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Abstract—When mobile apps are used extensively in our daily
lives, their responsiveness has become an important factor that
can negatively impact the user experience. The long response
time of a mobile app can be caused by a variety of reasons,
including soft hang bugs or prolonged user interface APIs (UI-
APIs). While hang bugs have been researched extensively before,
our investigation on UI-APIs in today’s mobile OS finds that
the recursive construction of UI view hierarchy often can be
time-consuming, due to the complexity of today’s UI views.
To accelerate UI processing, such complex views can be pre-
processed and cached before the user even visits them. However,
pre-caching every view in a mobile app is infeasible due to the
incurred overheads on time, energy, and cache space.

In this paper, we propose MAPP, a framework for Mobile App
Predictive Pre-caching. MAPP has two main modules, 1) UI view
prediction based on deep learning and 2) UI-API pre-caching,
which coordinate to improve the responsiveness of mobile apps.
MAPP adopts a per-user and per-app prediction model that is
tailored based on the analysis of collected user traces, such as
location, time, or the sequence of previously visited views. A dy-
namic feature ranking and model selection algorithm is designed
to judiciously filter out less relevant features for improving the
prediction accuracy with less computation overhead. MAPP is
evaluated with 61 real-world traces from 18 volunteers over 30
days to show that it can shorten the response time of mobile apps
by 59.84% on average with an average cache hit rate of 92.55%.

Index Terms—Mobile app, response time, caching, prediction.

I. INTRODUCTION

In the past few decades, mobile apps have significantly
changed the ways we communicate, work, shop, study, and
entertain ourselves. As of 2023, there are estimated to be
8.93 million apps available worldwide [1], covering almost all
aspects of our daily lives. As a result, based on recent statistics,
American people spend almost 5 hours per day, on average,
on various mobile apps, which, if aggregated, would be more
than 70 days per year or 12 years over their lifespan [2].
When mobile apps are used so frequently, their responsiveness
has become an important factor that can greatly impact the
experience of mobile users. For example, it is recently reported
that users would give up their interactions or even delete an
app if its response time (between a user click and the expected
UI updating) exceeds 2-3 seconds [3], [4]. Even apps that have
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delays on the order of just 100 milliseconds would receive
poor response from the users [5]. Hence, the responsiveness
problem not only impacts just end users but also hurts the
reputation of an app through negative user reviews [6], [7].

The most straightforward solution to the responsiveness is-
sue is to upgrade to a new mobile device with faster hardware.
Unfortunately, such a solution can be costly and also may not
be able to completely solve the problem, because many mobile
apps have long response times due to software-related issues,
called soft hangs. A soft hang is commonly defined as an
app becomes unresponsive for a limited but perceivable time
[8]. In general, a delay in UI refreshing can be perceived by
the user if it is longer than 100ms [9]. Soft hangs can be
mainly caused by two reasons: 1) hang bugs and 2) prolonged
user interface APIs (UI-APIs). A hang bug is some blocking
operation (e.g., networking or file reading/writing) executed
on the app’s main thread, which blocks the main thread from
refreshing the Ul views promptly. While hang bugs have been
researched extensively and can be addressed by source code
analysis [8], [10], [11], trace-based diagnosis [12], or runtime
detection [13], [14], the other major reason, UI-APIs, has
received much less attention, mainly because they are part
of the mobile OSs and often overlooked by app developers.
However, prolonged UI-APIs may cause more soft hangs than
hang bugs. For example, in a recent study that tries to tell
real hang bugs from prolonged UI-APIs [14], among the 114
investigated mobile apps that have soft hangs, only 34 are real
hang bugs that are not caused by UI-APIs (as shown in Table
5 and discussed in Section 4.2 of [14]). In other words, the
remaining 80 apps (i.e., 70.2%) have their soft hangs caused
by prolonged UI-APIs.

In this paper, to our best knowledge, we make the first
research effort to investigate such prolonged UI-APIs to find
1) what the most time-consuming part is in those UI-APIs,
and 2) how to accelerate it. Most of today’s mobile OSs
(e.g., Android, iOS) create all the Ul views for their apps
programmatically with a hierarchical view layout file such as
XML. For example, the most commonly used view creation
function in Android is inflate, which involves several steps,
including 1) loading an XML file, 2) parsing this XML file,
3) creating UI view objects based on the parsed XML layout
and constructing the view hierarchy recursively, 4) rendering
the view objects on the display. Among those steps, the third
step, i.e., view object creation and hierarchy construction,
needs recursive computation to finalize the layout and so takes



about 60% of the API time (based on our measurements on
several mobile devices) and is currently the bottleneck of
most prolonged UI-APIs. Such a UI processing methodology
is common to most of today’s mobile OS, despite their
different terminologies. Although a mobile OS often has its
own cache system that can speed up the UI processing time
the second time when the user visits the same view, the poor
responsiveness of the first time, as a soft hang, could cause an
unpleasant experience and a bad impression to users.

A natural way to accelerate a UI-API, even on its first
invocation, is to pre-cache the required view hierarchy. When
a user enters a U, they typically spend several seconds
to minutes browsing before clicking a Ul component (e.g.,
button, link, drop box) to navigate to the next view. For
instance, a news app displays today’s breaking news on the
main page, and a user may browse before selecting a story
to read. Pre-caching can leverage this browsing time by pre-
executing the initial steps of the UI-API for likely next
views—excluding the final rendering step—and storing the
resulting view objects in a cache. When the user eventually
clicks, the view can be quickly rendered from the cache,
bypassing the time-consuming recursive layout computation
and improving responsiveness even for first-time visits.

