,
enabling calibration without disrupting ongoing computation.

1. DataQ_RM. As illustrated in Fig. 4a, to remove the data qubit g,
it combines the original stabilizers into larger “superstabilizers”
that exclude q [6, 53, 62, 63]. These superstabilizers, along with the
remaining stabilizers, enable QEC to continue on the code patch
consisting of the remaining qubits during subsequent QEC cycles.

ISCA 25, June 21-25, 2025, Tokyo, Japan

) State
Transfer

—— 1 l9)

Figure 3: (a)(d) Surface codes on a square and hexagon lattice.
(b)(c) Stabilizers of surface codes on two lattices. (e)(f) Layout
for surface-code-based FTQC. Logical operations (e.g., logical
CNOT in (e), logical state transfer in (f)) are enabled through
the communication channel between the patches.

To reintegrate the data qubit g into the system, they are reset to
state |0) or |+) and the stabilizers of the original code are measured,
restoring the original structure.

2. SyndromeQ_RM. As shown in Fig. 4b, to remove the syndrome
qubit g, the qubits involved in the stabilizer associated with g are
measured in the X- or Z-basis, depending on the stabilizer type.
The stabilizers are then updated to form “superstabilizers” that
exclude g and are used in subsequent QEC cycles. Reintegrating
the syndrome qubit into the system is accomplished by measuring
the original stabilizers.

3. PatchQ_RM. This operation shrinks the code patch at the bound-
ary by measuring the qubits to be excluded in either the Z- or
X-basis, depending on the stabilizer they are associated with. To
reintegrate the isolated qubits, they are reset to |0) or |[+) and the
original stabilizer (the red one in Fig. 4c) is measured.

4. PatchQ_AD. This operation expands the code patch at the bound-
ary by preparing the qubits to be included in appropriate states (|0)
or |[+)) and measuring the new stabilizer. In the example shown
in Fig. 4d, the qubits are initialized in the |0) state, and a new
X-stabilizer (red) is measured.

; o o o oo o o o o 0 I_l‘ ;
AN o Yaa\ = :
H ofo|ofo|o o . olo|ofo]|o o :) f/@ H
H 3 I 4 o 4 I o og H
l Y q 1
ho S o ERinoce e
H L \s | ° H
1olofo I o|o L} qge o|oflalofs > 10 .
o L 9
LT Nl T : °'9'i> D!
' o) '
' Super- Super 1
' (a) DataQ_RM stabilizers (P) SyndromeQ_RM stabilizers /

st (_dl PatchQ_ _A_D_ -
Figure 4: Four key deformation operations. (a) Data qubit
removal, (b) Syndrome qubit removal, (c) Patch shrinkage at
the boundary, and (d) Patch expansion at the boundary.

Xiang Fang, et al.

By combining DataQ_RM, SyndromeQ_RM, and PatchQ_RM, vari-
ous patterns of drift-affected qubits can be isolated from the code
patch. Repeated application of PatchQ_AD enables the desired code
enlargement, restoring QEC capability after qubit isolation. More-
over, fault tolerance during code deformation is maintained using
decoding approaches similar to those in regular surface codes [15,
18], with adjustments for dynamically changing stabilizers and
syndrome transitions [53, 64, 67, 68]. Optimized decoders can effi-
ciently handle these changes, ensuring minimal impact on decoding
time [14, 43]. For a more comprehensive introduction to the defor-
mation framework in surface codes, refer to [10, 67, 70].

2.3 Error Drift and Calibration

Error Drift. QEC schemes often assume a static error model where
error rates remain constant. However, on real hardware, error rates
fluctuate over time, potentially exceeding the QEC threshold—a
phenomenon known as error drift [56, 58, 71]. In superconducting
devices, a primary cause of error drift is the unwanted coupling of
qubits to two-level systems (TLS) [38, 49, 51], along with thermal
fluctuations in Josephson junctions [27], unpaired electrons [28, 38],
and environmental noise [48, 50]. TLS defects, inherent to the fab-
rication process, occur randomly and are difficult to characterize or
predict, leading to unique and heterogeneous impacts on each qubit.
These factors cause qubit parameters (e.g., Ti and T, coherence
times) to vary unpredictably, necessitating frequent characteriza-
tion and recalibration to maintain optimal performance.

Calibration. Calibration [5, 35, 37, 41, 46, 54, 57, 66, 69] is the
process of readjusting control parameters (such as the duration
and frequency of control pulses) for qubit operations to maintain
optimal performance, specifically, low error rates. This process is
lengthy, often taking several hours (e.g., 4 hours in [5]) to ensure
accuracy. Moreover, the calibration order for different qubits must
be carefully scheduled to mitigate crosstalk issues [52]. Importantly,
calibration requires qubits to be in specific states for measurement,
preventing them from storing information or supporting computa-
tion during calibration. As a result, calibration typically halts the
program, making concurrent calibration and computation impossi-
ble and limiting the duration of reliable computations.

3 Overview

QECali achieves efficient in-situ calibration through three coordi-
nated stages, as depicted in Fig. 5:

Preparation time. This stage thoroughly characterizes the quan-
tum hardware, capturing key parameters for each gate, including
calibration duration, drift rate, and calibration crosstalk (Section 4).
This foundational data serves as a basis for optimizing our calibra-
tion strategies.

Compilation time. This stage aims to determine all the calibration
processes based on the hardware characterization obtained during
preparation stage. This stage consists of two steps.

Drift-based Calibration Grouping (Sec. 5.2). Based on gate parame-
ters, we define calibration workloads by determining each gate’s
frequency and duration. Gates with similar drift characteristics are
grouped into calibration intervals to avoid overlapping workloads,
which could cause excessive distance loss from deformation.
Intra-Group Calibration Scheduling (Sec. 5.3): Within each interval,
we sequence the calibration workloads based on their dependencies

CaliQEC: In-situ Qubit Calibration for Surface Code Quantum Error Correction

ISCA 25, June 21-25, 2025, Tokyo, Japan

N Compilation Time 1
' Calibration Workloads X
' [: :] [Calibration Grouping (Sec. 5.2)] [Calibration Scheduling (Sec. 5.3)] ,
! | 91 |,| g2 || g3 | :
' i {91,935 i {92,94 : HIE - '
: T Hovgy flog oy :
1 ’“’ :95,"'}:96,"' : { } : : :
i | (Duration| [Frequency| [Crosstalk | é_' 2.T 3;[’ > 1'1 2.T > |1
1 1
1 1
! Deformation :
1 [Device Modeling _(Sec.4)] Instruction '
1
' Cali Profile: Gate 9 SR) Runtime |
n n 1
: Tcali(g); Tdm'ft(g)Q nbr(g); : On-going Computation : :
: = o - JiCalibrate|Opt. Para. [Deform | g5 calibrate Opt. Para.| : .
- = 1
: reparation fime = [Deform | g5 Calibrate Opt. Para. 1
1 > : !
1 . 7 7 !
\\[Quantum Hardware T [Calibration Execution] 2T A

Figure 5: Overview of QECali: a deformation-based calibration framework.

and crosstalks. This scheduling minimizes the total calibration time
while maintaining computational efficiency.

Runtime. The runtime follows the calibration schedule generated
during compile time (Section 5), triggering the corresponding cali-
bration operations for designated gates at specified intervals. For
each gate, it executes the associated code deformation instructions
from the QECali instruction set (Section 6). Meanwhile, logical com-
putations on deformed logical qubits continue uninterrupted, with
all operations pre-calculated during compile time.

4 Preparation-time Device Characterization

To enable optimized calibration scheduling, QECali first character-
izes the quantum device pre-compilation by measuring and extract-
ing key metrics of each qubit operations. These include:

Calibration Time (T_,j;): We measure each gate’s calibration dura-
tion through repeated experiments, as this directly impacts sched-
uling efficiency. Typically, individual gate calibration takes a few
minutes, while full-device calibration spans several hours [4, 37].

Drift Rate (Tyr;): We characterize the error drift of a gate g using
the following exponential scaling model:

p(g.8) = polg] - 104/ Tarise [9] (1)

where p(g,t) is the error rate at time ¢, po[g] is the initial error
rate, and Tyyif:[g] is the drift time constant, representing the time
required for the error rate to increase tenfold. We adopt this ex-
ponential model as it best fits our experimental data from IBM’s
real machine (Fig.1) and is consistent with prior studies [56, 57], al-
though some references report a linear drift model [4]. Specifically,
we perform hourly measurements using the interleaved random-
ized benchmarking method [47], conducting three sets of tests with
[1, 10, 20, 50, 100, 150, 250, 400] repetitions. The resulting gate error
data is fitted to Eqn. (1) to determine Tyys. Notably, this model can
be replaced with other models based on specific hardware condi-
tions and determine calibration periods for each gate accordingly,
while the scheduling method in Sec. 5 remains applicable.

Calibration Crosstalk (nbr(g)): We introduce a new method to
identify qubits affected by each gate’s calibration using the circuit in
Fig. 6. For each gate g, we initialize nearby qubits to random states,
perform calibration, and measure their final states. Qubits exhibit-
ing deviations beyond a threshold are added to nbr(g), indicating
crosstalk interference. Importantly, these qubits nbr(g) are isolated
along with the calibrating qubit during calibration, creating a pro-
tective barrier between calibrating and program-running qubits.
After calibration, the isolated qubits are reset to |0) or |+) before
reintegration into the system (Sec. 2.2), ensuring that calibration
does not interfere with ongoing computations.

These metrics form the foundation for QECali’s compilation-
time scheduler (Section 5) and runtime execution engine, enabling
generation of calibration schedules that optimize the critical trade-
offs between frequency, parallelism, and interference. Moreover, a
full calibration process is usually conducted before the program
begins in practice, allowing device characterization parameters to
be obtained. This makes this preparation stage an integral part of
the overall computation process without adding extra time.

q1 —| Random State :

2 Cross-Resonance
qs3 Tomography

q4 —| Random State :

Figure 6: Circuit characterizing calibration crosstalk.

