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Abstract

People who are blind perceive the world differently than those who are sighted,
which can result in distinct motion characteristics. For instance, when crossing at
an intersection, blind individuals may have different patterns of movement, such as
veering more from a straight path or using touch-based exploration around curbs
and obstacles. These behaviors may appear less predictable to motion models
embedded in technologies such as autonomous vehicles. Yet, the ability of 3D
motion models to capture such behavior has not been previously studied, as existing
datasets for 3D human motion currently lack diversity and are biased toward people
who are sighted. In this work, we introduce BlindWays, the first multimodal
motion benchmark for pedestrians who are blind. We collect 3D motion data using
wearable sensors with 11 blind participants navigating eight different routes in a
real-world urban setting. Additionally, we provide rich textual descriptions that
capture the distinctive movement characteristics of blind pedestrians and their
interactions with both the navigation aid (e.g., a white cane or a guide dog) and the
environment. We benchmark state-of-the-art 3D human prediction models, finding
poor performance with off-the-shelf and pre-training-based methods for our novel
task. To contribute toward safer and more reliable systems that can seamlessly
reason over diverse human movements in their environments, our text-and-motion
benchmark is available at https://blindways.github.io/.

1 Introduction

Computational modeling of people and their 3D motion has been studied extensively by the machine
learning community over the past decades [2, 11, 12, 25, 44, 49, 54]. More recently, the field has
been moving beyond single actors performing contrived actions to model interactive behaviors, i.e.,
incorporating objects and surrounding people. However, the scope and diversity of the datasets
associated with this prior work remain limited to a simulation [53], a lab [27, 43], or simplified
layouts [19, 23, 28, 40].

Efforts for accurately capturing and modeling natural and subtle 3D human motion in more realistic
setups, such as [1, 57, 65, 66], are still lacking in complex and safety-critical urban scenes that
comprise dynamic intersections, intricate layouts, and dense social settings. Even more noticeably,
there has not been a single 3D human motion dataset released that comprises mobility data from
individuals with disabilities. Hence, while most human motion models are developed with assistive
and interactive applications in mind, such as social robots and autonomous driving, those who could
benefit the most from these technologies are not included. Such severe biases in existing benchmarks
can carry broader societal implications. It can exacerbate already widespread concerns in accessibility,
where autonomous vehicles fail to accurately predict and safely respond to movements of people
with disabilities [64]; a population that is already disproportionately impacted by motorists’ lack of
awareness [21, 36, 37, 46]. In this work, we address this current gap in literature through a novel
benchmark featuring people who are blind navigating real-world urban settings.
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Blind pedestrians are known to exhibit significantly different mobility characteristics based on
personal factors, such as their lived experiences with disability or the use of mobility aids (e.g., canes,
guide-dogs, and orientation and mobility apps [29]). For instance, many do not face forward to signal
intent to cross before stepping into the road and may take longer to explore tactile cues when crossing
in various intersections [4, 13, 20, 18, 21]. Additionally, some may veer significantly in open spaces
or unexpectedly step into the road due to obstacles, such as a truck parked at obstructed intersections
with damaged or ambiguous curbs. In such scenarios, reasoning over subtle 3D behaviors, like
hand-aid coordination gestures, could improve future prediction in autonomous vehicles and avoid
potential safety-critical outcomes [62].

Yet, as far as we are aware, no prior work has investigated the prediction of pedestrian motion in such
edge cases, characterized by inherently distinct, subtle, and uncertain nature. Specifically, we aim to
understand the capabilities of state-of-the-art 3D motion models for modeling and predicting future
motion of blind pedestrians—ultimately, to ensure that autonomous systems and vehicles in urban
environments operate safely around pedestrians with disabilities.