However, pre-caching all potential next views is impractical
due to significant time, energy, and memory overheads. For
example, if pre-caching one link takes 200 ms, pre-caching
20 links would require 4 seconds—potentially exceeding the
user’s browsing time. Moreover, excessive background pre-
caching can accelerate battery drain and consume substantial
memory, possibly triggering the OS to kill other apps. Thus,
only a select subset of views should be pre-cached. To achieve
this, we observe that user behavior often follows predictable
patterns. For example, a user may check stocks, weather, and
traffic in the morning, order lunch during work hours, and chat
or stream movies in the evening. By exploiting such patterns,
the system can predict and pre-cache only the most likely
next views, reducing overhead while significantly improving
app responsiveness to avoid undesired soft hangs.

In this paper, we propose MAPP, a framework for Mobile
App Predictive Pre-caching. MAPP has two main modules,
1) UI view prediction based on deep learning and 2) UI-API
pre-caching, which coordinate to improve the responsiveness
of mobile apps. Given that many factors (or features) can affect
a user’s app usage pattern, such as the user’s location, time
of the day, or the sequence of views that the user has visited
previously in the same app, MAPP adopts a per-user and per-
app prediction model that is tailored based on the analysis of
collected personal data traces. There are two main challenges
in the design of predictive pre-caching: 1) the pattern of each
user may depend on different features, 2) the pattern can
change over time even for the same user. To address those,
we propose a dynamic feature ranking and model selection
process that judiciously filters out less relevant features to 1)
improve the rate of pre-caching the right views (i.e., cache
hit rate), and 2) reduce the computation overheads to achieve
the time constraint. Then, if any user pattern changes cause

the cache hit rate to drop below a desired threshold, MAPP
restarts the ranking process to flexibly adapt to the new user
app pattern.

Specifically, this paper makes the following contributions.

« While most existing research focuses on hang bug detec-
tion or resource management to improve the responsive-
ness of mobile apps, to our best knowledge, our work is
the first one to investigate prolonged UI-APIs and identify
the UI processing bottleneck in today’s mobile OSs.

o We present a detailed study with 20 apps to show why
UI-APIs can become soft hangs and how pre-caching can
help accelerate their processing.

o To avoid the potential high overheads of pre-caching
everything, we propose to predictively pre-cache just
selected views with the highest probabilities. A dynamic
feature ranking algorithm and a model selection process
are designed to improve the cache hit rate and reduce
prediction overheads.

e We evaluate MAPP with 61 real-world traces from 18
volunteers over a 30-day period to show that our solution
can shorten the response time of mobile apps by 59.84%
on average with an average cache hit rate of 92.55%.

The remainder of this paper is organized as follows. Section
II reviews the related work. Sections III, IV, and V present the
detailed designs of MAPP. Section VI evaluates MAPP with
real-world traces. Finally, Section VII concludes the paper.

II. RELATED WORK

Improving the responsiveness of mobile apps has been
studied extensively before [8], [10]-[18].

Existing research on mobile user behavior prediction mainly
predicts which apps will be launched next by the user [19]—
[24]. Deep learning-based models have also been adopted for
app launch prediction to pre-launch the predicted apps for
shorter latency [25]-[28]. Different from those studies, our
work is finer-grained and tries to predict which UI view the
user is going to visit next within the same app. Lee et al. have
proposed PathFinder [29], which predicts the next user click
within a mobile app, but user clicks do not always generate
new UI views. In contrast, we use a sequence of previously
visited views and other factors, e.g., location, time, and sensor
readings, to predict and pre-cache the next Ul view based on
deep learning.

Content prefetching has been proposed to enhance mo-
bile app responsiveness by prefetching and caching selected
data in advance [4], [30]-[33]. However, existing studies on
prefetching mainly focus on downloading networking data
ahead of time, while our work is the first one to investigate
prolonged UI-APIs and pre-cache the time-consuming UI view
computation. Our work can be integrated with these content
prefetching techniques to provide a comprehensive solution
for improving app responsiveness.

A recent study called Floo [34] proposes to automatically
memorize (cache) app computations for faster app respon-
siveness. Our work is different because it focuses on UI-
APIs, which are part of a mobile OS, while Floo tries to



cache the computations of an app itself. More importantly, we
pre-cache the predicted Ul views, while Floo is post-caching
(memorization), which leads to compulsory delay the first time
computation is executed.

III. OVERVIEW OF MAPP
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Fig. 1. High-level system architecture of MAPP, which includes three phases.
Phase I (red links) collects user data. Phase II (blue links) trains an initial DNN
model based on the collected data. Then, Phase II predicts which views to
be visited next based on the trained model and pre-caches those views. Phase
III (green links) performs dynamic feature importance ranking and model
selection to optimize system performance under time constraint.

Hit Rate

MAPP enhances the responsiveness of mobile apps to user
actions by 1) predicting which Ul views will be visited next
based on a per-app and per-user Deep Neural Network (DNN)
model, and 2) pre-caching the UI-APIs of the predicted views,
which allows to considerably reduce the user-perceived latency
upon cache hits, so that soft hangs can be avoided.

