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ABSTRACT
Training LLMs in distributed environments presents significant challenges due to the complexity of model
execution, deployment systems, and the vast space of configurable strategies. Although various optimization
techniques exist, achieving high efficiency in practice remains difficult. Accurate performance models that
effectively characterize and predict a model’s behavior are essential for guiding optimization efforts and system-
level studies. We propose Lumos, a trace-driven performance modeling and estimation toolkit for large-scale LLM
training, designed to accurately capture and predict the execution behaviors of modern LLMs. We evaluate Lumos
on a production ML cluster with up to 512 NVIDIA H100 GPUs using various GPT-3 variants, demonstrating that
it can replay execution time with an average error of just 3.3%, along with other runtime details, across different
models and configurations. Additionally, we validate its ability to estimate performance for new setups from
existing traces, facilitating efficient exploration of model and deployment configurations.

1 INTRODUCTION

In recent years, large language models (LLMs) have trans-
formed many aspects of daily life. The availability of
vast datasets, along with advancements in computational
resources, has enabled the development of increasingly
complex models, such as ChatGPT (Ouyang et al., 2022),
LLaMA (Touvron et al., 2023), and PaLM (Chowdhery
et al., 2023). However, efficiently training these LLMs
presents significant challenges, necessitating both hardware
and software innovations across the system stack.

To meet these demands, efforts have focused on address-
ing various bottlenecks. Key areas of optimization include
the development of AI-specific hardware (e.g., NVIDIA
GPUs (NVIDIA, c) and SmartNICs (Ma et al., 2022)), im-
provements in memory systems (Kwon et al., 2023; Ra-
jbhandari et al., 2020), the design of optimal parallelism
strategies (Zheng et al., 2022; Isaev et al., 2023), over-
lapping communication with computation (Hashemi et al.,
2019; Narayanan et al., 2021), and advancements in algo-
rithms (Beltagy et al., 2020; You et al., 2019).

Despite these innovations, ensuring training efficiency re-
mains a significant challenge. Diagnosing inefficiencies in
LLMs is particularly difficult because runtime traces pro-
duced by machine learning (ML) frameworks (PyTorch;
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TensorFlow, a) are often dense and require deep expertise
to interpret effectively. Moreover, runtime behavior can
vary significantly across different model architectures, de-
ployment configurations, accelerator types, network infras-
tructures, and other system components. These variations
can cause performance bottlenecks to shift unpredictably,
making them difficult to identify and address. An additional
challenge lies in the vast search space of optimization pos-
sibilities. Finding the optimal solution within this space
is time-consuming and resource-intensive, as it requires
extensive experimentation on real hardware, demanding
significant resources and incurring high costs.

A key step toward achieving efficiency is to accurately char-
acterize and understand the behavior of these models. One
common approach is to build performance models that cap-
ture model execution, which also provide a solid founda-
tion for further optimization studies. While existing ef-
forts (Moolchandani et al., 2023; Isaev et al., 2023) develop
analytical models to predict high-level performance based
on exposed model parameters, they often miss essential un-
derlying execution details. To address this limitation, recent
work (Hu et al., 2022; Zhu et al., 2020; Lin et al., 2022;
Bang et al., 2023) has leveraged runtime traces to construct
fine-grained execution graphs, providing deeper insights
into the execution process.

However, current modeling methods struggle to address the
new complexities in modern LLMs. Training LLMs at scale
involves deploying across multiple machines, introducing
substantial communication overhead. As one example of
optimization, overlapping computation with communication
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Figure 1. Execution breakdown for one training iteration of GPT-3
175B, configured with tensor parallelism = 8, pipeline parallelism
= 4, and data parallelism = 8.

can reduce end-to-end training time, but it also introduces
complex inter-stream dependencies that are challenging to
model accurately. Figure 1 shows the execution time break-
down for a single training iteration of the GPT-3 (175B)
model, along with replayed results from dPRO (Hu et al.,
2022), a state-of-the-art trace-driven performance modeling
tool. The comparison reveals significant gaps between the
simulated and actual results, highlighting the challenges in
capturing the full intricacies of LLM execution.

To overcome these difficulties, we propose Lumos, a trace-
driven performance modeling and estimation toolkit for
large-scale LLM training. To the best of our knowledge,
Lumos is the first system to provide accurate performance
models that effectively capture the execution behaviors of
LLMs. It leverages built-in profiling tools from ML frame-
works, such as PyTorch Kineto (Kineto), without requir-
ing any custom instrumentation in models or frameworks,
thereby minimizing the profiling overhead.

