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ON THE EMERGENCE OF ALMOST-HONEYCOMB STRUCTURES IN
LOW-ENERGY PLANAR CLUSTERS

M. CAROCCIA, K. DEMASON, AND F. MAGGI

ABSTRACT. Several commonly observed physical and biological systems are arranged in
shapes that closely resemble an honeycomb cluster, that is, a tessellation of the plane
by regular hexagons. Although these shapes are not always the direct product of energy
minimization, they can still be understood, at least phenomenologically, as low-energy
configurations. In this paper, explicit quantitative estimates on the geometry of such
low-energy configurations are provided, showing in particular that the vast majority of
the chambers must be generalized polygons with six edges, and be closely resembling
regular hexagons. Part of our arguments is a detailed revision of the estimates behind
the global isoperimetric principle for honeycomb clusters due to Hales [HalO1].
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1. INTRODUCTION

1.1. Overview. Honeycomb-like structures are commonly observed in physical and bio-
logical systems. While in some cases (e.g., in foams) their emergence is consequence of an
energy minimization property, in many other systems, like those resulting from geological
mechanisms (e.g., basalt columns), animal behavior (e.g., beehives) or animal morphology
(e.g., compound eyes of arthropods), what is observed results from complex processes lead-
ing to the formation of low-energy (rather than energy minimizing) configurations. This
fact provides the motivation to extend and adapt Hales’ isoperimetric theorem [HalO1],
which characterizes honeycomb clusters (i.e., tessellations of the plane by unit-area,
regular hexagons) as the only energy minimizing configurations under periodic boundary
conditions, to the case of low-energy configurations (and without the periodicity restric-
tion). In this paper, partly by a comprehensive review of Hales’” methods, we undertake
the analysis of such low-energy configurations. In rough terms, our main result (Theorem
1.2 below) states that every low-energy planar cluster with N-many unit-area, simply con-
nected chambers must be close, in a quantitative way as N — 0o, to an ideal honeycomb,
with a controlled number of defects and with a vast preponderance of almost-hexagonal cells;
and this, without said cluster being required to possess any energy minimizing property.

1.2. Isoperimetric clusters and Hales’ theorem. We frame our work in the setting
of Almgren’s theory of isoperimetric clusters [Alm76] as presented in [Magl2, Part IV].
Since we only consider planar clusters, we do not need to work with Borel sets and sets of
finite perimeter, and work directly with open sets with Lipschitz boundary E C R%. We
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denote by |E| the area (Lebesgue measure) of any such E, and by P(E) = H!(OF) its
perimeter (one-dimensional Hausdorff measure of its topological boundary).

Given N € N, N > 2, a planar N-cluster is a family & = {€(h)}}_, of mutually
disjoint, non-empty open sets £(h) C R? (the chambers of &) with finite area and
Lipschitz regular boundary. The area and perimeter of an N-cluster £ are then

N
El= (€D, [EMN)]) eRY,  P(€) = %ZP(f(h)) =H'(9€),
h=0

where £(0) = R2\ |Ji_, £(h) denotes the exterior chamber of £ (so that |£(0)| = +oc0),

and where 0€ = Uﬁ;l 0E(h) is the boundary of £. We say that £ is an isoperimetric
cluster if

P(€) < P(F), for all clusters F with |F| = |£];

and a unit-area isoperimetric cluster if, in addition, |E(h)| =1 for all h =1,...,N.

Notice that the chambers of an N-cluster are not assumed to be connected. A disjoint
family of N’-many open, connected subsets of R? with Lipschitz boundaries could thus be
regarded (in more than one way) as an N-cluster for different values of N < N’. From a
conceptual viewpoint, this is clearly a somehow flawed feature of the notion of N-cluster
used here. However, this feature is also crucially important for proving Almgren’s existence
theorem [Alm76] for isoperimetric clusters: for every v € RN with positive coordinates,
there exist isoperimetric N-clusters € with |E| = v; see [Magl2, Chapter 29].

This said, we have the following natural connectedness conjecture about isoperimet-
ric clusters:

1soperimetric clusters have simply connected chambers. (CC)

This conjecture is widely open. Its validity has been confirmed in the few cases (N = 2
[FAB193], N = 3 [Wic04], and N = 4 with equal areas [PT18, PT20]) where a complete
classification of isoperimetric clusters is known. One does not expect to carry this approach
much further, as obtaining characterizations of isoperimetric clusters with arbitrary values
of N and v seems out of question. The two basic facts about isoperimetric clusters that are
known for every N and v are the validity of Plateau laws (boundaries of isoperimetric
clusters consist of finitely many circular arcs/segments meeting in threes at 120-degrees;
see, e.g. [Magl2, Theorem 30.7]), and the local finiteness and constancy in v of the possible
diffeomorphic types of 9&; see [CLM16, Theorem 1.9)].

In his celebrated paper [HalO1], Hales presents an argument that serves to prove two
isoperimetric principles concerning “honeycombs”. The first one states that, if a,b > 0
are such that the flat torus R?[a,b] of width a and height b admits a tiling H by N unit-
area, regular hexagons, then H is the unique unit-area isoperimetric N-cluster (modulo
translations); see [CM16] for a quantitative analysis of this isoperimetric principle. The
second one states that if £ is a unit-area isoperimetric N-cluster in R?, then!

Y(N)> (124N, VYN>2, (1.1)
where we have set
Y(N) = P(En),
(En a generic unit-area isoperimetric N-cluster) .
1By a slight refinement of Hales’ argument, (1.1) can actually be improved to ¢¥(N) > (12)1/4 N+Ko VN
with Ko = v/7—v/3/v/2 = 0.84. Such refinement simply consists in applying “Dido’s inequality” to quantify

the size of some non-negative terms that were just discarded in Hales’ original presentation; see the proof
of [HMO04, Theorem 2.1].



FIGURE 1.1. The idea behind the low-energy condition (1.3) is that it identifies
unit-area N-clusters whose “internal perimeter” is comparable to that of an v/ N x
V/N-chunk of ideal honeycomb, and whose “external perimeter” is comparable
to /N (i.e., the square root of the area of the bulk of the cluster). Unit-area
locally minimizing clusters may fail to satisfy this condition. For example, the
N-cluster depicted here satisfies, for some rg > 0, the local isoperimetric property
P(&) < P(F) for every F with |F| = |&| with diam(F(R)AE(h)) < 7o, h=1,..., N;
but it does not satisfy (1.3) — as it can be seen, for example, by looking at its
external perimeter, which is O(N), compare with (1.13) in Theorem 1.2.

The energy bound (1.1) is the only evidence towards a second fascinating, challenging,
and largely unexplored honeycomb conjecture:

unit-area isoperimetric N -clusters with N large He
should locally coincide with honeycombs . (HC)
To understand the connection between (1.1) and the honeycomb geometry, we notice that,
starting from a unit-area regular hexagon H, one can add a first complete layer of unit-area
regular hexagons around H (which, when complete, results in a cluster of N = 7 unit-area
regular hexagons), then a second complete layer (which, when complete, results in a cluster
of N = 19 unit-area regular hexagons), and so on. For every N > 2 one can smooth out
the exterior edges of such clusters into circular arcs. The resulting construction, detailed
in [HMO04, Theorem 2.1], gives

W(N) < (12)V* N+ MyvVN+3, VYN>2, (1.2)

(where My =7 /A(l)/ ? ~1.95 and Ay = 3v/3/2 is the area of a regular hexagon of unit side
length). The upper bound (1.2) on 1(N) implies the sharpness of (1.1), and clarifies its
connection with the honeycomb geometry.

1.3. Low-energy clusters and main result. Motivated by (1.2), we say that a planar,
unit-area N-cluster £ is a low-energy cluster with exterior energy density M, if

PE) <12V N+ MVN. (1.3)

This condition amounts in asking that that the “bulk” of the cluster £, that is, the set
E =R?\ £(0), has perimeter P(E) = O(y/|E]), while the “internal perimeter” of £, that
is, the length of O€ due to interfaces OE(h) NOE (k) with h # k, h, k # 0, is approximately
that of an v/ N x v/ N-chunk of the ideal honeycomb .

By (1.2), unit-area isoperimetric clusters satisfy (1.3). At the same time, (1.3) rules out
many N-clusters that are only locally, but not globally, isoperimetric, and that may fail
to look like honeycombs; see Figure 1.1.

In summary, (1.3) identifies a large class of N-clusters which, although not possessing
any isoperimetric property, may still be expected, for N large, to be close to honeycombs.
Our main result confirms this expectation in a class C(IN, M) of planar unit-area N-clusters
that contains every unit-area isoperimetric N -cluster with simply connected chambers (i.e,
every unit-area isoperimetric cluster, should conjecture (CC) hold true); see Remark 1.1
below.
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We say that a unit-area N-cluster £ in R? belongs to C(N, M) if:

(C1) each £(h) has finitely many connected components {E;l};v:hl, called cells (of E(h)
or of £, depending on the context); each cell of £ is simply connected;

(C2) the boundary of each cell EJh consists of finitely many bounded Lipschitz injective
curves, called edges (of E]h or of £, depending on the context); endpoints of edges
are called vertexes;

(C3) each vertex is the endpoint of ezxactly three edges, and each cell has at least two
edges;

(C4) the boundary O of £ is connected and satisfies (1.3), that is

PE) < (124N +MVN;
(C5) denoting by k? = k:;’(é') the number of edges of the cell E;l of £, we require that

1>
100

Remark 1.1 (The class C(/N, M) and isoperimetric clusters). If £ is a unit-area V-
isoperimetric cluster, then: (i) each chamber of £ has finitely many connected components,
so that the first part of (C1) holds true; (ii) each cell of £ is bounded by finitely many
circular arcs/segments, therefore (C2) holds true; (iii) the validity of (C3) is a simple con-
sequence of the Plateau laws; (iv) a sliding argument shows that 0€ is connected, so that
&€ satisfies (C4) thanks to (1.2). As a consequence, if each chamber £(h) of £ has just one
single (simply connected) component E¥, then (C1) and (C5) hold true (with |E}| = 1),
and €& € C(N, M) for some M. In summary, every unit-area N -isoperimetric cluster with
simply connected chambers is an element of C(N, M) for some M.

|E} if 2 <K <6. (1.4)

As a last step towards the statement of our main result we introduce the following
notation. For & € C(N, M) we introduce the family Hex(€) of those (indexes of) chambers
of £ that are connected and have six edges,

Hex(£) = {h N =1,k = 6} , (1.5)

and, for each k > 2, the family Chy(&) of those (indexes of) chambers of £ having at
least one cell with k-sides

Chy(€) = {h :3j € {1,y N} st kP = k:} (1.6)
We also define the exterior perimeter of £ by setting
Pt (€) := P(EY), (1.7)

where, we recall, E? is the unique connected component of the exterior chamber £(0) with
infinite area; the number of exterior edges of £ is defined by setting

edgee (£) = ki ; (1.8)
and the interior void of £ as
Evoid := £(0) \ EY. (1.9)

(Notice that this set must have finite area). Finally, we denote by
d pex (E) = inf {|EA(x +retl[H])| :z € R, 0 €[0,2n], 12 = |E|} , (1.10)

the distance in area of E C R? from a regular hexagon with area |E| (here H denotes a
reference unit-area regular hexagon and e the angle § counter-clockwise rotation of R?
around the origin). With this terminology in place, we state our main theorem.