Contribution: Our overarching goal is to enable more robust, accurate, and needs-aware pedestrian
behavior prediction models that effectively account for disability-related scenarios and behaviors.
Our key contribution is twofold. First, we introduce BlindWays, a novel multi-modal 3D human
motion dataset featuring pedestrians who are blind navigating unfamiliar and complex real-world
environments. Our dataset includes detailed language-based annotations of context and non-visual
navigation strategies. Second, we use the dataset to benchmark state-of-the-art 3D motion models
within our novel modeling task. By analyzing the effects of model pre-training and fine-tuning on
future motion prediction, we identify fundamental limitations in the generalization of current datasets
and models, particularly when evaluated within diverse and rare human attributes.

2 Related Work

To design our study and data collection, we build on recent advances in in-the-wild 3D human motion
estimation, 3D human motion models, and language-based motion generation.

Estimating In-the-Wild 3D Human Motion: Researchers have long sought to capture 3D human
motion in naturalistic settings [7, 38, 39, 42, 50, 55, 56, 60, 65, 68]. However, vision-based inference
of 3D keypoints can be unreliable in our context of multi-actor, dense scenes with frequent occlusion
and interaction with objects [71]. For instance, AlphaPose [10], a widely used keypoint detection
and lifting model, exhibited frequent failure and poor performance on videos for our settings (online
sourced and our in-house collected ones [33]). Given the difficulty in manually annotating monocular
videos with accurate 3D information [40], an alternative approach for minimally intrusive collection
involves wearable inertial sensors [9, 65, 69, 79, 48]. Specifically, in our study, we leverage an
Xsens [69] set of trackers (one placed on the mobility aid). While the system may have inherent
noise, it can be re-calibrated to improve accuracy. In our study, we frequently re-calibrate the system
throughout the route to minimize drift and improve accuracy. We also filter out noisy skeletons
through manual inspection in scenarios of system tracking failure. Nonetheless, we emphasize that
motion capture in-the-wild remains an open challenge.

Modeling 3D Human Motion: Motion-prediction models (e.g., [33, 41, 54, 70, 72, 73]) do not
currently model pedestrians with disabilities [30, 47, 75]. The few studies that have analyzed blind
navigation motion in context are qualitative in nature [4, 18, 20, 21], only providing a high-level
account. Instead, 3D motion models generally leverage sighted participants [6, 15, 24, 26, 31, 65,
67, 78]. While understanding and encompassing unique navigation behaviors is essential for a
comprehensive motion synthesis and generation frameworks [15, 16, 81], our study empirically
demonstrates how prior works struggle to generalize to the nuanced modeling of blind motion.

Text-to-Motion: Text-driven motion generation has gained significant interest due to its controllabil-
ity, as well as the concise context information provided by textual descriptions. Diffusion models,
such as MDM [61], have been explored for generating human motion sequences from text descriptions,
progressively refining the motion through a series of forward steps. However, recent diffusion-based
approaches [5, 28, 61, 76] do not generate plausible blind motion, as shown by our study. In addition,



Table 1: Comparing Motion Benchmarks. BlindWays introduces several dataset dimensions not ex-
plored by prior work, including participants with mobility aids (i.e., white cane or guide-dog, tracked
with a sensor) and safety-oriented scenarios in urban streets. We also provide language annotations
with two levels of granularity: high-level summaries and more detailed low-level descriptions.

Dataset Participants Motion Data Text Annotation Context

Number Disability Aid Hours Source Mean Length Two-Level Outdoor First-Person Cam.  Safety
Human3.6M [27] 11 X X 29 Marker-based - X X X X
AMASS [43] 344 X X 40.0 Marker-based 119 X X X X
HumanML3D [15] 450 X X 28.6 Marker-based 12.3 X X X X
Motion-X [40] X X 144.2 Marker-based 38.5 X v X X
BlindWays (Ours) 11 v v 2.8 IMU-based 44.1 v v v v

current methods are limited by inefficiency during testing, as they require multiple forward steps
to generate a single motion sequence. GPT-based text-to-motion models [15, 16, 81] have recently
shown promising results. TM2T [16] focuses on the temporal modeling of motion, ensuring that gen-
erated motions are coherent and contextually appropriate. Recently, MotionGPT [28] has integrated
generative pre-trained transformers with joint training of motion and language, further advancing the
quality and diversity of generated motions. However, the applicability and generalization of such
models in accessibility settings remain underexplored.