Figure 1 shows the high-level system architecture of MAPP,
which operates in three phases. During Phase I, MAPP uses
a data collector on the mobile device to gather user data,
including location, a sequence of previously visited views in
each app, time of the day, battery state of charge, and different
sensor readings. After enough data has been collected (e.g., a
few days), MAPP enters Phase II to send the collected data to
a cloud server for training an initial DNN prediction model.
The model is then uploaded to the mobile device for inference.
Then, based on the data collected in real-time, MAPP starts
predicting the Top-M views that are most likely to be visited
next. This prediction is then used to pre-cache the related Ul-
APIs to reduce the UI response time. Phase III starts when
a sufficiently large amount of data has been accumulated. In
this phase, MAPP optimizes (on the server) the initial DNN
model to reduce overhead. In particular, it 1) ranks features
based on their impacts on the model accuracy, 2) trains various
models wwith different feature combinations, and 3) evaluates
their inference time to select the best model to redeploy on
the mobile device. At this point, MAPP keeps monitoring the
cache hit rate and triggers Phase III again if the rate falls
below a certain threshold, which allows the DNN model to be
re-trained based on the latest data collected.

In the following, we introduce the design and implementa-
tion of the prediction and pre-caching modules, respectively.
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Fig. 2. An example sequence of visited UI views in the app Twitter.

IV. DESIGN OF MAPP’s VIEW PREDICTOR

We first introduce what user data is collected for model
training. We then discuss how to optimize the training predic-
tion model to reduce overheads.

A. User Data Collection and Model Training

MAPP utilizes two types of input features. The first type is
the sequential view controller usage history, which are consis-
tently included throughout the training period. The second type
is a group of contextual features, which can be personalized.
They are always included during the initial deployment’s
training phase. However, in subsequent deployments, these
personalized features are selectively incorporated based on
feature importance rankings and model selection.

Sequence of Previously Visited UI Views. MAPP employs
sequential view browsing history as a core component, captur-
ing the trace of previous user actions to understand and predict
future user visits. In Android, the activity class is usually
used as a view controller. An illustrative example is shown in
Figure 2, where activities from the app Twitter are represented
as nodes in a tree structure. By following the blue path, the
sequence of views (i.e., activities) is [1, 2, 3, 4]. Alternatively,
if we follow the red path, the sequence becomes [1, 6, 1, 2, 3,
4]. However, since the user returns to activity 1, the sequence is
effectively restarted from the second occurrence of 1, resulting
in the sequence [1, 2, 3, 4] once again.

Context Features. Following the sequential features, MAPP
incorporates a set of features that are useful in specific
scenarios. This includes sensor data from the accelerometer,
gyroscope, and magnetometer, which serve as key numerical
inputs in the model’s training dataset. These sensors provide
valuable insights into user movements, offering essential infor-
mation for predicting the next action for users of sport-related
and navigation-related apps.

Location may also be important to correlate the user actions
with the environment. For example, a user interacting with
Google Pay in a shopping area is more likely to trigger
payment-related views for making purchases. In contrast, when
the user is at other locations, such as at home or at work, these
payment views are less likely to be visited.

Other features included in the data collection are time of
day, battery level, signal strength, and duration of use. The
context provided by the time feature may be important because
user behavior patterns often vary significantly at different
times. For instance, in a stock trading app, the user behavior is
heavily influenced by the stock market’s opening and closing



times. During market hours, users are more likely to engage
in buying and selling views. Outside of these hours, users are
more likely to be reviewing charts or analyzing details rather
than initiating buy or sell actions. The battery level can also be
important because the user may prefer using app functions that
require less hardware resource utilization when battery levels
are low, thereby affecting app usage predictions. Similarly,
signal strength can impact the usability of network-dependent
functionalities of an app. The duration of previous app usage
sessions offers insights into user engagement levels, which
affect the likelihood of transitioning to other consequent views.

All the above features are collected by MAPP directly on
the user device until the dataset is large enough to initiate
model training in Phase II. However, it is important to note
that only a small set of features is collected at inference time
to reduce runtime overheads.

Model Training. The model architecture includes distinct
components for processing various types of input data. Se-
quential data is one-hot encoded, a method where categorical
values are represented as binary vectors, allowing neural
networks to interpret discrete inputs effectively. These encoded
sequences are then processed using a Gated Recurrent Unit
(GRU) [35]. Compared to Long Short-Term Memory (LSTM)
networks, GRUs perform better on low-complexity sequences
[36] and train faster [37]. Other contextual information, which
can be selectively excluded in our system, is handled by a
separate dense network layer employing a rectified linear unit
(ReLU) as an activation function to capture complex patterns
in the data. A dropout layer is included to prevent over-fitting.
Additionally, the dataset is imbalanced, meaning some target
classes appear more frequently than others. To address this,
we apply class weighting, which assigns higher weights to
underrepresented classes and lower weights to overrepresented
ones. This helps the model learn meaningful patterns from all
classes rather than being biased toward the majority classes.

B. Prediction Model Optimization

MAPP first analyzes the importance of features and then
balances the trade-off between model performance and esti-
mated end-to-end prediction latency to select an optimized
model for use at runtime.

Dynamic Feature Importance Ranking. Empirical observa-
tions indicate that different users exhibit varying usage behav-
ior patterns even within the same mobile app. Consequently,
indiscriminately utilizing all contextual features for every user
is not only redundant but also wastes computational resources
and degrades prediction performance. To dynamically assess
the importance of these features, we use a modified feature
permutation importance algorithm [38]. Instead of permuting
features individually, we analyze and group highly correlated
features using the pairwise correlation matrix after collecting
the data and sending it to the server. This collective permu-
tation during the feature exclusion process ensures that the
influence of correlated features is accurately assessed. We
quantify each feature group’s impact by comparing the base-

line accuracy, Accyyy, obtained with the full feature set Fiyy,
to the accuracy after excluding each group, AcCpermute(9i):

Rank(gi) = Accfull(ﬂull) - Accpermule (gi)

In our model, Fj, represents the complete set of features
used in Phase II to establish baseline performance. During the
optimization phase, we assess the impact of excluding each
feature group on the model’s performance by permuting them
one at a time. Groups whose removal results in less accuracy
degradation—indicating lower importance—are identified as
candidate groups ¢.,. These groups are then considered for
exclusion in the final optimized feature set, which aims to re-
duce computational demand and enhance prediction accuracy.

