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Abstract. For a surface S of sufficient complexity, Dehn twists act elliptically

on the arc, curve, and relative arc graph of S. We show that composing a Dehn

twist with a shift map results in a loxodromic isometry of the relative arc graph
A(S, p) for any surface S with an isolated puncture p admitting a shift map.

Therefore, shift maps are not type-preserving.

1. Introduction

A surface S is finite-type if its fundamental group is finitely generated, and is
otherwise infinite-type. The mapping class group, Map(S), of a finite-type surface is
well studied, especially through its actions on various hyperbolic graphs including
the curve graph, C(S). The most simple mapping class, a Dehn twist about a simple
closed curve, acts elliptically on C(S).

There have been many developments in the study of infinite-type surfaces and
their mapping class groups over the last few years. For an infinite-type surface
S with at least one isolated puncture p, the relative arc graph, A(S, p), plays the
role of C(S) and is defined as follows: the vertices correspond to isotopy classes of
simple arcs that begin and end at p, and edges connect vertices for arcs admitting
disjoint representatives. The subgroup Map(S, p) of Map(S) that fixes the isolated
puncture p acts on A(S, p) by isometries. A Dehn twist about a simple closed curve
acts elliptically on A(S, p) as well.

This paper fits into a body of work aimed at constructing and classifying all
of the elements of Map(S, p) acting loxodromically on A(S, p) and various other
hyperbolic graphs associated to infinite-type surfaces (see [2, 3, 1, 5, 4]). Our main
result shows that shift maps are not type-preserving in the sense that composing
a Dehn twist with a shift map results in a mapping class thats acts loxodromically
on A(S, p).

Theorem 1.1. Let χ be a standard simple closed curve in the biinfinite flute surface
S containing ` punctures besides p in its interior. Then g = hT jχ is a loxodromic
isometry of A(S, p) for all j > 0, unless both ` and j are equal to 1, where h is the
standard shift on S.

For simplicity, we prove the theorem for the biinfinite flute surface S and standard
curves (see Definition 2.6), but the result immediately extends to any surface Σ
containing an isolated puncture that admits a shift map since the inclusion of
A(S, p) into A(Σ, p) is a (2, 0)–quasi-isometric embedding. There are uncountably
many such surfaces Σ, which are referred to as surfaces of type S (see [1, Definition
2.6, Lemma 2.7, and Lemma 2.10] for more details). In addition, Lemma 2.7 shows
that we can extend Theorem 1.1 to other simple closed curves as well.

The proof that these mapping classes are loxodromic isometries of A(S, p) uti-
lizes a “starts like” function, which (roughly) measures how long any arc starting
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at p fellow travels arcs in a given collection. The function is then used to bound
distance in A(S, p) from below and produce a quasi-axis for g. This method is
inspired by Bavard’s construction in [2] and that of the authors in [1].

Acknowledgements: Abbott was partially supported by NSF Grant DMS-2106906.
Miller was partially supported by NSF Grant DMS-2005438/2300370. Patel was
partially supported by NSF CAREER Grant DMS–2046889 and the University of
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2. Background

2.1. Coding arcs and standard position. Let S be the biinfinite flute surface
with a distinguished isolated puncture p, and let {pi}i∈Z be the countably infinite
discrete collection of all other punctures on S which exit both ends of the cylinder.
We move the distinguished puncture p so that it lies to the right of p−1 and to
the left of p0. We also choose one non-isolated end of S to correspond to the left
direction (the accumulation point of pi for i < 0) and one to correspond to the
right direction (the accumulation point of pi for i > 0), which gives a well-defined
notion of a front and back of the cylinder for S.

Just as in [1], we fix a complete hyperbolic metric on S and let B0 be a horocycle
at a height sufficiently far out the cusp corresponding to p0. Fix a shift map h on
S whose domain contains exactly the collection {pi} for i ∈ Z and which shifts pi
to pi+1 for all i ∈ Z.

Definition 2.1. Define the simple closed curves Bi := hi(B0) for i ∈ Z. Then Bi
is a simple closed curve bounding the puncture pi. We identify each Bi with S1
and fix the north pole of each Bi.

