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Abstract—When mobile apps are used extensively in our daily
lives, their responsiveness has become an important factor that
can negatively impact the user experience. The long response
time of a mobile app can be caused by a variety of reasons,
including soft hang bugs or prolonged user interface APIs (UI-
APIs). While hang bugs have been researched extensively before,
our investigation on UI-APIs in today’s mobile OS finds that
the recursive construction of UI view hierarchy often can be
time-consuming, due to the complexity of today’s UI views.
To accelerate UI processing, such complex views can be pre-
processed and cached before the user even visits them. However,
pre-caching every view in a mobile app is infeasible due to the
incurred overheads on time, energy, and cache space.

In this paper, we propose MAPP, a framework for Mobile App
Predictive Pre-caching. MAPP has two main modules, 1) UI view
prediction based on deep learning and 2) UI-API pre-caching,
which coordinate to improve the responsiveness of mobile apps.
MAPP adopts a per-user and per-app prediction model that is
tailored based on the analysis of collected user traces, such as
location, time, or the sequence of previously visited views. A dy-
namic feature ranking and model selection algorithm is designed
to judiciously filter out less relevant features for improving the
prediction accuracy with less computation overhead. MAPP is
evaluated with 61 real-world traces from 18 volunteers over 30
days to show that it can shorten the response time of mobile apps
by 59.84% on average with an average cache hit rate of 92.55%.

Index Terms—Mobile app, response time, caching, prediction.

I. INTRODUCTION

In the past few decades, mobile apps have significantly

changed the ways we communicate, work, shop, study, and

entertain ourselves. As of 2023, there are estimated to be

8.93 million apps available worldwide [1], covering almost all

aspects of our daily lives. As a result, based on recent statistics,

American people spend almost 5 hours per day, on average,

on various mobile apps, which, if aggregated, would be more

than 70 days per year or 12 years over their lifespan [2].

When mobile apps are used so frequently, their responsiveness

has become an important factor that can greatly impact the

experience of mobile users. For example, it is recently reported

that users would give up their interactions or even delete an

app if its response time (between a user click and the expected

UI updating) exceeds 2-3 seconds [3], [4]. Even apps that have
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delays on the order of just 100 milliseconds would receive

poor response from the users [5]. Hence, the responsiveness

problem not only impacts just end users but also hurts the

reputation of an app through negative user reviews [6], [7].

The most straightforward solution to the responsiveness is-

sue is to upgrade to a new mobile device with faster hardware.

Unfortunately, such a solution can be costly and also may not

be able to completely solve the problem, because many mobile

apps have long response times due to software-related issues,

called soft hangs. A soft hang is commonly defined as an

app becomes unresponsive for a limited but perceivable time

[8]. In general, a delay in UI refreshing can be perceived by

the user if it is longer than 100ms [9]. Soft hangs can be

mainly caused by two reasons: 1) hang bugs and 2) prolonged

user interface APIs (UI-APIs). A hang bug is some blocking

operation (e.g., networking or file reading/writing) executed

on the app’s main thread, which blocks the main thread from

refreshing the UI views promptly. While hang bugs have been

researched extensively and can be addressed by source code

analysis [8], [10], [11], trace-based diagnosis [12], or runtime

detection [13], [14], the other major reason, UI-APIs, has

received much less attention, mainly because they are part

of the mobile OSs and often overlooked by app developers.

However, prolonged UI-APIs may cause more soft hangs than

hang bugs. For example, in a recent study that tries to tell

real hang bugs from prolonged UI-APIs [14], among the 114

investigated mobile apps that have soft hangs, only 34 are real

hang bugs that are not caused by UI-APIs (as shown in Table

5 and discussed in Section 4.2 of [14]). In other words, the

remaining 80 apps (i.e., 70.2%) have their soft hangs caused

by prolonged UI-APIs.

In this paper, to our best knowledge, we make the first

research effort to investigate such prolonged UI-APIs to find

1) what the most time-consuming part is in those UI-APIs,

and 2) how to accelerate it. Most of today’s mobile OSs

(e.g., Android, iOS) create all the UI views for their apps

programmatically with a hierarchical view layout file such as

XML. For example, the most commonly used view creation

function in Android is inflate, which involves several steps,

including 1) loading an XML file, 2) parsing this XML file,

3) creating UI view objects based on the parsed XML layout

and constructing the view hierarchy recursively, 4) rendering

the view objects on the display. Among those steps, the third

step, i.e., view object creation and hierarchy construction,

needs recursive computation to finalize the layout and so takes979-8-3315-4940-4/25/$31.00 ©2025 IEEE



about 60% of the API time (based on our measurements on

several mobile devices) and is currently the bottleneck of

most prolonged UI-APIs. Such a UI processing methodology

is common to most of today’s mobile OS, despite their

different terminologies. Although a mobile OS often has its

own cache system that can speed up the UI processing time

the second time when the user visits the same view, the poor

responsiveness of the first time, as a soft hang, could cause an

unpleasant experience and a bad impression to users.

A natural way to accelerate a UI-API, even on its first

invocation, is to pre-cache the required view hierarchy. When

a user enters a UI, they typically spend several seconds

to minutes browsing before clicking a UI component (e.g.,

button, link, drop box) to navigate to the next view. For

instance, a news app displays today’s breaking news on the

main page, and a user may browse before selecting a story

to read. Pre-caching can leverage this browsing time by pre-

executing the initial steps of the UI-API for likely next

views—excluding the final rendering step—and storing the

resulting view objects in a cache. When the user eventually

clicks, the view can be quickly rendered from the cache,

bypassing the time-consuming recursive layout computation

and improving responsiveness even for first-time visits.

