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Abstract. We introduce a synthetic approach to global pluripotential theory,
covering in particular the case of a compact Kähler manifold and that of a
projective Berkovich space over a non-Archimedean field. We define and study
the space of measures of finite energy, introduce twisted energy and free energy
functionals thereon, and show that coercivity of these functionals is an open
condition with respect to the Kähler class.
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Introduction

Pluripotential theory on compact Kähler spaces is by now a very well developed
subject, with key applications to Kähler geometry. Generalizing classical concepts
from potential theory, measures and potentials of finite energy play a central role in
this theory, see for instance [GZ07,BBGZ13,Berm13,DN15,DGL21]. In par-
allel, a non-Archimedean version of pluripotential theory has also emerged, taking
place on projective Berkovich spaces [Berk90] over a (complete) non-Archimedean
field. Initially motivated by Arakelov geometry [Zha95,Cha06], it has found var-
ious other applications, including degenerations of Calabi–Yau manifolds [Y.Li20]
and the Yau–Tian–Donaldson conjecture [BBJ21,C.Li22,BoJ23].

These two versions of pluripotential theory bear many similarities, and can be
formulated in a quite parallel way. The main purpose of the present article is to
introduce a synthetic formalism covering in particular these two cases, and use it to
extend some of the main results of [BoJ22] and [BoJ23] (that were taking place
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on projective Berkovich spaces over a trivially valued field, and applied to the study
of K-stability). More specifically, we

• define and study the space of measures of finite energy;
• introduce the twisted energy and free energy functionals on the latter

space; the composition of these functionals with the Monge–Ampère op-
erator recover, respectively, the Donaldson J-functional and the Mabuchi
K-energy in the Kähler case, and their analogues in the non-Archimedean
case;

• show that coercivity of the free energy is an open condition with respect
to the Kähler class.

The emphasis in this paper is on measures of finite energy, as opposed to potentials
of finite energy, that we do not seek to investigate here (see for instance [BFJ15,
BoJ22,Reb21,DXZ23] in the non-Archimedean context).

The general setup. Throughout this paper, we work with a compact topo-
logical space X equipped with the following data:

• a dense linear subspace D ⊂ C0(X) of test functions, containing all con-
stants;

• a vector space Z of admissible (1, 1)-forms on X, endowed with a nice1

partial order, and a linear map ddc : D → Z vanishing on constants;
• an integer n ≥ 1 (seen as the ‘dimension’ of X), and a nonzero n-linear

symmetric map taking a tuple (θ1, . . . , θn) in Z to a signed Radon measure
θ1 ∧ · · ·∧ θn on X, assumed to be positive when all θi ≥ 0, and such that
each bilinear form

(0.1) D × D → R (ϕ,ψ) &→
⎠

ϕ ddcψ ∧ θ1 ∧ · · · ∧ θn−1

with θi ∈ Z is symmetric, and seminegative for θi ≥ 0.

We then introduce the Bott–Chern cohomology space

HBC(X) := Z/ddcD,

and define the positive cone Pos(X) ⊂ HBC(X) as the interior2 of the image of the
convex cone

Z+ := {θ ∈ Z | θ ≥ 0}.

This setup is primarily inspired by the case of a compact Kähler manifold X, where
D is the space of smooth functions, and Z the space of closed (1, 1)-forms. It also
covers the case of a projective Berkovich space X over a complete non-Archimedean
field k, where D is generated by piecewise linear (or model) functions, and elements
of Z are represented by numerical classes on models over the valuation ring (or test
configurations, in the trivially valued case) [BFJ16a, GM16, BoJ22]. At least
under reasonable assumptions on X and k, we then have HBC(X) = N1(X), and
Pos(X) coincides with the ample cone, see §1.3.2.

1See §1.1 for the terminology.
2Here we use the finest vector space topology of HBC(X), see §1.1.
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Measures of finite energy. Fix a form ω ∈ Z+ such that [ω] ∈ Pos(X), with
volume Vω =

∫
ωn > 0. The space of ω-plurisubharmonic test functions is defined

as
Dω := {ϕ ∈ D | ωϕ := ω + ddcϕ ≥ 0},

and the Monge–Ampère operator takes ϕ ∈ Dω to the probability measure

MAω(ϕ) := V −1
ω ωn

ϕ.

It admits a primitive, the Monge–Ampère energy Eω : Dω → R, explicitly given by

Eω(ϕ) =
1

n + 1

n∑

j=0

V −1
ω

⎠
ϕωj

ϕ ∧ ωn−j .

Denote by M the space of (Radon) probability measures on X, and define the
energy of a measure µ ∈ M as the Legendre transform3

Jω(µ) := sup
ϕ∈Dω

{Eω(ϕ) −
⎠

ϕµ} ∈ [0, +∞].

Then Jω : M → [0, +∞] is convex, and lsc in the weak topology; the space of
measures of finite energy is defined as

M1
ω := {µ ∈ M | Jω(µ) < ∞},

equipped with the strong topology, i.e. the coarsest refinement of the weak topology
in which Jω becomes continuous.

As a consequence of the seminegativity of (0.1), the functional Eω is concave.
This is equivalent to the non-negativity of the Dirichlet functional

Jω(ϕ,ψ) := Eω(ϕ) − Eω(ψ) +

⎠
(ψ − ϕ) MAω(ϕ),

which is more explicitly given by the familiar expression

Jω(ϕ,ψ) =
1

2

⎠
(ϕ− ψ)ddc(ψ − ϕ)

when n = 1, and a positive linear combination of integrals of the form
⎠

(ϕ− ψ)ddc(ψ − ϕ) ∧ ωj
ϕ ∧ ωn−j−1

ψ (0 ≤ j < n)

in general, see (1.31). Our first main result shows that the Dirichlet functional
induces, via the Monge–Ampère operator, a complete quasi-metric4 space structure
on M1

ω.

Theorem A. Assume that ω has the orthogonality property. Then:

(i) the image of the Monge–Ampère operator MAω : Dω → M is a dense
subspace of M1

ω;
(ii) there exists a unique quasi-metric δω on M1

ω that defines the strong topol-
ogy of M1

ω and such that

δω(MAω(ϕ), MAω(ψ)) = Jω(ϕ,ψ)

for all ϕ,ψ ∈ Dω;
(iii) the quasi-metric space (M1

ω, δω) is complete.

3This corresponds to E∨
ω(µ) in the notation of [BBGZ13, BoJ22], and to ‖µ‖ω in that

of [BoJ23].
4See §1.1 for the notion of quasi-metric used in this paper.
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The energy can be expressed in terms of the quasi-metric as

Jω(µ) = δω(µ, µω) where µω := V −1
ω ωn = MAω(0).

We refer to Definition 2.15 for the precise definition of the orthogonality property.
Suffice it to say here that it only depends on [ω] ∈ Pos(X), and holds when X
is a compact Kähler manifold, or any projective Berkovich space X over a non-
Archimedean field (as a consequence of [BE21, BGM22]). In the former case,
Theorem A can be deduced from [BBGZ13, BBEGZ19]; in the latter, it was
established in the trivially valued case in [BoJ22], and is thus extended here to the
case of an arbitrary non-Archimedean ground field.

The strategy of proof of Theorem A follows the same lines as in the trivially case
treated in [BoJ22]. The first key ingredient is a uniform di!erentiability property
for the Legendre transform of the convex functional µ &→ Jω(µ), which is shown to
be equivalent to the orthogonality property. This is used to prove that if (ϕi) is
a maximizing sequence for a given µ ∈ M1

ω (i.e. a sequence in Dω computing the
supremum that defines Jω(µ)), then MAω(ϕi) converges to µ. We emphasize that
this ‘asymptotic Calabi–Yau theorem’ is sufficient for our purposes, and that we
do not need to characterize the image of the Monge–Ampère operator (which is a
delicate issue in the non-Archimedean context).

The rest of the proof relies on an extensive use of Hölder estimates for mixed
Monge–Ampère integrals, obtained from repeated applications of the Cauchy–
Schwarz inequality to the seminegative form (0.1). This approach, which goes
back to [Blo03] and was further exploited in [BBGZ13,BBEGZ19,BoJ22], is
put in a simple general setting in Appendix A.

Twisted energy, free energy, and coercivity. Assuming from now on the
orthogonality property, we next investigate the dependence on ω of the space M1

ω

and the energy functional Jω : M1
ω → R≥0. To this end, we require the submean

value property, i.e. the existence of C ∈ R≥0 such that

supϕ ≤
⎠

ϕµω + C

for all ω-psh test functions ϕ ∈ Dω. We show that this condition is independent of
ω, and that it is equivalent to the irreducibility of X when the latter is a compact
Kähler or projective Berkovich space (see §1.5).

Theorem B. Assume that the submean value property holds. Then:

• the topological space M1 = M1
ω is independent of ω;

• for any θ ∈ Z, there exists a unique continuous functional Jθω : M1 → R
such that

Jθω(µ) =
d

dt

∣∣∣∣
t=0

Jω+tθ(µ)

for any µ ∈ M1; furthermore, Jθω(µ) satisfies Hölder estimates with respect
to ω.

The strategy of proof of Theorem B again globally follows the same lines as
the trivially valued case treated in [BoJ22,BoJ23]. However, in the latter case
the submean value inequality is actually an equality, i.e. one can take the constant
C above to be 0, while an extra layer of complication arises in the general case to
handle this constant, which forces us to take a slightly di!erent route.
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We call Jθω(µ) the θ-twisted energy of µ ∈ M1. It provides an analogue of
the Donaldson J-functional on the level of measures, and its relevance comes from
its relation to the Mabuchi K-energy, when X is a compact Kähler manifold or a
smooth projective Berkovich space. In these two cases, the choice of a (smooth or
PL) metric ρ on the canonical bundle KX defines an entropy functional Ent : M →
R ∪ {+∞}. In line with [Berm13], we then define the free energy Fω : M1 →
R ∪ {+∞} by setting

Fω(µ) := Ent(µ) − Ent(µω) + Jθω(µ),

where θ ∈ Z denotes the curvature of ρ. The free energy so defined is independent
of the choice of ρ, and its composition with the Monge–Ampère operator coincides
with the Mabuchi K-energy Mω : Dω → R. As a consequence of Theorem B, we
then show:

Theorem C. Assume X is a compact Kähler manifold or a smooth projective
Berkovich space over a non-Archimedean field. Then the coercivity threshold

σ(X,ω) := sup {σ ∈ R | Fω ≥ σJω + A for some A ∈ R} .

defines a continuous function of [ω] ∈ Pos(X).

This result actually holds in much greater generality, for the twisted coerciv-
ity threshold of an arbitrary given functional on M1 with no a priori regularity
whatsoever (see Theorem 5.5).

In the trivially valued case, the free energy Fω(µ) coincides with the invariant
βω(µ) defined and studied in [BoJ23], and σ(X,ω) with the divisorial stability
threshold of (X,ω), which is positive i! (X,ω) is divisorially stable (a strengthening
of uniform K-stability, conjecturally equivalent to it, cf. §5.2.2). Specializing to the
case of Dirac measures µ recovers the notion of valuative stability [DL23,Liu23],
which in the Fano case is equivalent to K-stability [Fuj19a,Li17].

In the case of a compact Kähler manifold, we have σ(X,ω) > 0 i! [ω] contains a
unique constant scalar curvature Kähler (cscK) metric, as a consequence of [CC21]
and [DaR17,BDL20]. Theorem C thus recovers the fact, originally due to LeBrun-
Simanca [LS94], that the existence of a unique cscK metric in a Kähler class is an
open condition on that class.

Structure of the paper. The article is organized as follows.

• Section 1 introduces the synthetic pluripotential theoretic formalism, in-
cluding the energy pairing and the submean value property, and estab-
lishes basic properties of the Dirichlet functional.

• Section 2 studies the space of measures of finite energy. It introduces the
orthogonality property, and proves Theorem A (cf. §2.6).

• Assuming the submean value property, Section 3 establishes the first part
of Theorem B, along with various further estimates for the energy.

• Section 4 is devoted to the twisted energy, which is proved to compute the
directional derivatives of the energy, concluding the proof of Theorem B.

• Section 5 studies the (twisted) coercivity threshold of a functional, and
proves that it depends continuously on the cohomology classes. This is
then applied to the free energy, yielding Theorem C.

• Finally, Appendix A establishes the relevant estimates needed for the
Dirichlet functional in a simple general setting, while Appendix B studies
the orthogonality property on compact Kähler spaces.
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Schneider, Rémi Reboulet and Ahmed Zeriahi for helpful discussions related to the
contents of this paper. We also thank the referees for many corrections and useful
comments.

It is a great pleasure to dedicate this article to Bo Berndtsson. His many
fundamental contributions to complex analysis, pluripotential theory and convex
analysis have been a constant source of inspiration for us. We would especially
like to express our admiration for his fantastic results on positivity of direct images
that have played a key role in our own works (among many others!), as well as for
his laid-back approach to mathematics in general, which makes Bo such a pleasant
person to interact with.

The second author was supported by the grants DMS-1900025 and DMS-
2154380 from the NSF, and award 1034361 from the Simons Foundation.

1. A synthetic pluripotential theoretic formalism

In this section, we introduce the general setup considered in this paper. This
is designed to cover in a synthetic manner the case of a compact Kähler space and
that of a projective Berkovich space over a non-Archimedean field.

1.1. Notation and terminology.

• For x, y ∈ R, x ! y or x = O(y) mean in this paper x ≤ Cny for a constant
Cn > 0 only depending on a given integer n fixed in the setup, and x ≈ y
if x ! y and y ! x.

• Recall that any real vector space V admits a finest vector space topology,
generated by its finite dimensional subspaces, i.e. a subset A ⊂ V is open
(or closed) i!, for each finite dimensional subspace W ⊂ V , A∩W is open
(resp. closed) in the canonical vector space topology of W . This topology
is not locally convex as soon as the dimension of V is uncountable.

• Consider a partially ordered R-vector space (V,≥). We shall say for
brevity that the partial order is nice if V+ := {x ∈ V | x ≥ 0} spans
V , and is closed in the finest vector space topology of V .

• In this paper, a quasi-metric on a set Z is a function δ : Z × Z → R≥0

that is
– quasi-symmetric, i.e. there exists C > 0 such that

C−1δ(x, y) ≤ δ(y, x) ≤ Cδ(x, y);

– satisfies the quasi-triangle inequality, i.e. there exists C > 0 such
that

δ(x, y) ≤ C(δ(x, z) + δ(z, y))

– separates points, i.e. δ(x, y) = 0 ⇔ x = y.
A quasi-metric space (Z, δ) comes with a Hausdor! topology, and Cauchy
sequences and completeness further make sense for (Z, δ).

1.2. Test functions and admissible (1, 1)-forms. Throughout this paper,
we work with a compact Hausdor! topological space X. We denote by C0(X)∨ the
space of signed Radon measures on X, and by

M ⊂ C0(X)∨
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the subset of probability measures, which is convex and compact in the weak topol-
ogy. Recall from the introduction that we assume X equipped with the following
data:

• a dense linear subspace D ⊂ C0(X) of test functions, containing all con-
stants;

• a vector space Z of admissible (1, 1)-forms on X, endowed with a nice
partial order, and a linear map ddc : D → Z vanishing on constants;

• an integer n ≥ 1 (viewed as the ‘dimension’ of X), and a nonzero n-linear
symmetric map taking a tuple (θ1, . . . , θn) in Z to a signed Radon measure
θ1 ∧ · · ·∧ θn on X, assumed to be positive when all θi ≥ 0, and such that
each bilinear form

D × D → R (ϕ,ψ) &→
⎠

ϕ ddcψ ∧ θ1 ∧ · · · ∧ θn−1

with θi ∈ Z is symmetric, and seminegative when θi ≥ 0.

Symmetry in the last item amounts to the integration-by-parts formula

(1.1)

⎠
ϕ ddcψ ∧ θ1 ∧ · · · ∧ θn−1 =

⎠
ψ ddcϕ ∧ θ1 ∧ · · · ∧ θn−1

for all ϕ,ψ ∈ D and θi ∈ Z, while seminegativity requires

(1.2)

⎠
ϕ ddcϕ ∧ θ1 ∧ · · · ∧ θn−1 ≤ 0

when θi ≥ 0 for all i.

Remark 1.1. The above setup induces a similar one by viewing θ1∧ · · ·∧ θn as
a p-linear symmetric function of (θ1, . . . , θp) for 1 ≤ p ≤ n and θp+1, . . . , θn ∈ Z+

fixed, or by replacing Z with any linear subspace Z ′ containing ddcD.

Definition 1.2. For any θ ∈ Z and ϕ ∈ D, we set θϕ := θ+ddcϕ. We say that
the test function ϕ is θ-plurisubharmonic (θ-psh for short) if θϕ ≥ 0, and denote
by

Dθ := {ϕ ∈ D | θϕ ≥ 0}
the space so defined.

Note that if θ ∈ Z and ϕ ∈ D, we have

(1.3) ϕ ∈ Dθτ ⇐⇒ ϕ + τ ∈ Dθ.

Moreover, for all θ, θ′ ∈ Z and t ∈ R>0 we have

Dθ + Dθ′ ⊂ Dθ+θ′ , Dtθ = tDθ.

In particular, Dθ is a convex subset of D, and

(1.4) θ ≤ θ′ =⇒ Dθ ⊂ Dθ′ .

Since ddc vanishes on constants, we have:

Example 1.3. Constant functions on X are θ-psh iff θ ≥ 0.

The two main instances of the above setup considered in this paper are as
follows.
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1.2.1. The Kähler case. The above formalism is primarily inspired by the case
of a compact Kähler complex analytic space X. Here n = dim X, D = C∞(X) is
the space of smooth functions on X, and Z is the space of closed (1, 1)-forms θ
on X that are locally ddc-exact (i.e. global sections of the image Z1,1

X of the sheaf
morphism ddc : C∞

X → Ω1,1
X ), and θ ≥ 0 means that θ is semipositive as a smooth

(1, 1)-form (see for instance [Dem85] for the definition of smooth forms in this
context).

When X is nonsingular, i.e. a compact Kähler manifold, Z coincides with the
space of closed (1, 1)-forms on X, but the inclusion might be strict in the singular
case.