Theorem 1.2 (Honeycomb-like structure of low-energy clusters). There exists a com-
putable constant Cy with the following property. If N > 2 and € € C(N, M), then

#Hex(€) > N-CoMVN, (1.11)
with
1 , _ CoM
T Ton(@) he%{(ﬁ) dnex(E()* <~ (1.12)
and
Pext(€) < CoM VN, (1.13)
edge,(£) < CoM VN, (1.14)
Evoid] < CoM VN, (1.15)
# Chi(€) < %\/ﬁ (1.16)

Finally, there is at least one k <5 such that Chy(€) # @.

Remark 1.3. Conclusions (1.11) and (1.12) state that the the vast majority of the cham-
bers of £ are (simply) connected, posses six curvilinear edges, and are close to be regular
hexagons. Conclusion (1.13) implies that only a very small fraction of the total cluster
perimeter P(£) = O(N) is used to compound the bulk of the chambers of £. Given con-
clusion (1.13), conclusion (1.14) indicates that the generic external edge of £ must have
length of order one. Simple examples show that all these conclusions are sharp in the class
C(N,M).

Remark 1.4 (Connection with the connectedness conjecture). Thanks to Remark 1.1,
should one be able to prove the validity of the area lower bound (1.4) for the cells of
isoperimetric clusters, then conclusion (1.11) in Theorem 1.2 would imply, in particu-
lar, a partial answer to the connectedness conjecture (CC), namely, that for a unit-area
isoperimetric N-cluster, (N — O(v/N))-many chambers are connected.

1.4. Hales’ hexagonal isoperimetric inequality and strategy of proof. The proof
of Theorem 1.2 is based on a careful extension of the methods developed by Hales in
[HalO1]. The key result in Hales’ paper is an inequality for immersed planar curves, called
here Hales’ hexagonal isoperimetric inequality, see (1.27) below. The key step in proving
Theorem 1.2 is obtaining a quantitative improvement of Hales’ hexagonal isoperimetric
inequality. Thus, in order to illustrate our strategy of proof, we need to introduce Hales’
hexagonal isoperimetric inequality.

Hales” hexagonal isoperimetric inequality is a direct improvement of the hexagonal
isoperimetric inequality. Denoting by Pol; the family of planar polygons with k-sides
(k-polygons) and by p(k) the perimeter of a reference unit-area regular k-polygon, the
k-polygonal isoperimetric inequality states that

P(I1) > p(k) /], VI € Poly, (1.17)
with equality if and only if IT is a regular k-polygon. Here p(k) is explicitly given by

p(k) =2+/k tan(w/k) . (1.18)

The case k = 6 of (1.17) is of course the hexagonal isoperimetric inequality,

P(II) >2(12)Y* /|,  VII € Polg, (1.19)
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with equality if and only if IT is a regular hexagon. Now, on noticing that ¢t +— 2/t tan(7/t)
is strictly decreasing and convex, and setting

p(k) — p(6)

alh) = P2 PR vk,
(so that a(k) > 0), we can deduce from (1.17) that if a € (a(7),a(5)), then
PI) +a(k—6)>2(12)Y* /],  ViIe | Pol, (1.20)
k=3

with equality if and only if IT is a regular hexagon. This is of course a rather trivial
generalization of (1.19), but it is already sufficient to prove the lower bound P(£) >
(12)4 N on the special class of unit-area polygonal Plateau-type N-clusters &
whose chambers have unit area and consist of finitely many connected polygonal cells,
and whose vertexes are the endpoints of exactly three segments. Indeed, since all the cells
E]h of & with (h,j) # (0,1) are polygons with finite area, we can apply (1.20) on them.

Denoting by k:;L the number of sides of E]h, we thus find that
2P(E)> Y PEHz=202Y > \IEM+a D (6-k). (121)
(h,j)#(0,1) (h,5)#(0,1) (h,j)#(0,1)
On the one hand, since |E]h| < |E(h)| =1 for h =1,..., N implies |E]h| < |E;1|, we get

Z \/\Eih Z\/@Jr 3 \/@>Z\/@+Z\S >N, (1.22)

h,j)#(0,1) (h,g), h#0

On the other hand, counting that each vertex of € is the endpoint of three segments, we
can associate to O€ a regular graph on S? with numbers of faces F', edges F, and vertexes
V given by

N N Nh 2
F=) N, E = ZZ V:§E,
h=0 h 05=0
so that, by Euler’s formula 2=V — EF + F,
N Nh N Nh
ZZkthZNh, thatis 12=Y Y (6—k}),
h 075=0 h=0 j5=1
and thus
Yo (6-E)=6+k. (1.23)

(h,7)#(0,1)

The combination of a > 0, (1.21), (1.22), and (1.23) gives P(£) > (12)"/4 N for every
unit-area polygonal Plateau-type N-cluster £ as defined above.

The above argument, due to Fejes T6th [FT43], has been presented in detail since the
class of unit-area isoperimetric N-clusters £ considered in Hales’ isoperimetric principle
(1.1) is actually not that far from the class of unit-area polygonal Plateau-type N-clusters:
the only difference is that, in the former case, cells may be bounded by circular arcs
(with possible non-zero curvature) rather than just by segments (as in the latter). Hales’
hexagonal isoperimetric inequality consists of an extension of (1.20) that suffices to repeat
Fejes Toth’s argument on isoperimetric clusters.

The following notation will be needed in stating Hales’ hexagonal isoperimetric inequal-
ity. Given s,t € St = {2z € C: |z| = 1}, s # t, we denote by [s,?] the set of points in S
obtained by moving from s to t in the orientation of S' induced by €'?. We say that I is



’Y|[s,t]

. v(t)
[s,1] [y (£),7(s)]
/. v(s)

FIGURE 1.2. In the example in the picture, the quantity a(7,s,t) defined in
(1.24) is obtained by subtracting the areas depicted in light grey from the areas
depicted in dark grey.

an interval of S!, if I = S! or I = [s,t] for some s # t. If v € Lip(I; R?), then we denote
by L(7) and A(7) the length and oriented area of v, defined by setting

Ly) = /I W (Oldt,  A) = / wdy = /I 2O (2) () () dt
Y

(Here and in the following 2@ is the i-th component of 2 € R2. Also, with this convention,
if v(0) = e'? (9 € S1), then A(y) = m, and if y(8) = e7*? (§ € S!), then A(y) = —n.) Given
z,y € R? we denote by [x,y] a constant speed parametrization (over a closed interval in
S1) of the segment {tx + (1 —t)y : t € [0,1]}. With this notation, given v € Lip(S'; R?)
and [s,t] C S, we introduce the signed secant area of v over [s,t] by setting

a(77 S t) =A (7|[s,t}) +A ([[’}/(t), 7(8)]]) ; (1'24)

see Figure 1.4. Finally, given k > 2, we say that t : {1,....,k} — S! defines an ordered
k-partition of S! if, for every i = 1,...,k— 1, [t(i),t(i +1)] does not contain any t(j) with
j # i,i+1. Denoting by Py, the set of ordered k-partitions of S!, and setting t(k+1) = t(1)
if t € Py, we define a functional

o: Lip(Sl;R2) X P — R,
by taking

o(vy,t) = zk:min {%,max{ - %, a(*y,t(z'),t(i + 1)) }} . (1.25)
i=1

Thus o(v, t) is obtained by adding up the signed secant areas defined by ~ and the nodes
of the ordered k-partition t, truncated in the interval [—1/2,1/2].

Theorem A (Hales’ hexagonal isoperimetric inequality, [Hal01]). There ezists a constant
a > 0 with the following property. If k > 2, (v,t) € Lip(S;R?) x Py, and

A(vy) = % (1.26)
then
L(Y) +a(k—6)+ (12)"* o(~,t) > 2(12)* min{1, A(y)} (1.27)

with equality if and only if (7y,t) corresponds® to a unit-area reqular hexagon.

Remark 1.5. (i): Hales proves (1.27) with a = 0.0505. Notice that this choice satisfies
a € (a(7),a(5)), and is thus admissible in (1.20). In particular, when v parameterizes the
boundary of a unit-area polygon and t ranges through the vertexes of that polygon, then
(1.27) boils down to (1.20); (ii): One cannot take a different value than (12)'/* for the

2That is, 7 is an injective parametrization of the boundary of a unit-area regular hexagon and
{7(t(2))}s=1 are the vertexes of said hexagon.
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constant in front of o(,t): this can be verified by taking k = 6, v a parametrization of a
unit-area regular hexagon H, t ranging through the vertexes of H, and then modifying ~
by taking small circular variations of the edges of H and subsequent rescalings; (iii): The
inequality cannot hold with A(~) in place of min{1, A(7y)} because of the different scaling
of L(y) and A(y) — of course, a variant of (1.27) with /A(7) in place of min{1, A(y)}
would have looked more natural; (iv): taking k& < 6, and testing (1.27) with ¢+ in place
of 7, we eventually obtain a contradiction as ¢t — 0T; this is why a lower bound on A(7)
must be assumed.

Remark 1.6 (Proof of (1.1) and assumption (1.26)). It seems useful to recall how Theorem
A is used in proving (1.1), as this point allows us to illustrate the reason for the particular
form (1.26) of the lower bound on A(7y) assumed in Theorem A. To this end, let us introduce
the functional

N
§(F)=P(F)—(12)'* Y min{1,[F(h)|} .  F an N-cluster.

h=1
When £ is a unit-area isoperimetric N-cluster, then §(€) = P(£) — (12)"/* N, and (1.1) is
equivalent to 6(€) > 0. As Hales argues in [Hal01, Remark 2.7], if a cell E;l of £ is such that
|E]h| < 2%/(\/§(k?)2), then a new N-cluster F can be defined so that 6(F) < 6(€) and
F(h) has one less cell than £(h) (one simply has to add EJh to a cell EI™, m # h, sharing
with E]h its longest edge). In finitely many steps, one constructs an N-cluster I such
that §(T') < §(E), each cell of T' is simply connected and satisfies |G?| > 27r/(\/§(k:;’)2)
Theorem A can then be applied to each cell of ', and, adding up over the number of cells,

Fejes T6th’s argument can be repeated with minor modifications to conclude that §(T"),
thus 6(&), is positive (compare with the proof of Theorem 1.2).