2.2. Coding arcs. Suppose γ is an oriented arc on S starting and ending at p. We
code γ exactly as in [1]. For the sake of brevity, we give the following examples of
arcs and their codes instead of discussing the code in detail.

Example 2.2. Consider the arcs shown in Figure 1. The elements k ∈ Z shown
under S denote the subscript on the simple closed curves Bk. The code for α
is Ps0o1u2o2u1u0uPs, the code for β is PsPuPo0o1o2o2u1o0oPs, the code for γ is
given by Ps(−1)o(−2)o(−2)u(−1)uPu0u1u1o0oPs, and the code for δ is given by
Ps(−1)oC(−2)o(−2)uC(−1)oPs. Note that Ps indicates that the arc starts or ends
at the puncture p, the subscript o/u corresponds to whether the arc passes over of
under that puncture, and the C in the code for δ denotes the fact that δ goes to
the back of the surface S.

The appearance of repeated characters in the code of an arc indicates backtrack-
ing in the arc so that we have the following.

Definition 2.3. Let γ be an oriented arc on S starting and ending at p. A code
for γ is reduced if no two adjacent characters are the same and if the character
immediately following the initial Ps or preceding the terminal Ps is not Po/u.

Note that if a triple appears in the code for an arc, it is reduced to a single character
according to our convention, as only pairs of repeated characters are removed.

Definition 2.4. The code length of an arc γ, denoted `c(γ), is the number of
characters in a reduced code for γ.
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α

β

γ
δ

-3 -2 -1 0 1 2 3

Figure 1. Arcs on the front of the surface S, whose codes are
given in Example 2.2. The × denotes the puncture p, and the
elements k ∈ Z shown under S denote the subscript on the simple
closed curves Bk.

Given a string of characters α = a1a2 . . . an, we denote by α the reverse of α, so
that α = anan−1 . . . a2a1. If α is an arc, then α is the same arc with the opposite
orientation.

2.3. Spokes. We now introduce spokes, which are special segments on S.

Definition 2.5. A segment is a simple path with at least one endpoint which is
not a puncture, and no endpoints on a puncture other than p. We code a segment
in an analogous way as we do arcs.

Given any essential, separating simple closed curve χ on the front of S such that
one connected component of S \ χ is a finite-type surface containing the puncture
p, we let gχ,j = hT jχ. We call the connected component of S \ χ containing p the
interior or inside of χ and the other connected component is the outside of χ.
Below, we prove some of the technical results in the case where j = 1 for brevity,
which is actually the most difficult case, and refer to gχ,j as gχ or g for notational
simplicity. All proofs generalize easily to j > 1, and in fact simplify a bit.

Definition 2.6. A simple closed curve χ on the front of S is standard if it has the
form in Figure 2; we assume that χ contains the puncture p in its interior and that
the right-most puncture contained in χ is p0. In addition, there are no punctures
“above” χ. The punctures on the interior of χ are called interior punctures.

We first consider curves that can be translated to standard curves by powers of h.

Lemma 2.7. Let χ be a simple closed curve on S such that χ′ is homotopic to
hi(χ) which is standard for some i. Then gχ and gχ′ are conjugate by a power of
h, and thus, gχ is loxodromic with respect to the action of Map(S, p) on A(S, p) if
and only if gχ′ is.

Proof. Fix any simple closed curve χ on the front of S containing the puncture p.
If hi(χ) = χ′ is standard, we see that

hi(gχ)h−i = hi(hTχ)h−i = h(hiTχh
−i) = hThi(χ) = hTχ′ = gχ′ ,

which concludes the proof. �

We therefore assume in the remainder of the paper that χ is standard. Moreover,
we choose the homotopy representative of χ to contain no backtracking. It will be
useful to have a code for χ, even though it is not a arc. We define this code in
the usual way, by tracking whether χ passes over or under each puncture, always
assuming that χ is oriented clockwise. However, since χ does not have a well-defined
starting point, such a code is only well-defined up to cyclic permutations. This will
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χ

σ0σ1σ2

σ3σ4

Figure 2. The curve χ is a standard simple closed curve on the
front of S containing the puncture p. The purple segments are
spokes, and the sectors are labeled in green.

cause no problems in this paper. For example, a code for the curve χ shown in
Figure 6 is Po0o0uPu−1u−2u−2o−1oPo.