Feature groups are categorized into:

o Proposed candidate groups {g.,}, identified for their
minimal impact on model accuracy and considered for
exclusion.

« Retained feature groups G, which are essential for main-
taining model performance and thus are preserved in the
optimized model.

The retraining feature set is refined by retaining crucial

groups G, and testing all combinations with subsets of the
proposed candidate groups g, :

Combinations tested = {G; U s : s C {gc, }}

where s represents any subset of {g., }, including the empty
set. By selecting the top-2 less important feature groups, you
would only need to train 22 models instead of 27, drastically
lowering the number of combinations to test and optimize
model performance efficiently.
Model Selection. After training a new set of models based
on the results from the previous feature importance ranking,
we proceed to evaluate their performance using test data
collected during Phase II. MAPP then applies an objective
function to select the final model, systematically integrating
multiple performance metrics. This objective function takes
into account both the F-measure and end-to-end inference
latency to provide a balanced evaluation of each model’s
configuration. The objective function is defined as follows:
Score(M) = F_measure(M) — A x Time(M)
where:
o F_measure(M) is the F-measure of the model M, com-
puted as the harmonic mean of precision and recall for
each class:

C .« .

1 P ; X Recall;

F_measure(M) = G E :2 5 Crecision; ecall;
i=1

Precision; + Recall;

o Time(M) represents the end-to-end prediction latency
associated with model M,

« ) are weighting factor that balance the trade-offs between
end-to-end prediction latency and accuracy.

Precision and Recall for each class i are defined as:

TP, TP,
———— Recall = ———
TP, + FP; TP, + FN;
where T'P;, F'P;, and F'N; represent the true positives, false
positives, and false negatives for class ¢, respectively. Models
are ranked based on their scores, and the model with the
highest score is selected for deployment.

Precision; =



n [

(3 [

5 Highly correlated 5 Highly correlated

i3 %3 i

u < u Step 1: Find High

b g l j : %’ l I Correlated

o Q

£2A00A00A0 EE AHOAOOAH  Feares

Candidate Feature Retained Feature

Colour:mmmsssm  Colour: mmmmmmm

0 (]

4 o

2 2

T o T o .

0 O o 0O ) Step 2: Feature

- é L 4 ¢ o b é A ®s A Importance

ge (A _A .A gg | m . 2 2 Ranking

o o

SE L . EE .

2 2

2 . s v

°8 o8 Step 3: Model
~ .

P e Selection

83 83

E= F=

4@ A

Fig. 3. The three-step process — Step 1: Identifying and grouping highly cor-
related features. Step 2: Computing feature importance involves systematically
excluding each feature group one by one, with the top two groups having the
lowest ranking scores identified as candidates. Step 3: Model selection, these
candidate groups are evaluated based on model performance and inference
overhead, leading to the selection of the optimal model for deployment. ”T”
represents the score reduction due to end-to-end prediction latency, and “F”
represents F measure of the model.

For example, as shown in Figure 3, the first step is to group
highly correlated features, where the same shape represents
features belonging to the same group. After ranking feature
importance, we identify two groups of less important features
for each trace, which are represented by shapes colored in
blue. Consequently, we train separate models for each group
based on these findings. We evaluate the accuracy of each
model using data collected while also considering end-to-end
prediction latency, which can be profiled using pre-configured
models. After analyzing the end-to-end prediction latency
among the models, the predictor transmits these results to
the server for model selection. Ultimately, the model with the
highest overall score is selected. Generally, models using more
features experience a larger deduction in overall scores.

V. DESIGN AND IMPLEMENTATION OF PRE-CACHING

We now introduce the design of the view cache used for
pre-caching and its cache replacement rules. We then discuss
how to implement pre-caching in Android as an example.

A. View Cache and Hybrid Cache Replacement

In Phase II of the overall architecture in Section III, when
the user visits a new Ul view in an app, the prediction module
identifies Top-M Ul views with the highest probabilities. Then,
the pre-caching module starts processing the corresponding
UI-APIs for those M predicted views. We pre-cache M views
mainly to reduce the caching overheads, in terms of time,
energy consumption, and memory space. Once the views are
processed, they are placed into a customized view cache, ready
for rendering onto the display. If the user indeed visits one of
the pre-cached views later, the processed view will be loaded
from the cache for rendering, which can bypass the time-
consuming view object creation and so significantly reduce
the user-perceived latency.

The size of the view cache is limited, so it is designed
to be managed with the Least Recently Used (LRU) policy.
Specifically, MAPP features a hybrid cache replacement rule
that can be triggered by either 1) pre-caching with Top-M
predicted views, or 2) post-caching with the actually visited
view if it is not already one of the predicted M views. The
post-caching rule is used to handle any unexpected user pattern
variations. In particular, if MAPP detects that the cache hit rate
stays below some threshold, it assumes that the user pattern has
significantly changed. Thus, it stops pre-caching and performs
only the LRU-based post-caching to promptly handle such
sudden changes, before the prediction model can be re-trained
and optimized on the cloud server.