Furthermore, to streamline the exploration of optimization
opportunities, Lumos also offers the flexibility to modify
and generate new execution graphs from existing traces.
This capability facilitates the exploration of optimal config-
urations, such as adjusting parallelism strategies (e.g., data
and pipeline parallelism) and fine-tuning model architec-
tures (e.g., number of layers, hidden size). By estimating
performance through simulation rather than experimenting
on real hardware, Lumos can significantly reduce cost and
accelerate the optimization process.

The main contributions of our work are the following:

• By utilizing only built-in profiling traces from ML
frameworks, Lumos constructs a comprehensive exe-
cution graph that identifies all dependencies between
executed tasks, enabling accurate performance model-
ing of large-scale LLM training. Beyond estimating
overall execution time, the fine granularity of Lumos al-
lows it to reproduce detailed execution characteristics,
facilitating deeper analysis and downstream optimiza-
tion studies.

• With a detailed execution graph, Lumos offers users

a convenient way to explore various model configura-
tions, including adjustments to parallelism strategies
and model architectures. By manipulating the existing
graph to generate new ones for different configurations
and by predicting performance through simulation, Lu-
mos streamlines the optimization process and enables
efficient and low-cost configuration exploration.

• We evaluate Lumos using various GPT-3 model vari-
ants on a production ML cluster with up to 512
NVIDIA H100 GPUs. Our results show that Lumos
can accurately replay execution, achieving an average
error of only 3.3% across different models and deploy-
ment configurations. Additionally, we demonstrate that
Lumos accurately reproduces detailed execution statis-
tics, such as execution time breakdown and SM utiliza-
tion, showing significant improvements over existing
approaches. Finally, we validate its ability to estimate
performance for new configurations and deployments,
achieving high accuracy when adjusting parallelism
strategies and tuning various model architectures.

2 RELATED WORK

2.1 Profiling Tools and Traces

As the ML system stack evolves rapidly, profiling tools play
a crucial role in understanding model execution characteris-
tics and identifying performance bottlenecks. As hardware
accelerators like GPUs (NVIDIA, c) and TPUs (Jouppi et al.,
2023) become increasingly essential, vendors offer special-
ized tools—such as NVProf (NVIDIA, d), CUPTI (NVIDIA,
a), and Nsight (NVIDIA, e)—to expose hardware perfor-
mance counters, providing developers with critical insights
into performance metrics and enabling effective optimiza-
tion.

To improve the interpretability of profiling results, ML
frameworks also provide built-in tools for collecting ex-
ecution statistics at the operator level. These tools often
integrate hardware-level traces, offering a complete view of
the entire stack—from host to device. For instance, PyTorch
Kineto (Kineto) leverages CUPTI (NVIDIA, a) to capture
runtime information for PyTorch operators, CUDA events,
and GPU kernels, seamlessly linking them to provide a
holistic perspective on model execution.

2.2 LLMs and Parallelism Strategies

Most modern LLMs are built on transformer architec-
tures (Vaswani, 2017), which rely on self-attention mecha-
nisms to capture long-range dependencies in sequential data.
These models feature multiple stacked layers of attention
and feedforward networks, with parameter sizes growing
rapidly over the years. For example, GPT-2 (Radford et al.,
2019) introduced in 2019 had 1.5 billion parameters, GPT-
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3 (Brown, 2020) in 2020 expanded to 175 billion parameters,
and PaLM (Chowdhery et al., 2023) reached 540 billion pa-
rameters by 2022.

Training LLMs presents significant computational and mem-
ory challenges, especially as model sizes grow beyond the
capacity of individual GPUs. To address these limitations,
3D parallelism—a hybrid approach combining data, tensor,
and pipeline parallelism—has become essential for efficient
large-scale training (Narayanan et al., 2021; Shoeybi et al.,
2019; Smith et al., 2022; Chowdhery et al., 2023). Each
form of parallelism contributes uniquely: data parallelism
(DP) distributes training batches across devices, synchro-
nizing gradients during updates; tensor parallelism (TP)
splits large tensors across multiple GPUs, allowing shared
computation with frequent communication; and pipeline
parallelism (PP) partitions the model into sequential stages,
with each stage processed on different devices in a coordi-
nated pipeline.

Despite the benefits, configuring 3D parallelism introduces
significant complexity, requiring careful coordination across
these strategies to balance workloads and minimize commu-
nication overhead. Recent research has focused on automat-
ing these configurations to reduce the burden on develop-
ers and ensure efficient distributed execution. For example,
GSPMD (Xu et al., 2021) extends the XLA compiler (Sabne,
2020) to support various parallelism paradigms through user
annotations. Alpa (Zheng et al., 2022) automates model
parallelization by optimizing intra- and inter-operator paral-
lelism for efficient distributed execution. Galvatron (Miao
et al., 2022) introduces a decision tree to decompose the
search space and designs a dynamic programming algorithm
to generate the optimal plan.

