
Published as a conference paper at ICLR 2025

DESCENT WITH MISALIGNED GRADIENTS AND

APPLICATIONS TO HIDDEN CONVEXITY

Aditya Bhaskara
University of Utah
Salt Lake City, UT
bhaskaraaditya@gmail.com

Ashok Cutkosky
Boston University
Boston, MA
ashok@cutkosky.com

Ravi Kumar
Google Research
Mountain View, CA
ravi.k53@gmail.com

Manish Purohit
Google Research
Mountain View, CA
mpurohit@google.com

ABSTRACT

We consider the problem of minimizing a convex objective given access to an
oracle that produces “misaligned” stochastic gradients, where the expected value
of the output is guaranteed to be only correlated, but not necessarily equal to the
true gradient of the objective. In the case where the misalignment (or bias) of
the oracle changes slowly, we obtain an optimization algorithm that identifies an

ϵ-suboptimal point with the optimal iteration complexity of Õ(ϵ−2); for the more
general case where the changes need not be slow, we obtain an algorithm with

Õ(ϵ−3) iteration complexity. As an application of our framework, we consider
optimization problems with a “hidden convexity” property, and obtain an algorithm
with O(ϵ−3) iteration complexity.

1 INTRODUCTION

The stochastic gradient descent (SGD) algorithm has been the workhorse of modern machine learning
applications due to its efficiency and effectiveness in optimizing complex models. Unlike vanilla
gradient descent, SGD operates by iteratively updating model parameters but using only a subset of
the data in each iteration. In addition to significantly saving computational cost and enabling it to
scale to larger models, the stochastic aspect of SGD helps escape local minima. The convergence of
SGD is guaranteed by the fact that the gradient estimate, obtained in each iteration, is unbiased.

However, many applications lack easily accessible unbiased or low-variance gradient estimators,
particularly when considering quantization effects, approximate preconditioning matrices, or explicit
noise addition to achieve differential privacy (Abadi et al., 2016). Unbiased gradient estimators can
also be computationally expensive and there is often a trade-off between computational costs, bias,
and the variance of the gradient estimators. The topic of biased gradients and understanding the trade
offs have been extensively studied in the literature; see, e.g., Hu et al. (2023); Ajalloeian and Stich
(2020); Chen and Luss (2018); Sahu et al. (2021); Condat et al. (2022); Hu et al. (2021); Bottou
et al. (2018); Beznosikov et al. (2023); Hu et al. (2019; 2020a;b; 2016); Stich and Karimireddy
(2020); Karimi et al. (2019); Zhang et al. (2024); Hallak and Levy (2024). See also the recent survey
of Demidovich et al. (2023), which unifies many of the existing works, and the references therein.

Several of the existing models for biased or noisy gradients assume an “additive” form of noise, i.e.,
the gradients are additively perturbed; these additive errors naturally accumulate in the resulting
bounds and do not vanish as the number of iterations grows. In this work, we depart from this additive
noise model and instead study the setting when the obtained gradient is misaligned because it is
weakly correlated with the true gradient. An interesting aspect of our results is that we can obtain
convergence guarantees even when the gradients have a significant bias at the optimal point, which is
not possible in many previous analyses (Ajalloeian and Stich, 2020; Beznosikov et al., 2023). While
our results are closer to some of the parameter settings in Demidovich et al. (2023), to the best of
our knowledge, their bounds are either in the general non-convex setting (where the guarantees are
weak), or they make much stronger assumptions, such as the PL condition or strong convexity. Our
study is also related to the recent body of work on online optimization with hints, where a weakly
correlated hint vector was sufficient to obtain logarithmic regret (Dekel et al., 2017; Bhaskara et al.,
2020; 2021); however, in those settings, the algorithm sees the unbiased gradient after each step and
can thus “correct itself”, which is not possible in our setting.

1

Published as a conference paper at ICLR 2025

Contributions and Applications. We present a high level overview of our results here and defer
the formal statements to the respective sections. All of our results consider an objective function
f : Rd 7→ R for which we are given a “misaligned” gradient oracle h1 such that E[h(x)] may not be
equal to∇f(x), but ïE[h(x)],∇f(x)ð g 0, for input x. That is, E[h(x)] points in roughly the “same
direction” as the true gradient∇f(x)2, but it may be misaligned.

Optimization algorithms with misaligned gradients are broadly applicable. Below, we list three
applications, each of which requires a different algorithmic treatment, which we present in this paper.

(I) SGD WITH APPROXIMATE PRECONDITIONING: Preconditioning involves transforming the
gradient by multiplying with a matrix, and has become of increasing interest in stochastic optimiza-
tion (see, e.g., Shampoo (Gupta et al., 2018) and variants (Wang et al., 2024; Vyas et al., 2025),
AdaHessian (Yao et al., 2021) or Sophia (Liu et al., 2024)). In these works, the gradient is multiplied
by a preconditioning matrix, which one hopes is related to a principled preconditioner such as the
inverse Hessian or gradient covariance, but in general will only be an estimate. We can formally
write E[h(x)] = A(x) · ∇f(x) for some SPD preconditioning matrix A(x). Since A(x) is SPD, it is
clear that h(x) is correlated with∇f(x). Moreover, we might even hope for additional structure in
the matrix A(x): since the target ideal preconditioner changes slowly with x in many settings, we
might hope that A(x) also changes slowly. In this case, we prove that a variant of projected SGD

with momentum converges at the optimal rate of Õ(N−1/2) for any slowly-varying preconditioning
scheme (Section 3), where N is the number of gradient evaluations. Notably, typical analyses of
stochastic preconditioning methods do not employ momentum despite its use in practice, and require
disparate analysis techniques for different preconditioners. Our analysis in contrast critically uses

momentum to take advantage of any slowly-varying preconditioning scheme. Note that the O(N−1/2)
rate is unprovable even for error-free gradient oracles (Nesterov et al., 2018).

(II) COMPRESSION SCHEMES IN DISTRIBUTED OPTIMIZATION: In a distributed setting, gradients
are often compressed to reduce expensive communication. Common compression schemes such as
top-k(·) lead to biased gradients (Sun et al., 2017). For example, consider a simple compression
scheme that extracts and returns the highest-magnitude entry of the gradient. Clearly, this scheme is
not unbiased, but it will be correlated. This application is similar to a setup previously studied by
Beznosikov et al. (2023, Definition 2); our assumptions in Section 4 are essentially identical, but
our setting does not require the noise to go to zero when the true gradient goes to zero. Our work
also improves previous analyses (e.g., (Beznosikov et al., 2023; Demidovich et al., 2023)) either by
relaxing strong convexity requirements or by providing better convergence guarantees.

(III) HIDDEN CONVEXITY: Suppose f : Rd → R is a function that is non-convex, but there
exists an invertible, potentially non-linear, coordinate transformation function P : Rd → R

d such
that f(x) = C(P (x)) for a convex function C : Rd → R. This notion of hidden convexity was
recently studied by Fatkhullin et al. (2023) and captures many applications in different areas such as
reinforcement learning (Sun and Fazel, 2021), revenue management (Chen et al., 2024), and training
neural networks (Ergen and Pilanci, 2021; Wang et al., 2022; Sakos et al., 2024), among others. In
this case, the minimizer of f is also the minimizer of C, but we do not have direct access to C, so we
cannot perform gradient descent. However, ∇f(x) can be seen to be J(x)T∇C(P (x)), where J(x)
is the Jacobian of the transformation P at x. Thus, having access to a stochastic oracle for ∇f is
equivalent to having one for C, where the gradient is transformed by a Jacobian matrix in expectation.
The challenge in this case is that we cannot evaluate C at arbitrary points and instead must access
it only through C(P (x)) without even knowing the value of P (x). In Section 5, we develop a new

algorithm and analysis, yielding a convergence rate of N−1/3. Prior work either assumes different
smoothness conditions, access to the raw Jacobian J(x), or achieves worse convergence rates.