The implementation of pre-caching in a mobile OS should
be transparent to app developers. In other words, app devel-
opers should not need to do anything different for their apps
to have MAPP shorten their UI response times. To this end,
pre-caching can be implemented in two ways. The first way
is to integrate MAPP as part of the mobile OS. For example,
the Android framework currently has a low-level cache for
holding XML blocks, to aid in the process of parsing XML
files. The view cache in MAPP could be implemented in a
similar manner for the best efficiency. The pre-caching module
can be implemented as an OS service because all the user
interactions are handled by the OS. In this way, all the UI-
APIs can be easily modified to load the cached view first. The
second way is to implement MAPP as a middleware service
to run as separate threads in the background that monitor the
user activities. It is more challenging to provide transparency
for app developers in this way because the current UI-APIs are
not designed to load cached views. However, it is still doable
by modifying the parent classes that every view class has to
inherit from, or by developing a tool that can automatically
replace the related operations in UI-APIs in the app bytecode
with the modified ones that load cached views instead. In the
following, we use Android as an example OS to discuss how
to prototype MAPP.

B. Implementation of Pre-Caching in Android

Most of today’s apps in Android use the inflate UI-API to
create Ul views because it has been the primary method for
view creation for over a decade. So, we use it to show how
MAPP can be implemented in Android in the following, but
our solution can be adapted for other view creation processes
such as Jetpack Compose.

To implement MAPP’s pre-caching module, we have created
a background service app with a pre-caching class and a
ViewCache class. When a UI view prediction is made, this
service app executes the view creation process while the CPU
is idle, in order to have it ready for rendering when the view is
requested later. The ViewCache class has a Map data structure
and four methods. A Map is essentially a set of objects, with
a second data type used as a descriptor, typically referred
to as a key. The Map in the ViewCache holds view objects
with their keys being strings holding the class path for the
view (i.e., activity), to which the view object belongs. The



ViewCache methods are to provide ways to add to the cache,
take from the cache, check if the cache is empty, and check
if the cache contains a specific view already. Below is the
simplified pseudo-code that inflates and caches a target view.

1: function PRE-CACHE

2: inflater <— getLayoutInflater()

3: view < inflater.inflate(R Jayout.predicted_layout, null)
4: ViewCache.add(view)

5: end function

As discussed before, for an app to utilize the ViewCache
created by MAPP, the onCreate function of the app’s activity
class needs to be replaced with one that loads from the cache
first. This can be done either by modifying the onCreate func-
tion of the parent class (which is part of the Android source
code), or by replacing the function in the app’s bytecode. After
the modification or replacement, when an activity is initiated,
the system first checks if the corresponding Ul view is already
cached. If so, and if the predicted activity class matches the
current activity, the system bypasses the time-consuming view
inflation process, directly setting the activity content to the pre-
cached view. Below is the simplified pseudo-code that checks
the ViewCache and renders the view if it is in the cache.

1: function ONCREATE

view < ViewCache.get(localClassName)

if view # null then
setContentView(view)

else
inflater < getLayoutInflater()
view < inflater.inflate(R layout.layout_dummy, null)
setContentView(view)

9: end if

10: end function

2
3
4
S:
6
7
8

There can be some other types of view in Android. For
example, some Android apps have fragment view binding,
which is a view object that has a separate reference for each
view object within its hierarchy, allowing for direct access to
a view’s elements. The creation of view bindings is the same
as views, with just one extra step to generate a Java class for
the binding, which is automatically done by Android as view
binding is enabled. The process for pre-caching view bindings
is almost the same as for typical activity views because it just
requires any references to the view object to be changed to
the specific type of view binding object for that activity.

To demonstrate the feasibility of implementing MAPP in
real Android apps, we have successfully applied the above
method to 34 apps to improve their UI response time. Section
VI-C presents the related results and discussion.

VI. EVALUATION

In this section, we evaluate the performance of our MAPP
framework. First, we present the experimental setup, then we
evaluate the performance of MAPP’s view/activity prediction,
and finally, we examine the response time reduction achieved
in several real-world apps through pre-caching.

A. Experimental Setup

Mobile Phones. For our pre-caching experiments, we use a
Google Pixel 8 and a Samsung Galaxy All to test devices
with different hardware configurations.

TABLE I
EXAMPLES OF APP USAGE DATA
Activity Time Location Battery Signal Duration
Name Level Strength (ms)
Main 161553 39, -82 88 1 1133
Search 161600 39, -82 88 1 7161
Profile 161618 39, -82 87 1 17821
Gallery 161622 39, -82 87 1 3814

Interaction Traces. We have collected over 61 usage traces
from 18 different volunteers to evaluate the performance of
the proposed MAPP framework. Table I presents a trun-
cated example of raw user activity records which include
the sequence of activities performed by the user (Activity),
the timestamp of each recorded activity, the geographical
coordinates representing the user’s approximate location, the
device’s battery level at the time of the activity, the signal
strength of the connected network, and the duration of the
previous activity. To better understand the dataset and the
complexity of user interactions, we analyze metrics such as
maximum activity depth and maximum degree distribution.
For example, consider a user’s interaction pattern with an
app like Twitter, as depicted in Figure 4. Here, the maximum
activity depth is 4, corresponding to the longest sequence path
[1, 2, 3, 4] highlighted by a blue double arrow in the figure.
The highest degree, indicated by a red dashed line, is observed
in the main activity (Activity 1), which connects to three child
activities (Activities 2, 5, and 6).
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Fig. 4. Activity structure of a sample application with a maximum activity
depth of 4 and maximum degree of 3.

