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SHIFTS MAPS ARE NOT TYPE-PRESERVING

CAROLYN ABBOTT, NICHOLAS MILLER, AND PRIYAM PATEL

ABSTRACT. For a surface S of sufficient complexity, Dehn twists act elliptically
on the arc, curve, and relative arc graph of S. We show that composing a Dehn
twist with a shift map results in a loxodromic isometry of the relative arc graph
A(S,p) for any surface S with an isolated puncture p admitting a shift map.
Therefore, shift maps are not type-preserving.

1. INTRODUCTION

A surface S is finite-type if its fundamental group is finitely generated, and is
otherwise infinite-type. The mapping class group, Map(S), of a finite-type surface is
well studied, especially through its actions on various hyperbolic graphs including
the curve graph, C(S). The most simple mapping class, a Dehn twist about a simple
closed curve, acts elliptically on C(S).

There have been many developments in the study of infinite-type surfaces and
their mapping class groups over the last few years. For an infinite-type surface
S with at least one isolated puncture p, the relative arc graph, A(S,p), plays the
role of C(S) and is defined as follows: the vertices correspond to isotopy classes of
simple arcs that begin and end at p, and edges connect vertices for arcs admitting
disjoint representatives. The subgroup Map(.S, p) of Map(S) that fixes the isolated
puncture p acts on A(S, p) by isometries. A Dehn twist about a simple closed curve
acts elliptically on A(S, p) as well.

This paper fits into a body of work aimed at constructing and classifying all
of the elements of Map(S,p) acting loxodromically on A(S,p) and various other
hyperbolic graphs associated to infinite-type surfaces (see [2, 3, 1, 5, 4]). Our main
result shows that shift maps are not type-preserving in the sense that composing
a Dehn twist with a shift map results in a mapping class thats acts loxodromically
on A(S,p).

Theorem 1.1. Let x be a standard simple closed curve in the biinfinite flute surface
S containing ¢ punctures besides p in its interior. Then g = hT)JC' s a loxodromic
isometry of A(S,p) for all j > 0, unless both £ and j are equal to 1, where h is the
standard shift on S.

For simplicity, we prove the theorem for the biinfinite flute surface S and standard
curves (see Definition 2.6), but the result immediately extends to any surface %
containing an isolated puncture that admits a shift map since the inclusion of
A(S,p) into A(X,p) is a (2,0)—quasi-isometric embedding. There are uncountably
many such surfaces X, which are referred to as surfaces of type S (see [1, Definition
2.6, Lemma 2.7, and Lemma 2.10] for more details). In addition, Lemma 2.7 shows
that we can extend Theorem 1.1 to other simple closed curves as well.

The proof that these mapping classes are loxodromic isometries of A(S, p) uti-
lizes a “starts like” function, which (roughly) measures how long any arc starting
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at p fellow travels arcs in a given collection. The function is then used to bound
distance in A(S,p) from below and produce a quasi-axis for g. This method is
inspired by Bavard’s construction in [2] and that of the authors in [1].
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2. BACKGROUND

2.1. Coding arcs and standard position. Let S be the biinfinite flute surface
with a distinguished isolated puncture p, and let {p;};cz be the countably infinite
discrete collection of all other punctures on S which exit both ends of the cylinder.
We move the distinguished puncture p so that it lies to the right of p_; and to
the left of pg. We also choose one non-isolated end of S to correspond to the left
direction (the accumulation point of p; for i < 0) and one to correspond to the
right direction (the accumulation point of p; for ¢ > 0), which gives a well-defined
notion of a front and back of the cylinder for S.

Just as in [1], we fix a complete hyperbolic metric on S and let By be a horocycle
at a height sufficiently far out the cusp corresponding to pg. Fix a shift map kA on
S whose domain contains exactly the collection {p;} for i € Z and which shifts p;
to pi41 for all ¢ € Z.

Definition 2.1. Define the simple closed curves B; := h’(By) for i € Z. Then B;
is a simple closed curve bounding the puncture p;. We identify each B; with S!
and fix the north pole of each B;.

2.2. Coding arcs. Suppose 7 is an oriented arc on S starting and ending at p. We
code v exactly as in [1]. For the sake of brevity, we give the following examples of
arcs and their codes instead of discussing the code in detail.

