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ON THE EMERGENCE OF ALMOST-HONEYCOMB STRUCTURES IN

LOW-ENERGY PLANAR CLUSTERS

M. CAROCCIA, K. DEMASON, AND F. MAGGI

Abstract. Several commonly observed physical and biological systems are arranged in
shapes that closely resemble an honeycomb cluster, that is, a tessellation of the plane
by regular hexagons. Although these shapes are not always the direct product of energy
minimization, they can still be understood, at least phenomenologically, as low-energy
configurations. In this paper, explicit quantitative estimates on the geometry of such
low-energy configurations are provided, showing in particular that the vast majority of
the chambers must be generalized polygons with six edges, and be closely resembling
regular hexagons. Part of our arguments is a detailed revision of the estimates behind
the global isoperimetric principle for honeycomb clusters due to Hales [Hal01].
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1. Introduction

1.1. Overview. Honeycomb-like structures are commonly observed in physical and bio-
logical systems. While in some cases (e.g., in foams) their emergence is consequence of an
energy minimization property, in many other systems, like those resulting from geological
mechanisms (e.g., basalt columns), animal behavior (e.g., beehives) or animal morphology
(e.g., compound eyes of arthropods), what is observed results from complex processes lead-
ing to the formation of low-energy (rather than energy minimizing) configurations. This
fact provides the motivation to extend and adapt Hales’ isoperimetric theorem [Hal01],
which characterizes honeycomb clusters (i.e., tessellations of the plane by unit-area,
regular hexagons) as the only energy minimizing configurations under periodic boundary

conditions, to the case of low-energy configurations (and without the periodicity restric-
tion). In this paper, partly by a comprehensive review of Hales’ methods, we undertake
the analysis of such low-energy configurations. In rough terms, our main result (Theorem
1.2 below) states that every low-energy planar cluster with N -many unit-area, simply con-

nected chambers must be close, in a quantitative way as N ³ >, to an ideal honeycomb,

with a controlled number of defects and with a vast preponderance of almost-hexagonal cells;
and this, without said cluster being required to possess any energy minimizing property.

1.2. Isoperimetric clusters and Hales’ theorem. We frame our work in the setting
of Almgren’s theory of isoperimetric clusters [Alm76] as presented in [Mag12, Part IV].
Since we only consider planar clusters, we do not need to work with Borel sets and sets of
finite perimeter, and work directly with open sets with Lipschitz boundary E ¢ R

2. We
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denote by |E| the area (Lebesgue measure) of any such E, and by P (E) = H1("E) its
perimeter (one-dimensional Hausdorff measure of its topological boundary).

Given N * N, N g 2, a planar N-cluster is a family E = {E(h)}Nh=1 of mutually
disjoint, non-empty open sets E(h) ¢ R

2 (the chambers of E) with finite area and
Lipschitz regular boundary. The area and perimeter of an N -cluster E are then

|E| = (|E(1)|, ..., |E(N)|) * R
N , P (E) = 1

2

N
∑

h=0

P (E(h)) = H1("E) ,

where E(0) = R
2 \

⋃N
h=1 E(h) denotes the exterior chamber of E (so that |E(0)| = +>),

and where "E =
⋃N

h=1 "E(h) is the boundary of E . We say that E is an isoperimetric
cluster if

P (E) f P (F) , for all clusters F with |F| = |E| ;
and a unit-area isoperimetric cluster if, in addition, |E(h)| = 1 for all h = 1, ..., N .

Notice that the chambers of an N -cluster are not assumed to be connected. A disjoint
family of N 2-many open, connected subsets of R2 with Lipschitz boundaries could thus be
regarded (in more than one way) as an N -cluster for different values of N f N 2. From a
conceptual viewpoint, this is clearly a somehow flawed feature of the notion of N -cluster
used here. However, this feature is also crucially important for proving Almgren’s existence
theorem [Alm76] for isoperimetric clusters: for every v * R

N with positive coordinates,

there exist isoperimetric N -clusters E with |E| = v; see [Mag12, Chapter 29].

This said, we have the following natural connectedness conjecture about isoperimet-
ric clusters:

isoperimetric clusters have simply connected chambers. (CC)

This conjecture is widely open. Its validity has been confirmed in the few cases (N = 2
[FAB+93], N = 3 [Wic04], and N = 4 with equal areas [PT18, PT20]) where a complete
classification of isoperimetric clusters is known. One does not expect to carry this approach
much further, as obtaining characterizations of isoperimetric clusters with arbitrary values
of N and v seems out of question. The two basic facts about isoperimetric clusters that are
known for every N and v are the validity of Plateau laws (boundaries of isoperimetric
clusters consist of finitely many circular arcs/segments meeting in threes at 120-degrees;
see, e.g. [Mag12, Theorem 30.7]), and the local finiteness and constancy in v of the possible
diffeomorphic types of "E ; see [CLM16, Theorem 1.9].

In his celebrated paper [Hal01], Hales presents an argument that serves to prove two
isoperimetric principles concerning “honeycombs”. The first one states that, if a, b > 0
are such that the flat torus R2[a, b] of width a and height b admits a tiling H by N unit-
area, regular hexagons, then H is the unique unit-area isoperimetric N -cluster (modulo
translations); see [CM16] for a quantitative analysis of this isoperimetric principle. The
second one states that if E is a unit-area isoperimetric N -cluster in R

2, then1

Ë(N) > (12)1/4N , "N g 2 , (1.1)

where we have set

Ë(N) = P (EN ) ,

(EN a generic unit-area isoperimetric N -cluster) .

1By a slight refinement of Hales’ argument, (1.1) can actually be improved to ψ(N) ≥ (12)1/4N+K0

√
N

withK0 =
√
π− 4

√
3/

√
2 ≈ 0.84. Such refinement simply consists in applying “Dido’s inequality” to quantify

the size of some non-negative terms that were just discarded in Hales’ original presentation; see the proof
of [HM04, Theorem 2.1].
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Figure 1.1. The idea behind the low-energy condition (1.3) is that it identifies

unit-area N -clusters whose “internal perimeter” is comparable to that of an
:
N×:

N -chunk of ideal honeycomb, and whose “external perimeter” is comparable

to
:
N (i.e., the square root of the area of the bulk of the cluster). Unit-area

locally minimizing clusters may fail to satisfy this condition. For example, the

N -cluster depicted here satisfies, for some r0 > 0, the local isoperimetric property

P (E) f P (F) for everyF with |F| = |E| with diam(F(h)∆E(h)) f r0, h = 1, ..., N ;

but it does not satisfy (1.3) – as it can be seen, for example, by looking at its

external perimeter, which is O(N), compare with (1.13) in Theorem 1.2.

The energy bound (1.1) is the only evidence towards a second fascinating, challenging,
and largely unexplored honeycomb conjecture:

unit-area isoperimetric N -clusters with N large

should locally coincide with honeycombs .
(HC)

To understand the connection between (1.1) and the honeycomb geometry, we notice that,
starting from a unit-area regular hexagon H, one can add a first complete layer of unit-area
regular hexagons around H (which, when complete, results in a cluster of N = 7 unit-area
regular hexagons), then a second complete layer (which, when complete, results in a cluster
of N = 19 unit-area regular hexagons), and so on. For every N g 2 one can smooth out
the exterior edges of such clusters into circular arcs. The resulting construction, detailed
in [HM04, Theorem 2.1], gives

Ë(N) f (12)1/4N +M0

:
N + 3 , "N g 2 , (1.2)

(where M0 = Ã/A
1/2
0 j 1.95 and A0 = 3

:
3/2 is the area of a regular hexagon of unit side

length). The upper bound (1.2) on Ë(N) implies the sharpness of (1.1), and clarifies its
connection with the honeycomb geometry.

1.3. Low-energy clusters and main result. Motivated by (1.2), we say that a planar,
unit-area N -cluster E is a low-energy cluster with exterior energy density M , if

P (E) f (12)1/4N +M
:
N . (1.3)

This condition amounts in asking that that the “bulk” of the cluster E , that is, the set
E = R

2 \ E(0), has perimeter P (E) = O(
√

|E|), while the “internal perimeter” of E , that
is, the length of "E due to interfaces "E(h)+ "E(k) with h 6= k, h, k 6= 0, is approximately

that of an
:
N ×

:
N -chunk of the ideal honeycomb H.

By (1.2), unit-area isoperimetric clusters satisfy (1.3). At the same time, (1.3) rules out
many N -clusters that are only locally, but not globally, isoperimetric, and that may fail
to look like honeycombs; see Figure 1.1.

In summary, (1.3) identifies a large class of N -clusters which, although not possessing
any isoperimetric property, may still be expected, for N large, to be close to honeycombs.
Our main result confirms this expectation in a class C(N,M) of planar unit-area N -clusters
that contains every unit-area isoperimetric N -cluster with simply connected chambers (i.e,
every unit-area isoperimetric cluster, should conjecture (CC) hold true); see Remark 1.1
below.
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We say that a unit-area N -cluster E in R
2 belongs to C(N,M) if:

(C1) each E(h) has finitely many connected components {Eh
j }Nh

j=1, called cells (of E(h)
or of E , depending on the context); each cell of E is simply connected;

(C2) the boundary of each cell Eh
j consists of finitely many bounded Lipschitz injective

curves, called edges (of Eh
j or of E , depending on the context); endpoints of edges

are called vertexes;
(C3) each vertex is the endpoint of exactly three edges, and each cell has at least two

edges;
(C4) the boundary "E of E is connected and satisfies (1.3), that is

P (E) f (12)1/4N +M
:
N ;

(C5) denoting by khj = khj (E) the number of edges of the cell Eh
j of E , we require that

|Eh
j | g

1

100
, if 2 f khj f 6 . (1.4)

Remark 1.1 (The class C(N,M) and isoperimetric clusters). If E is a unit-area N -
isoperimetric cluster, then: (i) each chamber of E has finitely many connected components,
so that the first part of (C1) holds true; (ii) each cell of E is bounded by finitely many
circular arcs/segments, therefore (C2) holds true; (iii) the validity of (C3) is a simple con-
sequence of the Plateau laws; (iv) a sliding argument shows that "E is connected, so that
E satisfies (C4) thanks to (1.2). As a consequence, if each chamber E(h) of E has just one
single (simply connected) component Eh

1 , then (C1) and (C5) hold true (with |Eh
1 | = 1),

and E * C(N,M) for some M . In summary, every unit-area N -isoperimetric cluster with

simply connected chambers is an element of C(N,M) for some M .

As a last step towards the statement of our main result we introduce the following
notation. For E * C(N,M) we introduce the family Hex(E) of those (indexes of) chambers
of E that are connected and have six edges,

Hex(E) :=
{

h : Nh = 1 , kh1 = 6
}

, (1.5)

and, for each k g 2, the family Chk(E) of those (indexes of) chambers of E having at
least one cell with k-sides

Chk(E) :=
{

h : # j * {1, ..., Nh} s.t. khj = k
}

. (1.6)

We also define the exterior perimeter of E by setting

Pext(E) := P (E0
1) , (1.7)

where, we recall, E0
1 is the unique connected component of the exterior chamber E(0) with

infinite area; the number of exterior edges of E is defined by setting

edgeext(E) := k01 ; (1.8)

and the interior void of E as

Evoid := E(0) \ E0
1 . (1.9)

(Notice that this set must have finite area). Finally, we denote by

d hex(E) = inf
{

|E∆(x+ rei »[H])| : x * R
2, » * [0, 2Ã], r2 = |E|

}

, (1.10)

the distance in area of E ¢ R
2 from a regular hexagon with area |E| (here H denotes a

reference unit-area regular hexagon and ei» the angle » counter-clockwise rotation of R2

around the origin). With this terminology in place, we state our main theorem.
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Theorem 1.2 (Honeycomb-like structure of low-energy clusters). There exists a com-

putable constant C0 with the following property. If N g 2 and E * C(N,M), then

#Hex(E) g N 2 C0M
:
N , (1.11)

with

1

#Hex(E)
∑

h*Hex(E)

d hex(E(h))2 f C0M:
N

, (1.12)

and

Pext(E) f C0M
:
N , (1.13)

edgeext(E) f C0M
:
N , (1.14)

|Evoid| f C0M
:
N , (1.15)

#Chk(E) f C0M

|k 2 6|
:
N . (1.16)

Finally, there is at least one k f 5 such that Chk(E) 6= ∅.