5 Compilation-time Calibration Scheduling

5.1 Problem Formulation

For reliable execution of large-scale quantum programs, we must
maintain the logical error rate (LER) below a target value (say
LER¢,r) throughout computation. Formally, this requires LER(¢#) <

ISCA 25, June 21-25, 2025, Tokyo, Japan

LERgy, for all t. The calibration schedule directly impacts this re-
quirement by influencing the physical error rates: frequent cali-
bration helps maintain lower physical error rates, which in turn
supports a lower LER.

For a distance-d surface code to achieve the target LER¢,y, the
average physical error rate must not exceed a corresponding target,
denoted as piar. Thus, each gate g must be calibrated within its
drift time Taif p,,, [9] —the time it takes for g’s error rate to reach
Prar- To meet the reliability requirement, the calibration interval
for g must satisfy Ty < Tyift p,, [g]. The drift time Tyt . [9] can
vary significantly depending on the specific gate and hardware
characteristics, ranging from hours to days.

While frequent calibration is necessary for maintaining low
LER, parallel calibration comes with substantial costs. Moreover,
calibration-induced crosstalk between neighboring qubits further
constrains the degree of parallelization possible.

To balance these competing requirements, we formulate our
optimization objective as:

ICe| < 1,V
[——
crosstalk constraint

1
minz — subjectto Ty < Taify py,, [9],
7 Ig -
drift constraint

where Ty is the calibration period for gate g, C; is the set of gates
in C being calibrated at time ¢, and C represents a set of gates that
cannot be calibrated simultaneously due to crosstalk. It aims to
minimize calibration frequency, for reducing qubit overhead, while
respecting both drift time limits and crosstalk constraints.

5.2 Drift-based Calibration Grouping

To solve this problem, we propose a heuristic solution that achieves
high optimization quality with fast compilation speed. This com-
pilation is performed before the program runs, taking only a few
seconds, which is negligible compared to the program’s execution
time. Our approach groups gates with similar drift characteristics
to share calibration intervals, effectively discretizing the scheduling
space while respecting device physics. Specifically, we select a base
calibration interval kT¢,); and assign each gate g to a calibration
group kg according to:

kg - Tcati < Tarift py, [9] < (kg +1) - Tcai ()

This grouping strategy offers several advantages. First, gates
within group k, share the same calibration cycle Ty = kg - Tc)i, sim-
plifying scheduling. Once the grouping is completed, the schedule
for each group is determined: during the k-th interval, only gates
belonging to Group k, are executed (where k. mod kg = 0). Second,
this grouping enables opportunities for parallel scheduling of cali-
brations, as all gates within a group can be scheduled at any time
within their assigned interval Tc,y;. Third, it simplifies the issue
of crosstalk, as we only need to address crosstalk within a single
group. Crosstalk between groups is avoided since groups assigned
to the same interval are trivially scheduled sequentially. In contrast,
a naive approach without grouping can lead to crosstalk issues. As
shown in Fig. 7(a), this method calibrates each gate individually
until it reaches the error threshold. While it minimizes the overall
calibration frequency, it may schedule gates with crosstalk interfer-
ence simultaneously, causing conflicts. In summary, the resulting

Xiang Fang, et al.

(a) | *C*rosstalkl

1

]

| Freq=059h"" ! v (s3] ' i(95) Turifi

0h 5h 8h 9k 12n 14k "

IR ' ' '

! pr - osont ; ;

1 1 | . Tm’,ﬁs

0h 5h 10h 15h

Group 1 Group 2

|: ;'C:'eq =0.66 h!’1 E E :

1 1 1 1 Tdri/it

0h 4h 8h 12h 16h
Group 1 Group 2 Group 3

Figure 7: Impact of T¢,j; on calibration frequency.

calibration frequency is:

2 Ti - T1 : % @)

7 9 Cali %

where nj. denotes the number of gates in the k-th group.
Optimal Choice of Group Duration T¢,j;: The choice of base
calibration interval Tcy); significantly impacts grouping efficiency.
While one might intuitively set Tc,y; to the minimum drift time
ming Tyrift p,,, [9], this often leads to suboptimal groupings. Con-
sider the example in Fig. 7(b): with Tc,y; = 5h, gates g1, g2, and g3
form Group 1 while gates g4 and g5 form Group 2, resulting in 0.80
calibrations per hour. However, setting T, = 4h, though increas-
ing g1’s calibration frequency, enables better distribution of other
gates into groups with lower frequencies, reducing overall cost to
0.66 calibrations per hour Fig. 7(c). To clarify, the calibration tasks
will be executed periodically according to Tryy;. Fig. 7 illustrates
different grouping strategies but does not depict the scheduling of
calibration tasks.

Algorithm 1: Calibration Group Assignment

Input: Gate set G, Drift time Tyyif p,,, [9]
Output: Calibration groups Group[k]

1 Tin = ming Tdrift,Ptar [9]
2 Tcali = Tmin
forg € Gdo
4 k= {Tdrift,p[ar lg] /Tmin-|
T = Tarift py,, 91/ K
if Freq(G, Tegy;) > Freq(G,T) then

| Teai=T
8 end

@

«w

N o

9 end

10 Initialize Group[k]

11 forg € G do

2 | k= |Taie p, [9)/Tcali |
13 Add g into Group|k]

14 end

15 return Group[k]

CaliQEC: In-situ Qubit Calibration for Surface Code Quantum Error Correction

The optimal Tc,); tends to occur when some Tyyify py, [9] values
align with integer multiples of Tc,y;. If alignment does not occur,
Tcali can be increased without altering the grouping, thereby reduc-
ing the calibration frequency as described in Eq. (3). To determine
the optimal value, we employ Algorithm 1, traversing the values of
Tarift, pr, [9]/k for each gate, particularly those slightly smaller than
the minimum drift time Tp,j,. The Tc,y; that minimizes the calibra-
tion frequency is then selected. In cases where multiple intervals
yield similar or identical calibration frequencies, a larger interval
is preferred. A larger Tc,); allows for grouping more gates together,
providing longer scheduling windows, increased flexibility for intra-
group scheduling, and greater opportunities for parallelism.
Targeted Physical Error Rate Determination: Algorithm 1 as-
sumed that the targeted physical error rate, ptar, was known. Here
we describe how our compiler determines pi,r based on the available
physical qubit resources. Surface codes with larger code distances
possess stronger error correction capabilities, allowing them to
tolerate higher pir while maintaining the same targeted logical
error rate (LER¢ay).

The LER for a distance-d surface code is given by [19]:

.) (d+1)/2

Pth
where « is a constant specific to the quantum error correction
(QEC) code, typically around 0.03 for the rotated surface code. Here,
pn represents the physical error threshold for the surface code,
approximately 0.01 under the circuit-level noise model.

To guarantee program fidelity, the condition LER < LER¢,; must
be satisfied. With Eq. (1) and Eq. (4), this condition can be simplified:

LER(d, ptar) = « (, 4)

log 20 _jog Pt} g 5 2,)
po Po
where A is a positive constant dependent on LER,, and a. Impor-
tantly, this condition can only be satisfied if ptar < pyp,, which aligns
with the intuitive requirement that no gate’s error rate should ex-
ceed the physical error threshold during program execution.
Given a fixed number of physical qubits, the compiler calculates
the maximum allowable code distance d that fits within the resource
constraints. It then determines the largest pi,, that satisfies the
target LERar while ensuring LER(#) < LERyy, throughout program
execution. This approach balances the trade-offs between code
distance, ptar, and physical qubit resources. Larger code distances
exponentially suppress logical error rates but require more physical
qubits. Conversely, higher piar allows for longer drift times and less
frequent calibration but relies on more robust error correction. By
leveraging these trade-offs, our compiler optimizes piar and d to
achieve reliable and resource-efficient program execution.

5.3 Intra-Group Calibration Scheduling

After assigning calibrations to each time period Ti,); and determin-
ing which gates should be calibrated simultaneously, the next step
involves finding an appropriate code deformation process to isolate
these gates. Generally, for each gate, we apply code deformer to
isolate all its affected neighboring qubits, enabling a region suit-
able for calibration. However, performing this sequentially may
lead to excessive calibration time overhead, potentially causing the
calibration time of a gate, f.,j;, to exceed the calibration cycle Tc,y;-

ISCA 25, June 21-25, 2025, Tokyo, Japan

In this section, we analyze three challenges associated with cali-
bration scheduling and propose an adaptive calibration scheduling
approach to address them.

(1) Dependence between calibrations: Certain two-qubit gate
calibrations may depend on the results of one-qubit gate calibra-
tions. We address this by clustering such gates and scheduling their
calibration collectively. This dependency typically arises from over-
lapping positions, i.e.,c their neighboring qubits nbr(g) are highly
overlapped. Code deformation to isolate these shared qubits facili-
tates the simultaneous calibration of multiple gates in the cluster.
(2) Crosstalk between calibrations: Crosstalk during calibrations
prevents all calibrations from running simultaneously. To maximize
calibration parallelism and minimize calibration time, we design a
greedy scheduling. This approach sorts gate calibrations based on
the size of their affected qubits. Starting with the largest, we select
as many calibrations as possible without introducing crosstalk.
When no more gates can be calibrated concurrently, we generate
code deformation instructions for the selected gates and begin a
new batch. This process is repeated until all gates are calibrated.
(3) Trade-off between calibration time and code distance loss:
Code deformation reduces the code distance. To preserve the fi-
delity of the original code, the code must be enlarged to restore
the original code distance. Calibrating more gates simultaneously
requires isolating larger regions, leading to greater distance loss
and increased physical qubit overhead for enlargement. To balance
this trade-off, we define a new metric to evaluate scheduling: the
space-time overhead of the enlarged region: Cost = Ad X tcai[g]-
For each Ad, we calculate the cost by constraining the greedy sched-
uling strategy to ensure that the code deformation for simultaneous
calibrations does not exceed the maximal tolerable distance loss Ad.
The optimal scheduling is then chosen based on this evaluation.

