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ABSTRACT. We introduce a synthetic approach to global pluripotential theory,
covering in particular the case of a compact Kéahler manifold and that of a
projective Berkovich space over a non-Archimedean field. We define and study
the space of measures of finite energy, introduce twisted energy and free energy
functionals thereon, and show that coercivity of these functionals is an open
condition with respect to the Kahler class.
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Introduction

Pluripotential theory on compact Kéahler spaces is by now a very well developed
subject, with key applications to Kéhler geometry. Generalizing classical concepts
from potential theory, measures and potentials of finite energy play a central role in
this theory, see for instance [GZ07,BBGZ13|[Berm13,[DN15,[DGL21]. In par-
allel, a non-Archimedean version of pluripotential theory has also emerged, taking
place on projective Berkovich spaces [Berk90] over a (complete) non-Archimedean
field. Initially motivated by Arakelov geometry [Zha95,(Cha06], it has found var-
ious other applications, including degenerations of Calabi—Yau manifolds [Y.Li20)]
and the Yau-Tian—Donaldson conjecture [BBJ21/[C.Li22|[BoJ23].

These two versions of pluripotential theory bear many similarities, and can be
formulated in a quite parallel way. The main purpose of the present article is to
introduce a synthetic formalism covering in particular these two cases, and use it to
extend some of the main results of [BoJ22] and [BoJ23] (that were taking place
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on projective Berkovich spaces over a trivially valued field, and applied to the study
of K-stability). More specifically, we

e define and study the space of measures of finite energy;

e introduce the twisted energy and free energy functionals on the latter
space; the composition of these functionals with the Monge—Ampere op-
erator recover, respectively, the Donaldson J-functional and the Mabuchi
K-energy in the Kahler case, and their analogues in the non-Archimedean
case;

e show that coercivity of the free energy is an open condition with respect
to the Kahler class.

The emphasis in this paper is on measures of finite energy, as opposed to potentials
of finite energy, that we do not seek to investigate here (see for instance [BEJ15]
BoJ22/[Reb21|[DXZ23] in the non-Archimedean context).

The general setup. Throughout this paper, we work with a compact topo-
logical space X equipped with the following data:

e a dense linear subspace D C C%(X) of test functions, containing all con-
stants;

e a vector space Z of admissible (1,1)-forms on X, endowed with a nicdl
partial order, and a linear map dd®: D — Z vanishing on constants;

e an integer n > 1 (seen as the ‘dimension’ of X), and a nonzero n-linear
symmetric map taking a tuple (61, ...,6,) in Z to a signed Radon measure
01 A+ N6B, on X, assumed to be positive when all §; > 0, and such that
each bilinear form

(0.1) DxD R (w,w)a/wdd%malwuwn,l

with 8; € Z is symmetric, and seminegative for 6; > 0.

We then introduce the Bott—Chern cohomology space
HBc(X) = Z/ddCD,

and define the positive cone Pos(X) C Hpo(X) as the interio of the image of the
convex cone

This setup is primarily inspired by the case of a compact Kahler manifold X, where
D is the space of smooth functions, and Z the space of closed (1, 1)-forms. It also
covers the case of a projective Berkovich space X over a complete non-Archimedean
field k, where D is generated by piecewise linear (or model) functions, and elements
of Z are represented by numerical classes on models over the valuation ring (or test
configurations, in the trivially valued case) [BEJ16a,/GM16|[BoJ22]. At least
under reasonable assumptions on X and k, we then have Hpc(X) = N*(X), and
Pos(X) coincides with the ample cone, see §1.3.21

1See {1.1] for the terminology.
2Here we use the finest vector space topology of Hpc(X), see §L.1
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Measures of finite energy. Fix a form w € Z, such that [w] € Pos(X), with
volume V,, = [w™ > 0. The space of w-plurisubharmonic test functions is defined
as

D, :={p €D |w,:=w+dd° > 0},
and the Monge—-Ampére operator takes ¢ € D, to the probability measure
MA,(p) :== walwg.
It admits a primitive, the Monge-Ampére energy E,: D, — R, explicitly given by

1 . C
Ew(@):n+1ZVw1/@w$Aw 7.
j=0

Denote by M the space of (Radon) probability measures on X, and define the
energy of a measure p € M as the Legendre transform®

olh) = sup (Eufp) - [om el +o0)

Then J,: M — [0,400] is convex, and lsc in the weak topology; the space of
measures of finite energy is defined as

MG, = {p € M| Ju(p) < oo},

equipped with the strong topology, i.e. the coarsest refinement of the weak topology
in which J,, becomes continuous.

As a consequence of the seminegativity of (0.1), the functional E, is concave.
This is equivalent to the non-negativity of the Dirichlet functional

Ju(p, ) = Bu(p) — Eu(w) + / (1 — 9) MAL(9),

which is more explicitly given by the familiar expression

Yulp) = 5 [0 - ) - )

when n = 1, and a positive linear combination of integrals of the form
Je-vaw-pnul a7 0<i<n)

in general, see (L3I). Our first main result shows that the Dirichlet functional
induces, via the Monge—Ampere operator, a complete quasi—metri space structure
on M.
THEOREM A. Assume that w has the orthogonality property. Then:
(i) the image of the Monge—Ampére operator MA,,: D, — M is a dense
subspace of ML ;
(ii) there exists a unique quasi-metric §,, on MY that defines the strong topol-
ogy of ML and such that
6w (MAL (), MAL(¥)) = Ju (e, ¥)
for all v,9p € D,;
(iii) the quasi-metric space (ML, d,) is complete.

3This corresponds to EY(u) in the notation of [BBGZ13|BoJ22|, and to ||u|. in that
of [BoJ23|.
4See 1.1l for the notion of quasi-metric used in this paper.
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The energy can be expressed in terms of the quasi-metric as

Jo(i) = 0 (p, 1)  where gy, := V, 'w™ = MA,(0).

We refer to Definition 2.15] for the precise definition of the orthogonality property.
Suffice it to say here that it only depends on [w] € Pos(X), and holds when X
is a compact Kéahler manifold, or any projective Berkovich space X over a non-
Archimedean field (as a consequence of [BE21,[BGM22]). In the former case,
Theorem A can be deduced from [BBGZ13|[BBEGZ19]; in the latter, it was
established in the trivially valued case in [BoJ22], and is thus extended here to the
case of an arbitrary non-Archimedean ground field.

The strategy of proof of Theorem A follows the same lines as in the trivially case
treated in [BoJ22]. The first key ingredient is a uniform differentiability property
for the Legendre transform of the convex functional p +— J, (1), which is shown to
be equivalent to the orthogonality property. This is used to prove that if (p;) is
a maximizing sequence for a given u € M}, (i.e. a sequence in D, computing the
supremum that defines J,, (1)), then MA,,(p;) converges to p. We emphasize that
this ‘asymptotic Calabi—Yau theorem’ is sufficient for our purposes, and that we
do not need to characterize the image of the Monge-Ampere operator (which is a
delicate issue in the non-Archimedean context).

The rest of the proof relies on an extensive use of Holder estimates for mixed
Monge-Ampere integrals, obtained from repeated applications of the Cauchy—
Schwarz inequality to the seminegative form (0.I). This approach, which goes
back to [Blo03] and was further exploited in [BBGZ13|[BBEGZ19,BoJ22], is
put in a simple general setting in Appendix [Al

Twisted energy, free energy, and coercivity. Assuming from now on the
orthogonality property, we next investigate the dependence on w of the space M},
and the energy functional J,: ML — R>q. To this end, we require the submean
value property, i.e. the existence of C' € R> such that

supsoé/souw+0

for all w-psh test functions ¢ € D,,. We show that this condition is independent of
w, and that it is equivalent to the irreducibility of X when the latter is a compact
Kahler or projective Berkovich space (see §L.5)).

THEOREM B. Assume that the submean value property holds. Then:
e the topological space M* = M}, is independent of w;
e for any 0 € Z, there exists a unique continuous functional J®: M' — R

such that
B =2 o)
@ dt|,_q
for any u € M*; furthermore, J° (1) satisfies Hélder estimates with respect
to w.

The strategy of proof of Theorem B again globally follows the same lines as
the trivially valued case treated in [BoJ22|[BoJ23]. However, in the latter case
the submean value inequality is actually an equality, i.e. one can take the constant
C above to be 0, while an extra layer of complication arises in the general case to
handle this constant, which forces us to take a slightly different route.
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We call J? (1) the O-twisted energy of y € M?'. It provides an analogue of
the Donaldson J-functional on the level of measures, and its relevance comes from
its relation to the Mabuchi K-energy, when X is a compact Ké&hler manifold or a
smooth projective Berkovich space. In these two cases, the choice of a (smooth or
PL) metric p on the canonical bundle Kx defines an entropy functional Ent: M —
R U {+o0o}. In line with [Berm13], we then define the free energy F,: M! —
R U {400} by setting

Fu(p) := Ent(p) — Ent(pe) + J% (1),

where 6 € Z denotes the curvature of p. The free energy so defined is independent
of the choice of p, and its composition with the Monge—Ampere operator coincides
with the Mabuchi K-energy M, : D, — R. As a consequence of Theorem B, we
then show:

THEOREM C. Assume X is a compact Kahler manifold or a smooth projective
Berkovich space over a non-Archimedean field. Then the coercivity threshold

o(X,w):=sup{oc €R|F, >0cJ, + A for some A € R}.
defines a continuous function of [w] € Pos(X).

This result actually holds in much greater generality, for the twisted coerciv-
ity threshold of an arbitrary given functional on M! with no a priori regularity
whatsoever (see Theorem [5.5]).

In the trivially valued case, the free energy F, (1) coincides with the invariant
Bu (1) defined and studied in [BoJ23|, and o(X,w) with the divisorial stability
threshold of (X, w), which is positive iff (X, w) is divisorially stable (a strengthening
of uniform K-stability, conjecturally equivalent to it, cf. §5.2.2]). Specializing to the
case of Dirac measures p recovers the notion of valuative stability [DL23,[Liu23|,
which in the Fano case is equivalent to K-stability [Fuj19a,Lil7].

In the case of a compact Kéhler manifold, we have o(X,w) > 0 iff [w] contains a
unique constant scalar curvature Kahler (cscK) metric, as a consequence of [CC21]
and [DaR17/BDL20]. Theorem C thus recovers the fact, originally due to LeBrun-
Simanca [LS94], that the existence of a unique cscK metric in a Kahler class is an
open condition on that class.

Structure of the paper. The article is organized as follows.

e Section [1] introduces the synthetic pluripotential theoretic formalism, in-
cluding the energy pairing and the submean value property, and estab-
lishes basic properties of the Dirichlet functional.

e Section [2] studies the space of measures of finite energy. It introduces the
orthogonality property, and proves Theorem A (cf. §2.6).

e Assuming the submean value property, Section [3 establishes the first part
of Theorem B, along with various further estimates for the energy.

e SectionHlis devoted to the twisted energy, which is proved to compute the
directional derivatives of the energy, concluding the proof of Theorem B.

e Section [{ studies the (twisted) coercivity threshold of a functional, and
proves that it depends continuously on the cohomology classes. This is
then applied to the free energy, yielding Theorem C.

e Finally, Appendix A establishes the relevant estimates needed for the
Dirichlet functional in a simple general setting, while Appendix B studies
the orthogonality property on compact Kéhler spaces.
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1. A synthetic pluripotential theoretic formalism

In this section, we introduce the general setup considered in this paper. This
is designed to cover in a synthetic manner the case of a compact Kéahler space and
that of a projective Berkovich space over a non-Archimedean field.

1.1. Notation and terminology.

e Forz,y € R, z < yor x = O(y) mean in this paper z < C,y for a constant
C,, > 0 only depending on a given integer n fixed in the setup, and z ~ y
ifx <yandy < z.

e Recall that any real vector space V admits a finest vector space topology,
generated by its finite dimensional subspaces, i.e. a subset A C V is open
(or closed) iff, for each finite dimensional subspace W C V, ANW is open
(resp. closed) in the canonical vector space topology of W. This topology
is not locally convex as soon as the dimension of V' is uncountable.

e Consider a partially ordered R-vector space (V,>). We shall say for
brevity that the partial order is nice if Vi, := {x € V | z > 0} spans
V', and is closed in the finest vector space topology of V.

e In this paper, a quasi-metric on a set Z is a function 6: Z x Z — R>g
that is

— quasi-symmetric, i.e. there exists C' > 0 such that

C™'o(z,y) < o(y,x) < Cd(z,y);
— satisfies the quasi-triangle inequality, i.e. there exists C' > 0 such
that
6(z,y) < C(6(x,2) +4(2,9))
— separates points, i.e. 6(z,y) =0z =y.
A quasi-metric space (Z, ) comes with a Hausdorff topology, and Cauchy
sequences and completeness further make sense for (Z, ).

1.2. Test functions and admissible (1,1)-forms. Throughout this paper,
we work with a compact Hausdorff topological space X. We denote by C°(X)V the
space of signed Radon measures on X, and by

M c CO(X)V
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the subset of probability measures, which is convex and compact in the weak topol-
ogy. Recall from the introduction that we assume X equipped with the following
data:

e a dense linear subspace D C C%(X) of test functions, containing all con-
stants;

e a vector space Z of admissible (1,1)-forms on X, endowed with a nice
partial order, and a linear map dd®: D — Z vanishing on constants;

e an integer n > 1 (viewed as the ‘dimension’ of X'), and a nonzero n-linear
symmetric map taking a tuple (61, ...,6,) in Z to a signed Radon measure
01 A---N6O, on X, assumed to be positive when all §; > 0, and such that
each bilinear form

DxD—R (@,¢)H/gpddch91A---A9n_1

with 0; € Z is symmetric, and seminegative when 6; > 0.

Symmetry in the last item amounts to the integration-by-parts formula
(1.1) /cpddcqp/\ﬁl/\---/\Gn,l:/wddcw/\ﬁl/v-#\@n,l
for all p,9 € D and 6; € Z, while seminegativity requires

(1.2) /(pddc<p/\91/\~-~/\9n_1§0

when 6; > 0 for all 4.

REMARK 1.1. The above setup induces a similar one by viewing 01 A--- A6, as
a p-linear symmetric function of (61,...,60,) for 1 <p <mn and 0pi1,...,0, € Z4
fized, or by replacing Z with any linear subspace Z' containing dd°D.

DEFINITION 1.2. For any 8 € Z and ¢ € D, we set 8, := 0+dd°p. We say that
the test function ¢ is 6-plurisubharmonic (0-psh for short) if 8, > 0, and denote

by
Dy:={peD|0b,>0}

the space so defined.