Motion and Language Benchmarks: Datasets with high-quality text descriptions have further
advanced the controllability and generation of multimodal motion, with some also incorporating
interactions with objects and other people. While motion-language models have recently achieved
outstanding performance in tasks such as motion prediction [3, 74], diverse motion generation [15,
17,43, 51, 52], and the study of human-object interaction [22, 23, 58, 77, 80], researchers have been
inspired to develop diverse datasets that support these varied motion tasks. The KIT-ML [51] dataset
focuses on multi-modal language-to-motion translation but lacks motion diversity. AMASS [43]
unifies a wide range of MoCap data. BABEL [52] and PoseScript [8] also incorporate action
labels and textual descriptions, however, such datasets still lack in motion diversity and realism.
HumanML3D [15] introduces a large collection of 3D human motions with corresponding natural
language annotations, primarily focused on static indoor settings with repetitive motions. Motion-
X [40] introduces a comprehensive dataset that includes detailed semantic annotations and outdoor
environments (a context largely neglected in previous datasets). However, the distinct and uncertain
nature of blind pedestrians’ motion remains unexplored, limiting the generalizability of state-of-the-
art motion modeling models in these critical cases, despite their importance. Our work aims to address
this gap by introducing BlindWays, providing a richer and more challenging dataset for generalizing
text-to-motion models and capturing the subtle movements of the head, limbs, and mobility aids used
by blind individuals. Similar to Motion-X, BlindWays dataset is collected entirely in outdoor settings
and incorporates IMU-based motion capture, unlike traditional marker-based systems [32, 35] and is
less restricted by environmental constraints, allowing motion tracking in diverse outdoor settings.

3 The BlindWays Dataset

3.1 Overview

We collected BlindWays, a comprehensive blind motion dataset comprising 1,029 motion clips and
approximately 0.6 million human poses, along with 2,058 detailed, paired, high- and low-level text
descriptions. We capture natural motion data from 11 blind and low-vision individuals navigating
dynamic outdoor environments along carefully engineered paths exhibiting various challenges.
Notably, this is the first work to propose blind motion data enriched with text descriptions, an
exceptionally challenging and labor-intensive process. BlindWays’s text descriptions are informed
by third-person and egocentric videos, each totaling 0.3 million frames. Specifically, captured
contextual videos play a critical role in the annotation process by providing an overall scene of blind
motion, allowing annotators to sufficiently leverage scene and video context to accurately, precisely,
and expressively describe the motion. To synchronize between motion data and videos, we asked
participants to clap at the beginning of each route. To ensure high quality, the MoCap system is
calibrated in each route and text descriptions are annotated in-house by human annotators, including
motion experts, and are carefully checked. We employ a wearable IMU-based system and filter noisy
sequences to maintain accuracy and reliability.
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Figure 1: Data Collection with Wearable IMU-based Sensors. Depicting a frame from the study
with diverse route stimuli, intersections, a motion capture, and a wide-angle egocentric camera view.

3.2 Data Collection Procedure

We conducted a user study involving 11 participants, consisting of three women and eight men, all
of whom are either blind (N=10) or have low vision (N=1). Each participant utilized their own
mobility aid, which included either a cane or a guide dog, to record natural behavior. Our participants
represent a diverse range of ages, levels of visual impairment, and mobility aids, ensuring a rich
data collection of navigation behaviors (details on participant demographics are provided in our
supplementary). Participants are equipped with bone conduction headsets to receive real-time auditory
instructions from Google Maps. Our data collection was approved by our Institutional Review Board.
Each participant provided informed consent before participating in the study and was compensated
$50/hour for up to three hours, including travel time; data collection sessions typically lasted two
hours or less. We note that two researchers always followed the participants during dataset collection
to ensure their safety.

