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ASYMPTOTIC BEHAVIOR OF A DIFFUSED INTERFACE
VOLUME-PRESERVING MEAN CURVATURE FLOW

MATTEO BONFORTE, FRANCESCO MAGGI, AND DANIEL RESTREPO

ABSTRACT. We consider a diffused interface version of the volume-preserving mean cur-
vature flow in the Euclidean space, and prove, in every dimension and under natural as-
sumptions on the initial datum, exponential convergence towards single “diffused balls”.
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1. INTRODUCTION

1.1. Overview. In this paper we introduce a PDE reformulation of the classical volume-
preserving mean curvature flow (VPMCEF) in R™ where the role of the perimeter functional
is played by the Allen—Cahn energy. From the physical viewpoint this reformulation seems
well justified, since it consists in replacing the classical sharp interface model for surface
tension based on perimeter minimization with the equally interesting and important dif-
fused interface model based on the minimization of the Allen-Cahn energy. From the
mathematical viewpoint working in the diffused setting clears up the analysis from the
ambiguities brought in by the formation of singularities characteristic of geometric flows,
which are directly reflected into the abundance of non-equivalent weak formulations of the
VPMCEF.

Our main result proves, in every dimension and under a variety of natural assumptions
on the initial datum, exponential convergence of the diffused VPMCF towards single “dif-
fused balls”. This result is indeed stronger than the presently known analogous results for
the classical VPMCF, see Remark 1.1 below.

The diffused interface model we adopt is based on the volume-constrained minimization
of the classical Allen-Cahn functional
AC.(u) = & / VP42 [ W),  eso, (1.1)
R g Jrn
defined on (dimensionless) density functions u : R™ — [0, 1], and requiring the choice of
(dimensionless) double-well potential W : [0,1] — [0,00). We will always require that
W € C%10,1] and that W satisfies the standard non-degeneracy assumptions

W(0)=W(1)=0, W >0on(0,1), W"0),W"1)>0, (1.2)



as well as the normalization )
/ vW =1. (1.3)
0

As usual, € has the dimensions of length, so that AC.(u) has the dimensions of (codimen-
sion one) area.

Particular care must be put in the choice of the volume potential V' : [0, 1] — [0, c0) used
to impose the volume constraint on u. Indeed, while any choice of V' satisfying V(1) > 0
and V(0) = 0 will return the correct volume constraint in the sharp interface limit ¢ — 0"
(and will thus be acceptable form the physical viewpoint), not every choice of V' will result
in a mathematical model that is either well-posed or feasible of in-depth analysis.

A natural choice for V' is suggested by the classical isoperimetric lower bound on AC. (u),
and consists in taking

V(r) = ®(r)” ™1 where ®(r) = for VW for r € [0,1]. (1.4)

Indeed, by a classical application of the Cauchy—Schwartz inequality and the chain rule,
we have that

v+ T s o v W) = 2 (@ 0w

from which the isoperimetric lower bound

AC.(u) > 2|D[® o u]|(R™) > 2nwl/" V()™= V"™ V() := . V(u), (1.5)

follows, so that!
nwl/mm=V/m = p(BM)Y = inf{P(E) : |E|=m}, m>0,
is the optimal value of the (Euclidean) isoperimetric problem.

Thanks to (1.5), our choice (1.4) of V' is instrumental for obtaining a well-posed diffused
interface (Euclidean) isoperimetric problem,

U(e,m) = inf {.ACE(’U,) :V(u) =m,u € Ll (R0, 1])} , e,m>0. (1.6)

Indeed, by (1.5) and by the (sharp) isoperimetric inequality for functions of bounded
variation, we see that

U(e,m) > 2nwt/" m-D/n Ve,m >0, (1.7)

n

while a simple comparison argument shows that this inequality is saturated in the limit
as € — 07. It is important to keep in mind that simpler choices of V, like V(¢) = ¢ or
V(t) = t?, would have led? to degenerate minimization problems where every competitor
has positive energy but where the infimum of the energy is equal to zero.

Problem ¥(e,m) has been studied in great detail in [MR24]. Some of the results ob-
tained therein will play an important role in the present paper, and will therefore be
summarized in Section 2. For the moment, with the sole intent of formulating our main
result as quickly as possible, we just recall from [MR24] that, in the physical regime
where € € (0,¢9 mt/ ") for some universal constant® €0, there is a unique minimizer (. ,,

lHere, |Dv| denotes the total variation measure of v € Li,.(R"™), wy, is the volume of the unit radius
ball in R™, |E| and P(E) denote the volume and perimeter of E C R", and B™) stands for the ball of
volume m with center at the origin in R".

2The size of V(t) for t — 0T plays a crucial role here. Our choice of V satisfies V (t) = O(£2™/ ") as
t — 0". This is not the only property of V that plays an important role in our analysis though, and the
close relation between V and W will be repeatedly used.

3By universal constant we mean a constant depending only on the dimension n and on the double-well
potential W. By C(a,b,...) we denote a constant depending only on n, W, and the arguments a, b, etc..



in the class of the radially symmetric, strictly decreasing, and everywhere positive func-
tions on R"” with maximum at the origin; and that w is a minimizer of ¥(e,m) if and
only if u = Ty,[Cm] for some? zg € R™. Each (., solves the diffused constant mean
curvature equation

2 52 ACE,m = W,(Ca,m) — € Aa,m V/(Ca,m) on R" )
where A;, =+ 2(n—1) wi! " mY as e = 0F (and is thus positive in the physical regime
e € (0,60 m'/™)).
The diffused VPMCEF is then defined as the L?-gradient flow of AC. with a Lagrange

multiplier modification that preserves V along the flow: that is, we consider the parabolic
initial value problem®

€20 =22 Au— W' (u) + e A Ju(t)] V' (u), on R™ x (0,00), (DF)
u(0) =g,
where we have introduced the Lagrange multiplier functional®
. D) 2 \V4 2 Vl/ 4 Wl V!
o] = e 2SIV V) 4 W) Vi) s

€ Jgn V' (v)? '
whose choice guarantees, on smooth solutions of the flow, that

%V(u(t)) = V'(u(t)) dyu(t) =0, ie, V(u(t)) = V(ug) for all t > 0.

Rn
From the viewpoint of classical parabolic theory, (DF) presents some peculiar features
since it is a non-autonomous semilinear PDE, where the non-autonomy is due to the La-
grange multiplier \.[u(t)], which, in turn, is non-local in space (its determination requires
knowledge of u(t) over the whole R™). The following theorem is our main result concerning
the long-time behavior of (DF).

Theorem 1.1. If n > 2 and W € C?1(0,1] satisfies (1.2) and (1.3), then there exists a
universal constant g > 0 with the following property. If ¢ € (0,&0), up € W2P(R";[0,1])
forallp > 2, V(up) =1, and

either AC.(up) < 2¥(e,1/2), (1.9)
or sptug 18 compact, (1.10)
then
0 < AC.(u(t) — U(e, 1) < Cle,up) e /€O | wg> — 1 (L11)
O(€7u0)

and there exists a unique xg € R™ (depending on £ and ug) such that for all p > 2 and
t>1/C(e,up)

[[a(t) = 7o lCeall gyromnwr o)y < Cluo,e,p) eCE). (1.12)

Remark 1.1 (Asymptotic analysis of the VPMCF). It is convenient to briefly review the
state of the art concerning convergence to equilibrium for the classical VPMCF (with the
disclaimer that, due to singularities formation, these various results may pertain to differ-
ent weak formulations of the VPMCF). First, convergence to a single ball has been proved
under a variety of suitable geometric restrictions on the initial datum that can be shown
to be preserved along the flow, and that exclude singularities formation: these are uniform

We set Tao [V](2) = v(x — o) for every z,zo € R™ and v : R™ — R™.

SGiven t > 0 and u : R" x [0, 00) — R, we set u(t) : R” — R for the function defined by u(t)(z) := u(z,t)
(z € R™).

6Notice that Ac[v] is defined in [0, 00] on any v : R™ — [0,1] with [{0 < v < 1}| > 0 — this condition
guarantees indeed that [;, V'(v)* > 0.



convexity [Hui87], Cl-proximity to a sphere [ES98], star-shapedeness [KK20], or integral
pinching conditions [Li09]. In general, singularity formation may lead to convergence to
multiple balls, a phenomenon called bubbling (see [FJM22, Theorem 1.4] for an example)
and it is thus unclear for which class of initial data one should expect convergence towards
a single ball (of the same volume as the initial datum) or towards multiple balls (all with
a same volume equal to a fraction of the initial one). Since perimeter decreases along the
VPMCEF, a natural conjecture is that, if a unit volume initial datum has perimeter strictly
less than twice the perimeter of a ball of volume 1/2, then convergence to a single ball
should follow (with exponential rates of convergence). This conjecture has been proved
for “flat low” solutions of the VPMCF, and in dimensions n = 2 and n = 3 respectively,
in the recent papers [JMPS23, JMOS24]. Moreover, again when n = 2,3, in [JN23] it
is proved that flat flow solutions always resolve, as t — oo, as finite union of balls with
possibly moving centers. All these results are based on powerful quantitative bubbling
results for sets with L?-small mean curvature oscillation. The restriction to dimensions
n = 2,3 is strongly correlated, on the one hand, to the fact that the L?-oscillation of the
mean curvature is the dissipation of the VPMCEF, and is thus the quantity to work with
in this setting; and that, on the other hand, the critical LP-space for the regularity theory
of the mean curvature of a boundary in R™ is p = n — 1. For these reasons, the further
extension of these methods to dimensions n > 4 seems delicate.

Remark 1.2 (On assumption (1.9)). Assumption (1.9) amounts to asking that the initial
datum has strictly less energy than twice that of two diffused balls of volume 1/2. Hence,
by proving Theorem 1.1 under (1.9) we have proved the validity, in every dimension, of
the diffused analogue of the VPMCF-conjecture mentioned in Remark 1.1.

Remark 1.3 (On assumption (1.10)). Proving Theorem 1.1 under assumption (1.10)
is somehow more striking than doing so under assumption (1.9), since (1.10) allows for
initial data with arbitrarily large energy as well as for initial data that is arbitrarily
close to the characteristic functions of any bounded set with finite perimeter and unit
volume. Indeed, if E C R™ is a bounded set of finite perimeter with |E| = 1, then by a
standard construction, we can find a family {v.}.~¢ of smooth and compactly supported
functions on R™ such that v. — 1g in L}Y(R") and AC.(v.) — 2P(E) as ¢ — 07, with
sptv. CC {z : dist(z, E) < 1} for all € > 0.

1.2. Open problems and metastability. Before presenting the proof of Theorem 1.1,
and the various intermediate results behind it, we briefly introduce some interesting prob-
lems related to Theorem 1.1.

A first natural problem is addressing the existence of non-compactly supported initial
data such that the resulting flow does not converge to a single diffused ball, but rather
resolves into a superposition of time-drifting diffused balls (compare with conclusion (1.21)
in Theorem 1.4). Since the physical or numerical relevance of non-compactly supported
initial data is unclear, this is probably a question of very theoretical flavor; still, answering
to it may be challenging.

In the € — 07-limit, and for suitably prepared initial data, the diffused VPMCF should
converge to a weak formulation of the VPMCF, and, indeed, this kind of convergence has
been established, in absence of volume-preserving Lagrange multipliers, in [Ilm93, BOS06],
and for the VPMCF but under spherical symmetry assumptions on €, in [BS97]. For this
reason, another natural problem related to Theorem 1.1 would be understanding whether
the e-dependency of the decay rates (1.11) and (1.12) can be dropped off or not: the
corresponding e-independent decay rates could then be transferred to the VPMCF. It
seems natural to conjecture that, if ug is compactly supported and is such that AC.(up) <
2W(e,1/2) (that is, if both (1.9) and (1.10) hold), then e-independent decay rates to a



single diffused ball hold true, thus providing a strategy to extend the results of [JN23,
JMPS23, JMOS24] to arbitrary dimensions.

We do not expect, however, that e-independent decay rates to a single diffused ball
should hold for a generic compactly supported initial datum ug: such rates should hold,
at best, only for t > T. = T.(ug) with T. — oo as ¢ — 07. Indeed, a flow starting
from a superposition of two diffused balls truncated so to have compact support should
spend a time T, — oo as € — 07 close to its “metastable” initial datum, before eventually
converging to a single diffused ball.

Evidence in support of such metastable scenario can be found in a series of “slow-
motion” results concerning the initial value problem

O =22 Av—W'(v) +epcfu)], on  x (0,00),
V.,,v(t) =0, on 02, (1.13)
'U(O) = UO N on Q,

defined on a bounded open set 2 C R™ with regular boundary, and involving the Lagrange
multiplier pi.[v] = [, W/(v)/(e|Q]), where the choice” of y. is such that [, v(t) = [, ug for
allt > 0. Problem (1. 13) has indeed been the object of study in several papers, as we are
now going to informally® review. Before doing that, let us stress that in the slow-motion
literature it is customary to work with the parabolic operator d;v — 22 Awv in place of the
one used in (DF), namely, €2 (9;u — 2 Au). In practice this is a small difference, since one
can pass from one setting to the other by just rescaling solutions in time, according to the
relation v(t) = u(e?t). The choice made in (DF) seems more natural, since the resulting
flow is the one that is expected to converge, in the ¢ — 0*-limit, to the VPMCF. It is
important to keep this difference in mind when comparing Theorem 1.1 to results from
the slow-motion literature, which are typically formulated on (1.13).

In dimension n = 1, when  is an interval, building up on the pioneering work [BK90,
BK91], in [Gra95] (see also [BHNN15]) the following result is proved: if ug : € — {0, 1} has
N-many jumps and {ug}. is a family of initial data for (1.13) such that |lu§ —wuo|| 1) — 0
as € — 0T, then solutions {v°(¢)}. of (1.13) are such that

lim  sup / |v°(t) —ug| =0. (1.14)
e=0T 1 eCle

In terms of u®(t) = v°(t/e?), we thus have sup,_c2.c/- [ |u(t) — uo| = 0 as e — 0T,

which is a non-trivial information since e2e“/¢ — oo as £ — 07. When N > 2 we can

interpret this statement as a metastability result, since the expectation is that u®(¢) will

eventually converge to a single transition layer.

Concerning dimensions n > 2, it is shown in [AF94, ABF98]| that for initial data resem-
bling the characteristic function of a sufficiently small ball contained in 2 and located near
09, solutions {v°(t)}. to (1.13) will remain close to the characteristic function of a ball
contained in Q on an interval of times (0,7.) with 7. = O(e“/¢) as ¢ — 0F. This is another
result supporting the metastability scenario: indeed, the expected attractors of (1.13) as

"The boundedness of  allows one to work with the simpler volume potential V(¢t) = ¢, which also
brings some remarkable simplifications in the form of the volume-preserving Lagrange multiplier. Indeed,
comparing the definition of A\. with that of u. we see how the former choice, crucial in ensuring the
well-posedness of ¥(e,m) as a minimization problem on R", leads to the presence of the possibly degen-
erate denominator & [, V'(v)? (in place of the constant denominator £[€|), and of the additional term
Vo2 V" (v)(~ |[Vu|* v¥ ™Y for v small) at numerator.

Our review is informal in the sense that we will gloss over specific assumptions made in the reviewed
papers on the double well potential W and the initial data ug. Moreover, the range of u is often assumed
to be R, while we have chosen to consider functions with range in [0, 1].



t — oo should be close, for ¢ small, to minimizers of inf{P(E;Q) : E C Q,|E| = m};
however, such minimizers, at small volume m, look like half-balls centered at the point of
highest mean curvature of 99 (see [Fall0, MM16]), and thus will never be balls contained
in €.

Another slow-motion result in higher dimension has been obtained in [MR16, LM19].
Its interest lies in the fact that it assumes the proximity of the initial data to generic
perimeter minimizing sets (thus, not necessarily to balls/intervals); the drawback is that
proximity of solutions v°(¢) is shown to be preserved only on a time interval (0,7;) with
T. = C/e so that, in terms of u(t) = v®(t/e?), proximity preservation is shown only on a
time interval (0, C'¢), and no information survives in the limit & — 0F.