For all ϕ,ψ ∈ D and θi ∈ Z, the Stokes formula implies
⎠

ϕ ddcψ ∧Θ =

⎠
ψ ddcϕ ∧Θ = −

⎠
dϕ ∧ dcψ ∧Θ

with Θ := θ1∧ · · ·∧θn−1, which yields (1.1) and (1.2), since the (1, 1)-form dϕ∧dcϕ
is semipositive.

1.2.2. The non-Archimedean case. Assume now thatX is a projective Berkovich
space over a non-Archimedean field k, i.e. the Berkovich analytification of a projec-
tive k-scheme, of dimension n = dim X. We then take D to be the R-vector space
generated by PL functions, see [BE21, §5.4].

When k is nontrivially valued, D can be described in terms of vertical divisors
on (projective, flat) models X of X over the spectrum S of the valuation ring. More
precisely, we have

D 1 lim−→
X

VCar(X )R,

where VCar(X )R denotes the R-vector space generated by Cartier divisors on X
that are vertical, i.e. supported on the special fiber. The same description applies in
the trivially valued case as well, if a model is now understood as a test configuration
X → S := A1 (see [BHJ17, §6.1], [BoJ22, §2.2]).

In the nontrivially valued case, the space Z is defined by setting

(1.5) Z := lim−→
X

N1(X/S),

where N1(X/S) denotes the (finite dimensional) vector space of relative numerical
classes (see [BFJ16a, §4.2], [GM16, §4], the definition being inspired by [BGS95]).
A form θ ∈ Z is thus represented by a numerical class θX ∈ N1(X/S) for some
model X , called a determination of θ, two such classes being identified if they coin-
cide after pulling back to some higher model, and we write θ ≥ 0 if θX is (relatively)
nef for some (hence any) determination X of θ.

The measure θ1 ∧ · · · ∧ θn associated to a tuple of forms θi ∈ Z is a finite
linear combination of Dirac masses at divisorial points, whose coefficients can be
described in terms of intersection numbers computed on models.

The linear map ddc : D → Z takes a vertical divisor D ∈ VCar(X )R to its
numerical class in N1(X/S), and the seminegativity condition (1.2) follows the
local Hodge index theorem of Yuan–Zhang [YZ17, Theorem 2.1].

Again, the same discussion applies to the trivially valued case as well, using
test configurations instead of models. In that case, pulling back numerical classes
on X to the product test configuration further yields an injection

(1.6) N1(X) ↪→ Z.

Note that only forms lying in N1(X) were considered in [BoJ22].
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Remark 1.4. In the non-Archimedean case, one could also work with smooth
functions and (1, 1)-forms in the sense of [CD12] (see also [GK15,GK17,GJR21]),
but this will not be considered in the present paper.

Remark 1.5. More generally, test configurations of any compact Kähler man-
ifold (as in [SD18, DeR17]) can also be approached using the above formalism.
This is the topic of recent work of Pietro Mesquita-Piccione [MP24].

Remark 1.6. Another setting where the above formalism applies is that of
tropical toric pluripotential theory as in [BGJK21].

1.3. Bott–Chern cohomology and positive classes.

Definition 1.7. We define the Bott–Chern cohomology space as

HBC(X) := Z/ Im ddc,

and denote by θ &→ [θ] the quotient map Z → HBC(X). The positive cone

Pos(X) ⊂ HBC(X)

is defined as the interior of the image of Z+.

Here the interior is taken with respect to the finest vector space topology
(see §1.1). Concretely, a class α ∈ HBC(X) belongs to Pos(X) if, for any β ∈
HBC(X), α + tβ lies in the image of Z+ for all t ∈ R small enough.

Since it is assumed that Z+ spans Z, its image in HBC(X) is a convex cone
that generates HBC(X). As a consequence, the positive cone Pos(X) is non-empty
as soon as HBC(X) is finite dimensional.

Remark 1.8. The image of Z+ in HBC(X) is not closed in general. Indeed, in
the compact Kähler case, this means that a nef (1, 1)-class on X does not always
admit a smooth semipositive representative (see Example 1.3.1 below, and [DPS94,
Example 1.7] for an explicit example).

Since ddc vanishes on R ⊂ D, (1.1) yields
⎠

ddcϕ ∧ θ1 ∧ · · · ∧ θn−1 =

⎠
ϕ ddc1 ∧ θ1 ∧ · · · ∧ θn−1 = 0

for all ϕ ∈ D and θi ∈ Z. As a result, (θ1, . . . , θn) &→
∫
θ1 ∧ · · · ∧ θn descends to a

symmetric n-linear pairing

HBC(X)n → R (α1, . . . ,αn) &→ α1 · . . . · αn,

which we call the intersection pairing.

Lemma 1.9. For all classes α1, . . . ,αn ∈ Pos(X) we have α1 · . . . · αn > 0.

Proof. By assumption, the measure θ1 ∧ · · · ∧ θn is nonzero for some tuple
θ1, . . . , θn ∈ Z. Since Z+ generates Z, we can further assume θi ∈ Z+ for all i.
Then [θ1] · . . . · [θn] =

∫
θ1 ∧ · · · ∧ θn > 0. Now we can find 0 < , 2 1 such that

αi − ,[θi] ∈ Pos(X) for all i, and hence α1 · . . . · αn ≥ ,n[θ1] · . . . · [θn] > 0. "

Definition 1.10. For each ω ∈ Z+ and θ ∈ Z we set

‖θ‖ω := inf{C ≥ 0 | ±θ ≤ Cω} ∈ [0, +∞],

and we say that θ is ω-bounded if ‖θ‖ω < ∞.
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The set
Zω := {θ ∈ Z | ‖θ‖ω < ∞}

of ω-bounded forms is a linear subspace of Z, on which ‖ · ‖ω defines a norm.

Remark 1.11. In general, Zω is a strict subspace of Z. More precisely, Zω = Z
iff ω lies in the interior of Z+ in the finest vector space topology of Z, and this
interior is empty in the non-Archimedean case (see §1.3.2 below).

We can now characterize positive classes as follows:

Proposition 1.12. A class α ∈ HBC(X) lies in Pos(X) iff, for each finite
dimensional subspace V ⊂ Z, α admits a representative ω ∈ Z+ such that V ⊂ Zω.

Proof. Assume α ∈ Pos(X), and pick a basis (θi)1≤i≤r of a finite dimensional
vector space V ⊂ Z. Since Z+ spans Z, for each i we can write θi = θ+

i − θ−i with
θ±

i ≥ 0. Since α ∈ Pos(X) we have α − ,[θ±
i ] ∈ Pos(X) for all 0 < , 2 1, and we

can thus find , > 0 and ω±
i ∈ α such that ω±

i − ,θ±
i ≥ 0 for all i. Now set

ω := 1
2r

r∑

i=1

(ω+
i + ω−

i ) ∈ Z+.

Then [ω] = α, and for each i we have ω ≥ ε
2r θ

±
i ≥ ± ε

2r θi, and hence θi ∈ Zω, i.e.
V ⊂ Zω. This proves the ‘only if’ part, and the converse is clear. "

Corollary 1.13. Pick θ ∈ Z such that [θ] ∈ Pos(X). Then any f ∈ D can be
written as f = f+ − f− with f± ∈ Dtθ = tDθ for some t > 0. In particular, Dθ

spans D.

Proof. By Proposition 1.12, we can find ψ ∈ Dθ and t > 0 such that −ddcf ≤
t(θ + ddcψ). Thus f+ := f + tψ lies in Dtθ, and the result follows with f− := tψ ∈
Dtθ. "

Following [Tho63], we define the Thompson distance between ω,ω′ ∈ Z+ as

(1.7) dT(ω,ω′) := inf{δ ≥ 0 | e−δω ≤ ω′ ≤ eδω} ∈ [0, +∞].

We say that ω and ω′ are commensurable if dT(ω,ω′) < ∞. Note that this holds
i! ω′ ∈ Zω and ω ∈ Zω′ . Commensurability is an equivalence relation on Z+. The
linear subspace Zω only depends on the commensurability class of ω ∈ Z+, and so
does the equivalence class of the norm ‖ · ‖ω.

The next result is readily checked, and left to the reader.

Lemma 1.14. The commensurability class of any ω ∈ Z+ forms an open con-
vex cone in the normed vector space (Zω, ‖ · ‖ω), whose topology is defined by the
restriction of the Thompson metric.

We conclude this section with the following fact, that we will put to use in §3.

Proposition 1.15. Each finite subset of Pos(X) can be represented by com-
mensurable forms in Z+.

Proof. Consider α1, . . . ,αr ∈ Pos(X) and set β := 1
r

∑r
1 αi. If 0 < t 2

1, then the classes α′
i defined by αi = (1 − t)α′

i + tβ lie in Pos(X). Pick any
representatives θ′i ∈ Z+ of α′

i, 1 ≤ i ≤ r. By Proposition 1.12, we can find a
representative ω ∈ Z+ of β such that θ′i ∈ Zω for all i. Let ωi := (1 − t)θ′i + tω for
1 ≤ i ≤ r. Then ωi ∈ Z+ is a representative of αi and ω,ωi are commensurable for
all i. "
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1.3.1. The Kähler case. As in §1.2.1, assume that X is a compact Kähler space.
When X is nonsingular, HBC(X) coincides with the (1, 1)-part of the Hodge de-
composition of H2(X, R). In general, denote by PHX the sheaf of germs of pluri-
harmonic functions, i.e. the kernel of the sheaf morphism ddc : C∞

X → Ω1,1
X . The

existence of partitions of unity implies that the sheaf C∞
X is soft, and the cohomology

long exact sequence associated to the short exact sequence of sheaves

0 → PHX → C∞
X → Z1,1

X → 0

thus yields

HBC(X) 1 H1(X, PHX).

We do not know whether the right-hand side is always finite dimensional, but this
holds at least when X is normal, as a consequence of the fact that PHX then
coincides with the sheaf 4OX of real parts of holomorphic functions, see [BG13,
§4.6.1].

The positive cone Pos(X) is compatible with the usual definition, i.e. α ∈
HBC(X) lies in Pos(X) i! α can be represented by a Kähler form. Indeed, given
any Kähler form ω, a class α ∈ Pos(X) can be represented by a form θ ∈ Z such
that θ − ,ω ∈ Z+ for some 0 < , 2 1, so that θ is a Kähler form. In particular,
Kähler forms constitute a single commensurability class that maps onto Pos(X).

1.3.2. The non-Archimedean case. Assume, as in §1.2.2, that X is a projective
Berkovich space over a non-Archimedean field. By definition, any θ ∈ Z is rep-
resented by a numerical class on some model X of X, and the restriction of θ to
the generic fiber defines a numerical class {θ} ∈ N1(X) on (the projective variety
underlying) X. This induces a surjective map

(1.8) HBC(X) # N1(X),

which is an isomorphism when X is smooth and k is discretely valued of residue
characteristic 0 [BFJ16a, Theorem 4.3], or when X is normal and k is algebraically
closed [Jell16, Theorem 4.2.7]). It is also an isomorphism when k is trivially
valued, with inverse provided by pulling back classes in N1(X) to the trivial test
configuration Xtriv = X × A1.

We claim that Pos(X) coincides with the preimage of the ample cone of X
under (1.8), and that Z+ has empty interior in the finest vector space topology of
Z (so that Kähler forms do not admit an analogue in the non-Archimedean case).

To see this, we say as in [BFJ16a, §5.1] that a form ω ∈ Z+ is X -positive
for a given model/test configuration X if it is represented by a (relatively) ample
class in N1(X/S). Note that all X -positive forms are commensurable. As ob-
served in [BFJ16a, Proposition 5.2] (see also [GM16, Proposition 4.14], [BoJ22,
Lemma 3.11]), any α ∈ HBC(X) whose image in N1(X) under (1.8) is ample can
be represented by an X -positive form ω for any sufficiently high model X . Now Zω

contains all forms determined on X , but does not contain any X ′-positive form for
a model X ′ strictly dominating X . The claim easily follows.

1.4. The energy pairing. Mimicking the properties of induced metrics on
Deligne pairings (see for instance [BE21, Theorem 8.16]), and generalizing [SD18,
§2.2] (for a compact Kähler manifold) and [BoJ22, §3.2] (for a projective Berkovich
space over a trivially valued field), we introduce:
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Proposition-Definition 1.16. The energy pairing

(Z × D)n+1 → R ((θ0,ϕ0), . . . , (θn,ϕn)) &→ (θ0,ϕ0) · . . . · (θn,ϕn)

is defined as the unique (n + 1)-linear symmetric map such that

(1.9) (0,ϕ0) · (θ1,ϕ1) · . . . · (θn,ϕn) =

⎠
ϕ0 (θ1 + ddcϕ1) ∧ · · · ∧ (θn + ddcϕn)

and

(1.10) (θ0, 0) · . . . · (θn, 0) = 0.

It further satisfies
(1.11)

(θ0,ϕ0 + c0) · . . . · (θn,ϕn + cn) = (θ0,ϕ0) · . . . · (θn,ϕn)+
n∑

i=0

ci[θ0] · . . . · [̂θi] · . . . · [θn]

for all ci ∈ R, and

(1.12) (θ0 + ddcτ0,ϕ0) · . . . · (θn + ddcτn,ϕn)

= (θ0, τ0 + ϕ0) · . . . · (θn, τn + ϕn) − (θ0, τ0) · . . . · (θn, τn).

for all τi ∈ D.

Proof. Using multilinearity, symmetry and (1.9), (1.10), we necessarily have
(1.13)

(θ0,ϕ0) · . . .·(θn,ϕn) =
n∑

i=0

⎠
ϕi θ0∧ · · ·∧θi−1∧(θi+1+ddcϕi+1)∧ · · ·∧(θn+ddcϕn).

This proves uniqueness. To show existence, the only nontrivial part is to check that
the right-hand side of (1.13) is a symmetric function of the (θi,ϕi). It suffices to see
invariance under transpositions, which is an easy consequence of the integration-
by-parts formula (1.1) (compare [SD18, Proposition 2.3]).

To see (1.11), we may assume ci = 0 for i > 0, and the result is then a direct
consequence of (1.9).

Finally, pick τi ∈ D, and set

F (ϕ0, . . . ,ϕn) := (θ0, τ0+ϕ0)·. . .·(θn, τn+ϕn)−(θ0+ddcτ0,ϕ0)·. . .·(θn+ddcτn,ϕn).

By (1.9), we have

(0,ϕ0)·(θ1, τ1+ϕ1)·. . .·(θn, τn+ϕn)−(0,ϕ0)·(θ1+ddcτ1,ϕ1)·. . .·(θn+ddcτn,ϕn) = 0.

This implies that F (ϕ0, . . . ,ϕn) is independent of ϕ0, and hence equal to
F (0,ϕ1, . . . ,ϕn). Applying the same argument successively to ϕ1, . . . ,ϕn, we end
up with F (ϕ0, . . . ,ϕ0) = F (0, . . . , 0) = (θ0, τ0)·. . .·(θn, τn), which proves (1.12). "

By (1.9), the seminegativity property (1.2) translates into

(1.14) (0,ϕ)2 · (θ1,ϕ1) · . . . · (θn−1,ϕn−1) ≤ 0

for all ϕ ∈ D and ϕi ∈ Dθi .
As in [BoJ22, §3.2], we further note the following straightforward monotonicity

properties:
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Proposition 1.17. For all θi, θ′i ∈ Z and ϕi,ϕ′
i ∈ Dθi , we have

(1.15) ϕi ≤ ϕ′
i for all i =⇒ (θ0,ϕ0) · . . . · (θn,ϕn) ≤ (θ0,ϕ

′
0) · . . . · (θn,ϕ′

n);

(1.16)
ϕi ≤ 0 and 0 ≤ θi ≤ θ′i for all i =⇒ (θ′0,ϕ0) · . . . · (θ′n,ϕn) ≤ (θ0,ϕ0) · . . . · (θn,ϕn).

Combining (1.15) and (1.11), we infer the Lipschitz property
(1.17)

|(θ0,ϕ0) · . . . · (θn,ϕn)−(θ0,ϕ
′
0) · . . . · (θn,ϕ′

n)|≤
n∑

i=0

sup |ϕi−ϕ′
i|[θ0]·. . .· [̂θi]·. . .·[θn]

for all ϕi,ϕ′
i ∈ Dθi .

Following [BoJ22, §7.2], we next establish a lower bound for the energy pairing,
which will play a crucial role in §3.2 below.

Theorem 1.18. Assume ω0, . . . ,ωn ∈ Z+ are commensurable, and set δ :=
maxi,j dT(ωi,ωj). If 0 ≥ ϕi ∈ Dωi for i = 1, . . . , n, then

0 ≥ (ω0,ϕ0) · . . . · (ωn,ϕn) $ eO(δ) min
i

(ωi,ϕi)
n+1.

Here dT denotes the Thompson metric (1.7), and the implicit constant in O(δ)
only depends on n (see §1.1).

Lemma 1.19. For any θ ∈ Z, ϕ &→ (θ,ϕ)n+1 is concave on Dθ.

Proof. This is a formal consequence of (1.14), see Appendix A. "

Lemma 1.20. Pick ω,ω′ ∈ Z+ and t ≥ 1 such that ω ≤ ω′ ≤ tω. For any
ϕ ∈ Dω ⊂ Dω′ such that ϕ ≤ 0, we then have

0 ≥ (ω′,ϕ)n+1 ≥ tn(ω,ϕ)n+1.

Proof. By (1.16) we have

0 ≥ (ω′,ϕ)n+1 ≥ (tω,ϕ)n+1 = tn+1(ω, t−1ϕ)n+1.