Organization. In Section 3, we assume that the expected gradient is obtained by multiplying the
true gradient with an (unobserved) SPD matrix; further, these matrices do not change much over time.
In Section 4, we consider a more general setup, where the expected gradient is simply assumed to be
correlated with the true gradient. In Section 5, we consider the setting of hidden convexity, where we
wish to minimize a (non-convex) function f of the form f(x) = C(P (x)), where C is convex and

1Given a point x, h outputs a random vector h(x); see Section 3 for details on the setup.
2when f is convex, we let ∇f(x) indicate an arbitrary subgradient at x

2

Published as a conference paper at ICLR 2025

P is a non-linear coordinate transform. Here, we obtain an unbiased estimate of the gradient of f ;
however, due to the transformation, this can be viewed as a misaligned gradient for C.

2 NOTATION AND PRELIMINARIES

Throughout, we deal with functions f : Rd → R, where d is the dimension, and we denote by
x⋆ the minimizer, i.e., x⋆ ∈ argmin f . We assume ∥x⋆∥ f R for some scalar R. We write
[T] = {1, . . . , T} for any integer T g 1. Unless otherwise specified, ∥x∥ = ∥x∥2 for any vector
x ∈ R

d denotes the usual Euclidean norm. For any symmetric positive definite (SPD) matrix M , we
define the matrix-induced norm as ∥v∥2M = v¦Mv. The operator norm of a matrix M is defined
as ∥M∥op = infc{∥Mx∥ f c∥x∥, ∀x}; when clear from context, we also use ∥M∥ to denote the
operator norm of M .

Projections. For D g 0 and x ∈ R
d, let ΠD[x] = argminy:∥y∥fD ∥x − y∥ denote the standard

ℓ2-projection of x onto a Euclidean ball of radius D. We also perform projections using the matrix
norm: for an SPD M , D g 0, and x ∈ R

d, let ΠM
D [x] = argminy:∥y∥MfD ∥x− y∥M .

Function properties. We say that a function f is H-Lipschitz if for all x, y, we have |f(x)− f(y)| f
H · ∥x− y∥; note that this is equivalent to the condition that ∥∇f(x)∥ f H for all x. We also use
the following standard definition of smoothness of a function: f is said to be L-smooth for some

parameter L if for all x, y, we have f(y) f f(x) + ï∇f(x), y − xð+ L
2 ∥y − x∥2.

Parameter tuning. All of our algorithms assume knowledge of various problem parameters (e.g. H ,
L, or R) that are used to specify optimized learning rates and other hyperparameters. In practice, the
learning would need to be adjusted using standard hyperparameter tuning techniques.

3 MATRIX-TRANSFORMED GRADIENTS

In this section, we assume that the misaligned stochastic gradients are obtained by a smooth matrix-
based transformation. We start by formally stating the assumptions necessary in this section.

(A1) Oracle & Assumptions. Let f be H-Lipschitz and convex. We assume that the algorithm has
access to an oracle that generates stochastic gradients as follows: given x, the oracle returns a random
vector h(x) with ∥h(x)∥ f H with probability 1 and E[h(x)] = A(x) · ∇f(x) where A(x) ∈ R

d×d

denotes an SPD matrix that perturbs the stochastic gradients. As outlined earlier, such a transformation
ensures the condition ïE[h(x)],∇f(x)ð g 0. We assume that ∥A(x)−1 −A(y)−1∥op f Ä∥x− y∥2
for any x, y ∈ R

d and assume that the eigenvalues of A(x) lie in [¼min, ¼max] for all x ∈ R
d.

We design an algorithm that, after N queries to the misaligned gradient oracle, outputs a point x such

that f(x)− f(x⋆) f Õ(N−1/2). Our algorithm can be viewed as projected gradient descent using
the misaligned gradients, along with iterate-averaging; see Algorithm 1 for details.

Algorithm 1 Non-Smooth Optimization with Matrix-Transformed Gradients.

Require: Time horizon N , projection radius D, learning rate ¸.
1: Initialize:

x1 ← 0, z1 ← 0
2: for t = 1 to N do
3: Generate misaligned gradient estimate: ht ← h(xt)
4: zt+1 ← ΠD[zt − ¸ht]
5: # variables ĝt,mt are needed for connection with momentum (not used in analysis)
6: ĝt ← (zt − zt+1)/2¸
7: mt ← ´tmt−1 + (1− ´t)ĝt with ´t = 1− 2/(t+ 1)

8: xt+1 ← 1
t+1

∑t+1
i=1 zi = xt − ¸mt

Connection to Momentum. In Algorithm 1, we provide two equivalent forms of our update; the
equivalence is demonstrated in Appendix A.1 for completeness. The intermediate variables in lines

3

Published as a conference paper at ICLR 2025

6–7 are not used in our analysis, but they provide valuable context for our method. If we were to
ignore the projection step in line 4 (which in practice one expects to only rarely be active) then
ĝt = ht/2 and the definition of mt in line 7 and the second form of the update in line 8 is exactly the
same form as standard SGD with momentum. Thus, our analysis in fact shows that the addition of
momentum helps correct for gradient misalignment. This is significant because standard theoretical
analyses of preconditioned algorithms like Shampoo frequently do not employ momentum, even
though the methods used in practice do; our results are a step towards filling this gap.

Overview of Techniques. Our analysis is based on several known ideas in stochastic convex
optimization such as iterate-averaging and projections, but we need to apply these in a carefully
crafted manner to obtain our result. First, our iterate-averaging scheme is not the vanilla Polyak
averaging—we query gradients at the running average rather than only averaging once at the end.
This gives our iterates a natural “stability” property: ∥xt+1 − xt∥ = O(1/t), which is critical in
our analysis. Secondly, the projection steps are not used to ensure feasibility (as is often the case in
constrained optimization), but indeed to control a technical issue in which the iterates move too far
from the optimum point. Although not recognized by many analyses, this last challenge is usually
not present with unbiased gradient oracles—they never cause the SGD iterates to stray far from the
optimal point (Carmon and Hinder, 2022).

Finally, since our algorithm updates the iterates using misaligned stochastic gradients such that
E[ht] = Atgt where At = A(xt) and gt = ∇f(xt), it is convenient for the analysis to work in the
matrix-induced norm ∥ · ∥A−1

t
. Unfortunately, the algorithm does not know the matrix At, so we

cannot perform the projection step in Algorithm 1 using the matrix-induced norm. The key idea is to
show that by appropriately setting the projection radius D, the ℓ2-projection performed in Algorithm
1 is equivalent to projecting via the matrix-induced norm into a different domain that nevertheless
still contains the optimum x⋆.

Lemma 3.1. Suppose A ∈ R
d×d is an SPD matrix with all eigenvalues in [¼min, ¼max]. Let R > 0

and let D = R
√

¼max

¼min

. Let x ∈ R
d be an arbitrary vector. Then there exists a K such that

ΠD[x] = ΠA
K [x] and also for all x⋆ with ∥x⋆∥2 f R, it holds that ∥x⋆∥A f K.

The proof relies on showing that our definition of ΠA
K(x) is always some scalar multiple of x. The

condition number guarantees then imply the lemma.