6 The QECali Instruction Set

A critical challenge in runtime calibration is the ability to isolate
physical qubits for calibration without compromising the surface
code’s error correction capability. To address this challenge, QE-
Cali provides carefully designed instruction sets that enable safe
transformation of the code structure during calibration.

Table 1 provides an overview of the two instruction sets. For
surface codes on square lattices, QECali adopts the instruction
set from [70], originally designed for handling defective qubits
in surface codes. We identified that these instructions—DataQ_RM,
SyndromeQ_RM, PatchQ_RM, and PatchQ_AD—can be repurposed for
calibration, enabling selective qubit isolation while preserving error
correction properties. For the details of these instructions, we refer
readers to Section 2.2 or [70].

6.1 The QECali Instruction Set for the
Heavy-Hexagon Topology

Modern quantum processors, including IBM’s devices, utilize a
heavy-hexagon topology (Fig. 3(d)). Existing code deformation in-
structions are designed for square lattices and cannot be directly
applied to heavy-hexagon architectures. However, since square
lattice instructions are fundamentally based on gauge fixing the-
ory [10, 67], this theory provides a foundation for adapting defor-
mation techniques to heavy-hexagon structures. Building on an

ISCA 25, June 21-25, 2025, Tokyo, Japan

@ Data Qubit
O Ancilla Qubit
X Isolated Qubit

-

qa
@ 10,

o O o

(b) Hev-Hex Surface Code (f) DataQ_RM Q0

Figure 8: Code deformation instruction set for the

in-depth study of gauge fixing, we have designed and formalized a
dedicated instruction set specifically for heavy-hexagon topologies.

Table 1: QECali instruction sets for square and heavy-
hexagon surface codes

Code Topology Instructions

DataQ_RM, SyndromeQ_RM,

Square PatchQ_RM, PatchQ_AD

DataQ_RM, AncQ_RM_HorDeg?2,
PatchQ_RM, AncQ_RM_VerDeg?2
PatchQ_AD, AncQ_RM_Deg3,

Heavy-Hexagon

Key Distinctions of the Topology: The heavy-hexagon topology
has two key features that render the square lattice instructions
inadequate:

1. Non-uniform ancilla roles: As shown in Fig. 8(a), the seven ancilla
qubits associated with each stabilizer can be classified into two
distinct types: (1) Degree-3 nodes (ga, gc, ge 4¢)> Which connect to
three other qubits, including one data qubit. (2) Degree-2 nodes
(94 9b- q5), Which connect to two other ancilla qubits. Degree-3
nodes directly connect to data qubits, while degree-2 nodes act
as bridges to link them. This functional difference necessitates
different code deformation instructions to ensure the deformed
code remains functional after isolating specific ancilla qubits.

2. Shared ancilla qubits: As shown in Fig. 8(a), ancilla qubits associ-
ated with one stabilizer can also be shared with others. For instance,
in Fig. 8(b), the X-stabilizer sy and the Z-stabilizer g; share three
ancilla qubits. This overlap implies that isolating a single ancilla
qubit may impact multiple stabilizers simultaneously which makes
designing code deformation instructions under these circumstances
becomes more complex.

Design Principles: The heavy-hexagon structure presents unique
opportunities for code deformation compared to the square lattice.

Xiang Fang, et al.

(d) AncQ_RM_VerDeg2 Qb

ooXL

(g) PatchQ_RM S0, XL (h) PatchQ_RM S0, XL

surface code on the heavy-hexagon structure.

We outline the key principle that guided the design of our instruc-
tion set — leveraging residual connectivity: when an ancilla qubit is
removed, the remaining structure often retains partial connectiv-
ity between data qubits. By utilizing this residual connectivity, we
replace the original stabilizer with a product of smaller, localized
measurements. This approach minimizes disruption to the over-
all code structure and preserves a greater number of stabilizers,
ensuring robust error correction.

The Instructions: Building on the design principles outlined above,
we redesign three square lattice instructions to adapt them to the
heavy-hexagon architecture. Additionally, we introduce three dis-
tinct instructions of AncQ_RM category, each specifically tailored to
remove ancilla qubits based on their unique positions and connec-
tivity within the heavy-hexagon device.

(1) AncQ_RM_HorDeg2: This instruction targets a degree-2 horizon-
tal ancilla qubit g, as illustrated in Fig. 8(c). Removing g4 divides
the X-stabilizer so into two parts, s§ = Xj 2 and s;” = X34, form-
ing two new gauge measurements that replace the original stabi-
lizer s = s(s{’. Additionally, the removal transforms the nearby
Z-stabilizers gz and g3 into new gauges, which combine to form a
new Z-super-stabilizer g2gs3.

(2) AncQ_RM_VerDeg2: This instruction removes a degree-2 vertical
ancilla qubit g, as shown in Fig. 8(d). Unlike the horizontal case, gy,
is shared by the X-stabilizer sy and the Z-stabilizer g;. Removing
qo divides sp into a three-qubit gauge s; = X34 and a single-
qubit gauge X7. Similarly, g; is divided into a three-qubit gauge
g1 = Zs,,1 and a single-qubit gauge Z. These divisions also affect
the nearby Z-stabilizer g, and X-stabilizer s;, transforming them
into new gauges. Collectively, these changes result in a new X-
super-stabilizer X1s;s; and a new Z-super-stabilizer Z2g/ g2.

(3) AncQ_RM_Deg3: This instruction removes a degree-3 ancilla qubit
qc, as illustrated in Fig. 8(e). Similar to AncQ_RM_VerDeg2, g, is
shared by the X-stabilizer sy and the Z-stabilizer g;. The removal
of go leaves g; unchanged, dividing it into two parts: g] = Zs61
and a single-qubit gauge Z,. However, removing qo divides s into
three components: a two-qubit gauge s = X3 4 and two single-qubit

CaliQEC: In-situ Qubit Calibration for Surface Code Quantum Error Correction

gauges X and X». After this division, both X and Z; exist as single-
qubit gauges for qubit g. This indicates that g2 becomes a gauge
qubit isolated from the surface code, which should be removed. The
removal of g further impacts the nearby Z-stabilizers g and g3,
as well as the X-stabilizer s;, deforming and transforming them
into new gauges. Collectively, these modifications result in a new
X-super-stabilizer X;s;s; and a new Z-super-stabilizer g} g2g5.
(4) DataQ_RM, PatachQ_RM, PatachQ_ADD: These three instructions
deform the surface code in a manner similar to those for the square
lattice (Fig. 4), ensuring that the stabilizers in the deformed code
remain unchanged. However, because the heavy-hexagon surface
code features unique ancilla bridges in its stabilizer circuits, it is
also necessary to deform the ancilla bridges associated with the
affected stabilizers during the deformation process.

The new instruction set not only make the deformation compat-
ible with heavy-hexagon structures but also leverage the structure
of the ancilla bridge to create more fine-grained strategies.

7 Experimental Setup

7.1 Setting and benchmark

Evaluation setting. We evaluate QECali through both hardware
experiments and simulation-based analysis. Our hardware exper-
iments are conducted on two quantum processors with distinct
topologies: Rigetti’s Ankaa-2 processor with square lattice con-
nectivity and IBM’s Eagle processor with heavy-hex connectivity.
For large-scale logical error analysis, we employ the Stim quan-
tum error simulator for surface code simulation [22] along with
Pymatching [30] for error correction. Program compilation utilizes
the lattice surgery framework [29] and implements logical T gates
through magic state distillation [19].

Benchmark programs. We evaluate QECali using quantum pro-
grams designed for most promising applications in quantum chem-
istry and materials science. Our benchmarks include Hubbard model
simulation [3], which provides essential insights into strongly corre-
lated electronic systems with direct applications to high-temperature
superconductivity; FeMo-co catalyst analysis [40] , which addresses
the critical industrial challenge in nitrogen fixation; and Jellium
simulation [61] , which serves as a fundamental model for under-
standing electronic structure in materials. Program variants are
denoted by suffixes indicating problem size (e.g., Hubbard-16 for a
16-qubit system).

Metric. We evaluate QECali using four metrics. The physical qubit
count encompasses all qubits required for the quantum program,
including data qubit blocks for logical encoding, ancilla qubits
for CX operations, and resource states for T gate implementation.
Execution time measures the total runtime for program completion,
with QEC cycle time set to 1us (standard in FTQC studies [10, 35, 52,
56]), including all quantum operations and error correction cycles.
Logical error rate (LER) represents the probability of logical errors
occurring per quantum error correction (QEC) cycle for a logical
surface code qubit. It reflects the effectiveness of error correction
for physical errors, with a lower LER indicating superior fault-
tolerant performance. Retry risk [23] quantifies the probability of
encountering uncorrectable logical errors, providing a measure of
program reliability and the likelihood of requiring computation

ISCA 25, June 21-25, 2025, Tokyo, Japan

restart. In general, it’s computed by LER multiplied with the total
number of logical operations.

Qubit Pair
—_)
=1 =1

0 24 48 72 96 120 144 168
Time to reach 10x error (hour)

Figure 9: Probability distribution of error drift.

7.2 Error model

Physical error model. We adopt a standard circuit-level noise
model [20, 22] where quantum operations are subject to different
error channels: single-qubit gates experience depolarizing errors,
two-qubit gates undergo two-qubit depolarizing errors, and mea-
surement and reset operations are affected by Pauli-X errors, each
with probability p. Initially, all operations start with a uniform error
rate p = 107X, where X is chosen to be 10x below the surface code
threshold (1%). This initialization represents an ideally calibrated
device state.