Remark 1.3. Conclusions (1.11) and (1.12) state that the the vast majority of the cham-
bers of E are (simply) connected, posses six curvilinear edges, and are close to be regular
hexagons. Conclusion (1.13) implies that only a very small fraction of the total cluster
perimeter P (E) = O(N) is used to compound the bulk of the chambers of E . Given con-
clusion (1.13), conclusion (1.14) indicates that the generic external edge of E must have
length of order one. Simple examples show that all these conclusions are sharp in the class
C(N,M).

Remark 1.4 (Connection with the connectedness conjecture). Thanks to Remark 1.1,
should one be able to prove the validity of the area lower bound (1.4) for the cells of
isoperimetric clusters, then conclusion (1.11) in Theorem 1.2 would imply, in particu-
lar, a partial answer to the connectedness conjecture (CC), namely, that for a unit-area

isoperimetric N -cluster, (N 2O(
:
N))-many chambers are connected.

1.4. Hales’ hexagonal isoperimetric inequality and strategy of proof. The proof
of Theorem 1.2 is based on a careful extension of the methods developed by Hales in
[Hal01]. The key result in Hales’ paper is an inequality for immersed planar curves, called
here Hales’ hexagonal isoperimetric inequality, see (1.27) below. The key step in proving
Theorem 1.2 is obtaining a quantitative improvement of Hales’ hexagonal isoperimetric
inequality. Thus, in order to illustrate our strategy of proof, we need to introduce Hales’
hexagonal isoperimetric inequality.

Hales’ hexagonal isoperimetric inequality is a direct improvement of the hexagonal
isoperimetric inequality. Denoting by Polk the family of planar polygons with k-sides
(k-polygons) and by p(k) the perimeter of a reference unit-area regular k-polygon, the
k-polygonal isoperimetric inequality states that

P (Π) g p(k)
√

|Π| , "Π * Polk , (1.17)

with equality if and only if Π is a regular k-polygon. Here p(k) is explicitly given by

p(k) = 2
√

k tan(Ã/k) . (1.18)

The case k = 6 of (1.17) is of course the hexagonal isoperimetric inequality,

P (Π) g 2 (12)1/4
√

|Π| , "Π * Pol6 , (1.19)
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with equality if and only if Π is a regular hexagon. Now, on noticing that t 7³ 2
√

t tan(Ã/t)
is strictly decreasing and convex, and setting

a(k) =
p(k)2 p(6)

62 k
, " k 6= 6 ,

(so that a(k) > 0), we can deduce from (1.17) that if a * (a(7), a(5)), then

P (Π) + a (k 2 6) g 2 (12)1/4
√

|Π| , "Π *
>
⋃

k=3

Polk , (1.20)

with equality if and only if Π is a regular hexagon. This is of course a rather trivial
generalization of (1.19), but it is already sufficient to prove the lower bound P (E) >
(12)1/4N on the special class of unit-area polygonal Plateau-type N-clusters E
whose chambers have unit area and consist of finitely many connected polygonal cells,
and whose vertexes are the endpoints of exactly three segments. Indeed, since all the cells
Eh

j of E with (h, j) 6= (0, 1) are polygons with finite area, we can apply (1.20) on them.

Denoting by khj the number of sides of Eh
j , we thus find that

2P (E) g
∑

(h,j)6=(0,1)

P (Eh
j ) g 2 (12)1/4

∑

(h,j)6=(0,1)

√

|Eh
j |+ a

∑

(h,j)6=(0,1)

(62 khj ) . (1.21)

On the one hand, since |Eh
j | f |E(h)| = 1 for h = 1, ..., N implies |Eh

j | f
√

|Eh
j |, we get

∑

(h,j)6=(0,1)

√

|Eh
j | =

N0
∑

j=2

√

|E0
j |+

∑

(h,j), h 6=0

√

|Eh
j | g

N0
∑

j=2

√

|E0
j |+

N
∑

h=1

|E(h)| g N . (1.22)

On the other hand, counting that each vertex of "E is the endpoint of three segments, we
can associate to "E a regular graph on S

2 with numbers of faces F , edges E, and vertexes
V given by

F =

N
∑

h=0

Nh , E =
1

2

N
∑

h=0

Nh
∑

j=0

khj , V =
2

3
E ,

so that, by Euler’s formula 2 = V 2 E + F ,

2 = 21

6

N
∑

h=0

Nh
∑

j=0

khj +

N
∑

h=0

Nh , that is 12 =

N
∑

h=0

Nh
∑

j=1

(62 khj ) ,

and thus
∑

(h,j)6=(0,1)

(62 khj ) = 6 + k01 . (1.23)

The combination of a > 0, (1.21), (1.22), and (1.23) gives P (E) > (12)1/4N for every
unit-area polygonal Plateau-type N -cluster E as defined above.

The above argument, due to Fejes Tóth [FT43], has been presented in detail since the
class of unit-area isoperimetric N -clusters E considered in Hales’ isoperimetric principle
(1.1) is actually not that far from the class of unit-area polygonal Plateau-type N -clusters:
the only difference is that, in the former case, cells may be bounded by circular arcs
(with possible non-zero curvature) rather than just by segments (as in the latter). Hales’
hexagonal isoperimetric inequality consists of an extension of (1.20) that suffices to repeat
Fejes Tóth’s argument on isoperimetric clusters.

The following notation will be needed in stating Hales’ hexagonal isoperimetric inequal-
ity. Given s, t * S

1 = {z * C : |z| = 1}, s 6= t, we denote by [s, t] the set of points in S
1

obtained by moving from s to t in the orientation of S1 induced by ei ». We say that I is
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³(s)

³|[s,t]
³(t)

[[³(t), ³(s)]]

s

t

S1 [s, t]

Figure 1.2. In the example in the picture, the quantity ³(³, s, t) defined in

(1.24) is obtained by subtracting the areas depicted in light grey from the areas

depicted in dark grey.

an interval of S1, if I = S
1 or I = [s, t] for some s 6= t. If ³ * Lip(I;R2), then we denote

by L(³) and A(³) the length and oriented area of ³, defined by setting

L(³) =

∫

I
|³2(t)| dt , A(³) =

∫

³
x dy =

∫

I
³(1)(t) (³(2))2(t) dt .

(Here and in the following x(i) is the i-th component of x * R
2. Also, with this convention,

if ³(») = ei » (» * S
1), then A(³) = Ã, and if ³(») = e2i » (» * S

1), then A(³) = 2Ã.) Given
x, y * R

2 we denote by [[x, y]] a constant speed parametrization (over a closed interval in
S
1) of the segment {t x + (1 2 t) y : t * [0, 1]}. With this notation, given ³ * Lip(S1;R2)

and [s, t] ¢ S
1, we introduce the signed secant area of ³ over [s, t] by setting

³(³, s, t) = A
(

³|[s,t]
)

+A ([[³(t), ³(s)]]) ; (1.24)

see Figure 1.4. Finally, given k g 2, we say that t : {1, ..., k} ³ S
1 defines an ordered

k-partition of S1 if, for every i = 1, ..., k21, [t(i), t(i+1)] does not contain any t(j) with
j 6= i, i+1. Denoting by Pk the set of ordered k-partitions of S1, and setting t(k+1) = t(1)
if t * Pk, we define a functional

Ã : Lip(S1;R2)× Pk ³ R ,

by taking

Ã(³, t) =

k
∑

i=1

min
{1

2
,max

{

2 1

2
, ³

(

³, t(i), t(i + 1)
)}}

. (1.25)

Thus Ã(³, t) is obtained by adding up the signed secant areas defined by ³ and the nodes
of the ordered k-partition t, truncated in the interval [21/2, 1/2].

Theorem A (Hales’ hexagonal isoperimetric inequality, [Hal01]). There exists a constant

a > 0 with the following property. If k g 2, (³, t) * Lip(S1;R2)× Pk, and

A(³) g 2Ã:
3 k2

, (1.26)

then

L(³) + a (k 2 6) + (12)1/4 Ã(³, t) g 2(12)1/4 min{1, A(³)} (1.27)

with equality if and only if (³, t) corresponds2 to a unit-area regular hexagon.

Remark 1.5. (i): Hales proves (1.27) with a = 0.0505. Notice that this choice satisfies
a * (a(7), a(5)), and is thus admissible in (1.20). In particular, when ³ parameterizes the
boundary of a unit-area polygon and t ranges through the vertexes of that polygon, then
(1.27) boils down to (1.20); (ii): One cannot take a different value than (12)1/4 for the

2That is, γ is an injective parametrization of the boundary of a unit-area regular hexagon and
{γ(t(i))}6i=1 are the vertexes of said hexagon.
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constant in front of Ã(³, t): this can be verified by taking k = 6, ³ a parametrization of a
unit-area regular hexagon H, t ranging through the vertexes of H, and then modifying ³
by taking small circular variations of the edges of H and subsequent rescalings; (iii): The
inequality cannot hold with A(³) in place of min{1, A(³)} because of the different scaling

of L(³) and A(³) – of course, a variant of (1.27) with
√

A(³) in place of min{1, A(³)}
would have looked more natural; (iv): taking k < 6, and testing (1.27) with t ³ in place
of ³, we eventually obtain a contradiction as t ³ 0+; this is why a lower bound on A(³)
must be assumed.

Remark 1.6 (Proof of (1.1) and assumption (1.26)). It seems useful to recall how Theorem
A is used in proving (1.1), as this point allows us to illustrate the reason for the particular
form (1.26) of the lower bound on A(³) assumed in Theorem A. To this end, let us introduce
the functional

·(F) = P (F)2 (12)1/4
N
∑

h=1

min {1, |F(h)|} , F an N -cluster .

When E is a unit-area isoperimetric N -cluster, then ·(E) = P (E)2 (12)1/4N , and (1.1) is
equivalent to ·(E) > 0. As Hales argues in [Hal01, Remark 2.7], if a cell Eh

j of E is such that

|Eh
j | < 2Ã/(

:
3 (khj )

2), then a new N -cluster F can be defined so that ·(F) f ·(E) and

F(h) has one less cell than E(h) (one simply has to add Eh
j to a cell Em

i , m 6= h, sharing

with Eh
j its longest edge). In finitely many steps, one constructs an N -cluster Γ such

that ·(Γ) f ·(E), each cell of Γ is simply connected and satisfies |Gh
j | g 2Ã/(

:
3 (khj )

2).
Theorem A can then be applied to each cell of Γ, and, adding up over the number of cells,
Fejes Tóth’s argument can be repeated with minor modifications to conclude that ·(Γ),
thus ·(E), is positive (compare with the proof of Theorem 1.2).

Coming back to the presentation of the proof of our main result, Theorem 1.2, the key
ingredient will be obtaining the following quantitative improvement of Hales’ hexagonal
isoperimetric inequality (1.27).

Theorem 1.7 (A quantitative Hales’ hexagonal isoperimetric inequality). There exist

positive constants a1, a2, and a3 such that, setting a3(k) = 0 if k 6= 6 and a3(6) = a3, then
the following holds. If k g 2, (³, t) * Lip(S1;R2)× Pk, ³ is injective, A(³) f 1, and

A(³) g 1

100
, if 2 f k f 6 , (1.28)

then

L(³) + a1 (k 2 6) + (12)1/4 Ã(³, t) g 2 (12)1/4 A(³)

+ a2 |k 2 6|

+ a3(k)
{

d hex(E³)
2 + (12A(³))

}

,

(1.29)

where E³ denotes the bounded connected component of R2 \ ³(S1) defined by ³ according

to Jordan’s theorem.

Remark 1.8. (i): With respect to assumption (1.26) of Theorem A, we assume no lower

bound on A(³) when k g 7, and we weaken the lower bound on A(³) g 2Ã/(
:
3 k2) when

2 f k f 6 (indeed 2Ã/(
:
3 (62)) > 1/10); (ii): A more cosmetic than substantial change is

the replacement of the term 2 (12)1/4 min{1, A(³)} in (1.27) with the term 2 (12)1/4 A(³)
in (1.29). By Remark 1.5-(iii), this change calls for adding the assumption A(³) f 1; (iii):
The second and third term on the right-hand side of (1.29) quantify the distance of (³, t)
from corresponding to a unit-area regular hexagon (unique equality cases of (1.27)).
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1.5. Organization of the paper. In Section 2, Theorem (1.2) is deduced from Theorem
1.7. After a brief introduction of the arc function in Section 3, the rest of the paper is thus
concerned with the proof of Theorem 1.7, which is broken down in two sections. In Section
4 we present the part of the argument making use of quantitative isoperimetry methods,
while in Section 5 we present the part of the argument which follows more closely [Hal01].
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lemi variazionali e differenziali, teoria degli operatori (F.S.R Politecnico di Milano)”. MC
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and the NSF Graduate Research Fellowship Program under Grant DGE 2137420. FM is
supported by NSF-DMS RTG 1840314 and NSF-DMS 2247544. This work was partially
completed while KDM was hosted at the math department of Politecnico di Milano.