Example 2.2. Consider the arcs shown in Figure 1. The elements k € Z shown
under S denote the subscript on the simple closed curves By. The code for «
is Ps0,1,2,2,1,0,Ps, the code for 8 is PsP,P,0,1,2,2,1,0,Ps, the code for = is
given by Ps(—1)5(—2)6(—2)y(—1)4Pu04141,0,Ps, and the code for ¢ is given by
Ps(—1),C(—2)0(—2),C(—1),Ps. Note that Ps indicates that the arc starts or ends
at the puncture p, the subscript o/u corresponds to whether the arc passes over of
under that puncture, and the C in the code for § denotes the fact that § goes to
the back of the surface S.

The appearance of repeated characters in the code of an arc indicates backtrack-
ing in the arc so that we have the following.

Definition 2.3. Let v be an oriented arc on S starting and ending at p. A code
for v is reduced if no two adjacent characters are the same and if the character
immediately following the initial Ps or preceding the terminal Py is not P, ,,.

Note that if a triple appears in the code for an arc, it is reduced to a single character
according to our convention, as only pairs of repeated characters are removed.

Definition 2.4. The code length of an arc «, denoted f.(v), is the number of
characters in a reduced code for ~.
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3 -2 -1 0 1 2 3
F1GURE 1. Arcs on the front of the surface S, whose codes are
given in Example 2.2. The x denotes the puncture p, and the
elements k € Z shown under S denote the subscript on the simple
closed curves By.

Given a string of characters o = aqas . .. a,, we denote by @ the reverse of a, so
that @ = ana,_1...a2a1. If a0 is an arc, then @ is the same arc with the opposite
orientation.

2.3. Spokes. We now introduce spokes, which are special segments on S.

Definition 2.5. A segment is a simple path with at least one endpoint which is
not a puncture, and no endpoints on a puncture other than p. We code a segment
in an analogous way as we do arcs.

Given any essential, separating simple closed curve x on the front of S such that
one connected component of S\ x is a finite-type surface containing the puncture
p, we let g, ; = hT;C'. We call the connected component of S\ x containing p the
interior or inside of x and the other connected component is the outside of x.
Below, we prove some of the technical results in the case where j = 1 for brevity,
which is actually the most difficult case, and refer to g, ; as g, or g for notational
simplicity. All proofs generalize easily to 7 > 1, and in fact simplify a bit.

Definition 2.6. A simple closed curve x on the front of S is standard if it has the
form in Figure 2; we assume that x contains the puncture p in its interior and that
the right-most puncture contained in x is pg. In addition, there are no punctures
“above” . The punctures on the interior of x are called interior punctures.

We first consider curves that can be translated to standard curves by powers of h.

Lemma 2.7. Let x be a simple closed curve on S such that X' is homotopic to
h'(x) which is standard for some i. Then g, and g, are conjugate by a power of
h, and thus, g, is loxodromic with respect to the action of Map(S,p) on A(S,p) if
and only if gy is.

Proof. Fix any simple closed curve x on the front of S containing the puncture p.
If h¥(x) = ¥’ is standard, we see that

W (g )h™" = B'(KT\)h™" = (W' T\ h™") = KT}y = KTy = gy,
which concludes the proof. O

We therefore assume in the remainder of the paper that x is standard. Moreover,
we choose the homotopy representative of x to contain no backtracking. It will be
useful to have a code for y, even though it is not a arc. We define this code in
the usual way, by tracking whether x passes over or under each puncture, always
assuming that y is oriented clockwise. However, since x does not have a well-defined
starting point, such a code is only well-defined up to cyclic permutations. This will
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FIGURE 2. The curve x is a standard simple closed curve on the
front of S containing the puncture p. The purple segments are
spokes, and the sectors are labeled in green.

cause no problems in this paper. For example, a code for the curve x shown in
Figure 6 is P,0,0,Py,—1,—2,—2,—1,P,.

Definition 2.8. For each k such that pj is contained inside y, and for pi, a spoke
(to pg) is a segment whose initial point is p and whose terminal point is the north
pole of By, as in Figure 2. In particular, such a segment passes over all punctures
contained in y between p and pi. We label the spokes o; consecutively, starting
from the right; if there are ¢ punctures on the interior of y, then the spokes are
09,01, -..,0¢. Note that since x is standard, oq is the only spoke whose terminal
point is outside of .

Given a spoke o0y, let P(i) € Z be the index so that o; is a segment from p to
Bp(i, i.e., 0; ends at the simple closed curve corresponding to P(i). If P(i) < —1,
define a code for o; to be Ps(—1)o(—2),... P(i)s. Here, P(i), indicates that the
segment stops at a point on Bp(;. If P(i) = 0, the code for o; is P,0,, while if
P(i) = 1, the code for o; is Ps0,1s.