1.3. Analysis of the diffused VPMCF. We now provide a detailed breakdown of a
series of results leading to Theorem 1.1.

The starting point of our analysis is to establish the existence of solutions of the dif-
fused VPMCF and their basic regularity properties. This is a nontrivial task due to the
presence of the Lagrange multiplier functional A.. In addition to being non-local and
requiring integrating on a non-compact set, this term brings two main technical complica-
tions into our analysis: 1) the possible degeneration of the flow because of the smallness
of the [p, V'(u)*term at the denominator, and 2) the lack of regularity because of the
|Vul?2 V" (u)-term at numerator, since V" (u) is only Hélder continuous. These difficulties
are addressed by first approximating V' with regularized volume potentials Vy such that
Lip(V{;]0,1]) < oo, and by then discussing the delicate limit as § — 07. Boundedness,
Lipschitz and Holder continuity estimates on A., and on its variant A s associated with
Vs, are discussed in Section 3, and are obtained by borrowing the geometric viewpoint
of “nucleation lemmas” from the theory of isoperimetric clusters [Alm76]. With these
estimates at hand we can implement a fixed point argument to show the existence of mild
solutions to the modification of (DF) obtained by replacing V' with V5. We can then start
bootstrapping regularity and monotonicity properties for the §-approximating flows, up to
the point where enough information is obtained and the § — 0" limit can be addressed,
thus establishing the following theorem (proved in Section 4).

Theorem 1.2 (Existence, regularity, and entropies of the flow). Ife > 0, n > 2, W €
C?10,1] satisfies (1.2) and (1.3), ug € W2P(R™;[0,1]) for every p > 2, and V(ug) = 1,
then there exists a unique u € CO(R™ x [0,00)) N C2_(R™ x (0,00)) that is a classical
solution of (DF). Moreover:

(i): for every p > 2 and ty > 0 we have
sup {I0eu®)l e ny , lu®) lw2p@ny } < Cle,uo,p), (1.15)

sup {|04u(®)ll e 1008 oz () o ey} < Cleo.pite)s (1.16)
0

(ii): t — Ac[u(t)] is Lispchitz continuous on (to,00) for every to > 0, and is such that
sug e A[u(t)]] < C AC(ug)?"2;
t>

(iii): V(u(t)) =1 for every t > 0;

(iv): t — AC-(u(t)) is continuous and decreasing on [0,00) with
to
AC-(u(ta)) — AC.(u(t)) = —s/ dt/ @ut)?, V2>t >0 (1.17)
t1 n

(v): 0<u<1onR"™x(0,00);



(vi): the function t — [p,(Opu(t))? belongs to Wht(tg, 00) for every to > 0, with

% Rn(atu(t))2 — _/ {4|V(8tu)|2 _|_§ (M — AJu(t)] V”(u)) (atu)Q}(t). (1.18)

€
In particular,

n

tngan Rn(ﬁtu(t))2 =0.

It is well-know that the asymptotic behavior of a semilinear parabolic PDE can be “sub-
sequentially resolved” into a bubbling of mutually drifting stationary states: a good exem-
plification of this kind of result, whose fundamental idea is rooted into Lions’ concentration-
compactness principle itself, is found, for example, in [Fei97, Theorem 1.1]. Another pow-
erful idea found in theory of semilinear parabolic PDE is that when the initial datum is
compactly supported, then a sort of star-shapedness of the flow (see (5.45)) can be estab-
lished by means of the parabolic maximum principle, thus excluding bubbling phenomena;
for a general exemplification of this idea, see [Fei97, Theorem 1.2]. In Section 5 we adapt
these general methods to our specific problem, which, again, does not follow in the range
of application of the general theory because of the non-autonomy of (DF) and because of
the presence of the non-local Lagrange multiplier A\.. Notice that we are not considering
(yet) the physical regime when ¢ is small: in particular, there is no way to attribute any
geometric meaning to the stationary states &; appearing in the statement, e.g. by relating
them to the minimizers (. ,,, of ¥ (e, m).

Theorem 1.3 (Subsequential bubbling, general ¢). Let ¢ > 0, n > 2, W € C%1]0,1]
satisfy (1.2) and (1.3), ug € W2P(R™;[0,1]) for every p > 2, V(ug) = 1, and let {u(t)}i>0
be the diffused VPMCEF with u(0) = ug.

Then, for every sequence t; — oo as j — oo, up to extracting a subsequence, there are
M eN, £, >0, sequences (.Z‘;)] (i=1,..., M) satisfying |x3 —x§| —ooasj— oo (i #k),
and radial solutions {&;}YM, of

26° NG =W'(&) — el V(&) on R, (1.19)
such that
M M
SV =1, Y AC.(&) < ACc(uo), (1.20)
i—1 i—1

and, for all p > 2,

M
fm Hu(tj) - ; 7161 (wernwi @) T Pelu(ts)] - €] = 0.
Moreover, if ug has compact support in R™, then M =1 and m]l — Xy as j — 0o for some

Ty € R™.

From this point on we work exclusively in the geometric regime when ¢ < g¢ for some
small universal constant ¢y and relate the subsquential bubbling established in Theorem
1.3 to the diffused isoperimetric problem W(e,m). A key tool in achieving this result is
the diffused Alexandrov theorem proved in [MR24, Theorem 1.1-(iv)], whose statement is
recalled in Section 2, and which asserts, roughly speaking, that any solution of 2e? A¢ =
W) —elV'(€) on R"™ with £(x) — 0 as |z| — oo and €4 € (0,1p) for a sufficiently small
universal constant vy, must satisfy, up to translations, £ = (. ,, and £ = A ;,, for some m
such that e € (0,g9m'/™).

Theorem 1.4 (Subsequential bubbling, small €). If n > 2, W € C%1[0,1] satisfies (1.2)
and (1.3), ug € W?P(R";[0,1]) for allp > 2, and V(ug) = 1, then there is €}, = &fj(n, W, ug)
with the following property.



If e € (0,e5) and {u(t)}i>0 is the corresponding solution of (DF) with u(0) = ug, then,
for every t; — oo as j — oo, up to extracting a subsequence in j, there are M € N and
sequences {(m;)]}f‘il with \m; — m;“\ — 00 as j — o0 (i # k), such that

Aclut;)] = Acyjar| =0, (1.21)

M
fid H“(tj - ; 72 ey H(WQ’PHWL%(R”) "

for all p > 2. Moreover, M is uniquely characterized by the relation
1 .
M \II<€, M) = lim AC.(u(t). (1.22)

In particular, M and the limit Lagrange multiplier A, 1/p; depend only on ug and not on
the specific sequence (t;); under consideration.

Remark 1.4. For the quantification of € in terms of g, see (6.2) below.

Under the assumption (1.9) or (1.10), Theorem 1.4 holds with M = 1. Thus to go
from Theorem 1.4 to Theorem 1.1 we have to upgrade subsequential convergence to full
convergence as t — oo. The natural approach to this problem consists in proving the
differential inequality

d Zc(t)

_aza(t) 2 C(E) 9

for the Fisher information/dissipation Z.(t) = & [g.(8yu(t))? of the flow (compare with

Vit >1/C(e,up),

Theorem 1.2-(iv,vi)). This is the well-known Bakry-Emery method, which requires estab-
lishing the strict stability of the V-constrained second variation

Qlcle) = [ 2Vl + (W

€
of the Allen-Cahn functional at the minimizer (. = (.1 of ¥(e,1) (where we are also
setting A = A, for brevity). This strict stability result is established in the following
theorem, proved in Section 7 (whereas the proof of Theorem 1.4 is finally discussed in
Section 8).

Theorem 1.5 (Strict stability of Q. at ¢.). If n > 2 and W € C*[0,1] satisfies (1.2)
and (1.3), then there ezists a positive universal constant ey with the following property.

For every ¢ € (0,20), if p € WH2(R™) satisfies

[ evic=o. [ eve-o. (129

AL V”(CE)} 2, e WRRY,  (1.23)

then
£
Q) > 5 | ¢ (1.25)
R
and, moreover, for a constant C(g) > 0,
1

Qc[¢e 2—/ Vol + ¢*. 1.26
(€] (%) B Vel e (1.26)

It had already been proved in [MR24, Lemma 4.4] that if ¢ is radial (and satisfies

(1.24)), then
2

CoLlp)> [ cIVeP+E, (1.27)

thus showing that the stability of Q.[(.] among radial variations is much stronger than
among generic variations (the costant ¢/C in (1.25) is sharp as seen in the proof of the
theorem itself). The proof of Theorem 1.5 combines the decomposition of ¢ as a Fourier
series in angular/radial variables with a geometric change of variables that allows to relate



(on special modes of such decomposition) Q. [(.] with the second variation of the perimeter
functional at a ball.

1.4. Organization of the paper. Section 2 contains a recap of our basic notation, main
results from [MR24], and useful properties of the various potentials involved in our analysis.
The other sections of the paper are organized as described in the previous section.
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2. BACKGROUND MATERIAL ON THE DIFFUSED ISOPERIMETRIC PROBLEM

In this section we collect some background material that will be repeatedly used in the
sequel. In Section 2.1 we set some basic conventions and notation, while in Section 2.2
we recall some key results contained in [MR24] and concerning the diffused isoperimetric
problem ¥ (e, m). Finally, in Section 2.3 we collect some elementary inequalities concerning
the various potentials W, ®, and V that will be often referred to in later proofs, and in
Section 2.4 we introduced some regularized volume potentials Vs which will be employed
as a technical device in the proof of Theorem 1.2.

2.1. Basic conventions. Throughout the paper n € N, n > 2, denotes the dimension of
the Euclidean space we are working in, and W € 02’1[0, 1] is a “double-well potential” sat-
isfying (1.2) and (1.3). By universal constant we mean a positive real number depending
on W and the value of n under consideration. We denote by C a generic universal constant
whose value may increase at each of its subsequent appearances. Universal constants that
may also depend on ¢ > 0 are denoted by C(g), with the idea that C'(¢) may diverge to
+00 as € — 0. Given k € N, we will write “f(g) = O(e*) as ¢ — 017 if there exists a
universal constant C' such that |f(g)| < Ce¥ for every e € (0,1/C); similar definitions are
given for “O(t) as t — o0”, etc.

2.2. The diffused isoperimetric problem. Let us recall that for every e,m > 0 we set
U(e,m) = inf {ACE(u) V() = m,u € WEHR™ [0, 1])} .

Among the basic properties of W(e, m) we have the scaling law

U(e,m) = m=D/n \I/( c ,1) . Yem >0, (2.1)
ml/n
and the isoperimetric lower bound and € — 07 limit
U(e,m) > 2ciso(n) m=1/m Ve,m >0, (2.2)
lim U(e,m) = 2¢i0(n)m™ D/ Ym >0,
e—0t
1/n

where we have set ciso(n) = nw, . A simple concentration compactness argument (See
[MNR23, Proof of Theorem A.1, steps one and two]) shows that ¥(e,m) admits radially
symmetric decreasing minimizers for each € and m. Stronger properties are proved in
[MR24, Theorem 1.1, Theorem 6.1] under the geometric regime £ << mb/m:

Theorem ¥ [MR24] If n > 2 and W € C?*'[0,1] satisfies (1.2) and (1.3), then there are
positive universal constants g and vy with the following properties:

(i) : we have
W(-,m) is strictly increasing on (0, g9 m'/™), (2.4)
VU(e, ) is concave on (0,00) and strictly concave on ((g/eg)"™, 00); (2.5)

moreover, if 0 < & < egm/™, then there is a radially symmetric strictly decreasing mini-
mizer (o of ¥(e, m) with mazimum at the origin having the property that u is a minimizer



of ¥(e,m) if and only if uw = T4[Ccm] for some g € R"; and, for some Az > 0, (oo
satisfies

2 52 ACE,m = W,(Ca,m) — € Aa,m VI(CE,m) on R" )
where
lim mY" AL, =2(n—1)wl/™. (2.6)

e—0+
(ii): if v € C*(R™;[0,1]) satisfies v(z) — 0% as |x| — co and solves
262 Av =W'(v) —eAV'(v) on R™,
for some positive \ such that e A < vy, then there exist g € R™ and m > 0 such that

U = Tao[Cem] e < egmt/™ , A=A .

2.3. Technical properties of W and related potentials. In the linearization of (DF)
we shall tacitly use the fact that, being W € C*1[0,1], we have

r—s)?
Wir)—Wi(s)—W'(s)(r —s)— W”(s)% <Clr—s|?, Vr,s € [0,1].

We also observe that 1/C < W” < C on [0,1], and that there is a universal constant
dp < 1/2 such that

/
ESW(T)’W(T)SC Vr € (0,50],
C 72 r (2.7)
1 Wi(r) —W'(r) ‘
— < < — .
CSh—nE 1or <C Vr e [1—dp,1)

Recalling that ®(r) = [; VW and V(r) = ®(r) =1 for r € [0,1], we use (2.7) to
quantify the behaviors of ® and V near r =0 and r = 1. By (1.2), ® € C2 _(0,1), with

w’ w" (W/)Q
=V, =" "= - . on (0,1).
2VW 2V AWS3/?2 ®1)
By (2.7) and (1.3) we thus see that ® satisfies
1 d ol
L 20 ¥0) gy <o vre (0.0,
C 72 r (2.8)
1 1-®(r) P'(r) p '
— < —o < 1—200,1).
CSTar 1o (r)y<C, Vr e [1—6p,1)
By exploiting (2.8) and setting for brevity a = W”(0), we see that, as r — 0T,
o — 2W'W — (W')? _ 2 (a+0(r)) (a(r?/2) + O(r®)) — (ar + O(r?))?
4W3/2 4(a(r?2/2) + O(r3))3/2
_ O(r?)
C 4ad2r34o(r3)]
and by a similar computation for » — 17, we find
|®”| < C on (0,80) U (1—dp,1). (2.9)

By (2.8) and (2.9) we see that ® € C?1[0,1] with a universal estimate on its C%1[0, 1]-
norm: in particular,

(r —s)?

P(r) — &(s) — ®'(s)(r —s) — d"(s) <Clr—s|?, Vr,s € (0,1).  (2.10)
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Since V = &% for a = 1/(n — 1) € (0,1] (recall that n > 2) and ®(r) = 0 if and only if
r =0, we easily see that V € C3 (0,1), with

loc

q)12
Vi=(1+a)d®d, V”:(l—i—a){a;) +<1>a<1>”},

-
(2)* | @'[P"] m
P2—a + Pl + o ‘q) ‘} :

By (2.10), and keeping track of the sign of ®” and of the fact that negative powers of ®(r)
are large only near » = 0, but are bounded near » = 1, we find that
1 V(r)y V'(r) V"(r) C

"
C < 72420 7 pif2a 24 <C, Vo ()] < —2a

1 1—=V(r) V/(r) " "
o= < < 1—60,1).
C_(l—r)2’1—r_0’ VAL VP () < ¢ Vr € [1—0dp,1)

V"l < Ca){

Vr e (O, (50] s

(2.11)

In particular, V”(r) — oo explodes as 7 — 0*. However, V € C27[0,1] (with y(n) =
min{1,2/(n — 1)} € (0,1]) and we have the second order Taylor expansion

2
(r—s) <Clr =™, Vrse(0,1).

V(r)=V(s) = V'(s) (r—s) = V"(s)
As much as the analogous expansion for W, this formula will be repeatedly used in lin-
earizing (DF).

2.4. Regularized volume potentials. As already discussed at the beginning of Section
1.3, the non-Lipschitzianity of V" near 0 causes several technical problems, that call for
the introduction of regularized volume potentials Vs : [0,1] — [0,1] (§ > 0) such that
Vs € C%1)0,1], with

Vs(0)=0,  V5(0)=V5(1) =0, Vs = Vllez0 = 0.

lim
§—0t
We will of course have

lim Lip(Vy’;[0,1]) = +oo, sup [V5' ] o < o0
6—0t §>0

Such potentials Vs can be defined by first considering a family {ps}s~0 of smooth mollifiers
on R such that sptps CC (—62,6%), and then by setting

n/(n—1
VZ;:,O(;*(L(;OQ)) [ (2.12)
where
0, r € [0,4],
r—20
L = _
1, rell—41].

By W >0on (0,1), (2.7) and (2.11), and up to further decreasing the value of §p introduced
above, we have

Vs(r) < Cr* < CW(r), Vi(r)<Cr, Vr e (0,1 —4o),
for every & € [0, 0], as well as (compare with (2.11))

1

Vs(r) > ok Vi(ry<C(1—r) Vr € (89, 1) . (2.13)

11



3. ESTIMATES FOR THE LAGRANGE MULTIPLIER FUNCTIONAL

This section is devoted to the analysis of the Lagrange multiplier functional \., defined
with values in [0,00) on any given function v € W1H2(R";[0,1]) with [{0 < v < 1}| > 0
(and assumption that guarantees [, V’(u)? > 0) by setting
Jgn 2% VP2V (v) + W () V' (v)

€ Jan V'(v)? '

In particular, we address the Lipschitz continuity properties of . in the Banach space
(X, - ||) defined by

=(CnWPHRY0,1),  Julx = lullwrzgny + lulloon) ,

)\5[11] = (3.1)

that is the space we shall use to construct mild solutions of (DF). In fact, we shall also
need to consider the Lagrange multiplier functionals

Jgn 2% [Vul? VY (u) + W (u) Vi (u)
€ Jpn V5 (u)? ’

obtained by replacing V' with the regularized volume potentials Vs introduced in the pre-
vious section. We shall also set Vo =V, Vy =V, and use the notation

>\E 5[ ] (32)

Acus®) = [ ewup+ T v = [ Vi),

Q
for the localization to a Borel set 2 C R"™ of the functionals AC. and V.