Note that if 6 € Z and ¢ € D, we have
(1.3) p €Dy < p+71€Dy.
Moreover, for all 6,6’ € Z and t € R-o we have

Dy + Do C Doyors Dig = tDg.

In particular, Dy is a convex subset of D, and
(1.4) 0 <0 = Dy C Dy.
Since dd® vanishes on constants, we have:

EXAMPLE 1.3. Constant functions on X are 0-psh iff 6 > 0.

The two main instances of the above setup considered in this paper are as
follows.
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1.2.1. The Kdhler case. The above formalism is primarily inspired by the case
of a compact Kéhler complex analytic space X. Here n = dim X, D = C>(X) is
the space of smooth functions on X, and Z is the space of closed (1,1)-forms 6
on X that are locally dd®-exact (i.e. global sections of the image Z)l(’l of the sheaf
morphism dd®: C§¢ — Qﬁél), and 6 > 0 means that 6 is semipositive as a smooth
(1,1)-form (see for instance [Dem85] for the definition of smooth forms in this
context).

When X is nonsingular, i.e. a compact Kahler manifold, Z coincides with the
space of closed (1, 1)-forms on X, but the inclusion might be strict in the singular
case.

For all p,1 € D and 0; € Z, the Stokes formula implies

/goddcw/\@:/wddcw/\@:—/dgo/\dcw/\@

with © := 601 A---AB,,_1, which yields (L1} and (L.2)), since the (1,1)-form dp Ad°p
is semipositive.

1.2.2. The non-Archimedean case. Assume now that X is a projective Berkovich
space over a non-Archimedean field &, i.e. the Berkovich analytification of a projec-
tive k-scheme, of dimension n = dim X. We then take D to be the R-vector space
generated by PL functions, see [BE21, §5.4].

When £ is nontrivially valued, D can be described in terms of vertical divisors
on (projective, flat) models X of X over the spectrum S of the valuation ring. More
precisely, we have

D ~ h_)r()nVCar(?()R,
where VCar(X)gr denotes the R-vector space generated by Cartier divisors on X
that are vertical, i.e. supported on the special fiber. The same description applies in
the trivially valued case as well, if a model is now understood as a test configuration
X — S :=A! (see [BHILT, §6.1], [BoJ22, §2.2]).
In the nontrivially valued case, the space Z is defined by setting

(1.5) Z = thl(X/S),
X

where N'(X'/S) denotes the (finite dimensional) vector space of relative numerical
classes (see [BFJ16al §4.2], [GM16, §4], the definition being inspired by [BGS95]).
A form 6 € Z is thus represented by a numerical class 0y € N1(X/S) for some
model X, called a determination of 6, two such classes being identified if they coin-
cide after pulling back to some higher model, and we write 6 > 0 if Oy is (relatively)
nef for some (hence any) determination X" of 6.

The measure 0, A --- A 0, associated to a tuple of forms #; € Z is a finite
linear combination of Dirac masses at divisorial points, whose coefficients can be
described in terms of intersection numbers computed on models.

The linear map dd®: D — Z takes a vertical divisor D € VCar(X)g to its
numerical class in N'(X'/S), and the seminegativity condition (L.2) follows the
local Hodge index theorem of Yuan—Zhang [YZ17, Theorem 2.1].

Again, the same discussion applies to the trivially valued case as well, using
test configurations instead of models. In that case, pulling back numerical classes
on X to the product test configuration further yields an injection

(1.6) NY(X) — Z.
Note that only forms lying in N'(X) were considered in [BoJ22].
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REMARK 1.4. In the non-Archimedean case, one could also work with smooth
functions and (1, 1)-forms in the sense of [CD12] (see also [GK15|GK17|GJR21]),
but this will not be considered in the present paper.

REMARK 1.5. More generally, test configurations of any compact Kdhler man-
ifold (as in [SD18|[DeR17]) can also be approached using the above formalism.
This is the topic of recent work of Pietro Mesquita-Piccione [MP24].

REMARK 1.6. Another setting where the above formalism applies is that of
tropical toric pluripotential theory as in [BGJK21].

1.3. Bott—Chern cohomology and positive classes.
DEFINITION 1.7. We define the Bott—Chern cohomology space as
Hpo(X) = Z/Tmdd",
and denote by 0 — [0] the quotient map Z — Hpc(X). The positive cone
Pos(X) C Hpe(X)
is defined as the interior of the image of Z, .

Here the interior is taken with respect to the finest vector space topology
(see §1.I). Concretely, a class a € Hpc(X) belongs to Pos(X) if, for any €
Hpc(X), a+ tf lies in the image of Z, for all ¢ € R small enough.

Since it is assumed that Z; spans Z, its image in Hp(X) is a convex cone
that generates Hpc(X). As a consequence, the positive cone Pos(X) is non-empty
as soon as Hpc(X) is finite dimensional.

REMARK 1.8. The image of Z, in Hpc(X) is not closed in general. Indeed, in
the compact Kdihler case, this means that a nef (1,1)-class on X does not always
admit a smooth semipositive representative (see Example [1.3.1] below, and [DPS94!
Example 1.7] for an explicit example).

Since dd€ vanishes on R C D, ([LLI)) yields
/ddcgo/\é)l/\~~~/\9n,1 :/cpddcl/\ﬂl/\~~~/\9n,1 =0
for all p € D and 6; € Z. As aresult, (61,...,6,) — [61 A--- A6, descends to a
symmetric n-linear pairing
Hpc(X)" =2 R (0q,...,ap) = 01 ... Qp,
which we call the intersection pairing.
LEMMA 1.9. For all classes aq, ..., a, € Pos(X) we have aq - ... ay > 0.

PROOF. By assumption, the measure 6; A --- A 6, is nonzero for some tuple
01,...,0, € Z. Since Z; generates Z, we can further assume 6; € Z, for all 7.
Then [64] ... [0, = [61 A--- A6, > 0. Now we can find 0 < ¢ < 1 such that
a; — elf;] € Pos(X) for all i, and hence oy - ... a, >e™[01]-...-[0,] > 0. O

DEFINITION 1.10. For each w € Z; and 0 € Z we set
10]|w ;= inf{C >0 | £0 < Cw} € [0, +o0],
and we say that 6 is w-bounded if ||0]|, < oo.
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The set
Z,={0€ Z| 0], < o}

of w-bounded forms is a linear subspace of Z, on which || - ||,, defines a norm.

REMARK 1.11. In general, Z,, is a strict subspace of Z. More precisely, Z, = Z
iff w lies in the interior of Z in the finest vector space topology of Z, and this
interior is empty in the non-Archimedean case (see §1.3.2] below).

We can now characterize positive classes as follows:

PROPOSITION 1.12. A class a € Hpe(X) lies in Pos(X) iff, for each finite
dimensional subspace V- C Z, a admits a representative w € Z4 such that' V C Z,,.

PROOF. Assume « € Pos(X), and pick a basis (6;)1<i<, of a finite dimensional
vector space V C Z. Since Z, spans Z, for each ¢ we can write 6; = 0;” — 0, with
0F > 0. Since a € Pos(X) we have a — [f5] € Pos(X) for all 0 < ¢ < 1, and we
can thus find € > 0 and wii € « such that wii — a€0ii > ( for all 7. Now set
=) (W +w;) e Z,.

i=1
Then [w] = «, and for each ¢ we have w > %9} > +5-0;, and hence 0; € Z,, i.e.
V C Z,. This proves the ‘only if’ part, and the converse is clear. O

COROLLARY 1.13. Pick 6 € Z such that [0] € Pos(X). Then any f € D can be
written as f = ft — f~ with f* € Dy = tDy for some t > 0. In particular, Dy
spans D.

PRroOOF. By Proposition[1.12] we can find ¢ € Dy and ¢ > 0 such that —dd°f <
t(0 + dd°+). Thus fT := f + 1) lies in Dyp, and the result follows with f~ =ty €
Dyo. ([l

w =

Following [Tho63], we define the Thompson distance between w,w’ € Z as
(1.7) dp(w,w’) :==inf{d > 0 | e °w < W' < ew} € [0, +o0].

We say that w and w’ are commensurable if dr(w,w’) < co. Note that this holds
iff W € Z, and w € Z,,. Commensurability is an equivalence relation on Z,. The
linear subspace Z,, only depends on the commensurability class of w € Z,, and so
does the equivalence class of the norm || - ||

The next result is readily checked, and left to the reader.

LEMMA 1.14. The commensurability class of any w € Z, forms an open con-
vex cone in the normed vector space (Z,,| - |lu), whose topology is defined by the
restriction of the Thompson metric.

We conclude this section with the following fact, that we will put to use in §3

PROPOSITION 1.15. Each finite subset of Pos(X) can be represented by com-
mensurable forms in Z .

PROOF. Consider ay,...,a, € Pos(X) and set 8 := 1Y Ta;. If0 < t <
1, then the classes o) defined by a; = (1 — t)af + ¢ lie in Pos(X). Pick any
representatives 0, € Z, of of, 1 < i < r. By Proposition [[.L12] we can find a
representative w € Z; of 8 such that 6] € Z, for all i. Let w; := (1 — )6} + tw for
1 <i<r. Then w; € Z, is a representative of o; and w,w; are commensurable for
all 3. O
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1.3.1. The Kahler case. Asin §1.2.1] assume that X is a compact Kahler space.
When X is nonsingular, Hpc(X) coincides with the (1,1)-part of the Hodge de-
composition of H2(X,R). In general, denote by PHx the sheaf of germs of pluri-
harmonic functions, i.e. the kernel of the sheaf morphism dd®: C§¢ — Qﬁgl. The
existence of partitions of unity implies that the sheaf C§ is soft, and the cohomology
long exact sequence associated to the short exact sequence of sheaves

0= PHx = C¥ = 2" =0

thus yields
Hpc(X) ~ HY(X, PHx).

We do not know whether the right-hand side is always finite dimensional, but this
holds at least when X is normal, as a consequence of the fact that PHx then
coincides with the sheaf ROx of real parts of holomorphic functions, see [BG13|
§4.6.1].

The positive cone Pos(X) is compatible with the usual definition, i.e. « €
Hpc(X) lies in Pos(X) iff a can be represented by a Kédhler form. Indeed, given
any Kéahler form w, a class a € Pos(X) can be represented by a form § € Z such
that 6 —ew € Z4 for some 0 < € < 1, so that 6 is a Kahler form. In particular,
Kaéhler forms constitute a single commensurability class that maps onto Pos(X).

1.3.2. The non-Archimedean case. Assume, as in §1.2.2] that X is a projective
Berkovich space over a non-Archimedean field. By definition, any 6 € Z is rep-
resented by a numerical class on some model X of X, and the restriction of 8 to
the generic fiber defines a numerical class {#} € N!'(X) on (the projective variety
underlying) X. This induces a surjective map

(1.8) Hpc(X) — NY(X),

which is an isomorphism when X is smooth and k is discretely valued of residue
characteristic 0 [BFJ16al Theorem 4.3], or when X is normal and & is algebraically
closed [Jell16, Theorem 4.2.7]). It is also an isomorphism when k is trivially
valued, with inverse provided by pulling back classes in N'(X) to the trivial test
configuration X, = X x Al

We claim that Pos(X) coincides with the preimage of the ample cone of X
under (L8), and that Z; has empty interior in the finest vector space topology of
Z (so that Kédhler forms do not admit an analogue in the non-Archimedean case).

To see this, we say as in [BFJ16a, §5.1] that a form w € Z, is X-positive
for a given model/test configuration X if it is represented by a (relatively) ample
class in N*(X/S). Note that all X-positive forms are commensurable. As ob-
served in [BFJ16a, Proposition 5.2] (see also [GM16, Proposition 4.14], [BoJ22,
Lemma 3.11]), any « € Hpc(X) whose image in N!(X) under (L8) is ample can
be represented by an X-positive form w for any sufficiently high model . Now Z,,
contains all forms determined on X, but does not contain any X’-positive form for
a model X’ strictly dominating X. The claim easily follows.

1.4. The energy pairing. Mimicking the properties of induced metrics on
Deligne pairings (see for instance [BE21, Theorem 8.16]), and generalizing [SD18|
§2.2] (for a compact Kéhler manifold) and [BoJ22, §3.2] (for a projective Berkovich
space over a trivially valued field), we introduce:
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PROPOSITION-DEFINITION 1.16. The energy pairing

(Z X D)n+1 —-R ((905 300)7 e (ena()@n)) = (905 300) et (ena Son)

is defined as the unique (n + 1)-linear symmetric map such that

(19) (07 900) ’ (017 901) Tl (9n7 LPn) = /900 (91 + ddccp1) VAN (en + ddcgpn)

and
(1.10) (60,0) ... (6,,0) = 0.
It further satisfies
(1.11)
(00, 00+ co) - (On, on +cn) = (eOaQOO)'~~~'(9na@n)+zci[90]'---'[ei}'~-~'[0n]
i=0
for all ¢; € R, and
(112) (00 +dd°7, ‘PO) Tt (en +dd7,, Qon)
= (90,7’0 —|—(p0) e (en,Tn + Lpn) — (90,7’0) e (en,Tn).

for all T, € D.

PrROOF. Using multilinearity, symmetry and (L.9), (I.10), we necessarily have
(1.13)

(00, %0) . (0, n) = Z/% Oo A A1 A(Oig1+dd i) A A0 +ddpn).
i=0

This proves uniqueness. To show existence, the only nontrivial part is to check that
the right-hand side of (IL13)) is a symmetric function of the (8;, ¢;). It suffices to see
invariance under transpositions, which is an easy consequence of the integration-

by-parts formula (L) (compare [SD18| Proposition 2.3]).
To see (L.11]), we may assume ¢; = 0 for ¢ > 0, and the result is then a direct

consequence of (L.9).
Finally, pick 7; € D, and set

F(eo,.--y¢n) = (0o, To+¢0) .- (On, Tnt+on)—(0o+dd 1o, o). . .- (0n+dd Ty, ©n).
By (L9), we have
(0,00)- (01, T14@1)"+ . .+ (On, Tnton) —(0, ©0)- (01 +dd 71, 1) . .+ (On+dd Ty, 0n) = 0.