Definition 2.9. The spokes divide the interior of x into regions which we call
sectors. We denote the sector bounded by o; and ;41 by S; for ¢ =0,..., ¢ —1
and Sy is the sector bounded by o, and gy. See Figure 2.

Definition 2.10. If ¢ > 1, an arc § starting at p initially follows a spoke o; if an
initial portion of the reduced code for § agrees with the code for o; with the last
character replaced with either P(i), or P(i),P(i),. Similarly, we say that an arc
6 initially follows the spoke oy if the initial portion of its reduced code begins with
P,0,1,.

Ezxample 2.11. Consider the arcs (1, 82, B3, 84 in Figure 3. The arc f; starts in
sector S7 and initially follows o1, the arc By starts in sector So and initially follows
o3, the arc f3 starts in sector S4 and initially follows no spoke, while 34 starts in
S1 and initially follows no spoke.

2.4. Standard position. Every arc 7 with reduced code is homotopy equivalent
to an arc 7/ with the same code that satisfies the following properties.

e There is an initial segment 7} of 4 which is contained in a unique sector.

e If v is contained in S; with ¢ > 1, then 7} begins with Ps(—1),... P(i),.
If ¢ = 0, then the arc begins with P,0,.

o If ] is followed by a segment that agrees with the code for x, then 4" does
not intersect x until after this segment.
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FIGURE 3. The arcs in Example 2.11.

e If the character after v; does not agree with the code for y, then the arc
crosses y immediately after traversing .

If § is an arc that begins in sector S; and does not follow ;1 or o;, then we say
§ exits immediately. Such a ¢ can exit immediately in two ways. First, it could go
to the back directly after crossing x. Otherwise, there must be an exterior puncture
q between P(i+ 1) and P(7), and § must contain ¢,. For instance, in Figure 3 the
former way occurs for 83 and the latter way occurs for S4.

3. BLOCKING CANCELLATION

Suppose § begins in S; and initially follows o;11. If ¢ > 1, then by definition
a code for ¢ begins with Ps(—1),...(P(i +1) 4+ 1)oP(i + 1),. If i = 0, then this
code begins with P;0,0,. In particular, because the final character of this code in
either case agrees with that of x, the arc § must follow x clockwise for at least one
character. We say ¢ hooks a puncture if either: (a) ¢ follows y clockwise for less
than one full turn and then has a character k,/, that disagrees with the code for x
such that py is an interior puncture; or (b) if § follows 0,1, loops around P(i + 1),
and then follows 0,41 backwards to p. In (a), we say § hooks the puncture py, while
in (b) we say § hooks the puncture P(i 4 1). See Figure 4. Notice that in (a), ko,
is the first character after § leaves S; that disagrees with the code for y, so we can
think of this as the point where ¢ stops fellow traveling x.

Our strategy will be to understand how the images of arcs begin after iteratively
applying T, and h. In order to do this, we need to understand what kind of
cancellation can occur when we apply T, or h to an arc. The following lemma gives
specific conditions under which there is no cancellation between a particular initial
segment of  and the remainder of §. In the following sections, we will focus only
on initial segments of arcs that fit into one of these categories.

Lemma 3.1. If§ is an arc, then the following hold:

(1) If § hooks a puncture py, then there is no cancellation between the images
under T, of the portion of & before p, and the portion after py.
(2) Suppose & begins in a sector S; and then § either
e exits immediately, so that the character in a reduced code for & imme-
diately after crossing x is either C or q, for some exterior puncture;
or
e follows x counterclockwise for at least one character k., -
Then there is no cancellation between the images under T, of the portion
of 0 before this character and the portion after this character.
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FIGURE 4. Four ways an arc § that initially follows ;41 can hook a
puncture. The first three pictures fit (a), while the last fits (b). The
orange highlighted segments in each of the first three correspond
to the character k,,, in the definition. In the last panel, 4 is fixed
by T). This illustrates part (1) of Lemma 3.1.

(3) If 6 contains the character ko, for any k € [1,00), then there is no cancel-
lation between the images under g of the portion of 0 before k,;,, and the
portion after kg,

(4) If & contains the character ko, for any k € [2,00), then there is no can-
cellation between the images under g~ of the portion of & before koju and
the portion after k.