Theorem 3.1. If n > 2 and W € C*'[0,1] satisfies (1.2) and (1.3), then there exist
positive universal constants €y and dy with the following properties:

(i): if u € WH2(R™;[0,1]), € > 0, and 6 € [0, o], then

/ W < C {e AC(u) + Vs(u)} | (3.3)
and, with an e-dependent universal constant C(g),
2n
Cle) / [Vul? / Vi(w)? > min {1 Vé(z‘))} , (3.4)
Ce(u)* 2
Aeslul] < O(E) 5 |Vul|*. (3.5)
Vs(u) Rn
Furthermore, if § =0 and € € (0,¢p), then (3.4) and (3.5) hold with C in place of C(e).
(ii): if u,v € X \ {0}, € > 0, and max{||ul|x , ||v||x} < C(g), then
lu — vllx
‘)\5,5[11,] )\575[2)” < C(E, (5) min{l, V(;(u)%} min{l, Vg(v)%} , Vo€ (0, (50] s (3 6)
gl = degli] < €0 e - ol vie.a), (37
=3l — Aeslvll = LA min{1, Vs(u)?"} min{1, Vs(v)?"}’ o '
Vs = Ve,

|Aes[u] — Acfu]] < C(e) Vo e [0,00], (3.8)

min{1, Vs(u)?"} min{1, V(u)2"}’
where v(n) = min{1,2/(n — 1)}; and if u,v € W*2(R";[0,1]) \ {0}, then

max{|lullw2z2, [[vllwz22} [u = vllw2gn

min{1, Vs(u)2"} min{1, Vs(v)2"} Vo € [0,00]. (3.9)

[Aeslu] — Acsv]| < Cfe)

12



Proof. Step one, diffused relative isoperimetry and nucleation: We prove two relative
isoperimetric inequalities in balls in the diffused setting and a consequent nucleation type
lemma modeled after [MPS22, Lemma 2.1]. This kind of result is in turn inspired by a
tool introduced by Almgren [Alm76] in the study of isoperimetric clusters, see [Magl2,
Lemma 29.10]. More precisely, we prove the existence of universal constants 7, o¢ and C
with the following properties:

(a): if 6 €[0,00], ,7 > 0, and if u € W2(R™;[0,1]) satisfies
2n

€
< b
s <m(3) (3.10)
then
C AC.(u; By) > ;V(g(u; B,)(n=1/n (3.11)
(b): if e,7 > 0 are such that ¢/r < 0¢, and if u € W12(R™; [0, 1]) satisfies
][ V) < % , (3.12)
then
C AC.(u; B,) > V(u; B,)"=/ (3.13)

(c): if e > 0 and

B . " ~ max{l,e}
B_{B\/n—HR/Q(Rz).zEZ } R_—ao(\/n—H/Z)’

then for every u € W12(R";[0,1]) we have

e 2L s f v = minfn (20"} weal, (31
C max{1,e} sup ]iV(u) > min{l, (AZS(?L))YL} (3.15)

BeB

We first derive conclusion (c) from conclusions (a) and (b): Let u € W12(R™;[0,1]). In
proving (3.15) we can assume without loss of generality that

sup ][ V(u) < 1 .
BeBJB 2

In particular, since the choice of R is such that ¢/(v/n + 1R/2) < o for every € > 0, we
deduce from conclusion (b) that (3.13) holds for every B € B. The corresponding bounds
can be used together with the fact that B is a covering of R™ with finite overlapping
(depending only on the dimension n) to conclude that

C(n) ACc(u) > > AC.(u;B) > é > V(u; B)-H/m (3.16)
BeB BeB
1 YpesVwB) 1 V(u)

E -B 1/n — C /n”
suppep V(u; B) SUppcp (fB V(U))

Thanks to |B|'/" < C max{1,¢} for every B € B, (3.16) implies (3.15). To prove (3.14),
let § € (0,0p], and let us assume without loss of generality that

%‘é%]{g Vs(u) <mo (\/n—%m)zn, (3.17)
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then we can apply (3.11) to each B € B, and conclude as in (3.16) that

€ Vs(u) min{l, e} Vs (u)
C(n) AC.(u) > = '
(n) ACe(u) > CR suppegVs(u; B)Y/n = O suppeg Vs(u; B)U/n

In particular, (3.14) follows by taking again into account that ¢/R = C' max{1,¢e}.

We now prove conclusions (a) and (b): Up to a rescaling, we can take » = 1 in both
conclusions. To prove conclusion (a), we notice that, by (3.10) and (2.13),

1 B >1/2
Wn JBinfu>1/2} C

Since W (r) > r2/C for r € [0,1/2], by (2.13), (3.18), and the Holder inequality, we get

/u2 = / u2+/ u?
By Blﬂ{u§1/2} Blﬂ{UZI/Q}

C | W) +C|Bin{u>1/2}"" (/ u%/(”—”)(”_w"
Bl Bl

noe?™ >

IN

IN

n B (n—1)/n
c | W)+ Cn 52( / u?n 1>) . (3.19)
Bl Bl

By combining (3.19) with the embedding of L**/(~1(B;) into W'2(By), we find that

2 n (n—1)/n
/ e |Vul? + _W(u) / e |Vul? + L C’né/ € (/ u2"/(”_1)>
B € B Ce B
£ on/(n—1)) "~ D/" 1/n / on/(n—1)\ "~ D/"
— U - C € U
& ([ o) w/"e ([, )

> %(/Bl u?n/(n—1)>("‘1>/” > % (/Blwu))(n—n/n’

provided 7 is a sufficiently small universal constant, and where we have used that Vs(r) <
C 27/ (=1 for every r € [0,1] and & € [0, dp]. Having proved conclusion (a), we now prove
conclusion (b). Arguing by contradiction, we can assume the existence of g — 07 and
{ug}x in WH2(By;[0,1]) such that, for all k € N and setting for brevity

v

v

n

Mkz/ v<uk>:/ Suw), p=—"—
B B n—1

we have My < w,/2 and

W Ml/p
/€k|Vuk\2+ () M (3.20)
Bi Ek k

for every k € N. Combining |V(®ou)| = |Vu| /W (u) with Young’s inequality as in (1.5),
we deduce from (3.20) and the BV-Poincaré inequality [AFP00, (3.41)] that

1

1/p C 1/
— (up) —tgP) < P <—M/" 21
([ 10t )" < [ @< Lan, (3.21)

where ¢, = w,, ! fBl ®(ug). In particular, there is ¢ € [0,1] such that, up to extracting a
subsequence, uj, — cin L'(B1) and a.e. in By as k — co. Since (3.20) implies fBl W(ug) —
0 as k — oo, by Fatou’s lemma we find

Wi(e) <liminf [ W(ug)=0.
B1 k—o0 B1

14



In particular, ¢ € {0,1}. Since ¢ = 1 would contradict My, < w,, /2 for every k, we conclude
that ¢ = 0, and hence, thanks also to 0 < uy <1, that ®(u;) — 0in LP(By) (i.e., My — 0)

as k — oo. On noticing that 0 < ¢, < C’M;/p, we deduce by (3.21) that
C .1 1
19 k) — () 7Py < s — (M )V oy + 2 MY < € MEP - (3.22)
and, in particular, that
lim (Bl N {@(uk) < (Mk/zwn)l/f’}( ~0.
k—o0
Since ®(uy) — 0in LP(By) implies | By N {®(uy) > 1/2}| — 0 as k — oo, we conclude that
1 B
(32 o2 o) 2

for k large enough. In particular, thanks to ® < C'W on [0,1/2] and to (3.20), for k large
enough we have

(3.23)

Ml/P Ml/P
1 Slug) < — [ Wiu) < = (3.24)
Cer ™ €k JBin{1/25®(up)> (Mg /2wn)1/7} ek JB, k

that leads to a contradiction as k — oo.

Step two: We prove statement (a). To prove (3.3) it suffices to recall that W (r) > r2/C
for r € [0,1/2] and V(r) > r2/C for r € [1/2,1], so that

/ u —/ u+/ u? < C W(u) + Vs(u) .
n {u<1/2} {u>1/2} Rn

To prove (3.5) we first notice that |V{'(r)] < C and |W'(r)Vy(r)| < CW(r) for every
r € [0,1] (and every ¢ € [0,dp]), so that

‘ /n 2 |Vul? V{' (u) + é W' (u) V(;’(u)‘ < CAC(u). (3.25)

Since Vs(r) < Cr? for r € [0,1] and u € L?*(R"™) we can find a sequence R; — oo such
that |, OBg. Vs(u) — 0 as j — oo, and thus apply the divergence theorem to deduce that,
J

for every zg € R",

(71—1)/]R Vsw) gy — /nm;( Jdiv (2220 de (3.26)

n |z — 0] |!L“—!L“0|

/ xr— /
/n 5(u) Vu Iz _x0| dz < || 6(u)||L2(]R )|| u||L2(R )

Setting R = 2 max{1l,e}/o¢ v/n + 1, we can apply (3.14) to find ¢y € R™ such that

C(e) ]i . )Vg(u) > min {1, Iéa(a) }n

which combined with (3.26) gives

, <n—1>/ L Vs yn
IV ey [ Vulogary = g [ Vi) 2 win {1, 201"

that is (3.4). In summary, by combining (3.25) and (3.27) we find

il < ¢ <o — [ v )
R™ 76 mln{l,Ags(u)} R

that is (3.5). When € € (0,e0] and § = 0 we can replace the constant C'(¢) in (3.5) with a
plain universal constant C' by exploiting the fact that (3.15) can be used in place of (3.14)
(notice indeed that max{1,e} < C when € € (0,&¢]).
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Step three: We prove statement (b). Setting for brevity,
W/ v/
N slu] = / 2¢|Vul? Vi (u) + M ) d € [0,60],

we notice that for every §,d, € [0, 0] and u,v € X \ {0},
Neslu] = N, [v] | Neg.[v {fRnVJ fanél (u)*}
Aeslul = A, [v] = = s . (3.29)
Jrn Vi(w)? Jrn Vi (u fRn Vs, (
ing (3.6), (3.7), 3.9).

We first work on (3.29) with § = d,, with the goal of proving (3.6), (3.7), and (
Since AC.(u) < |Jul[}1.2/¢, we deduce from (3.4) that, if |uly12 < C(e), then
1 C(e)

< .

Jgn Vi(w)? ~ min{1, Vs(u)?"}
AC.(u) < C(e) ||lu|lywr2, and using again first
€)s

)
< CAC(u) <
< C't for r € ]0,1], we find that, if ||ul[y12 < C(e)

(3.30)

Recalling from (3.25) that |N:s[u]|
Lip(V4,[0,1]) < C, and then |VJ(r)|
)

then for every v € WH2(R™; [0, 1]

Nl [ (0P =Viw?)| < cte) [

V5 (u) —
< C(E)flu = ollpe ( /R VP + )R)”
(3.31)

5 () = V()] (Vs ()] + V5 (0)])
2

< C(e) max{|[ull g2, [[v] 2} [Ju — v]| 2
In summary, by (3.29), (3.30) and (3.31) for every € > 0 and u,v € W2(R™;[0,1]) \ {0}

with max{||ul[yy1,2@ny, [[v]lw12@n)} < C(e) we have proved that
INeslu] — Nes[v]] Ce) llu— vl
A —A < : : . .32
Pealtl = Aealtl} = OO TR VR LV} mind L vty O

We first estimate that
el = Nealoll <22 [ 9(a =) (19l + V0D [V}'(0)
(3.33)

w2e [ VoR V) - Vi w)
@I+ 2 [ WOV -Vl

1
+E/ W' (u) — W'(v
By recalling that Lip(W’;[0,1]) < C, Lip(Vy;[0,1]) < C, Lip(Vy’;[0,1]) < C(6) (when

d > 0), and max{|Vy(r)|,|W'(r)|} < Cr for r € [0,1] we find
Nz slu] = Neslo]] < C max {[|Vullzz, [Vl 2 } [[Vu = Vol 2

C
+C(e,0) [lu = vlico /R Vof? [l = vl 2 max{][ul| 2, 0]l 2}

< C(e) max {[lullwre, [vllwrz} lu = vliwiz + CO) [[Vollzz [lu = vllco
while, using [Vy']covmo,1) < C (which also holds when ¢ = 0) in place of Lip(Vy’; [0, 1])

(3.34)

C(9), we find instead
[Ne s[u] — Nes[v]]
< O(e) max {Jullwrz, [olwra} lu— vz + C Vol [lu — vl 267 ;
thanks to max{||u||x, ||[v]x} < C(g); with the convention that C(g,d) = 400 if § =0, we

thus conclude from (3.33), (3.34) and (3.35) that
N fu] = Nl < min {Ce,8) lu = ollx, C(@)lu — v}

(3.35)

(3.36)
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By means of (3.32) and (3.36) we find that, if max{|jul|x,|v|x} < C(e), then (3.6) and
(3.7) hold. We now assume that u,v € W22(R";[0,1]) \ {0} and prove (3.9). To this end
let us first notice that an integration by parts gives

/ Vul? V() — / Vo2 VY ()

n Rn

= / (Vu—Vv)-Vo Vi'(v)+ [ Vu-Vu V§(u) — Vu- Vo V' (v)
n Rn

= [ (a0 Ve - [ 8 () - Vi),

n

which can be used to replace (3.33) with

ool = Negll < 26 [ 180l V@) = i)l + V= o)l [Vol [/ 0)] (337
w2 [ W) = W@ [ WV - Ve,

By Lip(W";[0,1]) < C, Lip(Vy;[0,1]) < C and max{|V{(r)|,|W'(r)[} < Cr for r € [0,1]
we thus find

INeslul = Nesloll < Cle) max{lullyz, [vllwr2} lu = vl

which, combined with (3.32) and with the assumption max{||u||y2z2, ||v]22} < C(e),
gives (3.9).

We now work on (3.29) with u = v and §, = 0 to prove (3.8). To this end, we first
notice that

IV slu] — Nl L

26 [ I9uP V) - Vi@l + 2 [ W Vi) = V)
R» R™
< 2AC.(u) |V — Ve,
while V§(0) = V'(0) = 0 gives [Vj(u) — V'(u)| < [V{" = V"|lco,1) lu| on R™, and thus,
arguing as in (3.31), that
| [ Vi@? = [ ViR] < OV = Vi e

Combining this last two estimates with (3.29), (3.30) and |V s[u]| < C(e) |lul|x we imme-
diately prove (3.8). O

IN

A

4. EXISTENCE, REGULARITY AND ENTROPIES OF THE FLOW (PROOF OF THEOREM 1.2)

Proof of Theorem 1.2. Step one, existence of mild solutions: For every e, > 0 we intro-
duce the regularized flows

{52 Ou =22 Au—W'(u) + e A slu(t)] Vi(u), on R™ x (0,00), (DF;)
u(0) = uo,
that are obtained by replacing V' with Vj in (DF). If we set
G(x,t) = L‘th (x,t) € R" x (0,00) (4.1)
’ (8mt)n/2’ ’ Y
and S = v * G(t) for v : R™ — R and ¢t > 0, then a solution u of
up —2Au = f on R" x (0,00), u(0) = ug on R", (4.2)
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with data f : R” x (0,00) — R and ug : R" — R, is formally given by the Duhamel formula
(see, for example, [Eva98, Section 2.3.1]),

u(z,t) = Stuo(m)—i-/o Si—s[f(s)](x) ds (4.3)

t
~ [ G-y tuwldy+ [ ds [ G-yt flws)dy.
Solutions to the integral equation (4.3) are usually called mild solutions of the parabolic
PDE (4.2), and can be constructed by fixed points arguments. We now set up the stage
to prove the short-time existence of a unique mild solution to (DFj).