This implies that F(gp,...,pn) is independent of ¢, and hence equal to
F(0,¢1,...,9n). Applying the same argument successively to 1, ..., p,, we end
up with F(eg,...,00) = F(0,...,0) = (6o, 70)"...-(0n, Tn), which proves (L.12). O

By (L.9), the seminegativity property (L.2) translates into

(1.14) (0,0)* - (01,01) .. (Op_1,0n-1) <0

for all ¢ € D and ¢; € Dy,.
As in [BoJ22| §3.2], we further note the following straightforward monotonicity
properties:
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PROPOSITION 1.17. For all 6;,0; € Z and ¢;, ¢} € Dy,, we have

(L15) @i < ¢; for alli == (80,%0) - (Bn, n) < (00, 00) - -+ (Ons 07);

(1.16)

©i <0 and 0<0; <0} for alli = (0y,00) ... (0, 00) < (00,00) .+ (O, 0n).
Combining (LL15) and (I.11l), we infer the Lipschitz property

(1.17)

[(60,0) - -+ (s 9) = (00, 20) - -+ - (B, @)D sup |05 =i [00] - -+ [6:] . . - 6]

i=0
for all @;, ¢} € Dy,.
Following [BoJ22, §7.2], we next establish a lower bound for the energy pairing,
which will play a crucial role in §3.2] below.

THEOREM 1.18. Assume wy,...,w, € Z4 are commensurable, and set § :=
max; ; dr(w;,w;). If 0> ¢, € D, fori=1,...,n, then
0> (wo,p0) - (Wn,on) 2 @) min(w;, ;)" L.

Here dt denotes the Thompson metric (L), and the implicit constant in O(4)
only depends on n (see §L.1]).

LEMMA 1.19. For any 0 € Z, o — (0,0)" ! is concave on Dy.

PRrROOF. This is a formal consequence of (1.14]), see Appendix [A] O

LEMMA 1.20. Pick w,w’ € Z, and t > 1 such that w < ' < tw. For any
w €D, CD, such that ¢ <0, we then have

02 (/)™ 2 7w, )",
Proor. By (LL16) we have
0 Z (wl7w)n+1 Z (tw’(p)n—i-l — tn+1(w7t—1(p)n+1.

Since =% € [0,1], concavity of the energy (Lemma [L.19) yields (w,t tp)"+1 >

t1(w, )"t and the result follows. O

LEMMA 1.21. Pick wq,...,w, € Z4 and 0 > @; € D,,, fori=0,...,r. Assume
also given t > 1 such that w; < tw; for alli,j. Then

n+1
(1.18) (Zng@) > Cont™ Y (wir00)" ™

with Cy.p, == (r(r+1))".
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— . — . S t(14rt
PROOF. Set W := Til Zglwi and w; = TLHZS w;. Then @ < w; < (t+: ),
for 0 <i<r. If weset := 5>, @i, then

n+1
<Z Wi, Z %‘) =(r+ 1)n+1(57 @nﬂ
(r+1)"" (@, p)" !
> (7‘ + 1" Z(wh wi)n-&-l

%

> (r+1)" (M)n Z(wi’ (pi)n-ﬁ—l

t+r

v

2 O?",ntn Z(wu gpi)n+17
7

where the first inequality holds by (L16]), the second one by Lemma [[.L19] and the
last two inequalities from Lemma [[.20] and the estimate % <. O

PROOF OF THEOREM [LLI8. Expanding out (wo + -+ + Wy, po + - -+ + @n )"
yields

(n+ 1) (w0, 00) « - - - (Wny Pn) = (Wo + -+ + Wny o+ -+ on)" T

and we conclude by Lemma [[.21] with r» = n. a

b

1.5. The Monge—Ampeére operator and the submean value property.
Pick w € Z; with [w] € Pos(X). We define its volume as

Vi [or =,

which is positive by Lemma [1.9] and introduce the probability measure
fhe =V W™

DEFINITION 1.22. The Monge—Ampere operator MA,,: D, — M is defined by
setting
MA,(p) :== Vflwg.

w

Equivalently,
(1.19) MA(¢) = pa, -

As an illustration of the energy pairing formalism, we recover the following
version of the classical Chern—Levine—Nirenberg inequality.

LEMMA 1.23. For all o, 4,7 € D, we have
[~ 01800) - MAL(w)| < 2nsup o vl
PrOOF. By (L) we have
Vo [ 7 (MAL(P) = MALW) = (0.7) - ()" = (0.7) - (w,)"

= (W7 T) : (wa (p)n - (w70) : (UJ, Sp)n - (va) : (wv'(/})n + (wvo) : (UJ, '@[J)n
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Now (LI7) yields
(W, ) (W, )" = (w,T) - (w,9)"] < nsuplp — Y|V,
[(w,0) - (w, )" = (w,0) - (w, )" < msuplp — Y|V,
and the result follows. O

We next consider the quantity

(1.20) T, := sup {supap—/cp,uw | ape’Dw} € [0, +0].
Thus T, < oo iff there exists C' > 0 such that the submean value inequality
(1.21) sup ¢ < /apuw—i—c

holds for all ¢ € D,,,.

PRrROPOSITION 1.24. If T,, < oo, then T, < oo for any w' € Z, with [W'] €
Pos(X).

DEFINITION 1.25. We say that the submean value property holds if T,, < oo
for some (hence any) w € Z4 with [w] € Pos(X).

When X is a compact Kéahler or projective Berkovich space, this property holds
iff X is irreducible (see Theorem [1.27] below).

LEMMA 1.26. Pick 7 € D, and w' € Z; commensurable to w. Then

(1.22) T, <T,+ (2n+2)sup|7]
and
(1.23) T, <eOT,

with 6 = dp(w,w’).

Recall that, in this paper, the implicit constant in O only depends on n
(see §1.1]).

Proor. Pick ¢ € D,,_. Then ¢ + 7 € D,,, and the Chern-Levine-Nirenberg
inequality (see Lemma [1.23)) yields

p+7< /(cp—i—T) MA,(0)+ T, < /(<p—|—7') MA,(7) + 2nsup |7| + T,.
This proves (1.22), in view of (L.19).

For each t > 0 we have Dy, = tD,,, and hence Ty, = tT,,. Further, &’ < w
implies D, C D,, and
Vo et = (W/)n <w' = Vot
and hence V,, T, < V,T,. These properties imply ([L.23]). a

PRrROOF OF PROPOSITION [L.24] The condition T,, < oo only depends on the
commensurability class of w, by (L.23), and it only depends on [w] € Pos(X),
by ([L.22). This condition is thus independent of w, since any two classes in Pos(X)
admit commensurable representatives (see Proposition [L.15]). O

THEOREM 1.27. Assume X is either a compact Kdihler space or a projective
Berkovich space over a non-Archimedean field k. Then the submean value property
holds iff X is irreducible.
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LEMMA 1.28. Let a C Ox be a coherent ideal sheaf. Then we can find w € Z,
with [w] € Pos(X), and a decreasing sequence (¢;); in D, such that, for any given
choice of local generators (f,) of a near a point of X, p; — max{log max, |f,|,—j}
is locally bounded uniformly with respect to j.

In the non-Archimedean case, a can be viewed as a coherent ideal sheaf on the
underlying algebraic variety, by the GAGA principle.

PROOF. Assume first X is compact Kéhler. Fix a Kéhler form w, and pick a
finite open cover (U,) of X such that a is generated on each U, by a finite subset
(for)v of O(U,). Introduce the psh function on U,

Paj = 3 log (Z | fow | + e‘2j> = max {logmgx | faw s —j} +0(1),

and observe that, for all «, 5, |¢a; — ¢p;| is uniformly bounded with respect to j
on each compact subset of U, N Ug. Now choose relatively compact open subsets
U" € U!, € U, such that the U still cover X. Since U/,N U is compact in U, NUg,
we have
C:=sup sup |pa; — ;| < 0.
8,5 U,NUY,

Pick also cut-off functions x, € C°(U)) such that x, > 0 and x, =1 on UY. We
claim that the smooth functions

pj i=log y_ xZeres
o

satisfy ddp; > —Aw for a uniform constant A > 0, which will yield the desired
conclusion. The result follows indeed from [Dem92, Lemma 3.5], whose proof we
now briefly recall. A direct computation using dd°p.; > 0 yields

Paj
ddp; > EpIAL ks 936 J.
Ea Xaetpaj
with 6, := 2dxa A dXa — 2Xadd®Y.. Since the latter are smooth (1,1)-forms, we
have 6, < Aw for some constant A > 0. Now each x € X in the support of some
O lies in U}, \ U}/, and also in Uj for some f, and hence ), x3e#% > eCe¥ei at
x. This shows
Za 9a6¢aj

c
R < e” Aw,
which yields the result.

Assume now X is a projective Berkovich space. Pick an ample line bundle L
such that L ® a is generated by global sections (s, ), and choose a PL metric on L
with curvature form w € Z. Then setting ¢, := max{logmax, |s,|, —j} yields the

result. O

PrOOF OF THEOREM [L.27l Assume first that the submean value property
holds, and pick an n-dimensional irreducible component Y of X. Applying Lemma
[L.28 to the ideal sheaf of Y in X yields w € Z; with [w] € Pos(X) and a decreasing
sequence (p;) in D,, such that supy ¢; — —oo while (¢;) is uniformly bounded on
compact subsets of X \ Y. Since [, w™ = [w]" - [Y] > 0, we get [ ¢; g, — —00,
and hence sup ¢; — —00, by the submean value property. It follows that X =Y is
irreducible.
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Conversely, assume X is irreducible. In the Kéhler case, pick a Kéhler form w on
X, and choose a resolution of singularities 7: X’ — X with X’ a connected compact
Kéahler manifold, and pick a Kahler form «’ on X’ such that w’ > 7*w. Since
po= Vi lmwn = fw'™ satisfies PSH(X',w') C L*(p), [GZ05, Proposition 2.7]
yields C > 0 such that supy, ¥ < [¢ p+C for all ¢p € PSH(X’,w’). Applying this
to ¢ = m*p with ¢ € D,, yields the submean value property.

In the non-Archimedean case, pick an ample line bundle L and a PL metric on L
determined by an ample model/test configuration (X, £) of (X, L), with curvature
form w € Z,. Each ¢ € D, satisfies supy = maxpp, where I' C X is the
(finite) set of Shilov points attached to X (see [GM16, Proposition 4.22] or [BE21,
Lemma 6.3]). On the other hand, T is also the support of p,,, by definition of the
measure w™ in terms of intersection numbers. Now [BoJ18al Theorem 2.21] yields
C > 0 such that |p(z) — ¢(y)| < C for all z,y € " and all p € D,,, and we infer, as
desired, sup ¢ < [, + C for all ¢ € D,,. O

1.6. Monge—Ampeére energy and the Dirichlet functional. From now
on we fix w € Z; with [w] € Pos(X).

DEFINITION 1.29. The Monge—Ampere energy E,: D — R is defined by

(1.24) B (p) i= %.

For all ¢, € D we have

1 . L

] ZVW 1/(@,0—@[1)wfp/\ww 7.
3=0

Indeed, by (L9), this amounts to the basic identity

n

(@, )" = (@, )" = (0,0 =) - D (W, ) - (w, )"

(1.25) Eu(p) — Eu(¢) =

3=0
Assume now ¢, 9 € D,,. By (.25), we then have
(1.26) p < = Eu(p) < Eu(¥).

Further, E,,((1 — t)p + t1) is a polynomial function of ¢ € [0, 1], with

G|, Bl =ne ) = [ o MAue)

This characterizes E,, as the unique primitive of the Monge—Ampere operator that
vanishes at 0 € D,,. By Lemma [.19] E,, is concave on D,,, which translates into

(129 Bu(¥) < Bu(o)+ [ (0 - 9) MAL(p)

for all p,¢ € D,,,.

As a direct consequence of (L.12), we have
(1.29) Eu, () = Eu(p +7) — Eu (7).
for any ¢, 7 € D.

(1.27)

DEFINITION 1.30. We define the Dirichlet functional J,,: D, x D, — R>¢ by
setting

Tl ) = Bu(p) — Eu() + / (4 — ) MAL(9).
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By concavity of E;, J, (¢, %) is a convex function of ¥ € D,,. Note also that

(130 Jules) + T = [0 DMALW) -~ MAL ().
By (A4), we have the formula
—1 = J+1 ¢ j n—1—j
13) o) =Vt Y 2 [e-wad - o) nug nwp
3=0

We simply write

(1.32) Jmm:huwzjém—mw»

ExXAMPLE 1.31. When n =1, we have

Jo(o,¥) =Ju(¥,0) = % /(w —)dd* (¢ — @),

which recovers the usual expression for the Dirichlet functional on a Riemann sur-
face.

For each R > 0 we set
(1.33) Dur:={p €D, |Julp) <R}
LEMMA 1.32. For each R >0, D, g is a convexr subset of D that generates it.

PRrOOF. By convexity of J,, = J,,(0,), D, r is convex. Since D,, spans D (see
Corollary [L.13)), to see that D,, r spans it suffices to show that any ¢ € D, satisfies
Ju(ty) < R for 0 < t < 1, which holds since J,,(ty) is a polynomial function of ¢
with J,,(0) = 0. O

We may now collect the fundamental properties of the Dirichlet functional in
the next result.

THEOREM 1.33. For all @, ¢, ¢, ¢',7 € D, and t € [0,1], the following holds:
e quasi-symmetry:

(1.34) Ju(p, ) = Ju (¥, ¢);

e quasi-triangle inequality:

(1'35) Ju(p, ) S Ju(e, ) + Ju(r, ¢)7

e quadratic estimate:

(1.36) Jo(p, (1= e + 1) S t2Ju(0,¥);

e uniform concavity:
Eu((I=t)p+t) = [(1 =) B (p) + tEu(¥)] 2 11 = 8)Ju (0, ).
For all p,¢', 1,9 € Dy g, we further have the following Hélder estimates:
(1.37) ‘ / (¢ = ¢') (MAL(¢) = MAL(Y)| S Julp, )" Ju (¥, 0) 2RI

and
(1.38) (1) = Ju (¢, 0")| S max{J, (e, @), Ju (¥, v ) }* R ™7,

where o := 27",
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PROOF. In view of (L14), this is a direct consequence of Theorem [A.3 applied
to

e the vector space V := Z x D with projection 7: V — Z onto the first
factor;
e the convex cone P :={(0,¢) € V | p € Dy};

e the homogeneous polynomial F': V' — R defined by F(0, ¢) := (0.0)" 7

T DV,
(]

As a simple consequence of (1.29), we finally note:
LEMMA 1.34. For each T € D, and ¢, € D,,_ we have o+ 7,9 +71 € D,, and

(1.39) Jor (0,0) = (@ + 1,00 + 7).