Since t−1 ∈ [0, 1], concavity of the energy (Lemma 1.19) yields (ω, t−1ϕ)n+1 ≥
t−1(ω,ϕ)n+1, and the result follows. "

Lemma 1.21. Pick ω0, . . . ,ωr ∈ Z+ and 0 ≥ ϕi ∈ Dωi for i = 0, . . . , r. Assume
also given t ≥ 1 such that ωi ≤ tωj for all i, j. Then

(1.18)

(
∑

i

ωi,
∑

i

ϕi

)n+1

≥ Cr,ntn
∑

i

(ωi,ϕi)
n+1

with Cr,n := (r(r + 1))n.
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Proof. Set ω := 1
r+1

∑r
0 ωi and ωt := t

r+t

∑r
0 ωi. Then ω ≤ ωt ≤ t(1+rt)

t+r ωi

for 0 ≤ i ≤ r. If we set ϕ := 1
r+1

∑
i ϕi, then

(
∑

i

ωi,
∑

i

ϕi

)n+1

= (r + 1)n+1(ω,ϕ)n+1

≥ (r + 1)n+1(ωt,ϕ)n+1

≥ (r + 1)n
∑

i

(ωt,ϕi)
n+1

≥ (r + 1)n

(
t(1 + rt)

t + r

)n ∑

i

(ωi,ϕi)
n+1

≥ Cr,ntn
∑

i

(ωi,ϕi)
n+1,

where the first inequality holds by (1.16), the second one by Lemma 1.19, and the
last two inequalities from Lemma 1.20 and the estimate 1+rt

t+r ≤ r. "

Proof of Theorem 1.18. Expanding out (ω0 + · · · + ωn,ϕ0 + · · · + ϕn)n+1

yields

(n + 1)!(ω0,ϕ0) · . . . · (ωn,ϕn) ≥ (ω0 + · · · + ωn,ϕ0 + · · · + ϕn)n+1 ,

and we conclude by Lemma 1.21 with r = n. "

1.5. The Monge–Ampère operator and the submean value property.
Pick ω ∈ Z+ with [ω] ∈ Pos(X). We define its volume as

Vω :=

⎠
ωn = [ω]n,

which is positive by Lemma 1.9, and introduce the probability measure

µω := V −1
ω ωn.

Definition 1.22. The Monge–Ampère operator MAω : Dω → M is defined by
setting

MAω(ϕ) := V −1
ω ωn

ϕ.

Equivalently,

(1.19) MAω(ϕ) = µωϕ .

As an illustration of the energy pairing formalism, we recover the following
version of the classical Chern–Levine–Nirenberg inequality.

Lemma 1.23. For all ϕ,ψ, τ ∈ Dω we have
∣∣∣∣
⎠

τ (MAω(ϕ) − MAω(ψ))

∣∣∣∣ ≤ 2n sup |ϕ− ψ|.

Proof. By (1.9) we have

Vω

⎠
τ (MAω(ϕ) − MAω(ψ)) = (0, τ ) · (ω,ϕ)n − (0, τ ) · (ω,ψ)n

= (ω, τ ) · (ω,ϕ)n − (ω, 0) · (ω,ϕ)n − (ω, τ ) · (ω,ψ)n + (ω, 0) · (ω,ψ)n.
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Now (1.17) yields

|(ω, τ ) · (ω,ϕ)n − (ω, τ ) · (ω,ψ)n| ≤ n sup |ϕ− ψ|Vω,

|(ω, 0) · (ω,ϕ)n − (ω, 0) · (ω,ψ)n| ≤ n sup |ϕ− ψ|Vω,

and the result follows. "
We next consider the quantity

(1.20) Tω := sup

{
supϕ−

⎠
ϕµω | ϕ ∈ Dω

}
∈ [0, +∞].

Thus Tω < ∞ i! there exists C > 0 such that the submean value inequality

(1.21) supϕ ≤
⎠

ϕµω + C

holds for all ϕ ∈ Dω.

Proposition 1.24. If Tω < ∞, then Tω′ < ∞ for any ω′ ∈ Z+ with [ω′] ∈
Pos(X).

Definition 1.25. We say that the submean value property holds if Tω < ∞
for some (hence any) ω ∈ Z+ with [ω] ∈ Pos(X).

When X is a compact Kähler or projective Berkovich space, this property holds
i! X is irreducible (see Theorem 1.27 below).

Lemma 1.26. Pick τ ∈ Dω, and ω′ ∈ Z+ commensurable to ω. Then

(1.22) Tωτ ≤ Tω + (2n + 2) sup |τ |
and

(1.23) Tω′ ≤ eO(δ)Tω

with δ := dT(ω,ω′).

Recall that, in this paper, the implicit constant in O only depends on n
(see §1.1).

Proof. Pick ϕ ∈ Dωτ . Then ϕ + τ ∈ Dω, and the Chern–Levine–Nirenberg
inequality (see Lemma 1.23) yields

ϕ + τ ≤
⎠

(ϕ + τ ) MAω(0) + Tω ≤
⎠

(ϕ + τ ) MAω(τ ) + 2n sup |τ | + Tω.

This proves (1.22), in view of (1.19).
For each t > 0 we have Dtω = tDω, and hence Ttω = tTω. Further, ω′ ≤ ω

implies Dω′ ⊂ Dω and

Vω′µω′ = (ω′)n ≤ ωn = Vωµω,

and hence Vω′Tω′ ≤ VωTω. These properties imply (1.23). "
Proof of Proposition 1.24. The condition Tω < ∞ only depends on the

commensurability class of ω, by (1.23), and it only depends on [ω] ∈ Pos(X),
by (1.22). This condition is thus independent of ω, since any two classes in Pos(X)
admit commensurable representatives (see Proposition 1.15). "

Theorem 1.27. Assume X is either a compact Kähler space or a projective
Berkovich space over a non-Archimedean field k. Then the submean value property
holds iff X is irreducible.
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Lemma 1.28. Let a ⊂ OX be a coherent ideal sheaf. Then we can find ω ∈ Z+

with [ω] ∈ Pos(X), and a decreasing sequence (ϕj)j in Dω such that, for any given
choice of local generators (fν) of a near a point of X, ϕj −max{log maxν |fν |,−j}
is locally bounded uniformly with respect to j.

In the non-Archimedean case, a can be viewed as a coherent ideal sheaf on the
underlying algebraic variety, by the GAGA principle.

Proof. Assume first X is compact Kähler. Fix a Kähler form ω, and pick a
finite open cover (Uα) of X such that a is generated on each Uα by a finite subset
(fαν)ν of O(Uα). Introduce the psh function on Uα

ϕαj := 1
2 log

(
∑

ν

|fαν |2 + e−2j

)
= max

{
log max

ν
|fαν |,−j

}
+ O(1),

and observe that, for all α,β, |ϕαj − ϕβj | is uniformly bounded with respect to j
on each compact subset of Uα ∩ Uβ . Now choose relatively compact open subsets
U ′′
α % U ′

α % Uα such that the U ′′
α still cover X. Since U ′

α∩U ′
β is compact in Uα∩Uβ ,

we have
C := sup

α,β,j
sup

U ′
α∩U ′

β

|ϕαj − ϕβj | < ∞.

Pick also cut-o! functions χα ∈ C∞
c (U ′

α) such that χα ≥ 0 and χα ≡ 1 on U ′′
α . We

claim that the smooth functions

ϕj := log
∑

α

χ2
αeϕαj

satisfy ddcϕj ≥ −Aω for a uniform constant A > 0, which will yield the desired
conclusion. The result follows indeed from [Dem92, Lemma 3.5], whose proof we
now briefly recall. A direct computation using ddcϕαj ≥ 0 yields

ddcϕj ≥ −
∑

α θαeϕαj

∑
α χ2

αeϕαj

with θα := 2dχα ∧ dcχα − 2χαddcχα. Since the latter are smooth (1, 1)-forms, we
have θα ≤ Aω for some constant A > 0. Now each x ∈ X in the support of some
θα lies in U ′

α \ U ′′
α , and also in U ′′

β for some β, and hence
∑

β χ
2
βeϕβj ≥ eCeϕαj at

x. This shows ∑
α θαeϕαj

∑
α χ2

αeϕαj
≤ eCAω,

which yields the result.
Assume now X is a projective Berkovich space. Pick an ample line bundle L

such that L ⊗ a is generated by global sections (sν), and choose a PL metric on L
with curvature form ω ∈ Z+. Then setting ϕj := max{log maxν |sν |,−j} yields the
result. "

Proof of Theorem 1.27. Assume first that the submean value property
holds, and pick an n-dimensional irreducible component Y of X. Applying Lemma
1.28 to the ideal sheaf of Y in X yields ω ∈ Z+ with [ω] ∈ Pos(X) and a decreasing
sequence (ϕj) in Dω such that supY ϕj → −∞ while (ϕj) is uniformly bounded on
compact subsets of X \ Y . Since

∫
Y ωn = [ω]n · [Y ] > 0, we get

∫
ϕj µω → −∞,

and hence supϕj → −∞, by the submean value property. It follows that X = Y is
irreducible.
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Conversely, assume X is irreducible. In the Kähler case, pick a Kähler form ω on
X, and choose a resolution of singularities . : X ′ → X with X ′ a connected compact
Kähler manifold, and pick a Kähler form ω′ on X ′ such that ω′ ≥ .*ω. Since
µ := V −1

ω .*ωn = fω′n satisfies PSH(X ′,ω′) ⊂ L1(µ), [GZ05, Proposition 2.7]
yields C > 0 such that supX′ ψ ≤

∫
ψ µ+C for all ψ ∈ PSH(X ′,ω′). Applying this

to ψ = .*ϕ with ϕ ∈ Dω yields the submean value property.
In the non-Archimedean case, pick an ample line bundle L and a PL metric on L

determined by an ample model/test configuration (X , L) of (X, L), with curvature
form ω ∈ Z+. Each ϕ ∈ Dω satisfies supϕ = maxΓ ϕ, where Γ ⊂ X is the
(finite) set of Shilov points attached to X (see [GM16, Proposition 4.22] or [BE21,
Lemma 6.3]). On the other hand, Γ is also the support of µω, by definition of the
measure ωn in terms of intersection numbers. Now [BoJ18a, Theorem 2.21] yields
C > 0 such that |ϕ(x)−ϕ(y)| ≤ C for all x, y ∈ Γ and all ϕ ∈ Dω, and we infer, as
desired, supϕ ≤

∫
ϕµω + C for all ϕ ∈ Dω. "

1.6. Monge–Ampère energy and the Dirichlet functional. From now
on we fix ω ∈ Z+ with [ω] ∈ Pos(X).

Definition 1.29. The Monge–Ampère energy Eω : D → R is defined by

(1.24) Eω(ϕ) :=
(ω,ϕ)n+1

(n + 1)Vω
.

For all ϕ,ψ ∈ D we have

(1.25) Eω(ϕ) − Eω(ψ) =
1

n + 1

n∑

j=0

V −1
ω

⎠
(ϕ− ψ)ωj

ϕ ∧ ωn−j
ψ .

Indeed, by (1.9), this amounts to the basic identity

(ω,ϕ)n+1 − (ω,ψ)n+1 = (0,ϕ− ψ) ·
n∑

j=0

(ω,ϕ)j · (ω,ψ)n−j .

Assume now ϕ,ψ ∈ Dω. By (1.25), we then have

(1.26) ϕ ≤ ψ =⇒ Eω(ϕ) ≤ Eω(ψ).

Further, Eω((1 − t)ϕ + tψ) is a polynomial function of t ∈ [0, 1], with

(1.27)
d

dt

∣∣∣∣
t=0

Eω((1 − t)ϕ + tψ) =

⎠
(ψ − ϕ) MAω(ϕ).

This characterizes Eω as the unique primitive of the Monge–Ampère operator that
vanishes at 0 ∈ Dω. By Lemma 1.19, Eω is concave on Dω, which translates into

(1.28) Eω(ψ) ≤ Eω(ϕ) +

⎠
(ψ − ϕ) MAω(ϕ)

for all ϕ,ψ ∈ Dω.
As a direct consequence of (1.12), we have

(1.29) Eωτ (ϕ) = Eω(ϕ + τ ) − Eω(τ ).

for any ϕ, τ ∈ D.

Definition 1.30. We define the Dirichlet functional Jω : Dω × Dω → R≥0 by
setting

Jω(ϕ,ψ) := Eω(ϕ) − Eω(ψ) +

⎠
(ψ − ϕ) MAω(ϕ).
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By concavity of Eω, Jω(ϕ,ψ) is a convex function of ψ ∈ Dω. Note also that

(1.30) Jω(ϕ,ψ) + Jω(ψ,ϕ) =

⎠
(ϕ− ψ)(MAω(ψ) − MAω(ϕ)).

By (A.4), we have the formula

(1.31) Jω(ϕ,ψ) = V −1
ω

n−1∑

j=0

j + 1

n + 1

⎠
(ϕ− ψ) ddc(ψ − ϕ) ∧ ωj

ϕ ∧ ωn−1−j
ψ .

We simply write

(1.32) Jω(ϕ) := Jω(0,ϕ) =

⎠
ϕµω − Eω(ϕ).

Example 1.31. When n = 1, we have

Jω(ϕ,ψ) = Jω(ψ,ϕ) = 1
2

⎠
(ϕ− ψ)ddc(ψ − ϕ),

which recovers the usual expression for the Dirichlet functional on a Riemann sur-
face.

For each R > 0 we set

(1.33) Dω,R := {ϕ ∈ Dω | Jω(ϕ) ≤ R}.

Lemma 1.32. For each R > 0, Dω,R is a convex subset of D that generates it.

Proof. By convexity of Jω = Jω(0, ·), Dω,R is convex. Since Dω spans D (see
Corollary 1.13), to see that Dω,R spans it suffices to show that any ϕ ∈ Dω satisfies
Jω(tϕ) ≤ R for 0 < t 2 1, which holds since Jω(tϕ) is a polynomial function of t
with Jω(0) = 0. "

We may now collect the fundamental properties of the Dirichlet functional in
the next result.

Theorem 1.33. For all ϕ,ϕ′,ψ,ψ′, τ ∈ Dω and t ∈ [0, 1], the following holds:

• quasi-symmetry:

(1.34) Jω(ϕ,ψ) ≈ Jω(ψ,ϕ);

• quasi-triangle inequality:

(1.35) Jω(ϕ,ψ) ! Jω(ϕ, τ ) + Jω(τ,ψ);

• quadratic estimate:

(1.36) Jω(ϕ, (1 − t)ϕ + tψ) ! t2Jω(ϕ,ψ);

• uniform concavity:

Eω((1 − t)ϕ + tψ) − [(1 − t) Eω(ϕ) + t Eω(ψ)] $ t(1 − t)Jω(ϕ,ψ).

For all ϕ,ϕ′,ψ,ψ′ ∈ Dω,R, we further have the following Hölder estimates:

(1.37)

∣∣∣∣
⎠

(ϕ− ϕ′) (MAω(ψ) − MAω(ψ′))

∣∣∣∣ ! Jω(ϕ,ϕ′)αJω(ψ,ψ′)1/2R1/2−α;

and

(1.38) |Jω(ϕ,ψ) − Jω(ϕ′,ψ′)| ! max{Jω(ϕ,ϕ′), Jω(ψ,ψ′)}αR1−α,

where α := 2−n.
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Proof. In view of (1.14), this is a direct consequence of Theorem A.3 applied
to

• the vector space V := Z × D with projection . : V → Z onto the first
factor;

• the convex cone P := {(θ,ϕ) ∈ V | ϕ ∈ Dθ};

• the homogeneous polynomial F : V → R defined by F (θ,ϕ) := − (θ,ϕ)n+1

(n+1)Vω
.

"
As a simple consequence of (1.29), we finally note:

Lemma 1.34. For each τ ∈ Dω and ϕ,ψ ∈ Dωτ we have ϕ+ τ,ψ + τ ∈ Dω and

(1.39) Jωτ (ϕ,ψ) = Jω(ϕ + τ,ψ + τ ).

Remark 1.35. The above formalism recovers that of [BBGZ13,BBEGZ19,
BFJ15, BoJ22] in the Kähler and non-Archimedean settings. However, in con-
trast to those works, we do not explicitly introduce the functional Iω(ϕ,ψ), which
corresponds to the right-hand side of (1.30).

2. Measures of finite energy

In what follows, we pick ω ∈ Z+ with [ω] ∈ Pos(X). We define the space
M1

ω of measures of finite energy with respect to ω, and show, assuming a certain
orthogonality property, that it is complete with respect to a quasi-metric δω induced
by the Dirichlet functional.

2.1. The energy of a measure.

Definition 2.1. We define the energy of µ ∈ M relative to ψ ∈ Dω as

(2.1) Jω(µ,ψ) := sup
ϕ∈Dω

{
Eω(ϕ) − Eω(ψ) +

⎠
(ψ − ϕ)µ

}
∈ [0, +∞].

The choice of notation is justified by (2.5) below. When ψ = 0, we simply write

(2.2) Jω(µ) := Jω(µ, 0) = sup
ϕ∈Dω

{
Eω(ϕ) −

⎠
ϕµ

}
,

and call it the energy5 of µ (with respect to ω). Note that

(2.3) Jω(µ) = sup
ϕ∈Dω

{⎠
ϕ(µω − µ) − Jω(ϕ)

}
,

by (1.32).

Proposition 2.2. For each ψ ∈ Dω, the functional Jω(·,ψ) : M → [0, +∞] is
convex and weakly lsc, and satisfies, for all µ ∈ M and ϕ ∈ Dω,

(2.4) Jω(µ,ψ) = Jω(µ) +

⎠
ψ µ − Eω(ψ);

(2.5) Jω(MAω(ϕ),ψ) = Jω(ϕ,ψ);

(2.6) Jω(MAω(ϕ)) ≈ Jω(ϕ);

(2.7) Jω(ϕ,ψ) ! Jω(µ,ϕ) + Jω(µ,ψ).

5This corresponds to E∨
ω(µ) in the notation of [BBGZ13, BoJ22], and to ‖µ‖ω in that

of [BoJ23].
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Proof. Convexity and lower semicontinuity are clear from (2.1), which also
directly yields (2.4). By (1.28), any ϕ ∈ Dω further computes the supremum
defining Jω(MAω(ϕ),ψ), which is thus equal to

Eω(ϕ) − Eω(ψ) +

⎠
(ψ − ϕ) MAω(ϕ) = Jω(ϕ,ψ).

This proves (2.5), which implies

Jω(MAω(ϕ)) = Jω(MAω(ϕ), 0) = Jω(ϕ, 0) ≈ Jω(0,ϕ) = Jω(ϕ),

see (1.34). Finally, pick µ ∈ M, and set τ = 1
2 (ϕ + ψ) ∈ Dω. By (2.1), we have

Jω(µ,ϕ) ≥ Eω(τ )−Eω(ϕ)+

⎠
(ϕ− τ ) µ, Jω(µ,ψ) ≥ Eω(τ )−Eω(ψ)+

⎠
(ψ− τ ) µ,

and hence
Jω(µ,ϕ) + Jω(µ,ψ) ≥ 2 Eω(τ ) − (Eω(ϕ) + Eω(ψ)).