However, pre-caching all potential next views is impractical

due to significant time, energy, and memory overheads. For

example, if pre-caching one link takes 200 ms, pre-caching

20 links would require 4 seconds—potentially exceeding the

user’s browsing time. Moreover, excessive background pre-

caching can accelerate battery drain and consume substantial

memory, possibly triggering the OS to kill other apps. Thus,

only a select subset of views should be pre-cached. To achieve

this, we observe that user behavior often follows predictable

patterns. For example, a user may check stocks, weather, and

traffic in the morning, order lunch during work hours, and chat

or stream movies in the evening. By exploiting such patterns,

the system can predict and pre-cache only the most likely

next views, reducing overhead while significantly improving

app responsiveness to avoid undesired soft hangs.

In this paper, we propose MAPP, a framework for Mobile

App Predictive Pre-caching. MAPP has two main modules,

1) UI view prediction based on deep learning and 2) UI-API

pre-caching, which coordinate to improve the responsiveness

of mobile apps. Given that many factors (or features) can affect

a user’s app usage pattern, such as the user’s location, time

of the day, or the sequence of views that the user has visited

previously in the same app, MAPP adopts a per-user and per-

app prediction model that is tailored based on the analysis of

collected personal data traces. There are two main challenges

in the design of predictive pre-caching: 1) the pattern of each

user may depend on different features, 2) the pattern can

change over time even for the same user. To address those,

we propose a dynamic feature ranking and model selection

process that judiciously filters out less relevant features to 1)

improve the rate of pre-caching the right views (i.e., cache

hit rate), and 2) reduce the computation overheads to achieve

the time constraint. Then, if any user pattern changes cause

the cache hit rate to drop below a desired threshold, MAPP

restarts the ranking process to flexibly adapt to the new user

app pattern.

Specifically, this paper makes the following contributions.

• While most existing research focuses on hang bug detec-

tion or resource management to improve the responsive-

ness of mobile apps, to our best knowledge, our work is

the first one to investigate prolonged UI-APIs and identify

the UI processing bottleneck in today’s mobile OSs.

• We present a detailed study with 20 apps to show why

UI-APIs can become soft hangs and how pre-caching can

help accelerate their processing.

• To avoid the potential high overheads of pre-caching

everything, we propose to predictively pre-cache just

selected views with the highest probabilities. A dynamic

feature ranking algorithm and a model selection process

are designed to improve the cache hit rate and reduce

prediction overheads.

• We evaluate MAPP with 61 real-world traces from 18

volunteers over a 30-day period to show that our solution

can shorten the response time of mobile apps by 59.84%

on average with an average cache hit rate of 92.55%.

The remainder of this paper is organized as follows. Section

II reviews the related work. Sections III, IV, and V present the

detailed designs of MAPP. Section VI evaluates MAPP with

real-world traces. Finally, Section VII concludes the paper.

II. RELATED WORK

Improving the responsiveness of mobile apps has been

studied extensively before [8], [10]–[18].

Existing research on mobile user behavior prediction mainly

predicts which apps will be launched next by the user [19]–

[24]. Deep learning-based models have also been adopted for

app launch prediction to pre-launch the predicted apps for

shorter latency [25]–[28]. Different from those studies, our

work is finer-grained and tries to predict which UI view the

user is going to visit next within the same app. Lee et al. have

proposed PathFinder [29], which predicts the next user click

within a mobile app, but user clicks do not always generate

new UI views. In contrast, we use a sequence of previously

visited views and other factors, e.g., location, time, and sensor

readings, to predict and pre-cache the next UI view based on

deep learning.

Content prefetching has been proposed to enhance mo-

bile app responsiveness by prefetching and caching selected

data in advance [4], [30]–[33]. However, existing studies on

prefetching mainly focus on downloading networking data

ahead of time, while our work is the first one to investigate

prolonged UI-APIs and pre-cache the time-consuming UI view

computation. Our work can be integrated with these content

prefetching techniques to provide a comprehensive solution

for improving app responsiveness.

A recent study called Floo [34] proposes to automatically

memorize (cache) app computations for faster app respon-

siveness. Our work is different because it focuses on UI-

APIs, which are part of a mobile OS, while Floo tries to



cache the computations of an app itself. More importantly, we

pre-cache the predicted UI views, while Floo is post-caching

(memorization), which leads to compulsory delay the first time

computation is executed.

III. OVERVIEW OF MAPP
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Fig. 1. High-level system architecture of MAPP, which includes three phases.
Phase I (red links) collects user data. Phase II (blue links) trains an initial DNN
model based on the collected data. Then, Phase II predicts which views to
be visited next based on the trained model and pre-caches those views. Phase
III (green links) performs dynamic feature importance ranking and model
selection to optimize system performance under time constraint.

MAPP enhances the responsiveness of mobile apps to user

actions by 1) predicting which UI views will be visited next

based on a per-app and per-user Deep Neural Network (DNN)

model, and 2) pre-caching the UI-APIs of the predicted views,

which allows to considerably reduce the user-perceived latency

upon cache hits, so that soft hangs can be avoided.

Figure 1 shows the high-level system architecture of MAPP,

which operates in three phases. During Phase I, MAPP uses

a data collector on the mobile device to gather user data,

including location, a sequence of previously visited views in

each app, time of the day, battery state of charge, and different

sensor readings. After enough data has been collected (e.g., a

few days), MAPP enters Phase II to send the collected data to

a cloud server for training an initial DNN prediction model.