Theorem 3.2. Assume (A1). Let x1, . . . , xN be the iterates produced by Algorithm 1 when we set

the projection radius D = R
√

¼max

¼min

and step size ¸ =

√

R2/2¼min+4ÄHN (R
√

¼max/¼min)3

H
√

¼max+1/¼min

√
N

where

HN = Θ(logN) is the N th harmonic number. Then the final iterate xN satisfies:

E[f(xN)− f(x⋆)] f 2RH

√

√

√

√

√

(

1
2¼min

+ 4ÄR
(

¼max

¼min

)3/2

HN

)

(

¼max +
1

¼min

)

N
= O

(

√

logN

N

)

.

Proof. We first note that since we use iterate-averaging, the iterates xt are stable. We have,

∥xt − xt−1∥ =
∥

∥

∥

∥

∥

∑t−1
i=1 zi
t− 1

−
∑t

i=1 zi
t

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

t−1
∑

i=1

zi
t(t− 1)

− zt
t

∥

∥

∥

∥

∥

=
1

t
· ∥xt−1 − zt∥ f

2D

t
, (1)

where the inequality follows since both xt−1 and zt have norm at most D.

Let gt = ∇f(xt) (unknown to the algorithm). Then using anytime online-to-batch conver-
sion (Cutkosky, 2019, Theorem 1), we have the following3:

E[f(xN)− f(x⋆)] f
1

N
· E
[

N
∑

t=1

ïgt, zt − x⋆ð
]

. (2)

To bound the RHS above, we start by analyzing the distance between the zt’s and x⋆. By Lemma

3.1, there exists some Kt ∈ R
+ such that zt+1 = Π∥z∥fD[zt − ¸ht] = Π

A−1

t

Kt
[zt − ¸ht], and

3For completeness, we include a self-contained proof in Appendix A.3.

4

Published as a conference paper at ICLR 2025

∥x⋆∥A−1

t
f Kt. (Notice that we are working with the norm induced by A−1

t .) Since we assumed

that At is an SPD matrix with eigenvalues in [¼min, ¼max], A
−1
t is also symmetric positive and has

eigenvalues in [¼−1
max, ¼

−1
min]. Hence, we have:

∥zt+1 − x⋆∥2A−1

t

f ∥zt − ¸ht − x⋆∥2A−1

t

= ∥zt − x⋆∥2A−1

t

− 2¸ïht, A
−1
t (zt − x⋆)ð+ ¸2∥ht∥2A−1

t

. (3)

Let rt = ht − E[ht] = ht − Atgt. Then we have E[rt] = 0 and E[∥rt∥2] f E[∥ht∥2] f H2. By
substituting ht = Atgt + rt, we can simplify the two terms in (3) as:

∥ht∥2A−1

t

= (Atgt + rt)
¦A−1

t (Atgt + rt) = g¦t Atgt + r¦t A
−1
t rt + 2ïgt, rtð

= ∥gt∥2At
+ ∥rt∥2A−1

t

+ 2ïgt, rtð,

ïht, A
−1
t (zt − x⋆)ð = ïAtgt + rt, A

−1
t (zt − x⋆)ð = ïgt, zt − x⋆ð+ ïrt, A−1

t (zt − x⋆)ð. (4)

Substituting back in (3) and taking expectations (and using E[rt] = 0) yields:

E[∥zt+1 − x⋆∥2A−1

t

] f E[∥zt − x⋆∥2A−1

t

]− 2¸ïgt, zt − x⋆ð+ ¸2∥gt∥2At
+ ¸2∥rt∥2A−1

t

. (5)

Rearranging and summing:

E

[

N
∑

t=1

ïgt, zt − x⋆ð
]

f E

[∥z1 − x⋆∥2A−1

1

2¸
−
∥zN+1 − x⋆∥2A−1

N

2¸

+

N
∑

t=2

∥zt − x⋆∥2A−1

t

− ∥zt − x⋆∥2A−1

t−1

2¸
+

¸

2

N
∑

t=1

(

∥gt∥2At
+ ∥rt∥2A−1

t

)



 .

(6)

To simplify, let us consider the following expression:

∥zt − x⋆∥2A−1

t

− ∥zt − x⋆∥2A−1

t−1

= ∥zt − x⋆∥2A−1

t −A−1

t−1

= ïzt − x⋆, (A
−1
t −A−1

t−1)(zt − x⋆)ð

f ∥zt − x⋆∥2 · ∥A−1
t −A−1

t−1∥op · ∥zt − x⋆∥2 = ∥zt − x⋆∥22 · ∥A−1
t −A−1

t−1∥op

f Ä · ∥zt − x⋆∥22 · ∥xt − xt−1∥ f Ä · (2D)2 · 2D
t

=
8ÄD3

t
,

where the three inequalities follow from Cauchy–Schwarz, the assumed bound on the operator

norm, and (1) respectively. We can then substitute back into (6) and replace
∑N

t=2
1
t f HN where

HN = Θ(logN) is the N th harmonic number. We also note that ∥gt∥2At
f ∥gt∥22∥At∥op and

∥rt∥2A−1

t

f ∥rt∥22∥A−1
t ∥op. Resuming,

E

[

N
∑

t=1

ïgt, zt − x⋆ð
]

f E

[∥z1 − x⋆∥2A−1

1

2¸
+

8ÄD3HN

2¸
+

¸

2

N
∑

t=1

(

∥gt∥2At
+ ∥rt∥2A−1

t

)

]

=
∥z1 − x⋆∥2A−1

1

2¸
+

8ÄD3HN

2¸
+

¸

2

N
∑

t=1

E

[

∥gt∥2At
+ ∥rt∥2A−1

t

]

f
∥z1 − x⋆∥2A−1

1

2¸
+

8ÄD3HN

2¸
+ ¸NH2(max

t
∥At∥op + ∥A−1

t ∥op)

f R2

2¸¼min
+

8Ä¼
3/2
maxR3HN

2¼
3/2
min¸

+ ¸NH2

(

¼max +
1

¼min

)

.

To balance out the terms, we set the learning rate ¸ as:

¸ =

√

R2/2¼min + 4ÄHN (R
√

¼max/¼min)3

H
√

¼max + 1/¼min

√
N

,

and get the following, which along with (2) completes the proof:

E

[

N
∑

t=1

ïgt, zt − x⋆ð
]

f 2RH

√

√

√

√N

(

1

2¼min
+ 4ÄR

(

¼max

¼min

)3/2

HN

)

(

¼max +
1

¼min

)

.

5

Published as a conference paper at ICLR 2025

4 GENERAL MISALIGNED GRADIENTS

In the previous section, we assume that at time t, the gradient oracle returns a vector ht such that
E[ht] = Atgt and further assume that the matrices At = A(xt) change slowly over time. We now
consider a more general settin in which E[ht] is merely positively correlated with the gradient gt,
which is a weaker assumption. In particular, this allows E[ht] ̸= 0 even when gt = 0. We formally
specify the gradient oracle and our assumptions below.

(A2) Oracle & Assumptions. Let f : Rd → R be a H-Lipschitz convex function. Let x⋆ ∈
argmin f satisfy ∥x⋆∥ f R for some known parameter R. Let h be the misaligned stochastic gradient
oracle for f . We assume that the oracle h satisfies the following correlation conditions: for any input
x, h(x) outputs a random vector such that:

• ∥h(x)∥ f H with probability 1,
• The expected output À(x) := E[h(x)] satisfies the condition ï∇f(x), À(x)ð g
³∥∇f(x)∥∥À(x)∥ for some parameter ³, and

• ∥À(x)∥ g ´∥∇f(x)∥, for some (possibly unknown) parameter ´.

We assume that outputs for different calls to h(x) on the same input x are independent. It turns out
that our arguments hold more generally, but we would need the assumptions above to hold conditioned
on the “query history”. To simplify the presentation, we will assume independent outputs.

We now present our result for optimizing smooth convex functions, given access to a stochastic oracle
that outputs a misaligned gradient, subject to the correlation conditions defined above. In addition to
the assumptions above, we assume that f is L-smooth (see Section 2).