On the other hand,

2 Eω(τ ) − (Eω(ϕ) + Eω(ψ)) $ Jω(ϕ,ψ)

by uniform concavity of Eω (see Theorem 1.33), and (2.7) follows. "
Generalizing Lemma 1.34, we note:

Lemma 2.3. For all τ ∈ Dω, ψ ∈ Dωτ and µ ∈ M we have

(2.8) Jωτ (µ,ψ) = Jω(µ,ψ + τ ).

In particular,

(2.9) Jωτ (µ) = Jω(µ) +

⎠
τ µ − Eω(τ ).

Proof. By (1.3) and (1.29) we have ϕ ∈ Dωτ ⇔ ϕ + τ ∈ Dω, and

Eωτ (ϕ)−Eωτ (ψ) +

⎠
(ϕ−ψ)µ = Eω(ϕ+ τ )−Eω(ψ + τ ) +

⎠
((ϕ+ τ )− (ψ + τ ))µ.

Taking the sup over ϕ yields (2.8), and (2.9) follows, by (2.4). "
Remark 2.4. If we drop the assumption that ω ≥ 0, but still require [ω] ∈

Pos(X), then Eω(ϕ) and Jω(µ) can still be defined by (1.24) and (2.2), respectively.
Then (1.29), and hence (2.9), remain valid for any τ ∈ D. This will only get used
in the context of Theorem 4.8 below.

2.2. Measures of finite energy.

Definition 2.5. The space of measures of finite energy (with respect to ω) is
defined as

M1
ω := {µ ∈ M | Jω(µ) < ∞}.

It is endowed with the strong topology, defined as the coarsest refinement of the
weak topology in which Jω : M1

ω → R≥0 becomes continuous.

In other words, a net (µi) converges strongly to µ in M1
ω i! µi → µ weakly in

M and Jω(µi) → Jω(µ). For any R > 0 we also set

(2.10) M1
ω,R := {µ ∈ M1

ω | Jω(µ) ≤ R}.

By Proposition 2.2, this set is convex and weakly compact. By (2.4),

Jω(·,ψ) : M1
ω → R≥0
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is continuous in the strong topology for any ψ ∈ Dω. By Lemma 2.3, this yields:

Proposition 2.6. The topological space M1
ω only depends on the positive class

[ω] ∈ Pos(X).

One should be wary of the fact that, in the present generality, even a ‘nice’
probability measure of the form µ = θ1 ∧ · · ·∧ θn with θi ∈ Z+ need not be of finite
energy with respect to ω in general (see however Theorem 3.4 below):

Example 2.7. Let X be either a compact Kähler or projective Berkovich space.
For each irreducible component Y of X and each µ ∈ M1

ω, we then have

(2.11) µ(Y ) =
[ω|Y ]n

[ω]n
.

Indeed, this is proved in [BoJ22, Corollary 9.13] in the trivially valued case, and
the proof can be adapted to the general case. Now (2.11) fails in general for µ = µω′

with ω′ ∈ Z+ such that [ω] 7= [ω′] ∈ Pos(X), and hence M1
ω′ 7= M1

ω.

By (2.3), we have, for all ϕ ∈ Dω and µ ∈ M,
⎠

ϕ (µω − µ) ≤ Jω(ϕ) + Jω(µ).

The following converse will come in handy.

Lemma 2.8. Assume that µ ∈ M satisfies

S := sup
ϕ∈Dω,R

⎠
ϕ(µω − µ) < ∞

for some R > 0. Then µ has finite energy, and

(2.12) Jω(µ) ! S(1 + R−1S).

Proof. Pick ϕ ∈ Dω and set J := Jω(ϕ). By (1.36), we have Jω(tϕ) ! t2J for
any t ∈ [0, 1], and we can thus choose

1 ≤ a ! 1 + (R−1J)1/2

such that Jω(a−1ϕ) ≤ R. By assumption, we then have
∫

a−1ϕ (µω − µ) ≤ S, and
hence

Eω(ϕ) −
⎠

ϕµ =

⎠
ϕ (µω − µ) − Jω(ϕ) ≤ aS − J

! S + SR−1/2J1/2 − J ≤ S + 1
4S2R−1,

where the last inequality follows from the elementary estimate supy≥0(xy1/2−y) =
x2/4 for any x ≥ 0. Taking the supremum over ϕ yields (2.12). "

2.3. Legendre transform of the energy. Here we compute the Legendre
transform of the convex functional Jω = Jω(·, 0) : M → [0, +∞].

Definition 2.9. For any f ∈ C0(X) we set

Ẽω(f) := sup
f≥ϕ∈Dω

Eω(ϕ).

By monotonicity of Eω on Dω (see (1.26)), the functional Ẽω : C0(X) → R so
defined restricts to Eω on Dω. Like the latter, Ẽω is further concave, monotone
increasing, and equivariant with respect to translation, i.e.

Ẽω(f + c) = Ẽω(f) + c for c ∈ R.
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Proposition 2.10. For all f ∈ C0(X) and µ ∈ M we have

(2.13) Ẽω(f) = inf
ν∈M

{
Jω(/) +

⎠
f /

}
; Jω(µ) = sup

g∈C0(X)

{
Ẽω(g) −

⎠
g µ

}
.

Proof. Define the (convex) Legendre transform Ẽ
∨
ω : C0(X)∨ → R ∪ {+∞}

as the right-hand side of (2.13), i.e.

Ẽ
∨
ω(µ) := sup

g∈C0(X)

{
Ẽω(g) −

⎠
g µ

}
.

Since Ẽω is increasing and equivariant, it is straightforward to see that Ẽ
∨
ω(µ) < ∞

implies µ ≥ 0 and
∫

µ = 1, i.e. µ ∈ M (compare [BoJ22, Proposition 9.8]).

By Legendre duality, the result is thus equivalent to Ẽ
∨
ω(µ) = Jω(µ) for µ ∈ M.

Since Ẽω restricts to Eω on Dω, we trivially have Ẽ
∨
ω(µ) ≥ Jω(µ). Conversely, pick

f ∈ C0(X) and ϕ ∈ Dω with ϕ ≤ f . Then

Jω(µ) ≥ Eω(ϕ) −
⎠

ϕµ ≥ Eω(ϕ) −
⎠

f µ,

where the first and second inequality respectively follow from (2.2) and ϕ ≤ f .
Taking the supremum over ϕ and then over f yields Jω(µ) ≥ Ẽω(f) −

∫
f µ and

Jω(µ) ≥ Ẽ
∨
ω(µ). "

2.4. Orthogonality and differentiability.

Definition 2.11. We say that Dω admits maxima if, for all ϕ,ψ ∈ Dω and f ∈
D such that max{ϕ,ψ} < f pointwise on X, there exists τ ∈ Dω with max{ϕ,ψ} ≤
τ < f .

This equivalently means that, for any f ∈ D, the poset

Dω,<f := {ϕ ∈ Dω | ϕ < f}
is inductive. We can then consider limits of nets indexed by Dω,<f . For instance,
note that

(2.14) Ẽω(f) = lim
ϕ∈Dω,<f

Eω(ϕ).

Example 2.12. If X is a compact Kähler space, then Dω admits maxima: take
τ := m̃ax(ϕ,ψ) for an appropriate regularized max function m̃ax.

Example 2.13. If X is a projective Berkovich space, then Dω also admits
maxima, since Q-PL functions in Dω are dense in Dω, and stable under max.

Remark 2.14. While we will not pursue this direction here, one can also
introduce as in [BFJ16a, BE21, BoJ22] the space PSH(ω) of ω-psh functions
ϕ : X → R ∪ {−∞}, defined as usc functions that can be obtained as pointwise
limits of decreasing nets in Dω, and such that

∫
ϕµω > −∞. Then Dω admits

maxima iff PSH(ω) (or, equivalently, the subspace CPSH(ω) := PSH(ω) ∩ C0(X)
of continuous ω-psh functions) is stable under max.

Definition 2.15. We say that ω has the orthogonality property if Dω admits
maxima and

(2.15) lim
ϕ∈Dω,<f

⎠
(f − ϕ) MAω(ϕ) = 0

for all f ∈ D.
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Explicitly, this means for that for any , > 0 there exists ϕ0 ∈ Dω such that
ϕ0 < f and

∫
(f − ϕ) MAω(ϕ) ≤ , for all ϕ ∈ Dω with ϕ0 ≤ ϕ < f .

Remark 2.16. The orthogonality property for ω only depends on [ω] ∈ Pos(X).
Indeed, for any τ ∈ Dω and f ∈ D we have

(2.16) ϕ ∈ Dωτ ,<f ⇐⇒ ϕ + τ ∈ Dω,<f+τ

This implies that Dω admits finite maxima iff Dωτ does, and similarly for the
orthogonality property, using

MAωτ (ϕ) = MAω(ϕ + τ ) and
⎠

(f − ϕ) MAωτ (ϕ) =

⎠
((f + τ ) − (ϕ + τ ))MAω(ϕ + τ ).

Example 2.17. Assume X is a compact Kähler space. Conjecturally, the or-
thogonality property always holds. This is known when X is normal, or X is pro-
jective and [ω] ∈ Amp(X), see Appendix B for a more detailed discussion.

Recall from Corollary 1.13 that any test function f ∈ D can be written as

(2.17) f = f+ − f−, f± ∈ DCω

for some C = C(f) > 0. In line with [BFJ15, §7], we show:

Proposition 2.18. Assume Dω admits maxima. The following properties are
then equivalent:

(i) ω has the orthogonality property;
(ii) for any f ∈ D written as (2.17) for a given C > 0, we have

(2.18)

∣∣∣∣Ẽω(ϕ + f) − Eω(ϕ) −
⎠

f MAω(ϕ)

∣∣∣∣ ! C sup |f |

for all ϕ ∈ Dω;
(iii) in the setting of (ii), we have

(2.19)

∣∣∣∣Ẽω(ϕ + tf) − Eω(ϕ) − t

⎠
f MAω(ϕ)

∣∣∣∣ ! Ct2 sup |f |

for all ϕ ∈ Dω and t ∈ R.

Note that the uniform di!erentiability property (2.19) implies in particular

d

dt

∣∣∣∣
t=0

Ẽω(ϕ + tf) =

⎠
f MAω(ϕ).

Proof. Assume (i). Write f ∈ D as in (2.17), and pick ϕ ∈ Dω. For any
ψ ∈ Dω,<ϕ+εf , (1.28) yields

⎠
(ψ − ϕ) MAω(ψ) ≤ Eω(ψ) − Eω(ϕ) ≤

⎠
(ψ − ϕ) MAω(ϕ) ≤

⎠
f MAω(ϕ).

By Lemma 1.23, we also have
∣∣∫ f(MAω(ϕ) − MAω(ψ))

∣∣ ≤ 2nC sup |ϕ − ψ|, and
we infer
(2.20)∣∣∣∣Eω(ψ) − Eω(ϕ) −

⎠
f MAω(ϕ)

∣∣∣∣ ≤
⎠

((ϕ + f) − ψ)MAω(ψ) + 2nC sup |ϕ− ψ|.
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Now limψ∈Dω,<ϕ+f Eω(ψ) = Ẽω(ϕ + f) (see (2.14)), while orthogonality yields

lim
ψ∈Dω,<ϕ+f

⎠
((ϕ + f) − ψ) MAω(ψ) = 0.

Further, any ψ ∈ Dω,<ϕ+f large enough is greater than ϕ− sup |f | ∈ Dω,<ϕ+f , and
hence satisfies sup |ϕ− ψ| ≤ sup |f |. As a result, (2.20) implies

∣∣∣∣Ẽω(ϕ + f) − Eω(ϕ) −
⎠

f MAω(ϕ)

∣∣∣∣ ≤ 2nC sup |f |,

which shows (i)⇒(ii). Next, (ii)⇒(iii), since f = f+ − f− with f ∈ DCω implies
tf = sgn(t)(|t|f+ − |t|f−) with |t|f± ∈ DC|t|ω .

Finally, assume (iii), and pick f ∈ D. We need to show that

L := lim sup
ϕ∈Dω,<f

⎠
(f − ϕ) MAω(ϕ) ≥ 0

vanishes. Write f as in (2.17) for some C > 0. Pick also ϕ ∈ Dω,<f , and set
g := f − ϕ ∈ D. For any t ∈ [0, 1] we have ϕ + tg = (1 − t)ϕ + tf ≤ f , and
hence Ẽω(ϕ + tg) ≤ Ẽω(f). On the other hand, since f − ϕ = f+ − (f− + ϕ) with
f+, f− +ϕ ∈ D(C+1)ω, (iii) yields a constant A > 0 only depending on ϕ such that

0 ≤ t

⎠
(f − ϕ) MAω(ϕ)

≤ Ẽω(ϕ + tg) − Eω(ϕ) + t2A sup |g| ≤ Ẽω(f) − Eω(ϕ) + t2A sup |g|.

Since any ϕ ∈ Dω,<f large enough is greater then f+ − sup f−, it satisfies

0 ≤ g = f − ϕ ≤ sup f− − f− ≤ B

with B only depending on f . We infer 0 ≤ tL ≤ t2AB. Dividing by t > 0 and
letting t → 0+ yields, as desired, L = 0. This proves (iii)⇒(i). "

Example 2.19. Assume X is a projective Berkovich space over a non-Arch-
imedean field. Then [BE21, Theorem A] combined with the uniform differentiability
estimate of [BGM22, Lemma 3.2] shows that (2.18) is satisfied (compare [BoJ22,
Lemma 8.7]). By Proposition 2.18, it follows that the orthogonality property always
holds in this setting.

2.5. Maximizing sequences.

Definition 2.20. We say that a sequence (ψi) in Dω is maximizing for µ ∈ M1
ω

if it computes the energy of µ (2.2), i.e. Eω(ψi) −
∫
ψi µ → Jω(µ).

Equivalently, (ψi) is maximizing for µ i! Jω(µ,ψi) → 0, see (2.4).

Example 2.21. For any ϕ ∈ Dω the constant sequence ψi = ϕ is maximizing
for µ = MAω(ϕ) (see (2.5)).

As a key consequence of Proposition 2.18, we show:

Theorem 2.22. Assume ω has the orthogonality property. Pick µ ∈ M1
ω and a

maximizing sequence ψi ∈ Dω. Then the measures µi := MAω(ψi) converge strongly
to µ in M1

ω, i.e. µi → µ weakly and Jω(µi) → Jω(µ). In particular, the image of
the Monge–Ampère operator

MAω : Dω → M1
ω

is dense in the strong topology.
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Proof. Pick f ∈ D, and choose C > 0 such that f = f+−f− with f± ∈ DCω.
Since we assume orthogonality, Proposition 2.18 yields A > 0 such that

∣∣∣∣Ẽω(ψi + tf) − Eω(ψi) − t

⎠
f µi

∣∣∣∣ ≤ At2

for all i and t > 0. By Proposition 2.10 and (2.4), we have, on the other hand,

Ẽω(ψi + tf) ≤ Jω(µ) +

⎠
(ψi + tf)µ = Jω(µ,ψi) + Eω(ψi) + t

⎠
f µ.

Combining these estimates, we get

t

⎠
f µi ≤ t

⎠
f µ + Jω(µ,ψi) + At2.

Since Jω(µ,ψi) → 0, we infer

t lim sup
i

⎠
f µi ≤ t

⎠
f µ + At2.

Dividing by t and letting t → 0+ yields lim supi

∫
f µi ≤

∫
f µ. Replacing f with

−f , we get limi

∫
f µi =

∫
f µ. By density of D in C0(X), this shows µi → µ

weakly.
For each i we have Jω(µi) = Eω(ψi)−

∫
ψi µi (see (2.5)), and Eω(ψi)−

∫
ψi µ →

Jω(µ), since (ψi) is maximizing for µ. It only remains to prove
∫
ψi (µi − µ) → 0.

Since Jω(ψi) is bounded (see (2.7)), (1.37) yields C > 0 such that
∣∣∣∣
⎠

ψi (µi − µj)

∣∣∣∣ ! CJω(ψi,ψj)
α

for all i, j, and hence
∣∣∣∣
⎠

ψi (µi − µj)

∣∣∣∣ ! C max{Jω(µ,ψi), Jω(µ,ψj)}α,

by (2.7). Since µj → µ weakly and Jω(µ,ψj) → 0 as j → ∞, we infer
∣∣∣∣
⎠

ψi (µi − µ)

∣∣∣∣ ! CJω(µ,ψi)
α,

and we conclude, as desired, that the left-hand side tends to 0 as i → ∞. "

2.6. The Dirichlet quasi-metric. From now on, we assume that the or-
thogonality property holds for ω. Recall from Examples 2.17 and 2.19, that this
is the case if X is a normal compact Kähler space, or X is any projective Berkovich
space.

Theorem 2.23. There exists a unique continuous functional

δω : M1
ω × M1

ω → R≥0,

such that

(2.21) δω(MAω(ϕ), MAω(ψ)) = Jω(ϕ,ψ)

for all ϕ,ψ ∈ Dω. Furthermore:

(i) for all µ ∈ M1
ω and ψ ∈ Dω we have

(2.22) δω(µ, MAω(ψ)) = Jω(µ,ψ), δω(µ, µω) = Jω(µ);
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(ii) δω is a quasi-metric: for all µ, /, ρ ∈ M1
ω we have

(2.23)
δω(µ, /) = 0 ⇔ µ = /, δω(µ, /) ≈ δω(/, µ), δω(µ, /) ! δω(µ, ρ) + δω(ρ, /);

(iii) the quasi-metric δω satisfies the Hölder continuity property

(2.24) |δω(µ, /) − δω(µ′, /′)| ! max{δω(µ, µ′), δω(/, /′)}αR1−α

for all R > 0 and µ, µ′, /, /′ ∈ M1
ω,R, with α := 2−n;

(iv) for all R > 0 and ϕ,ψ ∈ Dω,R, µ, / ∈ M1
ω,R, we have the Hölder estimate

(2.25)

∣∣∣∣
⎠

(ϕ− ψ)(µ − /)

∣∣∣∣ ! Jω(ϕ,ψ)αδω(µ, /)1/2R1/2−α.