2. From the quantitative Hales’ inequality to the main theorem

In this section we show how to deduce Theorem 1.2 from Theorem 1.7. We shall use
“Dido’s inequality”: if a curve of length 3 bounds an area a with its chord, then 3 g

:
2Ã a.

This is easily proved by reflecting the circular arc with respect to the chord and by applying
the isoperimetric inequality to find 2 3 g 2

:
Ã
:
2a.

Proof of Theorem 1.2. Let E * C(N,M), let {Eh
j }Nh

j=1 be the cells of the chamber E(h), and
let khj be the number of vertexes of Eh

j (see the defining properties (C1)–(C5) of C(N,M)

for the notation and terminology used here). For each cell Eh
j we can find an injective

³hj * Lip(S1;R2) and thj * Pkhj
such that:

(i): ³hj (t
h
j (i)) is the i-th vertex of Eh

j ;

(ii): if (h, j) 6= (0, 1) (and thus Eh
j is not the cell E0

1 of E with infinite area), then the

orientation of ³hj can be chosen so that A(³hj ) = |Eh
j | and L(³hj ) = P (Eh

j );

(iii): the orientation of ³01 is such that
∑

(h,j)6=(0,1)

Ã(³hj , t
h
j ) = 2Ã(³01 , t01) , (2.1)

where we are using the cancelations due to opposite orientations along each internal edge
of E .

By (ii), since P (Eh
j ) = L(³hj ), we notice that

2P (E) = P (E0
1) +

∑

(h,j)6=(0,1)

L(³hj ) , (2.2)

and bound from below the two terms on the right-hand side as follows. Concerning P (E0
1),

setting for brevity

Ai = ³
(

³01 , t
0
1(i), t

0
1(i+ 1)

)

,

(see (1.24)) and applying Dido’s inequality, we find that

P (E0
1):

2Ã
g

k01
∑

i=1

√

|Ai| g
k01
∑

i=1

√

min {1/2, |Ai|} g
k01
∑

i=1

min {1/2, |Ai|} g |Ã(³01 , t01)| . (2.3)
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Assumption (1.28) of Theorem 1.7 holds for each ³hj with (h, j) 6= (0, 1) thanks to property

(C5). We can thus apply (1.29) to each ³hj and adding up the results we find

∑

(h,j)6=(0,1)

L(³hj ) g
∑

(h,j)6=(0,1)

{

a1 (62 khj )2 (12)1/4 Ã(³hj , t
h
j )
}

(2.4)

+
∑

(h,j)6=(0,1)

{

2(12)1/4 |Eh
j |+ a2 |khj 2 6|+ a3(k

h
j )

(

d hex(E
h
j )

2 + (12 |Eh
j |)

)}

.

Property (C3) of C(N,M) ensures that we can repeat Fejes Tóth’s argument to deduce
(1.23), that is

∑

(h,j)6=(0,1)(62 khj ) = 6 + k01 . Combining this last identity,
∑

(h,j)6=(0,1)

|Eh
j | = N + |Evoid|

(recall (1.9)), and (2.1) into (2.4), and then recalling (2.2), we find that

2P (E) g 2(12)1/4N + 2 (12)1/4 |Evoid|+ P (E0
1) + (12)1/4 Ã(³01 , t

0
1) + a1 (6 + k01)

+
∑

(h,j)6=(0,1)

{

a2 |khj 2 6|+ a3(k
h
j )

(

d hex(E
h
j )

2 + (12 |Eh
j |)

)}

. (2.5)

Now, taking into account that
:
2Ã 2 (12)1/4 > 0, thanks to (2.3) we find that

P (E0
1) + (12)1/4 Ã(³01 , t

0
1) g 2 c0 P (E

0
1 ) , if c0 =

:
2Ã 2 (12)1/4

2
:
2Ã

. (2.6)

By combining (2.5) and (2.6) with the low-energy condition P (E) f (12)1/4N +M
:
N ,

we immediately deduce

2 (12)1/4 |Evoid|+ a1 (6 + k01) + c0 P (E
0
1) + a2

∑

(h,j)6=(0,1)

|khj 2 6| f 2M
:
N , (2.7)

∑

(h,j)6=(0,1)

a3(k
h
j )

(

d hex(E
h
j )

2 + (12 |Eh
j |)

)

f 2M
:
N . (2.8)

Conclusions (1.13), (1.14), (1.15), and (1.16) follow immediately from (2.7) and

|k 2 6|#(Chk(E)) f
∑

(h,j)6=(0,1)

|khj 2 6| .

To prove (1.11) and (1.12), we begin by noticing that Hex(E) = I1 + I2 where

I1 =
{

h : khj = 6, "j * {1, ..., Nh}
}

,

I2 =
{

h : Nh = 1
}

.

Now, by (2.7), setting I = {1, ..., N}, we find

# (I \ I1) f
∑

{(h,j):khj 6=6}

|khj 2 6| f
∑

(h,j)6=(0,1)

|khj 2 6| f CM
:
N ,

and, similarly, by (2.8), we obtain

CM
:
N g

∑

{(h,j)6=(0,1):khj =6}

(12 |Eh
j |) g

∑

h*I1

Nh
∑

j=1

(12 |Eh
j |)

=
∑

h*I1

(Nh 2 1) g #(I1 \ I2) .
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»

2 » R

2R sin »

R

(a)

arc(3, x)

(b)

3

x

Figure 3.1. (a) arc(3, x) is defined as the length of a circular arc (depicted
in bold) subtending a chord of length 3 and including a secant area x; (b) An
implicit formula for arc1 on the interval [0, Ã/2] can be obtained by referring to
this picture. The second argument of arc in (3.5) is obtained by subtracting the
area of a rectangle with sidelengths R sin » and R cos » from the area » R2 of an
angular sector whose amplitude equals 2 » radians.

We thus conclude that

#Hex(E) = #(I1)2#(I1 \ I2) = #I 2#(I \ I1)2#(I1 \ I2) g N 2 CM
:
N ,

that is (1.11). Of course, (1.12) follows immediately from (1.11) and (2.8).

Finally, let us assume, by way of contradiction that khj g 6 for all (h, j) 6= (0, 1). In

this case, khj 2 6 being non-negative for every (h, j) 6= (0, 1), we can go back to (2.4) and

apply a version of (1.29) where, in place of a1, an arbitrarily large constant L appears.
Correspondingly, in place of (2.7) we now deduce an inequality that implies, in particular,

6L fM
:
N . By taking L large enough in terms of M and N we obtain a contradiction.

�

3. The arc function

Starting from the next section we will make repeated use of the function

arc(3, x) , 3 g 0 , x g 0 ,

defined as the length of a circular arc subtending a segment of length 3 and bounding a
region of area x. Clearly arc(0, x) = 2

:
Ã
:
x is the isoperimetric profile of R2. By scaling,

arc(3, x) = 3 arc
(

1,
x

32

)

, "3 > 0 , x g 0 , (3.1)

so that we can directly focus on arc1 = arc(1, ·). We claim that

arc21 > 0 on (0,>) with arc1(0) = 1, arc1(+>) = +> , (3.2)

arc21(0) = 0 , arc221(0) = 12 , (3.3)

arc221 > 0 on [0, Ã/8) and arc221 < 0 on (Ã/8,>) . (3.4)

We can obtain implicit formulas for arc1 that can be used in proving (3.2), (3.3), and (3.4).
For example, by combining (3.1) with the identity

2 » R = arc
(

2R sin »,R2 (» 2 sin » cos »)
)

, » * [0, Ã/2] , R g 0 , (3.5)

see Figure 3, we obtain the following implicit representation3 of arc1 on the interval [0, Ã/8]:

»

sin »
= arc1(p(»)) , for p(») =

» 2 sin » cos »

4 sin2 »
, » * [0, Ã/2] . (3.6)

3Notice that p is strictly increasing from [0, π/2] to [0, π/8].
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(A similar construction can be used to represent arc1 on [Ã/8,>).) By combining (3.6)
with a Taylor expansion we easily prove (3.3). Similarly, we can use (3.6) to prove (3.2)
and (3.4) on [0, Ã/8], and a representation of arc1 on [Ã/8,>) can be used to complete the
proof of (3.2) and (3.4). Since this approach (although formally correct) is a bit obscure,
we prove (3.2) and (3.4) with the following argument, which seems more transparent. The
key remark is that by the variational definition of (mean) curvature (see, e.g., [Mag12,
Remark 17.6]), we have

"arc

"x
(3, x) = curvature of a circular arc

enclosing an area x above a segment of length 3 .
(3.7)

By (3.7) (with 3 = 1) we see that arc21 > 0 on (0,>), thus deducing (3.2). Moreover, as
x increases from 0 to Ã/8 (with x = Ã/8 corresponding to » = Ã/2 in Figure 3-(b)), we
see from (3.7) that arc21 strictly increases from 0 to 2, thus establishing that arc221 > 0 on
(0, Ã/8); similarly, as x increases from Ã/8 to the limit value +>, we see from (3.7) that
arc21 strictly decreases from 2 back to the limit value 0, so that arc221 < 0 on (Ã/8,>).

4. Proof of the quantitative Hales’ hexagonal inequality, part one

In this section we begin the proof of Theorem 1.7. More precisely, we prove Theorem 1.7
conditionally to the validity of an improvement of Theorem A (Hales’ hexagonal isoperi-
metric inequality). This improvement of Theorem A will be established in Section 5 as
Theorem 5.1, and is based on a refinement of the arguments employed in [Hal01]. The
argument presented in this section, instead, makes use of a quantitative hexagonal isoperi-
metric inequality proved in [CM16, Corollary 2.2] (as an elaboration on [IN15, Corollary
1.3]), as stated in Theorem 4.1 below. In the following, given two closed sets C and K in
R
2, we denote by

hd (C,K) := max
{

sup
x*C

dist(x,K) , sup
x*K

dist(x,C)
}

,

the Hausdorff distance between C and K.

Theorem 4.1. There exist positive constants c and · such that if Π ¢ R
2 is a convex

hexagon with hd (Π,H) f · for some regular hexagon H, then

P (Π)2 2 (12)1/4
√

|Π| g c |Π∆H7|2 ,
for a regular hexagon H7 with |H7| = |Π|.
Proof of Theorem 4.1. By [CM16, Corollary 2.2] (which is stated on the two-dimensional
flat torus, but obviously holds on the plane too) there exist positive constants c2 and ·
such that if Π ¢ R

2 is a convex hexagon with hd ("Π, "H) f · for some regular hexagon
H, then, for a regular hexagon H7 with |H7| = |Π|,

P (Π)2 2 (12)1/4
√

|Π| g c2 hd ("Π, "H7)2 .

Since hd ("Π, "H) = hd (Π,H), we conclude the proof by observing that, for a positive
constant C (independent of Π), it holds |Π∆H7| f C hd ("Π, "H7). �

Proof of Theorem 1.7, part one. We prove Theorem 1.7 conditionally to the validity of
Theorem 5.1 (that will be proved in Section 5). Theorem 5.1 asserts the following:

There exist positive constants a1 and a2 with the following property. If k g 2, (³, t) *
Lip(S1;R2)× Pk, and

A(³) > 0 if k = 6 , A(³) g 1

100
if 2 f k f 5 , (4.1)
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then

L(³) + a1 (k 2 6) + (12)1/4 Ã(³, t) g 2 (12)1/4 min{1, A(³)} + a2 |k 2 6| , (4.2)

with equality if and only if (³, t) corresponds to a unit-area regular hexagon.