The model is then uploaded to the mobile device for inference.

Then, based on the data collected in real-time, MAPP starts

predicting the Top-M views that are most likely to be visited

next. This prediction is then used to pre-cache the related UI-

APIs to reduce the UI response time. Phase III starts when

a sufficiently large amount of data has been accumulated. In

this phase, MAPP optimizes (on the server) the initial DNN

model to reduce overhead. In particular, it 1) ranks features

based on their impacts on the model accuracy, 2) trains various

models wwith different feature combinations, and 3) evaluates

their inference time to select the best model to redeploy on

the mobile device. At this point, MAPP keeps monitoring the

cache hit rate and triggers Phase III again if the rate falls

below a certain threshold, which allows the DNN model to be

re-trained based on the latest data collected.

In the following, we introduce the design and implementa-

tion of the prediction and pre-caching modules, respectively.

Fig. 2. An example sequence of visited UI views in the app Twitter.

IV. DESIGN OF MAPP’S VIEW PREDICTOR

We first introduce what user data is collected for model

training. We then discuss how to optimize the training predic-

tion model to reduce overheads.

A. User Data Collection and Model Training

MAPP utilizes two types of input features. The first type is

the sequential view controller usage history, which are consis-

tently included throughout the training period. The second type

is a group of contextual features, which can be personalized.

They are always included during the initial deployment’s

training phase. However, in subsequent deployments, these

personalized features are selectively incorporated based on

feature importance rankings and model selection.

Sequence of Previously Visited UI Views. MAPP employs

sequential view browsing history as a core component, captur-

ing the trace of previous user actions to understand and predict

future user visits. In Android, the activity class is usually

used as a view controller. An illustrative example is shown in

Figure 2, where activities from the app Twitter are represented

as nodes in a tree structure. By following the blue path, the

sequence of views (i.e., activities) is [1, 2, 3, 4]. Alternatively,

if we follow the red path, the sequence becomes [1, 6, 1, 2, 3,

4]. However, since the user returns to activity 1, the sequence is

effectively restarted from the second occurrence of 1, resulting

in the sequence [1, 2, 3, 4] once again.

Context Features. Following the sequential features, MAPP

incorporates a set of features that are useful in specific

scenarios. This includes sensor data from the accelerometer,

gyroscope, and magnetometer, which serve as key numerical

inputs in the model’s training dataset. These sensors provide

valuable insights into user movements, offering essential infor-

mation for predicting the next action for users of sport-related

and navigation-related apps.

Location may also be important to correlate the user actions

with the environment. For example, a user interacting with

Google Pay in a shopping area is more likely to trigger

payment-related views for making purchases. In contrast, when

the user is at other locations, such as at home or at work, these

payment views are less likely to be visited.

Other features included in the data collection are time of

day, battery level, signal strength, and duration of use. The

context provided by the time feature may be important because

user behavior patterns often vary significantly at different

times. For instance, in a stock trading app, the user behavior is

heavily influenced by the stock market’s opening and closing



times. During market hours, users are more likely to engage

in buying and selling views. Outside of these hours, users are

more likely to be reviewing charts or analyzing details rather

than initiating buy or sell actions. The battery level can also be

important because the user may prefer using app functions that

require less hardware resource utilization when battery levels

are low, thereby affecting app usage predictions. Similarly,

signal strength can impact the usability of network-dependent

functionalities of an app. The duration of previous app usage

sessions offers insights into user engagement levels, which

affect the likelihood of transitioning to other consequent views.

All the above features are collected by MAPP directly on

the user device until the dataset is large enough to initiate

model training in Phase II. However, it is important to note

that only a small set of features is collected at inference time

to reduce runtime overheads.

Model Training. The model architecture includes distinct

components for processing various types of input data. Se-

quential data is one-hot encoded, a method where categorical

values are represented as binary vectors, allowing neural

networks to interpret discrete inputs effectively. These encoded

sequences are then processed using a Gated Recurrent Unit

(GRU) [35]. Compared to Long Short-Term Memory (LSTM)

networks, GRUs perform better on low-complexity sequences

[36] and train faster [37]. Other contextual information, which

can be selectively excluded in our system, is handled by a

separate dense network layer employing a rectified linear unit

(ReLU) as an activation function to capture complex patterns

in the data. A dropout layer is included to prevent over-fitting.

Additionally, the dataset is imbalanced, meaning some target

classes appear more frequently than others. To address this,

we apply class weighting, which assigns higher weights to

underrepresented classes and lower weights to overrepresented

ones. This helps the model learn meaningful patterns from all

classes rather than being biased toward the majority classes.

B. Prediction Model Optimization

MAPP first analyzes the importance of features and then

balances the trade-off between model performance and esti-

mated end-to-end prediction latency to select an optimized

model for use at runtime.