Coming back to the presentation of the proof of our main result, Theorem 1.2, the key
ingredient will be obtaining the following quantitative improvement of Hales’ hexagonal
isoperimetric inequality (1.27).

Theorem 1.7 (A quantitative Hales’ hexagonal isoperimetric inequality). There exist
positive constants a1, as, and ag such that, setting as(k) =0 if k # 6 and a3(6) = as, then
the following holds. If k > 2, (v,t) € Lip(S'; R?) x Py, v is injective, A(vy) < 1, and

AG) > o5, Sk, (1.28)
then
L(y) + a1 (k= 6) + (12)* o (y,t) > 2(12)1/* A(5)
+ az [k — 6| (1.29)

+ as(k) {dnex(B,)? + (1 = A0 |

where E., denotes the bounded connected component of R2\ (S') defined by v according
to Jordan’s theorem.

Remark 1.8. (i): With respect to assumption (1.26) of Theorem A, we assume no lower
bound on A(y) when k& > 7, and we weaken the lower bound on A(y) > 27/(v/3k?) when
2 <k <6 (indeed 27/(v/3 (62)) > 1/10); (ii): A more cosmetic than substantial change is
the replacement of the term 2 (12)Y/4 min{1, A(y)} in (1.27) with the term 2 (12)'/4 A(~)
in (1.29). By Remark 1.5-(iii), this change calls for adding the assumption A(vy) < 1; (iii):
The second and third term on the right-hand side of (1.29) quantify the distance of (7, t)
from corresponding to a unit-area regular hexagon (unique equality cases of (1.27)).



1.5. Organization of the paper. In Section 2, Theorem (1.2) is deduced from Theorem
1.7. After a brief introduction of the arc function in Section 3, the rest of the paper is thus
concerned with the proof of Theorem 1.7, which is broken down in two sections. In Section
4 we present the part of the argument making use of quantitative isoperimetry methods,
while in Section 5 we present the part of the argument which follows more closely [Hal01].
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2. FROM THE QUANTITATIVE HALES’ INEQUALITY TO THE MAIN THEOREM

In this section we show how to deduce Theorem 1.2 from Theorem 1.7. We shall use
“Dido’s inequality”: if a curve of length £ bounds an area a with its chord, then ¢ > /27 a.
This is easily proved by reflecting the circular arc with respect to the chord and by applying
the isoperimetric inequality to find 2/ > 2\/%\/%.

Proof of Theorem 1.2. Let £ € C(N, M), let {E?};V:hl be the cells of the chamber £(h), and

let k:;L be the number of vertexes of EJh (see the defining properties (C1)—(C5) of C(N, M)
for the notation and terminology used here). For each cell E]h we can find an injective
fyjh € Lip(S';R?) and t? € Pyn such that:

J

(i): ’y]h(t?(z)) is the i-th vertex of EJ}-L;
(ii): if (h,j) # (0,1) (and thus EJh is not the cell EY of £ with infinite area), then the
orientation of %h can be chosen so that A(’y]h) = |E]h| and L(fy]h) = P(E]}-’);
(iii): the orientation of 4{ is such that
Y. ot = o t]), (2.1)
(h.3)#(0,1)

where we are using the cancelations due to opposite orientations along each internal edge
of £.

By (ii), since P(E]h) = L('y]}-’), we notice that
2P(E)=PEY)+ Y L0, (2.2)
(h.3)#(0,1)

and bound from below the two terms on the right-hand side as follows. Concerning P(EY),
setting for brevity

Ai=a (’Y(l)vt(l)(z)at(l)(z + 1)) )
(see (1.24)) and applying Dido’s inequality, we find that

0 K it K9
ij—;) > V1A 2 ) Vmin {1/2,[4,]} > Y min {1/2,[4;]} > [o(47,¢9)]. (2:3)
=1 i=1 i=1
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Assumption (1.28) of Theorem 1.7 holds for each ’y]h with (h, j) # (0,1) thanks to property
(C5). We can thus apply (1.29) to each fyjh and adding up the results we find

Soahz Y {a6-k) -2 enhth) (2.4)
(h,g)#(0,1) (h.g)#(0,1)

+ > {202 1B + a0 K] - 6] + as(k]) (dnex(E))? + (1= [E}]) }
(h,g)#(0,1)

Property (C3) of C(N, M) ensures that we can repeat Fejes Téth’s argument to deduce
(1.23), that is 3, 5 2(0,1)(6 — k]h) = 6 + k7. Combining this last identity,

Y. BN =N+l
(h.3)#(0,1)
(recall (1.9)), and (2.1) into (2.4), and then recalling (2.2), we find that
2P() 2 202N +2(12)Y* [Evoia| + P(E)) + (12)/* 0(1], 8) + a1 (6 + &7)
+ Y a6t atd) (BP0 1B} @25)
(h.3)#(0,1)
Now, taking into account that v/2w — (12)%/% > 0, thanks to (2.3) we find that
V2 — (12)1/4
2V2r
By combining (2.5) and (2.6) with the low-energy condition P(£) < (12)Y* N + M /N,
we immediately deduce
2(12)Y* [Evgial + a1 (6 + k) + co P(EY) + a2 Y |kl —6] <2M VN,  (27)
(h.5)#(0,1)
3 as(kh) (dhex( M2 4 (1 - |Eh|)) <2MVN. (2.8)
(h.3)#(0,1)
Conclusions (1.13), (1.14), (1.15), and (1.16)
[k — 6| #(Chy () < > |k} — 6.
(h,5)#(0,1)
To prove (1.11) and (1.12), we begin by noticing that Hex(E) = I; N Is where

P(EY) +(12) " o(1],t]) = 2c0 P(EY),  if o= (2.6)

follow immediately from (2.7) and

_ {h k=6, V) e {1, ...,Nh}} ,

- {h Ny, = 1} .
Now, by (2.7), setting I = {1,..., N}, we find
#U\NL)< D> K -6[< > |k -6l<CMVN,
{(h.j):k]#6} (h.j)#(0,1)
and, similarly, by (2.8), we obtain
CMVN > > (1—|EM) ZZ (1 - |Eh)
{(h,4)#(0,1):k} =6} hel j=1

= > (No—1)>#(L\ D).

hely
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(a) (b)
20R
arc({, x) /\
0
Y/ P CE T >
2R sinf

FIGURE 3.1. (a) arc(¢,z) is defined as the length of a circular arc (depicted
in bold) subtending a chord of length ¢ and including a secant area z; (b) An
implicit formula for arc; on the interval [0,7/2] can be obtained by referring to
this picture. The second argument of arc in (3.5) is obtained by subtracting the
area of a rectangle with sidelengths R sinf and R cosf from the area 6 R? of an
angular sector whose amplitude equals 2 6 radians.

We thus conclude that
#Hex(£) = #(0) = #(I \ L) =#] = #(I\ L) - #(1 \ ) > N = CM VN,
that is (1.11). Of course, (1.12) follows immediately from (1.11) and (2.8).

Finally, let us assume, by way of contradiction that k:;L > 6 for all (h,j) # (0,1). In
this case, k]h — 6 being non-negative for every (h,j) # (0,1), we can go back to (2.4) and
apply a version of (1.29) where, in place of aq, an arbitrarily large constant L appears.
Correspondingly, in place of (2.7) we now deduce an inequality that implies, in particular,
6 L < M +/N. By taking L large enough in terms of M and N we obtain a contradiction.

O

3. THE ARC FUNCTION

Starting from the next section we will make repeated use of the function
arc({, x), £>0,2>0,

defined as the length of a circular arc subtending a segment of length ¢ and bounding a
region of area . Clearly arc(0,z) = 2 /7 /7 is the isoperimetric profile of R%. By scaling,

arc({,z) = Larc (1, %2) , Vi>0,2>0, (3.1)
so that we can directly focus on arc; = arc(1,-). We claim that
arc) > 0 on (0,00) with arc;(0) = 1, arcq(4+00) = 400, (3.
arc)(0) =0, arc{(0) =12, (3.
arc{ > 0 on [0,7/8) and arc/ < 0 on (7/8,00). (3.

)
)

= W N
~

~—

We can obtain implicit formulas for arc; that can be used in proving (3.2), (3.3), and (3.4
For example, by combining (3.1) with the identity

20R:arc(2Rsin9,R2(0—sin9 COSO)), 0e0,7/2],R >0, (3.5)

see Figure 3, we obtain the following implicit representation® of arcy on the interval [0, 7/8]:

—are(p(0)),  for p(g) = S snf cos?

4 sin? 6

— L 0el0,7/2]. (3.6)

3Notice that p is strictly increasing from [0, 7/2] to [0, 7 /8].
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(A similar construction can be used to represent arc; on [7/8,00).) By combining (3.6)
with a Taylor expansion we easily prove (3.3). Similarly, we can use (3.6) to prove (3.2)
and (3.4) on [0,7/8], and a representation of arc; on [7/8,00) can be used to complete the
proof of (3.2) and (3.4). Since this approach (although formally correct) is a bit obscure,
we prove (3.2) and (3.4) with the following argument, which seems more transparent. The
key remark is that by the variational definition of (mean) curvature (see, e.g., [Magl2,
Remark 17.6]), we have

Oarc .
—— (¢, x) = curvature of a circular arc

Ox (3.7)

enclosing an area x above a segment of length .

By (3.7) (with £ = 1) we see that arc) > 0 on (0,00), thus deducing (3.2). Moreover, as
x increases from 0 to 7/8 (with = 7/8 corresponding to # = /2 in Figure 3-(b)), we
see from (3.7) that arc) strictly increases from 0 to 2, thus establishing that arc{ > 0 on
(0,7/8); similarly, as x increases from 7 /8 to the limit value 400, we see from (3.7) that
arc) strictly decreases from 2 back to the limit value 0, so that arc] < 0 on (7/8,00).

4. PROOF OF THE QUANTITATIVE HALES’ HEXAGONAL INEQUALITY, PART ONE

In this section we begin the proof of Theorem 1.7. More precisely, we prove Theorem 1.7
conditionally to the validity of an improvement of Theorem A (Hales’ hexagonal isoperi-
metric inequality). This improvement of Theorem A will be established in Section 5 as
Theorem 5.1, and is based on a refinement of the arguments employed in [HalO1]. The
argument presented in this section, instead, makes use of a quantitative hexagonal isoperi-
metric inequality proved in [CM16, Corollary 2.2] (as an elaboration on [IN15, Corollary
1.3]), as stated in Theorem 4.1 below. In the following, given two closed sets C' and K in
R2, we denote by

hd (C, K) := max { sup dist(x, K) , sup dist(z, C)} ,
zeC rzeK
the Hausdorfl distance between C' and K.