Data Privacy. To protect user privacy, all collected data is
anonymized, and any identity-related information is securely
hashed. All experimental data is stored locally on our lab
systems and is accessible only for research purposes. We
acknowledge that data privacy remains an important aspect for
future work. Various existing approaches, such as federated
learning-based methods [39], could be applied to further
enhance data protection and prevent data leakage.
Parameter Settings. Our analysis result shows that approx-
imately 50% of traces have a maximum depth of four or
greater. This suggests that users frequently engage in complex
sequences of actions that span multiple levels within an app.
Such depth indicates that user interactions can often be branch-
ing instead of being just linear, which means simple caching
strategies may not work well because they typically manage
only the most immediate data needs. In scenarios where
user interactions create long, multi-step sequences without
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repetition, simple caching may also fail to pre-cache relevant
Ul APIs effectively, leading to increased load times and a
degraded user experience. Hence, we have set the length of
the sequential activity features for training models to 4.

We have also analyzed the distribution of the maximum
degree across all traces. For certain apps, the main activity’s
degree can exceed 20, indicating high connectivity among
nodes. This suggests that a greedy method, such as caching all
child activities connected to the current activity, is inefficient,
particularly on mobile devices with limited memory. Notably,
the median maximum degree among traces is 6. Therefore, in
MAPP’s pre-caching module, we have set the cache size to
store view objects for only six activities.

Finally, we determine the number of top-M activities by
considering both the MAPP processing latency and the min-
imum user interaction interval. Our data reveals a minimum
user interaction interval of 1.12 seconds, establishing a hard
constraint: the total latency—from receiving prediction results
to completing precaching—must not exceed this threshold. On
our test devices, the precaching process alone requires 353
milliseconds per view on average. For maximum prediction ac-
curacy, this latency budget allows MAPP to precache 3 views
(3 x 353ms =~ 1,059 ms) within the 1.12-second window.
Thus, we select top-3 predictions and pre-cache these 3 views
for our tested environment. Additional time is required for
the prediction process itself, which can be further controlled
and optimized by adjusting the parameter (\) during model
selection. This ensures that the overall latency remains under
the user interaction interval constraint.

B. Performance of Ul View/Activity Prediction

We assess the performance of MAPP’s view prediction by
testing heuristics for phase transitioning, evaluating the model
optimization, and comparing MAPP with various baselines.
Phase Transitioning. The proposed MAPP framework transi-
tions through three phases at runtime: Phase [—data collection,
Phase II—initial training, and Phase III—optimization. First,
we analyze the trade-off between improved responsiveness and
the volume of user data collected. By comparing performance
across one-week, four-day, and one-day data periods, we
observe that certain apps achieve higher prediction accuracy
with less data. This occurs because their usage patterns
(e.g., weather forecast apps) exhibit minimal correlation with
specific days of the week. However, the overall prediction
accuracy using one week (7 days) of data outperforms shorter
periods, as shown in Figure 5(a).

Next, we evaluate two heuristics for phase transitions from
data collection to training: time-based and sequence-based.
For the first method, one week represents the best cycle
period for typical users, based on previous results. For the
second method, we use Permutation Entropy [40] to focus
on fluctuations of the collected view sequence, which means
that each phase ends only when the entropy of the collected
sequence has stabilized.

Figure 5(b) shows the top-3 prediction accuracy of MAPP
using these two methods. While using quantified sequential
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Fig. 5. Effect of phase transitioning. (a) Comparison of Top-3 prediction
accuracy comparison: one-week data (88.7%), four-day data (86.35%), and
one-day data (75.80%). (b) Comparison of Top-3 prediction accuracy using
one-week data collection (88.7%) versus using permutation entropy as an
indicator (71.89%).

feature complexity as the indicator for ending data collection
can yield satisfactory results on certain traces, particularly in
applications not heavily influenced by contextual information,
a fixed one-week data collection period generally performs
better. This indicates that contextual information plays a
crucial role in prediction accuracy. As a result, for all the
remaining tests we use the time-based method to transition
across phases with a one-week period for data collection.
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Fig. 6. End-to-end latency of the Predictor (including sensor reading, pre-
processing, and inference time) as a function of the number of features used.

End-to-end MAPP Prediction Latency. MAPP first bench-
marks the device’s performance before proceeding with model
selection. To achieve this, pre-configured models with different
feature sets are tested to obtain performance metrics. Figure
6 illustrates the average end-to-end prediction latency on our
devices using various model sizes, each differing in the number
of features used. Additionally, we analyze the latency of each
prediction step, including sensor reading, preprocessing, and
inference time. Sensor reading and preprocessing time can
be significantly reduced by using fewer features, the average
sensor reading from 24 to 7 ms, and average preprocessing
from 15 to 3 ms. We observe that end-to-end latency ranges
from 41.5 ms when 1 feature is used to 74 ms when all 9
features are used. Meanwhile, reducing the number of features
decreases the model size from 17 KB to 16.6 KB, providing
a minor benefit in terms of bandwidth and storage.

Optimization vs Prediction Accuracy. On our test devices,
we aim to precache up to three views, each taking an average
of 353 ms. To ensure all three tasks complete within the total
latency budget of 1.12 s (i.e., 1120 ms), the time allocated for
end-to-end prediction must not exceed 1120—3 %353 = 61 ms.
Accordingly, we test different A values on the server side to
determine the number of features used by the final model,
allowing us to estimate the prediction latency and ensure it
meets the time constraint. As shown in Figure 7(a), increasing
A reduces the average end-to-end prediction latency but also
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lowers the model’s top-3 accuracy. At A = 0.004, the models
on average use approximately five features. Based on perfor-
mance results from our pre-configured models, the estimated
prediction latency remains below 60 ms, satisfying the latency
requirement while maximizing accuracy.

