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ASYMPTOTIC BEHAVIOR OF A DIFFUSED INTERFACE

VOLUME-PRESERVING MEAN CURVATURE FLOW

MATTEO BONFORTE, FRANCESCO MAGGI, AND DANIEL RESTREPO

Abstract. We consider a diffused interface version of the volume-preserving mean cur-
vature flow in the Euclidean space, and prove, in every dimension and under natural as-
sumptions on the initial datum, exponential convergence towards single “diffused balls”.
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1. Introduction

1.1. Overview. In this paper we introduce a PDE reformulation of the classical volume-
preserving mean curvature flow (VPMCF) in R

n where the role of the perimeter functional
is played by the Allen–Cahn energy. From the physical viewpoint this reformulation seems
well justified, since it consists in replacing the classical sharp interface model for surface
tension based on perimeter minimization with the equally interesting and important dif-
fused interface model based on the minimization of the Allen–Cahn energy. From the
mathematical viewpoint working in the diffused setting clears up the analysis from the
ambiguities brought in by the formation of singularities characteristic of geometric flows,
which are directly reflected into the abundance of non-equivalent weak formulations of the
VPMCF.

Our main result proves, in every dimension and under a variety of natural assumptions
on the initial datum, exponential convergence of the diffused VPMCF towards single “dif-
fused balls”. This result is indeed stronger than the presently known analogous results for
the classical VPMCF, see Remark 1.1 below.

The diffused interface model we adopt is based on the volume-constrained minimization
of the classical Allen–Cahn functional

AC·(u) = ·

ˆ

Rn

|'u|2 + 1

·

ˆ

Rn

W (u) , · > 0 , (1.1)

defined on (dimensionless) density functions u : Rn ³ [0, 1], and requiring the choice of
(dimensionless) double-well potential W : [0, 1] ³ [0,>). We will always require that
W * C2,1[0, 1] and that W satisfies the standard non-degeneracy assumptions

W (0) =W (1) = 0 , W > 0 on (0, 1) , W 22(0),W 22(1) > 0 , (1.2)
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as well as the normalization
ˆ 1

0

:
W = 1 . (1.3)

As usual, · has the dimensions of length, so that AC·(u) has the dimensions of (codimen-
sion one) area.

Particular care must be put in the choice of the volume potential V : [0, 1] ³ [0,>) used
to impose the volume constraint on u. Indeed, while any choice of V satisfying V (1) > 0
and V (0) = 0 will return the correct volume constraint in the sharp interface limit ·³ 0+

(and will thus be acceptable form the physical viewpoint), not every choice of V will result
in a mathematical model that is either well-posed or feasible of in-depth analysis.

A natural choice for V is suggested by the classical isoperimetric lower bound on AC·(u),
and consists in taking

V (r) = Φ(r)n/(n21), where Φ(r) =
´ r
0

:
W for r * [0, 1] . (1.4)

Indeed, by a classical application of the Cauchy–Schwartz inequality and the chain rule,
we have that

· |'u|2 + W (u)

·
g 2 |'u|

√

W (u) = 2 |'(Φ ç u)| ,
from which the isoperimetric lower bound

AC·(u) g 2 |D[Φ ç u]|(Rn) g 2nË1/n
n V(u)(n21)/n , V(u) :=

ˆ

Rn

V (u) , (1.5)

follows, so that1

nË1/n
n m(n21)/n = P (B(m)) = inf{P (E) : |E| = m} , m > 0 ,

is the optimal value of the (Euclidean) isoperimetric problem.

Thanks to (1.5), our choice (1.4) of V is instrumental for obtaining a well-posed diffused
interface (Euclidean) isoperimetric problem,

Ψ(·,m) = inf
{

AC·(u) : V(u) = m,u * L1
loc(R

n; [0, 1])
}

, · ,m > 0 . (1.6)

Indeed, by (1.5) and by the (sharp) isoperimetric inequality for functions of bounded
variation, we see that

Ψ(·,m) > 2nË1/n
n m(n21)/n , "·,m > 0 , (1.7)

while a simple comparison argument shows that this inequality is saturated in the limit
as · ³ 0+. It is important to keep in mind that simpler choices of V , like V (t) = t or
V (t) = t2, would have led2 to degenerate minimization problems where every competitor
has positive energy but where the infimum of the energy is equal to zero.

Problem Ψ(·,m) has been studied in great detail in [MR24]. Some of the results ob-
tained therein will play an important role in the present paper, and will therefore be
summarized in Section 2. For the moment, with the sole intent of formulating our main
result as quickly as possible, we just recall from [MR24] that, in the physical regime

where · * (0, ·0m
1/n) for some universal constant3 ·0, there is a unique minimizer ··,m

1Here, |Dv| denotes the total variation measure of v * L1
loc(R

n), ωn is the volume of the unit radius

ball in R
n, |E| and P (E) denote the volume and perimeter of E ¢ R

n, and B(m) stands for the ball of
volume m with center at the origin in R

n.
2The size of V (t) for t ³ 0+ plays a crucial role here. Our choice of V satisfies V (t) = O(t2n/(n21)) as

t ³ 0+. This is not the only property of V that plays an important role in our analysis though, and the
close relation between V and W will be repeatedly used.

3By universal constant we mean a constant depending only on the dimension n and on the double-well
potential W . By C(a, b, . . . ) we denote a constant depending only on n, W , and the arguments a, b, etc..
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in the class of the radially symmetric, strictly decreasing, and everywhere positive func-
tions on R

n with maximum at the origin; and that u is a minimizer of Ψ(·,m) if and
only if u = Çx0 [··,m] for some4 x0 * R

n. Each ··,m solves the diffused constant mean
curvature equation

2 ·2 ∆··,m =W 2(··,m)2 ·Λ·,m V
2(··,m) on R

n ,

where Λ·,m ³ 2 (n2 1)Ë
1/n
n m21/n as ·³ 0+ (and is thus positive in the physical regime

· * (0, ·0m
1/n)).

The diffused VPMCF is then defined as the L2-gradient flow of AC· with a Lagrange
multiplier modification that preserves V along the flow: that is, we consider the parabolic
initial value problem5

{

·2 "tu = 2 ·2 ∆u2W 2(u) + · »·[u(t)]V
2(u) , on R

n × (0,>) ,

u(0) = u0 ,
(DF)

where we have introduced the Lagrange multiplier functional6

»·[v] =

´

Rn 2 ·
2 |'v|2 V 22(v) +W 2(v)V 2(v)

·
´

Rn V 2(v)2
, (1.8)

whose choice guarantees, on smooth solutions of the flow, that

d

dt
V(u(t)) =

ˆ

Rn

V 2(u(t)) "tu(t) = 0 , i.e., V(u(t)) = V(u0) for all t > 0 .

From the viewpoint of classical parabolic theory, (DF) presents some peculiar features
since it is a non-autonomous semilinear PDE, where the non-autonomy is due to the La-
grange multiplier »·[u(t)], which, in turn, is non-local in space (its determination requires
knowledge of u(t) over the whole Rn). The following theorem is our main result concerning
the long-time behavior of (DF).

Theorem 1.1. If n g 2 and W * C2,1[0, 1] satisfies (1.2) and (1.3), then there exists a
universal constant ·0 > 0 with the following property. If · * (0, ·0), u0 * W 2,p(Rn; [0, 1])
for all p g 2, V(u0) = 1, and

either AC·(u0) < 2Ψ(·, 1/2) , (1.9)

or sptu0 is compact , (1.10)

then

0 f AC·(u(t)) 2Ψ(·, 1) f C(·, u0) e
2t/C(·) , "t > 1

C(·, u0)
, (1.11)

and there exists a unique x0 * R
n (depending on · and u0) such that for all p > 2 and

t > 1/C(·, u0)
∥

∥u(t)2 Çx0 [··,1]
∥

∥

(W 2,p+W 1,2)(Rn)
f C(u0, ·, p) e

2t/C(·) . (1.12)

Remark 1.1 (Asymptotic analysis of the VPMCF). It is convenient to briefly review the
state of the art concerning convergence to equilibrium for the classical VPMCF (with the
disclaimer that, due to singularities formation, these various results may pertain to differ-
ent weak formulations of the VPMCF). First, convergence to a single ball has been proved
under a variety of suitable geometric restrictions on the initial datum that can be shown
to be preserved along the flow, and that exclude singularities formation: these are uniform

4We set τx0
[v](x) = v(x2 x0) for every x, x0 * R

n and v : Rn ³ R
m.

5Given t g 0 and u : Rn×[0,>) ³ R, we set u(t) : Rn ³ R for the function defined by u(t)(x) := u(x, t)
(x * R

n).
6Notice that λ·[v] is defined in [0,>] on any v : Rn ³ [0, 1] with |{0 < v < 1}| > 0 – this condition

guarantees indeed that
´

Rn
V 2(v)2 > 0.
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convexity [Hui87], C1-proximity to a sphere [ES98], star-shapedeness [KK20], or integral
pinching conditions [Li09]. In general, singularity formation may lead to convergence to
multiple balls, a phenomenon called bubbling (see [FJM22, Theorem 1.4] for an example)
and it is thus unclear for which class of initial data one should expect convergence towards
a single ball (of the same volume as the initial datum) or towards multiple balls (all with
a same volume equal to a fraction of the initial one). Since perimeter decreases along the
VPMCF, a natural conjecture is that, if a unit volume initial datum has perimeter strictly
less than twice the perimeter of a ball of volume 1/2, then convergence to a single ball
should follow (with exponential rates of convergence). This conjecture has been proved
for “flat flow” solutions of the VPMCF, and in dimensions n = 2 and n = 3 respectively,
in the recent papers [JMPS23, JMOS24]. Moreover, again when n = 2, 3, in [JN23] it
is proved that flat flow solutions always resolve, as t ³ >, as finite union of balls with
possibly moving centers. All these results are based on powerful quantitative bubbling
results for sets with L2-small mean curvature oscillation. The restriction to dimensions
n = 2, 3 is strongly correlated, on the one hand, to the fact that the L2-oscillation of the
mean curvature is the dissipation of the VPMCF, and is thus the quantity to work with
in this setting; and that, on the other hand, the critical Lp-space for the regularity theory
of the mean curvature of a boundary in R

n is p = n 2 1. For these reasons, the further
extension of these methods to dimensions n g 4 seems delicate.

Remark 1.2 (On assumption (1.9)). Assumption (1.9) amounts to asking that the initial
datum has strictly less energy than twice that of two diffused balls of volume 1/2. Hence,
by proving Theorem 1.1 under (1.9) we have proved the validity, in every dimension, of
the diffused analogue of the VPMCF-conjecture mentioned in Remark 1.1.

Remark 1.3 (On assumption (1.10)). Proving Theorem 1.1 under assumption (1.10)
is somehow more striking than doing so under assumption (1.9), since (1.10) allows for
initial data with arbitrarily large energy as well as for initial data that is arbitrarily
close to the characteristic functions of any bounded set with finite perimeter and unit
volume. Indeed, if E ¢ R

n is a bounded set of finite perimeter with |E| = 1, then by a
standard construction, we can find a family {v·}·>0 of smooth and compactly supported
functions on R

n such that v· ³ 1E in L1(Rn) and AC·(v·) ³ 2P (E) as · ³ 0+, with
spt v· ¢¢ {x : dist(x,E) < 1} for all · > 0.

1.2. Open problems and metastability. Before presenting the proof of Theorem 1.1,
and the various intermediate results behind it, we briefly introduce some interesting prob-
lems related to Theorem 1.1.

A first natural problem is addressing the existence of non-compactly supported initial
data such that the resulting flow does not converge to a single diffused ball, but rather
resolves into a superposition of time-drifting diffused balls (compare with conclusion (1.21)
in Theorem 1.4). Since the physical or numerical relevance of non-compactly supported
initial data is unclear, this is probably a question of very theoretical flavor; still, answering
to it may be challenging.

In the ·³ 0+-limit, and for suitably prepared initial data, the diffused VPMCF should
converge to a weak formulation of the VPMCF, and, indeed, this kind of convergence has
been established, in absence of volume-preserving Lagrange multipliers, in [Ilm93, BOS06],
and for the VPMCF but under spherical symmetry assumptions on Ω, in [BS97]. For this
reason, another natural problem related to Theorem 1.1 would be understanding whether
the ·-dependency of the decay rates (1.11) and (1.12) can be dropped off or not: the
corresponding ·-independent decay rates could then be transferred to the VPMCF. It
seems natural to conjecture that, if u0 is compactly supported and is such that AC·(u0) <
2Ψ(·, 1/2) (that is, if both (1.9) and (1.10) hold), then ·-independent decay rates to a

4



single diffused ball hold true, thus providing a strategy to extend the results of [JN23,
JMPS23, JMOS24] to arbitrary dimensions.

We do not expect, however, that ·-independent decay rates to a single diffused ball
should hold for a generic compactly supported initial datum u0: such rates should hold,
at best, only for t > T· = T·(u0) with T· ³ > as · ³ 0+. Indeed, a flow starting
from a superposition of two diffused balls truncated so to have compact support should
spend a time T· ³ > as ·³ 0+ close to its “metastable” initial datum, before eventually
converging to a single diffused ball.

Evidence in support of such metastable scenario can be found in a series of “slow-
motion” results concerning the initial value problem

ù

ü

ú

ü

û

"tv = 2 ·2 ∆v 2W 2(v) + · µ·[v(t)] , on Ω× (0,>) ,

'¿Ωv(t) = 0 , on "Ω ,

v(0) = u0 , on Ω ,

(1.13)

defined on a bounded open set Ω ¢ R
n with regular boundary, and involving the Lagrange

multiplier µ·[v] =
´

ΩW
2(v)/(· |Ω|), where the choice7 of µ· is such that

´

Ω v(t) =
´

Ω u0 for
all t g 0. Problem (1.13) has indeed been the object of study in several papers, as we are
now going to informally8 review. Before doing that, let us stress that in the slow-motion
literature it is customary to work with the parabolic operator "tv2 2 ·2 ∆v in place of the
one used in (DF), namely, ·2 ("tu2 2∆u). In practice this is a small difference, since one
can pass from one setting to the other by just rescaling solutions in time, according to the
relation v(t) = u(·2 t). The choice made in (DF) seems more natural, since the resulting
flow is the one that is expected to converge, in the · ³ 0+-limit, to the VPMCF. It is
important to keep this difference in mind when comparing Theorem 1.1 to results from
the slow-motion literature, which are typically formulated on (1.13).

In dimension n = 1, when Ω is an interval, building up on the pioneering work [BK90,
BK91], in [Gra95] (see also [BHNN15]) the following result is proved: if u0 : Ω ³ {0, 1} has
N -many jumps and {u·0}· is a family of initial data for (1.13) such that ‖u·02u0‖L1(Ω) ³ 0

as ·³ 0+, then solutions {v·(t)}· of (1.13) are such that

lim
·³0+

sup
t<C eC/·

ˆ

Ω
|v·(t)2 u0| = 0 . (1.14)

In terms of u·(t) = v·(t/·2), we thus have supt<C ·2 eC/·

´

Ω |u·(t) 2 u0| = 0 as · ³ 0+,

which is a non-trivial information since ·2 eC/· ³ > as · ³ 0+. When N g 2 we can
interpret this statement as a metastability result, since the expectation is that u·(t) will
eventually converge to a single transition layer.

Concerning dimensions n g 2, it is shown in [AF94, ABF98] that for initial data resem-
bling the characteristic function of a sufficiently small ball contained in Ω and located near
"Ω, solutions {v·(t)}· to (1.13) will remain close to the characteristic function of a ball

contained in Ω on an interval of times (0, T·) with T· = O(eC/·) as ·³ 0+. This is another
result supporting the metastability scenario: indeed, the expected attractors of (1.13) as

7The boundedness of Ω allows one to work with the simpler volume potential V (t) = t, which also
brings some remarkable simplifications in the form of the volume-preserving Lagrange multiplier. Indeed,
comparing the definition of λ· with that of µ· we see how the former choice, crucial in ensuring the
well-posedness of Ψ(ε,m) as a minimization problem on R

n, leads to the presence of the possibly degen-
erate denominator ε

´

Rn
V 2(v)2 (in place of the constant denominator ε|Ω|), and of the additional term

|'v|2 V 22(v)(j |'v|2 v2/(n21) for v small) at numerator.
8Our review is informal in the sense that we will gloss over specific assumptions made in the reviewed

papers on the double well potential W and the initial data u0. Moreover, the range of u is often assumed
to be R, while we have chosen to consider functions with range in [0, 1].
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t ³ > should be close, for · small, to minimizers of inf{P (E; Ω) : E ¢ Ω , |E| = m};
however, such minimizers, at small volume m, look like half-balls centered at the point of
highest mean curvature of "Ω (see [Fal10, MM16]), and thus will never be balls contained
in Ω.

Another slow-motion result in higher dimension has been obtained in [MR16, LM19].
Its interest lies in the fact that it assumes the proximity of the initial data to generic
perimeter minimizing sets (thus, not necessarily to balls/intervals); the drawback is that
proximity of solutions v·(t) is shown to be preserved only on a time interval (0, T·) with
T· = C/· so that, in terms of u·(t) = v·(t/·2), proximity preservation is shown only on a
time interval (0, C ·), and no information survives in the limit ·³ 0+.

1.3. Analysis of the diffused VPMCF. We now provide a detailed breakdown of a
series of results leading to Theorem 1.1.

The starting point of our analysis is to establish the existence of solutions of the dif-
fused VPMCF and their basic regularity properties. This is a nontrivial task due to the
presence of the Lagrange multiplier functional »·. In addition to being non-local and
requiring integrating on a non-compact set, this term brings two main technical complica-
tions into our analysis: 1) the possible degeneration of the flow because of the smallness
of the

´

Rn V
2(u)2-term at the denominator, and 2) the lack of regularity because of the

|'u|2 V 22(u)-term at numerator, since V 22(u) is only Hölder continuous. These difficulties
are addressed by first approximating V with regularized volume potentials V· such that
Lip(V 22

· ; [0, 1]) < >, and by then discussing the delicate limit as · ³ 0+. Boundedness,
Lipschitz and Hölder continuity estimates on »·, and on its variant »·,· associated with
V·, are discussed in Section 3, and are obtained by borrowing the geometric viewpoint
of “nucleation lemmas” from the theory of isoperimetric clusters [Alm76]. With these
estimates at hand we can implement a fixed point argument to show the existence of mild
solutions to the modification of (DF) obtained by replacing V with V·. We can then start
bootstrapping regularity and monotonicity properties for the ·-approximating flows, up to
the point where enough information is obtained and the · ³ 0+ limit can be addressed,
thus establishing the following theorem (proved in Section 4).

Theorem 1.2 (Existence, regularity, and entropies of the flow). If · > 0, n g 2, W *
C2,1[0, 1] satisfies (1.2) and (1.3), u0 * W 2,p(Rn; [0, 1]) for every p g 2, and V(u0) = 1,
then there exists a unique u * C0(Rn × [0,>)) + C2

loc(R
n × (0,>)) that is a classical

solution of (DF). Moreover:

(i): for every p g 2 and t0 > 0 we have

sup
t>0

{

‖"tu(t)‖Lp(Rn) , ‖u(t)‖W 2,p(Rn)

}

f C(·, u0, p) , (1.15)

sup
t>t0

{

‖"ttu(t)‖Lp(Rn) , ‖"tu(t)‖W 2,p(Rn) , ‖u(t)‖W 3,p(Rn)

}

f C(·, u0, p, t0) ; (1.16)

(ii): t 7³ »·[u(t)] is Lispchitz continuous on (t0,>) for every t0 > 0, and is such that

sup
t>0

· |»·[u(t)]| f C AC·(u0)2n+2 ;

(iii): V(u(t)) = 1 for every t g 0;

(iv): t 7³ AC·(u(t)) is continuous and decreasing on [0,>) with

AC·(u(t2))2AC·(u(t1)) = 2·
ˆ t2

t1

dt

ˆ

Rn

("tu(t))
2 , "t2 g t1 > 0 ; (1.17)

(v): 0 < u < 1 on R
n × (0,>);

6



(vi): the function t 7³
´

Rn("tu(t))
2 belongs to W 1,1(t0,>) for every t0 > 0, with

d

dt

ˆ

Rn

("tu(t))
2 = 2

ˆ

Rn

{

4 |'("tu)|2 +
2

·

(W 22(u)
·

2 »·[u(t)]V
22(u)

)

("tu)
2
}

(t) . (1.18)

In particular,

lim
t³>

ˆ

Rn

("tu(t))
2 = 0 .