From now on we fix ug with

up € [V W*P(R™[0,1]),  V(u) = 1. (4.4)
p=>2

By the properties of V5 and W it is easily seen that V(ug) = 1 implies Vs(up) € (0, 00) for
every § > 0. Moreover, we also have

lim Vs(up) = V(up) = 1. (4.5)

6—0t

Given parameters 7 > 0 and o € (0,1) to be chosen in a moment, we then introduce
the vector space

Y ={ue CO([O,T); Bf(uo)) tu(0) =up}, (4.6)

where BX (ug) denotes the ball in X of radius o and center ug. If we pick ¢ small enough
depending on wg, and since Vs(ug) > 0 for every 6 > 0, we find that (see (4.10) below)
Vs(u(t)) > 0 for every t € [0,7): in particular, A; s[u(t)] is well defined for every ¢ € [0, 7).
Hence, for each € > 0, 0 € (0,0p], and u € Y we can define Fj[u] : R” x [0,7) — R and
Ts[u] : R™ x [0,7) — R by setting

Fylu] = —ngu) + A slu() Vﬁ/i“), (4.7)

Tsu] = Stuo—i-/o Si—s[Fs[u](s)] ds. (4.8)

We claim that, if T and o (introduced in the definition of Y') are small enough with respect
to e, §, and ug, then u +— Ts[u] defines a contraction of the Banach space Y. By the Banach
fixed point theorem we will then deduce the existence of a unique u € C°([0,7); BX (u))
such that u(0) = up and

u(t) = Spug +/0 Si—s[Fslu](s)] ds, (4.9)

for every t € (0,7). In particular, this claim will prove the existence of a unique, short-
time, mild solution u of (DFy).

To prove our claim, we begin by showing that if o is small enough in terms of ug and
0, then for every u € Y we have

YVt € [0,7). (4.10)



Indeed, by [V/(r)| < C|r| for every r € (0,1) and by ||ug — u(t)||x < o <1 we find that

1
Vs(ut)) — Vs(ug) = //0 VI (suo + (1 — ) u(®)) (uo — u(t)) ds

> _c / o — u(t)]| (Juo| + [u(t)])
Rn
> —C ult) - uollz= (Juollz + [lu(®)]z2)
Vs(uo)
> —Co(2|uolle +0) > ==,

provided o is small enough in terms of § and ug (recall that Vs(ug) > 0). Having proved

(4.10) we notice that, combined with (3.5), (3.6 ()) and AC.(u) < C(e) |lully1.2, it implies
!)\575[u(t)” < Cf(g,6,up) (4.11)
Aeslu(®)] = Aes[v®]] < Cle,8,u0) ult) —v(t)|lx (4.12)

for every u,v € Y and every t € [0,7). Next we notice that if u € Y, then for every
€ (0,7) we have
|Fs[u(t)]] < C(e) max {1, |Acsu(t)]} |u(t) on R"; (4.13)
moroever, since |W’'(r)| < C'|r| and |Vj| < C|r| for r € (0,1), W” and Vj" are bounded
on [0, 1], and
W”( ) Vs (u)
€

+>\55[ ()]

V(Flu)®) = { - } vu(®). (4.14)
then
[VEs[u(t)]] < C(e) max {1, |- s[u(t)]} [Vu(t) on R™. (4.15)

By combining (4.13) and (4.15) with (4.11), we see that if u € Y, then Fs[u] € C°([0,7); X)
and

IEsl@llco < C(e) max {1, A slu(®)]} lu(t) o (4.16)
| Es[u](t)]| 2 < C(e) max{l, A slu(t)] } llu(t)]| 2 (4.17)
IV (Fslu](t)|lr2 < C(e) max {1, [ s[u(t)]} [|[Vult)]| Lz, Vte[0,7). (4.18)

By combining these estimates with (4.11) we thus find
| Es[u(®)]|lx < Cl(e,0,up) |lullx, Vit e [0,7). (4.19)

Since [|Siv]|co < |[v]|co, [|Sevllre < ||vl|z2, and |V (Sw)||r2 < ||V|r2 for every v € X
and every t > 0, we deduce that if u € Y, then Ts[u] € C°([0,7); X). Moreover, since
|Siug — ugl|x — 0 as t — 0T, if we pick 7 small enough in terms of ¢, §, ug and o (where
o has already been chosen small enough in terms of ug and ¢), then we find

[T5[u)(t) —uollx < [ISkuo — wollx +t sup [[F5[ul(t)]x
0<s<t

IN

| Spuog — uo||x + C(e,d,up) t|Ju(t)||x <o,

for every t € [0,79), so that Ts[u] € Y for every u € Y. Having proved that Ty is a self-map
of Y, we now pick u,v € Y and notice that for every ¢ € [0,7) we have

(Tsle] = Tifol Iy = sup [T5[ul(t) ~ Tylel(D)] <7 sup [ Fiful(t) = Fill(®)].  (4.20)
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Now for every u,v € Y and t € [0,7) we have, pointwise on R",

E50u(8) — Fiful() < {20 4 o o] PV puge) v

Hcstu(o)] - Aol A (a2
< C(e) {max {1, |)\575[u(t)]|} lu(t) —v(t)| + |)\E75[u(t)] — Aeslv | lv(t) } 7

where we have used |Vy(r)| < C|r| for r € [0,1]; then, by (4.11), (4.12), and (4.21), we
find that

IBsul®) ~ Bill(®)lx < C(edu) fu(t) ~v@)lx . vie0.7). (422
Similarly, starting from (4.14), we find that, pointwise on R",
V@) - VER] < {2204 ) 2O Gu - vu)
(LD | TROR) |y oo} 1906 fu(®) — o)

g2 c
e alu(®)] ~ Aeslo(o)]| o) O

_l’_

< C(e,8) { max {1, | A slu(®)][} {IVo®)] [u(t) — v(®)] + [Vu(t) - Vo) }  (4.23)

Aeslul®)] = Ao slo(®]| V0] }
where we have made crucial use of the regularization Vj of V' to assert that Lip(Vy') < C(6).
By (4.11), (4.12), (4.23), and o < 1,
IV(Eslul(t)) = V(EFs[o](t)ll 2 < C(e,6,u0) lu(®) —v(®)llx,  Vie[0,7). (4.24)
By combining (4.22) and (4.24) with (4.20) we conclude that
1T5[u] = Ts[v]lly < C(e,6,u0) 7 [lu—vlly .

In particular, up to further decrease 7 depending on &, § and ug, we can ensure that
Lip(T5;Y) < 1, and that Ty is a contraction of Y.

_|_

Step two, regularity and global-in-time existence for (DFs): Given e > 0, § € (0,dp] and
ug as in (4.4), by step five we can define 7, € (0, 00] as the supremum of those 7 > 0 such
that there exists u € C9([0,7); X) such that u(0) = ug and (4.9) holds for every ¢ € (0, 7)
and

sup {AC-(u(t)), Vs(u(t))} < oo, inf Vs(u(t)) >0. (4.25)

o<t<r 0<t<r
In this step we prove that 7, = +o0, that AC.(u(t)) is Lipschitz continuous and decreasing

n [0,00), that Vs(u(t)) = Vs(ug) for every t € [0,00), and that u(t) € W3P(R") and
Oyu(t) € WHP(R™) for every ¢t > 0 and p > 2 with
max {[[u(t)[lws.eeny, [0u(t)llws } (4.26)
< C(e,p) M(AC:(uo), Vs(uo), 1/ Vs (uo), [|Vuollwzs,1) ,
where M denotes a generic constant which is increasing and continuous in its arguments.

We first notice that by combining 0 < u <1, (3.3), (3.5) and (4.25) we find that

sup |ju(s)|r < o0, sup [Ac slu(s)]| < oo (4.27)
0<s<t 0<s<t

for every t € (0,7,) and p > 2. Next, setting G(t) = G(-,t) (recall (4.1)), we notice that
for every ¢t > 0 we have

IG@)Ir =1, max {t2|VG@)|p, *2IVEWO)| 1, tAGE)l|L1 } < Cln). (4.28)
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Combining u(t) = Ts[u(t)] with (4.28), (4.13) and standard applications of Fubini’s theo-
rem and Holder’s inequality, we find that, if p > 2, then, for every t € (0, 7y),

IVu®)le < [ Vuollzo 1G] 1o (4.29)
t
+C(e) o} @l [ IVG(E =9l ds
0<s<t
< HVuOlle+C()tl/2 sup max{l [Aeslu()][} (s o
0<s<t

so that (4.27) gives

sup ||[Vu(s)||rr < 0o, Vte (0,74),p>2. (4.30)
0<s<t
Similarly, again from u(t) = Ts[u(t)] and (4.28), we obtain that
IV?u®)lr < [V2uollze |G ()] (4.31)
t
+C(e) sup max {1 [Acslu(s)]]} [Vu(s) Lo / IVG(t = s)| 11 ds
<s<
< IVl + C(e) t/% sup max {1, [ Acs[u(s)]| } [[Vu(s)]| e
0<s<t
which, combined with (4.11), (4.27), and (4.30), gives
sup [|u(s)|lwzr < oo, Vie (0,7),p > 2. (4.32)

O<s<t

In particular, v € LS ((0,7); W22(R™)), so that, by standard properties of mild solutions
(see e.g. [CH98, Proposition 4.1.9]) (4.9) implies that

u € Vvlicl((o77—*)aX)7 (433)
with
Ou = 2Au + fs a.e. on R" x (0,7y), (4.34)
where we have set f5(z,t) = Fs[u](z,t), and where, by (4.13) and (4.15),
1fs@Olle < C(e) max {1, Peslu®]} u(®)llzo (435)
IV f5(t)|lr < C(e) max {1, [\ s[u(t)]} [|[Vult)| e, Vp > 2. (4.36)
Moreover, by (4.34), we see that for every ¢ € (O, Ty) and p > 2,
Jo®)llze < Ce) {IV2u®)llzr + 1fs(E) 10 } - (4.37)

We now differentiate the flow in space to obtain LP-estimates on V3u and on V(0;u).
Given e € R™ with |e|] = 1 and v = v(x,t) we set epv(x,t) = (v(x + he,t) —v(x,t))/h for
the (spatial) incremental ratio of v in the direction v of step h. In this way (4.34) implies
that epu solves

Or(epu) — 2 A(epu) = epfs on R™ x (0, 00), epu(0) = epug on R™. (4.38)
Next we consider the decomposition epu = uy j, + ug,p, where uy 5 (t) = S¢lepuo] and thus
Opuap, — 2 Aug p, = ep fs on R™ x (0, 00), ug,p(0) =0 on R™. (4.39)

Since ug,(0) = 0 on R™ we can apply [Lie96, Corollary 7.31] to deduce that for every
(a,b) CC (0,74) and p > 2

/ it [ 10an) + IVPusn(t)l < Co / [ Jentstt (4.40)

Since |lep f5(t)||r < ||V f5(t)||Lr and, thanks to (4.36), (4.27), and (4.30),
sup |V fs(s)llr <oo,  Vte (0,7),
0<s<t
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we conclude that, for every (a,b) C (0,t), t < 7y, and p > 2,

b
[t [ 10O + [9%uaF < C)o—a) suwp (VAo . ()
a n a<s<
so that, by arbitrariness of (a,b), for every (a,b) CC (0,7,) and p > 2,
sup, {110sug ()| o, IV *ugn(s)| e } < C(p) SuprIVfa(S)llLP- (4.42)
a<s< a<s<

At the same time, recalling that u; ,(s) = Ss(epug), by (4.28) we find that for every s > 0
C
10cwrn()lLr < 10:G(s)l 11 llenvollzr < — [[Vuollze

C
IV2urn(s)llze < [[V2G(s)l| 1 llenuollze < w72 Vuollze -

By combining these last two estimates with (4.42) and epu = uy j, +ug p, by the uniformity
in h > 0 and e with |e| = 1, we conclude that for every p > 2 and (a,b) CC (0, 7) we have

Vu Lr
swp {19006 o IV u(s) e} < 0) swp (L2 oo} a9
a<s<b a<s<b a

In combination with (4.32), (4.37), (4.35), and (4.27) this implies that, for every p > 2
and (a,b) CC (0,7.) we have

. {I0eu®llwro, lu()llwss } < oo. (4.44)
a<t<

In particular, u(t) € C**(R") and dyu(t) € C%*(R") for every a € (0,1) and t € (0, 7).
The regularity of u(t) established in (4.44) is sufficient to prove that
Vs(u(t)) = Vs(up) , Vit € [0,74), (4.45)
t — AC.(u(t)) is decreasing, continuous on [0, 7y ), (4.46)
and locally Lipschitz on (0, 7).
Indeed, let us set u, = (1, u) * p,, where, for each > 0, p, is a mollifying kernel on
R™ x R, and where Yy € C(R™ x (O oo)) is monotonically converging to 1 as  — 0.

If we set D(t) = [ [Vu(t)[* and Dy (t) = [gn [Vuy(t)|?, then by (4.30) we find that, for
every @ € C’OO 0,7),

/D t)dt = lim TD() (t) dt

n—0t

= -2 lim dt/ Vi (t) - V(Opuy(t))

77—>
— 9 /0 pt)dt | Vu(t): V(Ou(t) =2 /0 plt)dt [ Au(t) deu)

where, in computing the second limit, we have used (4.44). We have thus proven that D
is locally Lipschitz continuous on (0, 7y ), with

D'(t) = jt / IVu(t)? = — / 2 Au(t) dhult). (4.47)

for a.e. t € (0,7,). By an analogous approximation argument we see that, for a.e. ¢ €
(0’7¥%
d

@ Jon W(u(t)) = . W' (u) pu, % . Vs(u(t)) = /n Vi (u) Oyu. (4.48)
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In particular, by (4.34), for a.e. t € (0,7),

/nmu)atu—/n(m W) 1 xoptute) Vﬁl(“))vg(u)

€

— [ 290w /w’ Wi+ 2= [ w2 =0,

where the last identity follows from the definition (3.2) of A;s[u(t)]. This proves that
Vs(u(t)) is constant on (0,7,), and since t — Vs(u(t)) is continuous on [0, 7y ), we deduce
(4.45). Finally, by (4.47) and (4.48) we have that ¢ — AC.(u(t)) is locally Lipschitz
continuous on (0, 7,.) with

L) = = [ o -2aus VI

dt
— - / ) 8tu{ — B+ e s[u(t)] Vﬁ“)} - / (Dp)?.

where we have taken into account [, Vj(u);u = 0. The continuity of ¢ — AC.(u(t)) on
[0,7,) is of course immediate from u € C°([0,7,); X). This proves (4.46).

We now prove that 7, = +o00. We argue by contradiction, and assume that 7, < oc.
By combining (4.45) and (4.46) (which implies AC.(u(t)) < AC.(up) for every ¢t € (0, 7))
with (3.3) and (3.5) we deduce that, for every p > 2,

0sup {Hu Mize, [ Aeslu } <Cl(e (E,ACE(UO),V(;(U()), 1/V5(u0)) . (4.49)
<t<T«
Then, by (4.49) and (4.29) we find that, for every p > 2,
Sup IVu(t)||r < C(e) M (AC:(uo), Vs(uo), 1/Vs(uo), [[Vuol e, 74) , (4.50)
<t<Tx

which, combined with (4.31) gives that, for every p > 2,
sup [[V2u(t)|[zr < C(e,p) M (e, ACc(uo), Vs(u0), 1/Vs(uo), [ Vuollwre, 7). (4.51)

0<t<T«
By combining (4.35) and (4.36) with (4.49) and (4.50) we find that, for every p > 2,
OS?p ”fg(t)”wl,p S C(E) M(E,ACE(UO)7V5(UO)7 1/V5(U0), ”VUOHLP,T*) N (4.52)
<t<Tx

so that by (4.37) and (4.43) with (4.51) and (4.52) we find

sup  {[[V3u(®)]|ze, [Bru() s }
T [2<t<Tx
< C(e,p) M (AC<(ug), Vs(uo), 1/Vs(uo), [Vuollwzr, e, 1/7)
which combined with (4.49), (4.50) and (4.51) finally gives, for every p > 2,
sup A [|u(®)|lws, [|95u(t) s } (4.53)
T [2<t<Tx
< Cle,p) M (AC:(ug), Vs(uo),1/Vs(uo), |Vuollw2r, 74, 1/74) .
By the W!2-estimate on dyu contained in (4.53), we can deduce that for every ¢,s €
(T4/2, %) it holds
[u®) — u(s)l|x < C(e,6,up, 7) [t — s|. (4.54)
Since X is a Banach space, this means that there is u, € X = CY N W1H2(R";[0,1]) such
that

lm [Ju(t) —us||x =0.
t—Ty
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By combining this last fact with (4.53) we see that u, € W3P(R") for every p > 2, with
Vs(ux) = lim Vs(u(t)) = Vs(ug) > 0.

t—Ty
Therefore, for some 1 > 0, we can repeat the argument of step five to extend u as an
element of C°([0, 7 + n); X) such that (4.9) holds for every ¢ € (0,7 + 7). We can also
repeat the proof of (4.45) and (4.46) to show that AC.(u(t)) is decreasing on [y, 7 + 1)
and Vs(u(t)) is constant on t € [1., 7 +n). Since 7, was introduced as the supremum of
those 7 > 0 such that there exists u € C°([0,7); X) with u(0) = ug, solving (4.9) for every
€ (0,7), and such that

Sup {AC.(u(t)), Vs(u(t))} < oo, Jinf Vs(u(t)) > 0. (4.55)
and since we have just proved that the bounds stated in (4.55) holds with 7 = 7, + 7,
thus reaching a contradiction with the maximality of 7,. This proves that 7, = +00. The
monotonicity of AC.(u(t)) and constancy of Vs(u(t)) then hold on [0,00), and the validity
of (4.26) is deduced by arguing as in the proof of (4.53).