REMARK 1.35. The above formalism recovers that of [BBGZ13|[BBEGZ19,
[BFJ15.BoJ22] in the Kdihler and non-Archimedean settings. However, in con-
trast to those works, we do not explicitly introduce the functional 1,,(p, ), which
corresponds to the right-hand side of (1.30).

2. Measures of finite energy

In what follows, we pick w € Z, with [w] € Pos(X). We define the space
MY} of measures of finite energy with respect to w, and show, assuming a certain
orthogonality property, that it is complete with respect to a quasi-metric J,, induced
by the Dirichlet functional.

2.1. The energy of a measure.

DEFINITION 2.1. We define the energy of u € M relative to ¢ € D, as

@1)  Ju(ud) = sup {Eww ~E)+ (- w)u} € [0, +oo].

p€D,,
The choice of notation is justified by (2.5) below. When 1 = 0, we simply write

(22) 300 = 2(u0) = sup {Eule) = [on).
p€D,,
and call it the energilP of u (with respect to w). Note that
(23) .0 = swp { [ ot =10~ 3.0
p€D,,
by (L.32).

PROPOSITION 2.2. For each ¢ € D, the functional J,(-,1): M — [0, +0o0] is
convex and weakly lsc, and satisfies, for all 4 € M and ¢ € D,,,

(2.4) Tl ) = Tu(u) + / i~ By ();
(2'5) Jw(MAw(@)vdj) = Jw(‘ﬂvd’);
(2.6) Jo(MAL(9)) = Ju();

(2.7) Jo(, ) S Jw (i @) + Juo (1, ).

5This corresponds to EY(x) in the notation of [BBGZ13|[BoJ22|, and to ||ul. in that
of [BoJ23|.
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ProoOF. Convexity and lower semicontinuity are clear from (2.1J), which also
directly yields (2.4). By (L28), any ¢ € D, further computes the supremum
defining J,,(MA, (¢),®), which is thus equal to

(

()~ Bu() + 06— 0) MAL(P) = (o)
This proves (2.5), which implies

Ju(MA,(9)) = Ju(MAL(9),0) = Ju (9, 0) = Ju(0,¢) = Ju(p),
see ([L.34). Finally, pick 1 € M, and set 7 = (¢ + ) € D,,. By (1)), we have

Julis @) > Eu(r) —Ew<¢>+/<so—r> i Ju(u) > Eu(r) —Ew(¢)+/(¢—7)u,

and hence

Joo (1, ) + Jus (1, ) 2 2E0(7) = (Bu () + Eu(¢)).
On the other hand,

2E,(7) — (Eu(p) + Eu(¥)) 2 Ju(p,9)
by uniform concavity of E,, (see Theorem [L.33]), and (2.7)) follows. O

Generalizing Lemma [1.34] we note:

LEMMA 2.3. ForallT € D, ¢ € D, and it € M we have

(2.8) Jor (11, 9) = Joo (11,9 + 7).
In particular,
(2.9) orli) =Julp) + [ 71 Bulr),

Proor. By (L3) and ([L.29) we have ¢ € D,,. < ¢ +7 € D, and

Bu(9)~Eu, (0)+ (0= 0)n=Bule 4 1) = Eulv + 1)+ [((o47) = @)
Taking the sup over ¢ yields (2.8)), and (2.9) follows, by (2.4). O

REMARK 2.4. If we drop the assumption that w > 0, but still require [w]| €
Pos(X), then E, (@) and J, (1) can still be defined by [1L.24) and [2.2), respectively.
Then ([L29), and hence [2.9), remain valid for any 7 € D. This will only get used
in the context of Theorem [.8] below.

2.2. Measures of finite energy.

DEFINITION 2.5. The space of measures of finite energy (with respect to w) is

defined as
Mg = {pe M| Ju(p) < oo}

It is endowed with the strong topology, defined as the coarsest refinement of the
weak topology in which J,: M} — Rsq becomes continuous.

In other words, a net (u;) converges strongly to u in ML iff y; — p weakly in
M and J, (i) = Jw(p). For any R > 0 we also set
(2.10) Mg g = {pe Mg | Ju(p) < R}
By Proposition [2.2] this set is convex and weakly compact. By (2.4]),

Jw('aw): Mz];' - RZO
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is continuous in the strong topology for any ¢ € D,,. By Lemma [2.3] this yields:

PROPOSITION 2.6. The topological space ML only depends on the positive class
[w] € Pos(X).

One should be wary of the fact that, in the present generality, even a ‘nice’
probability measure of the form p = 6; A--- A6, with 6; € Z; need not be of finite
energy with respect to w in general (see however Theorem [3.4] below):

EXAMPLE 2.7. Let X be either a compact Kahler or projective Berkovich space.
For each irreducible component Y of X and each u € MY, we then have
[w]y]"

(2.11) p(Y) = S5

Indeed, this is proved in [BoJ22, Corollary 9.13] in the trivially valued case, and
the proof can be adapted to the general case. Now [R2.11) fails in general for u = .
with w' € Z, such that [w] # [w'] € Pos(X), and hence M}, # M.

By ([2.3), we have, for all ¢ € D, and p € M,

/@(uw — 1) < Ju(p) + Jo(p).

The following converse will come in handy.

LEMMA 2.8. Assume that p € M satisfies
S:= sup /w(uw—u) < oo
APGDW,R
for some R > 0. Then u has finite energy, and
(2.12) Jo(u) SSA+R1S).

PROOF. Pick ¢ € D, and set J := J,, (). By (L.36]), we have J,(tp) < t2J for
any t € [0, 1], and we can thus choose

1<a<1+ (RI)Y?

such that J, (a7 *¢) < R. By assumption, we then have [a™'¢ (1, —p) < S, and
hence

Ew(w)—/w=/<p(uw—u)—%(so)SaS—J

SS+HSRVAM? g <S4+ 1SR,
where the last inequality follows from the elementary estimate supyzo(xyl/ 2y =

22 /4 for any x > 0. Taking the supremum over ¢ yields (2.12). a

2.3. Legendre transform of the energy. Here we compute the Legendre
transform of the convex functional J,, = J,(-,0): M — [0, +o0].

DEFINITION 2.9. For any f € C%(X) we set

Eu(f) == sup Eu(p).
f29€Dy,

By monotonicity of E,, on D, (see (L26)), the functional E,: C°(X) — R so
defined restricts to E,, on D,,. Like the latter, E, is further concave, monotone
increasing, and equivariant with respect to translation, i.e.

E,(f +¢) =By (f) + ¢ for c e R.
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PROPOSITION 2.10. For all f € C°(X) and p € M we have

(2.13)  Eu(f) = inf {JW(V)Jr/fV}; Ju(p) = sup {Ew(g)—/gu}-

veM g€ECO(X)

PROOF. Define the (convex) Legendre transform EI COX)Y = RU {+o0}
as the right-hand side of [2.13)), i.e.

Eo(n) = sup {Ew(g)—/gu}.

geCO(X)
Since Ew is increasing and equivariant, it is straightforward to see that E: (1) < 00
implies 4 > 0 and [p = 1, i.e. p € M (compare [BoJ22, Proposition 9.8]).
By Legendre duality, the result is thus equivalent to EZ(;L) = Ju(p) for p € M.

Since E,, restricts to E,, on D, we trivially have EZ(M) > Ju(p). Conversely, pick
f€C%X) and ¢ € D,, with ¢ < f. Then

Juw () ZEw(w)—/sﬁuZEw(sﬁ)—/fu,

where the first and second inequality respectively follow from ([2.2) and ¢ < f.
Taking the supremum over ¢ and then over f yields Jo, (1) > Eu,(f) — [ fp and

~v
Ju(p) = B, (w). 0
2.4. Orthogonality and differentiability.

DEFINITION 2.11. We say that D,, admits maxima if, for all p,1p € D,, and f €
D such that max{p, ¥} < f pointwise on X, there exists T € D, with max{p, 1} <
T<f.

This equivalently means that, for any f € D, the poset

Dy<j={p€Dule<f}
is inductive. We can then consider limits of nets indexed by D, «f. For instance,
note that
(2.14) E.(f)= lim E,(p).
@EDw,<f

ExXaMPLE 2.12. If X is a compact Kdahler space, then D,, admits mazima: take
7 :=max(p, ) for an appropriate reqularized maz function max.

ExamMpPLE 2.13. If X is a projective Berkovich space, then D, also admits
mazima, since Q-PL functions in D,, are dense in D,,, and stable under max.

REMARK 2.14. While we will not pursue this direction here, one can also
introduce as in [BEJ16a,[BE21,[BoJ22| the space PSH(w) of w-psh functions
v: X = RU{—o0}, defined as usc functions that can be obtained as pointwise
limits of decreasing nets in D,,, and such that fgouw > —oo. Then D, admits
maxima iff PSH(w) (or, equivalently, the subspace CPSH(w) := PSH(w) N C°(X)
of continuous w-psh functions) is stable under maz.

DEFINITION 2.15. We say that w has the orthogonality property if D, admits
mazxima and

(2.15) lim [ (f - ) MAu(9) = 0

@EDw,<f

for all f € D.
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Explicitly, this means for that for any € > 0 there exists pg € D, such that
o < fand [(f — ) MA,(¢) <e for all p € D, with g9 < ¢ < f.

REMARK 2.16. The orthogonality property for w only depends on [w] € Pos(X).
Indeed, for any T € D,, and f € D we have

(2.16) ¢ €Dy, <f <= ¢+ T EDu<fir

This implies that D, admits finite mazima iff D, does, and similarly for the
orthogonality property, using

MA,, (¢) = MA,(p+ 1) and
/(f—@MAwT«o) =/((f+T)-(¢+T))MAw(<p+T)-

EXAMPLE 2.17. Assume X is a compact Kdhler space. Conjecturally, the or-
thogonality property always holds. This is known when X is normal, or X is pro-
jective and |w] € Amp(X), see Appendiz Bl for a more detailed discussion.

Recall from Corollary [I.13] that any test function f € D can be written as
(2.17) f=f"=1", f*eDe
for some C' = C(f) > 0. In line with §7], we show:

PRrROPOSITION 2.18. Assume D, admits maxima. The following properties are
then equivalent:

(i) w has the orthogonality property;
(ii) for any f € D written as 21T for a given C > 0, we have

(2.18)

Bulo+ )~ Eule)— [ £ MALG ‘<Csup|f|

for all p € Dy,;
(iii) in the setting of (i), we have

(2.19)

E(<p+tf —t/fMA ‘<C’t28up|f|
for all p € D, and t € R.

Note that the uniform differentiability property (2.19) implies in particular
d

G| Buertn) = [ MA@,

t=0

PRrROOF. Assume (i). Write f € D as in (2.17), and pick ¢ € D,,. For any
) € Dy, <ptef, (L2]) yields

[ - oMAW) < Baw) - Bule) < [ - 9)MAL) < [ 1 MAL)

By Lemma [1.23] we also have Uf(MAw(go) - MAw(w))‘ < 2nC'sup ¢ — 9|, and
we infer

(2.20)
Bu() — Bule) — [ 1 MA( >\ [ o+ =) MALw) + 200 sup o~ 1
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Now limyep,, _,,,; Ew(¥) = Eu(¢ + f) (see ([2.14)), while orthogonality yields
lim + f) — 1) MA,, =0.
sl [+ n-v)MaLw)

Further, any ¥ € D, <, s large enough is greater than ¢ —sup |f| € Dy, <45, and
hence satisfies sup |¢ — ¥| < sup |f|. As a result, ([2.20) implies

Fule+ )= Bul) - [ 1 MAw«p)} < 2mCsuplfl,

which shows (i)=-(ii). Next, (ii)=-(iii), since f = f* — f~ with f € D¢, implies
tf =sen(t)(|tlf* — |t|f~) with [{[f* € Dejyje-
Finally, assume (iii), and pick f € D. We need to show that

L := limsup /(f —@)MA, () >0
PEDy, < f

vanishes. Write f as in (2.17) for some C' > 0. Pick also ¢ € D, <, and set
g:=f—¢ €D. For any t € [0,1] we have ¢ +tg = (1 —t)p +tf < f, and
hence Ew(go +tg) < Ew(f) On the other hand, since f — ¢ = f* — (f~ + ) with
[T [~ +¢ € Dy, (iii) yields a constant A > 0 only depending on ¢ such that

OSt/(f—@)MAw(sﬂ)

< Eulp +t9) — Bulp) + 1 Asup|g| < Eu(f) — Eu(p) + t*Asup g,
Since any ¢ € D,, < large enough is greater then f* —sup f, it satisfies
0<g=f-p<supf —f <B
with B only depending on f. We infer 0 < tL < t?AB. Dividing by ¢ > 0 and
letting t — 04 yields, as desired, L = 0. This proves (iii)=-(i). O

ExAMPLE 2.19. Assume X is a projective Berkovich space over a non-Arch-
imedean field. Then [BE21, Theorem A] combined with the uniform differentiability

estimate of [BGM22| Lemma 3.2] shows that [218) is satisfied (compare [BoJ22,

Lemma 8.7]). By Proposition 2.18], it follows that the orthogonality property always
holds in this setting.

2.5. Maximizing sequences.

DEFINITION 2.20. We say that a sequence (1;) in D,, is maximizing for u € M},
if it computes the energy of p [2.2), i.e. By, () — [ i p — Ju(p).

Equivalently, (¢;) is maximizing for p iff J,,(u, ;) — 0, see (2.4).

EXAMPLE 2.21. For any ¢ € D,, the constant sequence 1; = ¢ is maximizing
for p=MA,(p) (see (2.5)).

As a key consequence of Proposition 2.18] we show:

THEOREM 2.22. Assume w has the orthogonality property. Pick un € ML and a
mazximizing sequence ; € D,,. Then the measures p; := MA,,(1);) converge strongly
to pin ML, ie. p; — p weakly and J,(p;) — Jo(p). In particular, the image of
the Monge—Ampére operator

MA,: D, — M},

is dense in the strong topology.
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PROOF. Pick f € D, and choose C' > 0 such that f = f+ — f~ with f* € Dg,,.
Since we assume orthogonality, Proposition 2,18 yields A > 0 such that

Bu (i + 1) ~ Bu(oi) =t [ f1
for all ¢ and t > 0. By Proposition .10l and (2.4, we have, on the other hand,
B+ ) <300+ [ (i thu=Juln ) + Euw) +t [ 1
Combining these estimates, we get
t/fﬂi St/fH+Jw(M,¢i)+At2~
Since J,, (@, ;) — 0, we infer
tlimsup/fui < t/f,u+At2.

i
Dividing by ¢ and letting ¢ — 04 yields limsup; [ f u; < [ f p. Replacing f with
—f, we get lim; [ fp; = [ fp. By density of D in C°(X), this shows pu; —

weakly.