Dynamic Feature Importance Ranking. Empirical observa-

tions indicate that different users exhibit varying usage behav-

ior patterns even within the same mobile app. Consequently,

indiscriminately utilizing all contextual features for every user

is not only redundant but also wastes computational resources

and degrades prediction performance. To dynamically assess

the importance of these features, we use a modified feature

permutation importance algorithm [38]. Instead of permuting

features individually, we analyze and group highly correlated

features using the pairwise correlation matrix after collecting

the data and sending it to the server. This collective permu-

tation during the feature exclusion process ensures that the

influence of correlated features is accurately assessed. We

quantify each feature group’s impact by comparing the base-

line accuracy, Accfull, obtained with the full feature set Ffull,

to the accuracy after excluding each group, Accpermute(gi):

Rank(gi) = Accfull(Ffull)− Accpermute(gi)

In our model, Ffull represents the complete set of features

used in Phase II to establish baseline performance. During the

optimization phase, we assess the impact of excluding each

feature group on the model’s performance by permuting them

one at a time. Groups whose removal results in less accuracy

degradation—indicating lower importance—are identified as

candidate groups gck . These groups are then considered for

exclusion in the final optimized feature set, which aims to re-

duce computational demand and enhance prediction accuracy.

Feature groups are categorized into:

• Proposed candidate groups {gck}, identified for their

minimal impact on model accuracy and considered for

exclusion.

• Retained feature groups Gr, which are essential for main-

taining model performance and thus are preserved in the

optimized model.

The retraining feature set is refined by retaining crucial

groups Gr and testing all combinations with subsets of the

proposed candidate groups gck :

Combinations tested = {Gr ∪ s : s ⊆ {gck}}

where s represents any subset of {gck}, including the empty

set. By selecting the top-2 less important feature groups, you

would only need to train 22 models instead of 2n, drastically

lowering the number of combinations to test and optimize

model performance efficiently.

Model Selection. After training a new set of models based

on the results from the previous feature importance ranking,

we proceed to evaluate their performance using test data

collected during Phase II. MAPP then applies an objective

function to select the final model, systematically integrating

multiple performance metrics. This objective function takes

into account both the F-measure and end-to-end inference

latency to provide a balanced evaluation of each model’s

configuration. The objective function is defined as follows:

Score(M) = F measure(M)− λ× Time(M)
where:

• F measure(M) is the F-measure of the model M , com-

puted as the harmonic mean of precision and recall for

each class:

F measure(M) =
1

C

C∑

i=1

2×
Precisioni × Recalli

Precisioni + Recalli

• Time(M) represents the end-to-end prediction latency

associated with model M ,

• λ are weighting factor that balance the trade-offs between

end-to-end prediction latency and accuracy.

Precision and Recall for each class i are defined as:

Precisioni =
TPi

TPi + FPi

, Recalli =
TPi

TPi + FNi

where TPi, FPi, and FNi represent the true positives, false
positives, and false negatives for class i, respectively. Models

are ranked based on their scores, and the model with the

highest score is selected for deployment.
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Fig. 3. The three-step process – Step 1: Identifying and grouping highly cor-
related features. Step 2: Computing feature importance involves systematically
excluding each feature group one by one, with the top two groups having the
lowest ranking scores identified as candidates. Step 3: Model selection, these
candidate groups are evaluated based on model performance and inference
overhead, leading to the selection of the optimal model for deployment. ”T”
represents the score reduction due to end-to-end prediction latency, and ”F”
represents F measure of the model.

For example, as shown in Figure 3, the first step is to group

highly correlated features, where the same shape represents

features belonging to the same group. After ranking feature

importance, we identify two groups of less important features

for each trace, which are represented by shapes colored in

blue. Consequently, we train separate models for each group

based on these findings. We evaluate the accuracy of each

model using data collected while also considering end-to-end

prediction latency, which can be profiled using pre-configured

models. After analyzing the end-to-end prediction latency

among the models, the predictor transmits these results to

the server for model selection. Ultimately, the model with the

highest overall score is selected. Generally, models using more

features experience a larger deduction in overall scores.

V. DESIGN AND IMPLEMENTATION OF PRE-CACHING

We now introduce the design of the view cache used for

pre-caching and its cache replacement rules. We then discuss

how to implement pre-caching in Android as an example.

A. View Cache and Hybrid Cache Replacement

In Phase II of the overall architecture in Section III, when

the user visits a new UI view in an app, the prediction module

identifies Top-M UI views with the highest probabilities. Then,

the pre-caching module starts processing the corresponding

UI-APIs for those M predicted views. We pre-cache M views

mainly to reduce the caching overheads, in terms of time,

energy consumption, and memory space. Once the views are

processed, they are placed into a customized view cache, ready

for rendering onto the display. If the user indeed visits one of

the pre-cached views later, the processed view will be loaded

from the cache for rendering, which can bypass the time-

consuming view object creation and so significantly reduce

the user-perceived latency.

The size of the view cache is limited, so it is designed

to be managed with the Least Recently Used (LRU) policy.

Specifically, MAPP features a hybrid cache replacement rule

that can be triggered by either 1) pre-caching with Top-M

predicted views, or 2) post-caching with the actually visited

view if it is not already one of the predicted M views. The

post-caching rule is used to handle any unexpected user pattern

variations. In particular, if MAPP detects that the cache hit rate

stays below some threshold, it assumes that the user pattern has

significantly changed. Thus, it stops pre-caching and performs

only the LRU-based post-caching to promptly handle such

sudden changes, before the prediction model can be re-trained

and optimized on the cloud server.