Scenarios: In collaboration with local blind advisors and sighted certified orientation and mobility
instructors, we engineered eight distinct routes to encompass a variety of real-world scenarios that
blind people commonly encounter. These scenarios include walking on the curb, crossing streets,
navigating open spaces, and ascending and descending staircases. For example, while crossing
streets, participants faced a challenge when encountering a subway track midway, requiring them
to stop, reassess, and then continue, which enabled us to capture their behavior while handling
sudden stops and changes in terrain. Navigating open spaces presented another challenge due to
the lack of obstacles providing environmental cues, forcing participants to rely heavily on auditory
instructions. Walking on curbs involved dealing with intermittent obstacles like parked bicycles,
trash cans, and overhanging branches. Ascending and descending staircases further added to the
complexity, requiring careful coordination and heightened awareness of their immediate environment.
Diverse and realistic scenarios enable BlindWays to capture rich and nuanced motion data, reflecting
daily real-world challenges and strategies of blind individuals. Each route is carefully mapped and
pre-tested to ensure both feasibility and participant safety. At the start of each route, we provided
high-level instructions, including specific objectives and expected challenges. For example, we
guided participants by informing them of their current location (e.g., surrounding street names) and
the direction they were heading to help them better contextualize the audio navigation aid, which
usually guides pedestrians by providing street names and directions. We also briefly explained



potential obstacles they might encounter, such as a train/tram track in the middle of the route or stairs,
to prepare them for critical challenges ahead.

Recording: We employ the Xsens motion capture system, consisting of 18 Inertial Measurement
Units (IMUs) sensors for body joints and a mobility aid, enabling realistic motion capture in various
settings. To comprehensively capture the navigation process, we record third-person video of blind
pedestrians and egocentric views, as well as motion data. For egocentric views, participants wear
a GoPro HERO10 Black on their chest using a comfortable strap, allowing for hands-free and
immersive (GoPro Max Lens Mod) recording. The camera is set to face around the participant’s feet
to meticulously capture cane movements. For third-person views, the accompanying researchers wear
a Samsung Galaxy smartphone around the chest and follow the participants without interrupting their
natural movements. All data are synchronized, allowing for an in-depth analysis and annotations of
navigation strategies and challenges.

To gain further insights into participants’ navigation experiences, upon completion of each route,
participants are asked to rate their confidence on a scale of 1-7 in (i) their ability to navigate the route
and (ii) the guidance that they received from the Google Maps app.

3.3 Data Annotation Pipeline

To achieve a nuanced understanding of the navigation behaviors of blind individuals, we employ
a meticulous annotation pipeline build in-house that leverages the synchronized third-person view
RGB videos along the motion data. To ensure privacy, we mosaic the faces of all people appearing
in the videos, both the blind participants and passersby. The annotation process involves 15 human
annotators, comprising three motion experts (human biomechanics, sensorimotor, and mobility
researchers) and 12 novices, who are provided with detailed instructions, exemplars, and feedback.

Annotators are given 25 videos at a time, and it took approximately two hours to annotate each set of
25 videos. In addition to carefully crafted instructions, novice annotators are also given feedback
after the completion of their first set to ensure high quality annotations and help them improve their
efficiency in subsequent annotations. Overall, we collect a total of 1,046 videos, highlighting the
extensive labor and dedication involved in this annotation process.

To facilitate the annotation process, we build a video annotation interface using Tkinter, a Python-
based GUI toolkit. The interface, informed from prior work on video descriptions [45], enables
users to freely drag the timeline of the video. Annotators can efficiently review and annotate specific
moments in the videos, enhancing the accuracy and detail of their descriptions. For novice annotators,
we provided demos of expert annotation samples as references.