Definition 2.8. For each k such that pk is contained inside χ, and for p1, a spoke
(to pk) is a segment whose initial point is p and whose terminal point is the north
pole of Bk, as in Figure 2. In particular, such a segment passes over all punctures
contained in χ between p and pk. We label the spokes σi consecutively, starting
from the right; if there are ` punctures on the interior of χ, then the spokes are
σ0, σ1, . . . , σ`. Note that since χ is standard, σ0 is the only spoke whose terminal
point is outside of χ.

Given a spoke σi, let P (i) ∈ Z be the index so that σi is a segment from p to
BP (i), i.e., σi ends at the simple closed curve corresponding to P (i). If P (i) ≤ −1,
define a code for σi to be Ps(−1)o(−2)o . . . P (i)s. Here, P (i)s indicates that the
segment stops at a point on BP (i). If P (i) = 0, the code for σi is Ps0s, while if
P (i) = 1, the code for σi is Ps0o1s.

Definition 2.9. The spokes divide the interior of χ into regions which we call
sectors. We denote the sector bounded by σi and σi+1 by Si for i = 0, . . . , ` − 1
and S` is the sector bounded by σ` and σ0. See Figure 2.

Definition 2.10. If i ≥ 1, an arc δ starting at p initially follows a spoke σi if an
initial portion of the reduced code for δ agrees with the code for σi with the last
character replaced with either P (i)u or P (i)oP (i)u. Similarly, we say that an arc
δ initially follows the spoke σ0 if the initial portion of its reduced code begins with
Ps0o1u.

Example 2.11. Consider the arcs β1, β2, β3, β4 in Figure 3. The arc β1 starts in
sector S1 and initially follows σ1, the arc β2 starts in sector S2 and initially follows
σ3, the arc β3 starts in sector S4 and initially follows no spoke, while β4 starts in
S1 and initially follows no spoke.

2.4. Standard position. Every arc γ with reduced code is homotopy equivalent
to an arc γ′ with the same code that satisfies the following properties.

• There is an initial segment γ′1 of γ′ which is contained in a unique sector.
• If γ′1 is contained in Si with i ≥ 1, then γ′1 begins with Ps(−1)o . . . P (i)o.

If i = 0, then the arc begins with Ps0o.
• If γ′1 is followed by a segment that agrees with the code for χ, then γ′ does

not intersect χ until after this segment.
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σ0
σ1σ2σ3σ4

β2

β1

β2

β3

β4

Figure 3. The arcs in Example 2.11.

• If the character after γ′1 does not agree with the code for χ, then the arc
crosses χ immediately after traversing γ′1.

If δ is an arc that begins in sector Si and does not follow σi+1 or σi, then we say
δ exits immediately. Such a δ can exit immediately in two ways. First, it could go
to the back directly after crossing χ. Otherwise, there must be an exterior puncture
q between P (i+ 1) and P (i), and δ must contain qu. For instance, in Figure 3 the
former way occurs for β3 and the latter way occurs for β4.

3. Blocking cancellation

Suppose δ begins in Si and initially follows σi+1. If i ≥ 1, then by definition
a code for δ begins with Ps(−1)o . . . (P (i + 1) + 1)oP (i + 1)u. If i = 0, then this
code begins with Ps0o0u. In particular, because the final character of this code in
either case agrees with that of χ, the arc δ must follow χ clockwise for at least one
character. We say δ hooks a puncture if either: (a) δ follows χ clockwise for less
than one full turn and then has a character ko/u that disagrees with the code for χ
such that pk is an interior puncture; or (b) if δ follows σi+1, loops around P (i+ 1),
and then follows σi+1 backwards to p. In (a), we say δ hooks the puncture pk, while
in (b) we say δ hooks the puncture P (i+ 1). See Figure 4. Notice that in (a), ko/u
is the first character after δ leaves Si that disagrees with the code for χ, so we can
think of this as the point where δ stops fellow traveling χ.