Theorem 4.1. There exist positive constants ¢ and 1 such that if II C R? is a convex
hexagon with hd (II, H) <n for some regular hexagon H, then

P(IT) — 2 (12)/* \/|TI| > ¢|TIAH*|?,
for a regular hexagon H* with |H*| = |II].

Proof of Theorem 4.1. By [CM16, Corollary 2.2] (which is stated on the two-dimensional
flat torus, but obviously holds on the plane too) there exist positive constants ¢ and 7
such that if II € R? is a convex hexagon with hd (OI1,0H) < 7 for some regular hexagon
H, then, for a regular hexagon H* with |H*| = |II|,

P(IT) — 2(12)"* \/|] > ¢ hd (911, 0H*)? .

Since hd (011, 0H) = hd (II, H), we conclude the proof by observing that, for a positive
constant C' (independent of II), it holds |[ITAH*| < C'hd (0Il,0H™). O

Proof of Theorem 1.7, part one. We prove Theorem 1.7 conditionally to the validity of
Theorem 5.1 (that will be proved in Section 5). Theorem 5.1 asserts the following:

There exist positive constants ai; and as with the following property. If k > 2, (vy,t) €
Lip(S'; R?) x Py, and

1
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then
L(Y) +ay (k—6) + (12)Y* (v, t) > 2(12)"/* min{1, A(Y)} + ag |k — 6], (4.2)
with equality if and only if (7y,t) corresponds to a unit-area reqular hexagon.

This statement implies Theorem 1.7 when k # 6. Therefore, for the remaining part of
the proof, we shall assume that £ = 6. We thus want to prove the existence of a positive
constant ag such that if (y,t) € Lip(S', R?) x Pg, v is injective, and

1> A(y) > ﬁ , (4.3)
then
L) +(12) 0(y,8) 2 2(12) /4 AQ) + a3 {duen( ) + (L= A(D) } . (44)

where E., denotes the bounded connected component of R?\ v(S!) identified by v (thanks
to Jordan’s theorem).

Step one: In this step we set, for (v,t) € Lip(S'; R?) x P,
8(v,t) = L(7) + (12 o(v,8) — 2(12)* A(v) (4.5)

and prove that for every € > 0 there is 6 > 0 such that, if 6(,t) < J, then there is a
unit-area, regular hexagon Hy with

max {hd (E,, Ho), hd (IL,.¢, Hy), \EVAHm} <e, (4.6)
where I1, ¢ is the convex envelope of {7(t(i))}%_,. Notice, in particular, that if ¢ is small
enough, then (4.6) implies that IL, ¢ is a convex hexagon.

We prove this arguing by contradiction, aiming at using our assumption that, under
(4.1), (4.2) holds, and thus §(v,t) > 0 with equality if and only if £ = 6 and (v,t)
corresponds to a unit-area, regular hexagon.

We thus consider e, > 0 and a sequence {(7j,t;)}; in Lip(S'; R?) x Pg with 1 > A(vy;) >
1/100, 6(v;,t;) — 0% as j — oo, and

max {i%f{max{hd (Ey,,H) hd (IL,, ¢, H)}} |E%.AHW].\} > ey, Vj. (4.7)

(Here H denotes a generic unit-area, regular hexagon.) Up to a reparametrization we can
assume that

L(v;)
Ivil = 27: on St. (4.8)

By [o(v;,t5)] < 1/2, A(y;) < 1, and 6(v,t;) — 0 we find that £ = sup; L(v;) < oo. By
(4.8), up to extracting subsequences and up to translations, there is v € Lip(S'; R?) such
that v; — 7 uniformly on S! and % 54" in L°(S'; R?): in particular,

Aoy = [ A6 = [ A0 = A (19)

as j — oo (here we are denoting by 2 the components of z € R?), and from the
corresponding bounds on A(v;) we find that

1
1> A > — .
Now, up to extracting subsequences, there is {s; : 1 <1 < 6} C S! such that, as j — oo,
tj(i) — s; for each i = 1,...,6. In particular, for each ¢ = 1,...6, and setting s7 = s1, we
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have s; < s;41 in the ordering of S'. To compute the limit of o(v;,t;) we start noticing
that

o (4, 6() & (i +1)) = /[t,(.)t,(m 7 ()@ 4 Al (8 + 1)), 7 (856D - (4.10)

Starting from (4.10) and thanks to the fact that v; — v uniformly on S' and % 24/ in
L>®(S';R?), we see that if s; < s;; 1, then
lim o (75, t5(i), 6;(i + 1)) = a(7, sis 1) 3

J—00

while if s; = s;41 but there is at least one ¢ # ¢ such that sy # sy 1, then
lim a(vj,t;(2),t;(0 + 1)) =0; (4.11)
Jj—o0
and, finally, if s; = s;41 for all 4, then there is ip such that (4.11) holds for all i # ip, and
Jim o (7,8 (0), t5(d0 + 1)) = A(7).

By using these three facts we conclude that, either s; = s;4.1 for all ¢ and

1
lim o(v;,t;) = min {—,A(’y)} , (4.12)
j—o0 2
or there exists 2 < k < 6 and t € P}, such that
lim o(y;,t;) = o(3,t). (4.13)
]—)OO

If we are in the case when (4.12) holds, then we deduce from the isoperimetric inequality,
5(vj,t5) >0, (4.9), and (4.12) that

2V7VAG) < L) < liminf L(y) < lim 2(12)/4 A(x) = (12 0(3.8;)

Jj—00
— 2(12)Y4 A(y) — (12)/4 min {%,A(y)} . (4.14)
Now, the function
F(z) =2vmx —2(12)Y* x4+ (12)Y4 min{z,1/2},

is concave on [0, 1], with F(0) = 0 and F(1) = 2y/7 — (12)/4 > 0, so that (4.14) implies
A(y) = 0 (a contradiction, as A(y) > 1/100). Therefore (4.12) never occurs, and by
combining (4.9) with (4.13), 6(v;,t;) > 0, and d(v;,t;) = 0 as j — oo we conclude that
0(y,t) = 0 for t as in (4.13). By our assumption, (,t) = 0 implies that £k = 6, 7 is a
monotone parametrization of the boundary of a regular, unit-area hexagon, {y(t(z))};_,
are the vertexes of such hexagon, and t;(i) — t(i) for 1 <i <6 as j = oo. Asy; — 7
uniformly on S' we conclude that

max { inf {max{hd (., H) ,nd (IL,, ¢, H)}} , | By, AT o, } = 0,

as j — 00, in contradiction with (4.7).

Step two: We conclude the proof of Theorem 1.7. Let (v,t) € Lip(S',R?) x Pg be such
that v is injective and 1 > A(y) > 1/100, and let E, be the connected component of
R? \ 7(S') identified by Jordan’s theorem (so that |E,| = A(y)). We want to prove the
existence of ag > 0 such that

6(7,8) > a3 {dex(B)? + (1= A() } (4.15)

Since dnex(Ey) < 2|E,| < 2,if 6(y,t) > 6 for some constant § > 0, then (4.15) holds for
every as < 0/5. For € > 0 to be chosen later, we select § > 0 depending on ¢ as determined
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in step one, and reduce to the situation when there is a unit-area, regular hexagon Hy
such that

max {hd (Ey, Ho), hd (I1, ¢, Hy), |E7AH%t|} <e, I1, ¢ is a convex hexagon. (4.16)

If we denote by x; the total area enclosed between the i-th (curvilinear) edge of E. and
the corresponding i-th edge of I, ¢, and by ¢; the length |y(t(i + 1)) — v(t(7))| of the i-th
edge of IL, ¢, then by (4.16) we have that, for some positive constant C,

)1/4

6
in + max ‘ <Ce (4.17)
1<i<6
i=1
where of course (12)1/ 4/3 is the length of one edge of a unit-area, regular hexagon. Since
(12)1/4/3 < 1, provided ¢ is small enough and by (4.17), we deduce that max; ¢; < 1. In

particular, using the scaling property (3.1) of arcy, and the fact that arc; is increasing on
[0,00) (recall (3.2)), we find that

Zi: c(l;, z;) = Zarq( ) Zﬁ al"Cl( )

By (4.17), up to further decreasing the value of ¢, we can ensure that max; z;/¢; < /8,
and then combine the convexity of arc; on [0,7/8] (recall (3.4)) with Jensen’s inequality
to conclude that

) > Zﬁ arc1< ) (Z E) arcy <Z’ 12) = P(IL,+) arc%%) . (4.18)

(Inequality (4.18) is strictly related to the chordal isoperimetric inequality found in [HalO1,
Proposition 6.1-A] and [Mor09, 15.5], although it does not seem to exactly fit in those
statements.) Now, by arci(0) = 1, arc}(0) = 0, and arc](0) = 12 (recall (3.2) and (3.3)),
we can find a positive constant C' such that

arci(z) >1+62> - Clz®,  Vre[0,1/2]. (4.19)

Since we have |E,AIL, ¢| — 0 and P(Il,4) — P(Hp) = 2(12)"/* in the limit ¢ — 07,
by further decreasing the value of €, thanks to (4.17), we can ensure that |E,AlL, ¢| <
P(I1,4)/2, and thus deduce from (4.18), (4.19), and (4.16) that

10) > P10 + (g7 -~ C¢) B AT, (1.20)

For 17 > 0 as in Theorem 4.1, up to further decreasing ¢ so to entail that hd (IL, ¢, Hy) < 7,
and thanks to the convexity of II, ¢, we can combine Theorem 4.1 with (4.20) to find that,
for some positive constant C,

I, ¢ AH,|? 3
L(y) >2(12)Y4 /|1, 4| + | %tc | + <(12)1/4 —Ce> |E,ATL, |, (4.21)

where H, is a regular hexagon with [H.| = |II,¢|. Now, let us recall that, by (4.3),
A(vy) > 0, so that, in particular, the orientation of ~ is such that A(y) = |E,|. Denoting
by o the operation of concatenating curves, we see that

Tye = [y(t(1), 7 (6(2)] o [v(£(2)),7(tB3))] © -+ o [v(t(6)),v(t(1)],

defines a Lipschitz map 7, ¢ € Lip(S!; R?) that, thanks to (4.16), maps injectively S' into
OIl, ¢, and in such a way that A(m,¢) = |IL, ¢|. By definition of A, 7, ¢, and of the secant
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oriented area functional « (recall (1.24)), we thus find that

k
[Ey| = T 6] = AWl ) — D AV 6(0), (G + 1))])
i=1

<.
o |l M?r
—

= N a(y,t(), t(i + 1)),

k=1

so that, up to decreasing the value of €, so to enforce from (4.16) that |a(vy,t(i),t(i+1))] <
|ELAIL | < 1/2, we conclude that