The proof of this lemma is intuitively straightforward: in each case, the character
that blocks cancellation disagrees with the code for x. When applying T}, to an arc
or segment, a copy of the code for x is inserted into the code for J, representing
the twisting around x. Thus, the only cancellation that can occur in T} (§) is when
the copy of x is inserted into the code for § next to a subsegment of ¥. In (1) and
(2), it is clear that the initial segment does not end with a subsegment of x. For
(3), the additional intuition is that T, fixes the character k,;, because it is not
contained in a code for y, and then A is simply a shift, which does not cause any
additional cancellation. For (4), the reasoning is reversed: h~! does not cause any
cancellation, and then T;l fixes the character h’l(ko/u) = (k—1)o/u, since k > 2.
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FIGURE 5. Tllustration of parts (2) and (3) of Lemma 3.1. Note
that in Case (3), the only cancellation occurs in the green high-
lighted portion.

Rather than giving a lengthy and technical proof of these straightforward facts,
we illustrate the proof of each case; see Figure 4 for case (1) and Figure 5 for cases
(2) and (3).

4. A “STARTS LIKE” FUNCTION

In the remainder of the paper, we will construct an explicit quasi-geodesic axis in
A(S,p) on which g acts by translations and therefore show that g acts loxodromi-
cally on A(S,p). To accomplish this, we will follow a strategy similar to that in
[2, 1], in which a “starts like” function is constructed and used to bound distance
in A(S, p) from below.

We begin by defining the vertices in the quasi-axis for g via the following formula

Py0,1420303u201u00Ps, k=0
(1) g =

gk(a0)7 k 7é 0
where k € Z.

4.1. Defining a “starts like” function. The following two definitions were first
introduced in [1] and inspired by [2]; here they are modified to fit our current
situation.

Definition 4.1. Given any arc v on S, we define the beginning of v, denoted by
4, to be the first |1¢.(y)] — 2 characters in a reduced code for . Recall that code
length was defined in Definition 2.4.

Definition 4.2. Fix any k € Z>o. An arc § starts like oy, if the maximal initial or
the maximal terminal segment of § which agrees with an initial or terminal segment
of oz (not necessarily respectively) has code length at least |10c(ay)] — 2.

The following lemma is a straightforward application of Definition 4.1 and the
definition of ag in Equation (1).

Lemma 4.3. If 0 is disjoint from &g, then § does not contain an instance of x or
X in its reduced code.
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9%(3)

FIGURE 6. The most straightforward situation: after applying g
3 times, we have an arc that begins in Sy and follows og.

Consider the map
(2) o A(S,p) = Zzo,

defined by setting ¢(8) equal to the largest i > 0 such that ¢ starts like ;. If no
such ¢ exists, then set ¢(d) = 0. Using this function, we have the following simple
lemma, where we do not require that j is non-negative.

Lemma 4.4. Suppose an arc 0 starts like a; for some i > 1. Then for any j such
that i + j > 0, the arc g7 () starts like a4 ;.

Proof. First, notice that the arc o is symmetric in the sense that
ag = P50,14,2,3534201,0,Ps = 73,3,7.

By Lemma 3.1(3), the characters 3, and 3, block cancellation. In particular, there
is no cancellation between the first half of oy and the second half. Moreover, any
cancellation that occurs in 73,, the first half of «g, must also occur in 3,7, the
second half of ag. Thus the image of the first half of «q is the first half of «;.
Since the characters 1, and 2, also block cancellation by Lemma 3.1(3) and the
last character of g is 1,, it follows that g(dg) = &1 and that the last character of
& is 2,,. Inductively, we conclude that g(&;) = &;41 and the last character of ¢4 1
is (14 1)y.

To show the lemma, it suffices to prove the result in the special case that j = +1
and i+ 7 > 0. An inductive argument then exhibits the general case. To this end, if
j =1 and ¢ starts like «;, then the initial subsegment of § is given by ¢&;. Moreover,
the terminal character (i + 1), of &;, which must appear in d, blocks cancellation
by Lemma 3.1(3). In particular g(¢;) = ;41 is the initial subsegment of g(d), as
required. Similarly, if j = —1, then since ¢+ j > 0, we have i+ 1 > 2, and therefore
(i + 1), blocks cancellation by Lemma 3.1(4). In particular, g~1(§) will contain
&;_1, as required. O

4.2. A lower bound on the “starts like” function. The goal of this section
is to prove the existence of a uniform M so that given any arc § disjoint from &y,
there exists 0 < k < M such that ¢g¥(d) starts like a;. We begin with an example
that motivates the method of proof; see Figure 6. The arc § shown in the figure
begins in sector Ss and follows o3. An initial subpath is invariant under T, so g(4)
begins in Sy and follows o5. Applying g two more times yields an arc g3(§) that
begins in Sy and follows . The following lemma shows that applying g one final
time ensures that g*(§) begins like ;.