We call δω the Dirichlet quasi-metric on M1
ω.

Lemma 2.24. For all µ ∈ M1
ω,R and ϕ,ψ, τ ∈ Dω,R, we have

(2.26) |Jω(µ,ϕ) − Jω(MAω(τ ),ψ)| ! max{Jω(µ, τ ), Jω(ϕ,ψ)}αR1−α;

(2.27)

∣∣∣∣
⎠

(ϕ− ψ)(µ − MAω(τ ))

∣∣∣∣ ! Jω(ϕ,ψ)αJω(µ, τ )1/2R1/2−α.

Proof. When µ lies in the image of MAω : Dω → M1
ω, this is equivalent

to (1.38) and (1.37), in view of (2.5) and (2.6). By Theorem 2.22 the image of
MAω is dense in M1

ω, and the general case thus follows by continuity in the strong
topology of all functions of µ involved. "

Proof of Theorem 2.23. Uniqueness is clear, since (2.21) determines δω on
the image of MAω : Dω → M1

ω, which is dense in the strong topology, by Theo-
rem 2.22. To show existence, pick µ, / ∈ M1

ω, and choose a maximizing sequences
(ψi) for /. We can then find R > 0 such that µ ∈ M1

ω,R and ψi ∈ Dω,R for all i,
and (2.26) and (2.7) yield

|Jω(µ,ψi) − Jω(µ,ψj)| ! Jω(ψi,ψj)
αR1−α

! max{Jω(/,ψi), Jω(/,ψj)}αR1−α.

This estimate implies that (Jω(µ,ψi)) is a Cauchy sequence, which thus admits a
limit

(2.28) δω(µ, /) := lim
i

Jω(µ,ψi).

The same estimate also shows that the limit is independent of the choice of max-
imizing sequence (ψi), and that the convergence in (2.28) is uniform with respect
to µ ∈ M1

ω,R. As a consequence, µ &→ δω(µ, /) so defined is continuous on M1
ω for

each / ∈ M1
ω.

By construction, (2.22) holds, and hence also (2.21), by (2.5). This proves (i).
Next, (2.24) holds when /, /′ lie in the image of MAω : Dω → M1

ω, by applying
(2.26) to a maximizing sequence for µ′, and the general case follows by using max-
imizing sequences for /, /′. This shows (iii), which also yields the continuity of δω
on M1

ω × M1
ω (and hence concludes the proof of existence), since µi → µ strongly

implies δω(µi, µ) → δω(µ, µ) = 0, by continuity of δω(·, µ).
Similarly, (iv) follows follows by applying (2.27) to a maximizing sequence (τi)

for /.
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Finally, the first point in (ii) follows from (2.25), since Dω spans the dense
subspace D of C0(X) (see Corollary 1.13). By (1.34) and (1.35), the last two
properties in (ii) hold when the measures lie in the image of MAω, and hence in
general, by continuity of δω. "

We next show:

Theorem 2.25. The quasi-metric space (M1
ω, δω) only depends on the class

[ω]. It is complete, and its topology coincides with the strong topology.

Lemma 2.26. For any / ∈ M1 and R > 0, δω(·, /) is weakly lsc on M1
ω,R.

Proof. When / = MAω(ψ) with ψ ∈ Dω, (2.22) yields δω(·, /) = Jω(·,ψ),
which is weakly lsc on M1

ω (see (2.1)). In the general case, pick a maximizing
sequence (ψi) for /, and set /i := MAω(ψi). By (2.24), we have δω(µ, /i) → δω(µ, /)
uniformly for µ ∈ M1

ω,R, and the result follows. "

Proof of Theorem 2.25. We already know that M1
ω only depends on [ω]

(see Proposition 2.6). Pick τ ∈ Dω, µ, / ∈ M1
ω = M1

ωτ
, and choose maximizing

sequences (ϕi), (ψi) in Dωτ for µ, /, so that δωτ (µ, /) = limi Jωτ (ϕi,ψi). By (2.8),
(ϕi +τ ) and (ψi +τ ) are maximizing sequences in Dω for µ, /, and hence δω(µ, /) =
limi Jω(ϕi,ψi). Now (1.39) yields Jωτ (ϕi,ψi) = Jω(ϕi + τ,ψi + τ ), which proves
δωτ (µ, /) = δω(µ, /). Thus δω only depends on [ω].

We next show that the topology of (M1
ω, δω) is the strong topology, i.e. a

net (µi) converges strongly to µ ∈ M1
ω i! δω(µi, µ) → 0. When the latter holds,

(2.25) implies µi → µ weakly (since Dω spans the dense subspace D of C0(X)),
while (2.24) yields Jω(µi) = Jω(µi, 0) → Jω(µ). Thus µi → µ strongly, and the
converse holds by strong continuity of δω.

Finally, consider a Cauchy net (µi) in (M1, δω). Then Jω(µi) = δω(µi, µω) is
eventually bounded. By weak compactness of M, we may assume, after passing to
a subnet, that (µi) admits a weak limit µ ∈ M. Since Jω is weakly lsc on M, we get
Jω(µ) ≤ lim infi Jω(µi) < +∞, i.e. µ ∈ M1. It remains to show δω(µi, µ) → 0. To
see this, pick , > 0 and i0 such that δω(µi, µj) ≤ , for all i, j ≥ i0. Since Jω(µj) is
bounded and µj → µ weakly, Lemma 2.26 yields δω(µi, µ) ≤ lim infj δω(µi, µj) ≤ ,,
and we are done. "

To conclude this section, we show:

Proposition 2.27. For each / ∈ M1
ω, δω(·, /) : M1

ω → R≥0 is strictly convex,
and we further have the uniform convexity estimate

(1 − t)δω(µ0, /) + tδω(µ1, /) − δω((1 − t)µ0 + tµ1, /) $ t(1 − t)δω(µ0, µ1).

for all µ0, µ1 ∈ M1
ω and t ∈ [0, 1].

Proof. By density of the image of MAω : Dω → M1
ω and continuity of δω, we

may assume without loss / = MAω(ψ) with ψ ∈ Dω, and hence δω(·, /) = Jω(·,ψ).
Set

Jt := (1 − t)Jω(µ0,ψ) + tJω(µ1,ψ), µt := (1 − t)µ0 + tµ1,

and pick ϕ ∈ Dω. Applying (2.4) to µ0 and µ1 yields

Jt = Eω(ϕ) − Eω(ψ) +

⎠
(ψ − ϕ)µt + (1 − t)Jω(µ0,ϕ) + tJω(µ1,ϕ),
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and hence

Jt − Eω(ϕ) + Eω(ψ) +

⎠
(ϕ− ψ)µt ≥ t(1 − t)(Jω(µ0,ψ) + Jω(µ1,ψ)),

using the elementary estimate (1 − t)a + tb ≥ t(1 − t)(a + b) for a, b ≥ 0 (see for
instance [BoJ22, Lemma 7.29]). By (2.23), this implies

Jt − Eω(ϕ) + Eω(ψ) +

⎠
(ϕ− ψ)µt $ t(1 − t)δω(µ0, µ1),

and taking the infimum over ϕ shows Jt − Jω(µt,ψ) $ t(1 − t) dω(µ0, µ1), which
concludes the proof. "

2.7. An equivalent metric on M1. One can show that the quasi-metric
space (M1

ω, δω) is metrizable, by general theory. Here we introduce a concrete
metric that defines the strong topology of M1

ω. Recall from (1.33) that

Dω,1 = {ϕ ∈ Dω | Jω(ϕ) ≤ 1}.

Proposition 2.28. Setting

(2.29) dω(µ, /) := sup
ϕ∈Dω,1

∣∣∣∣
⎠

ϕ(µ − /)

∣∣∣∣

yields a complete metric on M1
ω that defines the strong topology. Furthermore:

(i) the metric dω and the Dirichlet quasi-metric δω share the same bounded
sets;

(ii) they are Hölder equivalent on bounded sets; more precisely:

(2.30) dω(µ, /) ! δω(µ, /)1/2R1/2 and δω(µ, /) ! dω(µ, /)R1/2

for all µ, / ∈ M1
ω,R with R ≥ 1;

(iii) for all ϕ ∈ Dω and µ, / ∈ M1
ω we have

(2.31)

∣∣∣∣
⎠

ϕ (µ − /)

∣∣∣∣ ! (Jω(ϕ)1/2 + 1) dω(µ, µ).

Remark 2.29. In the compact Kähler and non-Archimedean cases, the metric
dω just constructed is a priori unrelated to the usual Darvas-type metric d1 [Dar15,
Reb22].

Proof of Proposition 2.28. Pick ϕ ∈ Dω. Since Jω(a−1ϕ) ! a−2Jω(ϕ) for
a ≥ 1 (see (1.36)), we can choose 1 ≤ a ! Jω(ϕ)1/2 + 1 such that Jω(a−1ϕ) ≤ 1.
Then

∣∣∫ a−1ϕ (µ − /)
∣∣ ≤ dω(µ, /), which proves (2.31).

The first part of (2.30) is a direct consequence of (2.25). It shows, in particular,
that dω is finite valued. It is also clear that dω is symmetric, vanishes on the
diagonal, and satisfies the triangle inequality. Since Dω,1 spans the dense subspace
D of C0(X) (see Lemma 1.32), dω further separates points, and hence defines a
metric on M1

ω.
The first part of (2.30) also shows that µi → µ in M1

ω implies dω(µi, µ) → 0,
by continuity of δω, and it follows that the metric dω is continuous. By density
of the image of MAω, it is thus enough to show the second half of (2.30) when
µ = MAω(ϕ) and / = MAω(ψ) with ϕ,ψ ∈ Dω. Then Jω(ϕ) ≈ Jω(µ) ≤ R and
Jω(ψ) ≈ Jω(/) ≤ R (see (2.6)), while

δω(µ, /) = Jω(ϕ,ψ) ≤
⎠

(ϕ− ψ)(µ − /),
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by (2.21) and (1.30). Using (2.31), we get the second half of (2.30). Next pick µ ∈
M1

ω and set R := max{1, δω(µ, µω)} and S := max{1, dω(µ, µω)}. Applying (2.30)
to / = µω yields S ! R, and also R ! SR1/2, i.e. R ! S2. This proves (i) and (ii).
Since δω defines the strong topology of M1

ω and is complete (see Theorem 2.25),
the same therefore holds, as desired, for dω. "

By Theorem 2.25, the quasi-metric space (M1
ω, δω) only depends on [ω] ∈

Pos(X). Here we show:

Lemma 2.30. For each τ ∈ Dω we have dωτ ! (Jω(τ )1/2 +1) dω. In particular,
the Lipschitz equivalence class of the metric space (M1

ω, dω) only depends on [ω].

Proof. For any ϕ ∈ Dωτ , (1.39) yields Jωτ (ϕ) = Jωτ (0,ϕ) = Jω(τ,ϕ + τ ).
When Jωτ (ϕ) ≤ 1, the quasi-triangle inequality (1.35) thus yields Jω(ϕ + τ ) =
Jω(0,ϕ + τ ) ! 1 + J with J := Jω(τ ) = Jω(0, τ ). By (2.31) we infer
∣∣∣∣
⎠

(ϕ + τ )(µ − /)

∣∣∣∣ ! (1 + J1/2) dω(µ, /),

∣∣∣∣
⎠

τ (µ − /)

∣∣∣∣ ! (1 + J1/2) dω(µ, /).

Thus
∣∣∫ ϕ(µ − /)

∣∣ ! (1 + J1/2) dω(µ, /). Taking the supremum over ϕ ∈ Dωτ such
that Jωτ (ϕ) ≤ 1 yields the result. "

3. Lipschitz and Hölder estimates for the energy

In what follows we consider ω ∈ Z+ with [ω] ∈ Pos(X). As above, we assume
that the orthogonality property holds. From now on, we further assume the sub-
mean value property (see Definition 1.25), and use it to investigate the dependence
of M1

ω on ω and establish a Hölder continuity estimate for the energy pairing.
Recall that the standing assumptions hold when X is a normal irreducible com-

pact Kähler space, or any irreducible projective Berkovich space (see Theorem 1.27
and Examples 2.17 and 2.19).

3.1. Lipschitz estimates for the energy. Recall from §2.7 the metric dω,
which defines the strong topology of M1

ω. As a first key consequence of the submean
value property, we show:

Theorem 3.1. The Lipschitz equivalence class of the metric space (M1
ω, dω) is

independent of ω.

In particular, the topological space M1
ω is independent of ω (see Proposi-

tion 2.28), and will henceforth simply by denoted by M1.

Lemma 3.2. Assume ω′ ∈ Z+ is commensurable to ω, with [ω′] ∈ Pos(X). For
all µ, / ∈ M we then have

(3.1) dω′(µ, /) ≤ eO(δ)(1 + Tω)1/2 dω(µ, /)

with δ := dT(ω,ω′) ∈ R≥0.

Proof. Pick any ϕ ∈ Dω′ such that Jω′(ϕ) =
∫
ϕµω′ − Eω′(ϕ) ≤ 1. We need

to show

(3.2)

∣∣∣∣
⎠

ϕ(µ − /)

∣∣∣∣ ≤ eO(δ)(1 + Tω)1/2 dω(µ, /).

By translation invariance of Jω on Dω, we may assume without loss supϕ = 0.
Then

−Eω′(ϕ) ≤ 1 + Tω′ ≤ 1 + eO(δ)Tω,
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by (1.23). On the other hand,

0 ≥ e(n+1)δ(ω, e−δϕ)n+1 = (eδω,ϕ)n+1 ≥ eO(δ)(ω′,ϕ)n+1,

where the last inequality follows from Lemma 1.20, since ω′ ≤ eδω ≤ e2δω′. Divid-
ing by (n + 1)Vω = eO(δ)(n + 1)Vω′ , we get

0 ≤ Jω(e−δϕ) ≤ −Eω(e−δϕ) ≤ −eO(δ) Eω′(ϕ) ≤ eO(δ)(1 + Tω).

By (2.31) this implies
∣∣∣∣
⎠

e−δϕ(µ − /)

∣∣∣∣ ≤ eO(δ)(1 + Tω)1/2 dω(µ, /),

and hence (3.2). "

Proof of Theorem 3.1. We argue as in the proof of Proposition 1.24. On
the one hand, the Lipschitz equivalence class only depends on the positive class
[ω], by Lemma 2.30. On the other hand, it only depends on the commensurability
class of ω, by Lemma 3.2, and we conclude since any two positive classes admit
commensurable representatives, see Proposition 1.15. "

3.2. Mixed Monge–Ampère measures. It will be convenient to introduce,
for ϕ ∈ Dω and µ ∈ M, the quantities

(3.3) J+
ω (ϕ) := Jω(ϕ) + Tω, and J+

ω (µ) := Jω(µ) + Tω.

Lemma 3.3. For each ϕ ∈ Dω we have

(3.4) 0 ≤ supϕ− Eω(ϕ) ≤ J+
ω (ϕ);

(3.5) J+
ω (ϕ) ≈ J+

ω (MAω(ϕ)).

Proof. By (1.32), we have

supϕ− Eω(ϕ) = Jω(ϕ) + (supϕ−
⎠

ϕµω) ≤ Jω(ϕ) + Tω.

This yields (3.4), while (3.5) is a direct consequence of (2.6). "

We next establish a key energy estimate for mixed Monge–Ampère measures.

Theorem 3.4. For i = 1, . . . , n, pick ωi ∈ Z+ with [ωi] ∈ Pos(X) and ϕi ∈
Dωi , and set

(3.6) µ := ([ω1] · . . . · [ωn])−1(ω1 + ddcϕ1) ∧ · · · ∧ (ωn + ddcϕn) ∈ M.

Then µ lies in M1, and satisfies:

(i) if each ωi is commensurable to ω, then

J+
ω (µ) ! eO(δ) max

i
J+
ωi

(ϕi)

with δ := maxi dT(ωi,ω);
(ii) in the general case,

Jω(µ) ! C(max
i

Jωi(ϕi) + 1),

where C > 0 only depends on ω and the ωi.
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Proof. Assume first that each ωi is commensurable to ω. Set

J := max
i

J+
ωi

(ϕi), V := Vω, Vi := Vωi ,

and observe that

(3.7) e−nδV ≤ Vi ≤ enδV, e−nδV ≤ [ω1] · . . . · [ωn] ≤ enδV.

Since µ is unchanged when the ϕi’s are translated by constants, we may assume
without loss that supϕi = 0. Then

0 ≥ (ωi,ϕi)
n+1 = (n + 1)Vi Eωi(ϕi) ≥ −(n + 1)ViJ

+
ωi

(ϕi),

by (3.4), and hence

(3.8) 0 ≥ (ωi,ϕi)
n+1 $ −eO(δ)V J,

using (3.7). Now pick ψ ∈ Dω such that supψ = 0, and set R := Jω(ψ). On the
one hand,

(3.9) 0 ≥ (ω,ψ)n+1 = (n + 1)V Eω(ψ) ≥ −(n + 1)V (R + Tω),

using (3.4) again. On the other hand, (3.7) yields

0 ≥ e−nδV

⎠
ψ µ

≥
⎠

ψ (ω1 + ddcϕ1) ∧ · · · ∧ (ωn + ddcϕn)

= (ω,ψ) · (ω1,ϕ1) · . . . · (ωn,ϕn) − (ω, 0) · (ω1,ϕ1) · . . . · (ωn,ϕn)

≥ (ω,ψ) · (ω1,ϕ1) · . . . · (ωn,ϕn)

$ eO(δ) min{(ω,ψ)n+1, min
i

(ωi,ϕi)
n+1},

by (1.16) and Theorem 1.18. Combined with (3.8) and (3.9), this yields
⎠

ψ(µω − µ) ≤ −
⎠

ψ µ ! eO(δ)(R + J + Tω) ! eO(δ)(R + J),

since Tω ≤ eO(δ)Tωi ≤ eO(δ)J by (1.23). By Lemma 2.8, we infer,

Jω(µ) ! eO(δ) inf
R>0

(R + J)
(
1 + R−1(R + J)

)
≤ eO(δ)J,

which concludes the proof of (i) (using (1.23)).
We now consider the general case. By Proposition 1.15, we can choose τ ∈ Dω

and τi ∈ Dωi such that ω′ := ωτ and ω′
i := ωi,τi are commensurable for all i. Then

µ = ([ω′
1] · . . . · [ω′

n])−1(ω′
1 + ddcϕ′

1) ∧ · · · ∧ (ω′
n + ddcϕn)

with ϕ′
i := ϕi − τi, and hence

Jω′(µ) ! max
i

(Jω′
i
(ϕ′

i) + Tω′
i
),

by Theorem 3.4. By (2.9), we have Jω(µ) ≤ Jω′(µ) + C and Jω′
i
(ϕ′

i) ≤ Jω(ϕi) + C,
with C > 0 independent of µ, and (ii) follows. "

As a consequence, we get the following estimate for the energy:
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Corollary 3.5. Pick ω′ ∈ Z+ such that [ω′] ∈ Pos(X), and µ ∈ M1.