Emerging techniques like sequence parallelism (Li et al.,
2021; Jacobs et al., 2023; Liu et al., 2023) further address
the challenges of training on long sequences by distribut-
ing computations along the sequence dimension, reducing
memory overhead and communication bottlenecks.

2.3 Performance Modeling, Simulation, and
Optimization

The complexity of LLMs poses challenges and opportuni-
ties in system design and optimization, with performance
modeling serving as a critical foundation for diagnosing and
optimizing overall efficiency.

There are two primary approaches to building perfor-
mance models. The first relies on analytical models.
AmPeD (Moolchandani et al., 2023) introduces an analytical
model to estimate performance in distributed transformer
training under various model parameters and parallelism
strategies. Similarly, Calculon (Isaev et al., 2023) provides
a parameterized analytical model that explores the co-design

space of software and hardware configurations to identify
optimal system designs for LLMs. However, these analyt-
ical models are often tailored to specific implementations
and hardware configurations, limiting their ability to gen-
eralize in the face of rapid model and system evolution.
Moreover, they typically provide high-level performance
estimates, making them inadequate for optimizations like
mixed precision training (Das et al., 2018; Zhu et al., 2020)
and operator fusion (Zhao et al., 2022; Jia et al., 2019).

The second approach leverages trace-based models to sim-
ulate execution and derive optimization insights. For ex-
ample, ASTRA-sim (Rashidi et al., 2020) and ASTRA-
sim2.0 (Won et al., 2023) simulate distributed training with
a cycle-level and analytical network backend, evaluating
collective communication algorithms and network topolo-
gies. In (Lin et al., 2022), the authors analyze critical paths
within profiled traces to predict per-batch training time for
DLRM. Daydream (Zhu et al., 2020) uses kernel-level de-
pendency graphs collected with CUPTI to predict runtime
under specific optimizations, while dPRO (Hu et al., 2022)
builds a global dataflow graph by tracking dependencies
among operators to estimate DNN training performance.
However, these trace-based approaches fail to fully capture
the complexities inherent in LLM execution. To the best
of our knowledge, this work is the first to leverage traces
for accurately modeling the intricate behaviors of LLMs,
accounting for detailed operator and kernel interactions es-
sential for precise performance prediction.

3 DESIGN

3.1 Overview

Figure 2 presents the workflow of Lumos, our trace-driven
performance modeling and estimation toolkit for distributed
LLM training. The process begins with collecting runtime
profiling traces from popular frameworks such as Tensor-
Flow and PyTorch. These raw traces are then analyzed to
extract key meta-information, which is used to construct a
detailed task-level execution graph. The execution graph
can be modified to adjust model configurations, such as
parallelism strategies and architectures, generating new
configuration-specific graphs. Finally, the simulator uses
these graphs to either replay the original execution or pre-
dict performance under alternative configurations, providing
insights into potential optimizations and enabling effective
exploration of what-if scenarios.

We initially focus on PyTorch due to its widespread use
in both academia and industry, along with its advanced
profiling capabilities. However, our approach is flexible by
design and can be extended to support other ML frameworks.
We will discuss the adaptability of Lumos in Section 5.
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def training_iteration_loop(): 
  with torch.profiler.profile(
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      torch.profiler.ProfilerActivity.CPU,
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    ],
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Figure 2. Overview of Lumos’s workflow.

3.2 Traces Collection

We collect profiling traces using PyTorch Kineto (Kineto),
which captures comprehensive runtime information about
PyTorch operators, CUDA runtime events, and GPU ker-
nels, including name, start time, duration, CUDA stream
ID, thread ID, correlation ID, and more. Unlike previous
methods such as Daydream and dPRO, which necessitate
extensive framework and model instrumentation, our profil-
ing involves adding only a few lines of code into the model,
as shown in the code snippet at the top left of Figure 2,
significantly improving usability with minimal effort.

3.3 Execution Graph

The essence of a model’s execution lies in its execution
graph, which maps out the tasks being performed and
the dependencies between them. Motivated by prior ap-
proaches (Zhu et al., 2020; Hu et al., 2022; Bang et al.,
2023), we construct a low-level execution graph to accu-
rately represent model execution. However, we have incor-
porated several enhancements to capture the complex execu-
tion characteristics of LLMs, ensuring more accurate mod-
eling and offering the flexibility to estimate performance for
new model configurations.