The implementation of pre-caching in a mobile OS should

be transparent to app developers. In other words, app devel-

opers should not need to do anything different for their apps

to have MAPP shorten their UI response times. To this end,

pre-caching can be implemented in two ways. The first way

is to integrate MAPP as part of the mobile OS. For example,

the Android framework currently has a low-level cache for

holding XML blocks, to aid in the process of parsing XML

files. The view cache in MAPP could be implemented in a

similar manner for the best efficiency. The pre-caching module

can be implemented as an OS service because all the user

interactions are handled by the OS. In this way, all the UI-

APIs can be easily modified to load the cached view first. The

second way is to implement MAPP as a middleware service

to run as separate threads in the background that monitor the

user activities. It is more challenging to provide transparency

for app developers in this way because the current UI-APIs are

not designed to load cached views. However, it is still doable

by modifying the parent classes that every view class has to

inherit from, or by developing a tool that can automatically

replace the related operations in UI-APIs in the app bytecode

with the modified ones that load cached views instead. In the

following, we use Android as an example OS to discuss how

to prototype MAPP.

B. Implementation of Pre-Caching in Android

Most of today’s apps in Android use the inflate UI-API to

create UI views because it has been the primary method for

view creation for over a decade. So, we use it to show how

MAPP can be implemented in Android in the following, but

our solution can be adapted for other view creation processes

such as Jetpack Compose.

To implement MAPP’s pre-caching module, we have created

a background service app with a pre-caching class and a

ViewCache class. When a UI view prediction is made, this

service app executes the view creation process while the CPU

is idle, in order to have it ready for rendering when the view is

requested later. The ViewCache class has a Map data structure

and four methods. A Map is essentially a set of objects, with

a second data type used as a descriptor, typically referred

to as a key. The Map in the ViewCache holds view objects

with their keys being strings holding the class path for the

view (i.e., activity), to which the view object belongs. The



ViewCache methods are to provide ways to add to the cache,

take from the cache, check if the cache is empty, and check

if the cache contains a specific view already. Below is the

simplified pseudo-code that inflates and caches a target view.

1: function PRE-CACHE

2: inflater ← getLayoutInflater()

3: view ← inflater.inflate(R.layout.predicted layout, null)
4: ViewCache.add(view)
5: end function

As discussed before, for an app to utilize the ViewCache

created by MAPP, the onCreate function of the app’s activity

class needs to be replaced with one that loads from the cache

first. This can be done either by modifying the onCreate func-

tion of the parent class (which is part of the Android source

code), or by replacing the function in the app’s bytecode. After

the modification or replacement, when an activity is initiated,

the system first checks if the corresponding UI view is already

cached. If so, and if the predicted activity class matches the

current activity, the system bypasses the time-consuming view

inflation process, directly setting the activity content to the pre-

cached view. Below is the simplified pseudo-code that checks

the ViewCache and renders the view if it is in the cache.

1: function ONCREATE

2: view ← ViewCache.get(localClassName)
3: if view ̸= null then

4: setContentView(view)
5: else

6: inflater ← getLayoutInflater()

7: view ← inflater.inflate(R.layout.layout dummy, null)
8: setContentView(view)
9: end if

10: end function

There can be some other types of view in Android. For

example, some Android apps have fragment view binding,

which is a view object that has a separate reference for each

view object within its hierarchy, allowing for direct access to

a view’s elements. The creation of view bindings is the same

as views, with just one extra step to generate a Java class for

the binding, which is automatically done by Android as view

binding is enabled. The process for pre-caching view bindings

is almost the same as for typical activity views because it just

requires any references to the view object to be changed to

the specific type of view binding object for that activity.

To demonstrate the feasibility of implementing MAPP in

real Android apps, we have successfully applied the above

method to 34 apps to improve their UI response time. Section

VI-C presents the related results and discussion.

VI. EVALUATION

In this section, we evaluate the performance of our MAPP

framework. First, we present the experimental setup, then we

evaluate the performance of MAPP’s view/activity prediction,

and finally, we examine the response time reduction achieved

in several real-world apps through pre-caching.

A. Experimental Setup

Mobile Phones. For our pre-caching experiments, we use a

Google Pixel 8 and a Samsung Galaxy A11 to test devices

with different hardware configurations.
TABLE I

EXAMPLES OF APP USAGE DATA

Activity Time Location ... Battery Signal Duration
Name Level Strength (ms)
Main 161553 39, -82 . . . 88 1 1133
Search 161600 39, -82 . . . 88 1 7161
Profile 161618 39, -82 . . . 87 1 17821
Gallery 161622 39, -82 . . . 87 1 3814

Interaction Traces. We have collected over 61 usage traces

from 18 different volunteers to evaluate the performance of

the proposed MAPP framework. Table I presents a trun-

cated example of raw user activity records which include

the sequence of activities performed by the user (Activity),

the timestamp of each recorded activity, the geographical

coordinates representing the user’s approximate location, the

device’s battery level at the time of the activity, the signal

strength of the connected network, and the duration of the

previous activity. To better understand the dataset and the

complexity of user interactions, we analyze metrics such as

maximum activity depth and maximum degree distribution.

For example, consider a user’s interaction pattern with an

app like Twitter, as depicted in Figure 4. Here, the maximum

activity depth is 4, corresponding to the longest sequence path

[1, 2, 3, 4] highlighted by a blue double arrow in the figure.

The highest degree, indicated by a red dashed line, is observed

in the main activity (Activity 1), which connects to three child

activities (Activities 2, 5, and 6).

Fig. 4. Activity structure of a sample application with a maximum activity
depth of 4 and maximum degree of 3.

Data Privacy. To protect user privacy, all collected data is

anonymized, and any identity-related information is securely

hashed. All experimental data is stored locally on our lab

systems and is accessible only for research purposes. We

acknowledge that data privacy remains an important aspect for

future work. Various existing approaches, such as federated

learning-based methods [39], could be applied to further

enhance data protection and prevent data leakage.