Lemma 4.5. Suppose 0 is an arc which begins in sector Sy and initially follows
og. Then g(9) starts like a.
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FIGURE 7. An example of an arc ¢ as in Lemma 4.5. The arc g(9)
begins by following ¢, and so ¢(g(d)) > 1.

Proof. Since & begins in sector Sy and initially follows o¢, a reduced code for § is
P;0,1,¢" for some ¢’. We may compute the image of P,;0,1,, directly and see that
it agrees with the code for ¢&;; see Figure 7. Thus it remains to show that there
is no cancellation between g(P;001,) and g(¢’) in g(§). The initial character of ¢’
must be either 1,, 2,/,, or C. All of these block cancellation by Lemma 3.1. O

The remainder of this section shows that if § is any arc that is disjoint from ¢y,
applying ¢ sufficiently many times results in an arc which begins in Sy and follows
o¢ so that applying g one more time results in an arc that starts like a;;. Moreover,
we will show that we only need to apply g at most 3¢ + 2 times for this behavior
to occur, where £ is the number of punctures in the interior of y that are not p.

From our standard position, we will assume for the time being that every arc
begins in a sector .S; for some i € {1,...,¢}; the case i = 0 will be handled later.
Given such an arc §, there are three possibilities: § either exits immediately, follows
o, or follows o;41. We first show that either g(d) or g?(d) must begin in sector
S;_1, that is, after applying g at most 2 times, the image of § has moved into the
sector to the right. The first two cases are dealt with in the following lemma, while
the third case is dealt with in Lemma 4.7.

Lemma 4.6. Let 0 be an arc which begins in sector S; for some i € {1,...,(}.
Suppose that either:

(a) 0 exits immediately, or

(b) & follows o;.

Then g(8) begins in sector S;_1 and does not follow o;. In particular, g*(8) begins
in sector So and does not follow o1.

Proof. In case (a), since T corresponds to a counterclockwise twist about x, we see
that T\ (0) initially follows o; by Lemma 3.1(2); see Figure 8. In case (b), the arc 0
follows ¢;, and by Lemma 3.1(2), the character P(i),, in d blocks cancellation when
applying T, ; see Figure 8. This implies that T} (4) follows o; as well. Applying h,
we have that g(d) begins in sector S;—1. Moreover, since T, (4) initially follows o,
there are two possibilities for the behavior of g(d): either g(d) follows o;_1 when
there are no punctures between P(i) and P(i — 1), or g(d) exits the sector S;_1
immediately. Either way, g(d) does not follow o;.

Applying this argument 4 times yields the final statement of the lemma. O

We now analyze the behavior of the image of § when neither (a) nor (b) of
Lemma 4.6 holds, that is, when ¢ begins in sector S; and follows ;1.
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FIGURE 8. In both cases of Lemma 4.6, T (6) follows o; so that
g(0) begins in S;_; and does not follow o;. Both examples of § are
shown in blue and T, (J) are shown in red.

Lemma 4.7. Let 6 be an arc which begins in sector S; for some i € {1,...,£—1}.
If ¢ initially follows 0,11, then there exists s € {1,2} such that g°(d) begins in
sector S;_1. Moreover, if g°(0) follows o;, then s =1 and either
(i) 0 follows o1 and then follows x clockwise long enough to intersect the sector
S; again; or
(i) § hooks a puncture.

Proof. Since the sector S; is invariant under 7, and applying 7, cannot cause
cancellation with the initial subarc of ¢ contained in S;, it must be the case that
T, (6) also begins in S;. Therefore, T\ (4) must either initially follow o;, initially
follow 0,41, or exit immediately. In particular, since ¢ > 0, this implies that
g(0) = h(T(6)) either begins in sector S;_; or exits S; immediately. In the latter
case, g(9) fits the hypothesis of Lemma 4.6(a) and therefore g?(J) is contained in
sector S;_1. This shows the first statement of the lemma.

We now prove the second statement of the lemma. Suppose g*(d) follows o;. If
s = 2, then we applied Lemma 4.6(a) to conclude that g*(§) begins in sector S;_1.
However, the moreover statement of that lemma shows that g?(§) does not follow
;. Therefore s = 1.