3.3.1 Tasks

To streamline the design, our execution graph includes only
the following two types of tasks:

CPU tasks: These include all executions happened on
the CPU, including PyTorch operators and CUDA runtime
events. For each CPU task, we record its metadata along
with the specific CPU thread on which it runs.

GPU tasks: These include all executions happened on the

GPU, which primarily consist of GPU kernels. For each
GPU task, we log its metadata along with the corresponding
CUDA stream responsible for its execution.

3.3.2 Dependency

op op op

op op

intra-thread

thread2

thread1

inter-thread

op op

kernel kernel

CUDA launch

stream1

thread1

op op op

kernel kernel

CUDA synchronization

stream1

thread1 kernel kernel

kernel kernel

intra-stream

stream2

stream1

inter-stream

op

Figure 3. Four types of dependencies between the tasks.

Next, we identify four types of dependencies that capture
all possible relationships between tasks:

CPU to CPU: This dependency includes both intra-thread
and inter-thread relationships between CPU tasks. Tasks
within the same thread naturally execute sequentially, form-
ing intra-thread dependencies between consecutive tasks.
Inter-thread dependencies occur when tasks on one thread
block tasks on another. For example, in PyTorch, the back-
ward pass runs on a separate thread, requiring the first
backward operator to wait until the last forward operator
completes. We detect these dependencies by identifying
significant execution gaps within threads and establishing
cross-thread dependencies accordingly.

CPU to GPU: GPU tasks are typically launched
by corresponding CPU-side CUDA events, such as
cudaLaunchKernel and cudaMemsetAsync. In
Kineto traces, both CUDA runtime events and GPU ker-
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nels are tagged with a correlation ID, which we use to link
CPU tasks with their corresponding GPU tasks.

GPU to CPU: CUDA synchronization events, such as
cudaDeviceSync or cudaStreamSync, are common
during model execution. When invoked on the CPU, these
events block execution until the relevant GPU kernels com-
plete. As a result, they create dependencies from one or
more GPU tasks to the initiating CPU task.

GPU to GPU: Similar to CPU-to-CPU dependencies,
this includes both intra-stream and inter-stream depen-
dencies between GPU tasks. GPU kernels within the
same CUDA stream execute sequentially, meaning con-
secutive tasks in the same stream have direct dependen-
cies. To identify inter-stream dependencies, we leverage a
specialized event-based synchronization mechanism cap-
tured in the Kineto trace. Specifically, we focus on a
pair of CUDA runtime events: cudaEventRecord and
cudaStreamWaitEvent. The cudaEventRecord
marks a synchronization point in one stream, recording
an event after all preceding kernels on that stream have com-
pleted. The corresponding cudaStreamWaitEvent en-
sures that a different stream waits until the recorded event
is reached, creating a dependency between the two streams.
This mechanism allows us to accurately capture inter-stream
dependencies, providing a precise representation of the exe-
cution order across streams.

Training LLMs at scale typically spans a large number of
machines, resulting in significant communication overhead.
To mitigate this, overlapping the execution of computation
and communication kernels is a common practice to reduce
end-to-end iteration time. However, this overlap introduces
complex inter-stream dependencies, which are overlooked
by existing modeling approaches. Lumos is the first to target
LLMs and capture their intricate dependencies, a critical
step toward accurate performance modeling and reliable
downstream optimization studies.

3.4 Graph Manipulation

To improve and optimize LLM training performance, re-
searchers and engineers can have many configurable options
and optimization strategies. Commonly, they will ask what-
if questions, such as:

How will the performance scale with additional GPUs?
Which parallelism configuration will deliver the best re-
sults? How will changes to the model architecture impact
performance? Will a specific optimization improve perfor-
mance, and by how much?

While current distributed training frameworks make it eas-
ier to change configurations, deploying models with new
settings on real hardware requires substantial resources and
incurs high costs, leading to long iteration cycles. The pro-

cess becomes even more challenging if the desired changes,
such as introducing a new operator fusion pattern, are not
supported by the framework, forcing developers to hack the
underlying code, which can be both time-consuming and
prone to errors.

To address these challenges, the fine granularity and flexi-
bility of execution graphs, combined with simulation, pro-
vide an effective solution. By modifying the existing graph
to reflect different model configurations, we can estimate
performance and explore what-if scenarios without requir-
ing large-scale physical deployments, accelerating iteration
speed and significantly reducing costs.

Lumos offers an interface that allows users to specify new
model configurations, after which it manipulates the existing
execution graph to generate a new one reflecting the changes
for performance estimation. It currently supports modifi-
cations to both model architectures—such as adjusting the
number of transformer layers and hidden size—and paral-
lelism strategies, including data parallelism and pipeline
parallelism.