Our strategy will be to understand how the images of arcs begin after iteratively
applying Tχ and h. In order to do this, we need to understand what kind of
cancellation can occur when we apply Tχ or h to an arc. The following lemma gives
specific conditions under which there is no cancellation between a particular initial
segment of δ and the remainder of δ. In the following sections, we will focus only
on initial segments of arcs that fit into one of these categories.

Lemma 3.1. If δ is an arc, then the following hold:

(1) If δ hooks a puncture pk, then there is no cancellation between the images
under Tχ of the portion of δ before pk and the portion after pk.

(2) Suppose δ begins in a sector Si and then δ either
• exits immediately, so that the character in a reduced code for δ imme-

diately after crossing χ is either C or qu for some exterior puncture;
or
• follows χ counterclockwise for at least one character ko/u.

Then there is no cancellation between the images under Tχ of the portion
of δ before this character and the portion after this character.
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δ

Tχ(δ)

δ
Tχ(δ)

δ
Tχ(δ)

δ = Tχ(δ)

Figure 4. Four ways an arc δ that initially follows σi+1 can hook a
puncture. The first three pictures fit (a), while the last fits (b). The
orange highlighted segments in each of the first three correspond
to the character ko/u in the definition. In the last panel, δ is fixed
by Tχ. This illustrates part (1) of Lemma 3.1.

(3) If δ contains the character ko/u for any k ∈ [1,∞), then there is no cancel-
lation between the images under g of the portion of δ before ko/u and the
portion after ko/u.

(4) If δ contains the character ko/u for any k ∈ [2,∞), then there is no can-

cellation between the images under g−1 of the portion of δ before ko/u and
the portion after ko/u.

The proof of this lemma is intuitively straightforward: in each case, the character
that blocks cancellation disagrees with the code for χ. When applying Tχ to an arc
or segment, a copy of the code for χ is inserted into the code for δ, representing
the twisting around χ. Thus, the only cancellation that can occur in Tχ(δ) is when
the copy of χ is inserted into the code for δ next to a subsegment of χ. In (1) and
(2), it is clear that the initial segment does not end with a subsegment of χ. For
(3), the additional intuition is that Tχ fixes the character ko/u because it is not
contained in a code for χ, and then h is simply a shift, which does not cause any
additional cancellation. For (4), the reasoning is reversed: h−1 does not cause any
cancellation, and then T−1χ fixes the character h−1(ko/u) = (k− 1)o/u, since k ≥ 2.
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δ Tχ(δ)

δg(δ)
Tχ(δ)

Figure 5. Illustration of parts (2) and (3) of Lemma 3.1. Note
that in Case (3), the only cancellation occurs in the green high-
lighted portion.

Rather than giving a lengthy and technical proof of these straightforward facts,
we illustrate the proof of each case; see Figure 4 for case (1) and Figure 5 for cases
(2) and (3).

4. A “starts like” function

In the remainder of the paper, we will construct an explicit quasi-geodesic axis in
A(S, p) on which g acts by translations and therefore show that g acts loxodromi-
cally on A(S, p). To accomplish this, we will follow a strategy similar to that in
[2, 1], in which a “starts like” function is constructed and used to bound distance
in A(S, p) from below.

We begin by defining the vertices in the quasi-axis for g via the following formula

(1) αk =

{
Ps0o1u2o3o3u2o1u0oPs, k = 0

gk(α0), k 6= 0

where k ∈ Z.

4.1. Defining a “starts like” function. The following two definitions were first
introduced in [1] and inspired by [2]; here they are modified to fit our current
situation.

Definition 4.1. Given any arc γ on S, we define the beginning of γ, denoted by
γ̊, to be the first b 12`c(γ)c − 2 characters in a reduced code for γ. Recall that code
length was defined in Definition 2.4.

Definition 4.2. Fix any k ∈ Z≥0. An arc δ starts like αk if the maximal initial or
the maximal terminal segment of δ which agrees with an initial or terminal segment
of αk (not necessarily respectively) has code length at least b 12`c(αk)c − 2.