The main result—stated formally in Theorem 4.4—shows that after N queries to the misaligned

gradient oracle, the algorithm obtains a point x such that f(x)− f(x∗) f O(N−1/3). Our algorithm
can be viewed as SGD with mini-batches, but with two key modifications: (i) we move along the
normalized gradient estimate using a carefully designed step size schedule, and (ii) we add a novel
correction step that prevents the iterates from being too far from the optimum. Algorithm 2 presents
the full details. In the following, let [z]− denote min(z, 0).

Before the analysis, let us briefly compare this result to those in Demidovich et al. (2023), which
considered a broadly similar setup. Their results for the convex case either require µ-strong convexity

and achieve a convergence rate of O(1/(µ2N)), or achieve O(1/N1/4) without strong convexity.

Our result does not require strong convexity and achieves Õ(1/N1/3). Note that, unlike in standard
unbiased optimization, we cannot simply regularize a non-strongly convex objective to become
strongly convex because this can destroy the correlation structure in the gradient estimates.

Algorithm 2 Smooth Convex Optimization with Misaligned Gradients.

Require: Time horizon T , norm bound D, sequence B1, . . . , BT of minibatch sizes, sequence
¸1, . . . , ¸T of learning rates.

1: Initialize:
x1 ← 0

2: for t = 1 to T do
3: Generate a misaligned gradient estimate using a minibatch of size Bt by calling h on the

same point Bt times and taking the average, i.e., ht ← 1
Bt

∑Bt

Ä=1 h(xt)

4: ht ← ht

∥ht∥ and x̂t+1 ← xt − ¸tht

5: if ∥x̂t+1∥ > D then

6: xt+1 ← xt − ¸tht + ¸t
[ïht,xtð]−·xt

∥xt∥2 − ¸2t
xt

∥xt∥2

7: else
8: xt+1 ← x̂t+1

First, we show a few technical statements. The first shows that the norm bound remains bounded
throughout. This is a subtle consequence of the extra −¸2 xt

∥xt∥2 term inn our update for large iterates.

Roughly speaking, this extra regularization is “just enough” to keep the norm from growing no matter

6

Published as a conference paper at ICLR 2025

what the noisy gradient ht is. It is possible that a standard projection step would also suffice, but this
explicit update is more amenable to our analysis.

Lemma 4.1. Suppose ¸t f D/2. Then for all t, ∥xt∥ f D.

Proof. We proceed by induction. Suppose ∥xt∥ f D. Now, if ∥x̂t+1∥ f D, then xt+1 = x̂t+1, so
there is nothing to prove. So let us assume that ∥x̂t+1∥ > D. In this case, note that we also have
∥xt∥ g ∥x̂t+1∥ − ¸t g D/2. Thus, ¸t/ ∥xt∥ < 1.

Next, define ut = ht − [ïht,xtð]−·xt

∥xt∥2 . By definition, we have ïut, xtð g 0 and also ∥ut∥ f 1, since

ut is either ht itself or the projection of ht orthogonal to the direction of xt. Therefore:

∥xt+1∥2 f
(

∥xt∥ −
¸2t
∥xt∥

)2

+ ¸2t ∥ut∥2 = ∥xt∥2 − 2¸2t +
¸4t
∥xt∥2

+ ¸2t ∥ut∥2

f ∥xt∥2 − ¸2t +
¸4t
∥xt∥2

= ∥xt∥2 + ¸2t

(

¸2t
∥xt∥2

− 1

)

f ∥xt∥2 f D.

Next, we need the following simple geometric lemma.

Lemma 4.2. Suppose that g and h satisfy the conditions ïg, hð g ³∥g∥∥h∥ and ∥h∥ g ´∥g∥, for
some parameters ´ > 0 and ³ ∈ [0, 1]. Then for any ¶, we have

〈

g,
h+ ¶

∥h+ ¶∥

〉

g 2³ ∥g∥
3

− 4∥¶∥
´

. (7)

The next lemma gives us the key technical property required for our final analysis. It also shows the
dependence on the size of the minibatch, Bt.

Lemma 4.3. Let t be any step of the algorithm, and suppose that ¸t f D/2 and D g 12R/³. Then

E[ï∇f(xt), xt+1 − xtð] f −¸t³∥∇f(xt)∥
3 + 8¸tH

´
√
Bt

.

Proof. Throughout this proof, we write gt = ∇f(xt). First, define ¶t = ht − E[ht], and for
convenience, write Àt = E[ht]. Recall the correlation conditions satisfied by Àt. Since we make Bt

queries to the oracle using the same xt and since ∥ht∥ f H , we have E[∥¶t∥2] f 4H2/Bt and thus

E[∥¶t∥] f 2H/
√
Bt. We now consider two cases:

Case 1: ∥x̂t+1∥ f D. Since xt+1 − xt = −¸tht, by applying Lemma 4.2 with Àt taking the role of
ht in the lemma statement, we obtain

ïgt, xt+1 − xtð f −
2¸t³∥gt∥

3
+

4¸t∥¶t∥
´

.

Case 2: ∥x̂t+1∥ > D. Since ¸t < D/2, we must have ∥xt∥ g D/2. In this case, xt+1 =

xt − ¸tht + ¸t
[ïht,xtð]−·xt

∥xt∥2 − ¸2t
xt

∥xt∥2 and thus

ïgt, xt+1 − xtð = −¸tïgt, htð+ ¸t
[ïht, xtð]− · ïgt, xtð

∥xt∥2
− ¸2t

ïgt, xtð
∥xt∥2

. (8)

In this case, we first note that if ïgt, xtð g 0, there is nothing to prove, because the last two terms on
the RHS above will be non-positive (since [z]− f 0 for any z).

Thus, let us assume that ïgt, xtð < 0. In this case, we note that because ïgt, xt − x∗ð g 0 (which
holds by convexity), we have

ïgt, xtð
∥xt∥

g ïgt, x∗ð
∥xt∥

g −∥gt∥ ∥x∗∥
∥xt∥

g −³ ∥gt∥
6

.

In the last step, we used the fact that ∥xt∥ g D/2 > 6R
³ by choice, and ∥x∗∥ f R. Thus, plugging

this into (8), we have

ïgt, xt+1 − xtð f −¸tïgt, htð −
¸t³

6

[ïht, xtð]− · ∥gt∥
∥xt∥

+ ¸2t
³ ∥gt∥
6 ∥xt∥

7

Published as a conference paper at ICLR 2025

f −¸tïgt, htð+
¸t³

6
∥gt∥+ ¸2t

³ ∥gt∥
6 ∥xt∥

.

In the second step, we used [z]− g −|z|, together with Cauchy–Schwarz. Applying Lemma 4.2 as
before, along with the fact that ¸t f D/2 < ∥xt∥, we have

ïgt, xt+1 − xtð f −
2¸t³∥gt∥

3
+

4¸t∥¶t∥
´

+
¸t³

6
∥gt∥+ ¸t

³ ∥gt∥
6

= −¸t³ ∥gt∥
3

+
4¸t∥¶t∥

´
.

Thus in both the cases, we have

ïgt, xt+1 − xtð f −
¸t³∥gt∥

3
+

4¸t∥¶t∥
´

=⇒ E[ïxt+1 − xt, gtð] f −
¸t³∥gt∥

3
+

8¸tH

´
√
Bt

.

We can now prove the main convergence guarantee.

Theorem 4.4. Assume (A2). Let D = 12R/³, and set

k =
12

³
; Bt = (t+ 1 + k)2 ; ¸t =

6D

³(t+ 1 + k)
.