1 2 3 4 1 5 2 6 3 7 4 8 5 6 7 8

1 2 1 3 2 4 3 4

Forward Backward i: ith micro-batch

2x PP
rank_0

rank_0

Figure 4. Updated pipeline schedule for rank 0 with 2x PP, assum-
ing the number of micro-batches is equal to TP ! PP and 1F1B
scheduling policy (Narayanan et al., 2021).

For changes in data parallelism, only the communication
needs adjustment by assigning new execution time to the
communication tasks, as the local computation for each
worker remain unchanged. For pipeline parallelism adjust-
ments, we first update the pipeline schedule to align with
the new configuration based on the scheduling policy, de-
termining the execution order of the forward and backward
passes, as illustrated in Figure 4. Next, we group the tasks
by layers and partition the original layers and their under-
lying tasks into new stages. For example, assuming layers
are evenly distributed, we calculate how many layers belong
to each stage. The corresponding tasks are reassigned to
their new stages, and communication tasks are inserted at
appropriate points, to ensure correct synchronization and ex-
ecution. We currently do not support modifications to tensor
parallelism, as it is typically fixed in practice (e.g., within a
single node) due to its high communication overhead. We
leave the support for it as our future work.

For changes to model architecture, such as adjusting the
hidden size, we modify the input tensor dimensions for the
relevant operators and kernels and update their execution
times during simulation. When changing the number of
layers, we follow a process similar to that used for pipeline
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parallelism, dividing tasks into layers and applying the ad-
justments accordingly.

Throughout this manipulation process, we ensure that the
dependency patterns from the original trace are preserved
in the new graph to maintain correct execution, as we will
demonstrate in the evaluation.

3.5 Simulation

Algorithm 1 Lumos’s Simulation Algorithm
Input: Execution graph: G = (V, E)
Output: Trace with runtime details of all tasks
R → ↑ {Initialize the ready task set}
P → {0} {Initialize task processors}
for each task t ↓ G.tasks do
t.dep → |{t→s fixed dependencies}|
if t.dep = 0 then
R → R ↔ {t}

end if
end for
while R ↗= ↑ do
t → pick(R) {Select a ready task to execute}
p → t.Processor
R → R \ {t}
for each r ↓ get runtime dependencies(t) do
r.dependents → r.dependents ↔ {t}
t.dep → t.dep+ 1

end for
if t.dep = 0 then
t.start → max(P [p], t.start)
P [p] → t.start+ t.duration
for each c ↓ t.dependents do
c.dep → c.dep↘ 1
c.start → max(c.start, t.start+ t.duration)
if c.dep = 0 then
R → R ↔ {c}

end if
end for

end if
end while

Both the original and modified execution graphs will be
fed into the simulator to simulate execution and estimate
performance. During the simulation, the four types of depen-
dencies outlined in Section 3.3.2 are maintained through two
mechanisms. Fixed dependencies are determined at initial-
ization and remain unchanged throughout execution, such as
the sequential order of CPU tasks on the same thread. Run-
time dependencies, on the other hand, are assigned dynami-
cally during runtime. For example, a cudaStreamSync
task must wait for the last kernel on a specific stream to
complete, but which kernel will be last cannot be known
prior to execution.

Algorithm 1 outlines the simulation process, beginning with
the assignment of fixed dependencies. In each iteration, a
ready task is selected and allocated to its respective proces-
sor. The algorithm then checks for any runtime dependen-
cies. If all dependencies are met, the task is executed, updat-
ing the processor’s progress and the status of its dependent
tasks. Otherwise, the task is deferred until all dependencies
are resolved. The simulation generates a trace similar to
the input trace initially profiled from the real run, recording
all runtime information of the tasks. This output trace can
be used not only to estimate the overall execution time but
also to analyze fine-grained execution characteristics, as we
show in Section 4.2.

4 EVALUATION

We implement Lumos in Python with approximately 5,200
LoC. To leverage it, users need access to the source code
to insert profiler hooks into their PyTorch models for col-
lecting traces, typically requiring around 10 lines of code.
Lumos then offers a fully automated workflow: it begins
by constructing the execution graph from the raw traces,
manipulates the graph based on new configurations, and
concludes with performance estimation through simulation.
Depending on the complexity of the original traces, the
entire process can range from a few seconds to several min-
utes.

4.1 Methodology

Models. We evaluate Lumos using NVIDIA’s open-source
GPT-3 implementation (NVIDIA, b) from the MLPerf Train-
ing Benchmarks. Our experiments involve training four
model variants, adjusting the number of layers, hidden
size, feedforward network size, and attention heads, with
model parameters ranging from 15 billion to the full 175
billion, as summarized in Table 1. We collect traces with
PyTorch Kineto and evaluate performance across various
parallelism strategies, exploring different combinations of
tensor, pipeline, and data parallelism.