The following lemma is a straightforward application of Definition 4.1 and the
definition of α0 in Equation (1).

Lemma 4.3. If δ is disjoint from α̊0, then δ does not contain an instance of χ or
χ in its reduced code.
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δ g(δ) g2(δ)

g3(δ)

Figure 6. The most straightforward situation: after applying g
3 times, we have an arc that begins in S0 and follows σ0.

Consider the map

(2) ϕ : A(S, p)→ Z≥0,
defined by setting ϕ(δ) equal to the largest i ≥ 0 such that δ starts like αi. If no
such i exists, then set ϕ(δ) = 0. Using this function, we have the following simple
lemma, where we do not require that j is non-negative.

Lemma 4.4. Suppose an arc δ starts like αi for some i ≥ 1. Then for any j such
that i+ j ≥ 0, the arc gj(δ) starts like αi+j.

Proof. First, notice that the arc α0 is symmetric in the sense that

α0 = Ps0o1u2o3o3u2o1u0oPs = τ3o3uτ .

By Lemma 3.1(3), the characters 3o and 3u block cancellation. In particular, there
is no cancellation between the first half of α0 and the second half. Moreover, any
cancellation that occurs in τ3o, the first half of α0, must also occur in 3uτ , the
second half of α0. Thus the image of the first half of α0 is the first half of α1.
Since the characters 1u and 2o also block cancellation by Lemma 3.1(3) and the
last character of α̊0 is 1u, it follows that g(α̊0) = α̊1 and that the last character of
α̊1 is 2u. Inductively, we conclude that g(α̊i) = α̊i+1 and the last character of α̊i+1

is (i+ 1)u.
To show the lemma, it suffices to prove the result in the special case that j = ±1

and i+j ≥ 0. An inductive argument then exhibits the general case. To this end, if
j = 1 and δ starts like αi, then the initial subsegment of δ is given by α̊i. Moreover,
the terminal character (i + 1)u of α̊i, which must appear in δ, blocks cancellation
by Lemma 3.1(3). In particular g(α̊i) = α̊i+1 is the initial subsegment of g(δ), as
required. Similarly, if j = −1, then since i+ j ≥ 0, we have i+ 1 ≥ 2, and therefore
(i + 1)u blocks cancellation by Lemma 3.1(4). In particular, g−1(δ) will contain
α̊i−1, as required. �

4.2. A lower bound on the “starts like” function. The goal of this section
is to prove the existence of a uniform M so that given any arc δ disjoint from α̊0,
there exists 0 ≤ k ≤ M such that gk(δ) starts like α1. We begin with an example
that motivates the method of proof; see Figure 6. The arc δ shown in the figure
begins in sector S3 and follows σ3. An initial subpath is invariant under Tχ, so g(δ)
begins in S2 and follows σ2. Applying g two more times yields an arc g3(δ) that
begins in S0 and follows σ0. The following lemma shows that applying g one final
time ensures that g4(δ) begins like α1.

Lemma 4.5. Suppose δ is an arc which begins in sector S0 and initially follows
σ0. Then g(δ) starts like α1.
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χ
Tχ(δ)

g(δ)

α1δ

Figure 7. An example of an arc δ as in Lemma 4.5. The arc g(δ)
begins by following α̊1, and so ϕ(g(δ)) ≥ 1.

Proof. Since δ begins in sector S0 and initially follows σ0, a reduced code for δ is
Ps0o1uδ

′ for some δ′. We may compute the image of Ps0o1u directly and see that
it agrees with the code for α̊1; see Figure 7. Thus it remains to show that there
is no cancellation between g(Ps001u) and g(δ′) in g(δ). The initial character of δ′

must be either 1o, 2o/u, or C. All of these block cancellation by Lemma 3.1. �

The remainder of this section shows that if δ is any arc that is disjoint from α̊0,
applying g sufficiently many times results in an arc which begins in S0 and follows
σ0 so that applying g one more time results in an arc that starts like α1. Moreover,
we will show that we only need to apply g at most 3` + 2 times for this behavior
to occur, where ` is the number of punctures in the interior of χ that are not p.