For each i we have J,,(1;) = Ey, (¢:) — [ i (see (25)), and Eq, (¢;) — [ ¢ p —
Jo(p), since (¢;) is maximizing for p. It only remains to prove [; (u; — p) — 0.
Since J,,(v;) is bounded (see (2.1), (L37) yields C' > 0 such that

[t
for all 4, j, and hence

foss

by @2.1). Since p; — p weakly and J,,(p,%;) — 0 as j — oo, we infer

‘/m " ‘<0J(wwa

and we conclude, as desired, that the left-hand side tends to 0 as i — oo. O

< At?

S CJo (Y4, 15)”

< C’rnax{J ( ) Jw(ﬂawj)}a7

2.6. The Dirichlet quasi-metric. From now on, we assume that the or-
thogonality property holds for w. Recall from Examples2.17and [2.19] that this
is the case if X is a normal compact Kahler space, or X is any projective Berkovich
space.

THEOREM 2.23. There exists a unique continuous functional
5wl Mi, X Mi} — RZO’
such that

(221) o (MAW(SD)u MA,, (dj)) =Ju (‘pa ¢)
for all p,9p € D,,. Furthermore:
(i) for all p € M} and v € D,, we have

(222) 6w(ﬂ, MAw(w)) = Jw(ﬂ7¢)7 6w(,u7/1'w) =Js (/1');
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(ii) 6, is a quasi-metric: for all u,v, p € ML we have
(2.23)
b, V) =0 p=v, bu(p,v)~du(v,u), Oulp,v) S dulp,p)+du(p,v);

(iii) the quasi-metric é,, satisfies the Holder continuity property
(220) () — 0u( V)] S max{u (), b (v, v} RO
for all R >0 and p,p', v,V € M&J,R’ with a 1= 27";
(iv) for all R >0 and ¢, € Dy, r, p,v € ML)R, we have the Hélder estimate

5 Jw(@a w)a(sw(,u/7 V)1/2R1/27a.

(2.25) \ [o- -

We call 6, the Dirichlet quasi-metric on M.
LEMMA 2.24. For all u € M&“R and ,¢, 7 € D, r, we have

(2.26) e (11, 0) = J(MAL(7), )| € max{Ju (1, 7), Ju(p, )} R T

20| [ 0= MAD)| S Tl ) 2R

PROOF. When p lies in the image of MA,: D, — ML, this is equivalent
to (L38) and ([L37), in view of (2.5) and (2.6). By Theorem [2.22] the image of
MA,, is dense in M}, and the general case thus follows by continuity in the strong
topology of all functions of u involved. O

PROOF OF THEOREM [2.23] Uniqueness is clear, since (2.21) determines ¢, on
the image of MA,,: D, — MY, which is dense in the strong topology, by Theo-
rem 2.221 To show existence, pick p,v € ML and choose a maximizing sequences
(1;) for v. We can then find R > 0 such that p € Mi;,R and ; € D, g for all i,

and (2.26) and (2.7) yield
T (s 3) — o (s )| < Juo (04, 00;) R
< max{Jy, (v, 1), Ju (v, 1) }* R .

This estimate implies that (J,(u,1;)) is a Cauchy sequence, which thus admits a
limit

(2.28) O (p,v) == h?le(,u,i/}i).

The same estimate also shows that the limit is independent of the choice of max-
imizing sequence (¢;), and that the convergence in (2.28)) is uniform with respect
to p € MY, z. As a consequence, pi — d,(u,v) so defined is continuous on M, for
each v € M}.

By construction, ([2.22) holds, and hence also (2.21)), by (2.3). This proves (i).

Next, (2.24) holds when v, lie in the image of MA,,: D,, — ML by applying
[2.26) to a maximizing sequence for p’, and the general case follows by using max-
imizing sequences for v,v’. This shows (iii), which also yields the continuity of 4,
on ML x ML (and hence concludes the proof of existence), since p; — u strongly
implies 6, (i, ) — 0 (1, ) = 0, by continuity of (-, ).

Similarly, (iv) follows follows by applying (2.27) to a maximizing sequence (7;)
for v.
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Finally, the first point in (ii) follows from (2.25]), since D, spans the dense
subspace D of C°(X) (see Corollary [L13). By (L34) and (L35), the last two
properties in (ii) hold when the measures lie in the image of MA,,, and hence in
general, by continuity of d,,. |

We next show:

THEOREM 2.25. The quasi-metric space (ML,6,,) only depends on the class
[w]. It is complete, and its topology coincides with the strong topology.

LEMMA 2.26. For any v € M" and R >0, 6,(-,v) is weakly Isc on M., p.

PrROOF. When v = MA,,(¢) with ¢ € D, [2.22) yields §,(-,v) = Ju (-, ¥),
which is weakly Isc on MY (see [2I)). In the general case, pick a maximizing
sequence (1;) for v, and set v; :== MA,,(v);). By (2.24), we have &, (u, v;) — 6, (1, v)
uniformly for p € M}u r» and the result follows. |

PROOF OF THEOREM [2.25. We already know that MY, only depends on [w]
(see Proposition 2.6). Pick 7 € D, p,v € M}, = M[, , and choose maximizing
sequences (p;), (¢;) in Dy, for p,v, so that d,_(u,v) = lim; J,_(p;, ;). By 2.3),
(p;+7) and (¢; +7) are maximizing sequences in D,, for u, v, and hence 6, (u, v) =
lim; J,, (@i, %:). Now ([L39) yields J,, (vi,¥i) = Ju(pi + 7,1 + 7), which proves
0w, (pty v) = 8 (p, v). Thus 6, only depends on [w].

We next show that the topology of (ML, 4,) is the strong topology, i.e. a
net (j;) converges strongly to u € MY iff §,(ui, u) — 0. When the latter holds,
([2.25) implies p; — p weakly (since D,, spans the dense subspace D of C°(X)),
while ([2.24)) yields Jo,(u;) = Ju(1i,0) — Jo(p). Thus p; — p strongly, and the
converse holds by strong continuity of 4.

Finally, consider a Cauchy net (u;) in (M?*,48,). Then Jy,(1;) = 6w (14, po) is
eventually bounded. By weak compactness of M, we may assume, after passing to
a subnet, that (u;) admits a weak limit 4 € M. Since J,, is weakly lsc on M, we get
Jo(p) <liminf; J,,(p;) < +oo, i.e. p € M. It remains to show &, (p, ) — 0. To
see this, pick ¢ > 0 and iy such that 6, (;, ptj) < € for all 4, j > iy. Since Jo, () is
bounded and p; — p weakly, Lemma [2.26] yields 6, (1, ) < liminf; 6., (s, 1) < €,
and we are done. (]

To conclude this section, we show:

PROPOSITION 2.27. For each v € MY, 6,(-,v): ML — Rxq is strictly convez,
and we further have the uniform convexity estimate

(1 = )du, (o, ) + td0, (11, ) — 60 (1 = t)po + tpa,v) 2 t(1 — £)dus (pro, fi1)-
for all po, 1 € M} and t € [0,1].

PROOF. By density of the image of MA,,: D, — ML and continuity of §,,, we
may assume without loss v = MA,,(¢)) with ¢ € D,,, and hence §,,(-,v) = J,, (-, ).
Set

Jt = (1 - t)JUJ(,UJva) + tJUJ(,Ulew)a Mt = (1 - t),UJO + t,Ll,l,
and pick ¢ € D,,. Applying (2.4) to pu and pq yields

Ji = Eu(p) — Eu(¥) + /w =)t + (L= t)Jo(po, 0) + I (p1, ¢),
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and hence

Ji — Eu(p) + Bu() + / (0 — D)t >t — 1) (T (0, ¥) + Ju(pin, 1)),

using the elementary estimate (1 — t)a + tb > t(1 — t)(a + b) for a,b > 0 (see for
instance [BoJ22, Lemma 7.29]). By (2.23)), this implies

Ji — Bulp) + Bu(®) + / (0 — W) 2 (1 — 8 (pi0, 1),

and taking the infimum over ¢ shows J; — J,, (e, ) = ¢(1 — t) dy, (120, 1), which
concludes the proof. O

2.7. An equivalent metric on M!. One can show that the quasi-metric
space (ML, d,) is metrizable, by general theory. Here we introduce a concrete
metric that defines the strong topology of M. Recall from (L33) that

Dy = {p €Dy | Ju(p) < 1}
PROPOSITION 2.28. Setting
/ (p—v)

yields a complete metric on M}, that defines the strong topology. Furthermore:

(2.29) dy,(u,v) := sup
9€Dy 1

(i) the metric d,, and the Dirichlet quasi-metric §,, share the same bounded

sets;
(ii) they are Hélder equivalent on bounded sets; more precisely:
(230)  du(p,v) S0u(p, ) *RY? and 6,(p,v) S du(p,v)RY?

for all p,v € Mi,R with R > 1;
(iii) for all ¢ € D, and p,v € ML we have

(2.31) \ [etn=v| £ 0,072 + D,

REMARK 2.29. In the compact Kdhler and non-Archimedean cases, the metric
d,, just constructed is a priori unrelated to the usual Darvas-type metric d; [Darl5|
Reb22].

PROOF OF PROPOSITION 2.28] Pick ¢ € D,,. Since J,(a"tp) < a2, () for
a > 1 (see (LL36)), we can choose 1 < a < J,(¢)"/? + 1 such that J,(a"'¢) < 1.
Then | [ a='¢ (i — v)| < du(p,v), which proves (2.31).

The first part of (2.30) is a direct consequence of (2.25]). It shows, in particular,
that d,, is finite valued. It is also clear that d, is symmetric, vanishes on the
diagonal, and satisfies the triangle inequality. Since D, ; spans the dense subspace
D of C%(X) (see Lemma [[.32)), d,, further separates points, and hence defines a
metric on ML,

The first part of (2.3Q) also shows that p; — p in M}, implies d, (p, 1) — 0,
by continuity of d,,, and it follows that the metric d, is continuous. By density
of the image of MA,, it is thus enough to show the second half of (2.30) when
w = MA,(p) and v = MA,,(¢) with ¢, € D,. Then J,(¢) ~ J,(1) < R and
Jo () = J,(v) < R (see (2.4)), while

0w (i, v) = Ju(p,¥) < /(<;7 =) (n—v),
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by ([2.21)) and (L.30)). Using (2.31), we get the second half of (2.30). Next pick p €
MY and set R := max{1,d,(p, 1)} and S := max{1,d, (i, ) }. Applying ([2.30)
to v = p, yields S < R, and also R < SRY?,i.e. R < S2. This proves (i) and (ii).
Since 4., defines the strong topology of M} and is complete (see Theorem [2.25),
the same therefore holds, as desired, for d,. |

By Theorem [2.25] the quasi-metric space (M],4d,) only depends on [w] €
Pos(X). Here we show:

LEMMA 2.30. For each T € D,, we have d,,. < (Jo(7)Y?+1)d,,. In particular,

Wr ~

the Lipschitz equivalence class of the metric space (ML, d.,) only depends on [w].

ProOF. For any ¢ € D,_, [L39) yields J,_ (¢) = Jo_(0,9) = J, (1,0 + 7).
When J,, (¢) < 1, the quasi-triangle inequality (L.35) thus yields J, (¢ + 7) =
Ju (0,0 +7) <1+ J with J := J,(7) = J,(0,7). By [2.31) we infer

‘/(erT)(u—V) [rtu=v)

Thus | [ ¢(p—v)| S (1+ J*?)d(p,v). Taking the supremum over ¢ € D, such
that J,,_ (¢) <1 yields the result. O

S+ ), S (14 JY2) du,w).

3. Lipschitz and Ho6lder estimates for the energy

In what follows we consider w € Z, with [w] € Pos(X). As above, we assume
that the orthogonality property holds. From now on, we further assume the sub-
mean value property (see Definition [1.25]), and use it to investigate the dependence
of M} on w and establish a Holder continuity estimate for the energy pairing.

Recall that the standing assumptions hold when X is a normal irreducible com-
pact Kéahler space, or any irreducible projective Berkovich space (see Theorem [1.27]

and Examples [2.17] and 2.19)).

3.1. Lipschitz estimates for the energy. Recall from §2.7 the metric d,,
which defines the strong topology of M. As a first key consequence of the submean
value property, we show:

THEOREM 3.1. The Lipschitz equivalence class of the metric space (ML, d,,) is
independent of w.

In particular, the topological space M} is independent of w (see Proposi-
tion [2.28), and will henceforth simply by denoted by M*.

LEMMA 3.2. Assume w’' € Z4 is commensurable to w, with [w'] € Pos(X). For
all p,v € M we then have

(3.1) Ao (1, v) < PO 1+ T,)Y2dy (u, v)
with § := dp(w,w’) € Rxg.
PROOF. Pick any ¢ € D, such that J. () = [ ¢ prr — Ew(¢) < 1. We need

to show
/ p(p—v)

By translation invariance of J, on D,, we may assume without loss supy = 0.
Then

(3.2) < P14+ T )2 dy(p,v).

—Eu(p) <1+ Ty < 14207,
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by ([L.23). On the other hand,
0> e(n+1)6(w7675(p)n+1 (6 w (p)n+1 > 60(5)(w’,go)"+1,

where the last inequality follows from Lemma [[.20] since w’ < e’w < €2%w’. Divid-
ing by (n+ 1)V, = %O (n + 1)V, we get

0 < Ju(e0%) < —Eule0g) < —ePO By () < OO (1 + T,
By (2.31)) this implies

T

and hence (3.2)). O

< PO+ 7)),

ProOOF oF THEOREM 3.1l We argue as in the proof of Proposition [.24 On
the one hand, the Lipschitz equivalence class only depends on the positive class
[w], by Lemma [2.301 On the other hand, it only depends on the commensurability
class of w, by Lemma [3.2] and we conclude since any two positive classes admit
commensurable representatives, see Proposition [1.15 |

3.2. Mixed Monge—Ampere measures. It will be convenient to introduce,
for ¢ € D, and p € M, the quantities

(3.3) I () i=Ju(p) + T, and  JF(u) :=J,(p) + T..
LEMMA 3.3. For each ¢ € D, we have

(3.4) 0 <supyp —Eu(p) < I (p);

(3.5) IS (@) = IS (MAL(9)).

PRrOOF. By (L32), we have

sup i~ Eu() = (o) + (sup — [ 9m) < Jue) + 1.
This yields (B.4]), while (8.9) is a direct consequence of (2.6]). O

We next establish a key energy estimate for mixed Monge—Ampeére measures.