It remains to show that J satisfies (i) or (ii). Recall that we assume that § follows
0i+1. There are three cases to consider depending on the behavior of T} (d). In the
second two cases, we determine the initial behavior of § by taking the preimage of
an initial segment of T} (), i.e., the image of the segment under T, L. In general,
taking preimages is only well-defined if the initial and terminal characters of the
segment are fixed by the mapping class (see [1, Section 3.4] for details).

Case 1: If T\ (9) follows o;, then g(6) = h(Ty(5)) doesn’t follow o;. Indeed, this
was the case analyzed in the first paragraph of the proof of Lemma 4.6

Case 2: Suppose T)(0) exits immediately. Since ¢(d) follows o;, T () must exit
between P(i) and P(i) — 1. The character immediately following where T} (§) exits
is fixed by T}, and blocks cancellation by Lemma 3.1. Thus by taking the preimage
of this initial segment under T7° 1" we obtain an initial segment of §. As seen in
Figure 9(A), (i) occurs.

Case 3: Suppose T (d) follows o;41. Then after following o;41, T)(5) follows
X in the clockwise direction for at least the character P(i + 1),. Let k,/, be
the first character that T, (d) stops following x. Then py is either an interior or
exterior puncture. If py is an exterior puncture, then k,,, is fixed by T, and blocks
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FIGURE 9. Cases 2 and 3 of Lemma 4.7. Note that the exterior

punctures between P(i 4+ 1) and P(i) that appear in (A) do not
appear in (B). This is because, under the assumption of the lemma,
g(0) must follow o;.

cancellation by Lemma 3.1. By taking the image of this initial segment of T} (4)
under T, L we see that (i) occurs. On the other hand, if p, is an interior puncture,
then T\ (6) hooks a puncture, and so k,,, blocks cancellation, again by Lemma 3.1.
This initial segment is fixed by T}~ L and so 6 also hooks a puncture, ensuring that
(ii) holds. See Figure 9(B) for the first possibility. O

Remark 4.8. The reason that Sy is excluded from the previous lemma is because
S¢ is bounded by o, and o0g, so that arcs in this sector either follow o, or exit
immediately.

The previous two lemmas show that arcs that begin in S; then begin in S;_;
after applying either g or g2. Iteratively applying these lemmas shows that, after
applying g a uniform number of times, the image of any arc § begins in Sy. Our
goal is to show that the image of § follows oy under iterates of g; however this may
not be the case the first time this image begins in sector Sy. The following lemma
gives a precise description of when the image of § follows o7.

Corollary 4.9. Let § be an arc which begins in sector S; for any i € {1,...,(}.
There exists 0 < k < 20 — 1 such that the following two properties hold:

o the arc g*(8) begins in sector Sy; and
o if the arc g*(8) follows oy, then i = k and for all 0 < s < k, g*(5) begins
in S;_s, follows o;11_s, and either
(i) follows x clockwise long enough to return to sector S;_q; or
(ii) hooks a puncture.

In the special case where the original arc & hooks a puncture, then either g*(5) also
hooks a puncture or g(8) does not follow o.

Proof. This follows from an inductive application of Lemmas 4.6 and 4.7, keeping
track of which of the different cases is occurring at each step. (|

In the remainder of the section, we use the expanded notation Tg instead of T},
so we can easily record the power of the Dehn twist about x that we are applying.
This power did not affect the proofs before this point. Let ¢ be the starts like
function from (2). Then the key result for showing that (a;);en is a quasi-geodesic
axis is the following:

Proposition 4.10. Suppose that either £ > 2 or that £ =1 and g = th, where
j > 1. If § is an arc disjoint from &g, then there is some 0 < k < 3¢+ 1 such that
gk (68) starts like o .
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Before beginning the proof, we prove one additional lemma which will be used
frequently throughout the proof of the proposition.

Lemma 4.11. Under the assumptions of Proposition 4.10, if § begins in sector S;
for any i € {0,...,4} and exits immediately or follows o;, then g*(8) starts like oy
for some 0 <k <i+£+1.

Proof. For i # 0, if § exits immediately or follows o;, then Lemma 4.6(1) shows
that g(d) begins in sector Sy and does not follow 1. Of course, when i = 0 this
fact about § holds by assumption, so we allow for the possibility that i = 0 as well.
If g*(8) follows o, then it follows from Lemma 4.5 that g¢*1(§) starts like a.