At the end of T iterations of Algorithm 2, the total number of gradient evaluations is N = Θ(T 3) and

E[f(xT)− f(x∗)] f
5200

N1/3
· log T ·

(

RH

³2´
+

LR2

³4

)

.

Proof. As before, we write gt = ∇f(xt). We start by bounding ∥xt+1 − xt∥. Note that since

k g 12
³ , the property ¸t f D

2 is always satisfied.

If ∥x̂t+1∥ f D, then we have ∥xt+1 − xt∥ = ¸t. Otherwise,

xt+1 − xt f ¸t

(

ht −
[ïht, xtð]− · xt

∥xt∥2

)

− ¸2t
xt

∥xt∥2
.

As we saw in the proof of Lemma 4.1, the term in the parentheses is the projection of ht orthogonal
to xt, and thus it has norm f 1. Likewise, because ∥xt∥ g D/2 > ¸t in this case, the last term also
has a norm bounded by ¸t. This implies that ∥xt+1 − xt∥ f 2¸t.

The analysis is based on analyzing the potential function Φt = (t+k)(f(xt)−f(x⋆)). By definition,

Φt+1 − Φt = (t+ 1 + k)(f(xt+1 − f(xt)) + (f(xt)− f(x⋆)).

By then using smoothness and applying Lemma 4.3, we have

E[f(xt+1)− f(xt)] f E

[

ïgt, xt+1 − xtð+
L

2
∥xt+1 − xt∥2

]

f −¸t³∥gt∥
3

+
8¸tH

´
√
Bt

+ 2L¸2t .

Also, convexity implies that f(xt)− f(x∗) f ïgt, xt − x∗ð f 2D ∥gt∥. Now from our choice of the

parameters, ¸t will satisfy the condition 2D = (t+1+k)¸t³
3 . Plugging these in, we have

E[Φt+1 − Φt] f (t+ 1 + k)

(

8¸tH

´
√
Bt

+ 2L¸2t

)

.

Plugging in the value of Bt, ¸t, and D, we have

E[Φt+1 − Φt] f (t+ 1 + k)

(

8¸tH

´(t+ 1 + k)
+ 2L¸2t

)

=
48 ·DH

³´(t+ 1 + k)
+

72 · LD2

³2(t+ 1 + k)

f 2592

(t+ 1 + k)
·
(

RH

³2´
+

LR2

³4

)

.

Summing this over t, we get

E[ΦT] f Φ0 + 2592 · log
(

T + k

k + 1

)

·
(

RH

³2´
+

LR2

³4

)

.

8

Published as a conference paper at ICLR 2025

Since we start at the origin, we have Φ0 f kR ∥∇f(0)∥ f kRH , so this term can be ignored by
slightly increasing the constant in the second term. Thus, by the definition of the potential,

E[f(xT)− f(x∗)] f
2600

T
· log T ·

(

RH

³2´
+

LR2

³4

)

.

Now, observe that the total number of queries to the oracle is

N =
∑

t

Bt f T ·BT = T (T + 1 + k)2 < 8T 3,

assuming T > k. Thus, T g N1/3/2, and plugging this in, we obtain

E[f(xT)− f(x∗)] f
5200

N1/3
· log T ·

(

RH

³2´
+

LR2

³4

)

.

5 HIDDEN CONVEXITY

In this section, we consider the optimization of (non-convex) functions that admit a convex reformu-
lation. We start by recalling the notion of hidden convexity defined earlier: f : Rd → R is a function
that can be expressed as f(x) = C(P (x)) ∀x, where C : Rd → R is a convex, H-Lipschitz function,
and P : Rd → R

d is an invertible, possibly non-linear, coordinate transform function. Let J(x) be
the Jacobian (total derivative) of P at x. Since P is invertible, we also have that J(x) is invertible for
all x (indeed, this only requires local invertibility for P).

In contrast to some previous work on this problem (Fatkhullin et al., 2023), we do not assume that the
convex function C is smooth—instead we will assume that the transformation P is smooth. Note that
the composition f will therefore not be smooth in general. This allows us to more accurately model
applications with non-smooth losses (e.g., neural networks with a ReLU layer). Previous studies
involving similar non-smooth setups generally achieve weaker results. Sakos et al. (2024) develop
algorithms assuming that we have access to J(x), which we forbid, and Chen et al. (2024) provide a

method that fits exactly our setting to obtain a convergence rate of O(1/N1/4), whereas we obtain a

convergence rate of O(1/N1/3).

(A3) Oracle & Assumptions. We assume that there exist constants ³, ´, Ä > 0 such that for all
x, y ∈ R

d, we have ∥J(x)∥op f 1/³ and ∥J−1(x)∥op f 1/´, and ∥J(x) − J(y)∥op f Ä∥x − y∥.
For technical reasons, we also assume knowledge of parameters D1, D2 such that for all ∥x∥ = D1

and ∥y∥ = D2, f(y) g f(x). We have access to a stochastic gradient oracle for f that we call h.
For any input x, h(x) outputs a random vector satisfying (i) ∥h(x)∥ f H with probability 1, and (ii)
E[h(x)] = ∇f(x). As we discussed earlier, ∇f(x) = J(x)T∇C(P (x)), thus the oracle h provides
∇C at the point P (x), with a transformation matrix applied.

We first show a couple of technical lemmas on hidden convexity. The first lemma upper and lower
bounds the distortion of the distance between any two points due to the coordinate transformation.

Lemma 5.1. For all x, y ∈ R
d, ´∥x− y∥ f ∥P (x)− P (y)∥ f ∥x−y∥

³ .

Next, let B(x, ¶) = {y : ∥x− y∥ f ¶} denote a ball of radius ¶ centered at x. The following lemma
shows that if the function value does not drop significantly anywhere in a small ball of radius ¶
around a point x, then x is close (in function value) to being a global minima of f . (Thus, hidden
convexity implies a guarantee very similar to convexity.)

Lemma 5.2. Let x be an arbitrary point and D > 0 be such that ∥x∥ f D and ∥x⋆∥ f D. Let
B = B(x, ¶) be a ball of radius ¶ f D centered at x. Suppose that supz∈B{f(x)− f(z)} f ϵ for
some ϵ > 0. Then,

f(x)− f(x⋆) f ϵ

(

1 +
3D

³´¶

)

.

Algorithm Outline. At each outer iteration (corresponding to k), the algorithm performs an opti-

mization in a ball around xk,1
1 of an appropriate radius. If the ball contains x∗, the algorithm can

terminate. If not, we can guarantee (using Lemma 5.2) that xk+1,1
1 is closer to x∗. Thus with growing

k, the centers of the balls are guaranteed get closer and closer to x∗.

The key technical lemma is the following:

9

Published as a conference paper at ICLR 2025

Algorithm 3 Optimization of Hidden Convex Functions.

1: Initialize:
x1,1
1 ← 0, k ← 1

2: I1 ← 2D2Ä
3: for k = 1 to K do
4: Tk ← 2k

5: ¶k ← 1
Ä
√
Tk

6: ¸ ← ¶k
H

√
Tk

7: if k ̸= 1 then Ik ← + 20D2

³´¶k
,

8: for i = 1 to Ik do

9: X k,i ← {x : ∥x− xk,i
1 ∥ f ¶k}

10: for t = 1 to Tk do

11: hk
t ← h(xk,i

t)

12: xk,i
t+1 ← ΠXk,i [xk,i

t − ¸hk,i
t]

13: Choose xk,i uniformly at random from {xk,i
1 , . . . , xk,i

Tk
}

14: if ∥xk,i∥ g D2 then

15: xk,i+1
1 ← D1

xk,i

∥xk,i∥
16: else
17: xk,i+1

1 ← xk,i

18: xk+1,1
1 ← xk,Tk+1

1

19: Return x̂← xK+1,1
1

Lemma 5.3. Algorithm 3 ensures for all k g 2:

E[f(xk,1
1)− f(x⋆)] f 20

HD2

³´
√
2k

.