It is well-know that the asymptotic behavior of a semilinear parabolic PDE can be “sub-
sequentially resolved” into a bubbling of mutually drifting stationary states: a good exem-
plification of this kind of result, whose fundamental idea is rooted into Lions’ concentration-
compactness principle itself, is found, for example, in [Fei97, Theorem 1.1]. Another pow-
erful idea found in theory of semilinear parabolic PDE is that when the initial datum is
compactly supported, then a sort of star-shapedness of the flow (see (5.45)) can be estab-
lished by means of the parabolic maximum principle, thus excluding bubbling phenomena;
for a general exemplification of this idea, see [Fei97, Theorem 1.2]. In Section 5 we adapt
these general methods to our specific problem, which, again, does not follow in the range
of application of the general theory because of the non-autonomy of (DF) and because of
the presence of the non-local Lagrange multiplier »·. Notice that we are not considering
(yet) the physical regime when · is small: in particular, there is no way to attribute any
geometric meaning to the stationary states ¿i appearing in the statement, e.g. by relating
them to the minimizers ··,m of Ψ(·,m).

Theorem 1.3 (Subsequential bubbling, general ·). Let · > 0, n g 2, W * C2,1[0, 1]
satisfy (1.2) and (1.3), u0 *W 2,p(Rn; [0, 1]) for every p g 2, V(u0) = 1, and let {u(t)}tg0

be the diffused VPMCF with u(0) = u0.

Then, for every sequence tj ³ > as j ³ >, up to extracting a subsequence, there are

M * N, 3· > 0, sequences (xij)j (i = 1, ...,M) satisfying |xij 2 xkj | ³ > as j ³ > (i 6= k),

and radial solutions {¿i}Mi=1 of

2 ·2 ∆¿i =W 2(¿i)2 · 3· V
2(¿i) on R

n , (1.19)

such that
M
∑

i=1

V(¿i) = 1 ,

M
∑

i=1

AC·(¿i) f AC·(u0) , (1.20)

and, for all p > 2,

lim
j³>

∥

∥

∥
u(tj)2

M
∑

i=1

Ç
xj
i
[¿i]

∥

∥

∥

(W 2,p+W 1,2)(Rn)
+

∣

∣»·[u(tj)]2 3·
∣

∣ = 0 .

Moreover, if u0 has compact support in R
n, then M = 1 and x1j ³ x7 as j ³ > for some

x7 * R
n.

From this point on we work exclusively in the geometric regime when · < ·0 for some
small universal constant ·0 and relate the subsquential bubbling established in Theorem
1.3 to the diffused isoperimetric problem Ψ(·,m). A key tool in achieving this result is
the diffused Alexandrov theorem proved in [MR24, Theorem 1.1-(iv)], whose statement is
recalled in Section 2, and which asserts, roughly speaking, that any solution of 2 ·2 ∆¿ =
W 2(¿)2 · 3 V 2(¿) on R

n with ¿(x) ³ 0 as |x| ³ > and · 3 * (0, ¿0) for a sufficiently small
universal constant ¿0, must satisfy, up to translations, ¿ = ··,m and 3 = Λ·,m, for some m

such that · * (0, ·0m
1/n).

Theorem 1.4 (Subsequential bubbling, small ·). If n g 2, W * C2,1[0, 1] satisfies (1.2)
and (1.3), u0 *W 2,p(Rn; [0, 1]) for all p g 2, and V(u0) = 1, then there is ·70 = ·70(n,W, u0)
with the following property.
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If · * (0, ·70) and {u(t)}tg0 is the corresponding solution of (DF) with u(0) = u0, then,
for every tj ³ > as j ³ >, up to extracting a subsequence in j, there are M * N and

sequences {(xij)j}Mi=1 with |xij 2 xkj | ³ > as j ³ > (i 6= k), such that

lim
j³>

∥

∥

∥
u(tj)2

M
∑

i=1

Çxi
j

[

··,1/M
]

∥

∥

∥

(W 2,p+W 1,2)(Rn)
+
∣

∣

∣
»·[u(tj)]2 Λ·,1/M

∣

∣

∣
= 0 , (1.21)

for all p > 2. Moreover, M is uniquely characterized by the relation

M Ψ
(

·,
1

M

)

= lim
t³>

AC·(u(t)) . (1.22)

In particular, M and the limit Lagrange multiplier Λ·,1/M depend only on u0 and not on
the specific sequence (tj)j under consideration.

Remark 1.4. For the quantification of ·70 in terms of u0, see (6.2) below.

Under the assumption (1.9) or (1.10), Theorem 1.4 holds with M = 1. Thus to go
from Theorem 1.4 to Theorem 1.1 we have to upgrade subsequential convergence to full
convergence as t ³ >. The natural approach to this problem consists in proving the
differential inequality

2 d

dt
I·(t) g

I·(t)
C(·)

, "t > 1/C(·, u0) ,

for the Fisher information/dissipation I·(t) = ·
´

Rn("tu(t))
2 of the flow (compare with

Theorem 1.2-(iv,vi)). This is the well-known Bakry-Émery method, which requires estab-
lishing the strict stability of the V-constrained second variation

Q·[··](×) =

ˆ

Rn

2 · |'×|2 +
{W 22(··)

·
2 Λ· V

22(··)
}

×2 , × *W 1,2(Rn) , (1.23)

of the Allen–Cahn functional at the minimizer ·· = ··,1 of Ψ(·, 1) (where we are also
setting Λ· = Λ·,1 for brevity). This strict stability result is established in the following
theorem, proved in Section 7 (whereas the proof of Theorem 1.4 is finally discussed in
Section 8).

Theorem 1.5 (Strict stability of Q· at ··). If n g 2 and W * C2,1[0, 1] satisfies (1.2)
and (1.3), then there exists a positive universal constant ·0 with the following property.

For every · * (0, ·0), if × *W 1,2(Rn) satisfies
ˆ

Rn

×V 2(··) = 0 ,

ˆ

Rn

×'·· = 0 , (1.24)

then

Q·[··](×) g
·

C

ˆ

Rn

×2 ; (1.25)

and, moreover, for a constant C(·) > 0,

Q·[··](×) g
1

C(·)

ˆ

Rn

|'×|2 + ×2 . (1.26)

It had already been proved in [MR24, Lemma 4.4] that if × is radial (and satisfies
(1.24)), then

CQ·[··](×) g
ˆ

Rn

· |'×|2 + ×2

·
, (1.27)

thus showing that the stability of Q·[··] among radial variations is much stronger than
among generic variations (the costant ·/C in (1.25) is sharp as seen in the proof of the
theorem itself). The proof of Theorem 1.5 combines the decomposition of × as a Fourier
series in angular/radial variables with a geometric change of variables that allows to relate
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(on special modes of such decomposition) Q·[··] with the second variation of the perimeter
functional at a ball.

1.4. Organization of the paper. Section 2 contains a recap of our basic notation, main
results from [MR24], and useful properties of the various potentials involved in our analysis.
The other sections of the paper are organized as described in the previous section.

Acknowledgements: FM has been supported by NSF Grant DMS-2247544. FM and DR
have been supported by NSF Grant DMS-2000034 and NSF FRG Grant DMS-1854344.

2. Background material on the diffused isoperimetric problem

In this section we collect some background material that will be repeatedly used in the
sequel. In Section 2.1 we set some basic conventions and notation, while in Section 2.2
we recall some key results contained in [MR24] and concerning the diffused isoperimetric
problem Ψ(·,m). Finally, in Section 2.3 we collect some elementary inequalities concerning
the various potentials W , Φ, and V that will be often referred to in later proofs, and in
Section 2.4 we introduced some regularized volume potentials V· which will be employed
as a technical device in the proof of Theorem 1.2.

2.1. Basic conventions. Throughout the paper n * N, n g 2, denotes the dimension of
the Euclidean space we are working in, andW * C2,1[0, 1] is a “double-well potential” sat-
isfying (1.2) and (1.3). By universal constant we mean a positive real number depending
onW and the value of n under consideration. We denote by C a generic universal constant
whose value may increase at each of its subsequent appearances. Universal constants that
may also depend on · > 0 are denoted by C(·), with the idea that C(·) may diverge to
+> as · ³ 0+. Given k * N, we will write “f(·) = O(·k) as · ³ 0+” if there exists a
universal constant C such that |f(·)| f C ·k for every · * (0, 1/C); similar definitions are
given for “O(t) as t³ >”, etc.

2.2. The diffused isoperimetric problem. Let us recall that for every ·,m > 0 we set

Ψ(·,m) = inf
{

AC·(u) : V(u) = m,u *W 1,2(Rn; [0, 1])
}

.

Among the basic properties of Ψ(·,m) we have the scaling law

Ψ(·,m) = m(n21)/n Ψ
( ·

m1/n
, 1
)

, "·,m > 0 , (2.1)

and the isoperimetric lower bound and ·³ 0+ limit

Ψ(·,m) > 2 ciso(n)m
(n21)/n , "·,m > 0 , (2.2)

lim
·³0+

Ψ(·,m) = 2 ciso(n)m
(n21)/n , "m > 0 , (2.3)

where we have set ciso(n) = nË
1/n
n . A simple concentration compactness argument (see

[MNR23, Proof of Theorem A.1, steps one and two]) shows that Ψ(·,m) admits radially
symmetric decreasing minimizers for each · and m. Stronger properties are proved in
[MR24, Theorem 1.1, Theorem 6.1] under the geometric regime · << m1/n:

Theorem Ψ [MR24] If n g 2 and W * C2,1[0, 1] satisfies (1.2) and (1.3), then there are
positive universal constants ·0 and ¿0 with the following properties:

(i) : we have

Ψ(·,m) is strictly increasing on (0, ·0m
1/n) , (2.4)

Ψ(·, ·) is concave on (0,>) and strictly concave on ((·/·0)
n,>) ; (2.5)

moreover, if 0 < · < ·0m
1/n, then there is a radially symmetric strictly decreasing mini-

mizer ··,m of Ψ(·,m) with maximum at the origin having the property that u is a minimizer
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of Ψ(·,m) if and only if u = Çx0 [··,m] for some x0 * R
n; and, for some Λ·,m > 0, ··,m

satisfies

2 ·2 ∆··,m =W 2(··,m)2 ·Λ·,m V
2(··,m) on R

n ,

where

lim
·³0+

m1/n Λ·,m = 2 (n2 1)Ë1/n
n . (2.6)

(ii): if v * C2(Rn; [0, 1]) satisfies v(x) ³ 0+ as |x| ³ > and solves

2 ·2 ∆v =W 2(v) 2 · »V 2(v) on R
n ,

for some positive » such that · » < ¿0, then there exist x0 * R
n and m > 0 such that

v = Çx0 [··,m] , · < ·0m
1/n , » = Λ·,m .

2.3. Technical properties of W and related potentials. In the linearization of (DF)
we shall tacitly use the fact that, being W * C2,1[0, 1], we have

∣

∣

∣
W (r)2W (s)2W 2(s)(r 2 s)2W 22(s)

(r 2 s)2

2

∣

∣

∣
f C |r 2 s|3 , "r, s * [0, 1] .

We also observe that 1/C f W 22 f C on [0, 1], and that there is a universal constant
·0 < 1/2 such that

1

C
f W (r)

r2
,
W 2(r)
r

f C "r * (0, ·0] ,

1

C
f W (r)

(12 r)2
,
2W 2(r)
12 r

f C "r * [12 ·0, 1) .

(2.7)

Recalling that Φ(r) =
´ r
0

:
W and V (r) = Φ(r)n/(n21) for r * [0, 1], we use (2.7) to

quantify the behaviors of Φ and V near r = 0 and r = 1. By (1.2), Φ * C3
loc(0, 1), with

Φ2 =
:
W , Φ22 =

W 2

2
:
W

, Φ222 =
W 22

2
:
W

2 (W 2)2

4W 3/2
, on (0, 1) .

By (2.7) and (1.3) we thus see that Φ satisfies

1

C
f Φ(r)

r2
,
Φ2(r)
r

,Φ22(r) f C , "r * (0, ·0] ,

1

C
f 12 Φ(r)

(12 r)2
,
Φ2(r)
12 r

,2Φ22(r) f C , "r * [12 ·0, 1) .

(2.8)

By exploiting (2.8) and setting for brevity a =W 22(0), we see that, as r ³ 0+,

Φ222 =
2W 22W 2 (W 2)2

4W 3/2
=

2 (a +O(r)) (a (r2/2) + O(r3))2 (a r +O(r2))2

4 (a (r2/2) + O(r3))3/2

=
O(r3)

4 a3/2 r3 + o(r3)
,

and by a similar computation for r ³ 12, we find

|Φ222| f C on (0, ·0) * (12 ·0, 1) . (2.9)

By (2.8) and (2.9) we see that Φ * C2,1[0, 1] with a universal estimate on its C2,1[0, 1]-
norm: in particular,

∣

∣

∣
Φ(r)2 Φ(s)2 Φ2(s)(r 2 s)2 Φ22(s)

(r 2 s)2

2

∣

∣

∣
f C |r 2 s|3 , "r, s * (0, 1) . (2.10)
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Since V = Φ1+³ for ³ = 1/(n 2 1) * (0, 1] (recall that n g 2) and Φ(r) = 0 if and only if
r = 0, we easily see that V * C3

loc(0, 1), with

V 2 = (1 + ³)Φ³ Φ2 , V 22 = (1 + ³)
{

³
(Φ2)2

Φ12³
+Φ³Φ22

}

,

|V 222| f C(³)
{ (Φ2)3

Φ22³
+

Φ2 |Φ22|
Φ12³

+Φ³ |Φ222|
}

.

By (2.10), and keeping track of the sign of Φ22 and of the fact that negative powers of Φ(r)
are large only near r = 0, but are bounded near r = 1, we find that

1

C
f V (r)

r2+2³
,
V 2(r)
r1+2³

,
V 22(r)
r2³

f C , |V 222(r)| f C

r122³
"r * (0, ·0] ,

1

C
f 12 V (r)

(12 r)2
,
V 2(r)
12 r

f C , |V 22(r)| , |V 222(r)| f C , "r * [12 ·0, 1) .

(2.11)

In particular, V 22(r) ³ > explodes as r ³ 0+. However, V * C2,³(n)[0, 1] (with ³(n) =
min{1, 2/(n 2 1)} * (0, 1]) and we have the second order Taylor expansion

∣

∣

∣
V (r)2 V (s)2 V 2(s) (r 2 s)2 V 22(s)

(r 2 s)2

2

∣

∣

∣
f C |r 2 s|2+³(n) , "r, s * (0, 1) .

As much as the analogous expansion for W , this formula will be repeatedly used in lin-
earizing (DF).

2.4. Regularized volume potentials. As already discussed at the beginning of Section
1.3, the non-Lipschitzianity of V 22 near 0 causes several technical problems, that call for
the introduction of regularized volume potentials V· : [0, 1] ³ [0, 1] (· > 0) such that
V· * C2,1[0, 1], with

V·(0) = 0 , V 2
· (0) = V 2

· (1) = 0 , lim
·³0+

‖V· 2 V ‖C2[0,1] = 0 .

We will of course have

lim
·³0+

Lip(V 22
· ; [0, 1]) = +> , sup

·>0
[V 22

· ]C0,³(n) <> .

Such potentials V· can be defined by first considering a family {Ã·}·>0 of smooth mollifiers
on R such that sptÃ· ¢¢ (2·2, ·2), and then by setting

V· = Ã· æ
(

L· çΦ
)n/(n21)

, (2.12)

where

L·(r) =

ù

ü

ü

ú

ü

ü

û

0 , r * [0, ·] ,

r 2 ·

12 2 ·
, r * [·, 1 2 ·] ,

1 , r * [12 ·, 1] .

ByW > 0 on (0, 1), (2.7) and (2.11), and up to further decreasing the value of ·0 introduced
above, we have

V·(r) f C r2 f CW (r) , V 2
· (r) f C r , "r * (0, 1 2 ·0) ,

for every · *
[

0, ·0], as well as (compare with (2.11))

V·(r) g
1

C
, V 2

· (r) f C (12 r) "r * (·0, 1) . (2.13)
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3. Estimates for the Lagrange multiplier functional

This section is devoted to the analysis of the Lagrange multiplier functional »·, defined
with values in [0,>) on any given function v * W 1,2(Rn; [0, 1]) with |{0 < v < 1}| > 0
(and assumption that guarantees

´

Rn V
2(u)2 > 0) by setting

»·[v] =

´

Rn 2 ·
2 |'v|2 V 22(v) +W 2(v)V 2(v)

·
´

Rn V 2(v)2
. (3.1)

In particular, we address the Lipschitz continuity properties of »· in the Banach space
(X, ‖ · ‖) defined by

X = (C0 +W 1,2)(Rn; [0, 1]) , ‖u‖X = ‖u‖W 1,2(Rn) + ‖u‖C0(Rn) ,

that is the space we shall use to construct mild solutions of (DF). In fact, we shall also
need to consider the Lagrange multiplier functionals

»·,·[u] =

´

Rn 2 ·
2 |'u|2 V 22

· (u) +W 2(u)V 2
· (u)

·
´

Rn V 2
· (u)

2
, (3.2)

obtained by replacing V with the regularized volume potentials V· introduced in the pre-
vious section. We shall also set V0 = V , V0 = V, and use the notation

AC·(u; Ω) =
ˆ

Ω
· |'u|2 + W (u)

·
, V·(u; Ω) =

ˆ

Ω
V·(u) ,

for the localization to a Borel set Ω ¢ R
n of the functionals AC· and V·.

Theorem 3.1. If n g 2 and W * C2,1[0, 1] satisfies (1.2) and (1.3), then there exist
positive universal constants ·0 and ·0 with the following properties:

(i): if u *W 1,2(Rn; [0, 1]), · > 0, and · * [0, ·0], then
ˆ

Rn

u2 f C
{

·AC·(u) + V·(u)
}

, (3.3)

and, with an ·-dependent universal constant C(·),

C(·)

ˆ

Rn

|'u|2
ˆ

Rn

V 2
· (u)

2 g min
{

1,
V·(u)

AC·(u)

}2n
, (3.4)

|»·,·[u]| f C(·)
AC·(u)

2n+1

V·(u)2n

ˆ

Rn

|'u|2 . (3.5)

Furthermore, if · = 0 and · * (0, ·0), then (3.4) and (3.5) hold with C in place of C(·).

(ii): if u, v * X \ {0}, · > 0, and max{‖u‖X , ‖v‖X} f C(·), then

|»·,·[u]2 »·,·[v]| f C(·, ·)
‖u2 v‖X

min{1,V·(u)2n} min{1,V·(v)2n}
, "· * (0, ·0] , (3.6)

|»·,·[u]2 »·,·[v]| f C(·)
‖u2 v‖³(n)X

min{1,V·(u)2n} min{1,V·(v)2n}
, "· * [0, ·0] , (3.7)

|»·,·[u]2 »·[u]| f C(·)
‖V· 2 V ‖C2[0,1]

min{1,V·(u)2n} min{1,V(u)2n} , "· * [0, ·0] , (3.8)

where ³(n) = min{1, 2/(n 2 1)}; and if u, v *W 2,2(Rn; [0, 1]) \ {0}, then

|»·,·[u]2 »·,·[v]| f C(·)
max{‖u‖W 2,2 , ‖v‖W 2,2} ‖u 2 v‖W 1,2(Rn)

min{1,V·(u)2n} min{1,V·(v)2n}
, "· * [0, ·0] . (3.9)
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Proof. Step one, diffused relative isoperimetry and nucleation: We prove two relative
isoperimetric inequalities in balls in the diffused setting and a consequent nucleation type
lemma modeled after [MPS22, Lemma 2.1]. This kind of result is in turn inspired by a
tool introduced by Almgren [Alm76] in the study of isoperimetric clusters, see [Mag12,
Lemma 29.10]. More precisely, we prove the existence of universal constants ·0, Ã0 and C
with the following properties:

(a): if · * [0, ·0], ·, r > 0, and if u *W 1,2(Rn; [0, 1]) satisfies
 

Br

V·(u) f ·0

(·

r

)2n
, (3.10)

then

C AC·(u;Br) g
·

r
V·(u;Br)

(n21)/n ; (3.11)

(b): if ·, r > 0 are such that ·/r < Ã0, and if u *W 1,2(Rn; [0, 1]) satisfies
 

Br

V (u) f 1

2
, (3.12)

then

C AC·(u;Br) g V(u;Br)
(n21)/n . (3.13)

(c): if · > 0 and

B =
{

B:
n+1R/2(Rz) : z * Z

n
}

, R =
max{1, ·}

Ã0 (
:
n+ 1/2)

,

then for every u *W 1,2(Rn; [0, 1]) we have

C
max{1, ·}
min{1, ·2 n} sup

B*B

 

B
V·(u) g min

{

1,
( V·(u)

AC·(u)

)n}

, "· * (0, ·0] , (3.14)

C max{1, ·} sup
B*B

 

B
V (u) g min

{

1,
( V(u)
AC·(u)

)n}

. (3.15)

We first derive conclusion (c) from conclusions (a) and (b): Let u * W 1,2(Rn; [0, 1]). In
proving (3.15) we can assume without loss of generality that

sup
B*B

 

B
V (u) f 1

2
.