Error Drift Model. Based on our measurements of IBM’s 127-
qubit Eagle processor, we observe that physical error rates increase
exponentially over time, following the relation:

p(G,1) = p(G,0)10t/T(G)

where p(G, t) is the error rate of operation or qubit G at time ¢,
p(G, 0) is the initial calibrated error rate, and T(G) is the operation-
specific drift time constant—the time required for the error rate to
increase by a factor of 10. Our characterization shows that these
drift time constants vary significantly across the device, following
a log-normal distribution with a mean of 14.08 hours (Fig. 9). This
heterogeneity stems from variations in qubit connectivity, gate im-
plementation complexity, and device characteristics, necessitating
individual calibration schedules for different device components.
Future Error Model. We account for potential advancements in
hardware technology that may slow error drift or, equivalently,
extend the constant T(G). The reference [11] indicate that the
physical fidelity of superconducting devices can be improved from
99.9% to 99.99%. We assume that the error drift effect will improve
proportionally, leading to a longer calibration period. Specifically,
a one-order-of-magnitude improvement in error rate translates to
a doubling of the calibration duration. To model this, we assume
a future error scenario where T(G) follows a log-normal distribu-
tion with a doubled mean of 28.016. Our framework is evaluated
under this future error model to demonstrate its adaptability and
continued utility in evolving hardware environments.

7.3 Baseline Assumptions

In this section, we introduce the key assumptions of two baselines
and our framework QECali.

Baseline 1. No calibration. In this case, benchmarks run without
any calibration. This approach minimizes qubit resources and exe-
cution time, but leads to an expected retry risk approaching 100%
due to error drift.

ISCA 25, June 21-25, 2025, Tokyo, Japan

Baseline 2. LSC. In this case, whenever a gate within a surface
code patch requires calibration, the logical state is transferred else-
where and moved back to its original location once calibration is
complete (Sec. 2.1). To accommodate these logical state transfers
while ensuring uninterrupted computation, LSC has to expand the
communication channels in both dimensions within the 2D surface-
code-based FTQC architecture (Sec. 2.1). This results in a roughly
4x qubit overhead compared to Baseline 1. While this estimate may
be somewhat conservative, reducing this qubit overhead would
either extend execution time due to limited channel availability or
necessitate complex scheduling strategies. Consequently, we adopt
a straightforward 2D expansion in LSC.

QECali. Our framework adopts the same layout as Baseline 1 but
increases the interspace by Ad to accommodate potential patch
enlargement during calibration, ensuring QEC capability is main-
tained. Here, Ad represents the maximum tolerable distance loss,
set to 4 in our experiments. This allows for either four single-qubit
isolations or the isolation of a larger region with a diameter of 4
qubits, depending on the crosstalk-affected qubits nbr(g) identi-
fied during device characterization (Sec. 4). At runtime, gates are
calibrated according to the pre-determined schedule (Sec. 5) us-
ing code deformation instructions. To preserve the target LER, the
code patch is dynamically enlarged to compensate for distance
loss. These operations occur concurrently with computation, in-
troducing negligible execution time overhead. While scheduling
calibrations earlier could prevent exceeding the target LER without
patch enlargement, accurately predicting the impact of distance
loss on LER and determining the optimal timing remains challeng-
ing, especially with irregular surface code structures. Therefore,
we opted for the current approach.

8 Evaluation

In this section, we evaluate QECali by comparing with two base-
lines, analyze the effects of individual components, and perform
experiments on real systems.

8.1 Overall Performance

We evaluated QECali against two baseline approaches: running
without calibration and using Logical Swap for Calibration (LSC),
under both the current and future error models described in Sec. 7.2.
Our experiments, presented in Table 2, use surface codes with
distances chosen to achieve target retry risk levels of 1% and 0.1%
and benchmarks described in Section 7. Our evaluation reveals four
critical observations:

1. Calibration is indispensable: attempting to run quantum pro-
grams without calibration leads to retry risks approaching 100%,
demonstrating the severe impact of error drift. While programs start
with low logical error rates, exponential drift in physical error rates
quickly compromises computation reliability, making successful
execution virtually impossible for long-running applications.

2. Coarse-grained calibration is impractical: Compared to the
solution with no calibration (Table 2), the LSC approach reduces the
retry risk to the target level but incurs a substantial 363% increase
in qubit count and a 20% longer execution time. These inefficien-
cies arise from LSC’s need for a 2D layout expansion to enable
logical state transfer (Sec. 7.3), along with execution delays from

Xiang Fang, et al.

logical SWAPs and program stalls during calibration. Its coarse-
grained approach, dictated by the worst-performing qubits, further
exacerbates overhead as system size increases.

3. QECali achieves low overhead calibration: Compared to
the LSC solution, QECali sustains computation progress during cal-
ibration, dramatically reducing the 363% qubit overhead of LSC to
just 24% and eliminating execution time overhead entirely. By per-
forming in-situ calibration via code deformation, QECali avoids
the computational stalls and ancilla overhead associated with state
transfer approaches. Furthermore, QECali reduces retry risk by
79.4% compared to LSC, demonstrating the effectiveness of its fine-
grained calibration strategy in preserving the system’s error cor-
rection capabilities and suppressing the retry risk.

4. In situ calibration remains essential even with improved
hardware: The lower half of Table 2 compares QECali with two
baselines under the future error model. In this scenario, LSC still in-
curs a significant qubit count overhead (363%) because the physical
error rate eventually exceeds the threshold, necessitating logical
state transfers for calibration and requiring excessive additional
qubit resource. While slower error drift reduces the frequency of
calibration, LSC still suffers from a 304% higher retry risk, despite
a modest increase in execution time. This analysis highlights that
even with reduced error drift in future systems, large-scale quantum
tasks will still require in situ calibration. The log-normal distribu-
tion of drift time constants T(G) across gates ensures that some
physical qubits will remain more vulnerable to drift. Our experi-
ments confirm that even a small number of underperforming qubits
can significantly increase logical error rates, reinforcing the impor-
tance of runtime calibration for reliable quantum computation.

8.2 Component-wise Analysis

We conducted a detailed analysis of QECali’s key components to
quantify their individual contributions to overall system perfor-
mance. This ablation study focuses particularly on our adaptive
calibration scheduling and resource management strategies.

10734 === LER¢a
—&— Uncalibrated
—&— Without enlargement

With enlargement

Logical error rate

Time (h)
Figure 10: d=11 Logical error rate analysis with error drift.

8.2.1. In Situ Calibration’s Impact on LER
We evaluate the impact of the two critical deformation steps in
our calibration framework: qubit isolation and code enlargement.
In Fig. 10, we simulate the LER dynamics during calibration cy-
cles for a d = 11 surface code. The red line represents the LER

CaliQEC: In-situ Qubit Calibration for Surface Code Quantum Error Correction

ISCA 25, June 21-25, 2025, Tokyo, Japan

Table 2: Comparison of performance for large scale programs

. Benchmark No Calibration LSC QECali
Error drift - - - - - - -
Model Name 4 CX oT # logical d # physical | Execution | Retry || #physical | Execution | Retry || # physical | Execution | Retry
qubit qubit time (hour) risk qubit time (hour) | risk qubit time (hour) | risk
Hubbard 9 8 25 || 9.81x10° 5.29 ~100% || 4.65 x 10° 5.74 11.3% || 1.53 x 10° 5.29 3.13%
1.64x10° | 7.10 X 10 200
-10-10 27 || 1.14 x 10° 5.50 ~100% || 5.43 x 10° 5.95 1.22% || 1.62 x 10° 5.50 0.38%
Hubbard | " " ho |, (o10 800 29 || 5.28 x 10° 91.3 ~100% || 2.30 X 10 101.5 7.35% || 7.11 x 10° 91.3 1.88%
-20-20 ’ ' 31 || 6.03 x 10° 94.3 ~100% || 2.63 X 10 108.5 0.79% || 8.38 x 10° 94.3 0.20%
Current jellium 5 5 39 [2.74 x 10° 177 ~100% || 1.29 X 10 190.5 8.65% || 4.87 x 10° 177 2.40%
23% 1 1.10x 1 250
model -250 8.23>10 010 41 |[3.03x 10° 182 ~100% || 1.42% 10 195.95 0.91% || 5.38 x 10° 182 0.24%
jellium 12 10 45 || 1.66 x 10 1870 ~100% || 7.17 x 10 2010.4 3.69% || 2.22x 10 1870 0.88%
-1024 125%10° | 4.30x10 1024 s =10 2140 ~100% || 7.82x 10 2300 0.39% || 2.42x 10 2140 0.09%
41 [[1.35x 10° 220 ~100% || 6.81 x 10° 236.5 6.16% || 3.03 x 10° 220 0.98%
-1 8% 10° 4 %1010 1
Grover-100 | 68x10° | 5410 0 | Tasx10° 237 ~100% || 749x 100 | 24367 | 0.92% || 333 X 10° 237 011%
Hubbard | o [0 108 200 25 || 9.81x 10° 5.29 ~100% || 4.65 x 10° 5.29 3.13% || 1.36 x 10° 5.29 3.13%
-10-10 : : 27 || 1.14 x 10° 5.50 ~100% || 5.43 x 10° 5.50 0.38% || 1.59 x 10° 5.50 0.38%
Hubbard | " ho ||, (010 800 29 || 5.28 x 10° 91.3 ~100% || 2.30 x 10 94.7 7.35% || 6.26 x 10° 91.3 1.88%
-20-20 ’ ' 31 || 6.03 x 10° 94.3 ~100% || 2.63x 10 97.8 0.79% || 7.16 x 10° 94.3 0.20%
Future jellium 5 N 39 [2.74 x 10° 177 ~100% || 1.29 X 10 1833 8.65% || 3.73 x 10° 177 2.40%
.23 X . X 2
model -250 8:23x107 | 1.10x10 >0 41 || 3.03 x 10° 182 ~100% || 1.42x 10 188.83 0.91% || 4.12x 10° 182 0.24%
jellium 12 1 45 || 1.66 x 10 1870 ~100% || 7.17 x 10 1960 3.69% || 1.93x 10 1870 0.88%
-1024 125%107% | 4.30x10 1024 s x 10 2140 ~100% || 7.82x 10 2220 0.39% || 2.10 x 10 2140 0.09%
41 [[1.35x 10° 220 ~100% || 6.81 x 10° 228.25 6.16% || 2.10 x 10° 220 0.98%
G 100 | 6.8x 107 | 5.4x10'° 100
rover 43 [148 x 10° 237 ~100% || 749x 100 | 24589 | 0.92% || 231X 10° 237 011%