On the other hand, suppose g*(d) exits immediately. Then ng (g*(8)) begins in
Sy and follows op. Thus g (8) = h(TJ(g*(0))) begins in Sy and either follows
o¢—1 or exits immediately. We now repeat the reasoning of this lemma for the
element ¢g'T!(), and we obtain that g"*¢(d) starts in Sy and either follows o or
exits immediately. However, notice that since P(1) = P(0) + 1, the only way an
arc that begins in Sy can exit immediately is if it goes to the back of the surface
right after exiting. By construction, ¢"¢(§) will not immediately go to the back;
to see this, note that applying Ti to 0 introduces a copy of x before the arc goes
to the back of the surface. Since we are assuming that £ > 1 or j > 2, the image
of some portion of this copy of x will remain as we apply Lemma 4.6, and it will
always occur before the image of § goes to the back. Therefore, g**+*(§) follows oy,
and ¢g"+*+1(9) starts like a; by Lemma 4.5. O

We now turn to the proof of the proposition.

Proof of Propositin 4.10. Suppose that 0 begins in sector S; for any i € {0,...,/¢}.
Then by Corollary 4.9, there exists 0 < ko < 2¢—1 such that g¥°(§) starts in sector
So. If gko(6) starts like o or exits immediately, Lemma 4.11 shows that gFoTt+1(¢)
starts like ay. Let jo = ko + £+ 1 < 34.

By Corollary 4.9, the remaining case to analyze is when kg = i and g*(d) begins
in sector Sy and follows o7 .

If ¢ = 0, then § itself begins in sector Sy and follows ¢;. In this case, since ¢ is
disjoint from &g by assumption, either § hooks a puncture or it follows y clockwise
for at least the character 0, but not long enough to intersect the sector Sy again,
and then exits.

On the other hand, if i # 0, then we conclude from Corollary 4.9 that ¢*(d)
follows 0115 for all 0 < s <4 and that the initial segment of ¢°(d) satisfies either
(i) or (ii) of that corollary. Again using that ¢ is disjoint from &g, we see that §
cannot follow x long enough to intersect the sector S; again. Thus, when i #£ 0, we
must be in the case of Corollary 4.9(ii).

To summarize, we are further reduced to the following two cases:

(1) ¢ > 0 and § begins in sector S;, follows o;1, and hooks a puncture.
(2) ¢ =0 and 0 begins in sector Sy, follows o1, follows x clockwise for at least
one character but not long enough to intersect Sy again, and then exits.
Note that in this case § does not hook a puncture.
Case 1: Assume first that (1) holds. Since g*(8) follows o, the moreover state-
ment from Corollary 4.9 implies that ¢*(§) must also hook a puncture. This hook-
ing blocks cancellation in TY(g*(d)) by Lemma 3.1. Therefore, a reduced code
for TJ(g"(6)) begins with P;0,0,, and so a reduced code for g"*!(§) begins with
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Py0,1,1,. In particular, g"t1(8) begins in sector Sy and exits immediately. By
Lemma 4.11 applied to g**1(§), there exists 0 < k; < 2¢ + 1 such that g**1+1(4)
starts like ay. Let j1 =i+ 1+ ky < 30+ 2.

Case 2: Next, assume that (2) holds, so that ¢ = 0 and ¢ begins in sector Sy, follows
o1, then turns left and follows x clockwise for at least one character but not long
enough to return to sector Sy, and then exits. There are now two possibilities to
consider, depending on whether § exits in Sy or not. First, if § exits in S, for some
0 < r < £, then TJ(8) begins in Sy and follows o, (Figure 10). In particular, g(d)
begins in Sy_; and does not follow o,. Therefore, by applying Lemma 4.11 to g(J),
there is some 0 < ko < 2¢ such that g'**2 (0) starts like vy, Let jo = 1+ko < 20+41.

FIGURE 10. Case (2) of the proof of Proposition 4.10 if § exits in
S, for some 0 < r < [.

FIGURE 11. Case (2) of the proof of Proposition 4.10 if ¢ begins
in sector Sy, follows o1 and then exits in .S,.

On the other hand, suppose § follows o1 and then exits in Sy. Let g,/, be the
first character of a reduced code for § after ¢ exits; we allow for the possibility that
q=C. If ¢ > P({) or ¢ = C (Figure 11(A)), then T7(6) begins in Sy and exits
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FIGURE 12. A collection of pairwise disjoint arcs (6;);ecz, repre-
sented as train tracks, such that U;d; is fixed by the composition
of a shift and single twist about x, when ¢ = 1.

immediately. Therefore, so does g(d). By Lemma 4.11 applied to g(d), there exists
0 < k3 < 20 + 1 such that gFs*1(§) starts like a1. Let js = k3 + 1 < 20 +2. If
q < P({), then we must have ¢ = P({) — 1. If j > 2, then T7(6) begins in Sy and
follows oy (see Figure 11(B)). Therefore, g(d) begins in Sy_; and does not follow oy.
The argument again concludes by applying Lemma 4.11: there exists 0 < ko < 2¢
such that g*2T1(§) starts like o .