In particular, since the choice of R is such that ·/(
:
n+ 1R/2) < Ã0 for every · > 0, we

deduce from conclusion (b) that (3.13) holds for every B * B. The corresponding bounds
can be used together with the fact that B is a covering of R

n with finite overlapping
(depending only on the dimension n) to conclude that

C(n)AC·(u) g
∑

B*B
AC·(u;B) g 1

C

∑

B*B
V(u;B)(n21)/n (3.16)

g 1

C

∑

B*B V(u;B)

supB*B V(u;B)1/n
g 1

C

V(u)

supB*B
(

´

B V (u)
)1/n

.

Thanks to |B|1/n f C max{1, ·} for every B * B, (3.16) implies (3.15). To prove (3.14),
let · * (0, ·0], and let us assume without loss of generality that

sup
B*B

 

B
V·(u) f ·0

( ·:
n+ 1R/2

)2n
, (3.17)

13



then we can apply (3.11) to each B * B, and conclude as in (3.16) that

C(n)AC·(u) g
·

C R

V·(u)

supB*B V·(u;B)1/n
g min{1, ·}

C

V·(u)

supB*B V·(u;B)1/n
.

In particular, (3.14) follows by taking again into account that ·/R = C max{1, ·}.
We now prove conclusions (a) and (b): Up to a rescaling, we can take r = 1 in both
conclusions. To prove conclusion (a), we notice that, by (3.10) and (2.13),

·0 ·
2n g 1

Ën

ˆ

B1+{ug1/2}
V·(u) g

|B1 + {u g 1/2}|
C

. (3.18)

Since W (r) g r2/C for r * [0, 1/2], by (2.13), (3.18), and the Hölder inequality, we get
ˆ

B1

u2 =

ˆ

B1+{uf1/2}
u2 +

ˆ

B1+{ug1/2}
u2

f C

ˆ

B1

W (u) + C
∣

∣B1 + {u g 1/2}
∣

∣

1/n
(

ˆ

B1

u2n/(n21)
)(n21)/n

f C

ˆ

B1

W (u) + C ·
1/n
0 ·2

(

ˆ

B1

u2n/(n21)
)(n21)/n

. (3.19)

By combining (3.19) with the embedding of L2n/(n21)(B1) into W
1,2(B1), we find that

ˆ

B1

· |'u|2 + W (u)

·
g

ˆ

B1

· |'u|2 + u2

C·
2 C ·

1/n
0 ·

(

ˆ

B1

u2n/(n21)
)(n21)/n

g ·

C

(

ˆ

B1

u2n/(n21)
)(n21)/n

2 C ·
1/n
0 ·

(

ˆ

B1

u2n/(n21)
)(n21)/n

g ·

C

(

ˆ

B1

u2n/(n21)
)(n21)/n

g ·

C

(

ˆ

B1

V·(u)
)(n21)/n

,

provided ·0 is a sufficiently small universal constant, and where we have used that V·(r) f
C r2n/(n21) for every r * [0, 1] and · * [0, ·0]. Having proved conclusion (a), we now prove
conclusion (b). Arguing by contradiction, we can assume the existence of ·k ³ 0+ and
{uk}k in W 1,2(B1; [0, 1]) such that, for all k * N and setting for brevity

Mk =

ˆ

B1

V (uk) =

ˆ

B1

Φ(uk)
p , p =

n

n2 1
,

we have Mk f Ën/2 and

ˆ

B1

·k|'uk|2 +
W (uk)

·k
f M

1/p
k

k
, (3.20)

for every k * N. Combining |'(Φçu)| = |'u|
√

W (u) with Young’s inequality as in (1.5),
we deduce from (3.20) and the BV -Poincaré inequality [AFP00, (3.41)] that

1

C

(

ˆ

B1

|Φ(uk)2 tk|p
)1/p

f
ˆ

B1

|'(Φ ç uk)| f
C

k
M

1/p
k , (3.21)

where tk = Ë21
n

´

B1
Φ(uk). In particular, there is c * [0, 1] such that, up to extracting a

subsequence, uk ³ c in L1(B1) and a.e. in B1 as k ³ >. Since (3.20) implies
´

B1
W (uk) ³

0 as k ³ >, by Fatou’s lemma we find
ˆ

B1

W (c) f lim inf
k³>

ˆ

B1

W (uk) = 0 .
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In particular, c * {0, 1}. Since c = 1 would contradict Mk f Ën/2 for every k, we conclude
that c = 0, and hence, thanks also to 0 f uk f 1, that Φ(uk) ³ 0 in Lp(B1) (i.e., Mk ³ 0)

as k ³ >. On noticing that 0 f tk f CM
1/p
k , we deduce by (3.21) that

‖Φ(uk)2 (Mk/Ën)
1/p‖Lp(B1) f ‖tk 2 (Mk/Ën)

1/p‖Lp(B1) +
C

k
M

1/p
k f CM

1/p
k , (3.22)

and, in particular, that

lim
k³>

∣

∣

∣
B1 +

{

Φ(uk) f (Mk/2Ën)
1/p

}∣

∣

∣
= 0 .

Since Φ(uk) ³ 0 in Lp(B1) implies |B1 +{Φ(uk) > 1/2}| ³ 0 as k ³ >, we conclude that
∣

∣

∣
B1 +

{1

2
g Φ(uk) g (Mk/2Ën)

1/p
}∣

∣

∣
g |B1|

2
, (3.23)

for k large enough. In particular, thanks to Φ f CW on [0, 1/2] and to (3.20), for k large
enough we have

M
1/p
k

C ·k
f 1

·k

ˆ

B1+{1/2gΦ(uk)g(Mk/2Ën)1/p}
Φ(uk) f

1

·k

ˆ

B1

W (uk) f
M

1/p
k

k
, (3.24)

that leads to a contradiction as k ³ >.

Step two: We prove statement (a). To prove (3.3) it suffices to recall that W (r) g r2/C
for r * [0, 1/2] and V·(r) g r2/C for r * [1/2, 1], so that

ˆ

Rn

u2 =

ˆ

{uf1/2}
u2 +

ˆ

{u>1/2}
u2 f C

ˆ

Rn

W (u) + V·(u) .

To prove (3.5) we first notice that |V 22
· (r)| f C and |W 2(r)V 2

· (r)| f CW (r) for every
r * [0, 1] (and every · * [0, ·0]), so that

∣

∣

∣

ˆ

Rn

2· |'u|2 V 22
· (u) +

1

·
W 2(u)V 2

· (u)
∣

∣

∣
f C AC·(u) . (3.25)

Since V·(r) f C r2 for r * [0, 1] and u * L2(Rn) we can find a sequence Rj ³ > such
that

´

"BRj
V·(u) ³ 0 as j ³ >, and thus apply the divergence theorem to deduce that,

for every x0 * R
n,

(n2 1)

ˆ

Rn

V·(u)

|x2 x0|
dx =

ˆ

Rn

V·(u) div
( x2 x0
|x2 x0|

)

dx (3.26)

= 2
ˆ

Rn

V 2
· (u)'u · x2 x0

|x2 x0|
dx f ‖V 2

· (u)‖L2(Rn) ‖'u‖L2(Rn) .

Setting R = 2 max{1, ·}/Ã0
:
n+ 1, we can apply (3.14) to find x0 * R

n such that

C(·)

 

BR(x0)
V·(u) g min

{

1,
V·(u)

AC·(u)

}n

which combined with (3.26) gives

‖V 2
· (u)‖L2(Rn) ‖'u‖L2(Rn) g

(n2 1)

R

ˆ

BR(x0)
V·(u) g

1

C(·)
min

{

1,
V·(u)

AC·(u)
}n

, (3.27)

that is (3.4). In summary, by combining (3.25) and (3.27) we find

|»·,·[u]| f C
AC·(u)

´

Rn V 2
· (u)

2
f C(·)

AC·(u)

min
{

1, V·(u)
AC·(u)

}2n

ˆ

Rn

|'u|2 (3.28)

that is (3.5). When · * (0, ·0] and · = 0 we can replace the constant C(·) in (3.5) with a
plain universal constant C by exploiting the fact that (3.15) can be used in place of (3.14)
(notice indeed that max{1, ·} f C when · * (0, ·0]).
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Step three: We prove statement (b). Setting for brevity,

N·,·[u] =

ˆ

Rn

2 · |'u|2 V 22
· (u) +

W 2(u)V 2
· (u)

·
, · * [0, ·0] ,

we notice that for every ·, ·7 * [0, ·0] and u, v * X \ {0},

»·,·[u]2 »·,·7[v] =
N·,·[u]2N·,·7[v]

´

Rn V 2
· (u)

2
+

N·,·7[v]
{ ´

Rn V
2
·7
(v)2 2

´

Rn V
2
· (u)

2
}

´

Rn V 2
· (u)

2
´

Rn V 2
·7
(v)2

. (3.29)

We first work on (3.29) with · = ·7, with the goal of proving (3.6), (3.7), and (3.9).
Since AC·(u) f ‖u‖2W 1,2/·, we deduce from (3.4) that, if ‖u‖W 1,2 f C(·), then

1
´

Rn V 2
· (u)

2
f C(·)

min{1,V·(u)2n}
. (3.30)

Recalling from (3.25) that |N·,·[u]| f CAC·(u) f C(·) ‖u‖W 1,2 , and using again first
Lip(V 2

· , [0, 1]) f C, and then |V 2
· (r)| f C t for r * [0, 1], we find that, if ‖u‖W 1,2 f C(·),

then for every v *W 1,2(Rn; [0, 1])
∣

∣

∣
N·,·[v]

ˆ

Rn

(

V 2
· (v)

2 2 V 2
· (u)

2
)

∣

∣

∣
f C(·)

ˆ

Rn

|V 2
· (u)2 V 2

· (v)|
(

|V 2
· (u)|+ |V 2

· (v)|
)

f C(·) ‖u 2 v‖L2

(

ˆ

Rn

|V 2
· (u)|2 + |V 2

· (v)|2
)1/2

f C(·) max{‖u‖L2 , ‖v‖L2} ‖u2 v‖L2 . (3.31)

In summary, by (3.29), (3.30) and (3.31) for every · > 0 and u, v * W 1,2(Rn; [0, 1]) \ {0}
with max{‖u‖W 1,2(Rn), ‖v‖W 1,2(Rn)} f C(·) we have proved that

∣

∣»·,·[u]2 »·,·[v]
∣

∣ f C(·)
|N·,·[u]2N·,·[v]|
min{1,V·(u)2n}

+
C(·) ‖u 2 v‖L2

min{1,V·(u)2n} min{1,V·(v)2n}
. (3.32)

We first estimate that

|N·,·[u]2N·,·[v]| f 2 ·

ˆ

Rn

|'(u2 v)|
(

|'u|+ |'v|) |V 22
· (u)|

+2 ·

ˆ

Rn

|'v|2 |V 22
· (u)2 V 22

· (v)| (3.33)

+
1

·

ˆ

Rn

|W 2(u)2W 2(v)| |V 2
· (u)| +

1

·

ˆ

Rn

|W 2(v)| |V 2
· (u)2 V 2

· (v)| .

By recalling that Lip(W 2; [0, 1]) f C, Lip(V 2
· ; [0, 1]) f C, Lip(V 22

· ; [0, 1]) f C(·) (when
· > 0), and max{|V 2

· (r)|, |W 2(r)|} f C r for r * [0, 1] we find

|N·,·[u]2N·,·[v]| f C max
{

‖'u‖L2 , ‖'v‖L2

}

‖'u2'v‖L2

+C(·, ·) ‖u 2 v‖C0

ˆ

Rn

|'v|2 + C

·
‖u2 v‖L2 max{‖u‖L2 , ‖v‖L2}

f C(·) max
{

‖u‖W 1,2 , ‖v‖W 1,2

}

‖u2 v‖W 1,2 + C(·) ‖'v‖2L2 ‖u2 v‖C0 ; (3.34)

while, using [V 22
· ]C0,³(n) [0,1] f C (which also holds when · = 0) in place of Lip(V 22

· ; [0, 1]) f
C(·), we find instead

|N·,·[u]2N·,·[v]|
f C(·) max

{

‖u‖W 1,2 , ‖v‖W 1,2

}

‖u2 v‖W 1,2 + C ‖'v‖2L2 ‖u2 v‖³(n)
C0 ; (3.35)

thanks to max{‖u‖X , ‖v‖X} f C(·); with the convention that C(·, ·) = +> if · = 0, we
thus conclude from (3.33), (3.34) and (3.35) that

|N·,·[u]2N·,·[v]| f min
{

C(·, ·) ‖u 2 v‖X , C(·)‖u 2 v‖³(n)X

}

. (3.36)
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By means of (3.32) and (3.36) we find that, if max{‖u‖X , ‖v‖X} f C(·), then (3.6) and
(3.7) hold. We now assume that u, v * W 2,2(Rn; [0, 1]) \ {0} and prove (3.9). To this end
let us first notice that an integration by parts gives

ˆ

Rn

|'u|2 V 22
· (u)2

ˆ

Rn

|'v|2 V 22
· (v)

=

ˆ

Rn

('u2'v) · 'v V 22
· (v) +

ˆ

Rn

'u · 'u V 22
· (u)2'u · 'v V 22

· (v)

=

ˆ

Rn

('u2'v) · 'v V 22
· (v)2

ˆ

Rn

(∆u)
(

V 2
· (u)2 V 2

· (v)
)

,

which can be used to replace (3.33) with

|N·,·[u]2N·,·[v]| f 2 ·

ˆ

Rn

|∆u| |V 2
· (u)2 V 2

· (v)| + |'(u2 v)| |'v| |V 22
· (v)| (3.37)

+
1

·

ˆ

Rn

|W 2(u)2W 2(v)| |V 2
· (u)|+

1

·

ˆ

Rn

|W 2(v)| |V 2
· (u)2 V 2

· (v)| .

By Lip(W 2; [0, 1]) f C, Lip(V 2
· ; [0, 1]) f C and max{|V 2

· (r)|, |W 2(r)|} f C r for r * [0, 1]
we thus find

|N·,·[u]2N·,·[v]| f C(·) max{‖u‖W 2,2 , ‖v‖W 1,2} ‖u2 v‖W 1,2

which, combined with (3.32) and with the assumption max{‖u‖W 2,2 , ‖v‖W 2,2} f C(·),
gives (3.9).

We now work on (3.29) with u = v and ·7 = 0 to prove (3.8). To this end, we first
notice that

∣

∣N·,·[u]2N·[u]
∣

∣ f 2 ·

ˆ

Rn

|'u|2 |V 22
· (u)2 V 22(u)|+ 1

·

ˆ

Rn

|W 2(u)| |V 2
· (u)2 V 2(u)|

f 2AC·(u) ‖V· 2 V ‖C2[0,1] ,

while V 2
· (0) = V 2(0) = 0 gives |V 2

· (u) 2 V 2(u)| f ‖V 22
· 2 V 22‖C0[0,1] |u| on R

n, and thus,
arguing as in (3.31), that

∣

∣

∣

ˆ

Rn

V 2
· (u)

2 2
ˆ

Rn

V 2(u)2
∣

∣

∣
f C ‖V· 2 V ‖C2[0,1] ‖u‖2L2(Rn) .

Combining this last two estimates with (3.29), (3.30) and |N·,·[u]| f C(·) ‖u‖X we imme-
diately prove (3.8). �

4. Existence, regularity and entropies of the flow (Proof of Theorem 1.2)

Proof of Theorem 1.2. Step one, existence of mild solutions: For every ·, · > 0 we intro-
duce the regularized flows

{

·2 "tu = 2 ·2 ∆u2W 2(u) + · »·,·[u(t)]V
2
· (u) , on R

n × (0,>) ,

u(0) = u0 ,
(DF·)

that are obtained by replacing V with V· in (DF). If we set

G(x, t) =
e2|x|2/8 t

(8Ã t)n/2
, (x, t) * R

n × (0,>) , (4.1)

and Stv = v æ G(t) for v : Rn ³ R and t > 0, then a solution u of

ut 2 2∆u = f on R
n × (0,>) , u(0) = u0 on R

n , (4.2)
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with data f : Rn×(0,>) ³ R and u0 : R
n ³ R, is formally given by the Duhamel formula

(see, for example, [Eva98, Section 2.3.1]),

u(x, t) = Stu0(x) +

ˆ t

0
St2s[f(s)](x) ds (4.3)

=

ˆ

Rn

G(x2 y, t)u0(y) dy +

ˆ t

0
ds

ˆ

Rn

G(x2 y, t2 s) f(y, s) dy .

Solutions to the integral equation (4.3) are usually called mild solutions of the parabolic
PDE (4.2), and can be constructed by fixed points arguments. We now set up the stage
to prove the short-time existence of a unique mild solution to (DF·).

From now on we fix u0 with

u0 *
⋂

pg2

W 2,p(Rn; [0, 1]) , V(u0) = 1 . (4.4)

By the properties of V· and W it is easily seen that V(u0) = 1 implies V·(u0) * (0,>) for
every · > 0. Moreover, we also have

lim
·³0+

V·(u0) = V(u0) = 1 . (4.5)

Given parameters Ç > 0 and Ã * (0, 1) to be chosen in a moment, we then introduce
the vector space

Y =
{

u * C0
(

[0, Ç);BX
Ã (u0)

)

: u(0) = u0
}

, (4.6)

where BX
Ã (u0) denotes the ball in X of radius Ã and center u0. If we pick Ã small enough

depending on u0, and since V·(u0) > 0 for every · > 0, we find that (see (4.10) below)
V·(u(t)) > 0 for every t * [0, Ç): in particular, »·,·[u(t)] is well defined for every t * [0, Ç).
Hence, for each · > 0, · * (0, ·0], and u * Y we can define F· [u] : R

n × [0, Ç) ³ R and
T·[u] : R

n × [0, Ç) ³ R by setting

F· [u] = 2W
2(u)
·2

+ »·,·[u(t)]
V 2
· (u)

·
, (4.7)

T·[u] = Stu0 +

ˆ t

0
St2s[F·[u](s)] ds . (4.8)

We claim that, if Ç and Ã (introduced in the definition of Y ) are small enough with respect
to ·, ·, and u0, then u 7³ T·[u] defines a contraction of the Banach space Y . By the Banach
fixed point theorem we will then deduce the existence of a unique u * C0([0, Ç);BX

Ã (u0))
such that u(0) = u0 and

u(t) = Stu0 +

ˆ t

0
St2s[F· [u](s)] ds , (4.9)

for every t * (0, Ç). In particular, this claim will prove the existence of a unique, short-
time, mild solution u of (DF·).