This statement implies Theorem 1.7 when k 6= 6. Therefore, for the remaining part of
the proof, we shall assume that k = 6. We thus want to prove the existence of a positive
constant a3 such that if (³, t) * Lip(S1,R2)×P6, ³ is injective, and

1 g A(³) g 1

100
, (4.3)

then

L(³) + (12)1/4 Ã(³, t) g 2 (12)1/4 A(³) + a3

{

d hex(E³)
2 + (12A(³))

}

, (4.4)

where E³ denotes the bounded connected component of R2 \ ³(S1) identified by ³ (thanks
to Jordan’s theorem).

Step one: In this step we set, for (³, t) * Lip(S1;R2)× P6,

·(³, t) = L(³) + (12)1/4 Ã(³, t)2 2(12)1/4 A(³) , (4.5)

and prove that for every · > 0 there is · > 0 such that, if ·(³, t) f ·, then there is a
unit-area, regular hexagon H0 with

max
{

hd (E³ ,H0),hd (Π³,t,H0), |E³∆Π³,t|
}

f · , (4.6)

where Π³,t is the convex envelope of {³(t(i))}6i=1. Notice, in particular, that if · is small
enough, then (4.6) implies that Π³,t is a convex hexagon.

We prove this arguing by contradiction, aiming at using our assumption that, under
(4.1), (4.2) holds, and thus ·(³, t) g 0 with equality if and only if k = 6 and (³, t)
corresponds to a unit-area, regular hexagon.

We thus consider ·7 > 0 and a sequence {(³j , tj)}j in Lip(S1;R2)×P6 with 1 g A(³j) g
1/100, ·(³j , tj) ³ 0+ as j ³ >, and

max

{

inf
H

{

max{hd (E³j ,H) ,hd (Π³j ,tj ,H)}
}

, |E³j∆Π³j ,tj |
}

g ·7 , "j . (4.7)

(Here H denotes a generic unit-area, regular hexagon.) Up to a reparametrization we can
assume that

|³2j | =
L(³j)

2Ã
on S

1 . (4.8)

By |Ã(³j , tj)| f 1/2, A(³j) f 1, and ·(³j , tj) ³ 0 we find that 3 = supj L(³j) < >. By

(4.8), up to extracting subsequences and up to translations, there is ³ * Lip(S1;R2) such

that ³j ³ ³ uniformly on S
1 and ³2j

7
á³2 in L>(S1;R2): in particular,

A(³j) =

∫

S1

³
(1)
j (³2j)

(2) ³
∫

S1

³(1)(³2)(2) = A(³) (4.9)

as j ³ > (here we are denoting by x(i) the components of x * R
2), and from the

corresponding bounds on A(³j) we find that

1 g A(³) g 1

100
.

Now, up to extracting subsequences, there is {si : 1 f i f 6} ¢ S
1 such that, as j ³ >,

tj(i) ³ si for each i = 1, ..., 6. In particular, for each i = 1, ...6, and setting s7 = s1, we
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have si f si+1 in the ordering of S1. To compute the limit of Ã(³j , tj) we start noticing
that

³ (³j , tj(i), tj(i+ 1)) =

∫

[tj(i),tj(i+1)]
³
(1)
j (³2j)

(2) +A ([[³j(tj(i+ 1)), ³j(tj(i))]]) . (4.10)

Starting from (4.10) and thanks to the fact that ³j ³ ³ uniformly on S
1 and ³2j

7
á³2 in

L>(S1;R2), we see that if si < si+1, then

lim
j³>

³ (³j, tj(i), tj(i+ 1)) = ³(³, si, si+1) ;

while if si = si+1 but there is at least one 3 6= i such that s3 6= s3+1, then

lim
j³>

³ (³j, tj(i), tj(i+ 1)) = 0 ; (4.11)

and, finally, if si = si+1 for all i, then there is i0 such that (4.11) holds for all i 6= i0, and

lim
j³>

³ (³j, tj(i0), tj(i0 + 1)) = A(³) .

By using these three facts we conclude that, either si = si+1 for all i and

lim
j³>

Ã(³j , tj) = min
{1

2
, A(³)

}

, (4.12)

or there exists 2 f k f 6 and t * Pk such that

lim
j³>

Ã(³j , tj) = Ã(³, t) . (4.13)

If we are in the case when (4.12) holds, then we deduce from the isoperimetric inequality,
·(³j , tj) g 0, (4.9), and (4.12) that

2
:
Ã
√

A(³) f L(³) f lim inf
j³>

L(³j) f lim
j³>

2 (12)1/4 A(³j)2 (12)1/4 Ã(³j , tj)

= 2 (12)1/4 A(³)2 (12)1/4 min
{1

2
, A(³)

}

. (4.14)

Now, the function

F (x) = 2
:
Ã x2 2 (12)1/4 x+ (12)1/4 min{x, 1/2} ,

is concave on [0, 1], with F (0) = 0 and F (1) = 2
:
Ã 2 (12)1/4 > 0, so that (4.14) implies

A(³) = 0 (a contradiction, as A(³) g 1/100). Therefore (4.12) never occurs, and by
combining (4.9) with (4.13), ·(³j , tj) g 0, and ·(³j , tj) ³ 0 as j ³ > we conclude that
·(³, t) = 0 for t as in (4.13). By our assumption, ·(³, t) = 0 implies that k = 6, ³ is a
monotone parametrization of the boundary of a regular, unit-area hexagon, {³(t(i))}6i=1
are the vertexes of such hexagon, and tj(i) ³ t(i) for 1 f i f 6 as j ³ >. As ³j ³ ³
uniformly on S

1 we conclude that

max
{

inf
H

{

max{hd (E³j ,H) ,hd (Π³j ,tj ,H)}
}

, |E³j∆Π³j ,tj |
}

³ 0 ,

as j ³ >, in contradiction with (4.7).

Step two: We conclude the proof of Theorem 1.7. Let (³, t) * Lip(S1,R2) × P6 be such
that ³ is injective and 1 g A(³) g 1/100, and let E³ be the connected component of
R
2 \ ³(S1) identified by Jordan’s theorem (so that |E³ | = A(³)). We want to prove the

existence of a3 > 0 such that

·(³, t) g a3

{

d hex(E³)
2 + (1 2A(³))

}

. (4.15)

Since d hex(E³) < 2 |E³ | f 2, if ·(³, t) g · for some constant · > 0, then (4.15) holds for
every a3 f ·/5. For · > 0 to be chosen later, we select · > 0 depending on · as determined
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in step one, and reduce to the situation when there is a unit-area, regular hexagon H0

such that

max
{

hd (E³ ,H0),hd (Π³,t,H0), |E³∆Π³,t|
}

< · , Π³,t is a convex hexagon . (4.16)

If we denote by xi the total area enclosed between the i-th (curvilinear) edge of E³ and
the corresponding i-th edge of Π³,t, and by 3i the length |³(t(i+ 1))2 ³(t(i))| of the i-th
edge of Π³,t, then by (4.16) we have that, for some positive constant C,

6
∑

i=1

xi + max
1fif6

∣

∣

∣
3i 2

(12)1/4

3

∣

∣

∣
< C · , (4.17)

where of course (12)1/4/3 is the length of one edge of a unit-area, regular hexagon. Since

(12)1/4/3 < 1, provided · is small enough and by (4.17), we deduce that maxi 3i < 1. In
particular, using the scaling property (3.1) of arc1, and the fact that arc1 is increasing on
[0,>) (recall (3.2)), we find that

L(³) g
6

∑

i=1

arc(3i, xi) =

6
∑

i=1

arc1

(xi
32i

)

g
6

∑

i=1

3i arc1

(xi
3i

)

.

By (4.17), up to further decreasing the value of ·, we can ensure that maxi xi/3i f Ã/8,
and then combine the convexity of arc1 on [0, Ã/8] (recall (3.4)) with Jensen’s inequality
to conclude that

L(³) g
6

∑

i=1

3i arc1

(xi
3i

)

g
(

6
∑

i=1

3i

)

arc1

(∑6
i=1 xi

∑6
i=1 3i

)

= P (Π³,t) arc1

( |E³∆Π³,t|
P (Π³,t)

)

. (4.18)

(Inequality (4.18) is strictly related to the chordal isoperimetric inequality found in [Hal01,
Proposition 6.1-A] and [Mor09, 15.5], although it does not seem to exactly fit in those
statements.) Now, by arc1(0) = 1, arc21(0) = 0, and arc221(0) = 12 (recall (3.2) and (3.3)),
we can find a positive constant C such that

arc1(x) g 1 + 6x2 2 C |x|3 , "x * [0, 1/2] . (4.19)

Since we have |E³∆Π³,t| ³ 0 and P (Π³,t) ³ P (H0) = 2 (12)1/4 in the limit · ³ 0+,
by further decreasing the value of ·, thanks to (4.17), we can ensure that |E³∆Π³,t| <
P (Π³,t)/2, and thus deduce from (4.18), (4.19), and (4.16) that

L(³) g P (Π³,t) +

(

6

2 (12)1/4
2 C ·

)

|E³∆Π³,t|2 . (4.20)

For · > 0 as in Theorem 4.1, up to further decreasing · so to entail that hd (Π³,t,H0) < ·,
and thanks to the convexity of Π³,t, we can combine Theorem 4.1 with (4.20) to find that,
for some positive constant C,

L(³) g 2 (12)1/4
√

|Π³,t|+
|Π³,t∆H7|2

C
+

(

3

(12)1/4
2C ·

)

|E³∆Π³,t|2 , (4.21)

where H7 is a regular hexagon with |H7| = |Π³,t|. Now, let us recall that, by (4.3),
A(³) > 0, so that, in particular, the orientation of ³ is such that A(³) = |E³ |. Denoting
by ç the operation of concatenating curves, we see that

Ã³,t = [[³(t(1)), ³(t(2))]] ç [[³(t(2)), ³(t(3))]] ç · · · ç [[³(t(6)), ³(t(1))]] ,

defines a Lipschitz map Ã³,t * Lip(S1;R2) that, thanks to (4.16), maps injectively S
1 into

"Π³,t, and in such a way that A(Ã³,t) = |Π³,t|. By definition of A, Ã³,t, and of the secant
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oriented area functional ³ (recall (1.24)), we thus find that

|E³ | 2 |Π³,t| =
k

∑

i=1

A(³|[t(i),t(i+1)])2
k

∑

i=1

A([[³(t(i)), ³(t(i + 1))]])

=
6

∑

k=1

³(³, t(i), t(i + 1)) ,

so that, up to decreasing the value of ·, so to enforce from (4.16) that |³(³, t(i), t(i+1))| f
|E³∆Π³,t| < 1/2, we conclude that

|Π³,t| = |E³ | 2 Ã(³, t) , (4.22)

Aiming at providing an efficient lower bound for the first term on the right-hand side of
(4.21), we use (4.22) to find that

√

|Π³,t| =
√

|E³ |
√

|Π³,t|
|E³ |

= |E³ |
√

12 Ã(³, t)

|E³ |
+

(
√

|E³ | 2 |E³ |
)

√

|Π³,t|
|E³ |

= |E³ |
√

12 Ã(³, t)

|E³ |
+

12 |E³ |
1 +

√

|E³ |

√

|Π³,t| (4.23)

g |E³ |
√

12 Ã(³, t)

|E³ |
+

12 |E³ |
C

(4.24)

where we have decreased · to ensure |Π³,t| g 1/2, and where C is a positive constant. By
means of the Taylor expansion we find that

:
12 s = 12 s

2
2 s2

8
+ O(s3) , as s³ 0+ , (4.25)

and use (4.25) with (4.24) to bound from below the first and the third term on the right
hand side of (4.21) as

2 (12)1/4
√

|Π³,t|+
( 3

(12)1/4
2 C ·

)

|E³∆Π³,t|2 (4.26)

g 2 (12)1/4 |E³ | 2 (12)1/4 Ã(³, t) +
12 |E³ |

C

22 (12)1/4
(1

8
2 C ·

)

Ã(³, t)2 +
( 3

(12)1/4
2 C ·

)

|E³∆Π³,t|2 .