Step three: We prove, for an initial datum wug as in (4.4), the existence of u € CO(R" x
[0,00)) with u(0) = ug which is a classical solution of (DF) on R" x (0, 00), with V(u(t)) =
V(ug) = 1 for every t > 0 and such that ¢ — AC-(u(t)) is continuous and decreasing on

[0, 00).

Given € > 0 and 6 € (0, 0], let us denote by u’ the unique global solution of (DFys)
with u%(0) = ug constructed in step six. Recalling that u® satisfies (4.26), and keeping in
mind that Vs(ug) — V(ug) = 1 by (4.5), up to make dy depend on ug too, we can ensure
that 1/2 < Vs(up) < 2 for every § € (0,dp], and thus deduce from (4.26) that for every
(a,b) C (0,00) and p > 2, uniformly on ¢ € (0, Jp],

sup {[[u’(s)lws., 100’ (5)[lwrr } < C(e,p, AC(uo), [|Vuollw2r,a,b) . (4.56)
a<s<b
By Morrey’s embedding theorem we can obtain a C'%'/2-estimate on d;u® from (4.56),
which combined with the W%-estimate on d;u’ contained in (4.56) leads to prove that,
for every (a,b) C (0,00),

[l (r) — u®(s)||x < Cl(e,ug,a,b)|r—s|, vr,s € (a,b), (4.57)
uniformly on § € (0, do].

If we now consider a sequence §; — 07, then, up to extracting a subsequence, we deduce
from (4.57) and (4.56) that there is u € Lip),.((0,00); X ) with

Iutr) = wollle C(e, uo, a,b), (4.58)
,s€(a,b) |T - 8|
sup, {lu(s)lwse, [0eu(s)lwir} < Cle.p, AC=(uo), [|Vuollwzr,a,b),  (4.59)
a<s<
for every p > 2 and (a,b) C (0,00), and such that
lim sup {[[u (s) = u(s) o 05 () — (o)l poren} =0, (4.60)
J=00 g<s<b

for every p > 2 and (a,b) C (0,00). By (4.59), u(t) € C*%(R"), dyu(t) € C¥*(R") for
every a € (0,1) and ¢ > 0. By (4.60), and since

e Opu’i = 26" Au¥ — W' (u%) + € Ae g, [u (1)] V5, (u),
holds in classical sense on R™ x (0,00), we can deduce that

€20 = 22 Au— W' (u) + e A [u(®)] V' (u), (4.61)
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also holds in classical sense on on R" x (0, 00), provided we show that

Jim, Ao, [ ()] = A[u(t)], V> 0. (4.62)

To prove (4.62) we first notice that, by 0 < Vs(r) < Cr? for r € [0,1] any by dominated
convergence, for every ¢ > 0 it holds that Vj; (u% (t)) — V(u(t)) as j — oo. At the same
time, for every ¢ > 0, Vs, (u% (1)) = Vs, (ug) — V(up) as j — oo so that, in summary,

V(ut)) = V(wg) =1,  Vt>0. (4.63)
Now, by (3.7), (3.8), Vs(u’(s)) = Vs(ug), (4.63), and (4.59), we have that
s (£) — ) [ X"
min{1, Vs(uo)?*} min{l, Vs(u(t))}?"’
Vs = Vlle2po,1
min{1, Vs(u(t))?"}’
for all t € (a,b) C (0,00). Since Vs(u(t)) € (0,00) for every t > 0 and ¢ € (0, do], by letting

d = 0j and j — oo in the above two estimates we obtain (4.62), and thus (4.61). The
constancy of V(u(t)) and the monotonicity of AC.(u(t)) are then immediate to prove.

Aes[w’ (£)] = Aeslu(?)]

IN

C(Ev uo, b)

[Ae slu(®)] = Aclu(®)]]

IN

C(g,up,a,b)

We are left to prove that u(0) = ug. To begin with, we notice that, by (3.5), (4.45) and
(4.46), for all ¢ > 0 we have

Acg(u5(t))2”+2 ACE(UO)%—H
Aeslu’ ()] < Cle) YRERIONED <C(e) “Vslug)?
so that (4.62) and (4.5) imply
Mfu(®)]| < Cle,ug), V> 0. (4.64)
Next, if we set
Frgt) = Dy VU (4.65)
Tl(t) = Spuo+ / S, [Flu](s)] ds, (4.66)
0

then (4.61) implies u(t) = T[u(t)]Syuo + fg Si—s[Fu](s)] ds for every t > 0, and by the
contraction properties of the heat flow, (4.16), (4.17), (4.18), and (4.64), we find that

A

[u(t) —wollx < HStUO—UOHXJrC(E)/O (1+ A [u(s)]) luls)lx ds

< ISwo — uollx + Clesu) t sup [uls)]x -
0<s<t

By up € X and (4.59) we find that ||u(t) — ugllx — 0 as t — 07, and thus that u €
CO(R™ x [0,00)) with u(0) = ug, as claimed. This completes the proof of step seven.

Step four: We now prove that

Ae[u(®)]] < C ACe(ug)*™ 2, Vt>0, (4.67)

and that, for every ty > 0 and p > 2 we have
sup {Ilu®) w2, [10vut)| e} < Cle,p,uo), (4.68)
sup max { [[u(t)llwa.r, [Ocu(t)|lw2r, [|0uu(t)||Lr } < C(e,p,uo,to)- (4.69)

t>to

25



Indeed, recalling that in step seven we have proved V(u(t)) = 1 and AC.(u(t)) < AC.(ug)
for every ¢t > 0, and recalling that the constant C(e) in (3.5) can be taken independent
from € when (3.5) is applied with § = 0, we find that, for all ¢ > 0,

AC. (u(t))* !
V(u(t))>
that is (4.67). Similarly, we deduce from (3.3) (with 6 = 0) and 0 < u < 1 that
sup [lu(t)l|r < C(e,u0),  Vp =2, (4.70)
>0

‘)\E[U(t)” <C / ‘V'LL|2 < gACE(UO)2n+2,
R

while by combining (4.29) with (4.67) and (4.70) we get
sSup ||Vu(t)||Lp < O(E)p) UO) ’ Vp>2. (471)
0<t<1

Now, using the semigroup property of the heat flow we see that for every ¢ > s > 0 we
have

U(t) = St_su / St T . (472)
By differentiating (4.72), and by using (4.28), (4.67) and (4.70), we find that

IVu®lir < [IVG(E =)z luls)lee + sup [1Ful(r)]ze / VGt =) dr
C(E,UO)
(t —s)1/2

where we have used the analog to (4.13) with 6 = 0 in estimating || F[u](r)|/z». If t > 1,
then we can apply (4.73) with s =¢ — 1 > 0 to deduce that |Vu(t)||zr < C(g,ugp), which,
combined with (4.71), gives

sSup ||V’Lb(t)||Lp < C(Evpvu()) ) Vp>2. (474)
t>0

+ C(e,up) (t —5)V/2, (4.73)

Similarly, combining (4.31) with (4.67) and (4.74) we see that, on the one hand
sup | V2u(t)l|re < Cle,pyuo),  Vp=2; (4.75)
0<t<1
on other hand, using again (4.72), (4.28), and (4.67), this time in combination with (4.70),
(4.15), and (4.74), we find that, if £ > s > 0, then
t
IV2u)llze < IV2G(t = s)llza [lu(s) | Lr + sup [[VE[ul(r)les / IVG(t =)l pr dr
0(67 UO)
(t — s5)3/2

and using this last estimate for t > 1 (and with s =t — 1 > 0), we find ||V2u(t)|» <
C(g,up) for every t > 1 and p > 2. By combining this last fact with (4.75) we have thus
proved

+ C(Ev ’LL()) (t - 8)1/2 )

Sllp {”'LL ”W2P7 ”8{[1/ HLP} < C(E7p7 Uo), vp > 2. (476)

Here the LP-estimate on dyu(t) has been obtained by combining the W2P-estimate for u(t)
with Qyu = 2Au + f, where f(t) = Flu(t)], and thus || f(t)||r < C(e,p,uo) thanks to
(4.13) and (4.70). In fact, thanks also to (4.15), (4.67), and (4.74) for every p > 2, we
have

sup [ (£)[[w1e < C(e, p,u0) -
t>0
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We can now repeat the argument based on the incremental ratios method and on the
parabolic Calderon-Zygmund theorem used in the proof of (4.43) to deduce that

sup {7 (01u)0) 1 [Vu(0)10) <€) max {1 3‘;2”“’, sup [ V1010 }.

and conclude, in summary, that, for every p > 2 and ty > 0,

Sup{Hu (O)llwsr, 10cu(t)[[wrr } < Cle,p, o, to) - (4.77)

The Wh2-estimate on d;u(t) allows one to deduce by elementary means that

lu(t) — u(s)|lwr2mny < C(e,uo,to) [t — s, Vi, s > 1g. (4.78)
Combining (4.78) with (3.9) (with 6 = 0) and (4.76) with p = 2 we conclude that
Ae[u(t)] = Ac[u(s)]] < Cle,up,to) |t — 5|, Vt,s > to, (4.79)

that is ¢ — A [u(t)] is Lipschitz continuous on (tg, 00) for every ¢y > 0.

To obtain LP-estimates for dyu(t) and V2(9;u) we need to differentiate dyu = 2 Au + f
in time. To this end, given ¢y > 0, we introduce that incremental ratio operator 7}, that
acts on v = v(x,t) by taking Tpv(t) = (v(to +t + h) —v(to +t))/h for every t > 0 and
h € (—to,to) \ {0}. With this notation, dyu = 2 Au + f on R™ x (0,00) implies that

O(Thu) —2 A(Thu) =T f, on R™ x (0, 00), (4.80)
Thu(0) = ulto + h})l — ulto) , on R".

Setting

U(h)+-h)‘—1ﬂto)]

urp = St Y

ugp = Thu —uyp ,
we find that wug j, satisfies

Ouap —2Augp, =Thf, on R" x (0,00), ug,,(0) =0 on R™. (4.81)
By [Lie96, Corollary 7.31], for every (a,b) C (0,00) we have

b b
[ e [ Punolr +usar <o) [Ca [ mr

o) = { = x i) VY o VO ) (1.52)
by (4.67) and (4.79) we find that

b+ |
/ dt/ |Th f(t |p</ dt/ t)|P < Cl(e,up,a) (b—a+2]|h|),
|n| "

so that, in summary,

Setting

b
/ dt/ V2us (O] + [Bpus n(D)P < Cle.pyugsa) (b—a+ 2 |h]). (4.83)

At the same time, thanks to (4.76), we have, for |h| < to/2 and t > o,
u(to + h) — u(to) ‘

IV @l < IV2G@) |

h Lr
_C O(€7p7 UO)
sup  [|Gu(s)]|r < —— 75—,
t3/2 to—|h|<s<to+|h| tg/2
u(to + h) —u(t C E,D,U
oo e < G| ARl ClEpto),
Lp to
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and thus, by Thu = uy p, + ug ), and (4.83)

b
[t [ [A@ma0p 4oz oF < Cepunab-at2i). (48

Letting h — 07 in (4.84) we obtain

b
[ at [ 1950 0P + ) < e, 0 a).
a n
from which we easily conclude that, for every tg > 0 and p > 2,

Sup {IV? @) (O)l|e. |00 u(t) | e } < Ce, pyuo, to) - (4.85)
Zto

This last estimate, combined with (4.77) concludes the proof of (4.69).

Step five: We prove the uniqueness of the solution u of (DF) constructed in step seven.
Indeed, let v be another solution of (DF) with v(0) = ug. By combining (3.9) with
V(u(t)) = V(v(t)) = V(up) = 1 and with (4.76) with p = 2 for both v and v, we find that,
for all £ > 0,

[Aelu(t)] = Ac[v(D)]] < C(e, uo) [[u(t) —v(t) w2 - (4.86)

Since w = u— v satisfies dw — 2 Aw = F[u] — F[v] with w(0) = 0, by the Duhamel formula
(4.3), for all t > 0 we can represent w(t) as

w(t) = / Si—s[F[u](s) — F[v](s)] ds. (4.87)
0
Notice that by using, in the order, (4.67), 0 < V'(r) < Cr for r € [0,1], and (4.86), we
find
IFlul(s) = Fll(s)] < C(6) {Lip(W") + A-fu(s)]| Lin(V) } u(s)

+V'(v(s)) [Ae[u(s)] = Ac[v(s)]]
Ce, uo) {[w(s)] + [lw(s) w2 [v(s)]}
so that, by (4.74) with p = 2 applied to v,

[Flu](s) = F[v](s)llr2 < Cle,uo) [[w(s)lwrz,  Vs>0. (4.88)

IN

Setting

a(t) = sup [lw(s)[ly1.z
0<s<t

and combining (4.88) with (4.28) we deduce from (4.87) that, if 0 < s < ¢, then

/ I FLal(r) — Flo)(r)l 2 dr < C(e,uo) / o)l dr
0 0
C(e,up)talt),

Vol < sup [Flul(r) — Flol(r)]2 /0 IVG(s — 1)1 ds

0<r<s

Cl(e,up) Vs sup |Jw(r)|lwie < Cle,up) Vial(t).

0<r<s

IN

lw(s)ll 2

IN

IN

Combining this last two estimates, we find that a(t) < C(e,ug) vt a(t) for every t > 0. In
particular, setting to = 1/4C(g,up)?, if a(t) > 0 for some t € (0,%y), then a contradiction
follows. We have thus proved that u(t) = v(t) on R" for every ¢t € (0,%y). The argument
can of course be iterated (using to and then integer multiples of ¢y as initial times) to prove
that u(t) = v(t) on R™ for every ¢ > 0.
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Conclusion: Statement (i) was proved in (1.15) and (1.16). Statement (ii) was proved in
(4.67) and (4.79). Statement (iii) was proved in (4.63). Moreover, we have
d

E,ACa(u(t)) = /n{ZEVU'at(VU)—FW;(U) atu}(t)

=~ [ Ol {25Au - W}(t)

= — [ Q) {eau+ Alu(®)] V() } 1)

Rn
— e [ () + Acfute)
where we have used the regularity properties of u to differentiate in time and to apply

the divergence theorem, (DF), and, in the last identity, statement (iii), to deduce that
0= (d/dt)V(u(t)) = [gn Opu(t) V'(u(t)). This proves statement (iv).

We prove that 0 < u < 1 on R™ x (0, 00), i.e. statement (v). Since V,W € C?0, 1] with
V(1) = W'(1) = 0 and |A:[u(t)]| < C(e,up) for all ¢ > 0, we can find a positive constant
K = K(e,up) such that r — Kr — W'(r) + eX:[u(t)] V'(r) is strictly increasing on [0, 1].
Correspondingly,

Ku—W\(u)+el[u®)]V'(u) < K, on R" x (0,00),
which, combined with (DF), implies
20 = 2% Au— W'(u) + e \Ju(t)]| V'(u) <262 Au— Ku + K

Au(t) V'(u(t)) = —¢ / n(atu(t)ﬂ

Rn

that is, v = 1 — u is a non-negative solution of €2(9; —2 A)v+ K v > 0 on R" x (0, ). By
the strong maximum principle, either v = 0 or v > 0 on R" x (0, 00), where the first option
is excluded a priori since V(1) = 1 and V(u(t)) is finite for every ¢t > 0. We conclude that
u < 1on R" x (0,00), and argue analogously for proving u > 0 on R" x (0, c0).

We finally prove statement (vi). The argument of step eight shows that v = dyu satisfies
Oww —2Av = g for g as in (4.82). By testing this equation with dyu and integrating by
parts,

2 / (OB (1) = 22 / V@) - / )~ 0] V() b 1) (@)
—|—s<% Aclu(t)) / V(1)) D) (4.89)

where the last integral is equal to zero since V(u(t)) = 0 for every ¢ > 0. This implies the
validity of (1.18). Setting b(t) = [p.(yu(t))?, (1.18) combined with (1.16) implies that
v € L'(tg,00) for every to > 0. Since (1.17) and the monotonicity of AC-(u(t)) imply
b € L'(0,00), we have proved that b € W1(t, 00) for every ¢y > 0. This completes the
proof of the theorem. O

5. SUBSEQUENTIAL BUBBLING RESOLUTION (PROOF OF THEOREM 1.3)

Proof of Theorem 1.8. Let ug € W2P(R";[0,1]) for all p > 2, with V(ug) = 1. By Theorem
1.2, there is a unique solution u to the diffused VPMCF (DF) with initial datum wq,
satisfying the various statements (i)—(vi) listed therein.