Finally, we evaluate the effect of MAPP’s Phase III model
optimization on prediction accuracy. After identifying the three
least important feature groups, we test all candidate models
and select the one that achieves the highest model score. As
shown in Figure 7(b), we compare MAPP’s top-3 accuracy
with and without optimization, as well as the number of
features used by the optimized model. The results indicate that
the proposed dynamic feature importance ranking and model
selection algorithm efficiently excludes less important features.
On average, fewer than 5 features are selected in each case,
thereby improving prediction accuracy and reducing latency.
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Fig. 8. Cache hit rate of our method MAPP against baselines. (a) The
significantly higher cache hit rate performance of our method highlights the
advantage of our predictive pre-caching strategy. (b) The proposed feature
selection and hybrid cache logic also lead to performance improvements.
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Cache Hit Rate. We use the collected traces to evaluate
the cache hit rate of MAPP against two caching strategies:
LRU and a graph-based method inspired by Floo. LRU is a
traditional post-caching strategy that stores previously visited
views without any optimization. The graph-based method,
following the strategy of Floo [34], constructs a graph of
activities based on usage patterns and performs pre-caching
by memorizing the most frequently accessed views, without
considering contextual information. For a fair comparison, the
pre-cache module is cleared from the main memory of the
mobile devices before each evaluation to ensure a cold cache.

Figure 8(a) shows that MAPP achieves a 92.55% cache
hit rate on average across traces, significantly outperforming
LRU and the graph-based method, which result in 58.95% and
76.55% average hit rates, respectively. Unlike LRU, which re-
lies solely on recency, and the graph-based method, which pre-
caches based on frequency without contextual understanding,

MAPP leverages predictive pre-caching, hybrid cache replace-
ment, and model optimization. These enhancements enable
MAPP to achieve approximately 34% and 16% higher cache
hit rates than LRU and the graph-based method, respectively.

We now evaluate the contribution of each component used
in MAPP. Figure 8(b) illustrates the performance impact of se-
lectively enabling different components of the MAPP system.
Pred+LRU* utilizes the MAPP predictor along with its hybrid
cache replacement policy but excludes feature optimization.
Pred+LRU employs only the predictor, without hybrid cache
replacement or feature optimization. On average, MAPP has a
92.55% cache hit rate, compared to the 91.87% of Pred+LRU*
and the 89.51% of Pred+LRU. While this improvement may
seem small, it is worth noticing that MAPP consistently
shows a high cache hit rate across the traces, while the two
baselines show higher variability in performance, despite their
occasional better hit rates than MAPP (e.g., Trace 4). For
example, for Trace 11, MAPP, and Pred+LRU* achieve a
similar 83.34% cache hit rate, while Pred+LLRU has a 0% hit
rate. This highlights the importance of MAPP’s hybrid cache
replacement rule. As another example, in Trace 5, MAPP
achieves a 77.78% hit rate, while Pred+LRU* has a lower
48.15% hit rate, which highlights the importance of feature
optimization to improve the hit rate.
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Fig. 9. The trend of cache hit rate versus Permutation Entropy.

Detailed Analysis of Cache Hit Rate. To understand fac-
tors affecting MAPP’s performance, we analyze the correlation
between permutation entropy and cache hit rates. We compute
permutation entropy [40] using subsequences of length 8 with
an interval of 1, applying a variant that directly handles cate-
gorical values. As shown in Figure 9, the red regression line
suggests that traces with higher entropy generally exhibit lower
cache hit rates, highlighting the difficulty of maintaining cache
efficiency under complex interaction patterns. For example,
traces with entropy between 1 and 4 achieve near 100% hit
rates, whereas those with entropy between 5 and 9 show
more variability (75%—-100%). Although these hit rates are still
relatively high, the results indicate the need for research on
how to distill useful information from sequential interactions
and further improve the prediction.

C. Responsiveness Improvement by Pre-Caching

Latency Reduction. Here we examine the latency of 24
real open-source mobile apps with and without MAPP’s pre-
caching module using two devices, the Google Pixel 8 and
the Samsung Galaxy All. Table II presents the results; due
to space constraints, detailed analysis is shown for only 14
applications. The before and after columns refer to the latency
of the onCreate method (which is the starting point of any
activity in Android) before and after using MAPP. Across the
14 selected apps, the Google Pixel 8 and Samsung Galaxy
A1l show average latency reductions of 59.57% and 64.53%,



TABLE II
THE UI RESPONSE TIMES OF 20 APPS BEFORE AND AFTER PRE-CACHING ON TWO MOBILE DEVICES.