threshold, indicating the maximum allowable LER to maintain the
desired retry risk level. The blue, green, and orange lines illustrate
LER dynamics under three scenarios: (1) no calibration, (2) qubit
isolation + calibration, and (3) qubit isolation + code enlargement +
calibration. The results demonstrate: (1) Without calibration, the
LER increases exponentially due to error drift. (2) With qubit iso-
lation and calibration but no code enlargement, the LER briefly
spikes above the threshold due to distance loss from qubit isola-
tion, though it eventually falls below the threshold after calibration.
(3) The complete QECali scheme, incorporating both qubit isola-
tion and code enlargement, quickly restores error protection and
keeps the LER consistently below the threshold. Importantly, this
compensation mechanism of QECali proves highly efficient: the
code distance reduction (Ad) during calibration requires only a
d + Ad expansion, resulting in 14% additional physical qubits. This
modest overhead can be further optimized by adjusting calibration
intervals to minimize distance loss. Moreover, since compensation
qubits are only needed during calibration, they can be shared across
different logical qubits through our flexible layout scheme. This
sharing reduces the net qubit overhead to 6%, while maintaining
sub-threshold logical error rates throughout computation.

8.2.2. Impact of Drift-based Calibration Grouping We compare
three calibration grouping strategies: (1) Ideal grouping, where each
gate is calibrated only when its error reaches the threshold, (2)
Uniform calibration, where all qubits are calibrated whenever any
qubit requires calibration, and (3) QECali’s adaptive grouping. Our
evaluation shows that QECali reduces the total number of calibra-
tion operations by 3.63x to 11.1x compared to uniform calibration
(Fig. 11), significantly lowering operational overhead without com-
promising error protection. This reduction stems from avoiding
unnecessary calibrations of stable qubits. Instead, QECali leverages
the natural variation in qubit stability, as evidenced by the normal
distribution of drift rates (Fig. 11), and assigns calibration schedules
based on individual drift patterns.

8.2.3. Impact of Intra-Group Calibration Scheduling

Calibration scheduling must balance speed against qubit over-
head: more parallel calibrations reduce execution time but require
more compensation qubits. Neither purely sequential nor fully par-
allel approaches are optimal for practical systems.

35 [Uniform Scheduling
— [QECali
E

[0 Ideal

'z 30 ea
)
g 2s
Q
=
3 20
23
B 15
E
= 10
<
O

° H

. [= =

IBM's IBM's IBM's IBM's IBM's
brisbane kyiv nazca rensselaer sherbrooke

Quantum Devices

Figure 11: Reduction in calibration count through adaptive
calibration assignment.

To quantify this trade-off, we evaluate scheduling strategies
using a space-time overhead metric: Overhead = Ad x T(Cali),
where Ad represents the temporary reduction in code distance
during calibration, and T(Cal) is the total calibration time. This
metric captures both the spatial cost (additional physical qubits
needed for code compensation, which scales as O(Ad)) and temporal
cost (duration of reduced error protection) of the calibration process.

We compare three scheduling approaches: sequential calibration,
which processes one gate at a time; bulk calibration, which cali-
brates as many gates as dependencies allow and achieves maximal
parallelism; and QECali’s adaptive scheduling, which optimizes the
parallelism-overhead trade-off.

Our results (Fig. 12) show that QECali reduces space-time over-
head by 2.89 times compared to sequential calibration and 3.8 times
compared to bulk calibration. This improvement demonstrates

ISCA 25, June 21-25, 2025, Tokyo, Japan

that naive approaches to parallelization can be counterproduc-
tive—either consuming excessive qubit resources (bulk) or requiring
unnecessarily long calibration times (sequential). QECali’s adaptive
scheduling finds an effective balance, minimizing both resource
requirements and calibration duration.

[Sequential
904 EE Bulk
[QECali

10
| e l.|_| II|_| I_l
d=7 d=11 d=17 d=23 d=27

Code Distance

Overhead

ot

-

Figure 12: Space-time overhead of calibration of code with
different code distance

8.3 QECali on real quantum device

Real quantum devices present additional challenges: non-uniform
gate fidelities, complex error correlations, and hardware-specific
constraints. To validate QECali’s practicality, we implement d = 3
surface codes on two state-of-the-art quantum processors with
distinct architectures: (1) Rigetti Ankaa-2 with a square lattice
architecture, and (2) IBM-Rensselaer with heavy-hexagon architec-
ture. We compare three scenarios: (1) optimal (“Original” column),
(2) drifted, where a single gate’s (either single-qubit or two-qubit
gate) calibration parameters are replaced by those drifted after 8
hours (“drifted 1Q” and “drifted 2Q” columns), and (3) drifted + qubit
isolation (two “isolated drifted” columns).

0.05
[Ankaa-2
0.04 [IBM's rensselaer
L
<
~ 0.03
5
=
5|
=
8
El
2 002

Original 1 drifted 1 drifted Isolate Isolate
1Q-gate 2Q-gate drifted drifted
1Q-gate 2Q-gate

Figure 13: Logical error rate of a d = 3 surface code on Rigetti
Ankaa-2 and IBM-Rensselaer

Standard surface code on Rigetti Ankaa-2: Our results (Fig. 13)
reveal that even a single uncalibrated gate increases the LER by
41.6% for a single-qubit gate and 135.5% for a two-qubit gate. In

Xiang Fang, et al.

contrast, QECali’s qubit isolation and recalibration strategy incurs
only a minor LER increase during calibration: 13.1% for single-
qubit gates and 21.0% for two-qubit gates. This demonstrates that
isolating high-error-rate qubits affected by error drift effectively
suppresses the LER, requiring only a modest qubit overhead for
code enlargement to restore QEC capability to the original LER level.
Without isolating drifted qubits, significantly more qubits would
be needed for enlargement, as the LER difference between drifted
qubits (“drifted 1Q” and “drifted 2Q” columns) and the optimal
ones (“Original” column) is much larger than that between the
drift-removed qubits (“isolate drifted 1Q” and “isolated drifted 2Q”
columns) and the optimal ones.
Heavy-hex surface code on IBM-Rensselaer: We observe simi-
lar results on the IBM-Rensselaer device. The drift of a single gate
increases the LER by 55.0% for single-qubit gates and 178.2% for
two-qubit gates. In contrast, removing the drifted qubits limits the
LER increase to just 22.8% and 33.6%, significantly reducing the
qubit resources required to restore the original QEC protection
level. Notably, this device is more sensitive to drifted errors than
the Rigetti Ankaa-2 device, as evidenced by the larger LER increases
(55.0% and 178.2% compared to 41.6% and 135.5%). We speculate
that this heightened sensitivity arises from the heavy-hex topol-
ogy, where two-qubit gates are shared across multiple stabilizer
measurements, amplifying the effect of individual gate errors.
These real-device experiments confirm that qubit isolation is an
effective strategy for addressing drifted errors, requiring minimal
qubit overhead for code enlargement. By combining qubit isolation
with code enlargement, the LER can be kept sufficiently low to
safeguard ongoing computation while enabling efficient calibration.

9 Conclusion

We present QECali to enable in-situ calibration of physical qubits
while maintaining QEC in surface codes. Through selective qubit
isolation and dynamic code enlargement, QECali achieves concur-
rent calibration and computation while preserving error correction
capabilities. As quantum systems scale and computation times in-
crease, QECali’s approach to resource management provides a prac-
tical foundation for maintaining reliable quantum error correction
during extended computations.

Acknowledgments

We thank the anonymous reviewers for their constructive feedback
and AWS Cloud Credit for Research. This work is supported in
part by NSF 2048144, NSF 2422169, NSF 2427109. This material
is based upon work supported by the U.S. Department of Energy,
Office of Science, National Quantum Information Science Research
Centers, Quantum Science Center (QSC). This research used re-
sources of the Oak Ridge Leadership Computing Facility (OLCF),
which is a DOE Office of Science User Facility supported under
Contract DE-AC05-000R22725. This research used resources of the
National Energy Research Scientific Computing Center (NERSC), a
U.S. Department of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract
No. DE-AC02-05CH11231. The Pacific Northwest National Labo-
ratory is operated by Battelle for the U.S. Department of Energy
under Contract DE-AC05-76RL01830.

—

CaliQEC: In-situ Qubit Calibration for Surface Code Quantum Error Correction

References

[1] 2023. Suppressing quantum errors by scaling a surface code logical qubit. Nature

614, 7949 (2023), 676-681.