From our standard position, we will assume for the time being that every arc
begins in a sector Si for some i ∈ {1, . . . , `}; the case i = 0 will be handled later.
Given such an arc δ, there are three possibilities: δ either exits immediately, follows
σi, or follows σi+1. We first show that either g(δ) or g2(δ) must begin in sector
Si−1, that is, after applying g at most 2 times, the image of δ has moved into the
sector to the right. The first two cases are dealt with in the following lemma, while
the third case is dealt with in Lemma 4.7.

Lemma 4.6. Let δ be an arc which begins in sector Si for some i ∈ {1, . . . , `}.
Suppose that either:

(a) δ exits immediately, or
(b) δ follows σi.

Then g(δ) begins in sector Si−1 and does not follow σi. In particular, gi(δ) begins
in sector S0 and does not follow σ1.

Proof. In case (a), since Tχ corresponds to a counterclockwise twist about χ, we see
that Tχ(δ) initially follows σi by Lemma 3.1(2); see Figure 8. In case (b), the arc δ
follows σi, and by Lemma 3.1(2), the character P (i)u in δ blocks cancellation when
applying Tχ; see Figure 8. This implies that Tχ(δ) follows σi as well. Applying h,
we have that g(δ) begins in sector Si−1. Moreover, since Tχ(δ) initially follows σi,
there are two possibilities for the behavior of g(δ): either g(δ) follows σi−1 when
there are no punctures between P (i) and P (i − 1), or g(δ) exits the sector Si−1
immediately. Either way, g(δ) does not follow σi.

Applying this argument i times yields the final statement of the lemma. �

We now analyze the behavior of the image of δ when neither (a) nor (b) of
Lemma 4.6 holds, that is, when δ begins in sector Si and follows σi+1.
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δ

Tχ(δ)

Figure 8. In both cases of Lemma 4.6, Tχ(δ) follows σi so that
g(δ) begins in Si−1 and does not follow σi. Both examples of δ are
shown in blue and Tχ(δ) are shown in red.

Lemma 4.7. Let δ be an arc which begins in sector Si for some i ∈ {1, . . . , `− 1}.
If δ initially follows σi+1, then there exists s ∈ {1, 2} such that gs(δ) begins in
sector Si−1. Moreover, if gs(δ) follows σi, then s = 1 and either

(i) δ follows σi+1 and then follows χ clockwise long enough to intersect the sector
Si again; or

(ii) δ hooks a puncture.

Proof. Since the sector Si is invariant under Tχ and applying Tχ cannot cause
cancellation with the initial subarc of δ contained in Si, it must be the case that
Tχ(δ) also begins in Si. Therefore, Tχ(δ) must either initially follow σi, initially
follow σi+1, or exit immediately. In particular, since i > 0, this implies that
g(δ) = h(Tχ(δ)) either begins in sector Si−1 or exits Si immediately. In the latter
case, g(δ) fits the hypothesis of Lemma 4.6(a) and therefore g2(δ) is contained in
sector Si−1. This shows the first statement of the lemma.

We now prove the second statement of the lemma. Suppose gs(δ) follows σi. If
s = 2, then we applied Lemma 4.6(a) to conclude that g2(δ) begins in sector Si−1.
However, the moreover statement of that lemma shows that g2(δ) does not follow
σi. Therefore s = 1.

It remains to show that δ satisfies (i) or (ii). Recall that we assume that δ follows
σi+1. There are three cases to consider depending on the behavior of Tχ(δ). In the
second two cases, we determine the initial behavior of δ by taking the preimage of
an initial segment of Tχ(δ), i.e., the image of the segment under T−1χ . In general,
taking preimages is only well-defined if the initial and terminal characters of the
segment are fixed by the mapping class (see [1, Section 3.4] for details).