Given {t;};en with t; = oo as j — 0o, we now want to prove that, up to extracting a
subsequence, there are M € N, /. > 0 such that

0. = lim A fu(t;)], (5.1)

J—00
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sequences {mé}jeN (i =1,..., M) satisfying |x; - m;“\ — 00 as j — oo (i # k), and strictly
radially decreasing solutions {&}4, of

2 A& = W'(&) —elV'(&) onR™, (5.2)
with
M M
SVE) =1, D AC(&) < ACe(uo). (5.3)
=1 =1

such that, for all p > 2,

M
lim Hu(tj) -5 Tl

| —00
J =1

~0. (5.4)
(W2pnWw1:2)(Rn)

This will be proved in step one through five. Finally, in step six, we shall prove that, if
sptug CC R™, then M =1 and :13;L — x4 as j — oo for some x, € R™.

Step one: We start by proving that, if £ € W12(R";[0,1]) \ {0} and ¢ € R satisfy

2e2AE=W/(E) —elV'(€) on R™, (5.5)
then ¢ > 0, £ is strictly radially decreasing with respect to some zg € R", and
1
V) > . 5.6
©2 5 (56)

Indeed, £ € W2P(R™) for every p > 2 thanks to the Calderon-Zygmund theorem, ||¢||1» <
l€llre < o0 (as 0 < & < 1 on R™), and |[W'(r)|,|V'(r)] < Ct for all » € [0,1]. Since
¢ € W2P(R™) we have enough regularity to test (5.5) with ¢ = X-V¢ for X (z) = n(z/R) z,
n a cut-off function between By and Bg, and R > 0, and deduce that (see [LM89], or [MR24,
Step five, Proof of Theorem 2.1], for the details)

nOV(E) = n AC.(€) — 2¢ /R Ve, (5.7)

Since £ # 0 and n > 2, the right-hand side of (5.7) is strictly positive, thus proving
that ¢ > 0. Moreover, since & € W2P(R"), we have that £(x) — 0 as |z| — oo, so that
the moving planes method of [GNN81] can be applied (see for example [MR24, Theorem
6.2-(i)]) to deduce that ¢ is strictly radially decreasing with respect to some zy € R™.

We finally prove (5.6). If n > 3, then we can combine (5.7) with (1.5) to find
nlV(E) > (n—2) AC.(€) > (n — 2) nwl/mV(&)n=—1/m"

which immediately gives (5.6). In the case n = 2, we argue as follows. We test (5.5) with
or € for @r, € C2°(By42;[0,1]) with pp =1 on By and [Vpi| < 1p,_ ,\p, for each k € N.
In this way we find

2 [ auiveP <2t [ evelVal+ [ WO +ela V(o).

Letting £ — oo (and using monotone convergence for all the integrals but the one involving
W', which may be negative, and is dealt with by dominated convergence), we find that

22 [ v < [ ewie)+eteve).
R” R”
Thanks to (1.2) there is dp > 0 such that W/(r) < 0 for all r» € [1 — ¢, 1] and 7 |[W'(r)| <

Cr? < CW(r) for all r € [0, 1]. Therefore, r W’(r) < C W (r) for all r € [0,1], and, taking
also into account that r V'(r) < C'V(r) for all r € [0, 1], we deduce that

92 /R veP < o {=0ve) +/nW(§)}. (5.8)
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Since, when n = 2, (5.7) boils down to e/V(§) = fR” ), we have finally proved
ClV(€) > AC-(§). Again by (1.5), as in the case n > 3, we deduce (5.6).
3

Step two: We now begin the proof of (5.1), (5.2), (5.3), and (5.4) by discussing a com-
pactness argument aimed at “extracting one bubble” from w(t;) as t; — oco. In later steps
we will of course discuss the iteration of this argument.

We begin by recalling that, by Theorem 1.2-(i,ii), for all p > 2 and « € (0, 1) we have
Sup{llu w2 @y, [u®)llcre @y, Ac[u@)]]} < oo, (5.9)
SUP{HU Mlwse@ey, lu()]lc2e@ny} < oo (5.10)
By (5.9), supgn u(t) is achieved for every ¢ > 0, and we actually claim that

nﬁ%xu(t) > min { ! <W)(n_l)m} , vt > 0. (5.11)

Indeed, setting for brevity 8(t) = maxgn u(t), if 5(¢t) < 1/2, then we can use the elementary
estimate

V(r) < Cr2/=h < 0 p2/=0 02 < 0 p2/ =D iy Vr e [0,1/2],
to deduce from Theorem 1.2-(iii,iv) that, for all ¢ > 0,

L = V) <O [ u®) "D W(u(t)) < €)Y "V e AC (u(t))

Rn
< OB e AC(up) -

This proves (5.11). Combining (5.11) with (5.9) we find By = So(e,ug) € (0,1/2] and
ro = 10(g,up) > 0 such that for each t > 0 there is x; € R™ with the property that

u(t) > Bo on By, (z¢). (5.12)

In particular, given ¢; — oo as j — oo, then, thanks to (5.9), (5.10) and (5.12), and up
to extracting subsequences, we can find £. € R, & € Ny>2W3P(R™;[0,1]) \ {0}, and a

sequence (z}); in R™ such that, as j — oo,

J

lim A [u(t;)] = £, (5.13)
j—00

T ml)[u(tj)] — & weakly in W3P(R") as j — oo, (5.14)
]lig.lo HT 1_)[u(tj)] - £1HW21P(BR) =0, Vp>2,VR > 0. (5.15)

By Theorem 1.2-(vi), if we first take ¢t = ¢; in
Opu(t) = 2% Au(t) — W' (u(t)) + e Acfu(®)] V' (u(t)) on R™, (5.16)
and then let 5 — oo, we deduce that
262 A& =W'(&) — el V(&) onR".
By step one, we conclude that /. > 0, that & is strictly radially decreasing, and that

1

(5.17)

Step three: We now iterate the construction of step two. Let us consider the following
statement, depending on k € N:
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(S)k: There are {(m;)] k_| sequences in R™ with |x; = a;g\ — oo as j — oo (i # (), and
there are {fi}le radially symmetric decreasing functions solving (5.2), such that

k
Y v <1, (5.18)
=1

and, for each i =1, ..., k,
T(_xi‘)[u(tj)] — & weakly in W3P(R") as j — oo,
J
hquﬂ@m@n—@mwﬂ&a:m VR >0,Vp>2. (5.19)

Jj—00

Notice that if (S); holds with equality in (5.18) for some k € N, then the theorem is
proved (up to showing the validity of (5.4)) with M = k. We also notice that, in step two,
we have proved that (S); holds. In this step we prove that if (S); holds for some k € N
with strict sign in (5.18), that is, with

k

d VG <1,

i=1

then, up to extracting a subsequence in j, we can find (:c?“) j and &1 such that (S)g41

holds. Since, by step one, V(&;) > (1/C ¢.)" for each i = 1,...,k + 1, we conclude that, for
some M € N, (S)as must hold with equality in (5.18).

So let us consider k € N such that (S); holds with strict sign in (5.18), and let m =
¥ V(&). Given h € N, let

k
Al = Bu(a?).
1=1

By (5.19), for every h € N there is j(h) € N such that

) 1-— . . .
V(u(ty)s Bu(@}) 2 V(€ Br) = 5= Vi= 1Lk 2 (),

so that if, j > j(h),

k k
1—-m .
l-m < 1-) V(&:By) < Q—H—ZWWﬁ&%»
i=1 i=1
1-m n
= V)R A,
that is
1-m n h . .
T <V(ultiR"\AY, VheN,Vj > j(h),

If we now set

h
B = max u(t;

then, either ,th > 1/2 or, by arguing as in step two, for every h € N and j > j(h),

1—m
2

SV@K%%R”\AﬁfECU?VKWJ)/‘ W (u(t;)) < C(8)*/ "D e AC.(uo) ,
R\ A%

that is, for every h € N and j > j(h),
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In particular, up to extracting a subsequence in j, for each j we can find $?+1 € R” such
that

Jinf et - > g, () > B Vs
and then, thanks to (5.9), we can find r, > 0 such that

ut) = 2 o @), vy,

Hence, by (5.10), there exists &x11 € Nyz2W3P(R™;[0,1]) \ {0} such that

T s k+1)[u(t]’)] — &1 weakly in W3P(R™) as j — oo, (5.20)
]113010 [ M)[u(tj)] - ngHWQ,p(BR) =0, VR>0,Yp>2, (5.21)

and by the same argument of step two we see that &1 satisfies

262 Ay = W (Ey1) — el V' (§g11) on R™,
and thus

1
> .
V(1) > Cin

We have thus proved the desired induction step.

(5.22)

Step four: We have so far proved the existence of M € N, /. > 0, {(x ) M —, sequences in
R", and {&}ij‘il radially symmetric decreasing functions on R™ such that, up to extracting
a subsequence, (5.1), and (5.2) hold, together with part of (5.3) (i.e., 1 = S"M V(&)),
and

T(_ri)[u(tj)] — & weakly in W3P(R™) as j — oo,

lim ||7,_ i_)[u(tj)] — &HWM(BR) =0, VR>0,p>2,i=1,..,.M. (523)

j—00
To complete the proof of (5.3) we just need to notice that, by (5.23), for every R > 0
M

M
ZACE(&;BR) < hmmfZAC s [ult)); BR)_hmmfZAC (t;); Br(al))

J—00 J]—00

— liminf AC, (u(tj); U BR(x;l)) < AC.(uq)

j—00 ~
where in the last equality we have used |x; — m§| — o0 as j — oo if i # £, and in the last
inequality we have used the monotonicity of ¢ — AC.(u(t)). By arbitrariness of R, we
have completed the proof of (5.3). We are thus left to prove (5.4). In this step, we shall
prove a slightly weaker statement, namely

M
i [t 3
=1

We will then improve (5.24) to (5.4) in step five. (This improvement is of crucial impor-
tance in discussing convergence to equilibrium of the flow.) We begin the proof of (5.24)
by showing that, with n’ =n/(n — 1),

=0, Vp>2. 5.24
—— p> (5.24)

lim |lu(t;) — Vj |l 2w (gey = 0, where v; = ZT i[&] - (5.25)

J—00

Indeed, for every ¢ > 0 we can find R > 0 such that
Vg Br) > (1— ) V(&),  Vi=1,..,M. (5.26)
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Setting AR R™ \ UM, Bp(x ) for j large enough to have Br(x )ﬂ BR(azg) =0 (i #1),

we have

1 TL TL TL TL
sar L ) = ol g/A [t P+ oy +Z/ u(ty) = 7,5 6

S f Sl

i
We first notice that, since 7> < C'V(r) for all r € [0,1],,

12n/ 2n’ 1e12n)
[ < Z/ I[P < O(M >Z/R\BR(M|TZ;[@H

J

(5.27)

M
< Z [, VIE) SCODE Y VE) = COe: (6525)
similarly,
1 , M ,
& e < /. V1) = 1= 3V (ulty ) Bate)
M M
= Y V(&) = V(u(ty); Br(z}) = > V(&) = V(r_:[u(ty)]; Br)
i=1 =1
so that, by (5.23),
M
limsup/ u(t;)* < C Y V(R \ Bg) <CMo. (5.29)
jooo JAF i=1
Coming to the last term in (5.27) we see that
M 2
T <C(M e[| 5.30
Z/B . ; el < o >;;/J§R(w§)\x[zsg1| (5.30)

ZZ/ e

=1 l#i R(x —z
where the last integral converges to zero since |:133 — a:§| — 0 as j — oo by ¢ # /¢, and since
& € L*(R™). Finally, since 2n/ > 2 we can use (5.23) to address the second integral in
(5.27), and conclude from (5.27), (5.28), (5.29) and (5.30) that

lim sup [Ju(t;) — V|l pon gny < C(M) 7, Vo >0,
Jj—00

that is (5.25). Now, by (3.3) we have that
(k) = vl p2(amy < C0) { AC=(u(ty)) + V(ulty)) + Y MAC&) + V(&) | < Cle,uo).

i=1
so that (5.25) implies
Jim, [u(t;) = vjllLe@ny =0,  Vp>2. (5.31)
We finally recall that given k, k1, ks € N and p, p1,p2 € [1, 00] related by k = 0 k1 +(1—0) k2
and (1/p) = (0/p1) + (1 — 0)/pa for some 6 € (0, 1), then we have

HfHWk P(R™) <C HfHWh P1(Rn) ”f| Wkg P2 (R™)
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for every f € WkPL(R™) N WF2P2(R"™) and with a constant C' depending only on n, p1,
p2, k1 and ky. By combining this interpolation inequality (with £ = 1,2, ky = 0, ko = 3,
any p; > 2 and pe > 2) with (5.31) and the uniform W3P-bounds satisfied by u(t;) (recall
(5.10)) and each of the &;’s, we conclude the proof of (5.24).

Step five: To complete the proof of (5.4) we need to prove the W!2-convergence stated in
(5.24), that is

—0. 32
wism = (5.32)

M
lim Hu(t]) — Z%; [i]
i=1

J—00

To this end we set, for the sake of brevity,

M M
uj =u(t;), v ZZTQE;[&'], wj = uj — v =u(t)) = Y 7,
=1 3

as well as

Z(r)y=W'(r)—ct.V'(r), Vr e [0,1].
If we multiply by w; in €2(8yu; —2 Auj) = —Z(u;)+e (b — Aefuy]) V/(uy) and in 22 Avj =
Ei]‘il Z (Tx; [¢i]), and we then add the resulting identities, we obtain

—2¢? wj ij = —¢2 W 8tu]' +e€ (55 — e [’LL]]) wj V/(Uj) (5.33)
M
+uy{ = 2(u)) + Y Z(r 6 }
=1

By (3.3), V(uj) = 1, AC:(u;) < ACc(up), V(&) < 1, and AC.(&) < AC.(up) we have
[wjllp2@ny < C(e,u0), so that Jw;| < M +1 on R" and (5.31) imply

ij”LQ(R") < O(E,UO, M) 5 ]1i>nolo ”ijLp(Rn) = O, Vp > 2. (534)

Combining (5.34) and 0 < V'(u;) < Cu?”l_l with (5.33) and the Holder inequality, we
thus find

/Rn [Vw;|* < Cle,ug, M) [|8sujl| 2wy + C(e, u0) | e = Aclug]| [1wjl] Lon gy

M
+/nwj{_Z(“j)+ZZ(Tx;[§i])}- (5.35)
i=1

where we have also used ||u(t)]|2n ®ny < C (e,up) for all t > 0. The first two terms on
the right-hand side of (5.35) converge to zero as j — 0o, respectively, thanks to Theorem
1.2-(vi) and to (5.1) and (5.34). To deal with the third term on the right hand side of
(5.35), we consider o > 0 and pick R > 0 as in (5.26), so that, as proved in (5.28) and
(5.29), we have

M
/ ZTI; (& < Cc(M)o, limsup/ u?”, <C(M)o, (5.36)
At jooo JAF
where Af =R"\UM,B R(a:é) Moreover, up to further increase the value of R we can
ensure that
. HlaXM ||£i||LP(R”) < C(p) o, Vp > 2, (537)

as well as
€] < k(e) on R™\ Bpg, where k(g) > 0 is s.t. Z'(r) > k(e) for all r € [0, &] . (5.38)

(Notice that the existence of k(e) is guaranteed by W”(0) > 0, V"(0) = 0, and |[¢| < C(up),
which in turn follows from sup; |A:[u;]| < C(ug) (recall Theorem 1.2-(ii)) and (5.1).
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Now, provided j is large enough depending on R (thus on o), {Af,BR(:Eg) M is a
partition of R”, that we can use to decompose the third term on the right hand side of
(5.35). We begin by working with the integration over Af, that we decompose by assigning
a privileged role to &1, and writing

M
/. Ju{ =2+ 206D} = / , (= mgle) (Zlrgle) - Z(0)
M M
_/R Z Tmﬁ[gf] { - Z(uj) + ZZ(TxZ [52])} - /R (uj - szl- [51]) Z Z(Trﬁ[gf])
A =2 i=1 45 (=2
< [ (6 - ale) (Z(rle]) - Z(w) (5:39)
AR ;

+C(M) |max 1€ill L2(rm\ BR) nax {Ilusll 2rmys 1€ ll L2(rmy }

where we have used |Z(r)| < C'r for all r € [0,1]. Now by the properties of W and V' we
have

Z(r)—Z(s)=Z'(s) (r —s) +O(r —s)>* =1, Vr,sel0,1], (5.40)
so that by plugging s = & and r = u; in (5.40), and by recalling that, thanks to (5.38),
Z'(t1[&1]) > k(e) on Af,
J

/AR (wj = ml&]) (Z(ral&d]) = Z(w;)) (5.41)

J

</ , o= mgl6)* Z gl + © / o=l

<) [ (=maa)*+0 [y —malel

J

Now, for every p > 2,

M M
n o= mlell - / o] <om 3 /. I6F SO 3 6w (542

so that, combining (5.41) and (5.42) with (5.39), we finally conclude that
M
o { -2+ X 20l6)} < o) [k +owane.
i

R
i=1 Aj

Going back to (5.35) we have proved that

M M
[wukene [ DS / RCIEE RSO D

+Oj+C(M)O'
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where o; — 0 as j — 0o. Next we observe that

/BR(:cl>wj{ Z(uj) +ZZTZ§Z }
M
<C/ ‘uj_Tx;[é‘l”—l—ZTr;[fl]}{Uj‘i‘Z‘Tx?[gk]}
=2
<0112a&g]<w{||ug||L2 ||5z||L2}{/B (zl_)| i = malell +Z/ (a})
gC(s,uo,M){/ |T_ ol [uj] — & +Z/

where the last two integrals converge to zero as j — oo thanks to (5.23), & € L? and
|:131 — a:k| — 00 as j — oo if k # 1. Of course we can repeat this same argument with any
other Br(x ) with ¢ = 2,..., M, and go back to (5.43) to conclude that

/ \Vaw;|* + k(e) / w]2- <o +C(M)o. (5.44)
R™ AR

J

R(z —95

We finally conclude the proof of (5.32) since, for each i =1, ..., M, we have

2 2
wi < 2 / |u; gz I°+2 /
/BR<z;'-> ’ Br(x}) 2. Br(a')

k#i
= 2”7'—:c [u;] — &HL? (Br) +2 ZkaHp (Br(zi—ak))
k#i
where the right hand side converges to zero as j — oo by the same arguments used in the
proof of (5.44). This concludes the proof of (5.32).