Mol = [Ey[ —a(y,t), (4.22)

Aiming at providing an efficient lower bound for the first term on the right-hand side of
(4.21), we use (4.22) to find that

IHW o(7,t) 1Ly ¢
VIl = 1B 2 = 1By 1= D22 (1B = 1By)) [ 2
! ! | Es| ! ! 2
/ U(%t — |E,|
= |E)|4/1- \/|TT 4.23
| “/| |E’Y| 1—|—\/‘E— 7.t ( )

o(v,t)  1—|E
> |E,|4/1— N - 07 (4.24)
Y

where we have decreased ¢ to ensure |II, ¢| > 1/2, and where C' is a positive constant. By
means of the Taylor expansion we find that
s 82 3
\/1—8:1—§—§+O(8), as s — 01, (4.25)

and use (4.25) with (4.24) to bound from below the first and the third term on the right
hand side of (4.21) as

3
2 (12)V4 /|TL, | + (W - 05) | B, ATL, |? (4.26)

1 - B
C

| 3
—2(12)1/4 (g - 05) o(7,t)? + <W - 05) |E,ATL, 4|2

>2(12)1 B, - (12)* o (7, 8) +

Therefore, up to further decreasing the value of €, we find that

3 2 (12)V/4
<
|U(77t)| = |E“/AH’Y,t|7 and (12)1/4 > ] )

we finally conclude from (4.21) and (4.26) that

2 2 .
L(y) > 2(12)Y4 | B, | + % 12 (b 4 BB i (0= 1B)
that is
Co(y,t) > [T e AH. > + B, ATL ¢ * + (1 — | E,) . (4.27)

Since dphex (Ey) < C (|IL, s AH*| + |E,AIL, ¢|), we easily see that (4.27) implies (4.4). O
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5. PROOF OF THE QUANTITATIVE HALES’ HEXAGONAL INEQUALITY, PART TWO

Thanks to the argument presented in Section 4, in order to complete the proof of
Theorem 1.7, and thus of Theorem 1.2, we are left to prove the following theorem.

Theorem 5.1. There exist positive constants a1 and as with the following property. If
k> 2, (y,t) € Lip(S};R?) x Py, and
A() >0 ifk=6,  A(y)>-—— if2<k<5, (5.1)
then
L(Y) +ay (k—6) + (12)Y* (v, t) > 2(12)"/* min{1, A(Y)} + ag |k — 6], (5.2)
with equality if and only if (7y,t) corresponds to a unit-area reqular hexagon.

Theorem 5.1 improves on Hales’ hexagonal isoperimetric inequality (Theorem A) since
it requires no lower bound on A(y) when k£ > 6 and weaker ones when 2 < k£ < 5, and
since, when k # 7, it provides the additional lower bound as |k — 6|. These improvements
are obtained by carefully revisiting Hales’ original argument, which is why the methods of
this section overlap with those of [Hal01].

Proof of Theorem 5.1. We make the following claim:

Claim: There are positive constants a and ¢ such that, if & > 2, k # 6, and (vy,t) €
Lip(S*; R?) x Py satisfies (5.1), then

L(Y) +a(k—6)+ (12)Y4 (v, t) > 2(12)"* min{1, A(Y)} + ¢; (5.3)
and, if (v,t) € Lip(S'; R?) x Pg with 1/5 > A(v) > 0, then
L(Y) + (12)Y4 (v, t) > 2(12)/* min{1, A()}. (5.4)

The claim implies the theorem: Indeed, when k = 6, Theorem A implies that
L(y) + (12)* o(v,t) > 2(12)V* min{1, A(~)}

whenever (7y,t) € Lip(S};R?) x P and A(y) > 27/(v/3(62)), and with equality if and
only if (7,t) corresponds to a regular unit-area hexagon. Since 27/(v/3 (62)) < 1/5, the
combination of (5.4) with Theorem A proves the case k = 6 of Theorem 5.1. When k£ > 2,
k # 6, we set
wmmte, =,
and deduce (5.2) from (5.3) as follows: (5.2) with & > 6 is equivalent to
L(y) + (a1 = a2) (k = 6) + (12)/* o(7,4) > 2(12)/* min{1, A(7)},
which is implied by (5.3) thanks to a1 — ay = a; if, instead, 2 < k < 5, then by (5.3) we
get
L(y) + (12)* o (7,%) = 2(12)"* min{1, A(7)} + ¢~ a(k - 6)
2(12)"* min{1, A(y)} 4+ 8as + (az — a1) (k — 6)
2

(12)"/* min{1, A(7)} — (a1 + az) (k — 6),

v

that is (5.2).

We can thus focus on the proof of the above claim. It will be convenient to set some
notation. For every (v,t) € Lip(S};R?) x Py we set for brevity

S(7,t) = a (k — 6) + (12)'/1 (7, t) — 212)* min{1, A7)},
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where a > 0 is a constant to be determined. Moreover, dropping the dependency on t in
the interest of brevity, we set, for each i = 1,....,k + 1,

Yi = V@) e+ (5.5)
Ai = Alv) + Ay (66 + 1)), 76D
so that

k k 1 1
L(y) = E L(vi), o(v,t) = E max{ - E,min{Ai, 5}}
i—1 i=1

We now present a series of reduction steps.

Step one: For each (v,t) € Lip(S'; R?) x Py, there is ¥ € Lip(S'; R?) such that, for each i =
1,..., k, the restriction of 7 to the interval [t(7), t(i 4+ 1)] is the unit speed parametrization
of a circular arc with 7(t(¢)) = v(t(¢)), and moreover

L(y) +e(y,t) > L(7) + (3, 1), (5.7)

for every choice of a > 0. (Notice carefully that neither v or 4 are assumed or required to
be injective.)

, < k, as the unit speed

To prove this, it is enough to define 4 on [t(i),t(i + 1)], 1 <4
) = 2(t(7) and (80 + 1)) =

parametrization of a circular arc with endpoints 5(t(7))
~v(t(i + 1)) and such that

<
~y

A(%i) =A%)
(where #; is the restriction of % to [t(i),t(: + 1)], see (5.5)). Then, by construction,
A7) = A(y) and o(7,t) = o(v, t), while, by Dido’s inequality, L(y) < L(7), so that (5.7)
holds.

Having proved step one, for the rest of the proof we will be able to work directly with
pairs
(77 t) € Cirk )
as defined by the condition that, for each ¢ = 1,..., k, the restriction of v to the interval
[t(i),t(i + 1)] is the unit speed parametrization of a circular arc.

Step two: We prove that, for each (v,t) € Cirg, there is 4 such that (3,t) € Ciry,

—_

A > ——, Vi=1,..k,

[\

and (5.7) holds (for any choice of @ > 0). Here A; is defined from 7 as A; was defined from
v in (5.6).

To prove this, we set ¥ = v on those intervals [t(i),t(i+ 1)] corresponding toi =1, ...,k
such that A; > —1/2; if, instead, A; < —1/2, then we define 4 on [t(i),t(i + 1)] as a
unit-speed parametrization of a circular arc with endpoints v(t(i)) and (t(i + 1)) such
that A; = —1/2: since 4 and 7 have the same endpoints and A; < —1/2, we see that this
implies

A(i) > Alvi), L) < L)

In particular, L(v) > L(¥), A(¥) > A(y), and o(7,t) = o(v,t), which implies the validity
of (5.7).
Thanks to step one and step two we have reduced to the case when

1
(1.) € Cir, A= -5, Vi=l..k. (5.8)
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Step three: We prove that given (v,t) as in (5.8) there is (7,t) € Cirg such that (5.7) holds
(for any value of a), and such that all the A;’s in [—1/2,1/2] have the same sign, that is,
setting

_ _ 1
I= {z': 1ok |A] < 5},
we have that either A; > 0 for all i € ] or A; <0 for all i € I.

To prove this, let us consider the set K of those pairs (i,7) with 1 <1i,5 < k, i # j, and

%2AZ~>0>A]-2—%,
which we can assume to be non-empty, otherwise, we have nothing to prove. Let (i,7) € K
and let 3 = A; + A;. Let us assume for a moment that 8 > 0. In this case, we define +*
by taking v* = 7 everywhere on S! except on: [t(j),t(j + 1)], on which we define v* as
the unit speed parametrization of the segment from v(t(j)) to v(t(j + 1)) (so that A7 =0
provided A7 is defined from v* in analogy to (5.6)); and [t(7), t(i + 1)], on which we define
~* as the unit speed parametrization of a circular arc from ~(t(i)) to v(t(i + 1)) such
that A7 = 3 > 0. In this way A(y*) = A(y) and o(7*,t) = o(v,t) (recall the restriction
1/2 > |A;], |Az]). Moreover, L(v}) < L(v;) (as on [t(5), t(j+1)] we have replaced a circular
arc with its chord segment), and L(~}) < L(v;) (since A = 5 < A;, on [t(i),t(i + 1)]
we have modified the curvature of a circular arc with fixed endpoints so to decrease the
amount of enclosed area), so that, in total, L(v*) < L(v).

In summary, when § > 0 we have constructed a curve * such that L(y*) 4+ e(vy*,t) <
L(y) +e(v,t), Af = B, AF =0, and v* = v on [t(h),t(h + 1)] for all h # i,5. In the case
B < 0, an analogous construction produces v* such that L(~v*) +e(y*,t) < L(v) + &(v, t),
A} =0, A7 = p,andv* = yon [t(h),t(h+1)] for all h # i, j. By iterating this construction
finitely many times we end up constructing a curve 7 satisfying (5.7) and such that, with
I ={i:|A;] <1/2}, we have that either A; > 0 or A; <0 for all i € I.

Therefore, we have so far reduced to prove that (5.3) holds when k > 2, k # 6,

1
(16 €Cing, Az -3, Vi=1..k, (5.9)
and, setting I = {i : |A;| < 1/2}, we have that
either A; >0forallie I, or A; <Oforalliel. (5.10)

Step four: In this step we impose the first restriction on the constant a¢ > 0 appearing in
the definition of (v, t), that is, we impose

VT3 /4

a< 5 g(12) (5.11)

With this restriction on a, we prove that if (v,t) € Ciry satisfies (5.9), (5.10), and is such
that A; > 1/2 for some 1 < i < k, then

L(%) + (7, t) > min {% c(a)} , (5.12)
where
cla) =27 — (3/2) (12)V* — 44, (5.13)

is strictly positive thanks to the strict sign in (5.11). We notice that this step, combined
with the previous ones, effectively reduces the proof of (5.3) (thus of the theorem) to the
case when k > 2, k # 6, (v, t) € Cirj and

1 1
either 3 >A;,>0 Vi, or 0>A4;> —5 Vi . (5.14)

We now turn to the proof of (5.12):
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Let (v,t) € Cir satisfy (5.8), (5.10) and be such that A;, > 1/2 for some ig. Set

I:{i:Ai>%}, J:{i:\Ai\S%},

so that {1,..,k} =TUJ,INJ =@, # @, and, setting
Jt=1{ieJ:A; >0}, J-={ieJ:A; <0},

and recalling (5.10), either J = J* or J = J~. We address the two cases by different
arguments.