High-Level Descriptions: For high-level annotations, annotators are requested to focus on describing
the overall action of the motion, the purpose behind it, and how the participants were holding their
mobility aids (e.g., a cane and a guide dog). Annotators are instructed to provide clear and concise
descriptions that convey the intent and broader context of the actions. For example, a high-level
description might be: “A blind man with a cane in his right-hand searches for a street post to press
the button. He then orients himself in the direction he wants to cross the street.”

Low-Level Descriptions: Low-level annotations require more detailed descriptions of the motion
behavior, such as the number of steps taken and the precise use of mobility aids. For instance, a
low-level description might be: “A blind man with a cane searches and locates a street post. He
moves forward three steps to orient himself in the direction he wants to cross the street, using his cane
in his right hand and positioned in front of him.” The detailed information helps in capturing exact
motion dynamics and interactions between the participant and the surrounding dynamic environment.
Use of subjective adjectives (e.g., confidently, hesitantly, or meticulously) is encouraged to capture
observed behaviors in a more expressive way.

3.4 Data Analysis

Motion Data: BlindWays captures unique motions characteristic of blind navigation, particularly
how individuals use mobility aids to interact with their surroundings in dynamic and complex urban
settings. As shown in Fig 2, our motion data include diverse scenarios, from straightforward walking
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Figure 2: Qualitative Examples From Our Dataset. Annotation language captures both high-level
information regarding general action, as well as detailed low-level motion characteristics, mobility
aid strategies, goals, and environmental context.

Low-level

behavior with subtle adjustments to avoid obstacles detected by their mobility aids to various turning
motions where participants pivot or shift direction using their canes or guide dogs to navigate around
corners or obstacles. BlindWays also encompasses scenarios with careful and deliberate movements,
such as walking along curbs to avoid falling off the sidewalk or colliding with obstacles, stair
navigation with motions like tapping the cane on each step to gauge height and depth and using
handrails for support, and street crossing where participants may pause at the curb and perform
precise cane movements to locate tactile paving or curb ramps. The data is captured in the Xsens
joint representation, comprising a total of 24 joints.

Text Data: As shown in Figure 2, high-level motion description annotations provide a summary of
the blind person’s actions and intent, along with their interactions with mobility aids. Annotations are
approximately 26 words long on average, with the longest being 111 words. The standard deviation
of about 9.45 indicates a moderate variability in annotation length. In contrast, low-level annotations
provide more detailed descriptions of specific actions along with step counts and detailed use of
mobility aids. Thus, these annotations are longer, approximately 44 words on average, with the
longest being 140 words. The standard deviation of about 17.80 also reflects a higher variability
in length, indicative of the varying complexity and level of detail required for different scenarios.
Additional details can be found in the supplementary.

4 Experiments

In this section, we evaluate human motion generation baselines on BlindWays to discuss model
generalizability and the role of text labels in blind motion modeling.

Metrics and Baselines: Our evaluation is structured into two parts. First, we discuss fundamental
generalization limitations in current text-driven motion generation models, which, despite being built
on large motion-language datasets, lack specific categories to capture the unique motions of blind
pedestrians. We employ standard metrics used in previous studies: motion-retrieval precision (R
Top1) to evaluate the accuracy of matching between texts and motions, Frechet Inception Distance



Table 2: Text-to-Motion Model Evaluation on BlindWays. We compare different methods and
training datasets for a text-to-motion generation task evaluated on BlindWays. The metrics follow
standard text-to-motion evaluation [28]. For the Diversity (DIV) metric, the closer to the results with
Real data (first line in the table) the better (indicated with —). Each experiment is repeated 20 times
and a statistical interval with 95% confidence is reported.