Therefore, up to further decreasing the value of ·, we find that

|Ã(³, t)| f |E³∆Π³,t| , and
3

(12)1/4
>

2 (12)1/4

8
,

we finally conclude from (4.21) and (4.26) that

L(³) g 2 (12)1/4 |E³ |+
|Π³,t∆H7|2

C
2 (12)1/4 Ã(³, t) +

|E³∆Π³,t|2 + (12 |E³ |)
C

,

that is

C ·(³, t) g |Π³,t∆H7|2 + |E³∆Π³,t|2 + (12 |E³ |) . (4.27)

Since d hex(E³) f C (|Π³,t∆H
7|+ |E³∆Π³,t|), we easily see that (4.27) implies (4.4). �
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5. Proof of the quantitative Hales’ hexagonal inequality, part two

Thanks to the argument presented in Section 4, in order to complete the proof of
Theorem 1.7, and thus of Theorem 1.2, we are left to prove the following theorem.

Theorem 5.1. There exist positive constants a1 and a2 with the following property. If

k g 2, (³, t) * Lip(S1;R2)× Pk, and

A(³) > 0 if k = 6 , A(³) g 1

100
if 2 f k f 5 , (5.1)

then

L(³) + a1 (k 2 6) + (12)1/4 Ã(³, t) g 2 (12)1/4 min{1, A(³)} + a2 |k 2 6| , (5.2)

with equality if and only if (³, t) corresponds to a unit-area regular hexagon.

Theorem 5.1 improves on Hales’ hexagonal isoperimetric inequality (Theorem A) since
it requires no lower bound on A(³) when k g 6 and weaker ones when 2 f k f 5, and
since, when k 6= 7, it provides the additional lower bound a2 |k 2 6|. These improvements
are obtained by carefully revisiting Hales’ original argument, which is why the methods of
this section overlap with those of [Hal01].

Proof of Theorem 5.1. We make the following claim:

Claim: There are positive constants a and c such that, if k g 2, k 6= 6, and (³, t) *
Lip(S1;R2)× Pk satisfies (5.1), then

L(³) + a (k 2 6) + (12)1/4 Ã(³, t) g 2(12)1/4 min{1, A(³)} + c ; (5.3)

and, if (³, t) * Lip(S1;R2)× P6 with 1/5 g A(³) > 0, then

L(³) + (12)1/4 Ã(³, t) > 2(12)1/4 min{1, A(³)} . (5.4)

The claim implies the theorem: Indeed, when k = 6, Theorem A implies that

L(³) + (12)1/4 Ã(³, t) g 2(12)1/4 min{1, A(³)}
whenever (³, t) * Lip(S1;R2) × P6 and A(³) g 2Ã/(

:
3 (62)), and with equality if and

only if (³, t) corresponds to a regular unit-area hexagon. Since 2Ã/(
:
3 (62)) < 1/5, the

combination of (5.4) with Theorem A proves the case k = 6 of Theorem 5.1. When k g 2,
k 6= 6, we set

a1 = a2 + a , a2 =
c

8
,

and deduce (5.2) from (5.3) as follows: (5.2) with k > 6 is equivalent to

L(³) + (a1 2 a2) (k 2 6) + (12)1/4 Ã(³, t) g 2 (12)1/4 min{1, A(³)} ,
which is implied by (5.3) thanks to a1 2 a2 = a; if, instead, 2 f k f 5, then by (5.3) we
get

L(³) + (12)1/4 Ã(³, t) g 2(12)1/4 min{1, A(³)} + c2 a (k 2 6)

= 2(12)1/4 min{1, A(³)} + 8 a2 + (a2 2 a1) (k 2 6) ,

g 2(12)1/4 min{1, A(³)} 2 (a1 + a2) (k 2 6) ,

that is (5.2).

We can thus focus on the proof of the above claim. It will be convenient to set some
notation. For every (³, t) * Lip(S1;R2)× Pk we set for brevity

·(³, t) = a (k 2 6) + (12)1/4 Ã(³, t) 2 2(12)1/4 min{1, A(³)} ,
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where a > 0 is a constant to be determined. Moreover, dropping the dependency on t in
the interest of brevity, we set, for each i = 1, ..., k + 1,

³i = ³|[t(i),t(i+1)] , (5.5)

Ai = A(³i) +A([[³(t(i + 1)), ³(t(i))]]) , (5.6)

so that

L(³) =
k

∑

i=1

L(³i) , Ã(³, t) =
k

∑

i=1

max
{

2 1

2
,min

{

Ai,
1

2

}}

.

We now present a series of reduction steps.

Step one: For each (³, t) * Lip(S1;R2)×Pk, there is ³̄ * Lip(S1;R2) such that, for each i =
1, ..., k, the restriction of ³̄ to the interval [t(i), t(i+ 1)] is the unit speed parametrization
of a circular arc with ³̄(t(i)) = ³(t(i)), and moreover

L(³) + ·(³, t) g L(³̄) + ·(³̄, t) , (5.7)

for every choice of a > 0. (Notice carefully that neither ³ or ³̄ are assumed or required to
be injective.)

To prove this, it is enough to define ³̄ on [t(i), t(i + 1)], 1 f i f k, as the unit speed
parametrization of a circular arc with endpoints ³̄(t(i)) = ³(t(i)) and ³̄(t(i + 1)) =
³(t(i+ 1)) and such that

A(³̄i) = A(³i) ,

(where ³̄i is the restriction of ³̄ to [t(i), t(i + 1)], see (5.5)). Then, by construction,
A(³̄) = A(³) and Ã(³̄, t) = Ã(³, t), while, by Dido’s inequality, L(³̄) f L(³), so that (5.7)
holds.

Having proved step one, for the rest of the proof we will be able to work directly with
pairs

(³, t) * Cirk ,

as defined by the condition that, for each i = 1, ..., k, the restriction of ³ to the interval
[t(i), t(i+ 1)] is the unit speed parametrization of a circular arc.

Step two: We prove that, for each (³, t) * Cirk, there is ³̄ such that (³̄, t) * Cirk,

Āi g 21

2
, "i = 1, ..., k ,

and (5.7) holds (for any choice of a > 0). Here Āi is defined from ³̄ as Ai was defined from
³ in (5.6).

To prove this, we set ³̄ = ³ on those intervals [t(i), t(i+1)] corresponding to i = 1, ..., k
such that Ai g 21/2; if, instead, Ai < 21/2, then we define ³̄ on [t(i), t(i + 1)] as a
unit-speed parametrization of a circular arc with endpoints ³(t(i)) and ³(t(i + 1)) such
that Āi = 21/2: since ³̄ and ³ have the same endpoints and Ai < 21/2, we see that this
implies

A(³̄i) > A(³i) , L(³̄i) f L(³i) .

In particular, L(³) g L(³̄), A(³̄) g A(³), and Ã(³̄, t) = Ã(³, t), which implies the validity
of (5.7).

Thanks to step one and step two we have reduced to the case when

(³, t) * Cirk , Ai g 21

2
, "i = 1, ..., k . (5.8)
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Step three: We prove that given (³, t) as in (5.8) there is (³̄, t) * Cirk such that (5.7) holds
(for any value of a), and such that all the Āi’s in [21/2, 1/2] have the same sign, that is,
setting

Ī =
{

i = 1, ..., k : |Āi| f
1

2

}

,

we have that either Āi g 0 for all i * Ī or Āi f 0 for all i * Ī.

To prove this, let us consider the set K of those pairs (i, j) with 1 f i, j f k, i 6= j, and

1

2
g Ai > 0 > Aj g 21

2
,

which we can assume to be non-empty, otherwise, we have nothing to prove. Let (i, j) * K
and let ³ = Ai + Aj . Let us assume for a moment that ³ g 0. In this case, we define ³7

by taking ³7 = ³ everywhere on S
1 except on: [t(j), t(j + 1)], on which we define ³7 as

the unit speed parametrization of the segment from ³(t(j)) to ³(t(j+1)) (so that A7
j = 0

provided A7
j is defined from ³7 in analogy to (5.6)); and [t(i), t(i+1)], on which we define

³7 as the unit speed parametrization of a circular arc from ³(t(i)) to ³(t(i + 1)) such
that A7

i = ³ g 0. In this way A(³7) = A(³) and Ã(³7, t) = Ã(³, t) (recall the restriction
1/2 g |Ai|, |Aj |). Moreover, L(³7j ) f L(³j) (as on [t(j), t(j+1)] we have replaced a circular

arc with its chord segment), and L(³7i ) f L(³i) (since A7
i = ³ f Ai, on [t(i), t(i + 1)]

we have modified the curvature of a circular arc with fixed endpoints so to decrease the
amount of enclosed area), so that, in total, L(³7) f L(³).

In summary, when ³ g 0 we have constructed a curve ³7 such that L(³7) + ·(³7, t) f
L(³) + ·(³, t), A7

i = ³, A7
j = 0, and ³7 = ³ on [t(h), t(h + 1)] for all h 6= i, j. In the case

³ < 0, an analogous construction produces ³7 such that L(³7) + ·(³7, t) f L(³) + ·(³, t),
A7

i = 0, A7
j = ³, and ³7 = ³ on [t(h), t(h+1)] for all h 6= i, j. By iterating this construction

finitely many times we end up constructing a curve ³̄ satisfying (5.7) and such that, with
I = {i : |Āi| f 1/2}, we have that either Āi g 0 or Āi f 0 for all i * Ī.

Therefore, we have so far reduced to prove that (5.3) holds when k g 2, k 6= 6,

(³, t) * Cirk , Ai g 21

2
, "i = 1, ..., k , (5.9)

and, setting I = {i : |Ai| f 1/2}, we have that

either Ai g 0 for all i * I, or Ai f 0 for all i * I . (5.10)

Step four: In this step we impose the first restriction on the constant a > 0 appearing in
the definition of ·(³, t), that is, we impose

a <

:
Ã

2
2 3

8
(12)1/4 . (5.11)

With this restriction on a, we prove that if (³, t) * Cirk satisfies (5.9), (5.10), and is such
that Ai > 1/2 for some 1 f i f k, then

L(³) + ·(³, t) g min
{ 7

10
, c(a)

}

, (5.12)

where
c(a) = 2

:
Ã 2 (3/2) (12)1/4 2 4 a , (5.13)

is strictly positive thanks to the strict sign in (5.11). We notice that this step, combined
with the previous ones, effectively reduces the proof of (5.3) (thus of the theorem) to the
case when k g 2, k 6= 6, (³, t) * Cirk and

either
1

2
g Ai g 0 "i , or 0 g Ai g 21

2
"i . (5.14)

We now turn to the proof of (5.12):
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Let (³, t) * Cirk satisfy (5.8), (5.10) and be such that Ai0 > 1/2 for some i0. Set

I =
{

i : Ai >
1

2

}

, J =
{

i : |Ai| f
1

2

}

,

so that {1, ..., k} = I * J , I + J = ∅, I 6= ∅, and, setting

J+ = {i * J : Ai g 0} , J2 = {i * J : Ai f 0} ,
and recalling (5.10), either J = J+ or J = J2. We address the two cases by different
arguments.

Case one, J = J+: In this case by I 6= ∅ we have

Ã(³, t) =
# I

2
+

∑

i*J

Ai g
1

2
.

Hence, by the trivial bound a (k 2 6) g 24 a (recall, k g 2), and by the isoperimetric

inequality L(³) g 2
:
Ã
√

A(³) (recall that A(³) g 0 by (5.1)), we find

L(³) + ·(³, t) g 2
:
Ã
√

A(³) 2 4 a+
(12)1/4

2
2 2 (12)1/4 min{1, A(³)}

g 2
:
Ã 2 4 a+

(12)1/4

2
2 2(12)1/4 =

(

2
:
Ã 2 3

2
(12)1/4

)

2 4 a ,

where in the last step we have used the fact that x g 0 7³ 2
:
Ã
:
x 2 2 (12)1/4 min{1, x}

achieves its minimum at x = 1. This proves (5.12) when J = J+.

Case two, J = J2: Setting for brevity

x = A(³) , z =
∑

i*J

(2Ai) ,

we have x, z g 0, and, thanks to I 6= ∅,

Ã(³, t) =
#I

2
+

∑

j*J

Aj g
1

2
2 z . (5.15)

Now, by Dido’s inequality, we have that

L(³i) g
√

2Ã |Ai| , "i = 1, ..., k , (5.16)

so that Ai > 1/2 for i * I implies that

L(³) =

k
∑

i=1

L(³i) g
:
2Ã

k
∑

i=1

√

|Ai| g
:
Ã#I +

:
2Ã

∑

i*J

√

|Ai| .