Step siz: We finally prove that if sptug CC R", then M = 1. We use the moving
plane method, following an argument in [Fei97, Theorem 1.2]. Let sy > 0 be such that
sptug C Bs,(0). For s > sq, let Hy = {x € R"" . 1 > s}, and define

pslv](x) = v(?s — T1,T9, ...,xn+1) , Ve e R"M v R S R.
In this way, us(t) = ps[u(t)] solves

g2 (Opus — 2 Aug) = =W (us) 4 € Acfus (8)] V7 (us) on R" x (0,00),
with initial datum us(0) = ps[u(0)] = ps[uo]. Since, trivially, A\ [us(t)] = Ac[u(t)] for all
t > 0, we have that v; = us — u solves
g2 (Orvs — 2 Avg) = h(z,t), on R" x (0,00),

with v5(0) = ps[ug] — uo and

h(z,t) = W' (u) — W' (us) + e Au®)] (V' (us) — V'(u)) = c(z,t) vs
for some ¢ € L*°(R™ x (0,00)). Since sptug C Bs,(0) and s > s imply that vs(0) > 0 on
H,, by the parabolic maximum principle [Lie96, Lemma 2.3] we deduce that vs(¢) > 0 on

H, for all t > 0. In particular, if A > s and (z2,...,2p4+1) € R™, then the non-negativity of
vs(t) at (h,xa,...,xn41) € Hg implies that
0 < lim vs(h, T2, ..., Tpt1,t)
h—sst h—s
w(2s — hyxa, .oy Tpy1,t) — ulh, o, ooy Tpyr, t)
h—st h—s

= —ey - Vu(s, 9, ..., Tnt1,t) .
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We have thus proved that e; - Vu(t) < 0 on H; for every s > sg. By arbitrariness of s > s
and of the choice of the direction with respect to which we reflect u(t), we conclude that

é—| Vu(z,t) <0,  VoeR™\ B, (0),t>0. (5.45)
By (5.10), for every t > 0, u(z,t) — 0 as |z| — oco. Now pick a sequence ¢t; — oo such that
(5.24) holds. Since m = maxj<;<p Supgn & > 0, if M > 2, then the fact that for i # k we
have |x; — x?\ — 00 as j — oo, combined with (5.24), implies that, for every R > 0, there
is j(R) € N such that if j > j(R) then
sup u(tj) > n
Rn+1\Bp 2

This leads to a contradiction with w(x,t;) — 0 as |z| — oo. Therefore M = 1 and, by
a similar argument, (5.45) is also seen to imply the boundedness of (mjl-)j, and thus its
convergence modulo a further subsequence extraction. U

6. SUBSEQUENTIAL BUBBLING INTO DIFFUSED BALLS (PROOF OF THEOREM 1.4)

Proof of Theorem 1.4. We start by noticing that, thanks to (1.7), we have

N\Il(e,%) >onw/P N YN > 0.

In particular, if M is the least integer such that nwi/ " Mé/ "> fRn |[Vug|, then by

AC:(up) = 2 [zn |[Vug| we can find e, > 0 (depending on ug) such that

1
M, \If(s, —) > ACo(ug),  Vee (0,e). (6.1)
Moy
We shall prove the theorem for every solution u(t) of (DF) corresponding to € < ¢fj, where
g = min {E*, U_lo/n} , (6.2)
M

for some suitably small universal constant oy to be the determined below.
Step one: We prove the existence of a universal constant o such that
U(o,1) > ¥(e, 1), Ve < min{og, 0} .

We shall take oy < €, so that, thanks to (2.4), we will be able to focus directly on the
case when ¢ < g9 < 0. Should the the claim fail in this case, we could then find sequences
(¢5)j and (oj); with e; — 0T as j — oo and

oj > €5, \If(Uj,l) < \I/(Ej,l), Vi e N. (6.3)

For each j we denote by u; a minimizer of ¥(o;, 1), and notice that, by (2.3) and up to
extracting a subsequence in j, there is o, € [0, 00] such that

lim 0; = 0, € [0,00], lim ¥(o;,1) = lim AC,,(u;) = 2 ¢iso(n) - (6.4)

J—0 J—00 j—o0
We can immediately exclude that o, = 0 thanks to (2.4) and (6.3). If o, € (0,00), then a
minor modification of the elementary compactness argument of [MNR23, Proof of Theorem
A1, steps one and two] shows that, up to extracting subsequences, there is a minimizer
uy in (o, 1) such that u; — u, in L{ (R™). In particular, by combining (2.2) with (6.4)
we find that

2 Ciso(n) < ¥(oy,1) = ACy, (uy) < liminf AC, (u;) = lim V(oj,1) = 2ci50(n),

j—00 J j—>00
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a contradiction. We are thus left with the possibility that o, = 4+00. To obtain a contra-
diction, we notice that, by 1 =V(u;) = [|®(u;)[|Ln/(n-1) (mn), We have

ACUj ('LL])
2

In particular, by a standard compactness argument (see, e.g., [FMP07, Theorem A.1])),

for some a,7 > 0 and up to extracting a subsequence, ®(u;) — alpg, in L™~ D(R")

as j — oo. Setting b = ® !(a) we have u; — blp, in Li (R"™), so that, for every
p € C(R"),

Ciso(n) < |D[®(uj)]|(R™) < — Ciso(n) as j — oo.

bip, Ve = lim / u; Vo < lloll e @y 1V 2 am)
Rn J]—00 n

where ||V r2@mny < ACs (uj)/aj — 0 as j — oo thanks to 0; — +o00. In summary,
|D(b1p,)|(R™) = 0 S0 that 0=0b=®"1(a), and thus a = ®(0) = 0, against a > 0.

Step two: Given a sequence t; — 0o as j — 00, we want to show that, up to extracting a
subsequence, there is M € N (with M < M) and sequences {(z ) M with \m —mk\ — 00
as j — oo (i # k), such that, for all p > 2,

M
Jim [u(t;) - 27 Cean] | aveoomprn e =9 (6.5)

By Theorem 1.3, we know that (6.5) holds if in place of (. ; /5; we have some &;,i = 1,..., M,
solving, for a same /. > 0,

22 A& =W'(&) —el V(&) on R”, (6.6)

with AC.(ug) > Zf\il AC.(&;) and 1 = Zf\il V(&). We set for brevity m; = V(§;) and
assume without loss of generality that m; > m;y1. Our goal is thus proving the existence
of z; € R™ such that & = 7.,[(. 1 /p] for each i.

We first notice that it must be m; > 1/My. Indeed, should this not be the case, then
using also step one and the fact that e < ¢ implies EMS /n < 09, we would have
1
> M (5/m1/n, )>\I/<5M1/" ) Vi.
i

We could then combine these inequalities with AC.(ug) > Zf\il AC.(&) and (2.1) to find
that

M M
AC.(up) > Z U(e,m;) = Zmz(.n_l)/nlll<€/mil/n,l)
i=1

=1

Mé/n Zmz (E/’I’)’Ll/n, ) > Ml/n l/n Zmz
1=1

= MM 1) = My MW 1/ My) = My W(e, 1/My)

V

thus leading to a contradiction with (6.1).

We can thus assume that m; > 1/Mj. By arguing as in step one in the proof of Theorem
1.3 (see, in particular, the proof of (5.7)), we see that (6.6) implies

nlem; =nl V(&) =nAC(&) —2¢ /Rn V&)
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By (6.1), we find

M
ele <Y AC(&) < e AC(ug) < e My" W(e My/™,1).

i=1
By sMol/n < 0g and by step one we also have U(e Mol/n, 1) < ¥(0p,1), so that
E&; < (1) \I/(O'(), 1) .

Since 0 ¥(0,1) — 0 as 0 — 01, we conclude that, up to further decreasing the value of oy,
we can guarantee € /. < vy with 1y as in Theorem W-(ii). In particular, for each i there
exists z; € R™ such that

gi = Tz [Ca,mi] s Ea = Ae,mi .
Since /. is independent of i, £, = A.,,, implies that m; = m; for all . Therefore 1 =
Ef‘il m; gives my = 1/M, and the proof that &; = 7.,[C.1/u] for each i is complete.

Conclusion: We are left to prove that M is uniquely determined by the relation

MY(e,1/M) = tli)ngoACE(u(t)). (6.7)

Since M < M, and <€M01/n < 09 < g9 we know that M € (0,(go/e)"). To conclude that
(6.7) uniquely characterizes M we are going to prove that

Iy . . . . €0\"
T T \If(s, —) is strictly increasing on (0, (—) ) ,
x €

which, in turn, is equivalent to showing that = — W(e, x)/x is strictly decreasing on
((e/20)™, 00).

Let us set f(x) = ¥(e,x) so that, by (2.5), f is concave on (0,00) and strictly concave
on (a,00) (with a = (£/g9)™). Since f(0") > 0 we deduce from f(0") < f(z)+ f'(z)(0—=x)
for all z > 0 that = f/(x) < f(z) for all x > 0. In particular,

@ > f'(a) > f(z) VYz>a. (6.8)

If we now use first f(a) < f(x) + f'(z)(a — x) for all z > a, and then (6.8), we find that
zfl(z)— flz) <af(z)— fla) <O, Vo >a.

This shows that x — f(z)/z is strictly decreasing on (a, ), as claimed. O

7. STRICT STABILITY OF THE DIFFUSED ISOPERIMETRIC PROBLEM (PROOF OF
THEOREM 1.5)

Proof of Theorem 1.5. We aim at proving the theorem by combining two results. The
first one is the radial case of Theorem 1.5, which was proved in [MR24, Lemma 4.4]: if
e € (0,g9), then

2

Q) 2 5 [ Vol +E, (71)
n €
for every ¢ € WH2(R"™) which is radial with respect to the origin and such that [, V/(¢:) ¢ =
0. The second one is the strict stability of the second variation of the (volume-constrained)
area functional on the unit sphere. By the latter, we mean the following stability result:
Let {A;};en denote the normalized eigenfunctions of the Laplacian on S*~! and let {u; }ien
denote the corresponding eigenvalues listed in increasing order, so that —ASn_lAi = 1; A;
on S"~! for each i, Ag is constant with po = 0, 4;(0) = 6; with p; = (n—1) fori = 1,...,n,
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fin1 > fin and [g, 1 AZ = 1. It is well known (see, e.g. [CL12, Lemma 4.2]) that, for
every a € WhH2(Sn—1y,

/ V" a2 = (n—1)a? >0, ﬁ/‘ a=0, (7.2)
Snfl Snfl
(stability of the sphere with respect to volume-preserving variations) and that
/ IVS" a2 — (n— 1) a2 > ¢(n) / VS a2 + a2, (7.3)
Snfl Snfl

[ a=0. [ a0 -o0. (7.4)

for some positive constant c(n) (strict stability of the sphere with respect to volume-
preserving variations orthogonal to translations). Combining these two stability results
will require some a careful decompositions of functions ¢ satisfying (1.24).

Step one: In this first step we introduce a convenient way to rewrite

Q1)) = [ 2eivel + {TED - v} o, (75)

3

by means of the transformation ) = ¢/¢/, which allows one to relate Q.[(.] to the second
variation of the volume-constrained area functional on the sphere. (This kind of transfor-
mation is inspired by similar computations found in [Ton05, Lell, Gas20].) More precisely,
setting & = x/|z| and denoting by (., {/, etc. the derivatives of the radial profile of (., we
show that if ¢ € W12(R") and, correspondingly, we define 9 € VV11’2(R" \ {0}) by

ocC

o=, (7.6)
then

a.fcle) =2¢ [ (¢ {ivui - ") (1)

Indeed, under (7.6), we have Vi = ¢! V1) + (/1) #, and integrating by parts’ the mixed
term in

Vo> = () Vol + 2 v (& V) + () y?, (7.8)
we find
2 / Y@ vy) = — | Pdiv(C("a)
R Rn
2 11\ 2 2 -1 " n—1 "
= - - . 7.
e [ eelest=a) )

To rewrite the term with ¢/ we make use of 22 A¢. = W'(¢.) —e A. V/({.) on R™, which,
writing A(. in radial coordinates, takes the form

-1
2¢” { c+ (n|x| ) Cé} =W'(¢)—eAV(C). (7.10)
Differentiating (7.10) in the radial direction we thus find
n—-1, n-1

26 {4 Fom = T = () — A V@)

which can be combined into (7.9) to obtain

i ~ _ 2 [ AIN\2 2 1 A1\2 W”(CS)_EAEV”(CE) n—1
2 [ acveve = - [ e [ e (S o)

9This is easily justified since (. and its derivatives all decay exponentially at infinity, see [MR24, Theorem
3.1].
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On combining this last identity with (7.8) and the definition of Q.[(.] we thus find

Qicle) = 2e [ wel+ [ (D ava} e

3
= 2e [ (@PIVUR+ (P

e [wrr- e {PE avrg) v2e
R" R €

|2
[ (o)

which boils down to (7.7) thanks to ¢ = (/.

Step two: We prove that conclusion (1.26) follows from conclusion (1.25). Indeed, arguing
by contradiction, should (1.24) imply (1.25) but not (1.26), then we could find a sequence
(¢); in WH2(R™) such that

[evic=o. [ eve-o. v (711)
[ Vel et v (1.12)
R
lim Q.[¢](¢;) =0. (7.13)
j—00
Having assumed that (1.24) implies (1.25), we could deduce from (7.11) that
€ )
ez g [ (7.14)
RTL
By combining (7.14) with (7.13) we would then find
lim gp? =0, and, hence, by (7.12), lim / Vo> =1. (7.15)
J—00 Rn J—00 Rn

But then, taking into account that (W”((.)/e — A-V"((.)) € L*°(R™), and combining
(7.5) and (7.15), we could conclude that Q.[(.](¢;) = 2¢€ as j — o0, in contradiction with
(7.13).

Step three: By step two, we are left to prove that (1.24) implies (1.25). In this step,
we present an additional reduction. Let Lfad(R”) denote the set of radial functions with
respect to the origin belonging to L*(R"), and let

WLIR™Y) = LZ4(R") nWHA(R™),

ra rad
d Z = L} R"TnWH(RY),
7" = {cpEZ:/nchCEZO}.
We prove that if
il =S [ ez, (7.16)

then (1.24) implies (1.25) (and the theorem is proved).
To begin with, denoting by ¢raq and ¢, the L%projections of ¢ € W12(R™) on,
respectively, Wl’Q(R”) and Z, so that ¢ = ppaq + gorlad, we notice that

rad

Q:[C)(0) = QelCel(Praa) + QeC)(Paa), Vo € WHA(R™). (7.17)
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Indeed,

W(¢)

Qs [Ca] (Sprada Soi_id) = / 2e vSorad : v@i}d + (T - As V”(Ce))sorad Qpﬂzxd

= [ {-2e 80+ (- v (@) puaa i =0,

where in the last identity we have used that gortd € Z and the fact that the function in
the curly bracket is radial.