(i) If ω′ is commensurable to ω, then

J+
ω′(µ) ≈ eO(δ)J+

ω (µ)

with δ := dT(ω,ω′).
(ii) In the general case, there exists C > 0 only depending on ω,ω′ such that

Jω′(µ) ≤ C(Jω(µ) + 1).

We refer to (4.21) below for a more precise estimate when δ is small.

Proof. Assume first ω′ commensurable. Pick a maximizing sequence (ϕj) for
µ in Dω, and set µj := MAω(ϕj). Then µj → µ strongly in M1 (see Theorem 2.22),
and hence Jω(µj) → Jω(µ) and Jω′(µj) → Jω′(µ). For each j we have Jω(ϕj) ≈
Jω(µj) (see (2.6)). Theorem 3.4 thus yields J+

ω′(µj) ! eO(δ)J+
ω (µj), and (i) follows.

In the general case, we can choose τ ∈ Dω and τ ′ ∈ Dω′ such that ωτ and ωτ ′ are
commensurable (see Proposition 1.15). By (2.9), we then have Jω′(µ) ≤ Jωτ (µ)+C
and Jωτ′ (µ) ≤ Jω′(µ) + C with C > 0 independent of µ, and (ii) now follows from
(i). "

3.3. Hölder continuity of the energy pairing. Recall from §1.3 that

Zω = {θ ∈ Z | ‖θ‖ω < ∞} .

Using the above results, we establish a general Hölder continuity property for the
energy pairing.

Theorem 3.6. For i = 0, . . . , n, pick θi, θ′i ∈ Zω and ϕi,ϕ′
i ∈ Dω, normalized

by
∫
ϕi µω =

∫
ϕ′

i µω = 0. Then

|(θ0,ϕ0) · . . . · (θn,ϕn) − (θ′0,ϕ
′
0) · . . . · (θ′n,ϕ′

n)|

! A
(
max

i
‖θi − θ′i‖ωJ + max

i
Jω(ϕi,ϕ

′
i)

αJ1−α
)

.

with α := 2−n and

A := Vω

∏

i

(1 + ‖θi‖ω + ‖θ′i‖ω) , J := max
i

J+
ω (ϕi).

In particular,

(3.10) |(θ1,ϕ1) · . . . · (θn,ϕn)| ! Vω

∏

i

(1 + ‖θi‖ω)max
i

J+
ω (ϕi).

Proof. Assume first θi = θ′i for all i. By symmetry of the energy pairing,
we may assume ϕi = ϕ′

i for i ≥ 1. For i = 1, . . . , n set ti := 1 + ‖θi‖ω. Then
‖t−1

i θi‖ω ≤ 1, and

Jω(t−1
i ϕi) ≤ t−1

i Jω(ϕi) ≤ Jω(ϕi),

by convexity of Jω on Dω. By homogeneity, we may thus assume ‖θi‖ω ≤ 1 for all
i = 1, . . . , n. Thus −ω ≤ θi ≤ ω, and hence θi = θ+

i − θ−i where θ+
i := θi + 2ω

and θ−i := 2ω both satisfy ω ≤ θ±
i ≤ 3ω. By multilinearity, we may finally assume

ω ≤ θi ≤ 3ω. By Proposition 1.17 (i), it then suffices to show

(3.11)

∣∣∣∣
⎠

(ϕ0 − ϕ′
0)(θ1 + ddcϕ1) ∧ · · · ∧ (θn + ddcϕn)

∣∣∣∣ ≤ VωJω(ϕ0,ϕ
′
0)

αJ1−α.
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Since ω ≤ θi ≤ 3ω, Theorem 3.4 shows that

µ := ([θ0] · . . . · [θn])−1(θ1 + ddcϕ1) ∧ · · · ∧ (θn + ddcϕn) ∈ M
satisfies Jω(µ) ! J . By (2.25), we infer

∣∣∣∣
⎠

(ϕ0 − ϕ0)(µ − µω)

∣∣∣∣ ! Jω(ϕ0,ϕ0)
αJ1−α,

which yields (3.11) since
∫

(ϕ0 − ϕ0)µω = 0 and [θ0] · . . . · [θn] ! Vω.
In the general case, we may again assume (θi,ϕi) = (θ′i,ϕ

′
i) for i ≥ 1, by

symmetry and multilinearity of the energy pairing. Then

(θ0,ϕ0) · (θ1,ϕ1) · . . . · (θn,ϕn) − (θ′0,ϕ
′
0) · (θ1,ϕ1) · . . . · (θn,ϕn)

= (θ0 − θ′0, 0) · (θ1,ϕ1) · . . . · (θn,ϕn) + (0,ϕ0 − ϕ′
0) · (θ1,ϕ1) · . . . · (θn,ϕn),

where the last term has already been estimated by (3.11). We are thus reduced to
showing

|(θ0, 0) · (θ1,ϕ1) · . . . · (θn,ϕn)| ! AJ‖θ0‖ω.

By homogeneity we may further assume ‖θ0‖ω = 1, and the desired estimate now
follows from the first step of the proof applied to ϕ′

i = 0, using (θ0, 0) · . . . · (θn, 0) =
0. "

4. Twisted energy and differentiability

As in §3, we assume that the orthogonality and submean value properties hold,
and recall that this is satisfied when X is a normal irreducible compact Kähler space
or any irreducible projective Berkovich space. We fix ω ∈ Z+ with [ω] ∈ Pos(X).
In this section we introduce and study the twisted energy of a measure, and show
that it computes the directional derivatives of the energy.

4.1. The twisted energy of a measure. For any θ ∈ Z and ϕ ∈ D,

Eω+tθ(ϕ) := V −1
ω+tθ(ω + tθ,ϕ)n+1

make sense for all t ∈ R small enough, and

(4.1) ∇θ Eω(ϕ) :=
d

dt

∣∣∣∣
t=0

Eω+tθ(ϕ)

satisfies

(4.2) ∇θ Eω(ϕ) = Eθ
ω(ϕ) − V θ

ω Eω(ϕ),

where

(4.3) Eθ
ω(ϕ) := V −1

ω (θ, 0) · (ω,ϕ)n

and
V θ
ω := nV −1

ω [θ] · [ω]n−1.

Note that Eθ
ω(ϕ) is a linear function of θ ∈ Z, and

(4.4) Eθ
ω(ϕ + c) = Eθ

ω(ϕ) + cV θ
ω for c ∈ R,

while ∇θ Eω is translation invariant. For all ϕ,ψ ∈ D, we further have

(4.5) Eθ
ω(ϕ) − Eθ

ω(ψ) =
n−1∑

j=0

V −1
ω

⎠
(ϕ− ψ)θ ∧ ωj

ϕ ∧ ωn−1−j
ψ .
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Example 4.1. By (1.24), we have E(1+t)ω((1+t)ϕ) = (1+t) Eω(ϕ). By (1.27),
this implies ∇ω Eω(ϕ) +

∫
ϕ MAω(ϕ) = Eω(ϕ), and hence

(4.6) ∇ω Eω(ϕ) = Eω(ϕ) −
⎠

ϕ MAω(ϕ) = Jω(ϕ, 0) ≈ Jω(0,ϕ) = Jω(ϕ).

Example 4.2. For each ψ ∈ D and t ∈ R, (1.29) yields Eω+tddcψ(ϕ) = Eω(ϕ+
tψ) − Eω(tψ), and using again (1.27) we get

(4.7) ∇ddcψ Eω(ϕ) =

⎠
ψ(MAω(ϕ) − µω).

Example 4.3. For any τ ∈ Dω, we similarly have Eωτ+tθ(ϕ) = Eω+tθ(ϕ+τ )−
Eω+tθ(τ ) and

(4.8) ∇θ Eωτ (ϕ) = ∇θ Eω(ϕ + τ ) −∇θ Eω(τ ).

Lemma 4.4. For all θ ∈ Z and ϕ,ψ ∈ Dω, the following holds:

(i) if θ ∈ Zω, then

(4.9) |∇θ Eω(ϕ) −∇θ Eω(ψ)| ! Jω(ϕ,ψ)α max{J+
ω (ϕ), J+

ω (ψ)}1−α‖θ‖ω
with α := 2−n;

(ii) in the general case, there exist C > 0 only depending on ω and θ such that

(4.10) |∇θ Eω(ϕ) −∇θ Eω(ψ)| ≤ CJω(ϕ,ψ)α(max{Jω(ϕ), Jω(ψ)} + 1)1−α.

Proof. By translation invariance of ∇θ Eω, we may assume
∫
ϕµω =

∫
ψ µω =

0. When θ lies in Zω, Theorem 3.6 applied to (1.24) and (4.3) yields

|Eω(ϕ) − Eω(ψ)| ≤ C and
∣∣∣Eθ

ω(ϕ) − Eθ
ω(ψ)

∣∣∣ ≤ C(1 + ‖θ‖ω)

with C := Jω(ϕ,ψ)α max{J+
ω (ϕ), J+

ω (ψ)}1−α. By homogeneity of Eθ
ω with respect

to θ, we may replace 1 + ‖θ‖ω with ‖θ‖ω in the last estimate, and (i) now follows
from (4.2) together with |V θ

ω | ≤ n‖θ‖ω.
In the general case, pick τ ∈ Dω such that θ ∈ Zωτ (see Proposition 1.12).

Given ϕ,ψ ∈ Dω, we then have ϕ− τ,ψ − τ ∈ Dωτ , and (4.8), (1.39) yield

∇θ Eωτ (ϕ− τ )−∇θ Eωτ (ψ− τ )=∇θ Eω(ϕ)−∇θ Eω(ψ), Jωτ (ϕ−τ,ψ−τ )=Jω(ϕ,ψ),

Jωτ (ϕ−τ ) = Jωτ (0,ϕ−τ ) = Jω(τ,ϕ) ! Jω(ϕ)+Jω(τ ), Jωτ (ψ−τ ) ! Jω(ψ)+Jω(τ ).

By (i) we thus get

|∇θ Eω(ϕ) −∇θ Eω(ψ)| ! Jω(ϕ,ψ)α
(
max{J+

ω (ϕ), J+
ω (ψ)} + J+

ω (τ )
)1−α ‖θ‖ωτ ,

which proves (ii). "
Proposition 4.5. For any θ ∈ Z, there exists a unique strongly continuous

functional Jθω : M1 → R, the θ-twisted energy, such that

(4.11) Jθω(MAω(ϕ)) = ∇θ Eω(ϕ)

for all ϕ ∈ Dω. For all µ, / ∈ M1, we also have:

(i) Jθω(µ) is a linear function of θ;
(ii) if θ ∈ Zω, then

(4.12) |Jθω(µ) − Jθω(/)| ! δω(µ, /)α max{J+
ω (µ), J+

ω (/)}1−α‖θ‖ω;

with α := 2−n, and hence

(4.13) |Jθω(µ)| ! J+
ω (µ)‖θ‖ω;
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(iii) in the general case, there exist C > 0 only depending on ω and θ such that

(4.14) |Jθω(µ) − Jθω(/)| ≤ Cδω(µ, /)α(max{Jω(µ), Jω(/)} + 1)1−α,

and hence

(4.15) |Jθω(µ)| ≤ C(Jω(µ) + 1).

Proof. Assume ϕ,ψ ∈ Dω satisfy MAω(ϕ) = MAω(ψ). Then Jω(ϕ,ψ) = 0,
and hence ∇θ Eω(ϕ) = ∇θ Eω(ψ), by (4.10). As a result, there exists a unique
function Jθω on the image of MAω : Dω → M1 such that (4.11) is satisfied. For all
µ, / ∈ M1 in the image of MAω, it further follows from (4.10) that (4.14) holds.
This shows that Jθω is uniformly continuous on a dense subspace of the quasi-metric
space (M1, δω), and hence admits a unique continuous extension Jθω : M1 → R.
Finally, (i) holds by linearity of ∇θ Eω with respect to θ,(ii) and (iii) follow, by
continuity, from Lemma 4.4. "

Using (4.11) (with ϕ = 0), (4.6), (4.7) and (4.8), we further get, for all µ ∈ M1,
ψ ∈ D and τ ∈ Dω,

(4.16) Jθω(µω) = 0;

(4.17) Jωω(µ) = Jω(µ);

(4.18) Jddcψ
ω (µ) =

⎠
ψ(µ − µω);

(4.19) Jθωτ
(µ) = Jθω(µ) + c

with c ∈ R uniquely determined by (4.16), i.e. c = Jθωτ
(µω) = −Jθω(µωτ ).

4.2. Hölder continuity of the twisted energy. The following estimates
will be the key ingredients for the continuity of coercivity thresholds (see Theo-
rem 5.5 below).

Theorem 4.6. Pick ω,ω′ ∈ Z+ with δ := dT(ω,ω′) ≤ 1 and [ω′] ∈ Pos(X).
For all θ, θ′ ∈ Zω and µ ∈ M1, we then have

(4.20)
∣∣∣Jθω(µ) − Jθ

′

ω′(µ)
∣∣∣ ! (δa‖θ‖ω + ‖θ − θ′‖ω) J+

ω (µ)

and

(4.21) J+
ω (µ) = (1 + O(δα))J+

ω′(µ).

Lemma 4.7. Assume ω ≤ ω′ ≤ eδω with δ ∈ [0, 2]. Pick ϕ ∈ Dω ⊂ Dω′ , and
set µ := MAω(ϕ), µ′ := MAω′(ϕ). Then:

(4.22) |∇θ Eω(ϕ) −∇θ Eω′(ϕ)| ! δJ+
ω (µ)‖θ‖ω;

(4.23) max{J+
ω′(µ), J+

ω′(µ′)} ! J+
ω (µ);

(4.24) Jω′(µ, µ′) ! δJ+
ω (µ).
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Proof. All three estimates are invariant under translation of ϕ by a constant,
and we shall rely on a di!erent normalization for each of them. We first normalize
ϕ by

∫
ϕµω = 0. By homogeneity, we may further assume ‖θ‖ω = 1. Since

Eθ
ω(ϕ) − Eθ

ω′(ϕ) = V −1
ω (θ, 0) · (ω,ϕ)n − V −1

ω′ (θ, 0) · (ω′,ϕ)n

with Vω′/Vω = 1 + O(δ), Theorem 3.6 yields
∣∣∣Eθ

ω(ϕ) − Eθ
ω′(ϕ)

∣∣∣ ! ‖ω′ − ω‖ωJ+
ω (µ) ! δJ+

ω (µ).

We similarly get |Eω(ϕ) − Eω′(ϕ)| ! δJ+
ω (µ), and (4.22) follows, using the trivial

estimate
V θ
ω′ = V θ

ω + O(δ).

Next, we normalize ϕ by supϕ = 0. By Lemma 1.20, we then have

Jω′(µ′) ≈ Jω′(ϕ) =

⎠
ϕµω′ − Eω′(ϕ) ≤ −Eω′(ϕ) ! −Eω(ϕ) ≤ J+

ω (µ).

On the other hand, Corollary 3.5 yields J+
ω′(µ) ! J+

ω (µ), and (4.23) follows.
Finally, we normalize ϕ by

∫
ϕµω′ = 0. Pick a maximizing sequence (ψi) in Dω′

for µ, also normalized by
∫
ψi µω′ = 0, and set µi := MAω′(ψi). By Theorem 2.22,

Jω′(µ, µ′) is the limit of

Jω′(µi, µ
′) = Jω′(ψi,ϕ) ≈

⎠
(ψi − ϕ)(µ′ − µi) =

⎠
(ψi − ϕ)(µ′ − µ) + o(1),

where the last two points hold by (1.30) and (2.25), respectively. Now
⎠

(ψi − ϕ)(µ′ − µ) =
[
V −1
ω′ (0,ψi) · (ω′,ϕ)n − V −1

ω (0,ψi) · (ω,ϕ)n
]

−
[
V −1
ω′ (0,ϕ) · (ω′,ϕ)n − V −1

ω (0,ϕ) · (ω,ϕ)n
]
,

where
∣∣V −1

ω′ (0,ψi) · (ω′,ϕ)n − V −1
ω (0,ψi) · (ω,ϕ)n

∣∣ ! ‖ω′ − ω‖ω′ max{J+
ω′(ϕ), J+

ω′(ψi)}

and ∣∣V −1
ω′ (0,ϕ) · (ω′,ϕ)n − V −1

ω (0,ϕ) · (ω,ϕ)n
∣∣ ! ‖ω′ − ω‖ω′J+

ω′(ϕ),

by Theorem 3.6. Since ‖ω′ − ω‖ω′ ! δ, Jω′(ϕ) ≈ Jω′(µ′) and Jω′(ψi) ≈ Jω′(µi) →
Jω′(µ), this proves (4.24), thanks to (4.23). "

Proof of Theorem 4.6. Note first that ω′′ := e−δω ≤ ω′ ≤ eδω, and hence

ω′′ ≤ ω′ ≤ e2δω′′, ω′′ ≤ ω ≤ eδω′′.