If j = 1, then either: g¢(d) begins in S,—; and follows oy; ¢(d) begins in Sy
and follows oy; or g(d) begins in Sy and exits immediately. Which of these occurs
depends on the behavior of ¢ after exiting (see Figure 11(C)-(E)). In the latter two
cases, Lemma 4.11 implies that there exists 0 < kg < 2¢ 4 1 such that gF++1(5)
starts like aq; let j4 = k4 + 1 < 2¢ 4 2. In the former case, note that £ > 2 implies
that £ — 1 > 1, and hence g(d) does not begin in sector Sy. Moreover, the initial
form of ¢ ensures that g(d) neither hooks a puncture nor follows x long enough to
intersect the sector Sy_; again; see Figure 11(E). In particular, applying Corollary
4.9, we conclude that g*o*1(§) begins in sector Sy and does not follow oy, for the
constant kg < 20+ 1 at the beginning of the proof. Applying Lemma 4.11 as in the
beginning of the proof, we conclude that there exists js = kg + 1 + £ + 1 for which
g%3(9) starts like o, where j5 < 30+ 1.

Taking j = max{Jjo, j1,j2, j3, j4, j5 }, we have that j < 3¢ 4+ 1 and that for any
arc § disjoint from ¢y, there is some k < j such that g*(0) starts like ;. O

Corollary 4.12. Suppose that either £ > 2 or that £ = 1 and g = th, where
j> 1. If o(y) =i for somei > 3¢ and ¢ is disjoint from vy, then |¢o(8) —p(v)| < 3.

Proof. If « starts like a; and § is disjoint from -, then g=*(y) starts like g and
g~ %(9) is disjoint from g~¢(y) by Lemma 4.4. Thus, Proposition 4.10 applied to
g~ %(0) shows that there exists some k < 3¢ + 1 such that g=***(§) starts like a.
Applying Lemma 4.4 again shows that § starts like ;g1 and where i — k +1 >
i — 3¢, and so ¢(0) > i — 3¢. Asymmetric argument swapping the roles of § and ~y
in the proof above shows that ¢(d) < i+ 3¢. Therefore, if ¢ is disjoint from ~, then

() — p(v)| < 3¢. 0

Remark 4.13. If g = hT), (a single Dehn twist composed with h) and ¢ = 1, then
Theorem 1.1 is actually false. Indeed, g will act elliptically with respect to the
action on A(S,p). To see this, consider the infinite sequence of pairwise disjoint
arcs (0;);cz for which §; = ¢*(y), as in Figure 12. Such arcs form an infinite
1-simplex in A(S, p) preserved by g.
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5. PROOF OF MAIN THEOREM
Let ¢ be the starts like function defined in (2), and let M = 3¢.
Lemma 5.1. For any 7,8 € A(S,p), we have d a(s,)(7,0) = 27 le(7) — (0)].

Proof. Suppose d 4(s,)(7,0) = 1, and assume without loss of generality that (d) <
©(7). If o(y) = j, then gF(y) begins like g*(a;) = ajix for any k > 0, by
Lemma 4.4. Since d 4s,,)(—, —) is Map(S, p)-invariant, by replacing v and ¢ with
g" () and g* (), respectively, we may assume that j > M. By Corollary 4.12, it
follows that |¢(8) —p(v)| < M. We conclude using the subadditivity of the absolute
value. |

Proof of Theorem 1.1. It suffices to show that (aj)j> s 18 @ quasi-geodesic half-axis
for g. To see this, note that this is an unbounded orbit of g, so ¢ is not elliptic, and
since g acts as translation along this half-axis, it cannot be parabolic.

Let f: Z>o — A(S,p) be the map i — anri = g™+ (). Since p(a;) = j for
any j > 0, it follows from Lemma 5.1 that for all ¢ > 0,

dags.p)(ams anti) > ﬁ
Moreover, the arc 8 = Ps0,1,1,0,Ps is disjoint from oy and a;, and so ¢7(3) is
disjoint from «; and a4y for all j € Z. Thus d g(s,p)(@j, @j11) < 2, and so for all
1 >0,

dA(S,p)(OCJWa aM+i) § 21.
Therefore, the map f is a (2M, 0)—quasi-isometric embedding. (]
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