Case one, J = JT: In this case by I # & we have
1
t) = = A > =

Hence, by the trivial bound a (k — 6) > —4a (recall, £ > 2), and by the isoperimetric
inequality L(vy) > 2+v/7m\/A(y) (recall that A(y) > 0 by (5.1)), we find
(12)1/4
L(y) +e(n,t) > 2VmA(y) —da+

> 2\/7_1—4a+% —2(12)V4 = (2[—%(12)1/4) _da,

where in the last step we have used the fact that 2 > 0 — 2 /7 vz — 2(12)Y/4 min{1,z}
achieves its minimum at 2 = 1. This proves (5.12) when J = J*.

—2(12)"* min{1, A(y)}

Case two, J = J~: Setting for brevity
T = A(’Y) ) z = Z(_AZ) )
e
we have z,z > 0, and, thanks to I # &,
_#I 1
U(’y,t)—7+ZAj2§—z. (5.15)
jeJ
Now, by Dido’s inequality, we have that
L(v) > V2 |Ail, Vi=1,..k, (5.16)

so that A; > 1/2 for ¢ € I implies that

k k
L(y) =Y L) = vV2r Y VAl = Vr#l+V2r > ]A.
=1 =1

i€J
Since |A4;| < 1/2 for i € J and /2 |t| < \/|t| for |t| < 1/2 we conclude that
Liy) > Va#I +2V7 Y |Ail > Vr+2V7z, (5.17)
i€J
taking into account I # & and the definition of z. By using as done in the other case that
a(k —6) > —4a, we thus obtain a first lower bound on L(7) + (v, t), namely

L(y)+e(v,t) = L(y)+a(k—6)+ (12)"*o(v,t) — 2(12)"/* min{1, A(7)}
> Jr+2ymz—4a+ (12)1/4<% _ Z) _ 2(12)1/4

(2\/7? - (12)1/4) Pt (ﬁ— g (12)1/4) —4a. (5.18)

This lower bound will be sufficient to prove (5.12) only for certain values of z. For this
reason, before discussing the latter point, we obtain a second, complementary, lower bound,
that combined with (5.18) will allow us to deduce (5.12). To obtain this second lower

Y
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bound, consider % obtained from ~ by “reflecting” with respect to their chords all the
circular arcs 7; corresponding to ¢ € J. In this way L(¥y) = L(y), while A(%;) = —A(y;)
for all © € J, gives

AF) =S Al = S Al = A) 2 S Ay = w22, (5.19)
icl icJ icJ
By applying the isoperimetric inequality to 4 (notice that A(%) > A(y) > 0) and using
(5.19) we thus find

L(v) = L(7) 2 2v7V/AR) 2 2v7T Vo + 2z, (5.20)
which, combined with (5.15), gives

L(y) +e(y,t) = L(y) +a(k—6)+(12)*o(y, t) — 2(12)"/* min{1, A7)}
> 2yaVr+2z—4da+ (12)1/4<% - z) —2(12)"* min{1, 2},

> 2\/7_1\/1+2z—4a+(12)1/4(%—z> —2(12)Y/4, (5.21)

where we have used z > 0+ 2/7 vz + 22 —2(12)/4 min{1, 2} has a minimum at = = 1.
In summary, setting

o) = (2vE-2Y) 2+ (Va- 5 (12)7) ~4a,
g(z) = 2yaVi+2z—(12)Y4 2 - ; (12)V/* —4aq,

and h = max{f, g}, we are left to prove that

. . 7

ig{(;h(z) = min {1—0, c(a)} .
Since f is an affine, increasing function, g is concave on [0,00), and f(3/2) = g(3/2), we
have that h = g on [0,3/2] and h = f on [3/2,00). In particular, if z > 3/2, then, recalling
(5.11), we find

3 7
h(z) = f(z) > f(3/2) =4m—3(12)Y* —da > 27 — 3 (12)V/4 > 0
If, instead, z € [0,3/2], then h(z) > g(z) > ¢(0) = c¢(a) by definition (5.13) of c(a).
Step five: We conclude the proof of the theorem. Based on the previous four steps, we
have to prove the following reduced version of our opening claim:
Reduced Claim: There are positive constants a and ¢ such that the following holds. Let
k> 2 and (v,t) € Ciry satisfy
1
A > —
™) 2 155

and let either 0 < A; < 1/2foralli=1,....,kor 0 > A; > —1/2 for all i = 1, ..., k. Then,
when k # 6,

if2<k<5, (5.22)

L(Y) +a(k—6)+ (12)Y4o(y,t) > 2(12)"* min{1, A(Y)} +¢; (5.23)
and, when k =6 and 1/5 > A(y) > 0,
L(y) + (12)Y4 (v, t) > 2(12)* min{1, A()}. (5.24)

To begin the proof of this reduced claim, let us recall that, so far, we have only imposed
on a the constraint (5.11). Since (v/7/2) — (3/8) (12)Y/* > 1/10, we can work with any
a < 1/10. The choice

= — 5.25
a=i (5.25)
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is enforced from now on, for the sake of definiteness.

Next, we notice that the case k = 2 is easily dealt with. Indeed, in this case, |A4;| < 1/2
implies o(v,t) = A; + Ay = A(~) as well as min{A(~),1} = A(y): therefore, by applying
the isoperimetric inequality we find that

1 9
L(y) +e(vy,t) > 27 A(y 121/4A()>min{h(1),h<m)}>m,

where we have used that h(z) = 2/mz — (12)/4 2 — (6/25) is concave on [0,1] and that
1> A(y) > 1/100.

When k£ > 3 there is no immediate relation between = = A(y) and y = o(y,t) =
Ele A; that we can use. To discuss this case it is convenient to collect the following four
lower bounds:

L(y) > 27z, (5.26)
L(y) = 2ym(@+2y7), (5.27)
L(y) > 2Vxlyl, (5.28)
Liy) > 2 ktan( )\/ z—y (5.29)
where 2z = max{z,0} and 2z~ = max{—2,0}. Of course (5.26) is just the isoperimetric

inequality, as already used repeatedly, while (5.27) follows from the isoperimetric inequality
by the argument used in proving (5.20). Concerning (5.28), by Dido’s inequality L(~;) >
/27 |A;| with |A4;] < 1/2 for each i we obtain

k k
)= VEIE S VAL 2 297 3 Al = 2 VR oy, )],
i=1 i=1

where in the last identity we have taken into account that, under our assumptions on -,
all the A;’s have the same sign. Finally, let us define 7., € Lip(S!; R?) by taking

Ty = [y(€(1), 7 (#(2)] © [7(6(2)), v (€B)] © - - o [y(t(k=1)), v (t(k)] o [y (t(F)), v(t(1))]-

Clearly L(y) > L(m,) and 7 is a polygonal curve with k vertexes. By the polygonal

isoperimetric inequality for immersed curves® we have

9 T T
> - pr— _— —_—
L(n,)? > 4k tan (k) A(my) = 4k tan (k) (A(fy) a(%t)) , (5.30)
where in asserting A(m,) = A(y) — o(7,t) we have used |A4;] < 1/2 for alli =1, ..., k.
Based on (5.26), (5.27), (5.28), and (5.29), we now set

ge(z,y) = a(k—6)+(12)Y* (y -2 min{l,x}) ,
fea(z,y) = gi(z,y) +2 V7w,

fra@y) = ge(zy)+2vm(z+2y7),
fea(@y) = g(z,y) +2V7 |yl

Jralz,y) = gu(z,y) +2 k‘tan( )\/ r—y
Taking into account that each fy ;(-,y) is increasing on & > 1, and setting

Jr = max{fi1, fr2: [r,3, fral

4The point here is that 7 may not be injective, therefore we are not able to bound L(7,) from below
by directly using the polygonal isoperimetric inequality for sets, namely (1.17)!
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we can conclude the proof of the reduced claim, and thus of the theorem, by showing that

I}:gf7 [o,lf}lin@fk >0, (5:31)

. 1

inf fo(a,) >0, Vae (0, 5] , (5.32)
inf  inf fy > 0. (5.33)

3<k<5 [1/100,1] xR
To prove this we will combine different lower bounds on each the f; ;’s.

First lower bound: We prove the existence of a positive (computable) constant ¢y such
that, for all k£ > 3,

fien) e, Yy e x{(-o—2]ulfeo)}. (G530

Indeed, if £ > 3, x € [0,1], and y € R, then
fu@,y) = frsley) =2V7lyl+a(k—6)+ (12)*y —2(12)* 2
> 27yl + (12)Y4y —2(12)V* — 34
This last function is non-negative if and only if (recall that a = 3/50)
1/4 1/4
either 3 > 2(12)/* 4+ (9/50) , or y< - 2(12)/% + (9/50) '

2/ + (12)1/4 T2y (124

Taking into account that
2(12)V4 + (9/50) 2 (12)Y4 + (9/50)
2/ + (12)1/4 2/ — (12)1/4

we conclude that 2/7 |y| + (12)"/4y — 2(12)'/* — 34 is uniformly positive when either
y<—=5/2ory>4/5.

Second lower bound: We prove that, for all k£ > 3,

<2 <2
5’ 27

5

fr(z,y) > fr1(z,0) Ve [0,1],y > —3- (5.35)

Since fr > fi 1, this is obvious from the definition of f;; when y > 0 (one just drops the
term (12)'/4%). Assuming now that y € [~5/2,0] we notice that
fr(@y) = fra(zy) =27 (@+2y7) +a(k—6)+(12) /1y —2(12)*2
= 2ym(z+2y) — A2V y| +a(k —6) —2(12)Y4
> 2ymz+alk—6)—2012)Y4z = fi.1(x,0),

where in the last step we have used that

Fla,t) =27 @+ 20 - (1Y - 27F >0, a.b)e 0.1 o g] (5.36)

To prove (5.36) we just notice that, for every x > 0, F'(z,-) is concave on [0, 00), so that

[Oi,?/f2] F(x,-) > min {F(ac, 0), F(aj, g) } = min {0, F(ac, g) } .
Now, for every x € (0, 1] we have

1/4
%_2 =3

F(a;g) PN A

8- o
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so that
5(12)1/4

inf F@%) > F(1,§) = 2v6m - 2

0<z<1 2
This proves (5.36), and thus (5.35).