To prove our claim, we begin by showing that if Ã is small enough in terms of u0 and
·, then for every u * Y we have

V·(u(t)) g
V·(u0)

2
, "t * [0, Ç) . (4.10)
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Indeed, by |V 2
· (r)| f C |r| for every r * (0, 1) and by ‖u0 2 u(t)‖X < Ã < 1 we find that

V·(u(t)) 2 V·(u0) =

ˆ

Rn

ˆ 1

0
V 2
·

(

s u0 + (12 s)u(t)
)

(u0 2 u(t)) ds

g 2C
ˆ

Rn

|u0 2 u(t)|
(

|u0|+ |u(t)|
)

g 2C ‖u(t)2 u0‖L2

(

‖u0‖L2 + ‖u(t)‖L2

)

g 2C Ã
(

2 ‖u0‖L2 + Ã
)

g 2V·(u0)

2
,

provided Ã is small enough in terms of · and u0 (recall that V·(u0) > 0). Having proved
(4.10) we notice that, combined with (3.5), (3.6), and AC·(u) f C(·) ‖u‖W 1,2 , it implies

∣

∣»·,·[u(t)]
∣

∣ f C(·, ·, u0) (4.11)
∣

∣»·,·[u(t)]2 »·,·[v(t)]
∣

∣ f C(·, ·, u0) ‖u(t) 2 v(t)‖X , (4.12)

for every u, v * Y and every t * [0, Ç). Next we notice that if u * Y , then for every
t * (0, Ç) we have

|F· [u(t)]| f C(·) max
{

1, |»·,·[u(t)]
}

|u(t)| , on R
n ; (4.13)

moroever, since |W 2(r)| f C |r| and |V 2
· | f C |r| for r * (0, 1), W 22 and V 22

· are bounded
on [0, 1], and

'
(

F·[u](t)) =
{

2 W 22(u)
·2

+ »·,·[u(t)]
V 22
· (u)

·

}

'u(t) , (4.14)

then

|'F·[u(t)]| f C(·) max
{

1, |»·,·[u(t)]
}

|'u(t)| , on R
n . (4.15)

By combining (4.13) and (4.15) with (4.11), we see that if u * Y , then F· [u] * C0([0, Ç);X)
and

‖F·[u](t)‖C0 f C(·) max
{

1, |»·,·[u(t)]
}

‖u(t)‖C0 , (4.16)

‖F·[u](t)‖L2 f C(·) max
{

1, |»·,·[u(t)]
}

‖u(t)‖L2 , (4.17)

‖'(F· [u](t))‖L2 f C(·) max
{

1, |»·,·[u(t)]
}

‖'u(t)‖L2 , "t * [0, Ç) . (4.18)

By combining these estimates with (4.11) we thus find

‖F· [u(t)]‖X f C(·, ·, u0) ‖u‖X , "t * [0, Ç) . (4.19)

Since ‖Stv‖C0 f ‖v‖C0 , ‖Stv‖L2 f ‖v‖L2 , and ‖'(Stv)‖L2 f ‖'v‖L2 for every v * X
and every t > 0, we deduce that if u * Y , then T·[u] * C0([0, Ç);X). Moreover, since
‖Stu0 2 u0‖X ³ 0 as t³ 0+, if we pick Ç small enough in terms of ·, ·, u0 and Ã (where
Ã has already been chosen small enough in terms of u0 and ·), then we find

‖T·[u](t)2 u0‖X f ‖Stu0 2 u0‖X + t sup
0<s<t

‖F·[u](t)‖X

f ‖Stu0 2 u0‖X + C(·, ·, u0) t ‖u(t)‖X < Ã ,

for every t * [0, Ç0), so that T·[u] * Y for every u * Y . Having proved that T· is a self-map
of Y , we now pick u, v * Y and notice that for every t * [0, Ç) we have

‖T· [u]2 T·[v]‖Y = sup
0<t<Ç

‖T· [u](t)2 T·[v](t)‖ f Ç sup
0<t<Ç

‖F· [u](t)2 F·[v](t)‖ . (4.20)
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Now for every u, v * Y and t * [0, Ç) we have, pointwise on R
n,

|F· [u](t)2 F· [v](t)| f
{Lip(W 2)

·2
+

∣

∣»·,·[u(t)]
∣

∣

Lip(V 2
· )

·

}

|u(t) 2 v(t)|

+
∣

∣»·,·[u(t)] 2 »·,·[v(t)]
∣

∣

|V 2
· (v(t))|
·

(4.21)

f C(·)
{

max
{

1,
∣

∣»·,·[u(t)]
∣

∣

}

|u(t)2 v(t)| +
∣

∣»·,·[u(t)]2 »·,·[v(t)]
∣

∣ |v(t)|
}

,

where we have used |V 2
· (r)| f C |r| for r * [0, 1]; then, by (4.11), (4.12), and (4.21), we

find that

‖F· [u](t)2 F·[v](t)‖X f C(·, ·, u0) ‖u(t) 2 v(t)‖X , "t * [0, Ç) . (4.22)

Similarly, starting from (4.14), we find that, pointwise on R
n,

|'(F· [u](t)) 2'(F·[v](t))| f
{Lip(W 2)

·2
+

∣

∣»·,·[u(t)]
∣

∣

Lip(V 2
· )

·

}

|'u(t)2'v(t)|

+
{Lip(W 22)

·2
+

Lip(V 22
· )

·
|»·,·[v(t)]

}

|'v(t)| |u(t) 2 v(t)|

+
∣

∣

∣
»·,·[u(t)] 2 »·,·[v(t)]

∣

∣

∣
|'v(t)| |V

22
· (u(t))|
·

f C(·, ·)
{

max
{

1,
∣

∣»·,·[u(t)]
∣

∣

} {

|'v(t)| |u(t) 2 v(t)| + |'u(t)2'v(t)|
}

(4.23)

+
∣

∣

∣
»·,·[u(t)]2 »·,·[v(t)]

∣

∣

∣
|'v(t)|

}

,

where we have made crucial use of the regularization V· of V to assert that Lip(V 22
· ) f C(·).

By (4.11), (4.12), (4.23), and Ã < 1,

‖'(F· [u](t))2'(F· [v](t))‖L2 f C(·, ·, u0) ‖u(t) 2 v(t)‖X , "t * [0, Ç) . (4.24)

By combining (4.22) and (4.24) with (4.20) we conclude that

‖T· [u]2 T·[v]‖Y f C(·, ·, u0) Ç ‖u2 v‖Y .
In particular, up to further decrease Ç depending on ·, · and u0, we can ensure that
Lip(T·;Y ) < 1, and that T· is a contraction of Y .

Step two, regularity and global-in-time existence for (DF·): Given · > 0, · * (0, ·0] and
u0 as in (4.4), by step five we can define Ç7 * (0,>] as the supremum of those Ç > 0 such
that there exists u * C0([0, Ç);X) such that u(0) = u0 and (4.9) holds for every t * (0, Ç)
and

sup
0<t<Ç

{

AC·(u(t)),V·(u(t))
}

<> , inf
0<t<Ç

V·(u(t)) > 0 . (4.25)

In this step we prove that Ç7 = +>, that AC·(u(t)) is Lipschitz continuous and decreasing
on [0,>), that V·(u(t)) = V·(u0) for every t * [0,>), and that u(t) * W 3,p(Rn) and
"tu(t) *W 1,p(Rn) for every t > 0 and p g 2 with

max
{

‖u(t)‖W 3,p(Rn), ‖"tu(t)‖W 1,p

}

(4.26)

f C(·, p)M
(

AC·(u0),V·(u0), 1/V·(u0), ‖'u0‖W 2,p , t
)

,

where M denotes a generic constant which is increasing and continuous in its arguments.

We first notice that by combining 0 f u f 1, (3.3), (3.5) and (4.25) we find that

sup
0<s<t

‖u(s)‖Lp <> , sup
0<s<t

∣

∣»·,·[u(s)]
∣

∣ <> (4.27)

for every t * (0, Ç7) and p g 2. Next, setting G(t) = G(·, t) (recall (4.1)), we notice that
for every t > 0 we have

‖G(t)‖L1 = 1 , max
{

t1/2‖'G(t)‖L1 , t3/2‖'2G(t)‖L1 , t‖"tG(t)‖L1

}

f C(n) . (4.28)
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Combining u(t) = T·[u(t)] with (4.28), (4.13) and standard applications of Fubini’s theo-
rem and Hölder’s inequality, we find that, if p g 2, then, for every t * (0, Ç7),

‖'u(t)‖Lp f ‖'u0‖Lp ‖G(t)‖L1 (4.29)

+C(·) sup
0<s<t

max
{

1,
∣

∣»·,·[u(s)]
∣

∣

}

‖u(s)‖Lp

ˆ t

0
‖'G(t2 s)‖L1 ds

f ‖'u0‖Lp + C(·) t1/2 sup
0<s<t

max
{

1,
∣

∣»·,·[u(s)]
∣

∣

}

‖u(s)‖Lp ,

so that (4.27) gives

sup
0<s<t

‖'u(s)‖Lp <> , "t * (0, Ç7) , p g 2 . (4.30)

Similarly, again from u(t) = T·[u(t)] and (4.28), we obtain that

‖'2u(t)‖Lp f ‖'2u0‖Lp ‖G(t)‖L1 (4.31)

+C(·) sup
0<s<t

max
{

1,
∣

∣»·,·[u(s)]
∣

∣

}

‖'u(s)‖Lp

ˆ t

0
‖'G(t2 s)‖L1 ds

f ‖'2u0‖Lp + C(·) t1/2 sup
0<s<t

max
{

1,
∣

∣»·,·[u(s)]
∣

∣

}

‖'u(s)‖Lp

which, combined with (4.11), (4.27), and (4.30), gives

sup
0<s<t

‖u(s)‖W 2,p <> , "t * (0, Ç7) , p g 2 . (4.32)

In particular, u * L>
loc((0, Ç);W

2,2(Rn)), so that, by standard properties of mild solutions
(see e.g. [CH98, Proposition 4.1.9]) (4.9) implies that

u *W 1,1
loc ((0, Ç7);X) , (4.33)

with
"tu = 2∆u+ f· a.e. on R

n × (0, Ç7) , (4.34)

where we have set f·(x, t) = F· [u](x, t), and where, by (4.13) and (4.15),

‖f·(t)‖Lp f C(·) max
{

1, |»·,·[u(t)]
}

‖u(t)‖Lp , (4.35)

‖'f·(t)‖Lp f C(·) max
{

1, |»·,·[u(t)]
}

‖'u(t)‖Lp , "p g 2 . (4.36)

Moreover, by (4.34), we see that for every t * (0, Ç7) and p g 2,

‖"tu(t)‖Lp f C(·)
{

‖'2u(t)‖Lp + ‖f·(t)‖Lp

}

. (4.37)

We now differentiate the flow in space to obtain Lp-estimates on '3u and on '("tu).
Given e * R

n with |e| = 1 and v = v(x, t) we set ehv(x, t) = (v(x + h e, t) 2 v(x, t))/h for
the (spatial) incremental ratio of v in the direction v of step h. In this way (4.34) implies
that ehu solves

"t(ehu)2 2∆(ehu) = ehf· on R
n × (0,>), ehu(0) = ehu0 on R

n . (4.38)

Next we consider the decomposition ehu = u1,h + u2,h where u1,h(t) = St[ehu0] and thus

"tu2,h 2 2∆u2,h = ehf· on R
n × (0,>), u2,h(0) = 0 on R

n . (4.39)

Since u2,h(0) = 0 on R
n we can apply [Lie96, Corollary 7.31] to deduce that for every

(a, b) ¢¢ (0, Ç7) and p g 2
ˆ b

a
dt

ˆ

Rn

|"tu2,h(t)|p + |'2u2,h(t)|p f C(p)

ˆ b

a
dt

ˆ

Rn

|ehf·(t)|p . (4.40)

Since ‖ehf·(t)‖Lp f ‖'f·(t)‖Lp and, thanks to (4.36), (4.27), and (4.30),

sup
0<s<t

‖'f·(s)‖Lp <> , "t * (0, Ç7) ,
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we conclude that, for every (a, b) ¢ (0, t), t < Ç7, and p g 2,
ˆ b

a
dt

ˆ

Rn

|"tu2,h(t)|p + |'2u2,h(t)|p f C(p)(b2 a) sup
a<s<b

‖'f·(s)‖pLp , (4.41)

so that, by arbitrariness of (a, b), for every (a, b) ¢¢ (0, Ç7) and p g 2,

sup
a<s<b

{

‖"tu2,h(s)‖Lp , ‖'2u2,h(s)‖Lp

}

f C(p) sup
a<s<b

‖'f·(s)‖Lp . (4.42)

At the same time, recalling that u1,h(s) = Ss(ehu0), by (4.28) we find that for every s > 0

‖"tu1,h(s)‖Lp f ‖"tG(s)‖L1 ‖ehu0‖Lp f C

s
‖'u0‖Lp ,

‖'2u1,h(s)‖Lp f ‖'2G(s)‖L1 ‖ehu0‖Lp f C

s3/2
‖'u0‖Lp .

By combining these last two estimates with (4.42) and ehu = u1,h+u2,h, by the uniformity
in h > 0 and e with |e| = 1, we conclude that for every p g 2 and (a, b) ¢¢ (0, Ç7) we have

sup
a<s<b

{

‖'("tu)(s)‖Lp , ‖'3u(s)‖Lp

}

f C(p) sup
a<s<b

{‖'u0‖Lp

a3/2
, ‖'f·(s)‖Lp

}

. (4.43)

In combination with (4.32), (4.37), (4.35), and (4.27) this implies that, for every p g 2
and (a, b) ¢¢ (0, Ç7) we have

sup
a<t<b

{

‖"tu(t)‖W 1,p , ‖u(t)‖W 3,p

}

<> . (4.44)

In particular, u(t) * C2,³(Rn) and "tu(t) * C0,³(Rn) for every ³ * (0, 1) and t * (0, Ç7).

The regularity of u(t) established in (4.44) is sufficient to prove that

V·(u(t)) = V·(u0) , "t * [0, Ç7) , (4.45)

t 7³ AC·(u(t)) is decreasing, continuous on [0, Ç7), (4.46)

and locally Lipschitz on (0, Ç7) .

Indeed, let us set u· = (Ë· u) æ Ã·, where, for each · > 0, Ã· is a mollifying kernel on
R
n × R, and where Ë· * C>

c (Rn × (0,>)) is monotonically converging to 1 as · ³ 0+.
If we set D(t) =

´

Rn |'u(t)|2 and D·(t) =
´

Rn |'u·(t)|2, then by (4.30) we find that, for
every × * C>

c (0, Ç),
ˆ Ç

0
D(t)×2(t) dt = lim

·³0+

ˆ Ç

0
D·(t)×

2(t) dt

= 22 lim
·³0+

ˆ Ç

0
×(t) dt

ˆ

Rn

'u·(t) · '("tu·(t))

= 22

ˆ Ç

0
×(t) dt

ˆ

Rn

'u(t) · '("tu(t)) = 2

ˆ Ç

0
×(t) dt

ˆ

Rn

∆u(t) "tu(t) ,

where, in computing the second limit, we have used (4.44). We have thus proven that D
is locally Lipschitz continuous on (0, Ç7), with

D2(t) =
d

dt

ˆ

Rn

|'u(t)|2 = 2
ˆ

Rn

2∆u(t) "tu(t) . (4.47)

for a.e. t * (0, Ç7). By an analogous approximation argument we see that, for a.e. t *
(0, Ç7),

d

dt

ˆ

Rn

W (u(t)) =

ˆ

Rn

W 2(u) "tu ,
d

dt

ˆ

Rn

V·(u(t)) =

ˆ

Rn

V 2
· (u) "tu . (4.48)
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In particular, by (4.34), for a.e. t * (0, Ç7),
ˆ

Rn

V 2
· (u) "tu =

ˆ

Rn

(

2∆u2 W 2(u)
·2

+ »·,·[u(t)]
V 2
· (u)

·

)

V 2
· (u)

= 2
ˆ

Rn

2'u · '(V 2
· (u))2

1

·2

ˆ

Rn

W 2(u)V 2
· (u) +

»·,·[u(t)]

·

ˆ

Rn

V 2
· (u)

2 = 0 ,

where the last identity follows from the definition (3.2) of »·,·[u(t)]. This proves that
V·(u(t)) is constant on (0, Ç7), and since t 7³ V·(u(t)) is continuous on [0, Ç7), we deduce
(4.45). Finally, by (4.47) and (4.48) we have that t 7³ AC·(u(t)) is locally Lipschitz
continuous on (0, Ç7) with

d

dt
AC·(u(t)) = ·

ˆ

Rn

"tu
{

2 2∆u+
W 2(u)
·2

}

= ·

ˆ

Rn

"tu
{

2 "tu+ »·,·[u(t)]
V 2
· (u)

·

}

= 2·
ˆ

Rn

("tu)
2 .

where we have taken into account
´

Rn V
2
· (u) "tu = 0. The continuity of t 7³ AC·(u(t)) on

[0, Ç7) is of course immediate from u * C0([0, Ç7);X). This proves (4.46).

We now prove that Ç7 = +>. We argue by contradiction, and assume that Ç7 < >.
By combining (4.45) and (4.46) (which implies AC·(u(t)) f AC·(u0) for every t * (0, Ç7))
with (3.3) and (3.5) we deduce that, for every p g 2,

sup
0<t<Ç7

{

‖u(t)‖Lp , |»·,·[u(t)]|
}

f C(·)M
(

·,AC·(u0),V·(u0), 1/V·(u0)
)

. (4.49)

Then, by (4.49) and (4.29) we find that, for every p g 2,

sup
0<t<Ç7

‖'u(t)‖Lp f C(·)M
(

AC·(u0),V·(u0), 1/V·(u0), ‖'u0‖Lp , Ç7
)

, (4.50)

which, combined with (4.31) gives that, for every p g 2,

sup
0<t<Ç7

‖'2u(t)‖Lp f C(·, p)M
(

·,AC·(u0),V·(u0), 1/V·(u0), ‖'u0‖W 1,p , Ç7
)

. (4.51)

By combining (4.35) and (4.36) with (4.49) and (4.50) we find that, for every p g 2,

sup
0<t<Ç7

‖f·(t)‖W 1,p f C(·)M
(

·,AC·(u0),V·(u0), 1/V·(u0), ‖'u0‖Lp , Ç7
)

, (4.52)

so that by (4.37) and (4.43) with (4.51) and (4.52) we find

sup
Ç7/2<t<Ç7

{

‖'3u(t)‖Lp , ‖"tu(t)‖W 1,p

}

f C(·, p)M
(

AC·(u0),V·(u0), 1/V·(u0), ‖'u0‖W 2,p , Ç7, 1/Ç7
)

,

which combined with (4.49), (4.50) and (4.51) finally gives, for every p g 2,

sup
Ç7/2<t<Ç7

{

‖u(t)‖W 3,p , ‖"tu(t)‖W 1,p

}

(4.53)

f C(·, p)M
(

AC·(u0),V·(u0), 1/V·(u0), ‖'u0‖W 2,p , Ç7, 1/Ç7
)

.

By the W 1,2-estimate on "tu contained in (4.53), we can deduce that for every t, s *
(Ç7/2, Ç7) it holds

‖u(t) 2 u(s)‖X f C(·, ·, u0, Ç7) |t2 s| . (4.54)

Since X is a Banach space, this means that there is u7 * X = C0 +W 1,2(Rn; [0, 1]) such
that

lim
t³Ç27

‖u(t) 2 u7‖X = 0 .
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By combining this last fact with (4.53) we see that u7 *W 3,p(Rn) for every p g 2, with

V·(u7) = lim
t³Ç27

V·(u(t)) = V·(u0) > 0 .

Therefore, for some · > 0, we can repeat the argument of step five to extend u as an
element of C0([0, Ç7 + ·);X) such that (4.9) holds for every t * (0, Ç7 + ·). We can also
repeat the proof of (4.45) and (4.46) to show that AC·(u(t)) is decreasing on [Ç7, Ç7 + ·)
and V·(u(t)) is constant on t * [Ç7, Ç7 + ·). Since Ç7 was introduced as the supremum of
those Ç > 0 such that there exists u * C0([0, Ç);X) with u(0) = u0, solving (4.9) for every
t * (0, Ç), and such that

sup
0<t<Ç

{

AC·(u(t)),V·(u(t))
}

<> , inf
0<t<Ç

V·(u(t)) > 0 . (4.55)

and since we have just proved that the bounds stated in (4.55) holds with Ç = Ç7 + ·,
thus reaching a contradiction with the maximality of Ç7. This proves that Ç7 = +>. The
monotonicity of AC·(u(t)) and constancy of V·(u(t)) then hold on [0,>), and the validity
of (4.26) is deduced by arguing as in the proof of (4.53).

Step three: We prove, for an initial datum u0 as in (4.4), the existence of u * C0(Rn ×
[0,>)) with u(0) = u0 which is a classical solution of (DF) on R

n× (0,>), with V(u(t)) =
V(u0) = 1 for every t g 0 and such that t 7³ AC·(u(t)) is continuous and decreasing on
[0,>).

Given · > 0 and · * (0, ·0], let us denote by u· the unique global solution of (DF·)
with u·(0) = u0 constructed in step six. Recalling that u· satisfies (4.26), and keeping in
mind that V·(u0) ³ V(u0) = 1 by (4.5), up to make ·0 depend on u0 too, we can ensure
that 1/2 f V·(u0) f 2 for every · * (0, ·0], and thus deduce from (4.26) that for every
(a, b) ¢ (0,>) and p g 2, uniformly on · * (0, ·0],

sup
a<s<b

{

‖u·(s)‖W 3,p , ‖"tu·(s)‖W 1,p

}

f C
(

·, p,AC·(u0), ‖'u0‖W 2,p , a, b
)

. (4.56)

By Morrey’s embedding theorem we can obtain a C0,1/2-estimate on "tu
· from (4.56),

which combined with the W 1,2-estimate on "tu
· contained in (4.56) leads to prove that,

for every (a, b) ¢ (0,>),

‖u·(r)2 u·(s)‖X f C(·, u0, a, b) |r 2 s|, "r, s * (a, b) , (4.57)

uniformly on · * (0, ·0].