Infrastructure. Our evaluation is conducted on a produc-
tion ML cluster, using up to 512 NVIDIA H100 GPUs (on
32 servers) interconnected with 8x 400Gbps per host in a
RoCE DC-scale network. Our testing environment is based
on CUDA 12.4, PyTorch 2.5, Transformer Engine 0.12.0,
and PyTorch Lightning 1.9.4.

We select dPRO (Hu et al., 2022) as the state-of-the-art base-
line for comparison. In our evaluation, we first validate the
replay accuracy by comparing both iteration time and exe-
cution breakdown against the ground truth and the baseline.
Next, we evaluate the accuracy of our approach in estimat-
ing performance for new configurations, including changes
in both parallelism strategies and model architectures.
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Table 1. Model sizes and architectures used in the evaluation. All other parameters follow the default values from the open-source GPT-3
implementation (NVIDIA, b).

MODEL NAME nparams nlayers dmodel dffn nheads dhead

GPT-3 15B 15B 48 6144 12288 48 128
GPT-3 44B 44B 48 12288 24576 48 128
GPT-3 117B 117B 96 12288 24576 96 128
GPT-3 175B 175B 96 12288 49152 96 128
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Figure 5. Per-iteration training time with its breakdown across various model sizes and parallelism strategies: comparison of actual
execution, dPRO, and Lumos.

4.2 Replay

4.2.1 Overall Iteration Time

In Figure 5, we firstly compare the per-iteration execution
time replayed by Lumos and dPRO against the real execu-
tion time measured from actual training across various GPT-
3 model sizes (15B, 44B, 117B, and 175B) and parallelism
strategies. Across all configurations, Lumos maintains a re-
play error mostly under 5%, with an average error of 3.3%.
In contrast, dPRO’s error reaches up to 21.8%, with an aver-
age of 14%. While smaller models and simpler setups allow
dPRO to predict the overall time relatively well, its accu-
racy deteriorates as model size and complexity grow. The
discrepancy highlights Lumos’s robustness in accurately
capturing execution behaviors and modeling performance,

even for larger models and complex deployment setups.

4.2.2 Execution Breakdown

Figure 5 also provides a detailed breakdown of the execu-
tion into key components: exposed compute (computation
that does not overlap with communication), exposed com-
munication (communication that does not overlap with com-
putation), overlapped execution (where computation and
communication run concurrently), and other (primarily idle
periods). This breakdown offers deeper insights into the
differences in iteration times across configurations.

The analysis reveals that dPRO consistently overestimates
overlapped execution and underestimates total iteration time,
primarily due to its inability to accurately model inter-
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stream dependencies, leading to overly optimistic predic-
tions of parallel execution. In contrast, Lumos effectively
captures the complex dependencies within the model and
faithfully replays the execution. It accurately reflects the
dynamic interactions between computation and communi-
cation, adapting to changes in model size and deployment
configuration, and closely aligning with the real measure-
ment.

In large-scale distributed training, particularly for LLMs, a
substantial portion of execution time is spent on commu-
nication and synchronization between GPUs. To optimize
performance, engineers aim to maximize the overlap be-
tween computation and communication kernels. Therefore,
an accurate performance model that not only replays overall
execution time but also captures fine-grained details, such as
the degree of overlap, is essential. Such a model can provide
valuable insights for identifying performance bottlenecks
and guiding optimization efforts.

4.2.3 SM Utilization
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Figure 6. SM utilization of one iteration when training GPT-3 15B
under TP = 2, PP = 2 and DP = 4.

Analyzing SM (Streaming Multiprocessor) utilization is
essential for identifying performance bottlenecks, such as
idle periods or imbalanced workloads, to enhance GPU
efficiency.

In this section, we examine the SM utilization over one
iteration of training the GPT-3 15B model, configured with
tensor parallelism = 2, pipeline parallelism = 2, and data
parallelism = 4. Utilization is defined as the fraction of

time, over 1ms intervals, during which at least one CUDA
stream is actively executing tasks. This data is derived from
profiled and simulated traces by analyzing kernel activities
throughout the execution.

As shown in Figure 6, the SM utilization replayed by Lumos
closely match the actual measured utilization. In contrast,
dPRO exhibits more fluctuations and significant discrepan-
cies. This comparison, again, highlights Lumos’s ability to
capture fine-grained execution details, validating its effec-
tiveness in accurately modeling execution behavior.