Google Pixel 8 Samsung Galaxy All
App Name Downloads
Before (us) [ After (us) [ Improvement Before (us) [ After (us) [ Improvement

Wikipedia S0M+ 46132 30676 33.50% 587626 314932 46.41%
WifiAnalyzer 10M+ 64282 10436 83.77% 340997 30045 91.19%
Loop Habit Tracker SM+ 32035 11114 65.31% 228569 92896 59.36%
Infinity for Reddit 500k+ 70087 50472 27.99% 197309 148984 24.49%
Noice 100k+ 180650 17236 90.46% 1263607 95527 92.44%
NextPlayer 50k+ 121806 65670 46.09% 1580223 299990 81.02%
Privacy Friendly Notes 10k+ 16151 9203 43.02% 212321 102626 51.66%
Transportr 10k+ 91730 50114 45.37% 180113 91730 49.07%
Fossify Music Player Sk+ 28291 7005 75.24% 326431 98849 69.72%
SimpMusic 1740%* 1547130 127463 91.76% 3897362 638771 83.61%
Fossify Notes 1k+ 49646 10704 78.44% 718165 88871 87.63%
AudioAnchor 217* 47667 29974 37.12% 241972 187205 22.63%
Stealth for Reddit 110* 28502 7960 72.07% 244746 19966 91.84%
Brainf 100+ 45027 25277 43.86% 577983 274984 52.42%
Average 169224 32379 59.57% 756959 177527 64.53%

* In addition to these 14 example apps, we have tested 10 more apps (downloads), including AntennaPod (IM+), Cloudstream (7k+%*), Kotatsu (4.5k+%),
Doodle (100k+), Omweather (332%*), Markor (100k+), NewPipe (31k+*), Odyssey (235%*), PocketPlan (1k+), and LibreTube (8.9k+*). The average
improvement for all 24 apps is 56.54% on Google Pixel 8 and 63.13% on Samsung Galaxy All, with an overall average improvement of 59.84%.

respectively. Notably, on the Samsung Galaxy All, all apps
initially exceed the 100ms human-perceivable delay [9], but
MAPP’s pre-caching brings 7 of them below that threshold.

Detailed Latency Study. As Table II shows, some apps
benefit more from pre-caching than others. The aspects of
an application that will yield beneficial results are deep view
hierarchies or complex view objects. NextPlayer for example,
a media player application, has the third highest latency (~122
ms on Pixel 8, 1,580 ms on the Galaxy Al1) in the table. This
high latency is due to the inclusion of a complex view object
for displaying video media. SimpMusic, a music player app,
has the highest latency overall (~1,547 ms on Pixel 8, 3,900
ms on Galaxy A11) due to its extremely deep view hierarchy in
the settings activity. The XML file for the corresponding view
is nearly 1500 lines long. Comparatively, the XML layout of
Noice is under 400 lines, which is still long compared to the
other applications in the table. Performance of pre-caching is
also affected by how developer implements their code. Brainf,
a learning app, for the Samsung Galaxy All, it starts with
an execution time of 578 ms, which gets reduced to 275
ms after pre-caching. The residual latency stems from non-
layout-related operations in onCreate(), such as initializing a
Markdown interpreter, which pre-caching cannot optimize.
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Fig. 10. Execution time breakdown for the onCreate method in two different
cases. The first case is for the account fragment in the Noice application. The
second is for the search fragment in the AntennaPod application.

To gain insights into how much time view creation within
the UI-APIs contributes to latency, we have analyzed the
breakdown of the onCreate methods across various apps. Fig-
ure 10 shows the latency characteristics of two representative
apps, Noice and AntennaPod, on Pixel 8. Specifically, the
figure breaks down the latency, which includes the creation
of six different views using the inflate UI-API (SwipeRe-
freshLayout, NestedScrollView, LinearLayout, RelativeLay-
out, AppBarLayout, and MaterialToolBar). Additional setup
methods are involved, which are listed as ”onViewCreated” in
the figure, which is the name of the method where these are
usually found in the case of view fragments. Noice contains
a small series of views that each hold several smaller view
objects such as buttons or text-boxes, and their repetitive
creation takes up the majority of the total latency. With
MAPP’s pre-caching, this latency, along with the other view
objects, is reduced below 20ms. AntennaPod, on the other
hand, does not have such complex view objects and shows a
lower latency of ~79ms. In this case, pre-caching is able to
drop ~50ms from the total latency.

D. Overall Improvement by MAPP
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Fig. 11. Overall responsiveness improvement observed after integrating the
pre-caching module and online prediction module with 14 open-source apps.

We evaluate the overall improvement of MAPP by in-
tegrating it with 14 open-source apps listed in Table II.
Since each interaction with MAPP can either successfully
predict and pre-cache or fail, we calculate the overall response
time as (1 — ¢) x response time before pre-caching + ¢ X



response time after pre-caching, where c represents the cache
hit rate. As illustrated in Figure 11, the average overall
improvements are 53% for the Google Pixel 8 and 57% for
the Samsung Galaxy A1ll. These results suggest that MAPP
can be more beneficial for less powerful devices.

E. MAPP Overhead

We systematically evaluate the overhead of MAPP in terms
of power consumption and memory utilization. Power mea-
surements are conducted using AccuBattery [41], a validated
tool for fine-grained energy profiling in mobile systems [25].
On average, MAPP consumes 34 mW, increasing total device
power consumption by 3.27%. Additionally, MAPP raises
memory utilization by an average of 2.64% (less than 100
MB) on test devices.

VII. CONCLUSION

In this paper, we have presented MAPP, a framework for
Mobile App Predictive Pre-caching. MAPP has two main
modules, UI view predictor based on deep learning and UI-
API pre-caching, which coordinate to improve the respon-
siveness of mobile apps. MAPP adopts a per-user and per-
app prediction model that is tailored based on the analysis of
collected user traces, such as location, time, or the sequence of
previously visited views. A dynamic feature ranking algorithm
is designed to judiciously filter out less relevant features
to improve the prediction accuracy with less computation
overhead. MAPP is evaluated with 61 real-world traces from
18 volunteers over a 30-day period to show that it can shorten
the response time of mobile apps by 59.84% on average with
an average cache hit rate of 92.55%.
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