Rajeev Acharya, Laleh Aghababaie-Beni, Igor Aleiner, Trond I. Andersen, Markus
Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Nikita Astrakhantsev, Juan
Atalaya, Ryan Babbush, Dave Bacon, Brian Ballard, Joseph C. Bardin, Johannes
Bausch, Andreas Bengtsson, Alexander Bilmes, Sam Blackwell, Sergio Boixo,
Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton,
David A. Browne, Brett Buchea, Bob B. Buckley, David A. Buell, Tim Burger,
Brian Burkett, Nicholas Bushnell, Anthony Cabrera, Juan Campero, Hung-Shen
Chang, Yu Chen, Zijun Chen, Ben Chiaro, Desmond Chik, Charina Chou, Jahan
Claes, Agnetta Y. Cleland, Josh Cogan, Roberto Collins, Paul Conner, William
Courtney, Alexander L. Crook, Ben Curtin, Sayan Das, Alex Davies, Laura De
Lorenzo, Dripto M. Debroy, Sean Demura, Michel Devoret, Agustin Di Paolo, Paul
Donohoe, Ilya Drozdov, Andrew Dunsworth, Clint Earle, Thomas Edlich, Alec
Eickbusch, Aviv Moshe Elbag, Mahmoud Elzouka, Catherine Erickson, Lara Faoro,
Edward Farhi, Vinicius S. Ferreira, Leslie Flores Burgos, Ebrahim Forati, Austin G.
Fowler, Brooks Foxen, Suhas Ganjam, Gonzalo Garcia, Robert Gasca, Elie Genois,
William Giang, Craig Gidney, Dar Gilboa, Raja Gosula, Alejandro Grajales Dau,
Dietrich Graumann, Alex Greene, Jonathan A. Gross, Steve Habegger, John Hall,
Michael C. Hamilton, Monica Hansen, Matthew P. Harrigan, Sean D. Harrington,
Francisco J. H. Heras, Stephen Heslin, Paula Heu, Oscar Higgott, Gordon Hill,
Jeremy Hilton, George Holland, Sabrina Hong, Hsin-Yuan Huang, Ashley Huff,
William J. Huggins, Lev B. Ioffe, Sergei V. Isakov, Justin Iveland, Evan Jeffrey,
Zhang Jiang, Cody Jones, Stephen Jordan, Chaitali Joshi, Pavol Juhas, Dvir Kafri,
Hui Kang, Amir H. Karamlou, Kostyantyn Kechedzhi, Julian Kelly, Trupti Khaire,
Tanuj Khattar, Mostafa Khezri, Seon Kim, Paul V. Klimov, Andrey R. Klots, Bryce
Kobrin, Pushmeet Kohli, Alexander N. Korotkov, Fedor Kostritsa, Robin Kothari,
Borislav Kozlovskii, John Mark Kreikebaum, Vladislav D. Kurilovich, Nathan
Lacroix, David Landhuis, Tiano Lange-Dei, Brandon W. Langley, Pavel Laptev,
Kim-Ming Lau, Loick Le Guevel, Justin Ledford, Kenny Lee, Yuri D. Lensky,
Shannon Leon, Brian J. Lester, Wing Yan Li, Yin Li, Alexander T. Lill, Wayne
Liu, William P. Livingston, Aditya Locharla, Erik Lucero, Daniel Lundahl, Aaron
Lunt, Sid Madhuk, Fionn D. Malone, Ashley Maloney, Salvatore Mandra, Leigh S.
Martin, Steven Martin, Orion Martin, Cameron Maxfield, Jarrod R. McClean, Matt
McEwen, Seneca Meeks, Anthony Megrant, Xiao Mi, Kevin C. Miao, Amanda
Mieszala, Reza Molavi, Sebastian Molina, Shirin Montazeri, Alexis Morvan, Ramis
Movassagh, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles
Neill, Ani Nersisyan, Hartmut Neven, Michael Newman, Jiun How Ng, Anthony
Nguyen, Murray Nguyen, Chia-Hung Ni, Thomas E. O’Brien, William D. Oliver,
Alex Opremcak, Kristoffer Ottosson, Andre Petukhov, Alex Pizzuto, John Platt,
Rebecca Potter, Orion Pritchard, Leonid P. Pryadko, Chris Quintana, Ganesh
Ramachandran, Matthew J. Reagor, David M. Rhodes, Gabrielle Roberts, Eliott
Rosenberg, Emma Rosenfeld, Pedram Roushan, Nicholas C. Rubin, Negar Saei,
Daniel Sank, Kannan Sankaragomathi, Kevin J. Satzinger, Henry F. Schurkus,
Christopher Schuster, Andrew W. Senior, Michael J. Shearn, Aaron Shorter, Noah
Shutty, Vladimir Shvarts, Shraddha Singh, Volodymyr Sivak, Jindra Skruzny,
Spencer Small, Vadim Smelyanskiy, W. Clarke Smith, Rolando D. Somma, Sofia
Springer, George Sterling, Doug Strain, Jordan Suchard, Aaron Szasz, Alex Sztein,
Douglas Thor, Alfredo Torres, M. Mert Torunbalci, Abeer Vaishnav, Justin Var-
gas, Sergey Vdovichev, Guifre Vidal, Benjamin Villalonga, Catherine Vollgraff
Heidwediller, Steven Waltman, Shannon X. Wang, Brayden Ware, Kate Weber,
Theodore White, Kristi Wong, Bryan W. K. Woo, Cheng Xing, Z. Jamie Yao,
Ping Yeh, Bicheng Ying, Juhwan Yoo, Noureldin Yosri, Grayson Young, Adam
Zalcman, Yaxing Zhang, Ningfeng Zhu, and Nicholas Zobrist. 2024. Quantum
error correction below the surface code threshold. arXiv:2408.13687 [quant-ph]
https://arxiv.org/abs/2408.13687

Daniel P Arovas, Erez Berg, Steven A Kivelson, and Srinivas Raghu. 2022. The
hubbard model. Annual review of condensed matter physics 13, 1 (2022), 239-274.
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al.
2019. Quantum supremacy using a programmable superconducting processor.
Nature 574, 7779 (2019), 505-510.

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell,
Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Court-
ney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gid-
ney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Har-
rigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S.
Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn
Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov,
Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh,
Salvatore Mandra, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao
Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew
Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C.
Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin,
Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D.

ISCA 25, June 21-25, 2025, Tokyo, Japan

Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie
Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019.
Quantum supremacy using a programmable superconducting processor. Nature
574, 7779 (Oct. 2019), 505-510. doi:10.1038/s41586-019-1666-5

James M Auger, Hussain Anwar, Mercedes Gimeno-Segovia, Thomas M Stace,
and Dan E Browne. 2017. Fault-tolerance thresholds for the surface code with
fabrication errors. Physical Review A 96, 4 (2017), 042316.

Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean,
Alexandru Paler, Austin Fowler, and Hartmut Neven. 2018. Encoding electronic
spectra in quantum circuits with linear T complexity. Physical Review X 8, 4
(2018), 041015.

Michael Beverland, Vadym Kliuchnikov, and Eddie Schoute. 2022. Surface code
compilation via edge-disjoint paths. PRX Quantum 3, 2 (2022), 020342.

Dolev Bluvstein, Simon J. Evered, Alexandra A. Geim, Sophie H. Li, Hengyun
Zhou, Tom Manovitz, Sepehr Ebadi, Madelyn Cain, Marcin Kalinowski, Dominik
Hangleiter, J. Pablo Bonilla Ataides, Nishad Maskara, Iris Cong, Xun Gao, Pe-
dro Sales Rodriguez, Thomas Karolyshyn, Giulia Semeghini, Michael J. Gullans,
Markus Greiner, Vladan Vuleti¢, and Mikhail D. Lukin. 2024. Logical quantum
processor based on reconfigurable atom arrays. Nature 626, 7997 (01 Feb 2024),
58-65. doi:10.1038/s41586-023-06927-3

Héctor Bombin and Miguel Angel Martin-Delgado. 2009. Quantum measurements
and gates by code deformation. Journal of Physics A: Mathematical and Theoretical
42,9 (2009), 095302.

Sergey Bravyi, Oliver Dial, Jay M Gambetta, Dario Gil, and Zaira Nazario. 2022.
The future of quantum computing with superconducting qubits. Journal of
Applied Physics 132, 16 (2022).

Sergey B Bravyi and A Yu Kitaev. 1998. Quantum codes on a lattice with boundary.
arXiv preprint quant-ph/9811052 (1998).

Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D.
Johnson, Maria Kieferova, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas
P. D. Sawaya, Sukin Sim, Libor Veis, and Alan Aspuru-Guzik. 2019. Quantum
Chemistry in the Age of Quantum Computing. Chemical Reviews 119, 19 (Oct.
2019), 10856-10915. doi:10.1021/acs.chemrev.8b00803

Christopher Chamberland and Earl T Campbell. 2022. Universal quantum com-
puting with twist-free and temporally encoded lattice surgery. PRX Quantum 3,
1(2022), 010331.

Nicolas Delfosse and Naomi H Nickerson. 2021. Almost-linear time decoding
algorithm for topological codes. Quantum 5 (2021), 595.

Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. 2002. Topological
quantum memory. J. Math. Phys. 43, 9 (2002), 4452-4505.

Brayden Thomas Edman. 2024. A Hardware-Focused Tour of IBM’s 127-Qubit
Eagle Processor. Vanderbilt Undergraduate Research Journal 14, 1 (2024).

Austin G Fowler. 2013. Minimum weight perfect matching of fault-tolerant
topological quantum error correction in average O(1) parallel time. arXiv
preprint arXiv:1307.1740 (2013).

Austin G Fowler and Craig Gidney. 2018. Low overhead quantum computation
using lattice surgery. arXiv preprint arXiv:1808.06709 (2018).

Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Physical
Review A 86, 3 (2012), 032324.

Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Physical
Review A 86, 3 (2012), 032324.

Craig Gidney. 2021. Stim: a fast stabilizer circuit simulator. Quantum 5 (2021),
497.

Craig Gidney and Martin Eker4. 2021. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. Quantum 5 (April 2021), 433. doi:10.22331/q-
2021-04-15-433

Daniel Gottesman. 1996. Class of quantum error-correcting codes saturating the
quantum Hamming bound. Physical Review A 54, 3 (1996), 1862.