Method \ Training Set | RToplt | FID | | DIV— | MModality t
Real ‘ _ ‘ 0.106i'0'008 ‘ 0.2571.0‘018 ‘ 6‘23210258 ‘ _

HumanML3D [15] Motion-X [40] 0.041%:0-007 | 11,203+0-109 | 5113+0.258 | 3 6g0+0-026
MotionGPT [28] Motion-X [40] 0.046+0006 | 15 002+0-504 | 5871%:0-234 | 4 646+0-171
HumanML3D [15] BlindWays 0.060+:0-012 | 3.340+:0-257 | 5.861+:0-266 | 1 ggg+-0.037
MotionGPT [28] BlindWays 0.054%:0-008 | 5101+0.116 | 5 (ggg+0-148 | 3 gg3+.0.134
HumanML3D [15] | Motion-X [40] + BlindWays | 0.054%:0:009 | 8 12+:0480 | ¢260+0-301 | 4,921+0.051
MotionGPT [28] Motion-X [40] + BlindWays | 0.036%:0:003 | 10.313+0183 | 3.874+0.164 | 9 759+.0.100

(FID) to assess the realism of generated motions, Diversity (DIV) to capture the variance of generated
motions, and Multi-Modality (MModality) to examine how generated motions vary within each
text description [28]. We adopt HumanML3D [15] and MotionGPT [28] as our state-of-the-art
text-to-motion baselines. HumanML3D proposes a framework involving a motion autoencoder, text-
to-length, and text-to-motion synthesis, along with a large motion-language dataset for text-driven
human motion generation. MotionGPT integrates a generative pre-trained transformer to generate
complex motion patterns from text descriptions, leveraging advanced language models.

In the second part of our evaluation, we focus on a motion-driven motion generation task, where
we adopt stochastic CVAE-based approaches [33, 34, 73] as our baselines. While these baselines
are designed to predict future motion given a history of motion, we further analyze the impact of
text descriptions in BlindWays by incorporating a text embedding encoded with LLaMA?2 [63]. We
employ standard diversity (Average Pairwise Distance, APD) and quality (Average Displacement
Error, ADE, and Final Displacement Error, FDE, Normalized Power Spectrum Similarity, NPSS [14],
and Normalized Directional Motion Similarity, NDMS [59]) metrics for analysis. We train and test
baselines using the joint representation of SMPL (converted from the IMU-based motion capture suit)
with an additional joint for the mobility aid of blind pedestrians, ensuring consistency and compara-
bility across experiments and datasets. We split BlindWays into training (85%) and validation/test
(15%) sets. For HumanML3D, we use the standard training and validation splits.

Text-to-Motion: We provide a comparison of text-to-motion baselines using embedding-based analy-
sis [28] in Table 2. For evaluation, we train a feature embedding model (following HumanML3D [15]).
Notably, we observe high FID scores when models are trained exclusively on Motion-X. The lack of
blind motion data in Motion-X leads these models to generate diverse yet unrealistic blind motions,
increasing the feature space distance between generated and real blind motions. This results in FID
scores of 11.203 for HumanML3D and 15.002 for MotionGPT. However, training on BlindWays
significantly enhances model performance, with HumanML3D and MotionGPT achieving FIDs of
3.340 and 5.101, respectively. These scores indicate a closer alignment with the real data’s FID,
reflecting a higher degree of realism. R Precision further underscores the discrepancy in generaliz-
ability. We find that the R Top-1 accuracy of models trained on Motion-X is notably lower (0.041
for HumanML3D and 0.046 for MotionGPT) compared to those trained on BlindWays (0.060 for
HumanML3D and 0.054 for MotionGPT), indicating that models trained on BlindWays achieve
a stronger alignment between text and motion features. In contrast, models trained on Motion-X
struggle with this alignment, likely due to the lack of nuanced motion data and corresponding text
specific to blind pedestrians. This demonstrates that BlindWays effectively captures the diversity
and subtleties of blind pedestrian movements, along with descriptive text, enabling more accurate
text-based retrieval and generation.