Since |Ai| f 1/2 for i * J and
:
2 |t| f

√

|t| for |t| f 1/2 we conclude that

L(³) g
:
Ã#I + 2

:
Ã
∑

i*J

|Ai| g
:
Ã + 2

:
Ã z , (5.17)

taking into account I 6= ∅ and the definition of z. By using as done in the other case that
a (k 2 6) g 24 a, we thus obtain a first lower bound on L(³) + ·(³, t), namely

L(³) + ·(³, t) = L(³) + a (k 2 6) + (12)1/4Ã(³, t)2 2 (12)1/4 min{1, A(³)}

g
:
Ã + 2

:
Ã z 2 4 a+ (12)1/4

(1

2
2 z

)

2 2 (12)1/4

g
(

2
:
Ã 2 (12)1/4

)

z +
(:

Ã 2 3

2
(12)1/4

)

2 4 a . (5.18)

This lower bound will be sufficient to prove (5.12) only for certain values of z. For this
reason, before discussing the latter point, we obtain a second, complementary, lower bound,
that combined with (5.18) will allow us to deduce (5.12). To obtain this second lower
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bound, consider ³̄ obtained from ³ by “reflecting” with respect to their chords all the
circular arcs ³i corresponding to i * J . In this way L(³̄) = L(³), while A(³̄i) = 2A(³i)
for all i * J , gives

A(³̄) =
∑

i*I

A(³i)2
∑

i*J

A(³i) = A(³)2 2
∑

i*J

Ai = x+ 2 z . (5.19)

By applying the isoperimetric inequality to ³̄ (notice that A(³̄) g A(³) g 0) and using
(5.19) we thus find

L(³) = L(³̄) g 2
:
Ã
√

A(³̄) g 2
:
Ã
:
x+ 2 z , (5.20)

which, combined with (5.15), gives

L(³) + ·(³, t) = L(³) + a (k 2 6) + (12)1/4Ã(³, t)2 2 (12)1/4 min{1, A(³)}

g 2
:
Ã
:
x+ 2 z 2 4 a+ (12)1/4

(1

2
2 z

)

2 2 (12)1/4 min{1, x} ,

g 2
:
Ã
:
1 + 2 z 2 4 a+ (12)1/4

(1

2
2 z

)

2 2 (12)1/4 , (5.21)

where we have used x g 0 7³ 2
:
Ã
:
x+ 2 z22 (12)1/4 min{1, x} has a minimum at x = 1.

In summary, setting

f(z) =
(

2
:
Ã 2 (12)1/4

)

z +
(:

Ã 2 3

2
(12)1/4

)

2 4 a ,

g(z) = 2
:
Ã
:
1 + 2 z 2 (12)1/4 z 2 3

2
(12)1/4 2 4 a ,

and h = max{f, g}, we are left to prove that

inf
zg0

h(z) = min
{ 7

10
, c(a)

}

.

Since f is an affine, increasing function, g is concave on [0,>), and f(3/2) = g(3/2), we
have that h = g on [0, 3/2] and h = f on [3/2,>). In particular, if z g 3/2, then, recalling
(5.11), we find

h(z) = f(z) g f(3/2) = 4
:
Ã 2 3 (12)1/4 2 4 a g 2

:
Ã 2 3

2
(12)1/4 g 7

10
.

If, instead, z * [0, 3/2], then h(z) g g(z) g g(0) = c(a) by definition (5.13) of c(a).

Step five: We conclude the proof of the theorem. Based on the previous four steps, we
have to prove the following reduced version of our opening claim:

Reduced Claim: There are positive constants a and c such that the following holds. Let
k g 2 and (³, t) * Cirk satisfy

A(³) g 1

100
, if 2 f k f 5 , (5.22)

and let either 0 f Ai f 1/2 for all i = 1, ..., k or 0 g Ai g 21/2 for all i = 1, ..., k. Then,
when k 6= 6,

L(³) + a (k 2 6) + (12)1/4 Ã(³, t) g 2(12)1/4 min{1, A(³)} + c ; (5.23)

and, when k = 6 and 1/5 g A(³) > 0,

L(³) + (12)1/4 Ã(³, t) > 2(12)1/4 min{1, A(³)} . (5.24)

To begin the proof of this reduced claim, let us recall that, so far, we have only imposed
on a the constraint (5.11). Since (

:
Ã/2) 2 (3/8) (12)1/4 > 1/10, we can work with any

a f 1/10. The choice

a =
3

50
, (5.25)
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is enforced from now on, for the sake of definiteness.

Next, we notice that the case k = 2 is easily dealt with. Indeed, in this case, |Ai| f 1/2
implies Ã(³, t) = A1 +A2 = A(³) as well as min{A(³), 1} = A(³): therefore, by applying
the isoperimetric inequality we find that

L(³) + ·(³, t) g 2
√

Ã A(³)2 4 a2 (12)1/4 A(³) g min
{

h(1), h
( 1

100

)}

>
9

100
,

where we have used that h(x) = 2
:
Ã x2 (12)1/4 x 2 (6/25) is concave on [0, 1] and that

1 g A(³) g 1/100.

When k g 3 there is no immediate relation between x = A(³) and y = Ã(³, t) =
∑k

i=1 Ai that we can use. To discuss this case it is convenient to collect the following four
lower bounds:

L(³) g 2
:
Ã x , (5.26)

L(³) g 2
√

Ã (x+ 2 y2) , (5.27)

L(³) g 2
:
Ã |y| , (5.28)

L(³) g 2

√

k tan
(Ã

k

)

√

(x2 y)+ , (5.29)

where z+ = max{z, 0} and z2 = max{2z, 0}. Of course (5.26) is just the isoperimetric
inequality, as already used repeatedly, while (5.27) follows from the isoperimetric inequality
by the argument used in proving (5.20). Concerning (5.28), by Dido’s inequality L(³i) g
√

2Ã |Ai| with |Ai| f 1/2 for each i we obtain

L(³) g
:
2Ã

k
∑

i=1

√

|Ai| g 2
:
Ã

k
∑

i=1

|Ai| = 2
:
Ã |Ã(³, t)| ,

where in the last identity we have taken into account that, under our assumptions on ³,
all the Ai’s have the same sign. Finally, let us define Ã³ * Lip(S1;R2) by taking

Ã³ = [[³(t(1)), ³(t(2))]] ç [[³(t(2)), ³(t(3))]] ç · · · ç [[³(t(k21)), ³(t(k))]] ç [[³(t(k)), ³(t(1))]] .
Clearly L(³) g L(Ã³) and Ã³ is a polygonal curve with k vertexes. By the polygonal
isoperimetric inequality for immersed curves4 we have

L(Ã³)
2 g 4 k tan

(Ã

k

)

A(Ã³) = 4 k tan
(Ã

k

)(

A(³)2 Ã(³, t)
)

, (5.30)

where in asserting A(Ã³) = A(³)2 Ã(³, t) we have used |Ai| f 1/2 for all i = 1, ..., k.

Based on (5.26), (5.27), (5.28), and (5.29), we now set

gk(x, y) = a (k 2 6) + (12)1/4
(

y 2 2 min{1, x}
)

,

fk,1(x, y) = gk(x, y) + 2
:
Ãx ,

fk,2(x, y) = gk(x, y) + 2
√

Ã (x+ 2 y2) ,

fk,3(x, y) = gk(x, y) + 2
:
Ã |y| ,

fk,4(x, y) = gk(x, y) + 2

√

k tan
(Ã

k

)

√

(x2 y)+ .

Taking into account that each fk,i(·, y) is increasing on x g 1, and setting

fk = max{fk,1, fk,2, fk,3, fk,4} ,

4The point here is that πγ may not be injective, therefore we are not able to bound L(πγ) from below
by directly using the polygonal isoperimetric inequality for sets, namely (1.17)!
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we can conclude the proof of the reduced claim, and thus of the theorem, by showing that

inf
kg7

inf
[0,1]×R

fk > 0 , (5.31)

inf
R

f6(x, ·) > 0 , "x *
(

0,
1

5

]

, (5.32)

inf
3fkf5

inf
[1/100,1]×R

fk > 0 . (5.33)

To prove this we will combine different lower bounds on each the fk,i’s.

First lower bound: We prove the existence of a positive (computable) constant c0 such
that, for all k g 3,

fk(x, y) g c0 , "(x, y) * [0, 1] ×
{(

2>,25

2

]

*
[ 4

5
,>

)}

. (5.34)

Indeed, if k g 3, x * [0, 1], and y * R, then

fk(x, y) g fk,3(x, y) = 2
:
Ã |y|+ a (k 2 6) + (12)1/4 y 2 2 (12)1/4 x

g 2
:
Ã |y|+ (12)1/4 y 2 2 (12)1/4 2 3 a

This last function is non-negative if and only if (recall that a = 3/50)

either y g 2 (12)1/4 + (9/50)

2
:
Ã + (12)1/4

, or y f 22 (12)1/4 + (9/50)

2
:
Ã 2 (12)1/4

.

Taking into account that

2 (12)1/4 + (9/50)

2
:
Ã + (12)1/4

<
4

5
,

2 (12)1/4 + (9/50)

2
:
Ã 2 (12)1/4

<
5

2
,

we conclude that 2
:
Ã |y| + (12)1/4 y 2 2 (12)1/4 2 3 a is uniformly positive when either

y f 25/2 or y g 4/5.

Second lower bound: We prove that, for all k g 3,

fk(x, y) g fk,1(x, 0) "x * [0, 1] , y g 25

2
. (5.35)

Since fk g fk,1, this is obvious from the definition of fk,1 when y g 0 (one just drops the

term (12)1/4 y). Assuming now that y * [25/2, 0] we notice that

fk(x, y) g fk,2(x, y) = 2
√

Ã (x+ 2 y2) + a (k 2 6) + (12)1/4 y 2 2 (12)1/4 x

= 2
√

Ã (x+ 2 |y|) 2 (12)1/4 |y|+ a (k 2 6)2 2 (12)1/4 x

g 2
:
Ã x+ a (k 2 6)2 2 (12)1/4 x = fk,1(x, 0) ,

where in the last step we have used that

F (x, b) = 2
√

Ã (x+ 2 b) 2 (12)1/4 b2 2
:
Ã x g 0 , "(x, b) * [0, 1] ×

[

0,
5

2

]

. (5.36)

To prove (5.36) we just notice that, for every x g 0, F (x, ·) is concave on [0,>), so that

inf
[0,5/2]

F (x, ·) g min
{

F (x, 0), F
(

x,
5

2

)}

= min
{

0, F
(

x,
5

2

)}

.

Now, for every x * (0, 1] we have

F
(

x,
5

2

)

= 2
:
Ã
:
x+ 52 5 (12)1/4

2
2 2

:
Ã x ,

"F

"x

(

x,
5

2

)

=

√

Ã

x+ 5
2
√

Ã

x
< 0 ,
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so that

inf
0fxf1

F
(

x,
5

2

)

g F
(

1,
5

2

)

= 2
:
6Ã 2 5 (12)1/4

2
2 2

:
Ã >

2

5
.

This proves (5.36), and thus (5.35).

Third lower bound: Motivated by (5.35), we prove the existence of a (computable) positive
constant c1 such that

fk,1(x, 0) g c1 , "x * [0, 1] , if k g 9 , (5.37)

fk,1(x, 0) g c1 , "x *
[

0,
9

10

]

, if 7 f k f 8 , (5.38)

fk,1(x, 0) g c1 , "x *
[ 1

100
,
4

5

]

, if 3 f k f 5 , (5.39)

and also show that

f6,1(x, 0) > 0 , "x *
(

0,
9

10

]

. (5.40)

To prove this, let us notice that

fk,1(x, 0) = 2
:
Ãx+ a (k 2 6)2 2 (12)1/4 x = 2qk(

:
x) ,

where

qk(t) = 2 (12)1/4 t2 2 2
:
Ã t2 a (k 2 6) .

The roots of qk are given by

t±k =
2
:
Ã ±

√

4Ã + 4 a (k 2 6) 2 (12)1/4

4 (12)1/4
.

Thanks to a = 3/50 and k g 3 we have

4Ã + 4 a (k 2 6) 2 (12)1/4 g 4Ã 2 36

25
(12)1/4 > 9 .

Therefore both t±k are real, with

t2k < 0 < t+k , if k g 7 ,

t26 = 0 < t+6 ,

0 < t2k < t+k , if 3 f k f 5 .