Daniel Gottesman. 1998. The Heisenberg Representation of Quantum Computers.
arXiv:quant-ph/9807006 [quant-ph]

Daniel Gottesman. 1998. Theory of fault-tolerant quantum computation. Physical
Review A 57, 1 (1998), 127.

E. Giimis, D. Majidi, D. Nikoli¢, P. Raif, B. Karimi, J. T. Peltonen, E. Scheer, J. P.
Pekola, H. Courtois, W. Belzig, and C. B. Winkelmann. 2023. Calorimetry of a
phase slip in a Josephson junction. Nature Physics 19, 2 (2023), 196-200.

Simon Gustavsson, Fei Yan, Gianluigi Catelani, Jonas Bylander, Archana Kamal,
Jeffrey Birenbaum, David Hover, Danna Rosenberg, Gabriel Samach, Adam P.
Sears, Steven J. Weber, Jonilyn L. Yoder, John Clarke, Andrew]. Kerman, Fumiki
Yoshihara, Yasunobu Nakamura, Terry P. Orlando, and William D. Oliver. 2016.
Suppressing relaxation in superconducting qubits by quasiparticle pumping.
Science 354, 6319 (2016), 1573-1577.

Daniel Herr, Franco Nori, and Simon J Devitt. 2017. Lattice surgery translation
for quantum computation. New Journal of physics 19, 1 (2017), 013034.

Oscar Higgott. 2022. PyMatching: A Python package for decoding quantum
codes with minimum-weight perfect matching. ACM Transactions on Quantum
Computing 3, 3 (2022), 1-16.

https://arxiv.org/abs/2408.13687
https://arxiv.org/abs/2408.13687
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://arxiv.org/abs/quant-ph/9807006

ISCA 25, June 21-25, 2025, Tokyo, Japan

[31]

[32

[33]

[34]

[35]

[36

[37]

[38]

[39]

[40

[41

[42]

[43

[44]

[45

[46]

[47

[48

[49]

Clare Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter. 2012.
Surface code quantum computing by lattice surgery. New Journal of Physics 14,
12 (2012), 123011.

He-Liang Huang, Dachao Wu, Daojin Fan, and Xiaobo Zhu. 2020. Superconduct-
ing quantum computing: a review. Science China Information Sciences 63 (2020),
1-32.

Petar Jurcevic, Ali Javadi-Abhari, Lev S Bishop, Isaac Lauer, Daniela F Bogorin,
Markus Brink, Lauren Capelluto, Oktay Giinliik, Toshinari Itoko, Naoki Kanazawa,
Abhinav Kandala, George A Keefe, Kevin Krsulich, William Landers, Eric P
Lewandowski, Douglas T McClure, Giacomo Nannicini, Adinath Narasgond,
Hasan M Nayfeh, Emily Pritchett, Mary Beth Rothwell, Srikanth Srinivasan,
Neereja Sundaresan, Cindy Wang, Ken X Wei, Christopher] Wood, Jeng-Bang
Yau, Eric J Zhang, Oliver E Dial, Jerry M Chow, and Jay M Gambetta. 2021.
Demonstration of quantum volume 64 on a superconducting quantum computing
system. Quantum Science and Technology 6, 2 (2021), 025020.

J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank,
J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Lucero,
M. Neeley, C. Neill, P. J. J. O’'Malley, C. Quintana, P. Roushan, A. Vainsencher,
J. Wenner, and John M. Martinis. 2016. Scalable in situ qubit calibration during
repetitive error detection. Physical Review A 94, 3 (2016), 032321.

Julian Kelly, Peter O’Malley, Matthew Neeley, Hartmut Neven, and John M Mar-
tinis. 2018. Physical qubit calibration on a directed acyclic graph. arXiv preprint
arXiv:1803.03226 (2018).

Younghun Kim, Jeongsoo Kang, and Younghun Kwon. 2023. Design of quantum
error correcting code for biased error on heavy-hexagon structure. Quantum
Information Processing 22, 6 (2023), 230.

Paul V. Klimov, Andreas Bengtsson, Chris Quintana, Alexandre Bourassa, Sabrina
Hong, Andrew Dunsworth, Kevin J. Satzinger, William P. Livingston, Volodymyr
Sivak, Murphy Yuezhen Niu, Trond I. Andersen, Yaxing Zhang, Desmond Chik,
Zijun Chen, Charles Neill, Catherine Erickson, Alejandro Grajales Dau, Anthony
Megrant, Pedram Roushan, Alexander N. Korotkov, Julian Kelly, Vadim Smelyan-
skiy, Yu Chen, and Hartmut Neven. 2024. Optimizing quantum gates towards
the scale of logical qubits. Nature Communications 15, 1 (2024), 2442.

P. V. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett, R. Barends,
K. Arya, B. Chiaro, Yu Chen, A. Dunsworth, A. Fowler, B. Foxen, C. Gidney, M.
Giustina, R. Graff, T. Huang, E. Jeffrey, Erik Lucero, J. Y. Mutus, O. Naaman, C.
Neill, C. Quintana, P. Roushan, Daniel Sank, A. Vainsencher, J. Wenner, T. C.
White, S. Boixo, R. Babbush, V. N. Smelyanskiy, H. Neven, and John M. Martinis.
2018. Fluctuations of energy-relaxation times in superconducting qubits. Physical
review letters 121, 9 (2018), 090502.

Paul V Klimov, Julian Kelly, John M Martinis, and Hartmut Neven. 2020. The snake
optimizer for learning quantum processor control parameters. arXiv preprint
arXiv:2006.04594 (2020).

Joonho Lee, Dominic W. Berry, Craig Gidney, William J. Huggins, Jarrod R.
McClean, Nathan Wiebe, and Ryan Babbush. 2021. Even More Efficient Quantum
Computations of Chemistry Through Tensor Hypercontraction. PRX Quantum 2
(Jul 2021), 030305. Issue 3. doi:10.1103/PRXQuantum.2.030305

Tian-Ming Li, Jia-Chi Zhang, Bing-Jie Chen, Kaixuan Huang, Hao-Tian Liu,
Yong-Xi Xiao, Cheng-Lin Deng, Gui-Han Liang, Chi-Tong Chen, Yu Liu, Hao Li,
Zhen-Ting Bao, Kui Zhao, Yueshan Xu, Li Li, Yang He, Zheng-He Liu, Yi-Han Yu,
Si-Yun Zhou, Yan-Jun Liu, Xiaohui Song, Dongning Zheng, Zhong-Cheng Xiang,
Yun-Hao Shi, Kai Xu, and Heng Fan. 2024. High-precision pulse calibration of
tunable couplers for high-fidelity two-qubit gates in superconducting quantum
processors. arXiv preprint arXiv:2410.15041 (2024).

Daniel A Lidar and Todd A Brun. 2013. Quantum error correction. Cambridge
university press.

Sophia Fuhui Lin, Eric C Peterson, Krishanu Sankar, and Prasahnt Sivarajah.
2024. Spatially parallel decoding for multi-qubit lattice surgery. arXiv preprint
arXiv:2403.01353 (2024).

Daniel Litinski. 2019. A game of surface codes: Large-scale quantum computing
with lattice surgery. Quantum 3 (2019), 128.

Daniel Litinski. 2023. How to compute a 256-bit elliptic curve private key with
only 50 million Toffoli gates. arXiv preprint arXiv:2306.08585 (2023).

Yiding Liu, Zedong Li, Alan Robertson, Xin Fu, and Shuaiwen Leon Song. 2023.
Enabling efficient real-time calibration on cloud quantum machines. IEEE Trans-
actions on Quantum Engineering 4 (2023), 1-17.

Easwar Magesan, Jay M. Gambetta, B. R. Johnson, Colm A. Ryan, Jerry M. Chow,
Seth T. Merkel, Marcus P. Da Silva, George A. Keefe, Mary B. Rothwell, Thomas A.
Ohki, Mark B. Ketchen, and M. Steffen. 2012. Efficient measurement of quantum
gate error by interleaved randomized benchmarking. Physical review letters 109,
8(2012), 080505.

John M Martinis. 2021. Saving superconducting quantum processors from de-
cay and correlated errors generated by gamma and cosmic rays. npj Quantum
Information 7, 1 (2021), 90.

John M. Martinis, K. B. Cooper, R. McDermott, Matthias Steffen, Markus Ansmann,
K. D. Osborn, K. Cicak, Seongshik Oh, D. P. Pappas, R. W. Simmonds, and Clare C.
Yu. 2005. Decoherence in Josephson qubits from dielectric loss. Physical review
letters 95, 21 (2005), 210503.

Xiang Fang, et al.

[50] Matt McEwen, Lara Faoro, Kunal Arya, Andrew Dunsworth, Trent Huang, Seon

[51

[52

[53

[54

[55

[56

[57

[58

[59
(60

(61

[62

[63

[64

[65

[66

[67

[69

Kim, Brian Burkett, Austin Fowler, Frank Arute, Joseph C. Bardin, Andreas Bengts-
son, Alexander Bilmes, Bob B. Buckley, Nicholas Bushnell, Zijun Chen, Roberto
Collins, Sean Demura, Alan R. Derk, Catherine Erickson, Marissa Giustina, Sean D.
Harrington, Sabrina Hong, Evan Jeffrey, Julian Kelly, Paul V. Klimov, Fedor
Kostritsa, Pavel Laptev, Aditya Locharla, Xiao Mi, Kevin C. Miao, Shirin Montaz-
eri, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Alex Opremcak,
Chris Quintana, Nicholas Redd, Pedram Roushan, Daniel Sank, Kevin J. Satzinger,
Vladimir Shvarts, Theodore White, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Yu Chen,
Vadim Smelyanskiy, John M. Martinis, Hartmut Neven, Anthony Megrant, Lev
Toffe, and Rami Barends. 2022. Resolving catastrophic error bursts from cos-
mic rays in large arrays of superconducting qubits. Nature Physics 18, 1 (2022),
107-111.