Arguing successively with ω′′,ω′, and with ω′′,ω, and relying on Corollary 3.5,
it is thus enough to prove the result when ω ≤ ω′ ≤ eδω, which we henceforth
assume. By density of the image of MAω : Dω → M1 and strong continuity of
Jθω and Jθω′ (recall that the strong topology of M1 is independent of ω), we may
assume µ = MAω(ϕ) with ϕ ∈ Dω ⊂ Dω′ . As in Lemma 4.7, set µ′ := MAω′(ϕ).
By (4.11), we have

Jθω(µ) = ∇θ Eω(ϕ), Jθω′(µ′) = ∇θ Eω′(ϕ),

and (4.22) thus yields

(4.25)
∣∣Jθω(µ) − Jθω′(µ′)

∣∣ ! δJ+
ω (µ)‖θ‖ω.
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On the other hand, (4.12), implies

(4.26)
∣∣Jθω′(µ) − Jθω′(µ′)

∣∣ ! δαJ+
ω (µ)‖θ‖ω,

thanks to (4.23) and (4.24). Finally, (4.13) yields

(4.27)
∣∣∣Jθω′(µ) − Jθ

′

ω′(µ)
∣∣∣ =

∣∣∣Jθ−θ′

ω′ (µ)
∣∣∣ ! J+

ω′(µ)‖θ − θ′‖ω′ ,

and summing up (4.25), (4.26) and (4.27) yields (4.20). Applying the latter estimate
with θ := ω, θ′ := ω′, we get

(4.28) |Jω(µ) − Jω′(µ)| ! δαJ+
ω (µ),

in view of (4.17). Since we also have Tω′ = (1 + O(δ))Tω (see (1.23)), (4.21)
follows. "

4.3. Differentiability of the energy.

Theorem 4.8. For any θ ∈ Z and µ ∈ M1, we have

d

dt

∣∣∣∣
t=0

Jω+tθ(µ) = Jθω(µ).

If we do not assume θ ∈ Zω, the condition ω + tθ ≥ 0 will fail in general, but
one can still make sense of Jω+tθ(µ), see Remark 2.4.

Lemma 4.9. Pick θ ∈ Zω and ϕ ∈ Dω normalized by
∫
ϕµω = 0.Then

|Eω(ϕ)| ! J+
ω (ϕ),

∣∣∣∣
⎠

ϕ MAω(ϕ)

∣∣∣∣ ! J+
ω (ϕ),

∣∣∣Eθ
ω(ϕ)

∣∣∣ ! ‖θ‖ωJ+
ω (ϕ).

Proof. We have

Eω(ϕ) =
(ω,ϕ)n+1

(n + 1)Vω
,

⎠
ϕ MAω(ϕ) =

(0,ϕ) · (ω,ϕ)n

Vω
, Eθ

ω(ϕ) =
(θ, 0) · (ω,ϕ)n

Vω
,

and the estimates thus follow from (3.10) (and homogeneity in θ). "

Lemma 4.10. Pick θ ∈ Zω such that ‖θ‖ω < 1 and [ω + θ] ∈ Pos(X). For all
µ ∈ M1 we then have

Jω+θ(µ) ≥ Jω(µ) + Jθω(µ) − O(J+
ω (µ)‖θ‖2

ω).

Recall that, in this paper, the implicit constant in O only depends on n.

Proof. Set J := J+
ω (µ) and , := ‖θ‖ω. If , = 0, then θ = 0 and the result is

clear. We may thus assume , > 0 and write θ = ,θ̃ with ‖θ̃‖ω = 1 and , ∈ (0, 1).
By density of the image of MAω : Dω → M1, it is enough to prove the result

when µ = MAω(ϕ) with ϕ ∈ Dω, which we normalize by
∫
ϕµω = 0. By (2.5),

(4.11) and (4.2), we then have

(4.29) Jω(µ) = Eω(ϕ) −
⎠

ϕµ, Jθω(µ) = Eθ
ω(ϕ) − V θ

ω Eω(ϕ).

Note that

(4.30) (1 − ,)ω ≤ ω + θ ≤ (1 + ,)ω ≤ (1 − ,)−1ω,

and hence
(1 − ,)ϕ ∈ D(1−ε)ω ⊂ Dω+θ.
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By (2.2), this yields

(4.31) Jω+θ(µ) ≥ Eω+θ ((1 − ,)ϕ) − (1 − ,)

⎠
ϕµ.

Further,

(n + 1)Vω+θ Eω+θ ((1 − ,)ϕ)) = (ω + θ, (1 − ,)ϕ)n+1 = ((ω,ϕ) + (θ,−,ϕ))n+1

= (ω,ϕ)n+1 + (n + 1) [(θ, 0) · (ω,ϕ)n − ,(0,ϕ) · (ω,ϕ)n] + ,2a(,)

= (n + 1)Vω

[
Eω(ϕ) + Eθ

ω(ϕ) − ,

⎠
ϕµ

]
+ ,2a(,)

with

a(,) :=
n+1∑

j=2

(
n + 1

j

)
,j−2(θ̃,−ϕ)j · (ω,ϕ)n+1−j .

Since ‖θ̃‖ω = 1, (3.10) yields |a(,)| ! VωJ . Combining this with

Vω+θ = [ω + θ]n = [ω]n + n[θ] · [ω]n−1 + O(,2[ω]n) = Vω

(
1 + V θ

ω + O(,2)
)
,

and
∣∣V θ

ω

∣∣ ! ,, |Eω(ϕ)| ! J,

∣∣∣∣

⎠
ϕµ

∣∣∣∣ ≤ J,
∣∣∣Eθ

ω(ϕ)
∣∣∣ ! ,J,

(see Lemma 4.9), we infer

Eω+θ((1 − ,)ϕ) ≥
(
1 − V θ

ω + O(,2)
)(

Eω(ϕ) + Eθ(ϕ) − ,

⎠
ϕµ − O(,2J)

)

= Eω(ϕ) + Eθ
ω(ϕ) − V θ

ω Eω(ϕ) − ,

⎠
ϕµ − O(,2J).

Injecting this into (4.31) and using (4.29), we get

Jω+θ(µ) ≥ Jω(µ) + Jθω(µ) − O(,2J),

which completes the proof. "
Proof of Theorem 4.8. Assume first θ ∈ Zω. Set J := J+

ω (µ). By Lemma
4.10 we then have

Jω+tθ(µ) ≥ Jω(µ) + tJθω(µ) − O(t2‖θ‖ωJ).

For |t| 2 1, we also have δ(ω+tθ,ω) ≤ 1, and hence J+
ω+tθ(µ) ! J , by Corollary 3.5.

Reversing the roles of ω and ω + tθ, Lemma 4.10 thus yields

Jω(µ) ≥ Jω+tθ(µ) − tJθω+tθ(µ) − O(t2‖θ‖ωJ).

By Theorem 4.6, Jθω+tθ(µ) → Jθω(µ) as t → 0, and we conclude, as desired,

Jω+tθ(µ) = Jω(µ + tJθω(µ) + o(t).

as t → 0.
In the general case, pick τ ∈ Dω such that θ ∈ Zωτ (see Proposition 1.12).

Then (2.9) yields

Jω+tθ(µ) = Jωτ+tθ(µ) −
⎠

τ µ + Eω+tθ(τ ),

see Remark 2.4. We infer
d

dt

∣∣∣∣
t=0

Jω+tθ(µ) = Jθωτ
(µ) + ∇θ Eω(τ ) = Jθωτ

(µ) + Jθω(µωτ ) = Jθω(µ),
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where the first equality follows from the first step of the proof and (4.2), the second
one from (4.11), and the third from (4.19). "

5. Coercivity thresholds and free energy

As in §4, we assume that the orthogonality and submean value properties hold.
We will establish a general continuity result for coercivity thresholds, and apply
this to the free energy, which induces the Mabuchi K-energy on potentials.

5.1. Continuity of coercivity thresholds. Fix for the moment ω ∈ Z+

with [ω] ∈ Pos(X), and consider an arbitrary functional F : M1 → R ∪ {+∞}.

Definition 5.1. We define the coercivity threshold of F as

(5.1) σω(F ) := sup {σ ∈ R | F ≥ σJω + A for some A ∈ R} ∈ [−∞, +∞].

We say that F is coercive if σω(F ) > 0, i.e. F ≥ σJω + A for some σ > 0 and
A ∈ R.

By Corollary 3.5 (ii), the condition that F is coercive (resp. σω(F ) = ±∞) is
independent of ω.

Recall from (2.22) that the energy of any µ ∈ M1 coincides with the quasi-
distance to the base point µω, i.e. Jω(µ) = δω(µ, µω). As a result, the coercivity
threshold measures the linear growth of F with respect to quasi-metric δω. As we
next show, any other base point can be used in place of µω (something that could
fail for a general quasi-metric).

Lemma 5.2. For any F : M1 → R ∪ {+∞} and / ∈ M1 we have

(5.2) σω(F ) = sup {σ ∈ R | F ≥ σδω(·, /) + A for some A ∈ R} .

In particular, σω(F ) only depends on [ω] ∈ Pos(X).

Proof. For any µ ∈ M1, (2.24) yields

|δω(µ, /) − Jω(µ)| ! Jω(/)α max{Jω(µ), Jω(/)}1−α.

For any , > 0, we can thus find Cε > 0 (depending on /) such that

(1 − ,)Jω(µ) − Cε ≤ δω(µ, /) ≤ (1 + ,)Jω(µ) + Cε

for all µ ∈ M1. This implies (5.2), and the last point follows, since the Dirichlet
quasi-metric δω only depends on [ω] (see Theorem 2.25). "

Definition 5.3. For each θ ∈ Z, we introduce the twisted coercivity threshold

(5.3) σθ
ω(F ) := σω(F + Jθω).

We refer to §5.2 below for a discussion of the concrete cases we have in mind.

Lemma 5.4. The following holds:

(i) σ0
ω(F ) = σω(F ), and σθ+tω

ω (F ) = σθ
ω(F ) + t for all θ ∈ Z and t ∈ R;

(ii) we have σω(F ) ∈ R (resp. σω(F ) = ±∞) iff σθ
ω(F ) ∈ R (resp. σθ

ω(F ) =
±∞) for all θ ∈ Z.

Proof. The first point is a direct consequence of (4.17). For any θ ∈ Z, (4.15)
yields a constant C > 0 such that |Jθω| ≤ C(Jω + 1). This implies

σω(F ) − C ≤ σθ
ω(F ) ≤ σω(F ) + C,

and (ii) follows. "
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We can now state the main result of this section.

Theorem 5.5. For any functional F : M1 → R∪ {+∞}, the twisted coercivity
threshold σθ

ω(F ) is a continuous function of ([ω], [θ]) ∈ Pos(X) × HBC(X).

We emphasize that F here is a fixed functional, independent of ω and θ. Con-
tinuity is understood with respect to the finest vector space topology of HBC(X),
i.e. for [ω] and [θ] constrained to any given finite dimensional subspace.

Lemma 5.6. There exists δn > 0 only depending on n such that, for all ω,ω′ ∈
Z+ with δ := dT(ω,ω′) ≤ δn and all θ, θ′ ∈ Zω, we have

(5.4) σθ′

ω′(F ) ≥ (1 + O(δα))
[
σθ
ω(F ) + O(δα‖θ‖ω + ‖θ − θ′‖ω)

]
.

Proof. Since J+
ω = Jω + Tω, we can replace Jω with J+

ω in (5.1), and hence

(5.5) σθ
ω(F ) = sup

{
σ ∈ R | F + Jθω ≥ σJ+

ω + A for some A ∈ R
}

.

Pick σ, A ∈ R such that F + Jθω ≥ σJ+
ω + A on M1. By (4.20) we get

F + Jθ
′

ω′ ≥ F + Jθω + O(δα‖θ‖ω + ‖θ − θ′‖ω)J+
ω

≥ σJ+
ω + A + O(δα‖θ‖ω + ‖θ − θ′‖ω)J+

ω

≥ (1 + O(δα)) [σ + O(δα‖θ‖ω + ‖θ − θ′‖ω] J+
ω′ + A,

using (4.21), and hence σθ′

ω′(F ) ≥ (1+O(δα)) [σ + O(δα‖θ‖ω + ‖θ − θ′‖ω]. Choosing
δn > 0 such that 1 + O(δα) ≥ 0 for δ ≤ δn and taking the supremum over σ
yields (5.4). "

Proof of Theorem 5.5. We first show that σθ
ω(F ) only depends on the

classes [ω] ∈ Pos(X) and [θ] ∈ HBC(X). For each τ ∈ Dω, we have

σθ
ωτ

(F ) = σωτ (F + Jθωτ
) = σωτ (F + Jθω) = σω(F + Jθω) = σθ

ω(F ),

where the second equality follows from (4.19), and the third from Lemma 5.2. This
proves that σθ

ω(F ) only depends on [ω]. On the other hand, for any ψ ∈ D, (4.18)
yields

F + Jθω − C ≤ F + Jθ+ddcψ
ω ≤ F + Jθω + C

with C := 2 sup |ψ|. This implies σθ
ω(F ) = σθ+ddcψ

ω (F ), which thus only depends
on [θ].

As noted above, Corollary 3.5 (ii) shows that the condition σω(F ) = ±∞
is independent of ω, and in that case the result trivially holds, since all twisted
thresholds are then equal to ±∞, by Lemma 5.4 (ii).

Assume now that the twisted thresholds are finite valued. Pick ω0 ∈ Z+ with
[ω0] ∈ Pos(X), θ0 ∈ Z. Choose a finite dimensional subspace W ⊂ HBC(X)
containing [ω0], [θ0], and a finite dimensional subspace V ⊂ Z containing θ0, and
whose image in HBC(X) contains W . Since σθ0

ω0
(F ) only depends on [ω0], we can

assume without loss V ⊂ Zω0 (see Proposition 1.12). After enlarging V , we may
further assume that it contains ω0. For each ω, θ ∈ V ⊂ Zω0 with ω close enough
to ω0, (5.5) yields

|σθ
ω(F ) − σθ0

ω0
(F )| ! δα

[
σθ0
ω0

(F ) + O(δα‖θ0‖ω0 + ‖θ − θ0‖ω0)
]

with δ = dT(ω,ω0). By Lemma 1.14, this shows that the restriction of (ω, θ) &→
σθ
ω(F ) to V is continuous at (ω0, θ0), and the result follows, since the image of V

contains W . "
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5.2. Free energy vs. Mabuchi K-energy.
5.2.1. The Kähler case. Consider first a compact connected Kähler manifold

X. Any smooth metric ρ on KX induces a volume form µ, (normalized to mass
one), and hence a (relative) entropy functional

(5.6) Ent, : M → R ∪ {+∞},

such that

Ent,(µ) :=

⎠
log

(
µ

µ,

)
µ

if µ is absolutely continuous with respect to µ,, and Ent,(µ) = +∞ otherwise.
Note that

(5.7) Ent,′(µ) = Ent,(µ) +

⎠
(ρ− ρ′) µ

for any other metric ρ′ on KX . As is well-known, the relative entropy can also be
written as the Legendre transform

Ent,(µ) := sup
f∈D

(⎠
f µ − log

⎠
efµ,

)

which shows that (5.6) is convex and lsc. In particular, the restriction Ent, : M1 →
R∪ {+∞} is lsc in the strong topology. While it is not continuous, we nevertheless
have (see [BDL17, Theorem 4.7]):

Lemma 5.7. For each µ ∈ M1, there exists a sequence (ϕi) in Dω such that
µi := MAω(ϕi) satisfies µi → µ strongly in M1 and Ent,(µi) → Ent,(µ).

Extending the terminology of [Berm13], we introduce:

Definition 5.8. The free energy Fω : M1 → R ∪ {+∞} is defined by setting

(5.8) Fω(µ) := Ent,(µ) − Ent,(µω) + Jθρω (µ),

where θ, ∈ Z denotes the curvature of ρ.

As the notation suggests, Fω is independent of the choice of ρ; this follows
from (5.7) combined with (4.18). Furthermore, (4.16) and (4.19) show that Fω only
depends on the Kähler class [ω], up to an additive constant uniquely determined
by the normalization Fω(µω) = 0.

The raison d’être of the free energy is that its composition with the Monge–
Ampère operator coincides with the Mabuchi K-energy Mω : Dω → R, i.e. we have

(5.9) Fω(MAω(ϕ)) = Mω(ϕ)

for all ϕ ∈ Dω. Indeed, in view of (4.11), (5.9) is equivalent to the well-known
Chen–Tian formula for the K-energy, which can be written as

(5.10) Mω(ϕ) = Ent,(MAω(ϕ)) + ∇θρ Eω(ϕ) + c

in the present formalism, for a constant c ∈ R determined by the normalization
Mθ

ω(0) = 0, i.e. c = −Ent,(µω).

Definition 5.9. The coercivity threshold of (X,ω) is defined as σ(X,ω) :=
σω(Fω).

Theorem 5.10. The coercivity threshold of (X,ω) is a continuous function of
the Kähler class [ω], and it satisfies

σ(X,ω) = sup {σ ∈ R | Mω ≥ σJω + A on Dω for some A ∈ R} .
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By [CC21], σ(X,ω) > 0 i! there exists a unique constant scalar curvature
Kähler (cscK) metric in [ω]. In particular, we recover the fact, originally proved
in [LS94], that the set of Kähler classes of X that contain a unique cscK metric is
open.

Proof. Pick a smooth metric ρ on KX . By (5.8), we have σ(X,ω)=σ
θρ
ω (Ent,),

and the first point thus follows from Theorem 5.5. As to the second point, it is a
simple consequence of (5.9) and Lemma 5.7. "

Remark 5.11. Given θ ∈ Z, one can more generally consider the θ-twisted
free energy Fθ

ω := Fω +Jθω, whose composition with the Monge–Ampère operator
coincides with the θ-twisted K-energy Mθ

ω = Mω +∇θ Eω (see [BDL17, CC21]).
Again, Theorem 5.5 shows that the coercivity threshold

σθ(X,ω) := σω(Fθ
ω) = σθ

ω(Ent,)

is a continuous function of [ω] and [θ], while Lemma 5.7 shows that

σθ(X,ω) := sup
{
σ ∈ R | Mθ

ω ≥ σJω + A on Dω for some A ∈ R
}

as considered for instance in [SD20]. Combining this with [CC21], and assuming
θ > 0, this implies that the set of Kähler classes of a compact Kähler manifold
that contain a θ-twisted cscK metric is open—something that can also be directly
obtained along the lines of [LS94].

5.2.2. The non-Archimedean case. Next we consider a smooth, irreducible pro-
jective Berkovich space X over a non-Archimedean field k of characteristic 0.
Pick a PL metric ρ on KX , and define the associated non-Archimedean entropy
Ent, : M → R ∪ {+∞} by setting

Ent,(µ) :=

⎠
(AX − ρ) µ.