If we now consider a sequence ·j ³ 0+, then, up to extracting a subsequence, we deduce
from (4.57) and (4.56) that there is u * Liploc((0,>);X) with

sup
r,s*(a,b)

‖u(r)2 u(s)‖X
|r 2 s| f C(·, u0, a, b) , (4.58)

sup
a<s<b

{

‖u(s)‖W 3,p , ‖"tu(s)‖W 1,p

}

f C(·, p,AC·(u0), ‖'u0‖W 2,p , a, b
)

, (4.59)

for every p g 2 and (a, b) ¢ (0,>), and such that

lim
j³>

sup
a<s<b

{

‖u·j (s)2 u(s)‖W 2,p , ‖"tu·j(s)2 "tu(s)‖Lp+C0

}

= 0 , (4.60)

for every p g 2 and (a, b) ¢ (0,>). By (4.59), u(t) * C2,³(Rn), "tu(t) * C0,³(Rn) for
every ³ * (0, 1) and t > 0. By (4.60), and since

·2 "tu
·j = 2·2 ∆u·j 2W 2(u·j ) + · »·,·j [u

·j (t)]V 2
·j (u

·j ) ,

holds in classical sense on R
n × (0,>), we can deduce that

·2 "tu = 2 ·2 ∆u2W 2(u) + · »·[u(t)]V
2(u) , (4.61)
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also holds in classical sense on on R
n × (0,>), provided we show that

lim
j³>

»·,·j [u
·j (t)] = »·[u(t)] , "t > 0 . (4.62)

To prove (4.62) we first notice that, by 0 f V·(r) f C r2 for r * [0, 1] any by dominated
convergence, for every t > 0 it holds that V·j(u

·j (t)) ³ V(u(t)) as j ³ >. At the same

time, for every t > 0, V·j (u
·j (t)) = V·j (u0) ³ V(u0) as j ³ > so that, in summary,

V(u(t)) = V(u0) = 1 , "t > 0 . (4.63)

Now, by (3.7), (3.8), V·(u
·(s)) = V·(u0), (4.63), and (4.59), we have that

|»·,·[u·(t)]2 »·,·[u(t)]| f C(·, u0, b)
‖u·(t)2 u(t)‖³(n)X

min{1,V·(u0)2n} min{1,V·(u(t))}2n
,

|»·,·[u(t)]2 »·[u(t)]| f C(·, u0, a, b)
‖V· 2 V ‖C2[0,1]

min{1,V·(u(t))2n}
,

for all t * (a, b) ¢ (0,>). Since V·(u(t)) * (0,>) for every t > 0 and · * (0, ·0], by letting
· = ·j and j ³ > in the above two estimates we obtain (4.62), and thus (4.61). The
constancy of V(u(t)) and the monotonicity of AC·(u(t)) are then immediate to prove.

We are left to prove that u(0) = u0. To begin with, we notice that, by (3.5), (4.45) and
(4.46), for all t > 0 we have

|»·,·[u·(t)]| f C(·)
AC·(u·(t))2n+2

V·(u·(t))2n
f C(·)

AC·(u0)2n+2

V·(u0)2n
,

so that (4.62) and (4.5) imply

|»·[u(t)]| f C(·, u0) , "t > 0 . (4.64)

Next, if we set

F [u](t) = 2W
2(u(t))
·2

+ »·[u(t)]
V 2(u(t))

·
, (4.65)

T [u](t) = Stu0 +

ˆ t

0
St2s[F [u](s)] ds , (4.66)

then (4.61) implies u(t) = T [u(t)]Stu0 +
´ t
0 St2s[F [u](s)] ds for every t > 0, and by the

contraction properties of the heat flow, (4.16), (4.17), (4.18), and (4.64), we find that

‖u(t) 2 u0‖X f ‖Stu0 2 u0‖X +C(·)

ˆ t

0

(

1 + |»·[u(s)]
)

‖u(s)‖X ds

f ‖Stu0 2 u0‖X +C(·, u0) t sup
0<s<t

‖u(s)‖X .

By u0 * X and (4.59) we find that ‖u(t) 2 u0‖X ³ 0 as t ³ 0+, and thus that u *
C0(Rn × [0,>)) with u(0) = u0, as claimed. This completes the proof of step seven.

Step four: We now prove that

|»·[u(t)]| f C AC·(u0)2n+2 , "t > 0 , (4.67)

and that, for every t0 > 0 and p g 2 we have

sup
tg0

{

‖u(t)‖W 2,p , ‖"tu(t)‖Lp

}

f C(·, p, u0) , (4.68)

sup
tgt0

max
{

‖u(t)‖W 3,p , ‖"tu(t)‖W 2,p , ‖"ttu(t)‖Lp

}

f C(·, p, u0, t0) . (4.69)
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Indeed, recalling that in step seven we have proved V(u(t)) = 1 and AC·(u(t)) f AC·(u0)
for every t g 0, and recalling that the constant C(·) in (3.5) can be taken independent
from · when (3.5) is applied with · = 0, we find that, for all t > 0,

|»·[u(t)]| f C
AC·(u(t))2n+1

V(u(t))2n
ˆ

Rn

|'u|2 f C

·
AC·(u0)

2n+2 ,

that is (4.67). Similarly, we deduce from (3.3) (with · = 0) and 0 f u f 1 that

sup
tg0

‖u(t)‖Lp f C(·, u0) , "p g 2 , (4.70)

while by combining (4.29) with (4.67) and (4.70) we get

sup
0ftf1

‖'u(t)‖Lp f C(·, p, u0) , "p g 2 . (4.71)

Now, using the semigroup property of the heat flow we see that for every t > s g 0 we
have

u(t) = St2su(s) +

ˆ t

s
St2r

[

F [u](r)
]

dr . (4.72)

By differentiating (4.72), and by using (4.28), (4.67) and (4.70), we find that

‖'u(t)‖Lp f ‖'G(t2 s)‖L1 ‖u(s)‖Lp + sup
s<r<t

‖F [u](r)‖Lp

ˆ t

s
‖'G(t2 r)‖L1 dr

f C(·, u0)

(t2 s)1/2
+ C(·, u0) (t2 s)1/2 , (4.73)

where we have used the analog to (4.13) with · = 0 in estimating ‖F [u](r)‖Lp . If t g 1,
then we can apply (4.73) with s = t2 1 g 0 to deduce that ‖'u(t)‖Lp f C(·, u0), which,
combined with (4.71), gives

sup
tg0

‖'u(t)‖Lp f C(·, p, u0) , "p g 2 . (4.74)

Similarly, combining (4.31) with (4.67) and (4.74) we see that, on the one hand

sup
0ftf1

‖'2u(t)‖Lp f C(·, p, u0) , "p g 2 ; (4.75)

on other hand, using again (4.72), (4.28), and (4.67), this time in combination with (4.70),
(4.15), and (4.74), we find that, if t > s g 0, then

‖'2u(t)‖Lp f ‖'2G(t2 s)‖L1 ‖u(s)‖Lp + sup
s<r<t

‖'F [u](r)‖Lp

ˆ t

s
‖'G(t2 r)‖L1 dr

f C(·, u0)

(t2 s)3/2
+ C(·, u0) (t2 s)1/2 ,

and using this last estimate for t g 1 (and with s = t 2 1 g 0), we find ‖'2u(t)‖Lp f
C(·, u0) for every t g 1 and p g 2. By combining this last fact with (4.75) we have thus
proved

sup
t>0

{

‖u(t)‖W 2,p , ‖"tu(t)‖Lp

}

f C(·, p, u0) , "p g 2 . (4.76)

Here the Lp-estimate on "tu(t) has been obtained by combining theW 2,p-estimate for u(t)
with "tu = 2∆u + f , where f(t) = F [u(t)], and thus ‖f(t)‖Lp f C(·, p, u0) thanks to
(4.13) and (4.70). In fact, thanks also to (4.15), (4.67), and (4.74) for every p g 2, we
have

sup
tg0

‖f(t)‖W 1,p f C(·, p, u0) .
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We can now repeat the argument based on the incremental ratios method and on the
parabolic Calderon–Zygmund theorem used in the proof of (4.43) to deduce that

sup
t>t0

{

‖'("tu)(t)‖Lp , ‖'3u(t)‖Lp

}

f C(p) max
{‖'u0‖Lp

t
3/2
0

, sup
t>t0

‖'f(t)‖Lp

}

,

and conclude, in summary, that, for every p g 2 and t0 > 0,

sup
t>t0

{

‖u(t)‖W 3,p , ‖"tu(t)‖W 1,p

}

f C(·, p, u0, t0) . (4.77)

The W 1,2-estimate on "tu(t) allows one to deduce by elementary means that

‖u(t)2 u(s)‖W 1,2(Rn) f C(·, u0, t0) |t2 s| , "t, s > t0 . (4.78)

Combining (4.78) with (3.9) (with · = 0) and (4.76) with p = 2 we conclude that

|»·[u(t)] 2 »·[u(s)]| f C(·, u0, t0) |t2 s| , "t, s > t0 , (4.79)

that is t 7³ »·[u(t)] is Lipschitz continuous on (t0,>) for every t0 > 0.

To obtain Lp-estimates for "ttu(t) and '2("tu) we need to differentiate "tu = 2∆u+ f
in time. To this end, given t0 > 0, we introduce that incremental ratio operator Th that
acts on v = v(x, t) by taking Thv(t) = (v(t0 + t + h) 2 v(t0 + t))/h for every t g 0 and
h * (2t0, t0) \ {0}. With this notation, "tu = 2∆u+ f on R

n × (0,>) implies that

"t(Thu)2 2∆(Thu) = Thf , on R
n × (0,>) , (4.80)

Thu(0) =
u(t0 + h)2 u(t0)

h
, on R

n .

Setting

u1,h = St

[u(t0 + h)2 u(t0)

h

]

, u2,h = Thu2 u1,h ,

we find that u2,h satisfies

"tu2,h 2 2∆u2,h = Thf , on R
n × (0,>) , u2,h(0) = 0 on R

n . (4.81)

By [Lie96, Corollary 7.31], for every (a, b) ¢ (0,>) we have
ˆ b

a
dt

ˆ

Rn

|'2u2,h(t)|p + |"tu2,h(t)|p f C(p)

ˆ b

a
dt

ˆ

Rn

|Thf(t)|p .

Setting

g(t) =
{

2 W 22(u)
·2

+ »·[u(t)]
V 22(u)
·

}

v +
V 2(u)
·

d

dt
»·[u(t)] , (4.82)

by (4.67) and (4.79) we find that
ˆ b

a
dt

ˆ

Rn

|Thf(t)|p f
ˆ b+|h|

a2|h|
dt

ˆ

Rn

|g(t)|p f C(·, u0, a) (b2 a+ 2 |h|) ,

so that, in summary,
ˆ b

a
dt

ˆ

Rn

|'2u2,h(t)|p + |"tu2,h(t)|p f C(·, p, u0, a) (b 2 a+ 2 |h|) . (4.83)

At the same time, thanks to (4.76), we have, for |h| < t0/2 and t > t0,

‖'2u1,h(t)‖Lp f ‖'2G(t)‖L1

∥

∥

∥

u(t0 + h)2 u(t0)

h

∥

∥

∥

Lp

f C

t3/2
sup

t02|h|<s<t0+|h|
‖"tu(s)‖Lp f C(·, p, u0)

t
3/2
0

,

‖"tu1,h(t)‖Lp f ‖"tG(t)‖L1

∥

∥

∥

u(t0 + h)2 u(t0)

h

∥

∥

∥

Lp
f C(·, p, u0)

t0
,
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and thus, by Thu = u1,h + u2,h and (4.83)

ˆ b

a
dt

ˆ

Rn

|'2(Thu)(t)|p + |"t(Thu)(t)|p f C(·, p, u0, a) (b2 a+ 2 |h|) . (4.84)

Letting h³ 0+ in (4.84) we obtain
ˆ b

a
dt

ˆ

Rn

|'2("tu)(t)|p + |"ttu(t)|p f C(·, p, u0, a) (b 2 a) ,

from which we easily conclude that, for every t0 > 0 and p g 2,

sup
tgt0

{

‖'2("tu)(t)‖Lp , ‖"ttu(t)‖Lp

}

f C(·, p, u0, t0) . (4.85)

This last estimate, combined with (4.77) concludes the proof of (4.69).

Step five: We prove the uniqueness of the solution u of (DF) constructed in step seven.
Indeed, let v be another solution of (DF) with v(0) = u0. By combining (3.9) with
V(u(t)) = V(v(t)) = V(u0) = 1 and with (4.76) with p = 2 for both u and v, we find that,
for all t > 0,

|»·[u(t)]2 »·[v(t)]| f C(·, u0) ‖u(t) 2 v(t)‖W 1,2 . (4.86)

Since w = u2v satisfies "tw22∆w = F [u]2F [v] with w(0) = 0, by the Duhamel formula
(4.3), for all t g 0 we can represent w(t) as

w(t) =

ˆ t

0
St2s

[

F [u](s) 2 F [v](s)
]

ds . (4.87)

Notice that by using, in the order, (4.67), 0 f V 2(r) f C r for r * [0, 1], and (4.86), we
find

|F [u](s)2 F [v](s)| f C(·)
{

Lip(W 2) + |»·[u(s)]|Lip(V 2)
}

|w(s)|
+V 2(v(s)) |»·[u(s)]2 »·[v(s)]|

f C(·, u0)
{

|w(s)|+ ‖w(s)‖W 1,2 |v(s)|
}

,

so that, by (4.74) with p = 2 applied to v,

‖F [u](s)2 F [v](s)‖L2 f C(·, u0) ‖w(s)‖W 1,2 , "s > 0 . (4.88)

Setting

a(t) = sup
0<s<t

‖w(s)‖W 1,2

and combining (4.88) with (4.28) we deduce from (4.87) that, if 0 < s < t, then

‖w(s)‖L2 f
ˆ s

0
‖F [u](r) 2 F [v](r)‖L2 dr f C(·, u0)

ˆ s

0
‖w(r)‖W 1,2 dr

f C(·, u0) t a(t) ,

‖'w(s)‖L2 f sup
0<r<s

‖F [u](r) 2 F [v](r)‖L2

ˆ s

0
‖'G(s 2 r)‖L1 ds

f C(·, u0)
:
s sup

0<r<s
‖w(r)‖W 1,2 f C(·, u0)

:
t a(t) .

Combining this last two estimates, we find that a(t) f C(·, u0)
:
t a(t) for every t > 0. In

particular, setting t0 = 1/4C(·, u0)
2, if a(t) > 0 for some t * (0, t0), then a contradiction

follows. We have thus proved that u(t) = v(t) on R
n for every t * (0, t0). The argument

can of course be iterated (using t0 and then integer multiples of t0 as initial times) to prove
that u(t) = v(t) on R

n for every t > 0.
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Conclusion: Statement (i) was proved in (1.15) and (1.16). Statement (ii) was proved in
(4.67) and (4.79). Statement (iii) was proved in (4.63). Moreover, we have

d

dt
AC·(u(t)) =

ˆ

Rn

{

2 ·'u · "t('u) +
W 2(u)
·

"tu
}

(t)

= 2
ˆ

Rn

"tu(t)
{

2 ·∆u2 W 2(u)
·

}

(t)

= 2
ˆ

Rn

"tu(t)
{

· "tu+ »·[u(t)]V
2(u)

}

(t)

= 2·
ˆ

Rn

("tu(t))
2 + »·[u(t)]

ˆ

Rn

"tu(t)V
2(u(t)) = 2·

ˆ

Rn

("tu(t))
2 ,

where we have used the regularity properties of u to differentiate in time and to apply
the divergence theorem, (DF), and, in the last identity, statement (iii), to deduce that
0 = (d/dt)V(u(t)) =

´

Rn "tu(t)V
2(u(t)). This proves statement (iv).

We prove that 0 < u < 1 on R
n × (0,>), i.e. statement (v). Since V,W * C2[0, 1] with

V 2(1) = W 2(1) = 0 and |»·[u(t)]| f C(·, u0) for all t > 0, we can find a positive constant
K = K(·, u0) such that r 7³ K r 2W 2(r) + ·»·[u(t)]V

2(r) is strictly increasing on [0, 1].
Correspondingly,

K u2W 2(u) + ·»·[u(t)]V
2(u) f K , on R

n × (0,>) ,

which, combined with (DF), implies

·2"tu = 2 ·2 ∆u2W 2(u) + · »·[u(t)]V
2(u) f 2 ·2 ∆u2K u+K

that is, v = 12u is a non-negative solution of ·2("t2 2∆)v+K v g 0 on R
n× (0,>). By

the strong maximum principle, either v c 0 or v > 0 on R
n× (0,>), where the first option

is excluded a priori since V (1) = 1 and V(u(t)) is finite for every t > 0. We conclude that
u < 1 on R

n × (0,>), and argue analogously for proving u > 0 on R
n × (0,>).

We finally prove statement (vi). The argument of step eight shows that v = "tu satisfies
"tv 2 2∆v = g for g as in (4.82). By testing this equation with "tu and integrating by
parts,

·2
ˆ

Rn

(

"tu"ttu
)

(t) = 22 ·2
ˆ

Rn

|'("tu)|2 2
ˆ

Rn

{

W 22(u)2 · »·[u(t)]V
22(u)

}

(t) ("tu(t))
2

+·
( d

dt
»·[u(t)]

)

ˆ

Rn

V 2(u(t)) "tu(t) , (4.89)

where the last integral is equal to zero since V(u(t)) = 0 for every t > 0. This implies the
validity of (1.18). Setting b(t) =

´

Rn("tu(t))
2, (1.18) combined with (1.16) implies that

b2 * L1(t0,>) for every t0 > 0. Since (1.17) and the monotonicity of AC·(u(t)) imply
b * L1(0,>), we have proved that b * W 1,1(t0,>) for every t0 > 0. This completes the
proof of the theorem. �

5. Subsequential bubbling resolution (Proof of Theorem 1.3)

Proof of Theorem 1.3. Let u0 *W 2,p(Rn; [0, 1]) for all p g 2, with V(u0) = 1. By Theorem
1.2, there is a unique solution u to the diffused VPMCF (DF) with initial datum u0,
satisfying the various statements (i)–(vi) listed therein.

Given {tj}j*N with tj ³ > as j ³ >, we now want to prove that, up to extracting a
subsequence, there are M * N, 3· > 0 such that

3· = lim
j³>

»·[u(tj)] , (5.1)
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sequences {xij}j*N (i = 1, ...,M) satisfying |xij 2 xkj | ³ > as j ³ > (i 6= k), and strictly

radially decreasing solutions {¿i}Mi=1 of

2 ·2 ∆¿i =W 2(¿i)2 · 3· V
2(¿i) on R

n , (5.2)

with
M
∑

i=1

V(¿i) = 1 ,

M
∑

i=1

AC·(¿i) f AC·(u0) . (5.3)

such that, for all p > 2,

lim
j³>

∥

∥

∥
u(tj)2

M
∑

i=1

Ç
xj
i
[¿i]

∥

∥

∥

(W 2,p+W 1,2)(Rn)
= 0 . (5.4)

This will be proved in step one through five. Finally, in step six, we shall prove that, if
sptu0 ¢¢ R

n, then M = 1 and x1j ³ x7 as j ³ > for some x7 * R
n.

Step one: We start by proving that, if ¿ *W 1,2(Rn; [0, 1]) \ {0} and 3 * R satisfy

2 ·2 ∆¿ =W 2(¿)2 · 3 V 2(¿) on R
n, (5.5)

then 3 > 0, ¿ is strictly radially decreasing with respect to some x0 * R
n, and

V(¿) g 1

C 3n
. (5.6)

Indeed, ¿ *W 2,p(Rn) for every p g 2 thanks to the Calderon–Zygmund theorem, ‖¿‖Lp f
‖¿‖L2 < > (as 0 f ¿ f 1 on R

n), and |W 2(r)|, |V 2(r)| f C t for all r * [0, 1]. Since
¿ *W 2,p(Rn) we have enough regularity to test (5.5) with × = X ·'¿ forX(x) = ·(x/R)x,
· a cut-off function between B1 and B2, andR > 0, and deduce that (see [LM89], or [MR24,
Step five, Proof of Theorem 2.1], for the details)

n 3V(¿) = nAC·(¿)2 2 ·

ˆ

Rn

|'¿|2 . (5.7)

Since ¿ 6= 0 and n g 2, the right-hand side of (5.7) is strictly positive, thus proving
that 3 > 0. Moreover, since ¿ * W 2,p(Rn), we have that ¿(x) ³ 0 as |x| ³ >, so that
the moving planes method of [GNN81] can be applied (see for example [MR24, Theorem
6.2-(i)]) to deduce that ¿ is strictly radially decreasing with respect to some x0 * R

n.

We finally prove (5.6). If n g 3, then we can combine (5.7) with (1.5) to find

n 3V(¿) g (n2 2)AC·(¿) > (n2 2)nË1/n
n V(¿)(n21)/n ,

which immediately gives (5.6). In the case n = 2, we argue as follows. We test (5.5) with
×k ¿ for ×k * C>

c (Bk+2; [0, 1]) with ×k = 1 on Bk and |'×k| f 1Bk+2\Bk
for each k * N.

In this way we find

2 ·2
ˆ

Rn

×k |'¿|2 f 2 ·2
ˆ

Rn

¿ |'¿| |'×k|+
ˆ

Rn

×k ¿ W
2(¿) + · 3 ×k ¿ V

2(¿) .

Letting k ³ > (and using monotone convergence for all the integrals but the one involving
W 2, which may be negative, and is dealt with by dominated convergence), we find that

2 ·2
ˆ

Rn

|'¿|2 f
ˆ

Rn

¿ W 2(¿) + · 3 ¿ V 2(¿) .