Third lower bound: Motivated by (5.35), we prove the existence of a (computable) positive
constant ¢ such that

2
— 27 > s

fe1(z,0) > ¢, vz € [0,1], itk>9, (5.37)
fia@,0) > e, Veeloo],  #T<k<s, (5.38)
fea(z,0) > ¢, Ve [i é} if3<k<5 (5.39)
, ) sl ) 1007 5 ; = = J,
and also show that 9
for(z,0)>0, Ve (0, 1—0} . (5.40)

To prove this, let us notice that

fra(z,0) =2Vrz +a(k—6) —2(12)Y4 2 = —q(V7),
where
ar(t) =2012)Y* 2 —2 /7t —a(k—6).
The roots of g are given by

2ym+\/Ar+4a(k—6)2(12)1/

tE =
k 4(12)1/4

Thanks to a = 3/50 and k > 3 we have
Am+4da(k—6)2(12)Y4 > 47 — % (12)/4 > 9.

Therefore both tf are real, with

t,<0<tf, ifk>T7,
te =0 <t
0<t, <tr, if3<k<5.
In particular, if k > 6, then we have
{x>0: fr1(z,0) >0} =[0,2], (5.41)
where oy o ()2 = Tk =0) (12 + VA VAT a (k=621
2 (12)1/2
while if 3 < k <5, then (with 2z as in (5.41))
{x>0: fr1(z,0) >0} = [y, k), (5.42)
7 +a(k—6)(12)Y* - /r /7 +a(k—6)2(12)1/4

where yy = (t,)? = 3 (12)1/2 ,

Exploiting a = 3/50 we find that if £ > 9, then

o _ m+(9/50) (12)Y4 4 /7 /7 + (9/25) (12)1/4 )
2y 2 29 = 2(12)1/2 > 1,

and since the last sign is strict (and ¢, < 0 for k > 7) we conclude that

inf ..0) > inf . E>09. A
Eg}l]fk,l(,o)_Eg}ﬂfg,l(,o)>0, vk >9 (5.43)
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For 8 > k > 6 we have
™ 9

> 2= ——0m > — 5.44
EEUNTIERETIR (5.44)

and the strict sign in (5.44), t,7 <01if kK =7,8, and t; = 0, gives
min inf fp1(-,0) > inf f7,(-,0) >0, (5.45)

k=78 [0,9/10] (0,9/10]

and prove (5.40), respectively. Finally, for the remaining cases 3 < k < 5, we see that
k > 3 gives

7 — (9/50) (12)1/4 T/ —(9/25) (12)1/4 4
ZE > 23 = (9/50) (12) ;(fg)_lg (9/25) 12) >g; (5.46)

moreover, by differentiation, ¢ € [2,6] — y; is decreasing on [2,6] and takes its minimum
value at k = 6 (yg = 0), so that, for 3 < k <5, we have

7 — (9/50) (12)/* — /m /7 — (9/25) (12)1/4 1 1
<y3= <—— < —. 5.47
Yk =Us 2(12)1/2 500 ~ 100 (5.47)
Thanks to the strict signs in (5.46) and (5.47) we find that

fr1(z,0) > 0. (5.48)

inf
3<k<8 [1/100 4/5]

We conclude the proof of (5.37), (5.38), and (5.39) by setting
Clzmiﬂ{[iolf}lf]fg,l('a 0), inf fr1(-,0), min fra(, )}

[0,9/10] 32k<5 [1/100 4/5)
where ¢; > 0 by (5.43), (5.45), and (5.48).

Conclusion of the proof: We conclude the proof of the theorem by proving (5.31), (5.32)
and (5.33). To begin with, we notice that (5.34), (5.35) and (5.40) imply (5.32).

Next, we prove (5.31). First of all, by (5.34), (5.35), and (5.37), we find that

[0111}1{" fx = min{cg,c1} >0, vk >9. (5.49)

that is (5.31) restricted to k > 9. Combining (5.49) with (5.34), (5.35), and (5.38), we see
that to complete the proof of (5.31) we are left to show that

inf . .
ml7ns [9/10, 1}i[ 5/2,4/5) >0 (5:50)

We begin the proof of (5.50) by showing that

l?:u7ns [9/10,1}x[1£15/2,—1/10} Tk > ( )

The idea is obtaining a positive lower bound on f o all the way up to y < —1/10 under
the restriction x € [9/10, 1] (recall that (5.35) holds only up to y < —5/2, but on the wider
range x € [0, 1]). To this end, let us recall that, if y < 0, then

Fu(@.y) 2 fra(e,y) =23/ (@ +20y) = (12)V* [yl +a (k- 6) —2(12)/ 1«
now, fr2(-,y) (y <0) is decreasing on [1/2,1] (and, thus, on [9/10,1]) since

O fr,2 [T 1/4 [T 1/4
! =, /— —2(12 <, /—=2(12 -1
therefore, for all y <0 and k> 7,

3
inf L) > 1.y) > 1,y) =2 1+2 2 (2)YA |yl — 2 (12)Y/4,
[g}lllo’l]fk(ay) > fr2(l,y) > fr2(1,y) m(1+ Iy\)+50 (12)"% |y — 2(12)
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Since f72(1,-) is concave on (—oo, O] we find

fe > fr2(1,-)

min inf
k=7,89/10,1]x[~5/2,—1/10] =5/2, —1/10

= win{fra(1.~3). ra(1.~15) } 2 min {1 75}

(Notice that we cannot extend this lower bound to [-5/2,0] since f72(1,0) < 0.) Having
proved (5.51), we next show

Jk>0. (5.52)

min inf
k=7,8 [9/10,1]x[1/10,4/5]

Working with fi 1, and using the fact that fi ;(z,y) is increasing in y and concave in z,
we find that

1
i inf >
1?217]08 [9/10,1}1;%1/10,4/5} T 2 [9/10 1]f7 ( 10)

min{f“(m 10) f”( 110)}>mm{111 530}

thus proving (5.52). Thanks to (5.51) and (5.52), in order to prove (5.50), and thus to
conclude the proof of (5.31), we are left to show that

i inf >0. 5.53
1?:117118 [9/10,1}><1[I—11/10,1/10} T ( )

To this end we shall bound f, from below by using f 4. We first notice that since x > 9/10,
y < 1/10, k — k tan(n/k) is decreasing, and k > 7, we have

v

8fk74($,y): k:tam(7r/l~1:)_2(12)1/4S 7tan(7r/7)_2 12)1/4<_1‘

(8/10)

Hence

. inf > i inf 1..). 5.54
kIEl;lS [9/10,1}><1[I—11/10,1/10} Ji =z 1217]08 [—1/11%,1/10} frals?) (5:54)

Next we notice that
T
fea(ly) =2 Jk tan () VI—y+a(k—6)+(12)/* (y - 2),

is concave on y € [—1/10,1/10], with

1 1 1 7
e )
! 7’4( 10/ = 500 T2\ 16) = To00-
1 1 1 3
e h )
f8’4( 10/ = 50 Tsa(t15) = 100
which, combined with (5.54), leads to (5.53). This completes the proof of (5.31).
We finally prove (5.33). Thanks to (5.34), (5.35), and (5.39), it is enough to show that

i inf . .
31%11325 [7/10,1]5{1—5/2,4/5] >0 (5:55)

To this end, we first show that

i inf >0. 5.56
R L S (5.56)

Indeed, as already noticed in the proof of (5.51), for every y < 0, fx2(-,y) is decreasing
on [1/2,1]. In particular,

i inf >
32k <5 [7/10,1}><[1£15/2,—3/10} Trz [5/2 3/10]f32( )

where we have also used that k — fi 2(x,y) is increasing. Now,

fap(Ly) =27 (1 +2[y)) — 12)Y* |y| — 3a —2(12)"/*,
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is concave on y € [—5/2,—3/10], with

5) 1 3 1
Lg) > elleg)
f?”?( 2) 7100 Behrg) 7 s
so that (5.56) follows. We next prove that

Imn inf fe >0, (5.57)
k=34 [4/5,1]x[—3/10,1/5]

f 0 5.58
[4/5,1}x[—1§1/10,19/100}f5> ' (5.58)

To this end, we start noticing that when 3 <k <5, z > 4/5, and y < 1/5, we have

Ofra

k tan(7/k) 1/4 3 tan(m/3) 1/4
S S G YO D) Ay i G Y5 D) VL i
2 a,y) = [T a2/t < [ oy <
In particular, using the concavity in y of fi4(1,y), we find
' inf > min inf 1,-
1?;%1?4 [4/5,1}XF—13/10,1/5] fe 2 ,52?4 [—3/%71/5} Frall,)
. 3 1
= g min {1 —g5) £ (1 5) -
where
3 7 1
f374( 10/ =10 f34 =9
3 1 1 1
f4’4( 10/ =~ 10 Jaa(l5) = 35

thus proving (5.57). In the case & = 5 we would like to repeat the same argument but,
unfortunately, f54(1,1/5) < 0. This is why, when k = 5, we need to stop using the fj 4
bound a bit below y = 1/5. Stopping at y = 19/100 works, and we find

19
inf > inf 1 > mi 1, —
[4/5,1}x[—1§1/10,19/100} fs 2 [—3/1%)1,119/100} Foally) = mln{f5’4( ’ ) f54< 100>}
where 3 . " .
> >
f5’4( 10) 200’ f“( 100) = 1000’

thus proving (5.58). Thanks to (5.56), (5.57), and (5.58), in order to deduce (5.55) (and
thus complete the proof of the theorem) we are left to show that

fe >0, (5.59)

inf
P ) [4/5, 1]>< [1/5,4/5]

¢ 0. 5.60
[4/5,1]x[11n9/100,4/5} fs= .

Using that f 1 is increasing in y and concave in x we find that

1?:15114 [4/5,1]3%{/5,4/5# z 1?15114 [41/%f1 f’“( ;) = g%{14min{fk,1(%,%),fm(l,%)},
where
f?»l(é %)Z%, f31( 1)>%,
fu(3)z m(lg) =g

thus proving (5.59). Similarly,

[4/5,1]x[iﬁ)f/100,4/5] f5 2 [4/5 1] £/ 1( 11090) {f5 ! (;L 11090) Fs, 1( 11090) }
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where
f<4 19>>g f( 19>>i
>\57100/ = 5 >1\"100/ < 107
thus leading to (5.60). This completes the proof of the theorem. (]

APPENDIX A. THE ISOPERIMETRIC INEQUALITY FOR IMMERSED POLYGONS

In the proof of Theorem 1.2, and specifically in the proof of Theorem 5.1, Section 5,
we have claimed that the isoperimetric inequality for k-gon (1.17) is valid for immersed
polygons (with the notion of oriented area used in place of the standard notion of area);
see (5.30). Since we have not been able to find a proof of this more general inequality in
the literature, we include one in this appendix.