In particular, if k g 6, then we have

{x g 0 : fk,1(x, 0) g 0} = [0, zk ] , (5.41)

where zk := (t+k )
2 =

Ã + a (k 2 6) (12)1/4 +
:
Ã
√

Ã + a (k 2 6) 2 (12)1/4

2 (12)1/2
,

while if 3 f k f 5, then (with zk as in (5.41))

{x g 0 : fk,1(x, 0) g 0} = [yk, zk] , (5.42)

where yk := (t2k )
2 =

Ã + a (k 2 6) (12)1/4 2:
Ã
√

Ã + a (k 2 6) 2 (12)1/4

2 (12)1/2
,

Exploiting a = 3/50 we find that if k g 9, then

zk g z9 =
Ã + (9/50) (12)1/4 +

:
Ã
√

Ã + (9/25) (12)1/4

2 (12)1/2
> 1 ,

and since the last sign is strict (and t2k < 0 for k g 7) we conclude that

inf
[0,1]

fk,1(·, 0) g inf
[0,1]

f9,1(·, 0) > 0 , "k g 9 . (5.43)
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For 8 g k g 6 we have

zk g z6 =
Ã

(12)1/2
>

9

10
, (5.44)

and the strict sign in (5.44), t2k < 0 if k = 7, 8, and t26 = 0, gives

min
k=7,8

inf
[0,9/10]

fk,1(·, 0) g inf
[0,9/10]

f7,1(·, 0) > 0 , (5.45)

and prove (5.40), respectively. Finally, for the remaining cases 3 f k f 5, we see that
k g 3 gives

zk g z3 =
Ã 2 (9/50) (12)1/4 +

:
Ã
√

Ã 2 (9/25) (12)1/4

2 (12)1/2
>

4

5
; (5.46)

moreover, by differentiation, t * [2, 6] 7³ yt is decreasing on [2, 6] and takes its minimum
value at k = 6 (y6 = 0), so that, for 3 f k f 5, we have

yk f y3 =
Ã 2 (9/50) (12)1/4 2:

Ã
√

Ã 2 (9/25) (12)1/4

2 (12)1/2
<

1

500
<

1

100
. (5.47)

Thanks to the strict signs in (5.46) and (5.47) we find that

inf
3fkf8

inf
[1/100,4/5]

fk,1(x, 0) > 0 . (5.48)

We conclude the proof of (5.37), (5.38), and (5.39) by setting

c1 = min
{

inf
[0,1]

f9,1(·, 0), inf
[0,9/10]

f7,1(·, 0), min
3fkf5

inf
[1/100,4/5]

fk,1(·, 0)
}

,

where c1 > 0 by (5.43), (5.45), and (5.48).

Conclusion of the proof: We conclude the proof of the theorem by proving (5.31), (5.32)
and (5.33). To begin with, we notice that (5.34), (5.35) and (5.40) imply (5.32).

Next, we prove (5.31). First of all, by (5.34), (5.35), and (5.37), we find that

inf
[0,1]×R

fk g min{c0, c1} > 0 , "k g 9 . (5.49)

that is (5.31) restricted to k g 9. Combining (5.49) with (5.34), (5.35), and (5.38), we see
that to complete the proof of (5.31) we are left to show that

min
k=7,8

inf
[9/10,1]×[25/2,4/5]

fk > 0 . (5.50)

We begin the proof of (5.50) by showing that

min
k=7,8

inf
[9/10,1]×[25/2,21/10]

fk > 0 . (5.51)

The idea is obtaining a positive lower bound on fk,2 all the way up to y f 21/10 under
the restriction x * [9/10, 1] (recall that (5.35) holds only up to y f 25/2, but on the wider
range x * [0, 1]). To this end, let us recall that, if y f 0, then

fk(x, y) g fk,2(x, y) = 2
√

Ã (x+ 2 |y|) 2 (12)1/4 |y|+ a (k 2 6)2 2 (12)1/4 x ;

now, fk,2(·, y) (y f 0) is decreasing on [1/2, 1] (and, thus, on [9/10, 1]) since

"fk,2
"x

(x, y) =

√

Ã

x+ 2 |y| 2 2 (12)1/4 f
√

Ã

1/2
2 2 (12)1/4 < 21 ,

therefore, for all y f 0 and k g 7,

inf
[9/10,1]

fk(·, y) g fk,2(1, y) g f7,2(1, y) = 2
√

Ã (1 + 2 |y|) + 3

50
2 (12)1/4 |y| 2 2 (12)1/4 .
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Since f7,2(1, ·) is concave on (2>, 0] we find

min
k=7,8

inf
[9/10,1]×[25/2,21/10]

fk g inf
[25/2,21/10]

f7,2(1, ·)

= min
{

f7,2

(

1,25

2

)

, f7,2

(

1,2 1

10

)}

g min
{ 3

10
,

3

100

}

.

(Notice that we cannot extend this lower bound to [25/2, 0] since f7,2(1, 0) < 0.) Having
proved (5.51), we next show

min
k=7,8

inf
[9/10,1]×[1/10,4/5]

fk > 0 . (5.52)

Working with fk,1, and using the fact that fk,1(x, y) is increasing in y and concave in x,
we find that

min
k=7,8

inf
[9/10,1]×[1/10,4/5]

fk g inf
[9/10,1]

f7,1

(

·, 1

10

)

g min
{

f7,1

( 9

10
,
1

10

)

, f7,1

(

1,
1

10

)}

g min
{1

4
,
3

50

}

,

thus proving (5.52). Thanks to (5.51) and (5.52), in order to prove (5.50), and thus to
conclude the proof of (5.31), we are left to show that

min
k=7,8

inf
[9/10,1]×[21/10,1/10]

fk > 0 . (5.53)

To this end we shall bound fk from below by using fk,4. We first notice that since x g 9/10,
y f 1/10, k 7³ k tan(Ã/k) is decreasing, and k g 7, we have

"fk,4
"x

(x, y) =

√

k tan(Ã/k)

x2 y
2 2 (12)1/4 f

√

7 tan(Ã/7)

(8/10)
2 2 (12)1/4 < 21 .

Hence
min
k=7,8

inf
[9/10,1]×[21/10,1/10]

fk g min
k=7,8

inf
[21/10,1/10]

fk,4(1, ·) . (5.54)

Next we notice that

fk,4(1, y) = 2

√

k tan
(Ã

k

)

√

12 y + a (k 2 6) + (12)1/4 (y 2 2) ,

is concave on y * [21/10, 1/10], with

f7,4

(

1,2 1

10

)

g 1

500
, f7,4

(

1,
1

10

)

g 7

1000
,

f8,4

(

1,2 1

10

)

g 1

50
, f8,4

(

1,
1

10

)

g 3

100
,

which, combined with (5.54), leads to (5.53). This completes the proof of (5.31).

We finally prove (5.33). Thanks to (5.34), (5.35), and (5.39), it is enough to show that

min
3fkf5

inf
[7/10,1]×[25/2,4/5]

fk > 0 . (5.55)

To this end, we first show that

min
3fkf5

inf
[7/10,1]×[25/2,23/10]

fk > 0 . (5.56)

Indeed, as already noticed in the proof of (5.51), for every y f 0, fk,2(·, y) is decreasing
on [1/2, 1]. In particular,

min
3fkf5

inf
[7/10,1]×[25/2,23/10]

fk g inf
[25/2,23/10]

f3,2(1, ·) ,

where we have also used that k 7³ fk,2(x, y) is increasing. Now,

f3,2(1, y) = 2
√

Ã (1 + 2 |y|)2 (12)1/4 |y| 2 3 a2 2 (12)1/4 ,
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is concave on y * [25/2,23/10], with

f3,2

(

1,25

2

)

>
1

10
, f3,2

(

1,2 3

10

)

>
1

50
,

so that (5.56) follows. We next prove that

min
k=3,4

inf
[4/5,1]×[23/10,1/5]

fk > 0 , (5.57)

inf
[4/5,1]×[23/10,19/100]

f5 > 0 , (5.58)

To this end, we start noticing that when 3 f k f 5, x g 4/5, and y f 1/5, we have

"fk,4
"x

(x, y) =

√

k tan(Ã/k)

x2 y
2 2 (12)1/4 f

√

3 tan(Ã/3)

3/5
2 2 (12)1/4 f 24

5
.

In particular, using the concavity in y of fk,4(1, y), we find

min
k=3,4

inf
[4/5,1]×[23/10,1/5]

fk g min
k=3,4

inf
[23/10,1/5]

fk,4(1, ·)

= min
k=3,4

min
{

fk,4

(

1,2 3

10

)

, fk,4

(

1,
1

5

)}

,

where

f3,4

(

1,2 3

10

)

g 7

10
, f3,4

(

1,
1

5

)

g 1

2
,

f4,4

(

1,2 3

10

)

g 1

10
, f4,4

(

1,
1

5

)

g 1

10
,

thus proving (5.57). In the case k = 5 we would like to repeat the same argument but,
unfortunately, f5,4(1, 1/5) < 0. This is why, when k = 5, we need to stop using the fk,4
bound a bit below y = 1/5. Stopping at y = 19/100 works, and we find

inf
[4/5,1]×[23/10,19/100]

f5 g inf
[23/10,19/100]

f5,4(1, y) g min
{

f5,4

(

1,2 3

10

)

, f5,4

(

1,
19

100

)}

,

where

f5,4

(

1,2 3

10

)

g 1

200
, f5,4

(

1,
19

100

)

g 1

1000
,

thus proving (5.58). Thanks to (5.56), (5.57), and (5.58), in order to deduce (5.55) (and
thus complete the proof of the theorem), we are left to show that

min
k=3,4

inf
[4/5,1]×[1/5,4/5]

fk > 0 , (5.59)

inf
[4/5,1]×[19/100,4/5]

f5 > 0 . (5.60)

Using that fk,1 is increasing in y and concave in x we find that

min
k=3,4

inf
[4/5,1]×[1/5,4/5]

fk g min
k=3,4

inf
[4/5,1]

fk,1

(

·, 1
5

)

g min
k=3,4

min
{

fk,1

(4

5
,
1

5

)

, fk,1

(

1,
1

5

)}

,

where

f3,1

(4

5
,
1

5

)

g 3

10
, f3,1

(

1,
1

5

)

g 1

100
,

f4,1

(4

5
,
1

5

)

g 2

5
, f4,1

(

1,
1

5

)

g 7

100
,

thus proving (5.59). Similarly,

inf
[4/5,1]×[19/100,4/5]

f5 g inf
[4/5,1]

f5,1

(

·, 19

100

)

g min
{

f5,1

(4

5
,
19

100

)

, f5,1

(

1,
19

100

)}

,
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where

f5,1

(4

5
,
19

100

)

g 2

5
, f5,1

(

1,
19

100

)

g 1

10
,

thus leading to (5.60). This completes the proof of the theorem. �

Appendix A. The isoperimetric inequality for immersed polygons

In the proof of Theorem 1.2, and specifically in the proof of Theorem 5.1, Section 5,
we have claimed that the isoperimetric inequality for k-gon (1.17) is valid for immersed

polygons (with the notion of oriented area used in place of the standard notion of area);
see (5.30). Since we have not been able to find a proof of this more general inequality in
the literature, we include one in this appendix.

We identify a generic immersed polygon with k-edges with an ordered collection Πk of
points pj * R

2, j = 1, ..., k. Setting pj = (xj , yj) for the coordinates of these points, with
pk+1 = p1 the perimeter and oriented area of Πk are given by

P (Πk) =
k

∑

j=1

√

(xj 2 xj+1)2 + (yj 2 yj+1)2 ,

A(Πk) =
1

2

k
∑

j=1

(xj yj+1 2 xj+1 yj) .

Theorem A.1 (Isoperimetry for immersed k-gons). For every Πk as above we have

P (Πk)
2 g p(k)2A(Πk) ,

where p(k) is the perimeter of a unit-area regular k-gon as defined in (1.18).