Thanks to (1.2) there is ·0 > 0 such that W 2(r) f 0 for all r * [12 ·0, 1] and r |W 2(r)| f
C r2 f CW (r) for all r * [0, 1]. Therefore, rW 2(r) f CW (r) for all r * [0, 1], and, taking
also into account that r V 2(r) f C V (r) for all r * [0, 1], we deduce that

2 ·2
ˆ

Rn

|'¿|2 f C
{

· 3V(¿) +
ˆ

Rn

W (¿)
}

. (5.8)
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Since, when n = 2, (5.7) boils down to · 3V(¿) =
´

Rn W (¿), we have finally proved
C 3V(¿) g AC·(¿). Again by (1.5), as in the case n g 3, we deduce (5.6).

Step two: We now begin the proof of (5.1), (5.2), (5.3), and (5.4) by discussing a com-
pactness argument aimed at “extracting one bubble” from u(tj) as tj ³ >. In later steps
we will of course discuss the iteration of this argument.

We begin by recalling that, by Theorem 1.2-(i,ii), for all p g 2 and ³ * (0, 1) we have

sup
tg0

{

‖u(t)‖W 2,p(Rn), ‖u(t)‖C1,³(Rn), |»·[u(t)]|
}

<> , (5.9)

sup
tg1

{

‖u(t)‖W 3,p(Rn), ‖u(t)‖C2,³(Rn)

}

<> . (5.10)

By (5.9), supRn u(t) is achieved for every t > 0, and we actually claim that

max
Rn

u(t) g min
{1

2
,
( 1

C ·AC·(u0)

)(n21)/2}

, "t > 0 . (5.11)

Indeed, setting for brevity ³(t) = maxRn u(t), if ³(t) f 1/2, then we can use the elementary
estimate

V (r) f C r2n/(n21) f C r2/(n21) r2 f C r2/(n21)W (r) , "r * [0, 1/2] ,

to deduce from Theorem 1.2-(iii,iv) that, for all t > 0,

1 = V(u(t)) f C

ˆ

Rn

u(t)2/(n21)W (u(t)) f C ³(t)2/(n21) ·AC·(u(t))

f C ³(t)2/(n21) ·AC·(u0) .

This proves (5.11). Combining (5.11) with (5.9) we find ³0 = ³0(·, u0) * (0, 1/2] and
r0 = r0(·, u0) > 0 such that for each t > 0 there is xt * R

n with the property that

u(t) g ³0 on Br0(xt) . (5.12)

In particular, given tj ³ > as j ³ >, then, thanks to (5.9), (5.10) and (5.12), and up
to extracting subsequences, we can find 3· * R, ¿1 * +pg2W

3,p(Rn; [0, 1]) \ {0}, and a
sequence (x1j)j in R

n such that, as j ³ >,

lim
j³>

»·[u(tj)] = 3· , (5.13)

Ç(2x1
j )
[u(tj)]á ¿1 weakly in W 3,p(Rn) as j ³ > , (5.14)

lim
j³>

∥

∥Ç(2x1
j )
[u(tj)]2 ¿1

∥

∥

W 2,p(BR)
= 0 , "p g 2 ,"R > 0 . (5.15)

By Theorem 1.2-(vi), if we first take t = tj in

"tu(t) = 2 ·2 ∆u(t)2W 2(u(t)) + · »·[u(t)]V
2(u(t)) on R

n , (5.16)

and then let j ³ >, we deduce that

2 ·2 ∆¿1 =W 2(¿1)2 · 3· V
2(¿1) on R

n .

By step one, we conclude that 3· > 0, that ¿1 is strictly radially decreasing, and that

V(¿1) g
1

C 3n·
. (5.17)

Step three: We now iterate the construction of step two. Let us consider the following
statement, depending on k * N:
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(S)k: There are {(xij)j}ki=1 sequences in R
n with |xij 2 x3j| ³ > as j ³ > (i 6= 3), and

there are {¿i}ki=1 radially symmetric decreasing functions solving (5.2), such that

k
∑

i=1

V(¿i) f 1 , (5.18)

and, for each i = 1, ..., k,

Ç(2xi
j)
[u(tj)]á ¿i weakly in W 3,p(Rn) as j ³ > ,

lim
j³>

∥

∥Ç(2xi
j)
[u(tj)]2 ¿i

∥

∥

W 2,p(BR)
= 0 , "R > 0 ,"p g 2 . (5.19)

Notice that if (S)k holds with equality in (5.18) for some k * N, then the theorem is
proved (up to showing the validity of (5.4)) with M = k. We also notice that, in step two,
we have proved that (S)1 holds. In this step we prove that if (S)k holds for some k * N

with strict sign in (5.18), that is, with

k
∑

i=1

V(¿i) < 1 ,

then, up to extracting a subsequence in j, we can find (xk+1
j )j and ¿k+1 such that (S)k+1

holds. Since, by step one, V(¿i) g (1/C 3·)
n for each i = 1, ..., k + 1, we conclude that, for

some M * N, (S)M must hold with equality in (5.18).

So let us consider k * N such that (S)k holds with strict sign in (5.18), and let m =
∑k

i=1 V(¿i). Given h * N, let

Ah
j =

k
⋃

i=1

Bh(x
i
j) .

By (5.19), for every h * N there is j(h) * N such that

V(u(tj);Bh(x
i
j)) g V(¿i;Bh)2

12m

2k
, "i = 1, ..., k,"j g j(h) ,

so that if, j g j(h),

12m f 12
k

∑

i=1

V(¿i;Bh) f
12m

2
+ 12

k
∑

i=1

V
(

u(tj);Bh(x
i
j)
)

=
12m

2
+ V(u(tj);Rn \ Ah

j ) ,

that is
12m

2
f V(u(tj);Rn \ Ah

j ) , "h * N ,"j g j(h) ,

If we now set

³hj = max
Rn\Ah

j

u(tj) ,

then, either ³hj g 1/2 or, by arguing as in step two, for every h * N and j g j(h),

12m

2
f V(u(tj);Rn \ Ah

j ) f C (³hj )
2/(n21)

ˆ

Rn\Ah
j

W (u(tj)) f C (³hj )
2/(n21) ·AC·(u0) ,

that is, for every h * N and j g j(h),

³hj g min
{1

2
,
( 12m

C ·AC·(u0)

)(n21)/2}

=: ³7 > 0 .
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In particular, up to extracting a subsequence in j, for each j we can find xk+1
j * R

n such
that

inf
i=1,...,k

|xk+1
j 2 xij | g j , uj(x

k+1
j , tj) g ³7 , "j ;

and then, thanks to (5.9), we can find r7 > 0 such that

u(tj) g
³7
2

on Br7(x
k+1
j ) , "j .

Hence, by (5.10), there exists ¿k+1 * +pg2W
3,p(Rn; [0, 1]) \ {0} such that

Ç(2xk+1
j )[u(tj)]á ¿k+1 weakly in W 3,p(Rn) as j ³ > , (5.20)

lim
j³>

∥

∥Ç(2xk+1
j )[u(tj)]2 ¿k+1

∥

∥

W 2,p(BR)
= 0 , "R > 0 ,"p g 2 , (5.21)

and by the same argument of step two we see that ¿k+1 satisfies

2 ·2 ∆¿k+1 =W 2(¿k+1)2 · 3· V
2(¿k+1) on R

n ,

and thus

V(¿k+1) g
1

C 3n·
. (5.22)

We have thus proved the desired induction step.

Step four: We have so far proved the existence of M * N, 3· > 0, {(xij)j}Mi=1 sequences in

R
n, and {¿i}Mi=1 radially symmetric decreasing functions on R

n such that, up to extracting

a subsequence, (5.1), and (5.2) hold, together with part of (5.3) (i.e., 1 =
∑M

i=1 V(¿i)),
and

Ç(2xi
j)
[u(tj)]á ¿i weakly in W 3,p(Rn) as j ³ > ,

lim
j³>

∥

∥Ç(2xi
j)
[u(tj)]2 ¿i

∥

∥

W 2,p(BR)
= 0 , "R > 0 , p g 2 , i = 1, ...,M . (5.23)

To complete the proof of (5.3) we just need to notice that, by (5.23), for every R > 0

M
∑

i=1

AC·(¿i;BR) f lim inf
j³>

M
∑

i=1

AC·

(

Ç2xi
j
[u(tj)];BR

)

= lim inf
j³>

M
∑

i=1

AC·

(

u(tj);BR(x
i
j)
)

= lim inf
j³>

AC·

(

u(tj);
M
⋃

i=1

BR(x
i
j)
)

f AC·(u0) ,

where in the last equality we have used |xij 2 x3j| ³ > as j ³ > if i 6= 3, and in the last

inequality we have used the monotonicity of t 7³ AC·(u(t)). By arbitrariness of R, we
have completed the proof of (5.3). We are thus left to prove (5.4). In this step, we shall
prove a slightly weaker statement, namely

lim
j³>

∥

∥

∥
u(tj)2

M
∑

i=1

Ç
xj
i
[¿i]

∥

∥

∥

W 2,p(Rn)
= 0 , "p > 2 . (5.24)

We will then improve (5.24) to (5.4) in step five. (This improvement is of crucial impor-
tance in discussing convergence to equilibrium of the flow.) We begin the proof of (5.24)
by showing that, with n2 = n/(n2 1),

lim
j³>

‖u(tj)2 vj‖L2n2 (Rn) = 0 , where vj =

M
∑

i=1

Çxi
j
[¿i] . (5.25)

Indeed, for every Ã > 0 we can find R > 0 such that

V(¿i;BR) g (12 Ã)V(¿i) , "i = 1, ...,M . (5.26)

33



Setting AR
j = R

n \ *M
i=1BR(x

i
j), for j large enough to have BR(x

i
j) + BR(x

3
j) = ' (i 6= 3),

we have

1

C(M)

ˆ

Rn

|u(tj)2 vj |2n
2 f

ˆ

AR
j

|u(tj)|2n
2

+ |vj |2n
2

+

M
∑

i=1

ˆ

BR(xi
j)
|u(tj)2 Çxi

j
[¿i]|2n

2

+
M
∑

i=1

ˆ

BR(xi
j)

∣

∣

∣

∑

3 6=i

Çx3
j
[¿3]

∣

∣

∣

2n2

. (5.27)

We first notice that, since r2n
2 f C V (r) for all r * [0, 1],,

ˆ

AR
j

|vj |2n
2 f C(M)

M
∑

i=1

ˆ

AR
j

|Çxi
j
[¿i]|2n

2 f C(M)

M
∑

i=1

ˆ

Rn\BR(xi
j)
|Çxi

j
[¿i]|2n

2

f C(M)

M
∑

i=1

ˆ

Rn\BR

V (¿i) f C(M)Ã

M
∑

i=1

V(¿i) = C(M)Ã; (5.28)

similarly,

1

C

ˆ

AR
j

|u(tj)|2n
2 f

ˆ

AR
j

V (u(tj)) = 12
M
∑

i=1

V(u(tj);BR(x
i
j))

=

M
∑

i=1

V(¿i)2 V(u(tj);BR(x
i
j)) =

M
∑

i=1

V(¿i)2 V(Ç2xi
j
[u(tj)];BR)

so that, by (5.23),

lim sup
j³>

ˆ

AR
j

|u(tj)|2n
2 f C

M
∑

i=1

V(¿i;Rn \BR) f CM Ã . (5.29)

Coming to the last term in (5.27) we see that

M
∑

i=1

ˆ

BR(xi
j)

∣

∣

∣

∑

3 6=i

Çx3
j
[¿3]

∣

∣

∣

2n2

f C(M)

M
∑

i=1

∑

3 6=i

ˆ

BR(xi
j)

∣

∣Çx3
j
[¿3]

∣

∣

2n2

(5.30)

f C(M)
M
∑

i=1

∑

3 6=i

ˆ

BR(xi
j2x3

j)

∣

∣¿3
∣

∣

2n2

,

where the last integral converges to zero since |xij 2 x3j| ³ 0 as j ³ > by i 6= 3, and since

¿3 * L2n2

(Rn). Finally, since 2n2 g 2 we can use (5.23) to address the second integral in
(5.27), and conclude from (5.27), (5.28), (5.29) and (5.30) that

lim sup
j³>

‖u(tj)2 vj‖L2n2 (Rn) f C(M)Ã , "Ã > 0 ,

that is (5.25). Now, by (3.3) we have that

‖u(tj)2 vj‖L2(Rn) f C(·)
{

AC·(u(tj)) + V(u(tj)) +
∑

i=1

MAC·(¿i) + V(¿i)
}

f C(·, u0) ,

so that (5.25) implies

lim
j³>

‖u(tj)2 vj‖Lp(Rn) = 0 , "p > 2 . (5.31)

We finally recall that given k, k1, k2 * N and p, p1, p2 * [1,>] related by k = » k1+(12») k2
and (1/p) = (»/p1) + (12 »)/p2 for some » * (0, 1), then we have

‖f‖W k,p(Rn) f C ‖f‖»
W k1,p1 (Rn)

‖f‖12»
W k2,p2(Rn)
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for every f * W k1,p1(Rn) +W k2,p2(Rn) and with a constant C depending only on n, p1,
p2, k1 and k2. By combining this interpolation inequality (with k = 1, 2, k1 = 0, k2 = 3,
any p1 > 2 and p2 g 2) with (5.31) and the uniform W 3,p-bounds satisfied by u(tj) (recall
(5.10)) and each of the ¿i’s, we conclude the proof of (5.24).

Step five: To complete the proof of (5.4) we need to prove the W 1,2-convergence stated in
(5.24), that is

lim
j³>

∥

∥

∥
u(tj)2

M
∑

i=1

Çxi
j
[¿i]

∥

∥

∥

W 1,2(Rn)
= 0 . (5.32)

To this end we set, for the sake of brevity,

uj = u(tj) , vj =

M
∑

i=1

Çxi
j
[¿i] , wj = uj 2 vj = u(tj)2

M
∑

i=1

Çxi
j
[¿i] ,

as well as
Z(r) =W 2(r)2 · 3· V

2(r) , "r * [0, 1] .

If we multiply by wj in ·
2("tuj22∆uj) = 2Z(uj)+· (3·2»·[uj ])V 2(uj) and in 2 ·2 ∆vj =

∑M
i=1 Z(Çxi

j
[¿i]), and we then add the resulting identities, we obtain

22 ·2 wj ∆wj = 2·2 wj "tuj + · (3· 2 »·[uj ])wj V
2(uj) (5.33)

+wj

{

2 Z(uj) +
M
∑

i=1

Z(Çxi
j
[¿i])

}

By (3.3), V(uj) = 1, AC·(uj) f AC·(u0), V(¿i) f 1, and AC·(¿i) f AC·(u0) we have
‖wj‖L2(Rn) f C(·, u0), so that |wj | fM + 1 on R

n and (5.31) imply

‖wj‖L2(Rn) f C(·, u0,M) , lim
j³>

‖wj‖Lp(Rn) = 0 , "p > 2 . (5.34)

Combining (5.34) and 0 f V 2(uj) f C u2n
221

j with (5.33) and the Hölder inequality, we
thus find

ˆ

Rn

|'wj |2 f C(·, u0,M) ‖"tuj‖L2(Rn) + C(·, u0)
∣

∣3· 2 »·[uj ]
∣

∣ ‖wj‖L2n2 (Rn)

+

ˆ

Rn

wj

{

2 Z(uj) +
M
∑

i=1

Z(Çxi
j
[¿i])

}

. (5.35)

where we have also used ‖u(t)‖L2n2 (Rn) f C(·, u0) for all t > 0. The first two terms on

the right-hand side of (5.35) converge to zero as j ³ >, respectively, thanks to Theorem
1.2-(vi) and to (5.1) and (5.34). To deal with the third term on the right hand side of
(5.35), we consider Ã > 0 and pick R > 0 as in (5.26), so that, as proved in (5.28) and
(5.29), we have

ˆ

AR
j

M
∑

i=1

Çxi
j
[¿i]

2n2 f C(M)Ã , lim sup
j³>

ˆ

AR
j

u2n
2

j f C(M)Ã , (5.36)

where AR
j = Rn \ *M

i=1BR(x
i
j). Moreover, up to further increase the value of R we can

ensure that
max

i=1,...,M
‖¿i‖Lp(Rn) f C(p)Ã , "p g 2 , (5.37)

as well as

|¿i| f »(·) on R
n \BR, where »(·) > 0 is s.t. Z 2(r) g »(·) for all r * [0, »] . (5.38)

(Notice that the existence of »(·) is guaranteed byW 22(0) > 0, V 22(0) = 0, and |3·| f C(u0),
which in turn follows from supj |»·[uj ]| f C(u0) (recall Theorem 1.2-(ii)) and (5.1).
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Now, provided j is large enough depending on R (thus on Ã), {AR
j , BR(x

j
i )}Mi=1 is a

partition of Rn, that we can use to decompose the third term on the right hand side of
(5.35). We begin by working with the integration over AR

j , that we decompose by assigning
a privileged role to ¿1, and writing

ˆ

AR
j

wj

{

2 Z(uj) +

M
∑

i=1

Z(Çxi
j
[¿i])

}

=

ˆ

AR
j

(

uj 2 Çx1
j
[¿1]

) (

Z(Çx1
j
[¿1])2 Z(uj)

)

2
ˆ

AR
j

M
∑

3=2

Çx3
j
[¿3]

{

2 Z(uj) +

M
∑

i=1

Z(Çxi
j
[¿i])

}

2
ˆ

AR
j

(

uj 2 Çx1
j
[¿1]

)

M
∑

3=2

Z(Çx3
j
[¿3])

f
ˆ

AR
j

(

uj 2 Çx1
j
[¿1]

) (

Z(Çx1
j
[¿1])2 Z(uj)

)

(5.39)

+C(M) max
1fifM

‖¿i‖L2(Rn\BR) max
1fifM

{

‖uj‖L2(Rn), ‖¿i‖L2(Rn)

}

,

where we have used |Z(r)| f C r for all r * [0, 1]. Now by the properties of W and V we
have

Z(r)2 Z(s) = Z 2(s) (r 2 s) + O(r 2 s)2n
221 , "r, s * [0, 1] , (5.40)

so that by plugging s = ¿1 and r = uj in (5.40), and by recalling that, thanks to (5.38),
Z 2(Çx1

j
[¿1]) g »(·) on AR

j ,

ˆ

AR
j

(

uj 2 Çx1
j
[¿1]

) (

Z(Çx1
j
[¿1])2 Z(uj)

)

(5.41)

f 2
ˆ

AR
j

(

uj 2 Çx1
j
[¿1]

)2
Z 2(Çx1

j
[¿1]) + C

ˆ

AR
j

|uj 2 Çx1
j
[¿1]|2n

2

f 2»(·)
ˆ

AR
j

(

uj 2 Çx1
j
[¿1]

)2
+ C

ˆ

AR
j

|uj 2 Çx1
j
[¿1]|2n

2

.

Now, for every p g 2,

∣

∣

∣

ˆ

AR
j

|uj 2 Çx1
j
[¿1]|p 2

ˆ

AR
j

|wj|p
∣

∣

∣
f C(p)

M
∑

i=2

ˆ

AR
j

Çxi
j
[¿i]

p f C(p)

M
∑

i=2

‖¿i‖Lp(Rn\BR) ,(5.42)

so that, combining (5.41) and (5.42) with (5.39), we finally conclude that

ˆ

AR
j

wj

{

2 Z(uj) +
M
∑

i=1

Z(Çxi
j
[¿i])

}

f 2»(·)
ˆ

AR
j

w2
j + C(p,M)Ã .

Going back to (5.35) we have proved that

ˆ

Rn

|'wj |2 + »(·)

ˆ

AR
j

w2
j f

M
∑

i=1

ˆ

BR(xi
j)
wj

{

2 Z(uj) +

M
∑

i=1

Z(Çxi
j
[¿i])

}

(5.43)

+ oj + C(M)Ã
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where oj ³ 0 as j ³ >. Next we observe that

ˆ

BR(x1
j )
wj

{

2 Z(uj) +

M
∑

i=1

Z(Çxi
j
[¿i])

}

f C

ˆ

BR(x1
j )

{

|uj 2 Çx1
j
[¿1]|+

M
∑

i=2

Çx1
j
[¿1]

}{

uj +

M
∑

k=1

|Çxk
j
[¿k]

}

f C max
1fifM

{

‖uj‖L2 , ‖¿i‖2L2

}

{

ˆ

BR(x1
j )
|uj 2 Çx1

j
[¿1]|2 +

M
∑

k=2

ˆ

BR(x1
j )
Çxk

j
[¿k]

2
}

f C(·, u0,M)
{

ˆ

BR

|Ç2x1
j
[uj ]2 ¿1|2 +

M
∑

k=2

ˆ

BR(x1
j2xk

j )
¿2k

}

,

where the last two integrals converge to zero as j ³ > thanks to (5.23), ¿k * L2 and
|x1j 2 xkj | ³ > as j ³ > if k 6= 1. Of course we can repeat this same argument with any

other BR(x
i
j) with i = 2, ...,M , and go back to (5.43) to conclude that

ˆ

Rn

|'wj |2 + »(·)

ˆ

AR
j

w2
j f oj +C(M)Ã . (5.44)

We finally conclude the proof of (5.32) since, for each i = 1, ...,M , we have
ˆ

BR(xi
j)
w2
j f 2

ˆ

BR(xi
j)
|uj 2 Çxi

j
[¿i]|2 + 2

∑

k 6=i

ˆ

BR(xi
j)
Çxk

j
[¿k]

2

= 2 ‖Ç2xi
j
[uj ]2 ¿i‖2L2(BR) + 2

∑

k 6=i

‖¿k‖2L2(BR(xi
j2xk

j ))
,

where the right hand side converges to zero as j ³ > by the same arguments used in the
proof of (5.44). This concludes the proof of (5.32).