Next, we observe that the orthogonality relations in (1.24) can be equivalently reformu-
lated as follows for any ¢ € WH2(R™):

/ V() =0 if and only if / V'(C.) oraqa = 0, (7.18)
/ eV =0 if and only if / 0t V=0, (7.19)
n Rn
since V'(() € L2 4(R™), V(. = (L &, and [p, ¢ = 0 for all ¢ € L2 ;(R™). In summary,

by combining in the order (7.17), (7.1) applied to ¢yaq (as we can do thanks to (7.18)) and
(7.16) to -, (as we can do since o, € Z* by (8.11)) we deduce that

QulG9) = QI + Qlpha) = = [ (pmaP+ 5 [ b2 5 [ &

that is (1.25).

Step four: We now begin the proof of (7.16) by introducing a Fourier decomposition of
¢ € WH2(R") that is particularly convenient when ¢ € Z*. Since the radial Laplacian
on R™, i.e. the map B(r) — B"(r)+ (n — 1) B'(r)/r , defines a self-adjoint operator on
L?((0,00),r" 1 dr), we can consider an orthonormal basis {Bj}52, of L2((0,00),r" L dr)
made up of its eigenfunctions. Since L?(S"~1) and L?((0, 00), "~ ! dr) are separable Hilbert
spaces, it follows that {A4; ® B;}75_o is an orthonormal basis of L*(K; k), where K =
S"! x (0,00) and k = (H"1.S" 1) x (#"~!1dr). In particular, since ® : K — R",
®(0,r) = Or, naturally induces an isometry between L?(R") and L?(K, k), we conclude
that {(4; ® B;) o ®}75_ is an orthonormal basis of L%(R™). Moreover, each a;; = (A; ®
Bj) o ® is an eigenfunction of the Laplacian on R", so that the orthogonality of a;; and
apk in L2(R™) (which holds true for i # h or j # k) implies the orthogonality of a;; and
apk in W01’2(R”). In summary, whenever ¢ € W5H2(R") we have

® = Z QOZ']' CLZ']' in WLQ(R”) s

i,j=0
where ¢;; = / ajp = . Ai(2) Bj(|z|) p(z) dz .
If we define ¢} € W1L2(R") and ¢; € WH2(R") by

oi(@) =Y @i Bi(lz]),  wilx) = Ai(@)¢}(x), xeR",
=0
then we have -
p=> ¢  inWHR"), (7.20)
i=0

as well as

Vel® = /vﬂ, /f2= /f§, 7.21
Lower =3 [ rvar. [ r#=3 ] 1o (721)
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for every p € WLH2(R™) and f € L°°(R™) that is either radial or angular (i.e., fo® depends
either on 7 or on # only). We can also notice that

wo =5 =0 Vo e Z, (7.22)
and then, since Ag is a constant, if ¢ € Z, then for every j € N

oo = [ An() Bylel) p(o)do = Ao [ By(lal) pla) da =0

In particular, by applying (7.21) with f = (W"(¢.)/e) — A: V"({:) and (7.22) we find

Qc[CI(p) =D Qlellpi), VeeZ. (7.23)
=1

We make two claims:

Claim one: if ¢ € Z* and i > n + 1, then
2

Q#&MZ%/ e (7.24)

R ]2

Claim two: if p € Z* and i = 1,...,n, then
1 2
elSe i) = i 7.25
Qe = 52 [ ¢ (7.25)

We first show how to complete the proof of the theorem starting from these two claims,
and then we prove the claims themselves.

Conclusion of the theorem from the claims: Since W”(0) > 0, (¢ — 0 as |z| — oo (uni-
formly on € € (0,2¢)), and e Ac — 0 as e — 0, we see that there are universal constants
k and R such that

W"(() —eA V() >k, on R"\ Bg, , (7.26)
for every ¢ € (0,e0). By (7.24),
2
[ o@=Shale),  viznel, (1.27)
Br, €
so that, combining (7.22), (7.27) and (7.25) we conclude that
C *
| e<Zoldew, wez. (7.28)
Br, €

Now let L = maxp, [W"(()—eAV"(()] I
K
ﬁ 902 < / @27
Rn\BRl BRl
then we deduce [p, ¢* < (C/e) Q:[¢](¢) by (7.28); if, instead,
= 0 > / 0, (7.29)
2L Rn\BRl BRl

then by (7.26) and (7.29) we see that
w” € " L
QelCllp) = /W{A—Aav (ge)}go?Zg/R @2_2/3 2

€
K 2

5 - 2
2¢e RR\BRI
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which combined with (7.28) gives again [, ¢* < (C/e) Q:[¢](¢), as desired. We are thus
left to prove the two claims.

Proof of claim one: Setting 1; = ¢; /¢, on R™, we see that ¢;(r8) = A;(0)&(r) (where
= ¢} /¢2), with

V) = v a0 S5 4 o).

Since ¢ > n 4 1 we can exploit (7.3) which, comblned with (7.7), gives

QE[C;];%’) _ /Rn(cé)z {|V1/Ji|2 _ (773;21)%2}
[ eor {85 [ ar - - a) sger [ b ar
w | e {(B0E L v AR a) eor [ At tar

2 2 2
— ) /Rn(gé)z {IV?,Z%IQ n \ZTQ} > ¢(n) /n((§)2 \ZTQ =¢(n) /Rn ‘ifz,
that is (7.24).

v

v

Proof of claim two: Since ¢ € Z* we have, for each i = 1, ..., n,

0:/ acZCE Z/ szeSOk,

which, combined with ¢y (x) = Ak (Z) ¢;(|z|) = c(n) 1 i (|x]), gives

/ Oi(r) CL(ryrtdr =0, Vi=1,...,n. (7.30)
0
We now prove, if ¢ € Z*, then
1 . )
Qo) = g [ (P Visln. (7.31)

Notice that (7.31) implies (7.25) since ¢; < c¢(n) ¢} fori=1,...,n

We prove (7.31) by contradiction, following closely the proof of [MR24, Lemma 4.4].
Indeed, should (7.31) fail, then there would be sequences £; — 07 as j — oo and (g;); in
Z* such that (up to rotations taking i; € {1,...,n} to i; = 1 for all j)

= =1, v, (732
7 JR™

| i e tar =0, i, (7.33)
]E)H;O QEj [CEJ]((SOJ)l) =0. (734)

Setting R = 1/w,1~/" and
Bi(s) = (¢;)1(Ro +¢€js), ni(s) = ¢, (Ro +¢55), s €R,
we can rewrite (7.32) and (7.33) as

/ﬁ] (Ro+ejs)" tds=1, Vg, (7.35)
/1 i) n(s) (Bo+e55)" " ds =0, v, (7.36)
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where I; = (—Rpy/ej,00). Concerning (7.34) we notice that by (¢;)1(x) = A1(2) (¢;)7(|z])
it follows that

n—1 %\ 2 *
IV(el? = V5" Ad? ((9)1)" + AT [V ()il
so that, as ||A1[[2gn-1) =1,

sj/R V()1 |2>5J/ A2/ e ldr—/ﬁj (Ro+¢;5)" tds.

Again by Fubini’s theorem and thanks to [|A1[[z2(gn-1) = 1 we find

/n {M - AE]’ VH(CEJ')} (@j)% - /I {W”(nj) —&j Afj V”(Uj)} ’BJQ (RO TEj S)n_l ds

&j
We can thus deduce from (7.34) that

tm | ((5;)2 +{W" () — &5 Ae, V" (m)} ﬁf) (Ro+¢;8)" Lds =0; (7.37)

j—o0

and, in fact, by taking into account that e; A, — 0% as j — oo and that [V"| < C on
[0, 1], we see from (7.35) that (7.37) is equivalent to

lim ((5’) W () 5]2) (Ro+e;5)" ds=0. (7.38)
]—)OO ]

In turn, since |W”| < C on [0,1], by combining (7.35) with (7.38) we see that (5;); is
bounded in VV&JE(R) Hence, up to extracting a subsequence, we can find 5 € I/Vlf)cz (R)
such that 8; — 8 weakly in W1h2(R).

In this position, we can repeat verbatim two arguments contained in the proof of [MR24,
Lemma 4.4]. The first argument shows that the sequence of probability measures (p;);
defined by p; = ﬁ? (Ro + ¢ 5)""1ds is in the compactness case of the concentration-
compactness principle, and thus satisfies

Slggo Sl;p ;i (R\ (=s,s)) =0. (7.39)
The second argument shows that
tim [ W) (Ro -+ ds = 3 [ W) 2. (7.40)
J—0o0 I R

where 19(s) = n(s — 79), 1 is the unique solution of —1’ = \/W(n) on R with n(0) = 1/2,
and 10 = [ V'(n(s))n(s) sds.

By (7.39), (7.35), (7.40) and (7.38) we thus find
Ri1 21 7.41
i [ =1, (r.41)
[ 20+ W) 8 <0, (7.42)

By [MR24, Lemma 4.3], (7.42) implies that 3(s 4+ 79) = tn'(s) for some t # 0 (the case
t =0 is ruled out by (7.41)). In other words, 8 = tn.

We now claim that

lim / Bjm; (Ro + &5 s)"tds =Ryt /R B - (7.43)

j—o0 I]
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Indeed, by |n;(s)| < C e 5I/C for s € R and by (7.39) we see that

‘ / ﬂj 77;- (Ro +¢€; S)n_l dS‘
I;\(=s0,50)

1/2

< (/Ij(TI;)? (Ro+¢j5)"" ds) 15 (15 (=s0,50)) 2 < eo(s0)

for some function w, independent of j, such that w(s) — 07 as s — co. Similarly

‘/}R\(_SO . 5776‘ < w(so),
2

and therefore (7.43) follows since, as j — oo, f; — § in Li .(R) and by 17;- — 1, locally
uniformly on R. On combining 5 = ¢ 7 with (7.36) and (7.43) we conclude that

0=tRy [ (.
R
and thus, that n = constant, reaching a contradiction. ]
8. EXPONENTIAL CONVERGENCE TO A SINGLE DIFFUSED BUBBLE (PROOF OF
THEOREM 1.1)

Proof of Theorem 1.1. We are proving the theorem by showing the existence if € € (0, )
and wug is as in the statement, then

-Acs(u(t)) - \IJ(E’ 1)
Hu(t) — Tag [CE] HLQ(Rn)

< Cle,ug) e ) (8.1)
< Cle,up) e /€ YVt >1/C(e, up). (8.2)
By the assumptions on ug, Theorem 1.4 holds with M = 1. In particular, the only
accumulation points for the sequences (AC:(u(t;))); and (A:[u(t;)]); corresponding to any
tj — 0o as j — oo are, respectively, ¥(e, 1) and A, so that we have

Jim AC(u(t) = W(e 1), Jim Afu(t)] = A (83

Step one: We prove that
tliglo Hu(t) = Ta(t) [Ca] H(WI,QOCO)(RTL) =0. (8'4)
where, for each ¢ > 0, we have defined x(t) € R™ so that
Hu(t) - 7—ac(t) [CE]HLQ(RH) < Hu(t) - Tz[gfs] HLQ(RTL) ) Vo € R".

Indeed, by (8.3), if (¢;); is an arbitrary sequence with t; — oo as j — oo, then ((u(t;));
is a minimizing sequence of ¥(e,1). Now, in [MR24, step two, proof of Theorem 2.1] it is
proved that if u; is a minimizing sequence of (e, 1), then, up to extracting subsequences,
there is x € R” such that

jli?;lo [ — Tr[Ce]H(WMmCO)(Rn) =0
By combining this fact with the definition of z(t) we conclude the proof of (8.4).

Step two: We introduce the Fisher information of the flow

T(t) =e / (Ou(t)?,  VE>0, (8.5)

and prove that
T.(t) < Cle,up) e ¢ | Vi >1/C(e,up). (8.6)
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Indeed, by Theorem 1.2-(vi) (see, in particular, (1.18)) we have that Z. € W'(a, co) for
every a > 0, with

9ED _ /R L2e @l + (M ) viw) o). @7)
By W” € Lip[0,1], V" € C%*™][0,1], and 0 < A, < C for all € € (0,0) (recall (2.6)) we
find that, pointwise on R",
W (u(t)) "
(= = AV w®)) - (

{ ‘u(t) — Tx(t) [Ca
£

W (T [Ce])

OB AV () |

<C

]| aln
- Pefu()] = Ac] + u(t) = 7o [}
Combining this inequality with (8.7) we find that

4 L)
dt 2

—c{ G TI“)EE]”C“R” @] = el + [l = T [y /R (Dru()?,

> Q. [y [¢]] (Orult))

so that (8.3) and (8.4) imply the existence, for every n > 0, of a positive constant ¢, =
t«(e,up,n), such that

_% 152(75) > Qclrow [¢]] (Bru(t)) —nZo(t),  Vt>t.. (8.8)

Now let P, denote the projection operator of L?(R™) onto its closed subspace

Vi={pe 2®): [ Vinee= | alrole) e =0}.

n

By Theorem 1.5 we have

Qe [Tay [C]] (Dpu(t)) > % / ) (Pt[ﬁtu(t)])Q, (8.9)

To get a control on Z.(t) we thus need to estimate ||Ozu(t) — Pi[0u(t)]|| 2 mn)-
To this end, let us begin by noticing that, since [, V'(u(t)) dyu(t) = 0 for all t > 0, for
every 0 > 0 there is t; = t1(0,up) > 0 such that
| [ Ve ou®)] < Clu®) - rlellias 10m)z
< 0u(t)] 2@y Vit >ty . (8.10)
On the other hand, testing (DF) with d;u(t) € W22(R") we find that

g? Dpu(t) Ve,u(t) = 22 Au(t) yu(t) — / O (W (u(t)) — A[u(t)] V (u(?)))

Rn Rn n
(notice that A;[u(t)] is a function of ¢ alone, and is not affected by differentiation along e;
here), and since W (u(t)), V (u(t)) € WH2(R") for all t > 0, we conclude that

Opu(t) dyu(t) =2 Au(t) Qu(t) = —2 Vu(t) - 0;(Vu(t)) = — %i|Vu(t))> =0,
Rn Rn Rn R®

for all ¢ > 0. Combining this identity with (8.4) we thus conclude that, up to further

increase the value of ¢; = ¢1(0,ug), we have

‘ /Rn 0 (o) [¢]) @;u(t)‘

IN

Cl0iu(t) — Oimowy [Celll L2 (mmy 10k () || L2 (mm)
< 9 ||8tu(t)||L2(Rn) , Vi>t1,i=1,...,n. (811)

A
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Therefore, by choosing 6 = §(¢) > 0 small enough in terms of the constant C'(¢) appearing
n (8.9), we conclude from (8.10) and (8.11) that, if ¢ > ¢ = t1(d(¢), uo) = t1(g,up), then,
for a positive constant Cy(e) depending only on ¢,

Qe [T4(1) ] (Bpu(t)) > I‘f(g:ié()m, Vt >t . (8.12)

If we now choose n =1/(2Cx(g)) in (8.8), and correspondingly set ¢y = min{ty, .}, then,
we deduce from (8.12) that

AU AT

@2 o
from which (8.6) immediately follows.
Conclusion: By Theorem 1.2-(iv),
AC.(u(T)) — AC.( :—s/ ds/ Ou(s)2, VT >t>0.

Combining this identity with (8.3) and (8.6) we find that, if ¢ > 1/C(e, ug), then
AC(u(t)) — V(e 1) = / Z.(s)ds < C(g,up) / e/ ds < C(e, ug) e HCE)
t t

thus proving (8.1). Next we notice that if 1/C(e,up) < t < T, then by combining the
fundamental theorem of Calculus with the Minkowski inequality, the Holder inequality

and then with (8.6), we obtain
1/2 T 1/2
o) = ey < ( / e <[ ([ oar) " as
t n

O pttk+1 1 2 o t+k+1 1/2
<2 [, (L) asy </ ACCER
k=0 k=0
< / ds/ |Opu(s) 1/2 < C(e,up) Ze—(t+k)/0(a) < Ce,up) e 6@
—o Jttk " k=0
that is
[w(T) — u(t)|| p2gny < Cle,u0) e /C® | VI >t >1/C(e,ug). (8.13)

Now let t; — oo as j — oo: since (u(t;)); is a minimizing sequence of W(e, 1), then, by
the argument in step one and up to extracting a subsequence, there is g € R™ such that
w(ts) = Tao [Cel | L2(mny — 0 @s j — co. By taking ' =t; in (8.13) and letting j — oo in the
corresponding inequality we thus complete the proof of (8.2), and thus, of the theorem. [
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