Proof. After scaling, we can prove Theorem A.1 by showing that the maximum of A(Πk)
under the constraint P (Πk) = 1 is achieved when Πk is a regular k-gon with unit-perimeter.
Clearly a maximum point Πk exists5 and satisfies A(Πk) > 0. As shown in [KP08, Leg18],
the fact that Πk is a critical point of A at P fixed implies that all the vertexes of Πk belong
to a circle or to a line, and since A(Πk) > 0, the first case holds. For some R > 0 we can
thus set pj = (R cos »j, R sin »j) for 1 f j f k. Setting

x c y if and only if x = y + 2Ã h for some h * Z ,

extending the definition of »j to every j * Z by setting »j+hk = »j for all j = 1, ..., k and
h * Z, and noticing that »j+1 6c »j for all j (for, otherwise, Πk would have less than k
edges), we see that

A(Πk) =
R2

2

k
∑

j=1

sin(»j+1 2 »j) , P (Πk) =
:
2R

k
∑

j=1

√

12 cos(»j+1 2 »j) .

Exploiting P (Πk) = 1 to solve for R, we come to define

a(»1, ..., »k) := 4A(Πk) =
N

D2
, where

Ëj = »j+1 2 »j , N =
k

∑

j=1

sin(Ëj) , D =
k

∑

j=1

√

12 cos(Ëj) .

We prove the theorem by showing that, at a maximum point of a, it holds Ëj c 2Ã/k for
all j.

5A compactness argument shows the existence of a maximizer with at least 3 and at most k edges.
To see that a maximizer has exactly k edges one notices that, should this not be the case, area could be
increased by first taking a “triangular variation” of one edge (thus adding one additional edge), and then
by rescaling so to preserve the perimeter constraint.
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Step one: We prove that

Ëj c Ë1 , if j is odd , (A.1)

Ëj c Ë2 , if j is even . (A.2)

To this end, it will suffice to show

»j 2 »j21 c »j+2 2 »j+1 , "j . (A.3)

We start by computing (recall that Ëj 6= 0 for all j)

"a

"»j
=

cos(Ëj21)2 cos(Ëj)

D2
+
N

D3

{ sin(Ëj21)
√

12 cos(Ëj21)
2 sin(Ëj)

√

12 cos(Ëj)

}

.

Since cos(x) = cos2(x/2) 2 sin2(x/2) implies
√

12 cos(x) =
:
2 | sin(x/2)|, using also

sin(x) = 2 sin(x/2) cos(x/2), we find that

sin(Ëj)
√

12 cos(Ëj)
=

2 sin(Ëj/2) cos(Ëj/2):
2 | sin(Ëj/2)|

=
:
2Ãj cos

(Ëj

2

)

where we have set Ãj = sign(sin(Ëj/2)). Hence,

D3 "a

"»j
= D

{

cos(Ëj21)2 cos(Ëj)
}

+
:
2N

{

Ãj cos
(Ëj

2

)

2 Ãj21 cos
(Ëj21

2

)}

.

The condition that a achieves its maximum at (»1, ..., »k) thus implies that

cos(Ëj)2 cos(Ëj21)

Ãj cos(Ëj/2)2 Ãj21 cos(Ëj21/2)
=

:
2N

D
, "j = 1, ..., k , (A.4)

where, notably, the right-hand side is independent of j. By cos(x) = cos2(x/2)2sin2(x/2) =
2 cos2(x/2)2 1 and thanks to Ã2j = 1, we find that

cos(Ëj)2 cos(Ëj21) = 2
(

cos2(Ëj/2)2 cos2(Ëj21/2)
)

= 2
(

Ãj cos(Ëj/2) 2 Ãj21 cos(Ëj21/2)
) (

Ãj cos(Ëj/2) + Ãj21 cos(Ëj21/2)
)

,

which combined into (A.4) gives

Ãj cos
(Ëj

2

)

+ Ãj21 cos
(Ëj21

2

)

=
N:
2D

, "j = 1, ..., k .

In particular, for all j = 1, ..., k,

Ãj+1 cos
(Ëj+1

2

)

+ Ãj cos
(Ëj

2

)

= Ãj cos
(Ëj

2

)

+ Ãj21 cos
(Ëj21

2

)

,

that is (setting »0 = »k, Ë0 = Ëk, and Ã0 = Ãk)

Ãj+1 cos
(Ëj+1

2

)

= Ãj21 cos
(Ëj21

2

)

, "j = 1, ..., k . (A.5)

Let us now denote by tj the unique element of (2Ã, 0)* (0, Ã) such that tj c Ëj/2, so that
Ãj = sign(sin(tj)) and (A.5) takes the form

Ãj+1 cos(tj+1) = Ãj21 cos(tj21) , "j = 1, ..., k . (A.6)

If tj+1, tj21 * (0, Ã), then Ãj+1 = Ãj21 = 1, and cos(tj+1) = cos(tj21) implies tj+1 = tj21;
similarly, if tj+1, tj21 * (2Ã, 0), then Ãj+1 = Ãj21 = 21, and (A.6) gives again tj+1 = tj21;
finally, if, without loss of generality, tj+1 * (0, Ã) and tj21 * (2Ã, 0), then (A.6) gives
cos(tj+1) = 2 cos(tj21), which in turn implies tj+1 = tj21 + Ã. Looking back at the
definition of tj , this proves (A.3).

Step two: We prove that there is n * {1, ..., k 2 1} such that, for all j,

Ëj c 2Ã
n

k
, "j . (A.7)
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We have separate arguments depending on whether k is odd or even.

When k is odd, using first that k+1 is even in combination with (A.2), and then »j+k = »j
for all j, we find that

Ë2 c Ëk+1 = »k+2 2 »k+1 = »2 2 »1 = Ë1 ,

that is, Ë2 c Ë1 and thus, by (A.2) and (A.1), Ëj c Ë1 for all j. By repeatedly using this
fact we find

»1 = »k+1 c Ë1 + »k = Ë1 +

k
∑

j=2

(»j 2 »j21) + »1 c k Ë1 + »1 , (A.8)

that is, Ë1 c 2Ã (n/k) for some n * {1, ..., k}. Since Ëj 6c 0 for all j, it cannot be that
n = k, and the conclusion follows.

When k is even, using (A.2) and (A.1), in place of (A.8) we find

»1 = »k+1 = »1 +

k+1
∑

j=2

(»j 2 »j21) c »1 +
k

2
Ë2 +

k

2
Ë1 . (A.9)

In particular, there exists n * N such that

Ë1 + Ë2 = 4Ã
n

k
. (A.10)

Notice that n cannot be an integer multiple of k or of k/2 (for, otherwise, Ë2 c 2Ë1 would
imply that all the points pj lie on a same line, thus implying A(Πk) = 0). Without loss of
generality, we can thus assume that

Ë1 + Ë2 = 4 Ç , Ç := Ã
n

k
n = 1, ..., k 2 1 , n 6= k

2
. (A.11)

and use (A.2), (A.1), and (A.11) to find that

a(»1, ..., »k) =

∑k
j=1 sin(Ëj)

(
∑k

j=1

√

12 cos(Ëj))2

=
(k/2) (sin Ë1 + sinË2)

(k/2)2 (
:
12 cosË1 +

:
12 cosË2)2

=
2

k

sin(Ë1) + sin(4 Ç 2 Ë1))

(
√

12 cos(Ë1) +
√

12 cos(4 Ç 2 Ë1))2
.

Notice that, up to this point, we know that Ë1 6c 0 (because, otherwise, we would have
p1 = p2) and that Ë1 6c 4 Ç (because, otherwise, (A.11) would give Ë2 c 0 and thus
p3 = p2). Setting f(Ë) = g(Ë)/h(Ë)2 for

g(Ë) = sin(Ë) + sin(4 Ç 2 Ë) , h(Ë) =
√

12 cos(Ë) +
√

12 cos(4 Ç 2 Ë) ,

the fact that Πk maximizes A under the constraint that P = 1 implies that Ë = Ë1 is a
maximum point of the function f(Ë) over the open set Ω = {Ë * R : Ë 6c 0, 4 Ç}. Now, f
is differentiable in Ω, with

f 2(Ë) =
cos(Ë)2 cos(4 Ç 2 Ë)

h(Ë)2
2 2 g(Ë)

h(Ë)3

{ sin(Ë)

2
√

12 cos(Ë)
+

2 sin(4 Ç 2 Ë)

2
√

12 cos(4 Ç 2 Ë)

}

=
cos(Ë)2 cos(4 Ç 2 Ë)

h(Ë)2
2

:
2 g(Ë)

h(Ë)3

{

Ã
(Ë

2

)

cos
(Ë

2

)

2 Ã
(

2 Ç 2 Ë

2

)

cos
(

2 Ç 2 Ë

2

)}

,
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where we have used again
√

12 cos(x) =
:
2 | sin(x/2)| and sin(x) = 2 sin(x/2) cos(x/2),

and where we have set Ã(») = sign(sin »). By | sin »| = Ã(») sin » we find

h(Ë)3:
2

f 2(Ë) =
(

cos(Ë)2 cos(4 Ç 2 Ë)
){

Ã
(Ë

2

)

sin
(Ë

2

)

+ Ã
(

2 Ç 2 Ë

2

)

sin
(

2 Ç 2 Ë

2

)}

2
(

sin(Ë) + sin(4 Ç 2 Ë)
){

Ã
(Ë

2

)

cos
(Ë

2

)

2 Ã
(

2 Ç 2 Ë

2

)

cos
(

2 Ç 2 Ë

2

)}

= 22 sin(2 Ç) sin(Ë 2 2 Ç)
{

Ã
(Ë

2

)

sin
(Ë

2

)

+ Ã
(

2 Ç 2 Ë

2

)

sin
(

2 Ç 2 Ë

2

)}

22 sin(2 Ç) cos(Ë 2 2 Ç)
{

Ã
(Ë

2

)

cos
(Ë

2

)

2 Ã
(

2 Ç 2 Ë

2

)

cos
(

2 Ç 2 Ë

2

)}

.

The conditions on Ç in (A.11) guarantee that sin(2 Ç) 6= 0, and thus allow us to infer the
following identity from the fact that Ë1 is a maximum point of f on the open set Ω,

Ã
(Ë1

2

){

cos(Ë1 2 2 Ç) cos
(Ë1

2

)

+ sin(Ë1 2 2 Ç) sin
(Ë1

2

)}

= Ã
(

2 Ç 2 Ë1

2

){

cos(Ë1 2 2 Ç) cos
(

2 Ç 2 Ë1

2

)

2 sin(Ë1 2 2 Ç) sin
(

2 Ç 2 Ë1

2

)}

,

that is, by cos(³+ ³) = cos³ cos ³ 2 sin³ sin³,

Ã
(Ë1

2

)

cos
(

2Ç 2 1

2
Ë1

)

= Ã
(

2 Ç 2 Ë1

2

)

cos
(1

2
Ë1

)

. (A.12)

If both Ã’s in (A.12) have the same sign, then (by cos(x) = cos(y) if and only if x c y or
x c 2y) we either have

2Ç 2 1

2
Ë1 c

1

2
Ë1 , i.e. Ë1 c 2 Ç ,

which implies by (A.11) that Ë2 c 2Ç , and hence Ë1 c Ë2; or

2Ç 2 1

2
Ë1 c 21

2
Ë1 ,

which leads to 2 Ç c 0, in contradiction with (A.11). If, instead, the Ã’s in (A.12) have
opposite signs, recalling that cos(x) = 2 cos(y) = cos(y + Ã) if and only if x c y + Ã or
x c 2y + Ã, we either have

2Ç 2 1

2
Ë1 c

1

2
Ë1 + Ã , i.e. Ë1 c 2 Ç 2 Ã ,

which implies by (A.11) that Ë2 c 2Ç + Ã, and hence also Ë1 c Ë2; or

2Ç 2 1

2
Ë1 c 21

2
Ë1 + Ã ,

which leads to 2 Ç c Ã, again in contradiction with (A.11). We have thus proved that
Ë1 c Ë2. Combining this fact with (A.11) gives (A.7).

Conclusion: We have proved so far that there is n * {1, ..., k21} such that Ëj = »j+12»j =
2Ã n/k for all j. We are thus left to prove that n = 1. To this end we notice that

a(»1, ..., »k) =

∑k
j=1 sin(Ëj)

(
∑k

j=1

√

12 cos(Ëj))2
=

1

k

sin(2Ã n/k)

12 cos(2Ã n/k)
.

Since t 7³ sin(t)/(1 2 cos(t)) is decreasing for t * (0, 2Ã), and since Πk is a maximum
point of A under P = 1, we conclude that n = 1. �
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