Step six: We finally prove that if sptu0 ¢¢ R
n, then M = 1. We use the moving

plane method, following an argument in [Fei97, Theorem 1.2]. Let s0 > 0 be such that
sptu0 ¢ Bs0(0). For s g s0, let Hs = {x * R

n+1 : x1 > s}, and define

Ãs[v](x) = v
(

2s2 x1, x2, ..., xn+1

)

, "x * R
n+1 , v : Rn+1 ³ R .

In this way, us(t) = Ãs[u(t)] solves

·2
(

"tus 2 2∆us
)

= 2W 2(us) + · »·[us(t)]V
2(us) , on R

n × (0,>) ,

with initial datum us(0) = Ãs[u(0)] = Ãs[u0]. Since, trivially, »·[us(t)] = »·[u(t)] for all
t > 0, we have that vs = us 2 u solves

·2
(

"tvs 2 2∆vs
)

= h(x, t) , on R
n × (0,>) ,

with vs(0) = Ãs[u0]2 u0 and

h(x, t) =W 2(u)2W 2(us) + · »·[u(t)] (V
2(us)2 V 2(u)) = c(x, t) vs

for some c * L>(Rn × (0,>)). Since sptu0 ¢ Bs0(0) and s > s0 imply that vs(0) g 0 on
Hs, by the parabolic maximum principle [Lie96, Lemma 2.3] we deduce that vs(t) g 0 on
Hs for all t > 0. In particular, if h > s and (x2, ..., xn+1) * R

n, then the non-negativity of
vs(t) at (h, x2, ..., xn+1) * Hs implies that

0 f lim
h³s+

vs(h, x2, ..., xn+1, t)

h2 s

= lim
h³s+

u(2s 2 h, x2, ..., xn+1, t)2 u(h, x2, ..., xn+1, t)

h2 s
= 2e1 · 'u(s, x2, ..., xn+1, t) .

37



We have thus proved that e1 ·'u(t) f 0 on Hs for every s > s0. By arbitrariness of s > s0
and of the choice of the direction with respect to which we reflect u(t), we conclude that

x

|x| · 'u(x, t) f 0 , "x * R
n+1 \Bs0(0) , t > 0 . (5.45)

By (5.10), for every t > 0, u(x, t) ³ 0 as |x| ³ >. Now pick a sequence tj ³ > such that
(5.24) holds. Since m = max1fifM supRn ¿i > 0, if M g 2, then the fact that for i 6= k we
have |xij 2 xkj | ³ > as j ³ >, combined with (5.24), implies that, for every R > 0, there

is j(R) * N such that if j g j(R) then

sup
Rn+1\BR

u(tj) g
m

2
.

This leads to a contradiction with u(x, tj) ³ 0 as |x| ³ >. Therefore M = 1 and, by
a similar argument, (5.45) is also seen to imply the boundedness of (x1j )j , and thus its
convergence modulo a further subsequence extraction. �

6. Subsequential bubbling into diffused balls (Proof of Theorem 1.4)

Proof of Theorem 1.4. We start by noticing that, thanks to (1.7), we have

N Ψ
(

·,
1

N

)

g 2nË1/n
n N1/n , "N > 0 .

In particular, if M0 is the least integer such that nË
1/n
n M

1/n
0 >

´

Rn |'u0|, then by
AC·(u0) ³ 2

´

Rn |'u0| we can find ·7 > 0 (depending on u0) such that

M0Ψ
(

·,
1

M0

)

g AC·(u0) , "· * (0, ·7) . (6.1)

We shall prove the theorem for every solution u(t) of (DF) corresponding to · < ·70, where

·70 := min
{

·7,
Ã0

M
1/n
0

}

, (6.2)

for some suitably small universal constant Ã0 to be the determined below.

Step one: We prove the existence of a universal constant Ã0 such that

Ψ(Ã, 1) g Ψ(·, 1) , "· < min{Ã0, Ã} .
We shall take Ã0 f ·0, so that, thanks to (2.4), we will be able to focus directly on the
case when · < Ã0 < Ã. Should the the claim fail in this case, we could then find sequences
(·j)j and (Ãj)j with ·j ³ 0+ as j ³ > and

Ãj > ·j , Ψ(Ãj , 1) < Ψ(·j , 1) , "j * N . (6.3)

For each j we denote by uj a minimizer of Ψ(Ãj, 1), and notice that, by (2.3) and up to
extracting a subsequence in j, there is Ã7 * [0,>] such that

lim
j³>

Ãj = Ã7 * [0,>] , lim
j³>

Ψ(Ãj , 1) = lim
j³>

ACÃj (uj) = 2 ciso(n) . (6.4)

We can immediately exclude that Ã7 = 0 thanks to (2.4) and (6.3). If Ã7 * (0,>), then a
minor modification of the elementary compactness argument of [MNR23, Proof of Theorem
A.1, steps one and two] shows that, up to extracting subsequences, there is a minimizer
u7 in Ψ(Ã7, 1) such that uj ³ u7 in L1

loc(R
n). In particular, by combining (2.2) with (6.4)

we find that

2 ciso(n) < Ψ(Ã7, 1) = ACÃ7
(u7) f lim inf

j³>
ACÃj (uj) = lim

j³>
Ψ(Ãj , 1) = 2 ciso(n) ,
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a contradiction. We are thus left with the possibility that Ã7 = +>. To obtain a contra-
diction, we notice that, by 1 = V(uj) = ‖Φ(uj)‖Ln/(n21)(Rn), we have

ciso(n) f |D[Φ(uj)]|(Rn) <
ACÃj (uj)

2
³ ciso(n) , as j ³ >.

In particular, by a standard compactness argument (see, e.g., [FMP07, Theorem A.1])),

for some a, r > 0 and up to extracting a subsequence, Φ(uj) ³ a 1Br in Ln/(n21)(Rn)
as j ³ >. Setting b = Φ21(a) we have uj ³ b 1Br in L1

loc(R
n), so that, for every

× * C>
c (Rn),

ˆ

Rn

b 1Br '× = lim
j³>

ˆ

Rn

uj '× f ‖×‖L2(Rn) ‖'uj‖L2(Rn)

where ‖'uj‖L2(Rn) f ACÃj (uj)/Ãj ³ 0 as j ³ > thanks to Ãj ³ +>. In summary,

|D(b 1Br )|(Rn) = 0, so that 0 = b = Φ21(a), and thus a = Φ(0) = 0, against a > 0.

Step two: Given a sequence tj ³ > as j ³ >, we want to show that, up to extracting a

subsequence, there isM * N (withM fM0) and sequences {(xij)j}Mi=1 with |xij2xkj | ³ >
as j ³ > (i 6= k), such that, for all p > 2,

lim
j³>

∥

∥

∥
u(tj)2

M
∑

i=1

Çxi
j

[

··,1/M
]

∥

∥

∥

(W 2,p+W 1,2)(Rn)
= 0 . (6.5)

By Theorem 1.3, we know that (6.5) holds if in place of ··,1/M we have some ¿i, i = 1, ...,M ,
solving, for a same 3· > 0,

2 ·2 ∆¿i =W 2(¿i)2 · 3· V
2(¿i) on R

n, (6.6)

with AC·(u0) g ∑M
i=1 AC·(¿i) and 1 =

∑M
i=1 V(¿i). We set for brevity mi = V(¿i) and

assume without loss of generality that mi g mi+1. Our goal is thus proving the existence
of zi * R

n such that ¿i = Çzi [··,1/M ] for each i.

We first notice that it must be m1 g 1/M0. Indeed, should this not be the case, then

using also step one and the fact that · < ·70 implies ·M
1/n
0 < Ã0, we would have

1

m
1/n
i

> M
1/n
0 , Ψ

(

·
/

m
1/n
i , 1

)

g Ψ
(

·M
1/n
0 , 1

)

, "i .

We could then combine these inequalities with AC·(u0) g
∑M

i=1 AC·(¿i) and (2.1) to find
that

AC·(u0) g
M
∑

i=1

Ψ(·,mi) =

M
∑

i=1

m
(n21)/n
i Ψ

(

·
/

m
1/n
i , 1

)

> M
1/n
0

M
∑

i=1

miΨ
(

·
/

m
1/n
i , 1

)

gM
1/n
0 Ψ(·M

1/n
0 , 1)

M
∑

i=1

mi

= M
1/n
0 Ψ(·M

1/n
0 , 1) =M

1/n
0 M

(n21)/n
0 Ψ(·, 1/M0) =M0 Ψ(·, 1/M0) ,

thus leading to a contradiction with (6.1).

We can thus assume thatm1 g 1/M0. By arguing as in step one in the proof of Theorem
1.3 (see, in particular, the proof of (5.7)), we see that (6.6) implies

n 3·mi = n 3· V(¿i) = nAC·(¿i)2 2 ·

ˆ

Rn

|'¿i|2 .
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By (6.1), we find

· 3· f ·
M
∑

i=1

AC·(¿i) f ·AC·(u0) f ·M
1/n
0 Ψ(·M

1/n
0 , 1) .

By ·M
1/n
0 < Ã0 and by step one we also have Ψ(·M

1/n
0 , 1) f Ψ(Ã0, 1), so that

· 3· f Ã0Ψ(Ã0, 1) .

Since ÃΨ(Ã, 1) ³ 0 as Ã ³ 0+, we conclude that, up to further decreasing the value of Ã0,
we can guarantee · 3· < ¿0 with ¿0 as in Theorem Ψ-(ii). In particular, for each i there
exists zi * R

n such that

¿i = Çzi [··,mi ] , 3· = Λ·,mi .

Since 3· is independent of i, 3· = Λ·,mi implies that mi = m1 for all i. Therefore 1 =
∑M

i=1mi gives m1 = 1/M , and the proof that ¿i = Çzi [··,1/M ] for each i is complete.

Conclusion: We are left to prove that M is uniquely determined by the relation

M Ψ(·, 1/M) = lim
t³>

AC·(u(t)) . (6.7)

Since M f M0 and ·M
1/n
0 < Ã0 f ·0 we know that M * (0, (·0/·)

n). To conclude that
(6.7) uniquely characterizes M we are going to prove that

x 7³ xΨ
(

·,
1

x

)

is strictly increasing on
(

0,
(·0
·

)n)

,

which, in turn, is equivalent to showing that x 7³ Ψ(·, x)/x is strictly decreasing on
((·/·0)

n,>).

Let us set f(x) = Ψ(·, x) so that, by (2.5), f is concave on (0,>) and strictly concave
on (a,>) (with a = (·/·0)

n). Since f(0+) g 0 we deduce from f(0+) f f(x)+f 2(x)(02x)
for all x > 0 that x f 2(x) f f(x) for all x > 0. In particular,

f(a)

a
g f 2(a) > f 2(x) "x > a . (6.8)

If we now use first f(a) < f(x) + f 2(x)(a 2 x) for all x > a, and then (6.8), we find that

x f 2(x)2 f(x) < af 2(x)2 f(a) < 0 , "x > a .

This shows that x 7³ f(x)/x is strictly decreasing on (a,>), as claimed. �

7. Strict stability of the diffused isoperimetric problem (Proof of
Theorem 1.5)

Proof of Theorem 1.5. We aim at proving the theorem by combining two results. The
first one is the radial case of Theorem 1.5, which was proved in [MR24, Lemma 4.4]: if
· * (0, ·0), then

Q·[··](×) g
1

C

ˆ

Rn

· |'×|2 + ×2

·
, (7.1)

for every × *W 1,2(Rn) which is radial with respect to the origin and such that
´

Rn V
2(··)× =

0. The second one is the strict stability of the second variation of the (volume-constrained)
area functional on the unit sphere. By the latter, we mean the following stability result:
Let {Ai}i*N denote the normalized eigenfunctions of the Laplacian on S

n21 and let {µi}i*N
denote the corresponding eigenvalues listed in increasing order, so that 2∆Sn21

Ai = µiAi

on S
n21 for each i, A0 is constant with µ0 = 0, Ai(») = »i with µi = (n21) for i = 1, ..., n,
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µn+1 > µn and
´

Sn21 A
2
i = 1. It is well known (see, e.g. [CL12, Lemma 4.2]) that, for

every ³ *W 1,2(Sn21),
ˆ

Sn21

|'Sn21
³|2 2 (n2 1)³2 g 0 , if

ˆ

Sn21

³ = 0 , (7.2)

(stability of the sphere with respect to volume-preserving variations) and that
ˆ

Sn21

|'Sn21
³|2 2 (n 2 1)³2 g c(n)

ˆ

Sn21

|'Sn21
³|2 + ³2 , (7.3)

if
ˆ

Sn21

³ = 0 ,

ˆ

Sn21

» ³(») = 0 , (7.4)

for some positive constant c(n) (strict stability of the sphere with respect to volume-
preserving variations orthogonal to translations). Combining these two stability results
will require some a careful decompositions of functions × satisfying (1.24).

Step one: In this first step we introduce a convenient way to rewrite

Q·[··](×) =

ˆ

Rn

2 · |'×|2 +
{W 22(··)

·
2 Λ· V

22(··)
}

×2 , (7.5)

by means of the transformation Ë = ×/· 2·, which allows one to relate Q·[··] to the second
variation of the volume-constrained area functional on the sphere. (This kind of transfor-
mation is inspired by similar computations found in [Ton05, Le11, Gas20].) More precisely,
setting x̂ = x/|x| and denoting by · 2·, ·

22
· , etc. the derivatives of the radial profile of ··, we

show that if × *W 1,2(Rn) and, correspondingly, we define Ë *W 1,2
loc (R

n \ {0}) by
× = Ë · 2· , (7.6)

then

Q·[··](×) = 2 ·

ˆ

Rn

(· 22· )
{

|'Ë|2 2 (n 2 1)

|x|2 Ë2
}

. (7.7)

Indeed, under (7.6), we have '× = · 2·'Ë + · 22· Ë x̂, and integrating by parts9 the mixed
term in

|'×|2 = (· 2·)
2 |'Ë|2 + 2 · 2· ·

22
· Ë (x̂ · 'Ë) + (· 22· )

2 Ë2 , (7.8)

we find

2

ˆ

Rn

· 2· ·
22
· Ë (x̂ · 'Ë) = 2

ˆ

Rn

Ë2 div
(

· 2· ·
22
· x̂

)

= 2
ˆ

Rn

Ë2 (· 22· )
2 2

ˆ

Rn

Ë2 · 2·
{

· 222· +
n2 1

|x| · 22·
}

. (7.9)

To rewrite the term with · 222· we make use of 2 ·2 ∆·· =W 2(··)2 ·Λ· V
2(··) on R

n, which,
writing ∆·· in radial coordinates, takes the form

2 ·2
{

· 22· +
(n2 1)

|x| · 2·
}

=W 2(··)2 ·Λ· V
2(··) . (7.10)

Differentiating (7.10) in the radial direction we thus find

2 ·2
{

· 222· +
n2 1

|x| · 22· 2 n2 1

|x|2 · 2·
}

= · 2·
{

W 22(··)2 ·Λ· V
22(··)

}

,

which can be combined into (7.9) to obtain

2

ˆ

Rn

· 2· ·
22
· Ë (x̂ · 'Ë) = 2

ˆ

Rn

Ë2 (· 22· )
2 2

ˆ

Rn

Ë2 (· 2·)
2
{W 22(··)2 ·Λ· V

22(··)
2 ·2

+
n2 1

|x|2
}

.

9This is easily justified since ζ· and its derivatives all decay exponentially at infinity, see [MR24, Theorem
3.1].
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On combining this last identity with (7.8) and the definition of Q·[··] we thus find

Q·[··](×) = 2 ·

ˆ

Rn

|'×|2 +
ˆ

Rn

{W 22(··)
·

2 Λ· V
22(··)

}

×2

= 2 ·

ˆ

Rn

(· 2·)
2 |'Ë|2 + (· 22· )

2 Ë2

22 ·

ˆ

Rn

Ë2 (· 22· )
2 2

ˆ

Rn

Ë2 (· 2·)
2
{W 22(··)

·
2 Λ· V

22(··) + 2 ·
n2 1

|x|2
}

+

ˆ

Rn

{W 22(··)
·

2 Λ· V
22(··)

}

×2

which boils down to (7.7) thanks to × = · 2· Ë.

Step two: We prove that conclusion (1.26) follows from conclusion (1.25). Indeed, arguing
by contradiction, should (1.24) imply (1.25) but not (1.26), then we could find a sequence
(×j)j in W 1,2(Rn) such that

ˆ

Rn

×j V
2(··) = 0 ,

ˆ

Rn

×j '·· = 0 , "j , (7.11)

ˆ

Rn

|'×j |2 + ×2
j = 1 , "j , (7.12)

lim
j³>

Q·[··](×j) = 0 . (7.13)

Having assumed that (1.24) implies (1.25), we could deduce from (7.11) that

Q·[··](×j) g
·

C

ˆ

Rn

×2
j , "j . (7.14)

By combining (7.14) with (7.13) we would then find

lim
j³>

ˆ

Rn

×2
j = 0 , and, hence, by (7.12), lim

j³>

ˆ

Rn

|'×j |2 = 1 . (7.15)

But then, taking into account that (W 22(··)/· 2 Λ· V
22(··)) * L>(Rn), and combining

(7.5) and (7.15), we could conclude that Q·[··](×j) ³ 2 · as j ³ >, in contradiction with
(7.13).

Step three: By step two, we are left to prove that (1.24) implies (1.25). In this step,
we present an additional reduction. Let L2

rad(R
n) denote the set of radial functions with

respect to the origin belonging to L2(Rn), and let

W 1,2
rad(R

n) = L2
rad(R

n) +W 1,2(Rn) ,

Z = L2
rad(R

n)§ +W 1,2(Rn) ,

Z7 =
{

× * Z :

ˆ

Rn

×'·· = 0
}

.

We prove that if

Q·[··](×) g
·2

C

ˆ

Rn

×2 , "× * Z7 , (7.16)

then (1.24) implies (1.25) (and the theorem is proved).

To begin with, denoting by ×rad and ×§
rad the L2-projections of × * W 1,2(Rn) on,

respectively, W 1,2
rad(R

n) and Z, so that × = ×rad + ×§
rad, we notice that

Q·[··](×) = Q·[··](×rad) +Q·[··](×
§
rad) , "× *W 1,2(Rn) . (7.17)
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Indeed,

Q·[··]
(

×rad, ×
§
rad

)

=

ˆ

Rn

2 ·'×rad · '×§
rad +

(W 22(··)
·

2 Λ· V
22(··)

)

×rad ×
§
rad

=

ˆ

Rn

{

2 2 ·∆×rad +
(W 22(··)

·
2 Λ· V

22(··)
)

×rad

}

×§
rad = 0 ,

where in the last identity we have used that ×§
rad * Z and the fact that the function in

the curly bracket is radial.

Next, we observe that the orthogonality relations in (1.24) can be equivalently reformu-
lated as follows for any × *W 1,2(Rn):

ˆ

Rn

V 2(··)× = 0 if and only if

ˆ

Rn

V 2(··)×rad = 0 , (7.18)

ˆ

Rn

×'·· = 0 if and only if

ˆ

Rn

×§
rad '·· = 0 , (7.19)

since V 2(··) * L2
rad(R

n), '·· = · 2· x̂, and
´

Rn x̂ Ë = 0 for all Ë * L2
rad(R

n). In summary,
by combining in the order (7.17), (7.1) applied to ×rad (as we can do thanks to (7.18)) and
(7.16) to ×§

rad (as we can do since ×§
rad * Z7 by (8.11)) we deduce that

Q·[··](×) = Q·[··](×rad) +Q·[··](×
§
rad) g

1

C ·

ˆ

Rn

(×rad)
2 +

·

C

ˆ

Rn

(×§
rad)

2 g ·

C

ˆ

Rn

×2 ,

that is (1.25).