THEOREM 3.4. Fori = 1,...,n, pick w; € Zy with [w;] € Pos(X) and ¢; €
D, and set

(3.6) = (Jwi] - [wa]) " Hwr +ddr) A A (wp + ddCpy,) € M.
Then u lies in M*, and satisfies:

(i) if each w; is commensurable to w, then
J5 (1) £ €9 max JZ (1)

with § := max; dp(w;, w);
(ii) in the general case,

Ju(p) S C(max J,, (pi) + 1),

where C' > 0 only depends on w and the w;.
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PROOF. Assume first that each w; is commensurable to w. Set
Ji=max IS (i), V=V, Vii=V,
and observe that
(3.7 eV <V, <™V, e ™V < fwi] ... wp] < €0V

Since p is unchanged when the ¢;’s are translated by constants, we may assume
without loss that sup ¢; = 0. Then

0> (wi,00)"" = (n+ 1)ViBu, (5) > —(n+ DViIE (#0),
by ([3.4), and hence
(38) 0> (wiv @i)nJrl Z/ _60(6)VJ3

using (B.7). Now pick ¢ € D, such that supy = 0, and set R := J,(¢p). On the
one hand,

(3.9) 0> (w, )" = (n+ YV E,(¥) > —(n+ YV (R + T.,),
using ([B.4) again. On the other hand, (8.7)) yields

0> e‘”gV/lm
> /w(wl +ddp1) A A (wp + ddCey)
= (wﬂ/f) : (Wlﬂpl) el (wna@n) - (w,O) : (wh(/)l) Tt (wna@n)
> (WJ/J) ' (w13§01) et (wnawn)

Z 60(5) min{(w7 ’lp)n+17 Iniin(wia gpi)n+1}a
by ([L16) and Theorem [[.L18 Combined with (B.8) and ([B.9), this yields
[t —w <= [onge@OR4T+1) £ LR )
since T, < 9T, <%0 J by (L23). By Lemma 2.8, we infer,
Jo(p) < ef® inf (R+J) (1+ R Y R+J)) <Py,

which concludes the proof of (i) (using (L23)).
We now consider the general case. By Proposition [L.15] we can choose 7 € D,,
and 7; € D,,, such that w' := w; and w} := w; ,, are commensurable for all ¢. Then

p=(wi] e lwp]) 7w+ ddRh) A A (W), + ddCey)
with ¢} := ¢; — 7;, and hence
Jor (1) S max(Jor (#7) + Tt ),

by Theorem 3.4l By (2.9), we have Jo, (1) < Jor (1) +C and J (¢}) < Ju (i) +C,
with C' > 0 independent of u, and (ii) follows. O

As a consequence, we get the following estimate for the energy:
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COROLLARY 3.5. Pick w' € Z, such that [w'] € Pos(X), and p € M?.

(i) If w' is commensurable to w, then
I () = €90 TE ()
with ¢ := dp(w,w’).
(ii) In the general case, there exists C > 0 only depending on w,w’ such that
Jor(p) < C(Juw(p) +1).

We refer to (4.21)) below for a more precise estimate when § is small.

PROOF. Assume first w’ commensurable. Pick a maximizing sequence (¢,) for
pin D, and set p; := MA,(p;). Then p; — p strongly in M* (see Theorem [2.22)),
and hence J,(1;) = Jo () and Jor (1) = Jur(p). For each j we have Ji,(p;) ~
Jo(p;) (see ([2.6)). Theorem [3.4] thus yields J7, (u;) < €9 JF (1), and (i) follows.

In the general case, we can choose 7 € D,, and 7’ € D, such that w; and w, are
commensurable (see Proposition [L.15). By (2.9), we then have J. (1) < Jo,_ () +C
and Jo,_, (1) < Jor (1) + C with C > 0 independent of y, and (ii) now follows from
(i). O

3.3. Holder continuity of the energy pairing. Recall from {1.3] that
Z,={0€ Z ||| <oo}.

Using the above results, we establish a general Holder continuity property for the
energy pairing.

THEOREM 3.6. Fori =0,...,n, pick 0;,0, € Z,, and ¢;,¢; € D, normalized
by [ @i = [} = 0. Then
(G0, 0) -+ (On,on) = (60, 00) - -+ (0, ¢0,)]
S A (max [0 = 0} + masx S (i )" 7).
with o := 27" and

A=V [T+ 18ille +1600.), T = maxIf(e:).

In particular,

(B10) O Onon)| SV [] (6]l max I 20,

PROOF. Assume first 6; = 6, for all . By symmetry of the energy pairing,
we may assume @; = @) for ¢ > 1. For i = 1,...,n set ¢; := 1 + ||0;l,- Then
;160 < 1, and
by convexity of J,, on D,. By homogeneity, we may thus assume ||0;]|,, < 1 for all
i =1,...,n. Thus —w < 6; < w, and hence 6; = 91'+ — 0, where 91'+ = 0; + 2w
and 6; := 2w both satisfy w < 93[ < 3w. By multilinearity, we may finally assume
w < 0; < 3w. By Proposition [L.I7 (i), it then suffices to show

(3.11) ‘/(goo — ) (01 +ddCp1) A A (O + dd0n)| < Vidw(po, @) > T <.
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Since w < 6; < 3w, Theorem [B.4] shows that
pi=([00] .. [0a]) (01 +dd°p1) A+ A (0, + ddp,,) € M
satisfies J,, (1) < J. By (2.23]), we infer

‘ [0 0= )| £ 3ol 00170,

which yields (B.11) since [(¢o — ¢o)pw =0 and [fg] - ... [0,] < Vi,.
In the general case, we may again assume (6;,9;) = (0},¢}) for i > 1, by
symmetry and multilinearity of the energy pairing. Then

(007@0) ’ (917@1) et (9n7@n) - (067@6) ' (61, 501) et (ena SOTL)

= (00 = 05,0) - (B1,01) - -+ (B, 0n) + (0,00 = £0) - (01, 01) -+ (O o),
where the last term has already been estimated by (B.11]). We are thus reduced to
showing

[(60,0) - (01, 01) - -+ - (O, )| S AT |60 |-
By homogeneity we may further assume ||6p||, = 1, and the desired estimate now

follows from the first step of the proof applied to ¢} = 0, using (6y,0)-...-(6,,0) =
0. (I

4. Twisted energy and differentiability

As in 3] we assume that the orthogonality and submean value properties hold,
and recall that this is satisfied when X is a normal irreducible compact Kéahler space
or any irreducible projective Berkovich space. We fix w € Z; with [w] € Pos(X).
In this section we introduce and study the twisted energy of a measure, and show
that it computes the directional derivatives of the energy.

4.1. The twisted energy of a measure. For any § € Z and ¢ € D,
Euyi0(9) i= V (w + 10, 0)"F!

make sense for all ¢ € R small enough, and

d

(4'1) VG Ew(@) = E Ew+t9(90)
t=0

satisfies
(4‘2) Vo Ew(@) = Ef}(@) - fo Ew(QD),
where
(4.3) B () :=V,;1(0,0) - (w, )"
and

V9 i=nV 0] W]t
Note that E? () is a linear function of § € Z, and
(4.4) El (o4 ¢) = Ef () 4+ ¢V for c € R,

while Vg E,, is translation invariant. For all ¢, € D, we further have

n—1
(4.5) B (9) — BL() = DV / (p— )0 Awh, A w7
j=0
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EXAMPLE 4.1. By (L24), we have E(144),((14+t)p) = (1+t) E,(¢). By (L217),
this implies Vo, Ey(p) + [ MA,(p) = Ew(p), and hence

(46) Vo Eu(p) =Eu(p) - / o MAL () = Tu(.0) ~ Ju(0,9) = Ju(9).

EXAMPLE 4.2. For each ¢ € D and t € R, (1.29) yields E4tadey () = Ew (o +
ty) — B, (tY), and using again (L2T) we get

(7) Vi Eulo) = [ D0MAL) - )
EXAMPLE 4.3. For any T € D, we similarly have Ey,_1+9(¢) = Eyrto(@+7) —
Ew+t0(7—) and
(4.8) Vo Ey, () = Vo Eu(p +7) = Vo Ey(7).
LEMMA 4.4. For all 0 € Z and ¢, € D,,, the following holds:
(i) if 0 € Z,, then
(4.9) Vo Eu(p) = Vo Eu ()] S Juo (0, 9)* max{IF (), 5 ()} (10|

with o 1= 27",
(ii) in the general case, there exist C > 0 only depending on w and 6 such that

(4.10) Vo Ew(p) = Vo Eu(¥)| < Clu(p, ) (max{Ju,(v), Ju ()} + 1)1_a-

PROOF. By translation invariance of Vg E,,, we may assume [ ¢ o, = [9 pro, =
0. When 0 lies in Z,,, Theorem [3.6] applied to (L.24) and (4.3) yields

[Eu(e) ~Eu(@)| SC and  [El(¢) - EL(¥)] < C(L+ [0]L)

with C := J,, (¢, )* max{JF (), J}(¥)}'~*. By homogeneity of EY, with respect
to 0, we may replace 1+ |||, with ||0]|., in the last estimate, and (i) now follows
from (4.2) together with [V!| < n||d|..

In the general case, pick 7 € D, such that 6 € Z,_ (see Proposition [L.12).
Given ¢, € D,,, we then have ¢ — 7,90 — 7 € D,,_, and (L8]), (L.39) yield
Vo EwT (QO - T)_VG EwT W - T) =V Ew(@)_VQ Eo (¢), JwT (QO—T, '(/J_T) =Ju (‘Pv w),
Jo, (p=7) = Ju (0, 0=7) = Ju(7,0) S Ju(@)+u(7),  Ju, (¥—7) S Ju(¥)+Ju(T).
By (i) we thus get

« 11—«
|v0 Ew(sp) - v@ Ew(w)| S Jw(‘»ov 1/)) (maX{JI(@)v J:(i/))} + JI(T)) HGHwTa

which proves (ii). O

PROPOSITION 4.5. For any 0 € Z, there exists a unique strongly continuous
functional J° : M' — R, the O-twisted energy, such that

(4.11) JL(MAL(9)) = Vo Eu(p)
for all ¢ € D,,. For all u,v € M*, we also have:

(i) J9(u) is a linear function of 6;
(ii) #f 0 € Z,, then

(4.12) 135 (1) = JE W) S G (s 1) max{ T3 (), I ()10
with o := 27", and hence
(4.13) 95| S IEl16]l.;
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(iii) in the general case, there exist C > 0 only depending on w and 6 such that
(4.14) 135 (1) = IE ()] < O (p, 1) (max{Jw (), o ()} + 1)1,
and hence
(4.15) 1751 < CJu(pn) +1).

PROOF. Assume p,v € D, satisly MA,(¢) = MA, (). Then J,(p, %) = 0,
and hence Vo E,(p) = VgE,(¢), by ([AI0). As a result, there exists a unique
function J¢ on the image of MA,,: D, — M! such that ([@.I11) is satisfied. For all
p,v € M in the image of MA,, it further follows from (4.10) that (£14) holds.
This shows that J? is uniformly continuous on a dense subspace of the quasi-metric
space (M1 4,), and hence admits a unique continuous extension J?: M! — R.
Finally, (i) holds by linearity of Vg E, with respect to 6,(ii) and (iii) follow, by
continuity, from Lemma [4.4] O

Using (411) (with ¢ = 0), (6], (A1) and (48], we further get, for all u € M,
Y e€Dand T€D,,

(4.16) I (hw) = 0;

(4.17) Jo (k) = Ju(p);
(418) IV = [0 )
(4.19) I, (1) = I () + ¢

with ¢ € R uniquely determined by {.16), i.e. ¢ =J% (p,) = =% (pe,).

4.2. Holder continuity of the twisted energy. The following estimates
will be the key ingredients for the continuity of coercivity thresholds (see Theo-
rem [5.5] below).

THEOREM 4.6. Pick w,w’ € Z; with § := dp(w,w’) < 1 and [w'] € Pos(X).
For all 9,0’ € Z,, and u € M?', we then have

(4.20) I0(1) = 3%, ()| < (8001w + 110 — 0']]u) I (1)
and
(4.21) I5 () = (1 + 08I ().

LEMMA 4.7. Assume w < w' < e%w with § € [0,2]. Pick ¢ € D, C D/, and
set = MA,(p), ' == MA,/(p). Then:

(4.22) Vo Bu(9) = Vo Bur ()] S 035 ()61
(4.23) max{J% (1), 35, (i)} € 35 (w):
(4.24) Jor (') S 635 ().
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ProoF. All three estimates are invariant under translation of ¢ by a constant,
and we shall rely on a different normalization for each of them. We first normalize
¢ by [ ¢ p, =0. By homogeneity, we may further assume ||6||,, = 1. Since

Ei(@) - EZ/(SO) = Vojl(ea O) : (wa (p)n - Vw_/l(ev 0) : (w/a So)n
with V,,//V,, = 14 O(4), Theorem [B.6] yields
[EL(0) = B ()| S o’ = il () S 635 (1):

We similarly get |Ey () — Eo ()| < 631 (1), and (4.22) follows, using the trivial
estimate

Ve =VvI4+0(5).
Next, we normalize ¢ by sup ¢ = 0. By Lemma [1.20] we then have
Jor (1) % 3ur(9) = [ 9hr = Burl) < ~Burl) S ~Bul) < I 1),

On the other hand, Corollary B.5] yields J7, (1) < Jf (1), and (&23) follows.