Impact of Pre-training: We examine the impact of pre-training on Motion-X, a large-scale motion-
language dataset that covers a broad range of human motions but lacks representations of movements
by people with disabilities. As shown in Table 2, pre-training on Motion-X provides the model
with a strong understanding of diverse motion features and their alignment with corresponding



Table 3: Analysis for Specific Keypoints. We analyze the performance of text-to-motion baselines
across different skeleton joint types, including head, arms, and aid. Overall, we find that models
pre-trained on Motion-X and then fine-tuned on BlindWays underperform compared to those trained
on BlindWays from scratch, particularly in key joints with unique motion distributions in our dataset,
such as the arm joints.

Method Training S All Head Arms Aid
dlire RTINS el ADE| FDE| | ADE| FDE| | ADE| FDE| | ADE| FDE]

HumanML3D [15] Motion-X [40] 323 332 | 064 067 | 082 08l | 050 049
MotionGPT [28] Motion-X [40] 351 353 | 077 079 | 091 091 | 054 053
HumanML3D [15] BlindWays 336 340 | 081 082 | 076 077 | 041 043
MotionGPT [28] BlindWays 341 343 | 082 081 | 079 081 | 040  0.42
HumanML3D [15] | Motion-X [40] + BlindWays 343 3.45 0.75 0.76 0.93 0.99 0.62 0.61
MotionGPT [28] | Motion-X [40] + BlindWays | 3.50 349 | 076 075 | 118 107 | 060  0.62

Table 4: Motion Prediction Evaluation on BlindWays. Given text description and motion history,
we predict future 9.5-second 3D poses and compute diversity (APD, higher is better) and quality
(ADE, FDE, NPSS, lower is better, and for NDMS, higher values are better) pose metrics.

Method APD1 ADE| FDE| FID| DIV— NPSS| NDMS
Zero Velocity - 064 087 1279 324 1.29 0.01
MotionGPT [28] 23.13  3.01 476 072 421 0.57 0.26
CVAE [34] 768 047 056 045  3.89 0.11 0.23
DLow [73] 11.65 046 059 041 391 0.12 0.27
MDN [33] 1514 045 056 040 431 0.14 0.28

text descriptions. Specifically, HumanML3D shows an average improvement of 6.3 % in Diversity
and 4.9% in Multi-Modality when leveraging pre-training on Motion-X, followed by fine-tuning
on BlindWays, compared to training on BlindWays alone. This demonstrates the effectiveness of
pre-training on a general dataset to enhance motion diversity, even though it lacks categories that
capture the unique movements of blind pedestrians.

Per-Keypoint Evaluation: We further conduct a per-keypoint evaluation in the text-to-motion task to
analyze model performance on blind motion data, with a focus on joints exhibiting unique movements
in blind navigation. Specifically, we evaluate the head joint, arm joints (including shoulder, elbow,
and wrist, based on participants’ dominant hand), and the mobility aid joint, using pose-space
accuracy metrics such as ADE and FDE. In blind motion, the arm joints are essential for capturing
the use and handling of mobility aids, e.g., for obstacle detection and navigation. The mobility aid
keypoint provides insights into the dynamic and coordinated interaction between the user and their
aid. As shown in Table 3, we find models trained on BlindWays demonstrate greater robustness,
particularly in the arm joint and mobility aid keypoint. Specifically, we observe an average FDE
improvement of 8% for arm joints and 16.5% for mobility aid joints in models trained from scratch on
BlindWays compared to those trained on Motion-X, highlighting the importance of domain-specific
training data for accurately modeling nuanced blind motion behaviors associated with mobility aids.
Interestingly, head movements are modeled more accurately by the Motion-X-trained model than
the BlindWays-trained model, suggesting that the wider variety of head movements in the Motion-X
dataset enhances generalization for these joints. In principle, pre-training on such a dataset could
facilitate model generalization for both common behavior joints and unique motion joints. However,
in practice, we find this to result in mixed results due to the introduced bias and domain shift. This
also highlights a potential direction for future work.