We identify a generic immersed polygon with k-edges with an ordered collection IIj of
points p; € R2, j =1,..., k. Setting pj = (x;,y;) for the coordinates of these points, with
DPr+1 = p1 the perimeter and oriented area of Il are given by

k
k) = Z \/(!Ej —xi41)? + (Y5 — yj+1)?,

—_
e

=3 D (@Y — T ).
7j=1

Theorem A.1 (Isoperimetry for immersed k-gons). For every I as above we have
P(IL,)* = p(k)* A(IL)
where p(k) is the perimeter of a unit-area regqular k-gon as defined in (1.18).

Proof. After scaling, we can prove Theorem A.1 by showing that the maximum of A(Tl)
under the constraint P(IT;) = 1 is achieved when Il is a regular k-gon with unit-perimeter.
Clearly a maximum point ITj, exists® and satisfies A(IT;) > 0. As shown in [KP0S8, Legl8],
the fact that IIj is a critical point of A at P fixed implies that all the vertexes of 1I; belong
to a circle or to a line, and since A(Il) > 0, the first case holds. For some R > 0 we can
thus set p; = (R cosf;, R sinf;) for 1 < j < k. Setting

T=y if and only if x=y+2mh forsomehecZ,

extending the definition of 0; to every j € Z by setting 0; ) = 0; for all j =1,...,k and
h € Z, and noticing that ;11 # 6; for all j (for, otherwise, II; would have less than k
edges), we see that

2 k k
= — Zsin(Hj_,_l - 9]) 5 P(Hk) = \/iR Z \/1 - COS(9j+1 - 9]) .
Jj=1 Jj=1

Exploiting P(II;) = 1 to solve for R, we come to define

N
a(fy,....,0) =4 A1) = D7 where
k k
wj =041 —0j, N:Zsin(wj), D= Z\/l—cos wj) -
j=1 j=1

We prove the theorem by showing that, at a maximum point of a, it holds w; = 27 /k for
all j.

5A compactness argument shows the existence of a maximizer with at least 3 and at most k& edges.
To see that a maximizer has exactly k edges one notices that, should this not be the case, area could be
increased by first taking a “triangular variation” of one edge (thus adding one additional edge), and then
by rescaling so to preserve the perimeter constraint.
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Step one: We prove that
wj =wr, if j is odd, (A1)
wj = ws, if j is even. (A.2)
To this end, it will suffice to show
0; —0;—1=0412—0;41, Vi . (A.3)
We start by computing (recall that w; # 0 for all j)
da  cos(wj_1) —cos(wj) N sin(wj—1) sin(w;)
% - D? ﬁ{\/l—cos(wj_l) a \/1—cos(wj)}

Since cos(z) = cos?(x/2) — sin?(z/2) implies /1 — cos(x) = +/2|sin(z/2)|, using also
sin(z) = 2 sin(z/2) cos(z/2), we find that

sin(w;) s1n(wj/‘ ) cos(w;j/2) _ V3o, cos (ﬁ)
1 — cos(wy) V2 | sin(w;/2)| 2
where we have set 0; = sign(sin(w;/2)). Hence,

D3 g—ea =D { cos(wj—1) — cos(wj)} +V2N {aj cos <%) — 0j_1 COS (wj2_1>} .

The condition that a achieves its maximum at (61, ...,0) thus implies that

cos(wj) — cos(wj—1) V2N
oj cos(w;/2) —oj_1 cos(wj_1/2) D

Vi=1,..k, (A.4)

where, notably, the right-hand side is independent of j. By cos(x) = cos?(z/2)—sin?(z/2) =
2 cos?(x/2) — 1 and thanks to 032» = 1, we find that

cos(wj) — cos(wj—1) = 2 (6052(wj/2) - cosQ(wj_l/Z))

=2 (aj cos(wj/2) —oj_1 cos(wj_l/Z)) (aj cos(w;/2) + 051 cos(wj_l/Q)) ,

which combined into (A.4) gives

e “H):—N Vi=1,..k
a]cos<2)+a] 1cos< 2 \/§D7 7 sy KL

In particular, for all j =1, ..., k,
0j41 COS (%) + 0 cos (%) = 0 COos (L; ) + 0j-1 cos (%‘2—1) ,
that is (setting 0y = Ok, wo = wg, and op = oy,)
Oj4+1 COS (%;1) = 0j_1 COS ( 1) Vi=1,..,k. (A.5)

Let us now denote by ¢; the unique element of (—m,0) U (0, ) such that t; = w;/2, so that
o; = sign(sin(¢;)) and (A 5) takes the form

0j+1 COS(tj+1) =051 COS(tj_l), V] = 1, ) k. (A6)

If tj+1,tj_1 S (0,7‘(’), then Oj+1 = 0j-1 = ]., and COS(tj_H) = COS(tj_l) implies tj+1 = tj—l;
similarly, if ¢;41,tj-1 € (—m,0), then 041 = 0j_1 = —1, and (A.6) gives again ;1 = t;_1;
finally, if, without loss of generality, t;11 € (0,7) and t;_1 € (—m,0), then (A.6) gives
cos(tj+1) = —cos(tj—1), which in turn implies t;41 = t;—1 + 7. Looking back at the
definition of ¢;, this proves (A.3).

Step two: We prove that there is n € {1,...,k — 1} such that, for all j,

wj =271 —, Vj. (A.7)

k
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We have separate arguments depending on whether & is odd or even.

When k is odd, using first that k+1 is even in combination with (A.2), and then 0, = 0;
for all 7, we find that
Wo = Wil = Opyo — Op1 =02 — 01 = w1,

that is, wp = wy and thus, by (A.2) and (A.1), w; = w; for all j. By repeatedly using this
fact we find

k
01 = 9k+1 =w +0,=w + Z(QJ — 9]'_1) + 01 =kwi + 01, (AS)
j=2

that is, w; = 27 (n/k) for some n € {1,...,k}. Since w; # 0 for all j, it cannot be that
n = k, and the conclusion follows.

When k is even, using (A.2) and (A.1), in place of (A.8) we find

k+1

01 = 01 :91+j§_:2(9j—9j_1) 591+§wQ+§w1. (A.9)

In particular, there exists n € N such that
w1 —|—w2:47T%. (A.10)
Notice that n cannot be an integer multiple of &k or of k/2 (for, otherwise, wy = —w; would

imply that all the points p; lie on a same line, thus implying A(II;) = 0). Without loss of
generality, we can thus assume that

k
nzl,...,k—l,n#g. (A.11)

witwy=471, T:=7

>3

and use (A.2), (A.1), and (A.11) to find that

a(by,...,0F) = Z;?:l sinfw)
o (521 v/T = cos(w)))?
(k/2) (sinw; + sinws)
(k/2)2 (v/T = coswi + /1 — coswa)?
2 sin(wy) +sin(47 —wy))
k (/T =cos(wr) + /1 —cos(d1 —wy))?

Notice that, up to this point, we know that w; # 0 (because, otherwise, we would have
p1 = pe2) and that wy # 47 (because, otherwise, (A.11) would give wy = 0 and thus

p3 = pa). Setting f(w) = g(w)/h(w)2 for
g(w) = sin(w) +sin(47 — w), h(w) = /1 — cos(w) + /1 — cos(47 — w),

the fact that II; maximizes A under the constraint that P = 1 implies that w = w; is a
maximum point of the function f(w) over the open set @ = {w € R: w # 0,47}. Now, f
is differentiable in ), with

ooy cos(w) —cos(4T —w)  2g(w sin(w) —sin(47 —w)
Flw) = h(w)? h(w)? {2 1—cos(w) 24/1—cos(47 —w) }

COS(W) —COoS(4T — W \/_ w w w w w
= ()h(w)(24 = hQ(fJ()3){U(§) os (3) o (27-3) cos (27 =) }.
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where we have used again /1 — cos(z) = v/2|sin(z/2)| and sin(z) = 2 sin(x/2) cos(z/2),

and where we have set o(0) = 81gn(sm 0). By |sinf| = o(#) sin @ we find

W) wy . w
hi/g flw) = (cos(w)—cos 47 —w ){ (-) sm( )4_0(27_5) sm<27-—§>}
_<sin( ) +sin(dr —w ){ (—) cos (;) —0(27’— %) cos (27-— %)}
= —25sin(27) sm(w—QT){a(E) 8111(2) —1—0(27'— 5) sin (27’— 5)}

—2 sin(27) cos(w — 27){0(%) cos (g) - 0(27’ - %) cos <27’ - g)} .

The conditions on 7 in (A.11) guarantee that sin(27) # 0, and thus allow us to infer the
following identity from the fact that wy is a maximum point of f on the open set 2,

a(%) {cos(wl —27) cos (L; ) + sin(w; — 27) sin (a;l)}
w1

20(27'— %) {cos(wl —27) cos (27’— %) —sin(w; — 27) sin (27’— 7)},

that is, by cos(a + ) = cosa cos f — sin « sin 3,

U(%) Ccos (27' - %wl) = O‘<27' - %) cos (%wl) . (A.12)

If both o’s in (A.12) have the same sign, then (by cos(x) = cos(y) if and only if z =y or
x = —y) we either have

1 1
2T—§w1£§w1, ie. w1 =271,

which implies by (A.11) that wy = 27, and hence wy = wy; or

5 1 1
T—-w=—-w
2 1 2 1,
which leads to 27 = 0, in contradiction with (A.11). If, instead, the ¢’s in (A.12) have
opposite signs, recalling that cos(x) = —cos(y) = cos(y + 7) if and only if v = y + 7 or
x = —y + m, we either have
2 L + i =2
Togwi=gwitT, ie. wy=27-m,

which implies by (A.11) that wy = 27 4+ 7, and hence also w; = wo; or

1
27’—§w15—§w1—|—7r,

which leads to 27 = =, again in contradiction with (A.11). We have thus proved that
w1 = wg. Combining this fact with (A.11) gives (A.7).

Conclusion: We have proved so far that thereis n € {1,...,k—1} such that w; = 6,1, —0; =
27w n/k for all j. We are thus left to prove that n = 1. To this end we notice that

Z?:l sin(w;) _ 1 sin(2mw n/k)
(Z?Zl V1 —cos(w;))? Kk 1—cos2mn/k)

Since t + sin(t)/(1 — cos(t)) is decreasing for ¢ € (0,27), and since IIj; is a maximum
point of A under P = 1, we conclude that n = 1. O

a(@l, veny Hk) =
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