Parameter Settings. Our analysis result shows that approx-

imately 50% of traces have a maximum depth of four or

greater. This suggests that users frequently engage in complex

sequences of actions that span multiple levels within an app.

Such depth indicates that user interactions can often be branch-

ing instead of being just linear, which means simple caching

strategies may not work well because they typically manage

only the most immediate data needs. In scenarios where

user interactions create long, multi-step sequences without



repetition, simple caching may also fail to pre-cache relevant

UI APIs effectively, leading to increased load times and a

degraded user experience. Hence, we have set the length of

the sequential activity features for training models to 4.

We have also analyzed the distribution of the maximum

degree across all traces. For certain apps, the main activity’s

degree can exceed 20, indicating high connectivity among

nodes. This suggests that a greedy method, such as caching all

child activities connected to the current activity, is inefficient,

particularly on mobile devices with limited memory. Notably,

the median maximum degree among traces is 6. Therefore, in

MAPP’s pre-caching module, we have set the cache size to

store view objects for only six activities.

Finally, we determine the number of top-M activities by

considering both the MAPP processing latency and the min-

imum user interaction interval. Our data reveals a minimum

user interaction interval of 1.12 seconds, establishing a hard

constraint: the total latency—from receiving prediction results

to completing precaching—must not exceed this threshold. On

our test devices, the precaching process alone requires 353

milliseconds per view on average. For maximum prediction ac-

curacy, this latency budget allows MAPP to precache 3 views

(3 × 353ms ≈ 1,059ms) within the 1.12-second window.

Thus, we select top-3 predictions and pre-cache these 3 views

for our tested environment. Additional time is required for

the prediction process itself, which can be further controlled

and optimized by adjusting the parameter (λ) during model

selection. This ensures that the overall latency remains under

the user interaction interval constraint.

B. Performance of UI View/Activity Prediction

We assess the performance of MAPP’s view prediction by

testing heuristics for phase transitioning, evaluating the model

optimization, and comparing MAPP with various baselines.

Phase Transitioning. The proposed MAPP framework transi-

tions through three phases at runtime: Phase I—data collection,

Phase II—initial training, and Phase III—optimization. First,

we analyze the trade-off between improved responsiveness and

the volume of user data collected. By comparing performance

across one-week, four-day, and one-day data periods, we

observe that certain apps achieve higher prediction accuracy

with less data. This occurs because their usage patterns

(e.g., weather forecast apps) exhibit minimal correlation with

specific days of the week. However, the overall prediction

accuracy using one week (7 days) of data outperforms shorter

periods, as shown in Figure 5(a).

Next, we evaluate two heuristics for phase transitions from

data collection to training: time-based and sequence-based.

For the first method, one week represents the best cycle

period for typical users, based on previous results. For the

second method, we use Permutation Entropy [40] to focus

on fluctuations of the collected view sequence, which means

that each phase ends only when the entropy of the collected

sequence has stabilized.

Figure 5(b) shows the top-3 prediction accuracy of MAPP

using these two methods. While using quantified sequential
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Fig. 5. Effect of phase transitioning. (a) Comparison of Top-3 prediction
accuracy comparison: one-week data (88.7%), four-day data (86.35%), and
one-day data (75.80%). (b) Comparison of Top-3 prediction accuracy using
one-week data collection (88.7%) versus using permutation entropy as an
indicator (71.89%).

feature complexity as the indicator for ending data collection

can yield satisfactory results on certain traces, particularly in

applications not heavily influenced by contextual information,

a fixed one-week data collection period generally performs

better. This indicates that contextual information plays a

crucial role in prediction accuracy. As a result, for all the

remaining tests we use the time-based method to transition

across phases with a one-week period for data collection.
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Fig. 6. End-to-end latency of the Predictor (including sensor reading, pre-
processing, and inference time) as a function of the number of features used.

End-to-end MAPP Prediction Latency. MAPP first bench-

marks the device’s performance before proceeding with model

selection. To achieve this, pre-configured models with different

feature sets are tested to obtain performance metrics. Figure

6 illustrates the average end-to-end prediction latency on our

devices using various model sizes, each differing in the number

of features used. Additionally, we analyze the latency of each

prediction step, including sensor reading, preprocessing, and

inference time. Sensor reading and preprocessing time can

be significantly reduced by using fewer features, the average

sensor reading from 24 to 7 ms, and average preprocessing

from 15 to 3 ms. We observe that end-to-end latency ranges

from 41.5 ms when 1 feature is used to 74 ms when all 9

features are used. Meanwhile, reducing the number of features

decreases the model size from 17 KB to 16.6 KB, providing

a minor benefit in terms of bandwidth and storage.

Optimization vs Prediction Accuracy. On our test devices,

we aim to precache up to three views, each taking an average

of 353 ms. To ensure all three tasks complete within the total

latency budget of 1.12 s (i.e., 1120 ms), the time allocated for

end-to-end prediction must not exceed 1120−3×353 = 61ms.
Accordingly, we test different λ values on the server side to

determine the number of features used by the final model,

allowing us to estimate the prediction latency and ensure it

meets the time constraint. As shown in Figure 7(a), increasing

λ reduces the average end-to-end prediction latency but also
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Fig. 7. Effect of Optimization. (a) Optimization results using different
lambda. (b) The feature ranking and model selection algorithm of MAPP
improves the top-3 prediction accuracy from 82.61% to 88.7%, in addition
to reducing the computation overheads.

lowers the model’s top-3 accuracy. At λ = 0.004, the models

on average use approximately five features. Based on perfor-

mance results from our pre-configured models, the estimated

prediction latency remains below 60ms, satisfying the latency

requirement while maximizing accuracy.