Here AX denotes the Temkin metric (see [Tem16] and also [Ste19]) on KX , and
AX − ρ : X → R∪ {+∞} is the corresponding lsc function, using additive notation
for metrics (see [BoJ17, §5.7]). Again, Ent, is convex and lsc, and (5.7) holds for
any other choice of PL metric ρ′ on KX . See also [Ino22] for a related notion in
the trivially valued case.

As above, one can then define the (non-Archimedean) free energy Fω : M1 →
R ∪ {+∞} by (5.8), with θ, ∈ Z the curvature of ρ. Its composition with the
Monge–Ampère operator coincides with the (non-Archimedean) Mabuchi K-energy
Mω : Dω → R, defined by (5.10).

However, the major di!erence in the non-Archimedean case is that the analogue
of Lemma 5.7 is only a conjecture (compare [BoJ18a, Conjecture 2.5] and [C.Li22,
Conjecture 4.4]). Explicitly:

Conjecture 5.12. For each µ ∈ M1, there exists a sequence (ϕi) of ω-psh
PL functions such that µi := MAω(ϕi) satisfies µi → µ in M1 and Ent,(µi) →
Ent,(µ).

As a consequence, the coercivity threshold σ(X,ω) := σω(Fω) only satisfies

(5.11) σ(X,ω) ≤ sup {σ ∈ R | Mω ≥ σJω + A on Dω for some A ∈ R} ,

and equality holds if Conjecture 5.12 is valid.
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These definitions are especially relevant when k is trivially valued and ω lies
in Amp(X) ↪→ Z+ (see (1.6)). Indeed, the free energy Fω(µ) then coincides with
the invariant βω(µ) introduced and studied in [BoJ23]; see also [DL23, Liu23].
By homogeneity with respect to the action of R>0, σ(X,ω) = σω(Fω) is further
equal to the divisorial stability threshold σdiv(X,ω), which is positive i! (X,ω) is
divisorially stable.

On the other hand, the right-hand side of (5.11) coincides, by definition, with
the K-stability threshold σK(X,ω), which is positive i! (X,ω) is uniformly K-stable
in the sense of [Der16, BHJ17]). Thus divisorial stability implies uniform K-
stability, and the converse holds if Conjecture 5.12 is satisfied.

Remark 5.13. Assume that (X, L) is a polarized smooth projective variety over
C, and pick a Kähler form ω ∈ c1(L). Using [SD18] and [C.Li22], one can then
show that the above thresholds satisfy

σdiv(X, L) ≤ σ(X,ω) ≤ σK(X, L).

Conjecture 5.12 would further yield σK(X, L) = σdiv(X, L), and hence conclude
the proof of the ‘uniform’ version of the Yau–Tian–Donaldson conjecture, as noted
in [C.Li22,BoJ23].

Appendix A. Convexity estimates

We consider the following data:

• a surjective map . : V → Θ of R-vector spaces, with fibers Vθ := .−1(θ);
• a homogeneous polynomial F : V → R of degree n + 1, n ≥ 1, with

associated symmetric multilinear map

V n+1 → R (x0, . . . , xn) &→ x0 · . . . · xn,

i.e. F (x) = xn+1;
• a convex cone P ⊂ V such that

(A.1) x2 · x2 · . . . · xn ≥ 0 for all x ∈ V0 and xi ∈ P.

Example A.1. The main example that we have in mind is the negative of
the energy pairing in §1.4, where V = Z × D with its projection to Θ = Z, and
P = {(θ,ϕ) ∈ V | θϕ ≥ 0}. Another example is given by the negative of intersection
pairing on a flat projective scheme over Z.

Our goal is to use (A.1) and the resulting Cauchy-Schwarz inequality

(A.2) (x · y · x2 · . . . · xn)2 ≤ (x2 · x2 · . . . · xn)(y2 · x2 · . . . · xn)

for all x, y ∈ V0 and xi ∈ P to derive various inequalities and convexity statements.
For each x ∈ V we define the linear form F ′(x) ∈ V ∨ by

〈F ′(x), y〉 :=
d

dt

∣∣∣∣
t=0

F (x + ty) = (n + 1)xn · y,

and we set for all x, y ∈ V

(A.3) δ(x, y) := F (x) − F (y) − 〈F ′(y), x − y〉.
A simple computation yields

(A.4) δ(x, y) =
n−1∑

j=0

(j + 1)(x − y)2 · yj · xn−1−j .
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In what follows, we fix θ ∈ Θ and set Pθ := Vθ ∩ P .

Lemma A.2. We have δ(x, y) ≥ 0 for x, y ∈ Pθ. Moreover, F is convex on Pθ,
and for every y ∈ Pθ we have that x &→ δ(x, y) is convex.

Proof. By (A.1) and (A.4), we have δ(x, y) ≥ 0 for x, y ∈ Pθ, and this implies
that F is convex on Pθ; it then follows from (A.3) that x &→ δ(x, y) is convex. "

Theorem A.3. For all x, y, z ∈ Pθ and t ∈ [0, 1], the following holds:

• quasi-symmetry:

δ(x, y) ≈ δ(y, x);

• quasi-triangle inequality:

δ(x, z) ! δ(x, y) + δ(y, z);

• quadratic estimate:

δ(x, (1 − t)x + ty) ! t2δ(x, y);

• uniform convexity:

[(1 − t)F (x) + tF (y)] − F ((1 − t)x + ty) $ t(1 − t)δ(x, y).

For any base point x∗ ∈ Pθ and xi, yi, zj ∈ Pθ, the following Hölder estimates
further hold:

(A.5) |(x0 − y0) · (x1 − y1) · z2 · . . . · zn| ! δ(x0, y0)
αδ(x1, y1)

αM1−2α;

(A.6) |〈F ′(x0) − F ′(y0), x1 − y1〉| ! δ(x0, y0)
1/2δ(x1, y1)

αM1/2−α;

(A.7) |δ(x0, x1) − δ(y0, y1)| ! max{δ(x0, y0), δ(x1, y1)}αM1−α;

with α := 2−n ∈ (0, 1/2] and M = maxξ δ(ξ, x∗), where in each case ξ ranges over
the elements of Pθ appearing in the left-hand side of the inequality.

The strategy to get these types of Hölder estimates goes back to [BBGZ13,
BBEGZ19,BoJ22], building upon an original idea of [Blo03]. In the rest of this
section we prove Theorem A.3, largely following [BoJ22, §3.3].

Given x, y ∈ Pθ, we set

d(x, y) := max
0≤j≤n−1

(x − y)2 · yj · xn−1−j .

Using (A.4) it is then clear that

(A.8) δ(x, y) ≈ δ(y, x) ≈ d(x, y) ≈ (x − y)2 · ( 1
2 (x + y))n−1.

To prove the inequality δ(x, (1 − t)x + ty) ! t2δ(x, y) it suffices to prove the
corresponding inequality d(x, (1 − t)x + ty) ! t2d(x, y). But

d(x, (1 − t)x + ty) = t2 max
0≤j≤n−1

(x − y)2 · ((1 − t)x + ty)j · xn−1−j ! t2d(x, y)

using multilinearity and the binomial theorem.
Next we prove what is essentially a special case of (A.5).

Lemma A.4. If x, y, z ∈ Pθ, then

(x − y)2 · zn−1 ! d(x, y)2α max{d(x, z), d(y, z)}1−2α.
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Proof. Set w := 1
2 (x + y), A := d(x, y), B := max{d(x, z), d(y, z)}, and

bj := (x − y)2 · zj · wn−1−j

for 0 ≤ j ≤ n− 1. Then b0 ≈ A, and our goal is to show bn−1 ! A2αB1−2α. By the
triangle inequality for the seminorm v &→

√
v2 · zn−1 on V0, we have

bn−1 ≤ (
√

(x − z)2 · zn−1 +
√

(y − z)2 · zn−1)2 ≤ 4B.

If A ≥ B, then bn−1 ≤ 4B ≤ 4A2αB1−2α and we are done, so we may assume
A ≤ B. In this case, we show by induction that

bj ! A2−j

B1−2−j

for 0 ≤ j ≤ n− 1. The case j = 0 is clear, so suppose 0 ≤ j ≤ n− 2, and note that

bj+1 − bj = (x − y)2 · (z − w) · zj · wn−2−j

= (x − y) · (z − w) · x · zj · wn−2−j − (x − y) · (z − w) · y · zj · wn−2−j .

Here we can use the Cauchy-Schwartz inequality to estimate the last two terms.
For example:

|(x − y) · (z − w) · x · zj · wn−2−j |2

≤ ((x − y)2 · x · zj · wn−2−j)((z − w)2 · x · zj · wn−2−j).

Using that 2w − x = y ∈ P , we can bound the first factor by 2bj , and the second
factor by 2(z − w)2 · zj · wn−1−j ≤ 2d(z, w). Adding the two terms, we get bj+1 −
bj ≤ 4

√
bj

√
d(z, w). Now d(z, w) ≈ δ(w, z) ≤ max{δ(x, z), d(y, z)} ≈ B using the

convexity of δ(·, z), see Lemma A.2. All in all, this yields

bj+1 − bj !
√

bjB.

for 0 ≤ j ≤ n − 2. Using the induction hypothesis bj ! A2−j
B1−2−j

, we get

bj+1 ! bj +
√

Bbj ! A2−j

B1−2−j

+ A2−j−1

B1−2−j−1

≤ 2A2−j−1

B1−2−j−1

,

where the last inequality follows from our assumption that A ≤ B. We are done. "
Using Lemma A.4, we can now prove the quasi-triangle inequality for δ, or

equivalently for d. Fix x, y, z ∈ Pθ, and set w := 1
2 (x + y). Then

d(x, y) ≈ (x − y)2 · wn−1 ! (x − z)2 · wn−1 + (y − z)2 · wn−1

! max{d(x, z), d(y, z)})2α max{d(x, w), d(y, w), d(z, w)}1−2α,

by the triangle inequality for the norm v &→
√

v2 · wn−1 and by Lemma A.4. As
noted above, the convexity of δ(·, z) ≈ d(·, z) gives d(z, w) ! max{d(x, z), d(y, z)},
as well as d(x, w), d(y, w) ! d(x, y). Thus

d(x, y) ! max{d(x, z), d(y, z)})2α max{d(x, y), d(x, z), d(y, z)}1−2α,

which easily implies d(x, y) ≤ max{d(x, z), d(y, z)}, as desired.
Next we prove (A.5) in general. By the Cauchy–Schwartz inequality we may

assume x0 = x1 and y0 = y1. We may also assume n ≥ 2, or else we are done
by (A.8). Set z := 1

n−1 (z2 + · · · + zn). Then

(x1−y1)
2 ·z2 · . . . ·zn ! (x1−y1)

2 ·zn−1 ! d(x1, y1)
2α max{d(x1, z), d(y1, z)}1−2α

≈ δ(x1, y1)
2α max{δ(x1, z), δ(y1, z)}1−2α.
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By the quasi-triangle inequality we have δ(x1, z) ! max{δ(x1, x∗), δ(z, x∗)}, and
by quasi-symmetry and Lemma A.2 we have δ(z, x∗) ! maxi≥2 δ(zi, x∗). A similar
estimate for δ(y1, z) completes the proof of (A.5).

Next we prove (A.6), which is equivalent to

|(xn
0 − yn

0 ) · (x1 − y1)| ≤ δ(x0, y0)
1/2δ(x1, y1)

αM1/2−α.

By the Cauchy–Schwartz inequality, we have

|(xn
0 − yn

0 ) · (x1 − y1)|2 = |(x0 − y0)(x1 − y1)
n−1∑

j=0

xj
0y

n−1−j
0 |2

≤



(x0 − y0)
2

n−1∑

j=0

xj
0y

n−1−j
0







(x1 − y1)
2

n−1∑

j=0

xj
0y

n−1−j
0



 .

Here the first factor on the right is ≈ δ(x0, y0), whereas the second factor can be
bounded above using (A.5).

It only remains to prove (A.7). By the quasi-triangle inequality for δ, it suffices
to consider the case when x0 = y0 or x1 = y1. Now

δ(x0, x1) − δ(x0, y1) = n(xn+1
1 − yn+1

1 ) − (n + 1)x0(x
n
1 − yn

1 )

= (x1 − y1)
∑

j,k

(xj
1y

n−j
1 − x0x

k
1yn−k−1

1 ).

If j ≤ k, then

xj
1y

n−j
1 − x0x

k
1yn−k−1

1 = xj
1y

n−k−1
1 (yk−j+1

1 − xk−j+1
0 ) + xj

1y
n−k−1
1 x0(x

k−j
0 − xk−j

1 ),

and by factoring each term of the right-hand side we see from (A.5) that

|(x1 − y1)(x
j
1y

n−k
1 − x0x

j
1y

n−k−1
1 )| ! δ(x1, y1)

αM1−α.

The case when j > k is handled in a similar way, and adding all the terms yields
|δ(x0, x1) − δ(x0, y1)| ! δ(x1, y1)αM1−α.

A similar argument shows that |δ(x0, x1) − δ(y0, x1)| ! δ(x0, y0)αM1−α, and
completes the proof.

Appendix B. Regularization and orthogonality on Kähler spaces

By relying on a variant of the classical Richberg regularization technique, it was
proved in [BK07] that any ω-psh function on a compact Kähler manifold (X,ω)
can be written as the limit of a decreasing sequence of smooth ω-psh functions. It
is natural to hope that this holds in the singular case as well:

Conjecture B.1. Let (X,ω) be a compact Kähler space. Then any ω-psh
function ϕ on X can be written as the pointwise limit of a decreasing sequence (ϕi)
of smooth ω-psh functions.

Note that the conclusion only depends on the Kähler class [ω]. Besides the case
when X is nonsingular,6 mentioned above, we have:

6Conjecture B.1 is now known to hold for any normal space X as a consequence of the recent
work [CC24] combined with [Ric68].
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Example B.2. Conjecture B.1 holds if X is projective and [ω] lies in the ample
cone, i.e. the open convex cone generated by classes of ample line bundles on X.
This is a consequence of [CGZ22, Theorem 1.1].

Lemma B.3. Let (X,ω) be a compact Kähler space for which Conjecture B.1
holds. Then [ω] has the orthogonality property (cf. Definition 2.15).

Proof. Pick a resolution of singularities . : Y → X, and set θ := .*ω ≥ 0.
Since

∫
θn =

∫
ωn > 0, the (1, 1)-class [θ] is semipositive and big. For any g ∈

C0(Y ), consider the θ-psh envelope

Pθ(g) := sup {ψ ∈ PSH(Y, θ) | ψ ≤ g} .

As is well-known, Pθ(g) is θ-psh, and MAθ(Pθ(g)) is supported in {Pθ(g) = g}, i.e.

(B.1)

⎠

Y
(g − Pθ(g)) MAθ(Pθ(g)) = 0,

see for instance [BB10, Proposition 2.10]. For any f ∈ C0(X), we next claim that
Pθ(.*f) is the limit in E1(Y, θ) (the space of θ-psh functions of finite energy) of
the increasing net {.*ϕ}ϕ∈Dω,<f . Assume this for the moment. By continuity of
Monge–Ampère integrals along increasing nets in E1(Y, θ), and using

⎠

X
(f − ϕ) MAω(ϕ) =

⎠

Y
(.*f − .*ϕ) MAθ(.

*ϕ),

for any ϕ ∈ Dω, we infer

(B.2) lim
ϕ∈Dω,<f

⎠

X
(f − ϕ) MAω(ϕ) =

⎠

Y
(.*f − Pθ(.

*f))MAθ(Pθ(.
*f)) = 0,

by (B.1).
To prove the claim, note first that Conjecture B.1 implies that the increasing

net {ϕ}ϕ∈Dω,<f converges pointwise to

Pω(f) := sup {ψ ∈ PSH(X,ω) | ψ ≤ f} .

Indeed, given δ > 0 and a function ψ ∈ PSH(X,ω) with ψ ≤ f , Conjecture B.1
and a Dini-type argument guarantees the existence of a function ψ′ ∈ Dω,<f with
ψ ≤ ψ′ < f + δ. The claim is thus equivalent to the statement that .* Pω(f)
coincides a.e. with ϕ := Pθ(.*f). To prove this, pick τ ∈ PSH(X,ω) with τ ≤ f and
{τ = −∞} = Xsing (compare the proof of Lemma 1.28). Since ψε := (1−,)ϕ+,.*τ
is .*ω-psh outside .−1(Xsing), and ψε ≡ −∞ on the latter, we have ψε = .*ϕε for
a unique ϕε ∈ PSH(X,ω) (see [Dem85, Théorème 1.10]). Since .*ϕε ≤ .*f , and
hence ϕε ≤ f , we have ϕε ≤ Pω(f). Thus

(1 − ,)ϕ + ,.*τ = .*ϕε ≤ .* Pω(f) ≤ ϕ,

and hence .* Pω(f) = Pθ(.*f) on Y \ .−1(Xsing). "
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Berkovich (French), J. Reine Angew. Math. 595 (2006), 215–235, DOI
10.1515/CRELLE.2006.049. MR2244803

[CD12] A. Chambert-Loir and A. Ducros, Formes différentielles réelles et courants sur les
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[DL23] Ruadháı Dervan and Eveline Legendre, Valuative stability of polarised vari-
eties, Math. Ann. 385 (2023), no. 1-2, 357–391, DOI 10.1007/s00208-021-02313-4.
MR4542718

[DN15] Eleonora Di Nezza, Finite pluricomplex energy measures, Potential Anal. 44 (2016),
no. 1, 155–167, DOI 10.1007/s11118-015-9503-4. MR3455214

[DGL21] Eleonora Di Nezza, Vincent Guedj, and Chinh H. Lu, Finite entropy vs finite en-
ergy, Comment. Math. Helv. 96 (2021), no. 2, 389–419, DOI 10.4171/cmh/515.
MR4277276

[Fuj19a] Kento Fujita, A valuative criterion for uniform K-stability of Q-Fano vari-
eties, J. Reine Angew. Math. 751 (2019), 309–338, DOI 10.1515/crelle-2016-0055.
MR3956698

[GJR21] W Gubler, P. Jell, J. Rabinoff, Forms on Berkovich spaces based on harmonic trop-
icalizations, arXiv:2111.05741, 2021.
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