Finally, we normalize ¢ by [ ¢ p,» = 0. Pick a maximizing sequence (¢;) in D,
for p, also normalized by [ ; o = 0, and set y; := MA,, (¢;). By Theorem [2.22]
Juwr (p, 1) is the limit of

oo ) = Jor(wiso) = [ = )0 = ) = [ (= ) = ) + o(0),
where the last two points hold by (1.30) and (2.23]), respectively. Now
[ =00 =0 = [ 0,00 )" = V0,0 s )]

- [V 1(07 gp) ! (w/a @)n - Vw71(05 90) ! (w7 @)n} )

w

where

[V M0, 4:) - (@', 0)™ = Vi (0,40) - (w,0)"] S llo” — wll max{J, (), JF, (1)}
and
V1 (0,0) - (', 0)" = V0, 0) - (w,0)"| S llo’ = wllwr 33 (),

by Theorem B.6l Since ||w' — wllw <3, Jur (@) = Jor (1) and Jor () = T (@) —
Jwr (1), this proves ([£.24)), thanks to (4.23]). O

PROOF OF THEOREM [4.6l Note first that w” := e 9w < w’ < e®w, and hence

G < W <P, W <w < el
Arguing successively with w”,w’, and with w”,w, and relying on Corollary B.5]
it is thus enough to prove the result when w < o’ < edw, which we henceforth
assume. By density of the image of MA,: D, — M! and strong continuity of
Jf) and JZ, (recall that the strong topology of M is independent of w), we may
assume p = MA,(¢) with ¢ € D,, C D,r. As in Lemma .7 set p/ := MA, ().
By (@.11)), we have
o) = VoBu(p),  JL (W) = Vo Eu (),

and (4.22) thus yields

(4.25) |38 () = I% ()] < 835 ()10
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On the other hand, ({.12]), implies

(4.26) |98 (1) = 3% ()] < 8%T5 ()16
thanks to (4.23) and (d.24). Finally, (4.13]) yields
(4.27) 90 = 38| = 3577 ()| S 5 ()16 = ¢/,

and summing up (4.25), (4.26) and (4.27) yields (4.20). Applying the latter estimate
with 0 :=w, 0’ ;== W', we get

(4.28) [T (i) = Jur ()] < 635 (),
in view of #17). Since we also have T, = (1 + O(9))T,, (see ([1.23)), {.21)
follows. O

4.3. Differentiability of the energy.

THEOREM 4.8. For any 0 € Z and p € M*, we have

d _ 10
at tZOJerte(ﬂ) =J, ().

If we do not assume 0 € Z,, the condition w + ¢t6 > 0 will fail in general, but
one can still make sense of J,419(t), see Remark 2.4

LEMMA 4.9. Pick 0 € Z,, and ¢ € D,, normalized by [ ¢ p1, = 0.Then

B ()] < T30 ‘/goMA

Proor. We have

w n+1 w n (w n
E.(p) = %, /(p MA,, (p) = W’ E () = W7

and the estimates thus follow from (8.10) (and homogeneity in 6). O

ST, [EL@)] S 100.I5 ():

LEMMA 4.10. Pick 0 € Z,, such that ||0]|, <1 and [w + 6] € Pos(X). For all
€ MY we then have

oo (1) 2 Juo (1) + 35 () = OIS () 10112)-
Recall that, in this paper, the implicit constant in O only depends on n.

PROOF. Set J := J}(p) and € := ||0]|,,. If € = 0, then § = 0 and the result is
clear. We may thus assume & > 0 and write 6 = 0 with ||0]|, = 1 and € € (0, 1).

By density of the image of MA,,: D, — M!, it is enough to prove the result
when p = MA, (¢) with ¢ € D,,, which we normalize by [ pu, = 0. By (2.5),

(4.11) and (4.2), we then have

@29 ) =Eu(o) - e 100 =EL(e) - VI Eu(e).
Note that

(4.30) l-gw<w+<(Q+ew<(1—¢e) tw,

and hence

(1 - E)QD S D(lfs)w - Dw+9.
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By (2.2), this yields
(4.31) Joso(w) = Bura (L= 2)9) = (1-2) [
Further,
(04 1)Verso o (1= 2)9) = @+ 6, (1 — 2)p)™ = (w, ) + (0, —2)" "
(@)™ (4 1) [(0,0) - (w,0)" — £(0,9) - (w, )] + £2a(e)
— (0 V. [Bal) 4 ELR) < [ o] + a0
with

n+1
a(e) == Z (nj— 1) e12(0, —) - (w, )",

Since |||, = 1, (B.10) yields |a(e)| < V,,.J. Combining this with
Vito = [w+0]" = [w]™ +n[f] - [w]" ' + O(*w]™) = Vi, (1 + VI + O(?)),

and

=2

v se @IS |[eu <o [Be)sen

(see Lemma [4.9]), we infer
Eutro((1—e)p) > (1= VI +0(e?)) (Ew(tﬂ) +E(p) — 6/@# - O(€2J))

— Eu(e) + EL(9) ~ VEu(e) — ¢ [ ou—O(),
Injecting this into (4.31) and using (£.29), we get
Joro(p) = Jo(p) + 3, (1) — O(e2),
which completes the proof. O

PROOF OF THEOREM 4.8 Assume first 6 € Z,,. Set J := J}(u). By Lemma
[4.10l we then have

Jorteo (1) 2 Jo (k) + 3 (1) = O8] 7).

For [t| < 1, we also have §(w+t6,w) < 1, and hence J} (1) < J, by Corollary B.5l
Reversing the roles of w and w + ¢4, Lemma [4.10 thus yields

Jo(p) = Joeo(p) — tJf;the(M) - O(t2H6‘||wJ).
By Theorem 6] J% . ,,(1) — J% (1) as t — 0, and we conclude, as desired,
Jurto (1) = Juo(p+ 135 (1) + o(t).
ast — 0.
In the general case, pick 7 € D, such that § € Z,_(see Proposition [L.12]).
Then (2.9) yields
Jorro(p) = o, v10(p) — /Tﬂ + Ewpeo(7),
see Remark [2.4] We infer

d
2| Jero() =JC, (1) + Vo Bu(r) = JG, (1) + I3 () = I
t=0

(1),
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where the first equality follows from the first step of the proof and (4.2)), the second
one from (4.I1)), and the third from (4.19). O

5. Coercivity thresholds and free energy

As in §4] we assume that the orthogonality and submean value properties hold.
We will establish a general continuity result for coercivity thresholds, and apply
this to the free energy, which induces the Mabuchi K-energy on potentials.

5.1. Continuity of coercivity thresholds. Fix for the moment w € Z,
with [w] € Pos(X), and consider an arbitrary functional F': M! — R U {+o0}.
DEFINITION 5.1. We define the coercivity threshold of F' as
(5.1) ou(F):=sup{oc e R|F >oclJ, + A for some A € R} € [—o0, +00].
We say that F is coercive if o,(F) > 0, i.e. F > oJ,+ A for some o > 0 and
AeR

By Corollary B.5] (ii), the condition that F' is coercive (resp. o, (F) = £00) is
independent of w.

Recall from (2.22)) that the energy of any p € M! coincides with the quasi-
distance to the base point p,, i.e. J, (1) = 0y, (1, pt,). As a result, the coercivity
threshold measures the linear growth of F' with respect to quasi-metric d,,. As we
next show, any other base point can be used in place of p,, (something that could
fail for a general quasi-metric).

LEMMA 5.2. For any F: M! = RU {400} and v € M we have
(5.2) ou,(F)=sup{oc € R | F > dd,(-,v)+ A for some A € R}.

In particular, o,(F) only depends on [w] € Pos(X).

PROOF. For any pu € M*, (2.24) yields

18 (11, ) = Juo(p)]| S Joo () maxc{J, (), oo (v) 1172
For any € > 0, we can thus find C. > 0 (depending on v) such that
(1—e)Ju(p) — Cc <, v) < (1+e)Ju(p) + C:
for all u € M!. This implies (5.2), and the last point follows, since the Dirichlet
quasi-metric J,, only depends on [w] (see Theorem [2.29]). O
DEFINITION 5.3. For each 8 € Z, we introduce the twisted coercivity threshold
(5.3) ol (F) =0, (F +J?).
We refer to §5.2] below for a discussion of the concrete cases we have in mind.
LEMMA 5.4. The following holds:
(i) 02(F) =0, (F), and 6% (F) = c%(F) +t for all € Z and t € R;

(i) wu:a have o,(F) € R (rzsp. 0u(F) = +00) iff 6 (F) € R (resp. 0% (F) =
+oo) for all 0 € Z.

PRrROOF. The first point is a direct consequence of (4.17). For any 0 € Z, (4.15])
yields a constant C' > 0 such that [J?| < C(J,, + 1). This implies

0u(F)—C <o’ (F)<o,(F)+C,
and (ii) follows. O
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We can now state the main result of this section.

THEOREM 5.5. For any functional F: M! — RU{+occ}, the twisted coercivity
threshold o (F) is a continuous function of ([w],[0]) € Pos(X) x Hpc(X).

We emphasize that F' here is a fixed functional, independent of w and 6. Con-
tinuity is understood with respect to the finest vector space topology of Hpc(X),
i.e. for [w] and [f] constrained to any given finite dimensional subspace.

LEMMA 5.6. There exists 6, > 0 only depending on n such that, for all w,w’ €
Z, with § :=dr(w,w’) <6, and all 0,0" € Z,,, we have

(5.4) 0l (F) > (1+0(6") [0 (F) + O(0°||flle + 16 = 6']l)] -
PROOF. Since JI = J, + T, we can replace J, with JF in (5.1I), and hence
(5.5) ol (F)=sup{oc e R| F+J¢ >0Jf + A for some A € R}.

w

Pick o, A € R such that F +J% > 0J% + A on M!. By ([@20) we get
F+3% > F+3% 4+ 00%)0)|, + 110 — 0]|.,)J35
> o)l + A+ 0060, + 10 —0']|.)IE
> (1+0(6%)) [0+ O*(|0]l + 16 — 0'[l] IS, + A,

using (#.21), and hence 0%, (F) > (14+0(6%)) [0 + O(6*]|., + || — €’||..]. Choosing
0p > 0 such that 1 + O(6*) > 0 for 6 < §,, and taking the supremum over o
yields (5.4). O

PrROOF OF THEOREM [5.51 We first show that o?(F) only depends on the

classes [w] € Pos(X) and [0] € Hpc(X). For each 7 € D,,, we have
05, (F) = 0w, (F+ 3], ) = 00 (F + ) = 0u(F + J}) = 0 [(F),

w

where the second equality follows from ([4.19)), and the third from Lemma[5.2] This
proves that of (F') only depends on [w]. On the other hand, for any v € D, (4.18)
yields

F+J0 —C<F4)0Fd% <py 0 4O
with C' := 2sup |[¢|. This implies ¢/ (F) = ¢%t49°¥(F), which thus only depends
on [6].

As noted above, Corollary B.5] (ii) shows that the condition o, (F) = £oo
is independent of w, and in that case the result trivially holds, since all twisted
thresholds are then equal to +o00, by Lemma [5.4] (ii).

Assume now that the twisted thresholds are finite valued. Pick wy € Z; with
[wo] € Pos(X), 6y € Z. Choose a finite dimensional subspace W C Hpc(X)
containing [wol, [fo], and a finite dimensional subspace V' C Z containing 6y, and
whose image in Hgc(X) contains W. Since 0% (F) only depends on [wg], we can
assume without loss V' C Z,, (see Proposition [LL12]). After enlarging V', we may
further assume that it contains wy. For each w,0 € V C 2Z,, with w close enough

to wo, (B.3)) yields
|0L(F) = ol (F)] < 6% [05,(F) + O(6%(|60]lwo + 116 — bolly)]
with § = dp(w,wp). By Lemma [[.14] this shows that the restriction of (w,8) —

0% (F) to V is continuous at (wp, ), and the result follows, since the image of V/

contains W. O
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5.2. Free energy vs. Mabuchi K-energy.

5.2.1. The Kihler case. Consider first a compact connected Ké&hler manifold
X. Any smooth metric p on Kx induces a volume form p, (normalized to mass
one), and hence a (relative) entropy functional

(5.6) Ent,: M — RU {400},

such that
I
Ent,(u) := /log <—) W
Hp

if p is absolutely continuous with respect to u,, and Ent,(u) = +oo otherwise.
Note that

(5.7) Bats (1) = Bntylo) + [ (o= )1

for any other metric p’ on Kx. As is well-known, the relative entropy can also be
written as the Legendre transform

Ent,(p) := ?lelg (/fu — log/ef,up)

which shows that (5.6]) is convex and lsc. In particular, the restriction Ent,: M! —

R U {+o0} is Isc in the strong topology. While it is not continuous, we nevertheless
have (see [BDL17, Theorem 4.7]):

LEMMA 5.7. For each u € M?', there exists a sequence (p;) in D, such that
wi = MA, (¢;) satisfies p; — p strongly in M and Ent,(p;) — Ent,(u).

Extending the terminology of [Berm13], we introduce:

DEFINITION 5.8. The free energy F,,: M! — RU {+oc0} is defined by setting
(5.8) Fo(p) := Ent, (1) — Ent, (i) + 2 (1),
where 0, € Z denotes the curvature of p.

As the notation suggests, F,, is independent of the choice of p; this follows
from (B.7)) combined with (4.18). Furthermore, (A.16]) and (4.19]) show that F, only
depends on the Kéhler class [w], up to an additive constant uniquely determined
by the normalization Fy,(u.,) = 0.

The raison d’étre of the free energy is that its composition with the Monge—
Ampere operator coincides with the Mabuchi K-energy My, : D, — R, i.e. we have
(5.9) Fu,(MAL(9)) = Mu(p)
for all ¢ € D,. Indeed, in view of (411), (B.9) is equivalent to the well-known
Chen—Tian formula for the K-energy, which can be written as
(5.10) M., () = Ent,(MA, (¢)) + Ve, Eu(p) + ¢
in the present formalism, for a constant ¢ € R determined by the normalization
M?(0) =0, i.e. ¢ = —Ent,(u,).

DEFINITION 5.9. The coercivity threshold of (X,w) is defined as o(X,w) :=
0w(Fy).

THEOREM 5.10. The coercivity threshold of (X,w) is a continuous function of
the Kdahler class [w], and it satisfies

o(X,w)=sup{oc e R| M, >0J,+ A on D, for some A € R}.
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By [CC21], o(X,w) > 0 iff there exists a unique constant scalar curvature
Kéhler (cscK) metric in [w]. In particular, we recover the fact, originally proved
in [LS94], that the set of Kahler classes of X that contain a unique cscK metric is
open.

PROOF. Pick a smooth metric p on Kx. By (5.8)), we have o(X,w) =olr (Ent,),
and the first point thus follows from Theorem [5.5l As to the second point, it is a
simple consequence of (5.9) and Lemma [5.7 |

REMARK 5.11. Given 6 € Z, one can more generally consider the 6-twisted
free energy Ffj = F, +J%  whose composition with the Monge-Ampére operator
coincides with the O-twisted K-energy M’ = M, +V4 E,, (see [BDL1T,[CC21]).
Again, Theorem [B.5] shows that the coercivity threshold

o?(X,w) == 0,(F?) = 0 (Ent,)
is a continuous function of [w] and [0], while Lemma [B.7] shows that
o (X,w) = sup {o eR|M? > 0], + A on D, for some A € R}

as considered for instance in [SD20]. Combining this with [CC21], and assuming
0 > 0, this implies that the set of Kahler classes of a compact Kdhler manifold
that contain a O-twisted cscK metric is open—something that can also be directly
obtained along the lines of [LS94].