Finally, we evaluate the effect of MAPP’s Phase III model

optimization on prediction accuracy. After identifying the three

least important feature groups, we test all candidate models

and select the one that achieves the highest model score. As

shown in Figure 7(b), we compare MAPP’s top-3 accuracy

with and without optimization, as well as the number of

features used by the optimized model. The results indicate that

the proposed dynamic feature importance ranking and model

selection algorithm efficiently excludes less important features.

On average, fewer than 5 features are selected in each case,

thereby improving prediction accuracy and reducing latency.
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Fig. 8. Cache hit rate of our method MAPP against baselines. (a) The
significantly higher cache hit rate performance of our method highlights the
advantage of our predictive pre-caching strategy. (b) The proposed feature
selection and hybrid cache logic also lead to performance improvements.

Cache Hit Rate. We use the collected traces to evaluate

the cache hit rate of MAPP against two caching strategies:

LRU and a graph-based method inspired by Floo. LRU is a

traditional post-caching strategy that stores previously visited

views without any optimization. The graph-based method,

following the strategy of Floo [34], constructs a graph of

activities based on usage patterns and performs pre-caching

by memorizing the most frequently accessed views, without

considering contextual information. For a fair comparison, the

pre-cache module is cleared from the main memory of the

mobile devices before each evaluation to ensure a cold cache.

Figure 8(a) shows that MAPP achieves a 92.55% cache

hit rate on average across traces, significantly outperforming

LRU and the graph-based method, which result in 58.95% and

76.55% average hit rates, respectively. Unlike LRU, which re-

lies solely on recency, and the graph-based method, which pre-

caches based on frequency without contextual understanding,

MAPP leverages predictive pre-caching, hybrid cache replace-

ment, and model optimization. These enhancements enable

MAPP to achieve approximately 34% and 16% higher cache

hit rates than LRU and the graph-based method, respectively.

We now evaluate the contribution of each component used

in MAPP. Figure 8(b) illustrates the performance impact of se-

lectively enabling different components of the MAPP system.

Pred+LRU* utilizes the MAPP predictor along with its hybrid

cache replacement policy but excludes feature optimization.

Pred+LRU employs only the predictor, without hybrid cache

replacement or feature optimization. On average, MAPP has a

92.55% cache hit rate, compared to the 91.87% of Pred+LRU*

and the 89.51% of Pred+LRU. While this improvement may

seem small, it is worth noticing that MAPP consistently

shows a high cache hit rate across the traces, while the two

baselines show higher variability in performance, despite their

occasional better hit rates than MAPP (e.g., Trace 4). For

example, for Trace 11, MAPP, and Pred+LRU* achieve a

similar 83.34% cache hit rate, while Pred+LRU has a 0% hit

rate. This highlights the importance of MAPP’s hybrid cache

replacement rule. As another example, in Trace 5, MAPP

achieves a 77.78% hit rate, while Pred+LRU* has a lower

48.15% hit rate, which highlights the importance of feature

optimization to improve the hit rate.
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Fig. 9. The trend of cache hit rate versus Permutation Entropy.

Detailed Analysis of Cache Hit Rate. To understand fac-

tors affecting MAPP’s performance, we analyze the correlation

between permutation entropy and cache hit rates. We compute

permutation entropy [40] using subsequences of length 8 with

an interval of 1, applying a variant that directly handles cate-

gorical values. As shown in Figure 9, the red regression line

suggests that traces with higher entropy generally exhibit lower

cache hit rates, highlighting the difficulty of maintaining cache

efficiency under complex interaction patterns. For example,

traces with entropy between 1 and 4 achieve near 100% hit

rates, whereas those with entropy between 5 and 9 show

more variability (75%–100%). Although these hit rates are still

relatively high, the results indicate the need for research on

how to distill useful information from sequential interactions

and further improve the prediction.

C. Responsiveness Improvement by Pre-Caching

Latency Reduction. Here we examine the latency of 24

real open-source mobile apps with and without MAPP’s pre-

caching module using two devices, the Google Pixel 8 and

the Samsung Galaxy A11. Table II presents the results; due

to space constraints, detailed analysis is shown for only 14

applications. The before and after columns refer to the latency

of the onCreate method (which is the starting point of any

activity in Android) before and after using MAPP. Across the

14 selected apps, the Google Pixel 8 and Samsung Galaxy

A11 show average latency reductions of 59.57% and 64.53%,



TABLE II
THE UI RESPONSE TIMES OF 20 APPS BEFORE AND AFTER PRE-CACHING ON TWO MOBILE DEVICES.