Step four: We now begin the proof of (7.16) by introducing a Fourier decomposition of
× * W 1,2(Rn) that is particularly convenient when × * Z7. Since the radial Laplacian
on R

n, i.e. the map B(r) 7³ B22(r) + (n 2 1)B2(r)/r , defines a self-adjoint operator on
L2((0,>), rn21 dr), we can consider an orthonormal basis {Bj}>j=0 of L2((0,>), rn21 dr)

made up of its eigenfunctions. Since L2(Sn21) and L2((0,>), rn21 dr) are separable Hilbert
spaces, it follows that {Ai · Bj}>i,j=0 is an orthonormal basis of L2(K;»), where K =

S
n21 × (0,>) and » = (Hn21

xS
n21) × (rn21 dr). In particular, since Φ : K ³ R

n,
Φ(», r) = » r, naturally induces an isometry between L2(Rn) and L2(K,»), we conclude
that {(Ai ·Bj) ç Φ}>i,j=0 is an orthonormal basis of L2(Rn). Moreover, each aij = (Ai ·
Bj) ç Φ is an eigenfunction of the Laplacian on R

n, so that the orthogonality of aij and
ahk in L2(Rn) (which holds true for i 6= h or j 6= k) implies the orthogonality of aij and

ahk in W 1,2
0 (Rn). In summary, whenever × *W 1,2(Rn) we have

× =
>
∑

i,j=0

×ij aij in W 1,2(Rn) ,

where ×ij =

ˆ

Rn

aij × =

ˆ

Rn

Ai(x̂)Bj(|x|)×(x) dx .

If we define ×7
i *W 1,2

rad(R
n) and ×i *W 1,2(Rn) by

×7
i (x) =

>
∑

j=0

×ij Bj(|x|) , ×i(x) = Ai(x̂)×
7
i (x) , x * R

n ,

then we have

× =

>
∑

i=0

×i in W 1,2(Rn) , (7.20)

as well as
ˆ

Rn

|'×|2 =
>
∑

i=0

ˆ

Rn

|'×i|2 ,
ˆ

Rn

f ×2 =

>
∑

i=0

ˆ

Rn

f ×2
i , (7.21)

43



for every × *W 1,2(Rn) and f * L>(Rn) that is either radial or angular (i.e., f çΦ depends
either on r or on » only). We can also notice that

×0 = ×7
0 = 0 "× * Z , (7.22)

and then, since A0 is a constant, if × * Z, then for every j * N

×0j =

ˆ

Rn

A0(|x̂|)Bj(|x|)×(x) dx = A0

ˆ

Rn

Bj(|x|)×(x) dx = 0 .

In particular, by applying (7.21) with f = (W 22(··)/·) 2 Λ· V
22(··) and (7.22) we find

Q·[··](×) =
>
∑

i=1

Q·[··](×i) , "× * Z . (7.23)

We make two claims:

Claim one: if × * Z7 and i g n+ 1, then

Q·[··](×i) g
·

C

ˆ

Rn

×2
i

|x|2 . (7.24)

Claim two: if × * Z7 and i = 1, ..., n, then

Q·[··](×i) g
1

C ·

ˆ

Rn

×2
i . (7.25)

We first show how to complete the proof of the theorem starting from these two claims,
and then we prove the claims themselves.

Conclusion of the theorem from the claims: Since W 22(0) > 0, ·· ³ 0 as |x| ³ > (uni-
formly on · * (0, ·0)), and ·Λ· ³ 0 as · ³ 0+, we see that there are universal constants
» and R1 such that

W 22(··)2 ·Λ· V
22(··) g » , on R

n \BR1 , (7.26)

for every · * (0, ·0). By (7.24),
ˆ

BR1

×2
i f

C R2
1

·
Q·[··](×i) , "i g n+ 1 , (7.27)

so that, combining (7.22), (7.27) and (7.25) we conclude that
ˆ

BR1

×2 f C

·
Q·[··](×) , "× * Z7 . (7.28)

Now let L = maxBR1
|W 22(··)2 ·Λ· V

22(··)|. If
»

2L

ˆ

Rn\BR1

×2 f
ˆ

BR1

×2 ,

then we deduce
´

Rn ×
2 f (C/·)Q·[··](×) by (7.28); if, instead,

»

2L

ˆ

Rn\BR1

×2 >

ˆ

BR1

×2 , (7.29)

then by (7.26) and (7.29) we see that

Q·[··](×) g
ˆ

Rn

{W 22(··)
·

2 Λ· V
22(··)

}

×2 g »

·

ˆ

Rn\BR1

×2 2 L

·

ˆ

BR1

×2

g »

2 ·

ˆ

Rn\BR1

×2 ,
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which combined with (7.28) gives again
´

Rn ×
2 f (C/·)Q·[··](×), as desired. We are thus

left to prove the two claims.

Proof of claim one: Setting Ëi = ×i/·
2
· on R

n, we see that Ëi(r ») = Ai(») ¿i(r) (where
¿i = ×7

i /·
2
·), with

|'Ëi|2(r ») = |'Sn21
Ai(»)|2

¿i(r)
2

r2
+ |Ai(»)|2 ¿2i(r)2 .

Since i g n+ 1 we can exploit (7.3) which, combined with (7.7), gives

Q·[··](×i)

2 ·
=

ˆ

Rn

(· 2·)
2
{

|'Ëi|2 2
(n2 1)

|x|2 Ë2
i

}

g
ˆ >

0
· 2·(r)

2
{(¿i(r)

2

r2

ˆ

Sn21

|'Sn21
Ai|2 2 (n2 1)A2

i

)

+ ¿2i(r)
2

ˆ

Sn21

A2
i

}

rn21 dr

g c(n)

ˆ >

0
· 2·(r)

2
{(¿i(r)

2

r2

ˆ

Sn21

|'Sn21
Ai|2 + A2

i

)

+ ¿2i(r)
2

ˆ

Sn21

A2
i

}

rn21 dr

= c(n)

ˆ

Rn

(· 2·)
2
{

|'Ëi|2 +
Ë2
i

|x|2
}

g c(n)

ˆ

Rn

(· 2·)
2 Ë2

i

|x|2 = c(n)

ˆ

Rn

×2
i

|x|2 ,

that is (7.24).

Proof of claim two: Since × * Z7 we have, for each i = 1, ..., n,

0 =

ˆ

Rn

x̂i ·
2
· × =

>
∑

k=1

ˆ

Rn

x̂i ·
2
· ×k ,

which, combined with ×k(x) = Ak(x̂)×
7
k(|x|) = c(n) x̂k ×

7
k(|x|), gives

ˆ >

0
×7
i (r) ·

2
·(r) r

n21 dr = 0 , "i = 1, ..., n . (7.30)

We now prove, if × * Z7, then

Q·[··](×i) g
1

C ·

ˆ

Rn

(×7
i )

2 , "i = 1, ..., n . (7.31)

Notice that (7.31) implies (7.25) since ×i f c(n)×7
i for i = 1, ..., n.

We prove (7.31) by contradiction, following closely the proof of [MR24, Lemma 4.4].
Indeed, should (7.31) fail, then there would be sequences ·j ³ 0+ as j ³ > and (×j)j in
Z7 such that (up to rotations taking ij * {1, ..., n} to ij = 1 for all j)

1

·j

ˆ

Rn

((×j)
7
1)

2 = 1 , "j , (7.32)

ˆ >

0
(×j)

7
1(r) ·

2
·j(r) r

n21 dr = 0 , "j , (7.33)

lim
j³>

Q·j [··j ]
(

(×j)1
)

= 0 . (7.34)

Setting R0 = 1/Ë
1/n
n and

³j(s) = (×7
j )1(R0 + ·j s) , ·j(s) = ··j(R0 + ·j s) , s * R ,

we can rewrite (7.32) and (7.33) as
ˆ

Ij

³j(s)
2 (R0 + ·j s)

n21 ds = 1 , "j , (7.35)

ˆ

Ij

³j(s) ·
2
j(s) (R0 + ·j s)

n21 ds = 0 , "j , (7.36)
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where Ij = (2R0/·j ,>). Concerning (7.34) we notice that by (×j)1(x) = A1(x̂) (×j)
7
1(|x|)

it follows that

|'(×j)1|2 = |'Sn21
A1|2

(

(×j)
7
1

)2
+A2

1 |'(×j)
7
1|2

so that, as ‖A1‖L2(Sn21) = 1,

·j

ˆ

Rn

|'(×j)1|2 g ·j

ˆ

Sn

A2
1

ˆ >

0
|'(×j)

7
1|2(r) rn21 dr =

ˆ

Ij

³2j(s)
2 (R0 + ·j s)

n21 ds .

Again by Fubini’s theorem and thanks to ‖A1‖L2(Sn21) = 1 we find

ˆ

Rn

{W 22(··j )

·j
2 Λ·j V

22(··j )
}

(×j)
2
1 =

ˆ

Ij

{

W 22(·j)2 ·j Λ·j V
22(·j)

}

³2j (R0 + ·j s)
n21 ds

We can thus deduce from (7.34) that

lim
j³>

ˆ

Ij

(

(³2j)
2 +

{

W 22(·j)2 ·j Λ·j V
22(·j)

}

³2j

)

(R0 + ·j s)
n21 ds = 0 ; (7.37)

and, in fact, by taking into account that ·j Λ·j ³ 0+ as j ³ > and that |V 22| f C on
[0, 1], we see from (7.35) that (7.37) is equivalent to

lim
j³>

ˆ

Ij

(

(³2j)
2 +W 22(·j)³

2
j

)

(R0 + ·j s)
n21 ds = 0 . (7.38)

In turn, since |W 22| f C on [0, 1], by combining (7.35) with (7.38) we see that (³j)j is

bounded in W 1,2
loc (R). Hence, up to extracting a subsequence, we can find ³ * W 1,2

loc (R)
such that ³j á ³ weakly in W 1,2(R).

In this position, we can repeat verbatim two arguments contained in the proof of [MR24,
Lemma 4.4]. The first argument shows that the sequence of probability measures (µj)j
defined by µj = ³2j (R0 + ·j s)

n21 ds is in the compactness case of the concentration-
compactness principle, and thus satisfies

lim
s³>

sup
j
µj

(

R \ (2s, s)
)

= 0 . (7.39)

The second argument shows that

lim
j³>

ˆ

Ij

W 22(·j)³
2
j (R0 + ·j s)

n21 ds = Rn21
0

ˆ

R

W 22(·0)³
2 , (7.40)

where ·0(s) = ·(s 2 Ç0), · is the unique solution of 2·2 =
√

W (·) on R with ·(0) = 1/2,
and Ç0 =

´

R
V 2(·(s)) ·(s) s ds.

By (7.39), (7.35), (7.40) and (7.38) we thus find

Rn21
0

ˆ

R

³2 = 1 , (7.41)

ˆ

R

2 (³2)2 +W 22(·0)³
2 f 0 . (7.42)

By [MR24, Lemma 4.3], (7.42) implies that ³(s + Ç0) = t ·2(s) for some t 6= 0 (the case
t = 0 is ruled out by (7.41)). In other words, ³ = t ·20.

We now claim that

lim
j³>

ˆ

Ij

³j ·
2
j (R0 + ·j s)

n21 ds = Rn21
0

ˆ

R

³ ·20 . (7.43)

46



Indeed, by |·2j(s)| f C e2|s|/C for s * R and by (7.39) we see that

∣

∣

∣

ˆ

Ij\(2s0,s0)
³j ·

2
j (R0 + ·j s)

n21 ds
∣

∣

∣

f
(

ˆ

Ij

(·2j)
2 (R0 + ·j s)

n21 ds
)1/2

µj
(

Ij \ (2s0, s0)
)1/2 f Ë(s0) ,

for some function Ë, independent of j, such that Ë(s) ³ 0+ as s³ >. Similarly
∣

∣

∣

ˆ

R\(2s0,s0)
³ ·20

∣

∣

∣
f Ë(s0) ,

and therefore (7.43) follows since, as j ³ >, ³j ³ ³ in L2
loc(R) and by ·2j ³ ·20 locally

uniformly on R. On combining ³ = t ·20 with (7.36) and (7.43) we conclude that

0 = tRn21
0

ˆ

R

(·20)
2 ,

and thus, that · c constant, reaching a contradiction. �

8. Exponential convergence to a single diffused bubble (Proof of
Theorem 1.1)

Proof of Theorem 1.1. We are proving the theorem by showing the existence if · * (0, ·0)
and u0 is as in the statement, then

AC·(u(t))2Ψ(·, 1) f C(·, u0) e
2t/C7(·) , (8.1)

∥

∥u(t)2 Çx0 [··]
∥

∥

L2(Rn)
f C(·, u0) e

2t/C(·) , "t > 1/C(·, u0) . (8.2)

By the assumptions on u0, Theorem 1.4 holds with M = 1. In particular, the only
accumulation points for the sequences (AC·(u(tj)))j and (»·[u(tj)])j corresponding to any
tj ³ > as j ³ > are, respectively, Ψ(·, 1) and Λ·, so that we have

lim
t³>

AC·(u(t)) = Ψ(·, 1) , lim
t³>

»·[u(t)] = Λ· . (8.3)

Step one: We prove that

lim
t³>

∥

∥u(t)2 Çx(t)[··]
∥

∥

(W 1,2+C0)(Rn)
= 0 . (8.4)

where, for each t > 0, we have defined x(t) * R
n so that

∥

∥u(t)2 Çx(t)[··]
∥

∥

L2(Rn)
f

∥

∥u(t)2 Çx[··]
∥

∥

L2(Rn)
, "x * R

n .

Indeed, by (8.3), if (tj)j is an arbitrary sequence with tj ³ > as j ³ >, then ((u(tj))j
is a minimizing sequence of Ψ(·, 1). Now, in [MR24, step two, proof of Theorem 2.1] it is
proved that if uj is a minimizing sequence of Ψ(·, 1), then, up to extracting subsequences,
there is x * R

n such that

lim
j³>

∥

∥uj 2 Çx[··]
∥

∥

(W 1,2+C0)(Rn)
= 0 .

By combining this fact with the definition of x(t) we conclude the proof of (8.4).

Step two: We introduce the Fisher information of the flow

I·(t) = ·

ˆ

Rn

(

"tu(t)
)2
, "t > 0 , (8.5)

and prove that

I·(t) f C(·, u0) e
2t/C(·) , "t > 1/C(·, u0) . (8.6)
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Indeed, by Theorem 1.2-(vi) (see, in particular, (1.18)) we have that I· * W 1,1(a,>) for
every a > 0, with

d

dt

I·(t)
2

= 2
ˆ

Rn

{

2 · |'("tu)|2 +
(W 22(u)

·
2 »·[u(t)]V

22(u)
)

("tu)
2
}

. (8.7)

By W 22 * Lip[0, 1], V 22 * C0,³(n)[0, 1], and 0 < Λ· < C for all · * (0, ·0) (recall (2.6)) we
find that, pointwise on R

n,
∣

∣

∣

(W 22(u(t))
·

2 »·[u(t)]V
22(u(t))

)

2
(W 22(Çx(t)[··])

·
2 Λ· V

22(Çx(t)[··])
)
∣

∣

∣

f C
{ |u(t)2 Çx(t)[··]|

·
+

∣

∣»·[u(t)] 2 Λ·

∣

∣+
∣

∣u(t)2 Çx(t)[··]
∣

∣

³(n)
}

.

Combining this inequality with (8.7) we find that

2 d

dt

I·(t)
2

g Q·[Çx(t)
[

··]
](

"tu(t)
)

2C
{‖u2 Çx(t)[··]‖C0(Rn)

·
+

∣

∣»·[u(t)]2 Λ·

∣

∣+
∥

∥u2 Çx(t)[··]
∥

∥

³(n)

C0(Rn)

}

ˆ

Rn

("tu(t))
2 ,

so that (8.3) and (8.4) imply the existence, for every · > 0, of a positive constant t7 =
t7(·, u0, ·), such that

2 d

dt

I·(t)
2

g Q·[Çx(t)
[

··]
](

"tu(t)
)

2 · I·(t) , "t > t7 . (8.8)

Now let Pt denote the projection operator of L2(Rn) onto its closed subspace

Yt =
{

× * L2(Rn) :

ˆ

Rn

V 2(Çx(t)[··]
)

× =

ˆ

Rn

"i
(

Çx(t)[··]
)

× = 0
}

.

By Theorem 1.5 we have

Q·[Çx(t)
[

··]
](

"tu(t)
)

g 1

C(·)

ˆ

Rn

(

Pt["tu(t)]
)2
. (8.9)

To get a control on I·(t) we thus need to estimate ‖"tu(t)2 Pt["tu(t)]‖L2(Rn).

To this end, let us begin by noticing that, since
´

Rn V
2(u(t)) "tu(t) = 0 for all t > 0, for

every · > 0 there is t1 = t1(·, u0) > 0 such that
∣

∣

∣

ˆ

Rn

V 2(Çx(t)[··]) "tu(t)
∣

∣

∣
f C ‖u(t)2 Çx(t)[··]‖L2(Rn) ‖"tu(t)‖L2(Rn)

f · ‖"tu(t)‖L2(Rn) , "t > t1 . (8.10)

On the other hand, testing (DF) with "iu(t) *W 2,2(Rn) we find that

·2
ˆ

Rn

"tu(t)'eiu(t) = 2 ·2
ˆ

Rn

∆u(t) "iu(t)2
ˆ

Rn

"i
(

W (u(t))2 »·[u(t)]V (u(t))
)

,

(notice that »·[u(t)] is a function of t alone, and is not affected by differentiation along ei
here), and since W (u(t)), V (u(t)) *W 1,2(Rn) for all t > 0, we conclude that
ˆ

Rn

"tu(t) "iu(t) = 2

ˆ

Rn

∆u(t) "iu(t) = 22

ˆ

Rn

'u(t) · "i('u(t)) = 2
ˆ

Rn

"i|'u(t)|2 = 0 ,

for all t > 0. Combining this identity with (8.4) we thus conclude that, up to further
increase the value of t1 = t1(·, u0), we have

∣

∣

∣

ˆ

Rn

"i
(

Çx(t)[··]
)

"tu(t)
∣

∣

∣
f C ‖"iu(t)2 "iÇx(t)[··]‖L2(Rn) ‖"tu(t)‖L2(Rn)

f · ‖"tu(t)‖L2(Rn) , "t > t1 , i = 1, ..., n . (8.11)
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Therefore, by choosing · = ·(·) > 0 small enough in terms of the constant C(·) appearing
in (8.9), we conclude from (8.10) and (8.11) that, if t > t1 = t1(·(·), u0) = t1(·, u0), then,
for a positive constant C7(·) depending only on ·,

Q·

[

Çx(t)··
]

("tu(t)) g
I·("tu(t))
C7(·)

, "t > t1 . (8.12)

If we now choose · = 1/(2C7(·)) in (8.8), and correspondingly set t0 = min{t1, t7}, then,
we deduce from (8.12) that

2 d

dt

I·(t)
2

g I·(t)
2C7(·)

, "t > t0 ,

from which (8.6) immediately follows.

Conclusion: By Theorem 1.2-(iv),

AC·(u(T )) 2AC·(u(t)) = 2·
ˆ T

t
ds

ˆ

Rn

("tu(s))
2 , "T > t > 0 .

Combining this identity with (8.3) and (8.6) we find that, if t > 1/C(·, u0), then

AC·(u(t)) 2Ψ(·, 1) =

ˆ >

t
I·(s) ds f C(·, u0)

ˆ >

t
e2s/C(·) ds f C(·, u0) e

2t/C(·) ,

thus proving (8.1). Next we notice that if 1/C(·, u0) < t < T , then by combining the
fundamental theorem of Calculus with the Minkowski inequality, the Hölder inequality
and then with (8.6), we obtain

‖u(T )2 u(t)‖L2(Rn) f
(

ˆ

Rn

∣

∣

∣

ˆ T

t
"tu(s)ds

∣

∣

∣

2)1/2
f
ˆ T

t

(

ˆ

Rn

|"tu(s)|2
)1/2

ds

f
>
∑

k=0

ˆ t+k+1

t+k

(

ˆ

Rn

|"tu(s)|2
)1/2

ds f
>
∑

k=0

(

ˆ t+k+1

t+k
ds

ˆ

Rn

|"tu(s)|2
)1/2

f
>
∑

k=0

(

ˆ >

t+k
ds

ˆ

Rn

|"tu(s)|2
)1/2

f C(·, u0)

>
∑

k=0

e2(t+k)/C(·) f C(·, u0) e
2t/C(·) ,

that is
‖u(T )2 u(t)‖L2(Rn) f C(·, u0) e

2t/C(·) , "T > t > 1/C(·, u0) . (8.13)

Now let tj ³ > as j ³ >: since (u(tj))j is a minimizing sequence of Ψ(·, 1), then, by
the argument in step one and up to extracting a subsequence, there is x0 * R

n such that
‖u(tj)2Çx0 [··]‖L2(Rn) ³ 0 as j ³ >. By taking T = tj in (8.13) and letting j ³ > in the
corresponding inequality we thus complete the proof of (8.2), and thus, of the theorem. �
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