5.2.2. The non-Archimedean case. Next we consider a smooth, irreducible pro-
jective Berkovich space X over a non-Archimedean field k of characteristic 0.
Pick a PL metric p on Kx, and define the associated non-Archimedean entropy
Ent,: M — RU {+o0} by setting

Ent,(p) := /(Ax —p) 1

Here Ax denotes the Temkin metric (see and also [Ste19]) on Kx, and
Ax —p: X - RU{+o0} is the corresponding lsc function, using additive notation
for metrics (see [BoJ17, §5.7]). Again, Ent, is convex and lsc, and (5.7) holds for
any other choice of PL metric p’ on Kx. See also [Ino22] for a related notion in
the trivially valued case.

As above, one can then define the (non-Archimedean) free energy F,,: M! —
R U {+o0} by (5.8), with §, € Z the curvature of p. Its composition with the
Monge—Ampere operator coincides with the (non-Archimedean) Mabuchi K-energy
M, : D, — R, defined by (5.10).

However, the major difference in the non-Archimedean case is that the analogue
of Lemmal5.7is only a conjecture (compare Conjecture 2.5] and
Conjecture 4.4]). Explicitly:

CONJECTURE 5.12. For each p € M, there exists a sequence (¢;) of w-psh
PL functions such that p; == MA,(p;) satisfies p; — p in M' and Ent,(u;) —
Ent,(p).

As a consequence, the coercivity threshold o(X,w) := o,,(F,,) only satisfies
(5.11) o(X,w) <sup{o € R|M, >0J,+ A on D, for some A € R},
and equality holds if Conjecture (.12]is valid.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



MEASURES OF FINITE ENERGY 201

These definitions are especially relevant when k is trivially valued and w lies
in Amp(X) — Z, (see (LG)). Indeed, the free energy F, (1) then coincides with
the invariant 3, (p) introduced and studied in [BoJ23]; see also [DL23|[Liu23].
By homogeneity with respect to the action of Rsg, o(X,w) = o,(F,) is further
equal to the divisorial stability threshold oqiv(X,w), which is positive iff (X,w) is
divisorially stable.

On the other hand, the right-hand side of (5.11]) coincides, by definition, with
the K-stability threshold ok (X, w), which is positive iff (X, w) is uniformly K-stable
in the sense of [Derl6, - Thus divisorial stability implies uniform K-
stability, and the converse holds if Conjecture [5.12]is satisfied.

REMARK 5.13. Assume that (X, L) is a polarized smooth projective variety over
C, and pick a Kdhler form w € ¢i(L). Using and , one can then
show that the above thresholds satisfy
Udiv(X, L) S U(X,w) S UK(X, L)

Congecture B.12] would further yield ox (X, L) = oaiv(X, L), and hence conclude
the proof of the ‘uniform’ version of the Yau-Tian—Donaldson conjecture, as noted
m

Appendix A. Convexity estimates

We consider the following data:

e a surjective map 7: V — © of R-vector spaces, with fibers Vp := 771(0);
e a homogeneous polynomial F': V — R of degree n + 1, n > 1, with
associated symmetric multilinear map

VP SR (20, Tn) 20 - ... - Ty,
ie. F(x)=a""
e a convex cone P C V such that
(A1) 22 x9-...xpy >0forallz € Vyand z; € P.

EXAMPLE A.1. The main example that we have in mind is the negative of
the energy pairing in 1.4, where V. = Z x D with its projection to © = Z, and
P={(0,¢) €V |60, >0}. Another example is given by the negative of intersection
pairing on a flat projective scheme over Z.

Our goal is to use (A) and the resulting Cauchy-Schwarz inequality
(A.2) (- y -z ) < (@2 o)WY T y)

for all x,y € Vj and x; € P to derive various inequalities and convexity statements.
For each z € V' we define the linear form F’(z) € VV by

(F (), y) = 2

Sl Pty =y,

t=0

and we set for all z,y € V
(A.3) (z,y) = F(z) = F(y) = (F'(y),z — ).

A simple computation yields

(A4) Szy) =Y G+ (@—y)? -y 2
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In what follows, we fix 8§ € © and set Py := Vy N P.

LEMMA A.2. We have §(z,y) > 0 for x,y € Py. Moreover, F is convex on Py,
and for every y € Py we have that x — §(x,y) is convez.

ProoF. By (AJ) and (A.4), we have §(x,y) > 0 for x,y € Py, and this implies
that F' is convex on Py; it then follows from (A3) that = — §(z,y) is convex. [

THEOREM A.3. For all z,y,z € Py and t € [0, 1], the following holds:
e quasi-symmetry:
o(z,y) ~ d(y, x);
e quasi-triangle inequality:
0(z,2) S 0(z,y) +6(y, 2);
e quadratic estimate:
§(z, (1 —t)x + ty) < t26(w, y);
e uniform convexity:
(L =) F(x) + tF(y)] = F((1 = )z +ty) Z (1 = )d(z,y).

For any base point z. € Py and x;,v;,2; € Py, the following Holder estimates
further hold:

(A.5) (o —wo) (1 —y1) 22+ 20| S 5(;1;07y0)a6(x17y1)06M1—2a;
(A.6) [(F'(x0) = F'(y0), 21 — y1)| < 6(wo, o) /20 (w1, y2) M2
(A7) |0(z0, 1) — 0(yo, y1)| < max{d(xo,y0), 6(x1,y1)}* M~

with a 1= 27" € (0,1/2] and M = max¢ 0(§, z.), where in each case & ranges over
the elements of Py appearing in the left-hand side of the inequality.

The strategy to get these types of Holder estimates goes back to
[BBEGZ19,[BoJ22], building upon an original idea of [BIo03]. In the rest of this
section we prove Theorem [A.3] largely following [BoJ22, §3.3].

Given z,y € Py, we set

2 n—1—j

d(z,y) = max (z—y)? -y -z

0<j<n—1
Using (A4) it is then clear that
(A.8) 3(z,y) = 8(y,2) = d(w,y) = (z —y)* - (5(z +y))" "

To prove the inequality d(z, (1 — t)z + ty) < t25(x,y) it suffices to prove the
corresponding inequality d(z, (1 — t)x + ty) < t%d(z,y). But

da, (1= Dz +ty) =2 max (o -y (1= o+ 1y) 2" S Cd(w,y)
<j<n—
using multilinearity and the binomial theorem.
Next we prove what is essentially a special case of (A.5).
LEMMA A 4. Ifx,y,z € Py, then
(x—y)* """ S d(x,y)* max{d(z, 2), d(y, 2)}' 7.
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PROOF. Set w:= (2 +y), A:=d(z,y), B :=max{d(z,2),d(y, 2)}, and
b= (z—y)? 20w

for 0 < j <n—1. Then by =~ A, and our goal is to show b, _; < A2*B'~2% By the
triangle inequality for the seminorm v — v/v2 - z7=1 on V;, we have

bt < (V(z—2)2- 2071+ /(y — 2)2 - 2n1)2 < 4B.
If A > B, then b,_; < 4B < 4A%?*B172% and we are done, so we may assume
A < B. In this case, we show by induction that

b < A2 g2’

for 0 < j <n—1. The case j = 0 is clear, so suppose 0 < j < n — 2, and note that

bat—by = (2 —y)? - (2 = w) -2 w2

n—2—j n—2—j

— @y (w) ey w
Here we can use the Cauchy-Schwartz inequality to estimate the last two terms.
For example:

—(z—y) (z—w)- 2 2w

(@ —y) (2 —w) -2 "2
<((z—y)?z- 27 w2 N(z—w)? -z 2 -w"2).

Using that 2w — x = y € P, we can bound the first factor by 2b;, and the second
factor by 2(z — w)? - 27 - w" 177 < 2d(z,w). Adding the two terms, we get bj1 —

b < 4y/bj\/d(z,w). Now d(z,w) = §(w,z) < max{d(z, z),d(y,z)} ~ B using the
convexity of (-, 2), see Lemma[A2. All in all, this yields

bjy1—b; S /b;B.
for 0 < j <n — 2. Using the induction hypothesis b; < A% ‘-2’ , we get
biv1 Sbj+/Bb; SA2 B2 4 A2 B2 <9 g
where the last inequality follows from our assumption that A < B. We are done. [

Using Lemma [A.4] we can now prove the quasi-triangle inequality for &, or
equivalently for d. Fix x,y, 2z € Py, and set w := %(az +y). Then
d(z,y) = (z—y)* w7 S (z—2)? " 4 (y - 2)7w T
< max{d(z, 2), d(y, 2)})** max{d(z, w), d(y, w), d(z, w) }' 7>,
by the triangle inequality for the norm v — V22 - w"~! and by Lemma [A 4 As

noted above, the convexity of §(-, z) =~ d(-, z) gives d(z,w) < max{d(z, z),d(y, z)},
as well as d(z,w),d(y,w) < d(z,y). Thus

d(z,y) < max{d(z, 2),d(y, 2)})** max{d(z,y), d(z, 2), d(y, z) }} 2%,
which easily implies d(z,y) < max{d(z, z),d(y, z)}, as desired.

Next we prove (A.5) in general. By the Cauchy—Schwartz inequality we may
assume g = z1 and yp = y;. We may also assume n > 2, or else we are done
by (A8). Set z := (22 + -+ 2,). Then

(T1=y1)? 220z S (w1 —w1)?- 2" S d(ar,91)* max{d(ar, 2), d(y, 2) )2
~ 0(x1,y1)%* max{0(x1, 2), 6 (y1, 2) }1 2.
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By the quasi-triangle inequality we have 0(x1,2) < max{d(z1,z.),d(z, z4)}, and
by quasi-symmetry and Lemma [A.2/ we have 6(z,z,) < max;>20(2;,2,). A similar
estimate for 6(y1, 2) completes the proof of (A.5).

Next we prove ([A.G), which is equivalent to

(2§ = y5) - (21— y1)| < 6(x0,90)"/ 26 (w1, y1)* M2,
By the Cauchy—Schwartz inequality, we have

n—1

(5 = y5) - (z1 = y0)|* = (w0 — o) (z1 — 1) D_wpyg ' [
7=0

< | (w0 —0) Z%y" @ —w) Z%y" =

Here the first factor on the right is & §(xq,yo), whereas the second factor can be
bounded above using (A.5).

It only remains to prove (A7). By the quasi-triangle inequality for §, it suffices
to consider the case when zg = yo or 1 = y1. Now

5(zo, 1) — 8(wo, y1) = n(zPt =yt — (n+ Dao(a] — yl)

= (1 —y) Y _(@lyy ™ — woxfyy F ).
J.k
If j <k, then

j,n—j k, n—k—1 n—k—1/ k—j+1 k]+1 Jj,n—k—1 k—j k—j
1Y T — ToT1Yy =2y} (1 )+ w1yy wo(zg ' —2y7),

and by factoring each term of the right-hand side we see from (A.5) that

(21 = )iy ™ = zoxfyy ™ S lan,y) M

The case when j > k is handled in a similar way, and adding all the terms yields
0(z0, 21) — 6(z0,y1)| S 0(w1,91)* M .

A similar argument shows that |§(xq,z1) — 6(yo,z1)| < §(w0,y0)*MP~*, and
completes the proof.

Appendix B. Regularization and orthogonality on Kahler spaces

By relying on a variant of the classical Richberg regularization technique, it was
proved in [BKO7] that any w-psh function on a compact Kéhler manifold (X, w)
can be written as the limit of a decreasing sequence of smooth w-psh functions. It
is natural to hope that this holds in the singular case as well:

CONJECTURE B.1. Let (X,w) be a compact Kihler space. Then any w-psh
function ¢ on X can be written as the pointwise limit of a decreasing sequence (@;)
of smooth w-psh functions.

Note that the conclusion only depends on the Kéhler class [w]. Besides the case
when X is nonsmgular@ mentioned above, we have:

6Conjccturc [B.1lis now known to hold for any normal space X as a consequence of the recent
work [CC24| combined with [Ric68].
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ExXAMPLE B.2. Conjecture Bl holds if X is projective and [w] lies in the ample
cone, i.e. the open convex cone generated by classes of ample line bundles on X.
This is a consequence of [CGZ22| Theorem 1.1].

LEMMA B.3. Let (X,w) be a compact Kihler space for which Conjecture Bl
holds. Then [w] has the orthogonality property (cf. Definition 2.15]).

PROOF. Pick a resolution of singularities 7: Y — X, and set 6 := 7*w > 0.
Since [6" = [w™ > 0, the (1,1)-class [f] is semipositive and big. For any g €
C%(Y), consider the §-psh envelope

Py(g) :=sup{y € PSH(Y,0) [ 4 < g}.
As is well-known, Py(g) is 6-psh, and MAy(Py(g)) is supported in {Py(g) = g}, i.e.

(B.1) /Y (g — Polg)) MA,(Ps(g)) = 0,

see for instance [BB10, Proposition 2.10]. For any f € CY(X), we next claim that
Po(m* f) is the limit in £1(Y,0) (the space of f-psh functions of finite energy) of
the increasing net {7*¢},ep, ;. Assume this for the moment. By continuity of
Monge-Ampere integrals along increasing nets in £1(Y, #), and using

/ (f — o) MAL () = / (a* f — 7% 0) MAg(n* ),
X

Y
for any ¢ € D,,, we infer

®2)  tm [ (7= @)MAL) = [ (= Pae ) MAPa(r" 1)) =0,
»€Duw,<f Jx Y
by (BI).
To prove the claim, note first that Conjecture [B.1] implies that the increasing
net {¢},ep, ., converges pointwise to

Py (f) :=sup{¢ € PSH(X,w) [ ¢ < f}.

Indeed, given § > 0 and a function ¢ € PSH(X,w) with ¢ < f, Conjecture [B.]
and a Dini-type argument guarantees the existence of a function ¢’ € D, «; with
Y < ' < f+4 0. The claim is thus equivalent to the statement that 7* P (f)
coincides a.e. with ¢ := Py(7* f). To prove this, pick 7 € PSH(X,w) with 7 < f and
{T = —00} = Xqing (compare the proof of Lemmal[l.28). Since 9, := (1—¢)p+en*r
is m*w-psh outside W_I(Xsing), and 1. = —oo on the latter, we have . = 7*¢. for
a unique p, € PSH(X,w) (see [Dem85, Théoréme 1.10]). Since 7%, < 7*f, and
hence ¢. < f, we have . < P, (f). Thus

(1-e)p+ern*t=1"p. <T*Pu(f) <o,

and hence 7* P, (f) = Po(7*f) on Y \ 7 (Xsing)- O
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