App Name Downloads
Google Pixel 8 Samsung Galaxy A11

Before (µs) After (µs) Improvement Before (µs) After (µs) Improvement

Wikipedia 50M+ 46132 30676 33.50% 587626 314932 46.41%

WifiAnalyzer 10M+ 64282 10436 83.77% 340997 30045 91.19%

Loop Habit Tracker 5M+ 32035 11114 65.31% 228569 92896 59.36%

Infinity for Reddit 500k+ 70087 50472 27.99% 197309 148984 24.49%

Noice 100k+ 180650 17236 90.46% 1263607 95527 92.44%

NextPlayer 50k+ 121806 65670 46.09% 1580223 299990 81.02%

Privacy Friendly Notes 10k+ 16151 9203 43.02% 212321 102626 51.66%

Transportr 10k+ 91730 50114 45.37% 180113 91730 49.07%

Fossify Music Player 5k+ 28291 7005 75.24% 326431 98849 69.72%

SimpMusic 1740* 1547130 127463 91.76% 3897362 638771 83.61%

Fossify Notes 1k+ 49646 10704 78.44% 718165 88871 87.63%

AudioAnchor 217* 47667 29974 37.12% 241972 187205 22.63%

Stealth for Reddit 110* 28502 7960 72.07% 244746 19966 91.84%

Brainf 100+ 45027 25277 43.86% 577983 274984 52.42%

Average 169224 32379 59.57% 756959 177527 64.53%

* In addition to these 14 example apps, we have tested 10 more apps (downloads), including AntennaPod (1M+), Cloudstream (7k+*), Kotatsu (4.5k+*),

Doodle (100k+), Omweather (332*), Markor (100k+), NewPipe (31k+*), Odyssey (235*), PocketPlan (1k+), and LibreTube (8.9k+*). The average

improvement for all 24 apps is 56.54% on Google Pixel 8 and 63.13% on Samsung Galaxy A11, with an overall average improvement of 59.84%.

respectively. Notably, on the Samsung Galaxy A11, all apps

initially exceed the 100ms human-perceivable delay [9], but

MAPP’s pre-caching brings 7 of them below that threshold.

Detailed Latency Study. As Table II shows, some apps

benefit more from pre-caching than others. The aspects of

an application that will yield beneficial results are deep view

hierarchies or complex view objects. NextPlayer for example,

a media player application, has the third highest latency (∼122

ms on Pixel 8, 1,580 ms on the Galaxy A11) in the table. This

high latency is due to the inclusion of a complex view object

for displaying video media. SimpMusic, a music player app,

has the highest latency overall (∼1,547 ms on Pixel 8, 3,900

ms on Galaxy A11) due to its extremely deep view hierarchy in

the settings activity. The XML file for the corresponding view

is nearly 1500 lines long. Comparatively, the XML layout of

Noice is under 400 lines, which is still long compared to the

other applications in the table. Performance of pre-caching is

also affected by how developer implements their code. Brainf,

a learning app, for the Samsung Galaxy A11, it starts with

an execution time of 578 ms, which gets reduced to 275

ms after pre-caching. The residual latency stems from non-

layout-related operations in onCreate(), such as initializing a

Markdown interpreter, which pre-caching cannot optimize.

Inflate

Inflate

Fig. 10. Execution time breakdown for the onCreate method in two different
cases. The first case is for the account fragment in the Noice application. The
second is for the search fragment in the AntennaPod application.

To gain insights into how much time view creation within

the UI-APIs contributes to latency, we have analyzed the

breakdown of the onCreate methods across various apps. Fig-

ure 10 shows the latency characteristics of two representative

apps, Noice and AntennaPod, on Pixel 8. Specifically, the

figure breaks down the latency, which includes the creation

of six different views using the inflate UI-API (SwipeRe-

freshLayout, NestedScrollView, LinearLayout, RelativeLay-

out, AppBarLayout, and MaterialToolBar). Additional setup

methods are involved, which are listed as ”onViewCreated” in

the figure, which is the name of the method where these are

usually found in the case of view fragments. Noice contains

a small series of views that each hold several smaller view

objects such as buttons or text-boxes, and their repetitive

creation takes up the majority of the total latency. With

MAPP’s pre-caching, this latency, along with the other view

objects, is reduced below 20ms. AntennaPod, on the other

hand, does not have such complex view objects and shows a

lower latency of ∼79ms. In this case, pre-caching is able to

drop ∼50ms from the total latency.

D. Overall Improvement by MAPP
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Fig. 11. Overall responsiveness improvement observed after integrating the
pre-caching module and online prediction module with 14 open-source apps.

We evaluate the overall improvement of MAPP by in-

tegrating it with 14 open-source apps listed in Table II.

Since each interaction with MAPP can either successfully

predict and pre-cache or fail, we calculate the overall response

time as (1 − c) × response time before pre-caching + c ×



response time after pre-caching, where c represents the cache

hit rate. As illustrated in Figure 11, the average overall

improvements are 53% for the Google Pixel 8 and 57% for

the Samsung Galaxy A11. These results suggest that MAPP

can be more beneficial for less powerful devices.

E. MAPP Overhead

We systematically evaluate the overhead of MAPP in terms

of power consumption and memory utilization. Power mea-

surements are conducted using AccuBattery [41], a validated

tool for fine-grained energy profiling in mobile systems [25].

On average, MAPP consumes 34 mW, increasing total device

power consumption by 3.27%. Additionally, MAPP raises

memory utilization by an average of 2.64% (less than 100

MB) on test devices.

VII. CONCLUSION

In this paper, we have presented MAPP, a framework for

Mobile App Predictive Pre-caching. MAPP has two main

modules, UI view predictor based on deep learning and UI-

API pre-caching, which coordinate to improve the respon-

siveness of mobile apps. MAPP adopts a per-user and per-

app prediction model that is tailored based on the analysis of

collected user traces, such as location, time, or the sequence of

previously visited views. A dynamic feature ranking algorithm

is designed to judiciously filter out less relevant features

to improve the prediction accuracy with less computation

overhead. MAPP is evaluated with 61 real-world traces from

18 volunteers over a 30-day period to show that it can shorten

the response time of mobile apps by 59.84% on average with

an average cache hit rate of 92.55%.
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