Motion-Conditioned Prediction: Finally, we evaluate the capabilities of motion-conditioned models,
where both text context and past motion are provided as input to the model. This approach focuses on
predicting diverse and plausible future motions given a history of motion. The models are trained
to predict the next 9.5 seconds of future motion given 0.5 seconds of past motion. To account
for surrounding context-based interactions, we further incorporate text embeddings into stochastic
modeling approaches, including CVAE [34], DLow [73], and MDN [33]. For completeness, we
incorporate a MotionGPT [28] motion-to-motion baseline and results with a zero velocity model.



We repetitively sample from MotionGPT to obtain APD and pose metrics; however, we note that
MotionGPT generally performs poorly in motion-conditioned prediction settings (consistent with
the original study of [28]). Table 4 depicts the results for the motion-conditioned models. We find
CVAE-based methods to demonstrate better accuracy than MotionGPT, which generally predicts
diverse but unrealistic motion patterns. The CVAE baseline achieves an APD diversity of 7.68, while
DLow and MDN achieve 11.65 (52% higher) and 15.14 (97% higher) APD, respectively. This finding
highlights the benefits of an improved sampling mechanism. Specifically, MDN, which incorporates
a transformer-based module in the motion decoding process, significantly enhances both sample
diversity and realism (with ADE decreasing from 0.47 to 0.45). We observe consistent improvements
in FID, DIV, and NDMS metrics, with MDN achieving the best results. However, for DLow, the
increase in diversity is shown to result in an accuracy trade-off, where FDE is increased (from
0.56 to 0.59). While these advancements demonstrate promising strides in modeling diverse and
realistic motion, this work represents only an initial step. Future directions include enhancing model
generalizability to handle a broader array of rare motion scenarios, such as complex interactions with
obstacles or varying terrain, which remain challenging for current models. Additional results and
analysis of motion prediction quality within various scenarios can be found in the supplementary
material.

5 Limitations

Our work addresses a prevalent bias in motion modeling datasets, specifically the focus on sighted
and simplified pedestrian motion. Our study underscores the complexity of diverse motion modeling,
particularly in cases where pre-training may be non-beneficial or even detrimental to model predic-
tions, such as with blind motion. To tackle this bias, we collected realistically complex data within
an important but under-discussed use case. However, our study has several limitations. The sample
size of 11 participants, providing a dataset of 1,005 motion samples after filtering pose tracking
failure cases, is representative of in-situ accessibility studies. Nonetheless, additional real-world
data from a more diverse participant pool could help identify further biases and model issues (e.g.,
various physical characteristics such as different heights and backgrounds). Another limitation is
the expensive ($6,500) motion-capture suit, which may hinder larger-scale studies. While we chose
higher-cost, higher-quality tracking technology, lower-cost solutions (e.g., inertial, vision-based) are
continuously being developed and can facilitate easier and more scalable capture, leading to more
robust and practical motion models across many underrepresented use cases in current human motion
benchmarks.

6 Conclusion

In this study, we introduce BlindWays, a novel benchmark focused on the unique motion behaviors
of blind and low-vision pedestrians navigating dynamic urban outdoor environments. Our dataset
includes 3D motion data enriched with high- and low-level text descriptions, derived from corre-
sponding third-person and egocentric RGB videos that capture actions, intentions, and environmental
contexts of blind motion in detail—particularly how individuals use mobility aids to interact with
their surroundings. Our experiments show that, despite recent advancements, state-of-the-art motion-
language models struggle to generalize to blind motion, highlighting the unique challenges presented
by this domain. This underscores the importance of a specialized blind motion benchmark to support
safe and effective urban planning, such as in autonomous driving. BlindWays provides a contextually
rich resource, enabling models to more accurately and diversely represent blind motion, advancing
the field of motion-language modeling while enhancing the safety and reliability of real-world,
human-interactive systems.
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