4.3 Graph Manipulation

4.3.1 Parallelism Strategy
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(a) Execution breakdown for scaling data parallelism.
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(b) Execution breakdown for scaling pipeline parallelism.
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(c) Execution breakdown for simultaneous scaling of data and
pipeline parallelism.

Figure 7. Runtime predictions for scale-out configurations. Each
configuration (TPxPPxDP) is represented by two horizontal bars:
the upper bar shows the predicted value by Lumos, and the lower
bar shows the actual value.

Next, we evaluate Lumos’s flexibility in generating new ex-
ecution graphs from existing ones to estimate performance
under new configurations. Specifically, we demonstrate its
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ability to predict scale-out performance by adjusting par-
allelism strategies. Our experiments focus on GPT-3 15B,
using traces collected from a baseline configuration with
tensor parallelism = 2, pipeline parallelism = 2, and data
parallelism = 4.

We begin by exploring changes to data parallelism, where
only the execution time of communication tasks needs to be
updated. We currently estimate new communication time
using an in-house performance model built from fleet traces,
as it is both readily available and accurate. While network
simulators like ASTRA-sim (Won et al., 2023) or analytical
models (Moolchandani et al., 2023; Rashidi et al., 2022)
could also be used, predicting the runtime of individual
kernels is beyond the scope of this work. We will explore
potential integrations with these tools in the discussion sec-
tion. To validate these predictions, we compare them against
actual traces collected at larger scales. As shown in Fig-
ure 7a , Lumos accurately predicts both the total runtime
and detailed performance breakdowns when scaling from
16 GPUs to 32, 64, and 128 GPUs.

Similarly, Figure 7b demonstrates that Lumos can also accu-
rately estimate execution time and breakdown when scaling
pipeline parallelism. We modify the baseline traces by split-
ting layers and underlying tasks into new stages, adding
communication tasks, and reordering task execution accord-
ing to the new pipeline schedule. Finally, Figure 7c shows
that Lumos maintains high accuracy, with an average error
of just 4.2% when scaling both data and pipeline paral-
lelism simultaneously. These results prove that Lumos can
effectively generate correct new executions through graph
manipulation for new parallelism strategies.

4.3.2 Model Architecture

Table 2. Sizes and architectures for model variations.

MODEL NAME nparams nlayers dmodel dffn

GPT-3 15B 15B 48 6144 12288
GPT-3 V1 20B 64 6144 12288
GPT-3 V2 30B 96 6144 12288
GPT-3 V3 28B 48 9216 18432
GPT-3 V4 44B 48 12288 24576

We now validate Lumos’s accuracy in estimating perfor-
mance for different model architectures. Our evaluation
continues with GPT-3 15B as the base model. To generate
several variants, we modify the number of layers, hidden
sizes, and feedforward network sizes. Table 2 summarizes
the sizes and architectures of the models used in this eval-
uation. All models are trained using the configuration of
tensor parallelism = 2, pipeline parallelism = 2, and data
parallelism = 4.

When increasing the number of layers, we duplicate the lay-
ers and corresponding tasks from the existing trace, insert
them into the graph at appropriate places, and reconstruct de-
pendencies with neighboring tasks according to the original
dependency pattern. For changes in hidden size or feedfor-
ward network size, we adjust the input tensor dimensions
for all relevant operators and kernels. Ideally, new execution
times should be assigned to all affected tasks to reflect the
input changes. However, we observe that only a few key
kernels, such as GEMM and communication-related ones,
exhibit significant runtime changes under different configu-
rations. We similarly update the execution times for these
kernels using the in-house performance model described in
Section 4.3.1.

����
�&� ����
�&	 ����
�&
 ����
�&�

� ������"���$#

�

���

����

����

	���

	���

�
'
�
�
%
$
� 
�
�$
��

�
��
�
#
�

�'! #���� �!%$���
�$%���

�'! #���� �!%$����%� #�

�&�"��!!����
�$%���

�&�"��!!�����%� #�

�'! #���� ����
�$%���

�'! #���� �����%� #�

�$��"��
�$%���

�$��"���%� #�

Figure 8. Iteration time breakdown of model variations. The left
bars show the actual values, and the right hatched bars show the
predicted values.

Figure 8 presents the iteration time breakdown across these
model variations, showing both the actual and predicted per-
formance. The predicted values, represented with hatched
patterns, align closely with the actual measurements, demon-
strating that Lumos accurately reproduces the execution and
estimates the performance under different model architec-
ture changes.