The proof is quite involved (see Appendix C.1). With this, the main result is the following.

Theorem 5.4. Assume (A3). Let N =
∑

k IkTk be the total number of gradient evaluations by
Algorithm 3 and x̂ be the final iterate. Then we have

E[f(x̂)− f(x⋆)] f O

(

D
4/3
2 HÄ1/3

(³´)4/3N1/3

)

.

6 CONCLUSION

We have developed algorithms to minimize a convex function given access to misaligned stochastic
gradients. Misalignments can be specified using a linear transformation and may or may not vary
smoothly with the input point. We obtain different convergent rates for these two cases. We then
use these insights to develop an algorithm for minimizing non-convex functions that have a “hidden
convexity” property, i.e., there is a coordinate transformation that can make the function convex.

Our work raises natural open questions about the optimality of the results: can the ϵ−3 iteration
complexity in two of our results be improved? In the hidden convex case, improving to ϵ−2 is
conceptually very interesting, as it would match the convex case. Another “structural” question is if
we can obtain one meta-algorithm from which our different algorithmic results can be derived. We
currently require different projection steps and additional tricks to deal with non-PSD transformations.
Yet another question would be to weaken some of our assumptions (e.g., bounded gradients).

REFERENCES

Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In CCS, pages 308–318, 2016.

10

Published as a conference paper at ICLR 2025

Ahmad Ajalloeian and Sebastian U Stich. On the convergence of SGD with biased gradients.
arXiv:2008.00051, 2020.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. JMLR, 24(276):1–50, 2023.

Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning with imperfect
hints. In ICML, pages 822–831, 2020.

Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Logarithmic regret from
sublinear hints. In NeurIPS, pages 28222–28232, 2021.

Léon Bottou, Frank Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

Yair Carmon and Oliver Hinder. Making SGD parameter-free. In COLT, pages 2360–2389, 2022.

Jie Chen and Ronny Luss. Stochastic gradient descent with biased but consistent gradient estimators.
arXiv:1807.11880, 2018.

Xin Chen, Niao He, Yifan Hu, and Zikun Ye. Efficient algorithms for minimizing compositions
of convex functions and random functions and its applications in network revenue management.
Operations Research, 2024.

Laurent Condat, Kai Yi, and Peter Richtárik. EF-BV: A unified theory of error feedback and
variance reduction mechanisms for biased and unbiased compression in distributed optimization.
In NeurIPS, 2022.

Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration. In ICML, pages 1446–1454,
2019.

Aaron Defazio. Momentum via primal averaging: Theoretical insights and learning rate schedules
for non-convex optimization. arXiv:2010.00406, 2020.

Ofer Dekel, Arthur Flajolet, Nika Haghtalab, and Patrick Jaillet. Online learning with a hint. In NIPS,
pages 5299–5308, 2017.

Yury Demidovich, Grigory Malinovsky, Igor Sokolov, and Peter Richtárik. A guide through the zoo
of biased SGD. In NeurIPS, 2023.

Tolga Ergen and Mert Pilanci. Global optimality beyond two layers: Training deep ReLU networks
via convex programs. In ICML, pages 2993–3003, 2021.

Ilyas Fatkhullin, Niao He, and Yifan Hu. Stochastic optimization under hidden convexity. In OPT
2023 (NeurIPS 2023 Workshop), 2023.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In ICML, 2018.

Nadav Hallak and Kfir Yehuda Levy. A study of first-order methods with a deterministic relative-error
gradient oracle. In ICML, 2024.

Bin Hu, Peter Seiler, and Laurent Lessard. Analysis of biased stochastic gradient descent using
sequential semidefinite programs. Mathematical Programming, pages 1–26, 2020a.

Xiaowei Hu, L A Prashanth, András György, and Csaba Szepesvári. (Bandit) convex optimization
with biased noisy gradient oracles. In AISTATS, pages 819–828, 2016.

Yifan Hu, Siqi Zhang, Xin Chen, and Niao He. Biased stochastic first-order methods for conditional
stochastic optimization and its applications in meta learning. In NeurIPS, 2019.

Yifan Hu, Xin Chen, and Niao He. Sample complexity of sample average approximation for
conditional stochastic optimization. SIAM J. Optimization, 2020b.

11

Published as a conference paper at ICLR 2025

Yifan Hu, Xin Chen, and Niao He. On the bias-variance-cost tradeoff of biased stochastic optimization.
In NeurIPS, 2021.

Yifan Hu, Jie Wang, Yao Xie, Andreas Krause, and Daniel Kuhn. Contextual stochastic bilevel
optimization. In NeurIPS, 2023.

Belhal Karimi, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. Non-asymptotic analysis of
biased stochastic approximation scheme. In COLT, pages 1944–1974, 2019.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. In ICLR, 2024.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Atal Sahu, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco Canini, and Panos
Kalnis. Rethinking gradient sparsification as total error minimization. In NeurIPS, pages 8133–
8146, 2021.

Iosif Sakos, Emmanouil-Vasileios Vlatakis-Gkaragkounis, Panayotis Mertikopoulos, and Georgios
Piliouras. Exploiting hidden structures in non-convex games for convergence to Nash equilibrium.
In NeurIPS, 2024.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
SGD with delayed gradients and compressed updates. JMLR, 21(1):9613–9648, 2020.

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meprop: Sparsified back propagation
for accelerated deep learning with reduced overfitting. In ICML, pages 3299–3308, 2017.

Yue Sun and Maryam Fazel. Learning optimal controllers by policy gradient: Global optimality via
convex parameterization. In CDC, pages 4576–4581, 2021.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
Sham Kakade. SOAP: Improving and stabilizing Shampoo using Adam. In ICLR, 2025.

Sike Wang, Jia Li, Pan Zhou, and Hua Huang. 4-bit Shampoo for memory-efficient network training.
In NeurIPS, 2024.

Yifei Wang, Jonathan Lacotte, and Mert Pilanci. The hidden convex optimization landscape of
two-layer ReLU neural networks: an exact characterization of the optimal solutions. In ICLR,
2022.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In AAAI, pages 10665–
10673, 2021.

Siqi Zhang, Yifan Hu, Liang Zhang, and Niao He. Generalization bounds of nonconvex-(strongly)-
concave stochastic minimax optimization. In AISTATS, 2024.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
ICML, pages 928–936, 2003.

A MISSING PROOFS IN SECTION 3

A.1 EQUIVALENCE OF UPDATE FORMS IN ALGORITHM 1

Our analysis of Algorithm 1 makes use of the “anytime online-to-batch” conversion result of Cutkosky
(2019). However, this approach (under the alternative name “primal averaging”) was shown to be
equivalent to SGD with momentum (Defazio, 2020). Here we reproduce the necessary calculations:

Proposition A.1. For any sequence z1, . . . , zT of vectors and any scalar ¸, let m0 = 0 and define
x̂1 = x1 = z1. Then consider the sequences:

ĝt =
zt − zt+1

2¸
, mt =

(

1− 2

t+ 1

)

mt−1 +
2ĝt
t+ 1

, x̂t+1 = x̂t − ¸mt, xt+1 =

∑t+1
i=1 zi
t+ 1

.

Then x̂t = xt for all t.

12

Published as a conference paper at ICLR 2025

Proof. First, note that

txt = (t− 1)xt−1 + zt =⇒ xt − zt = (t− 1)(xt−1 − xt).