Clemens Miiller, Jared H Cole, and Jiirgen Lisenfeld. 2019. Towards understanding
two-level-systems in amorphous solids: insights from quantum circuits. Reports
on Progress in Physics 82, 12 (2019), 124501.

Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-Abhari. 2020.
Software mitigation of crosstalk on noisy intermediate-scale quantum computers.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 1001-1016.

Shota Nagayama, Austin G Fowler, Dominic Horsman, Simon J Devitt, and Rodney
Van Meter. 2017. Surface code error correction on a defective lattice. New Journal
of Physics 19, 2 (2017), 023050.

C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A.
Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z.
Chen, A. Fowler, B. Foxen, M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly, P.
Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher,
J. Wenner, T. C. White, H. Neven, and J. M. Martinis. 2018. A blueprint for
demonstrating quantum supremacy with superconducting qubits. Science 360,
6385 (2018), 195-199.

Michael A Nielsen and Isaac L Chuang. 2010. Quantum computation and quantum
information. Cambridge university press.

Timothy Proctor, Melissa Revelle, Erik Nielsen, Kenneth Rudinger, Daniel Lobser,
Peter Maunz, Robin Blume-Kohout, and Kevin Young. 2020. Detecting and
tracking drift in quantum information processors. Nature communications 11, 1
(2020), 5396.

Jiaan Qi and Hui Khoon Ng. 2021. Randomized benchmarking in the presence of
time-correlated dephasing noise. Physical Review A 103, 2 (2021), 022607.
Gokul Subramanian Ravi, Kaitlin Smith, Jonathan M Baker, Tejas Kannan, Nathan
Earnest, Ali Javadi-Abhari, Henry Hoffmann, and Frederic T Chong. 2023. Nav-
igating the dynamic noise landscape of variational quantum algorithms with
QISMET. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2. 515-529.
Peter W Shor. 1996. Fault-tolerant quantum computation. In Proceedings of 37th
conference on foundations of computer science. IEEE, 56-65.

Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review 41, 2 (1999), 303-332.
M. Springborg and Y. Dong. 2006. Chapter 4 The Jellium Model. In Metallic
Chains/Chains of Metals, Michael Springborg and Yi Dong (Eds.). Handbook of
Metal Physics, Vol. 1. Elsevier, 37-44. doi:10.1016/S1570-002X(06)01004-4
Thomas M Stace and Sean D Barrett. 2010. Error correction and degeneracy in
surface codes suffering loss. Physical Review A 81, 2 (2010), 022317.

Thomas M Stace, Sean D Barrett, and Andrew C Doherty. 2009. Thresholds for
topological codes in the presence of loss. Physical review letters 102, 20 (2009),
200501.

Armands Strikis, Simon C Benjamin, and Benjamin J Brown. 2023. Quantum
computing is scalable on a planar array of qubits with fabrication defects. Physical
Review Applied 19, 6 (2023), 064081.

Swamit S Tannu and Moinuddin K Qureshi. 2019. Not all qubits are created
equal: A case for variability-aware policies for NISQ-era quantum computers. In
Proceedings of the twenty-fourth international conference on architectural support
for programming languages and operating systems. 987-999.

Caroline Tornow, Naoki Kanazawa, William E Shanks, and Daniel] Egger. 2022.
Minimum quantum run-time characterization and calibration via restless mea-
surements with dynamic repetition rates. Physical Review Applied 17, 6 (2022),
064061.

Christophe Vuillot, Lingling Lao, Ben Criger, Carmen Garcia Almudéver, Koen
Bertels, and Barbara M Terhal. 2019. Code deformation and lattice surgery are
gauge fixing. New Journal of Physics 21, 3 (2019), 033028.

Zuolin Wei, Tan He, Yangsen Ye, Dachao Wu, Yiming Zhang, Youwei Zhao,
Weiping Lin, He-Liang Huang, Xiaobo Zhu, and Jian-Wei Pan. 2024. Low-
Overhead Defect-Adaptive Surface Code with Bandage-Like Super-Stabilizers.
arXiv preprint arXiv:2404.18644 (2024).

Nicolas Wittler, Federico Roy, Kevin Pack, Max Werninghaus, Anurag Saha Roy,
Daniel J Egger, Stefan Filipp, Frank K Wilhelm, and Shai Machnes. 2021. Integrated
tool set for control, calibration, and characterization of quantum devices applied
to superconducting qubits. Physical Review Applied 15, 3 (2021), 034080.

https://doi.org/10.1103/PRXQuantum.2.030305
https://doi.org/10.1016/S1570-002X(06)01004-4

CaliQEC: In-situ Qubit Calibration for Surface Code Quantum Error Correction

[70] Keyi Yin, Xiang Fang, Travis S Humble, Ang Li, Yunong Shi, and Yufei Ding.
2024. Surf-Deformer: Mitigating dynamic defects on surface code via adaptive
deformation. (2024).

Shuaining Zhang, Yao Lu, Kuan Zhang, Wentao Chen, Ying Li, Jing-Ning Zhang,

and Kihwan Kim. 2020. Error-mitigated quantum gates exceeding physical

fidelities in a trapped-ion system. Nature communications 11, 1 (2020), 587.

[72] Youwei Zhao, Yangsen Ye, He-Liang Huang, Yiming Zhang, Dachao Wu, Huijie
Guan, Qingling Zhu, Zuolin Wei, Tan He, Sirui Cao, Fusheng Chen, Tung-Hsun
Chung, Hui Deng, Daojin Fan, Ming Gong, Cheng Guo, Shaojun Guo, Lianchen
Han, Na Li, Shaowei Li, Yuan Li, Futian Liang, Jin Lin, Haoran Qian, Hao Rong,
Hong Su, Lihua Sun, Shiyu Wang, Yulin Wu, Yu Xu, Chong Ying, Jiale Yu, Chen
Zha, Kaili Zhang, Yong-Heng Huo, Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu,
and Jian-Wei Pan. 2022. Realization of an error-correcting surface code with
superconducting qubits. Physical Review Letters 129, 3 (2022), 030501.

71

A Artifact Appendix
A.1 Abstract

The artifact contains the source code used to generate, simulate,
and evaluate the in-situ calibration methods presented in this pa-
per. Since certain results presented in this work utilized premium
quantum hardware that require access tokens, this artifact provides
a simulation method for certain tasks. Users who have access to
different quantum hardware platforms can take the circuits gener-
ated within the artifact and manually execute them. The artifact
provides Jupyter notebooks and python files to reproduce major
results in Figure 10, Figure 12, and Table 2.

A.2 Artifact check-list (meta-information)

Program: Stim

Run-time environment: Jupyter Kernel

Hardware: AMD EPYC 9534 64-Core

Execution: Stim circuit simulation

Output: Error rate, space-time overhead, qubit usage, and related

metrics

Experiments: Surface code and in-situ calibration simulation

o How much disk space required (approximately)?: 1 GB to store
the artifact directory and python virtual environment.

e How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes

e How much time is needed to complete experiments (approxi-

mately)?: 1 hour

Publicly available?: Yes

Code licenses (if publicly available)?: MIT License

Workflow automation framework used?: Jupyter notebook

Archived (provide DOI)?: https://doi.org/10.5281/zenodo.15104546

A.3 Description

A.3.1 How to access. The artifact is available on Zenodo
https:// doi.org/ 10.5281/ zenodo. 15104546.

A.3.2 Hardware dependencies. The artifact relies on quantum cir-
cuit simulation available through the Stim. Any system which can
run python programs should be able to evaluate the artifact.

A.3.3 Software dependencies. The dependencies are listed within
requirements.txt.

A.4 Installation

The README.md contains detailed instructions to prepare the python
environment. After downloading the artifact zipfile, and extracting
the contents, the environment can be installed via:

ISCA 25, June 21-25, 2025, Tokyo, Japan

cd QECali_ISCA_Artifact

pip install -r requirements.txt The user can then open the jupyter
lab with the command:

jupyter lab

The jupyter notebook files contain major results used in this paper.

A.5 Evaluation and expected results

The notebook space_time_overhead.ipynb contains examples how
the space time are computed using the results of the code defor-
mation and calibration time. The notebook stim_error.ipynb simu-
lates the logical error rate analysis with error drifts, utilizing real-
machine data including initial error rate and error growing rate. The
python file evaluation.py calculates the error rate of application-
oriented benchmarks listed in Table 2. The calculation utilizes a cus-
tom simulator based on the path finding process of lattice suggery.
A folder ben_gen_example is provided to generate benchmarks
in Table 2. Also, pre-generated benchmarks are stored in bench
folder. The python file heavy_hex.py contains the simulation and
deformation of surface code on heavy-hex topology.

A.6 Methodology

Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/artifact-review-and-

badging-current
e https://cTuning.org/ae

https://doi.org/10.5281/zenodo.15104546
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Abstract
	1 Introduction
	2 Background
	2.1 FTQC with Surface Code
	2.2 Deformation of Surface Codes
	2.3 Error Drift and Calibration

	3 Overview
	4 Preparation-time Device Characterization
	5 Compilation-time Calibration Scheduling
	5.1 Problem Formulation
	5.2 Drift-based Calibration Grouping
	5.3 Intra-Group Calibration Scheduling

	6 The QECali Instruction Set
	6.1 The QECali Instruction Set for the Heavy-Hexagon Topology

	7 Experimental Setup
	7.1 Setting and benchmark
	7.2 Error model
	7.3 Baseline Assumptions

	8 Evaluation
	8.1 Overall Performance
	8.2 Component-wise Analysis
	8.3 QECali on real quantum device

	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results
	A.6 Methodology