Overall, the results shown in Section 4.3.1 and Section 4.3.2
demonstrate Lumos’s ability to leverage existing traces to
generate new execution graphs for both parallelism con-
figurations and model architecture variations, to provide
accurate performance estimates through simulation. This
predictive capability significantly reduces the need for costly
hardware resources, positioning Lumos as a practical tool
for efficient model configurations exploration.

5 DISCUSSION

In this section, we discuss the profiling overhead, adaptabil-
ity, scope, and limitations of Lumos.

Profiling Overhead and Cost. Lumos leverages PyTorch
Kineto (Kineto) to collect traces and construct the execu-
tion graph. Profiling requires only a few lines of hook
code, which makes it much more user-friendly than ex-
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isting approaches that require additional instrumentation.
Although profiling can impact execution, capturing a sin-
gle iteration—or just a few—is sufficient, as the model’s
execution pattern remains consistent across iterations. This
ensures that the overall profiling overhead is negligible in
the context of the entire training process.

Adaptability of Lumos. Lumos requires profiling traces
that capture both CPU and GPU activities, including frame-
work operators, CUDA runtime events, and GPU kernels.
Similar profiling capabilities are available in other ML
frameworks, such as TensorFlow Profiler (TensorFlow, b).
Lumos’s post-processing stages for constructing and manip-
ulating execution graphs are framework-agnostic, making it
easy to adapt to other frameworks.

Our methodology also extends well to other LLMs and
ML models in other domains, as it does not rely on model-
specific information to construct execution graphs for per-
formance modeling. While we make certain assumptions
during graph manipulation, such as where to insert layers
and which tasks would be affected, our method remains
broadly applicable, given the shared transformer-based ar-
chitecture of most modern LLMs.

Similarly, although this paper focuses on LLM training,
where communication overhead is higher and model be-
havior more complex, Lumos is also applicable to the in-
ference. We anticipate even broader use cases as LLM
inference grows more complicated, such as distributed in-
ference (Wei et al., 2022; Li et al., 2023) and SSD-based
inference (Wilkening et al., 2021; Sun et al., 2022).

Kernel Execution Time Prediction. Changing configu-
rations can introduce new GPU kernels not present in the
original trace, such as new communication kernels when
adjusting parallelism strategies or new computation kernels
when modifying model architectures. Accurately predict-
ing performance for new configurations requires estimating
the runtime of these new or altered kernels. Currently, we
estimate the runtime of unseen kernels using an in-house
GPU kernel performance model, built by analyzing fleet
GPU traces, as it is available and accurate. However, al-
ternative methods are also available. For communication
kernels, we can use metadata like message size, collective
algorithm, and networking environment to estimate per-
formance with network simulators like ASTRA-sim (Won
et al., 2023) and HeterSim (Tang et al., 2024), or analytical
models (Moolchandani et al., 2023; Rashidi et al., 2022).
For computation kernels, we can simply measure runtime
through individual microbenchmarks. However, predicting
kernel runtimes is beyond the scope of this work.

The primary goal of Lumos is to deliver a fine-grained execu-
tion graph and an accurate performance model to capture the
complexities of LLM execution and provide reliable perfor-

mance estimates. Developers can implement optimized indi-
vidual kernels, profile their runtime, and integrate the results
into Lumos to predict the overall runtime, saving the engi-
neering efforts of porting them into the frameworks. More
importantly, it can offer invaluable insights for optimization
even before implementation by answering what-if questions,
such as how much the overall runtime would be reduced if
a kernel ran twice as fast, and identifying which optimiza-
tion would yield the greatest performance improvement.
By modifying existing traces and estimating performance
through simulation, Lumos makes performance evaluation
and optimization more efficient and cost-effective.

Limitations. Lumos currently focuses on modeling and
simulating the timing of model execution. In predicting per-
formance for modified configurations, we assume the model
will function as expected under the new settings, without
unforeseen issues such as out-of-memory errors. Estimating
system-level metrics, such as FLOPS utilization, memory
consumption, bandwidth usage, or energy efficiency, lies
beyond Lumos’s current scope. These metrics, essential for
optimizing LLM efficiency, are part of our future plans to
provide more comprehensive performance insights.

6 CONCLUSION

In this paper, we introduced Lumos, a trace-driven perfor-
mance modeling and estimation toolkit for large-scale LLM
training. Lumos captures complex behaviors through de-
tailed execution graphs built from profiling traces, enabling
accurate performance modeling and estimation. Our evalu-
ation on a production ML cluster with up to 512 NVIDIA
H100 GPUs shows an average replay error of only 3.3%
across diverse model architectures and parallelism config-
urations. By manipulating existing graphs to generate new
ones for different configurations and predicting performance
through simulation, Lumos supports efficient optimization
exploration.
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