We proceed by induction. From direct calculation, m1 = (z1 − z2)/¸, so that x̂2 = x1 +
z2−z1

2 =
z1+z2

2 = x2. Next, let xi = x̂i for some all i f t. Then clearly ¸mi = xi+1 − xi for all i < t. Now,

xt+1 = xt +
zt+1 − xt

t+ 1

= x̂t +
(zt+1 − zt) + (zt − xt)

t+ 1

= x̂t −
2¸ĝt
t+ 1

+
xt − zt
t+ 1

= x̂t −
2¸ĝt
t+ 1

− (t− 1)(xt − xt−1)

t+ 1

= x̂t −
2¸ĝt
t+ 1

− ¸(t− 1)mt−1

t+ 1

= x̂t −
(

1− 2

t+ 1

)

¸mt−1 −
2¸ĝt
t+ 1

= x̂t − ¸mt

= x̂t+1.

A.2 PROOF OF LEMMA 3.1

Proof. First, consider the case ∥x∥2 f D. In this case, ΠD[x] = x, and so we can set K = ∞ to
achieve ΠA

K [x] = x = ΠD[x]. Furthermore, ∥x⋆∥A f K for all x⋆.

Next, consider the case ∥x∥2 > D. We have ΠD[x] = Dx/∥x∥.
Let v be the projection, so that v = argmin∥v∥AfK ∥v − x∥2A. Therefore by Lagrange multipliers:

2A(v − x) = ¼Av.

Therefore v is the point that satisfies for some ³:

∥v∥A =
√
v¦Av = K and ³Av = A(x− v).

For K = D∥x∥A/∥x∥2 and ³ = 1−D/∥x∥2 g 0 and we can verify that:

∥ΠD[x]∥A =
D

∥x∥2
∥x∥A = K,

A(x−ΠD[x]) = A(x−Dx/∥x∥)2 = A(1−D/∥x∥2)x = ³Ax.

So, this shows that ΠD[x] = ΠA
K [x]. It remains to show that ∥x⋆∥A f K for all x⋆ such that

∥x⋆∥2 f R. To this end, we compute:

∥x⋆∥A f |x⋆∥2 ·
√

sup
w

w¦Aw

∥w∥22
f
√

¼max · ∥x⋆∥2 f
√

¼max ·R

= D
√

¼min f D ·
√

inf
w

w¦Aw

∥w∥22
f D · ∥x∥A∥x∥2

= K,

where we used the fact that A is symmetric.

A.3 GRADIENT DESCENT WITH ITERATE-AVERAGING

For the sake of completeness, we now give a short proof of Theorem 1 from Cutkosky (2019) on
iterate-averaged online gradient descent that was used in Section 3

13

Published as a conference paper at ICLR 2025

Theorem A.2. Suppose xt =
1
t

∑t
i=1 zi. Then for any convex F and point u, for all T :

F (xT)− F (u) f
∑T

t=1ï∇F (xt), zt − uð
T

.

Proof. Define gt = ∇F (xt). Then:

T
∑

t=1

F (xt)− F (u) f
T
∑

t=1

ïgt, xt − uð =
T
∑

t=1

ïgt, xt − ztð+ ïgt, zt − uð

Observe that xt − zt = (t− 1)(xt−1 − xt):

=

T
∑

t=1

(t− 1)ïgt, xt−1 − xtð+ ïgt, zt − uð

f
T
∑

t=1

(t− 1)(F (xt−1)− F (xt)) +

T
∑

t=1

ïgt, zt − uð.

The last step also follows by convexity. Rearranging and telescoping completes the proof.

B MISSING PROOF IN SECTION 4

Proof of Lemma 4.2. We consider two cases:

Case 1: ∥¶∥ g ∥h∥
2 . Here,

4∥¶∥
´ g 2∥h∥

´ g 2 ∥g∥. Thus the RHS of (7) is < −∥g∥ and the inequality

trivially holds by Cauchy–Schwarz.

Case 2: ∥¶∥ < ∥h∥
2 . Here, we have

3 ∥h∥
2
g ∥h+ ¶∥ g ∥h∥

2
g ´

2
∥g∥ .

Now, by the triangle inequality and the hypothesis, note that ïg, h + ¶ð g ³ ∥g∥ ∥h∥ − ∥g∥ ∥¶∥.
Plugging in the above inequality, we get

ïg, h+ ¶ð
∥h+ ¶∥ g ³ ∥g∥ ∥h∥

3∥h∥
2

− ∥¶∥ ∥g∥
´
2 ∥g∥

g 2³ ∥g∥
3

− 2 ∥¶∥
´

.

C MISSING PROOFS IN SECTION 5

Proof of Lemma 5.1. We show that ∥P (x)−P (y)∥ f ∥x−y∥
³ . The other claim follows symmetrically

since J−1 is the derivative of P−1 at P (x) and x = P−1(P (x)).

Define h(t) = x+ t(y − x). Then we have:

d

dt
∥P (h(t))− P (h(0))∥ =

〈

P (h(t))− P (h(0))

∥P (h(t))− P (h(0))∥ , J(h(t))h
′(t)

〉

f ∥J(h(t))h′(t)∥ f 1

³
∥h′(t)∥ = ∥y − x∥

³
,

where the second inequality uses the bound on the operator norm of J . Therefore, we have

∥P (y)− P (x)∥ = ∥P (h(1))− P (h(0))∥ f
∫ 1

t=0

∥y − x∥
³

dt =
∥y − x∥

³
.

Proof of Lemma 5.2. Let B̃ = {P (v) | v ∈ B(x, ¶)}. Consider the line segment connecting P (x)

and P (x⋆) and let q be the intersection of this line segment with the boundary of B̃. Then we must
have ∥P−1(q)− x∥ = ¶, and so by Lemma 5.1, ∥q − P (x)∥ g ´¶.

14

Published as a conference paper at ICLR 2025

Next, ∥x∥ f D, ∥x⋆∥ f D, and ∥P−1(q)− x∥ = ¶. By the triangle inequality we have ∥P−1(q)−
x⋆∥ f ∥P−1(q)− x∥+ ∥x− x⋆∥ f ¶ + 2D f 3D. By Lemma 5.1, we have ∥q − P (x⋆)∥ f 3D

³ .

Finally, since q is on the line segment connecting P (x) and P (x⋆), it holds that

q − P (x⋆) =
∥q − P (x⋆)∥
∥P (x)− q∥ (P (x)− q).

Therefore, we have

f(x)− f(x⋆) = C(P (x))− C(P (x⋆))

= C(P (x))− C(q) + C(q)− C(P (x⋆))

f C(P (x))− C(q) + ï∇C(q), q − P (x⋆)ð

f C(P (x))− C(q) +
∥q − P (x⋆)∥
∥P (x)− q∥ ï∇C(q), P (x)− qð

f (C(P (x))− C(q))

(

1 +
∥q − P (x⋆)∥
∥P (x)− q∥

)

f (C(P (x))− C(q))

(

1 +
3D

³´¶

)

= (f(x)− f(P−1(q)))

(

1 +
3D

³´¶

)

f ϵ

(

1 +
3D

³´¶

)

,

where the first and third inequalities follow from the convexity of C and the last inequality uses that
P−1(q) ∈ B(x, ¶).

Proof of Theorem 5.4. Notice that I1 f 4D2Ä. Since ¶ f 1/Ä and since D2 g ³´/Ä, it holds that

Ik f 40D2

³´¶k
for all k > 1. Therefore, the total number of iterations is at most:

N =

K
∑

k=1

IkTk = 8D2Ä+
40D2Ä

³´

K
∑

k=2

23k/2 f 8D2Ä+
80D2Ä

³´
23K/2.

Next, by Lemma 5.3, we have:

E[f(xK+1,1
1)]− f(x⋆)] f 20

HD2

³´
√
2K+1

f O

(

D
4/3
2 HÄ1/3

(³´)4/3N1/3

)

.

C.1 PROOF OF LEMMA 5.3

Proof of Lemma 5.3. We proceed by induction. For the base case, consider k = 2. From unrolling
Lemma C.2, we have:

E[f(x2,1
1)]− f(x⋆) = E[f(x1,T1+1

1)]− f(x⋆)

f max

{

E[f(x1,1
1)]− f(x⋆)− I1 · ÄH¶21 , 4ÄH¶21

(

1 +
4D2

³´¶1

)}

,

since f is hidden convex and D2 g R, we have that f(x1,1
1)− f(x⋆) f HD2. Also I1 = 2D2Ä =

D2/(Ä¶
2
1), and so the first term above is at most 0. So, we have:

f 4ÄH¶21

(

1 +
4D2

³´¶1

)

,

recalling that D2 g ³´/Ä and ¶1 f 1/Ä so that 1 f D2/(³´¶1):

f 20
ÄHD2¶1

³´
= 20

HD2

³´
√
2
.

Next, for the induction step, suppose E[f(xk,1
1) − f(x⋆)] f 20 HD2

³´
√
2k

= 20ÄHD2¶k
³´ for some k.

Then unrolling the result of Lemma C.2 yields:

E[f(xk+1,1
1)]− f(x⋆) = E[f(xk,Tk+1

1)]− f(x⋆)

15

Published as a conference paper at ICLR 2025

f max

{

E[f(xk,1
1)]− f(x⋆)− Ik · ÄH¶2k, 4ÄH¶2k

(

1 +
4D2

³´¶k

)}

= max

{

E[f(xk,1
1)]− f(x⋆)− Ik · ÄH¶2k, 4ÄH¶2k

(

1 +
4D2

³´¶k

)}

using D2 g ³´/Ä and ¶k f 1/Ä:

f max

{

E[f(xk,1
1)]− f(x⋆)− Ik · ÄH¶2k, 20

ÄH¶kD2

³´

}

f max

{

E[f(xk,1
1)]− f(x⋆)− Ik · ÄH¶2k, 20

HD2

³´
√
2k

}

notice that Ik g 20D2

³´¶k
and use the induction hypothesis:

f 20
HD2

³´
√
2k

.

This completes the induction.

Lemma C.1. Let a and b be arbitrary points in R
d. Then, we have

∥P (a)− P (b)− J(b)(a− b)∥ f Ä∥b− a∥2
2

.

Proof. Let v denote an arbitrary unit vector. We define the function s : R → R by s(¼) =
ïv, P (a¼+ b(1− ¼))ð. Then s′(¼) = ïv, J(a¼+ b(1− ¼))(a− b)ð. Therefore:

ïv, P (a)− P (b)ð = s(1)− s(0) =

∫ 1

0

s′(¼) d¼

= s′(0) +

∫ 1

0

(s′(¼)− s′(0)) d¼

= ïv, J(b)(a− b)ð+
∫ 1

0

(s′(¼)− s′(0)) d¼.

|ïv, P (a)− P (b)− J(b)(a− b)ð| f
∫ 1

0

|ïv, (J(a¼+ b(1− ¼))− J(b))(a− b)ð| d¼

f Ä∥a− b∥2
∫ 1

0

¼ d¼ =
Ä∥a− b∥2

2
.

Since this holds for all v, we have that ∥P (a)−P (b)−J(b)(a−b)∥ = sup∥v∥=1 |ïv, P (a)−P (b)−
J(b)(a− b)ð| f Ä∥b−a∥2

2 .

Lemma C.2. Algorithm 3 ensures:

E[f(xk,i+1
1)]− f(x⋆) f max

{

E[f(xk,i
1)]− f(x⋆)− ÄH¶2k, 4ÄH¶2k

(

1 +
4D2

³´¶k

)}

.

Proof. To simplify notation, let xt = xk,i
t , x = xk,i, X = X k,i, T = Tk, and ¶ = ¶k. We also define

Jt = J(xt) and gt = ∇C(yt) where yt = P (xt). Then we have E[ht] = J¦
t gt.

Notice that by assumption on D1 and D2, f(xk,i+1
1) f f(x). So, it suffices to show that:

E[f(x)]− f(x⋆) f max

{

E[f(x1)]− f(x⋆)− ÄH¶2, 4ÄH¶2
(

1 +
4D2

³´¶

)}

.

Then, for all u ∈ X we have:

T
∑

t=1

f(xt)− f(u) =

T
∑

t=1

C(P (xt))− C(P (u))

16

Published as a conference paper at ICLR 2025

f
T
∑

t=1

ï∇C(P (xt)), P (xt)− P (u)ð

=

T
∑

t=1

ï∇C(P (xt)), P (xt)− P (u)− Jt(xt − u)ð+
T
∑

t=1

ï∇C(P (xt)), Jt(xt − u)ð.

By Lemma C.1 and recalling ∥∇C(P (xt))∥ f H and ∥xt − u∥ f 2¶:

f 2ÄTH¶2 +
T
∑

t=1

ï∇C(P (xt)), Jt(xt − u)ð

= 2ÄTH¶2 +
T
∑

t=1

ïJ¦
t ∇C(P (xt)), xt − uð

= 2ÄTH¶2 +

T
∑

t=1

ïht, xt − uð+
T
∑

t=1

ïE[ht]− ht, xt − uð.

Note that the points {xt} are chosen via projected online gradient descent where the domain has

radius ¶. Hence the linearized regret is upper bounded by
∑T

t=1ïht, xt − uð f ¶H
√
T (see, e.g.,

Zinkevich, 2003).

= 2ÄTH¶2 + ¶H
√
T +

T
∑

t=1

ïE[ht]− ht, xt − uð,

E

[

T
∑

t=1

f(xt)− f(u)

]

f 2ÄTH¶2 + ¶H
√
T = 3ÄH¶2T,

where the last equality uses ¶ = 1
Ä
√
T

. Next, notice that by definition,

E[f(x̄)] = E

[

1

T

T
∑

t=1

f(xt)

]

.

Therefore, we have that for all u ∈ X :

E[f(x)− f(u)] f 3ÄH¶2.

Now, consider two cases.

Case 1: f(x1)− f(u) g 4ÄH¶2 for some u ∈ X . Here, we have:

E[f(x)− f(x1)] = E[f(x)− f(u) + f(u)− f(x1)] f 3ÄH¶2 − 4ÄH¶2 = −ÄH¶2,

E[f(x)− f(x⋆)] = E[f(x1)− f(x⋆)] + E[f(x)− f(x1)] f E[f(x1)]− f(x⋆)− ÄH¶2.

Case 2: f(x1) − f(u) < 4ÄH¶2 for all u ∈ X . Then since we have ∥x1∥ f D2, ∥x⋆∥ f D2, by
Lemma 5.2, we have:

f(x)− f(x⋆) = f(x)− f(x1) + f(x1)− f(x⋆) f 4ÄH¶2
(

1 +
4D2

³´¶

)

.

Thus, in both cases, we have:

E[f(x)]− f(x⋆) f max

{

E[f(x1)]− f(x⋆)− ÄH¶2, 4ÄH¶2
(

1 +
4D2

³´¶

)}

.

17

	Introduction
	Notation and Preliminaries
	Matrix-Transformed Gradients
	General Misaligned Gradients
	Hidden Convexity
	Conclusion
	Missing Proofs in Section 3
	Equivalence of Update Forms in Algorithm 1
	Proof of Lemma 3.1
	Gradient Descent with Iterate-Averaging

	Missing Proof in Section 4
	Missing Proofs in Section 5
	Proof of Lemma 5.3