Case 1: If Tχ(δ) follows σi, then g(δ) = h(Tχ(δ)) doesn’t follow σi. Indeed, this
was the case analyzed in the first paragraph of the proof of Lemma 4.6

Case 2: Suppose Tχ(δ) exits immediately. Since g(δ) follows σi, Tχ(δ) must exit
between P (i) and P (i)− 1. The character immediately following where Tχ(δ) exits
is fixed by Tχ and blocks cancellation by Lemma 3.1. Thus by taking the preimage
of this initial segment under T−1χ , we obtain an initial segment of δ. As seen in
Figure 9(A), (i) occurs.

Case 3: Suppose Tχ(δ) follows σi+1. Then after following σi+1, Tχ(δ) follows
χ in the clockwise direction for at least the character P (i + 1)u. Let ko/u be
the first character that Tχ(δ) stops following χ. Then pk is either an interior or
exterior puncture. If pk is an exterior puncture, then ko/u is fixed by Tχ and blocks
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δ

Tχ(δ)

(a) Case 2

δ Tχ(δ)

(b) Case 3

Figure 9. Cases 2 and 3 of Lemma 4.7. Note that the exterior
punctures between P (i + 1) and P (i) that appear in (A) do not
appear in (B). This is because, under the assumption of the lemma,
g(δ) must follow σi.

cancellation by Lemma 3.1. By taking the image of this initial segment of Tχ(δ)
under T−1χ , we see that (i) occurs. On the other hand, if pk is an interior puncture,
then Tχ(δ) hooks a puncture, and so ko/u blocks cancellation, again by Lemma 3.1.

This initial segment is fixed by T−1χ , and so δ also hooks a puncture, ensuring that
(ii) holds. See Figure 9(B) for the first possibility. �

Remark 4.8. The reason that S` is excluded from the previous lemma is because
S` is bounded by σ` and σ0, so that arcs in this sector either follow σ` or exit
immediately.

The previous two lemmas show that arcs that begin in Si then begin in Si−1
after applying either g or g2. Iteratively applying these lemmas shows that, after
applying g a uniform number of times, the image of any arc δ begins in S0. Our
goal is to show that the image of δ follows σ0 under iterates of g; however this may
not be the case the first time this image begins in sector S0. The following lemma
gives a precise description of when the image of δ follows σ1.

Corollary 4.9. Let δ be an arc which begins in sector Si for any i ∈ {1, . . . , `}.
There exists 0 ≤ k ≤ 2`− 1 such that the following two properties hold:

• the arc gk(δ) begins in sector S0; and
• if the arc gk(δ) follows σ1, then i = k and for all 0 ≤ s ≤ k, gs(δ) begins

in Si−s, follows σi+1−s, and either
(i) follows χ clockwise long enough to return to sector Si−s; or

(ii) hooks a puncture.

In the special case where the original arc δ hooks a puncture, then either gk(δ) also
hooks a puncture or gk(δ) does not follow σ1.

Proof. This follows from an inductive application of Lemmas 4.6 and 4.7, keeping
track of which of the different cases is occurring at each step. �

In the remainder of the section, we use the expanded notation T jχ instead of Tχ
so we can easily record the power of the Dehn twist about χ that we are applying.
This power did not affect the proofs before this point. Let ϕ be the starts like
function from (2). Then the key result for showing that (αi)i∈N is a quasi-geodesic
axis is the following:

Proposition 4.10. Suppose that either ` ≥ 2 or that ` = 1 and g = hT jχ, where
j > 1. If δ is an arc disjoint from α̊0, then there is some 0 ≤ k ≤ 3`+ 1 such that
gk(δ) starts like α1.
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Before beginning the proof, we prove one additional lemma which will be used
frequently throughout the proof of the proposition.

Lemma 4.11. Under the assumptions of Proposition 4.10, if δ begins in sector Si
for any i ∈ {0, . . . , `} and exits immediately or follows σi, then gk(δ) starts like α1

for some 0 ≤ k ≤ i+ `+ 1.

Proof. For i 6= 0, if δ exits immediately or follows σi, then Lemma 4.6(1) shows
that gi(δ) begins in sector S0 and does not follow σ1. Of course, when i = 0 this
fact about δ holds by assumption, so we allow for the possibility that i = 0 as well.
If gi(δ) follows σ0, then it follows from Lemma 4.5 that gi+1(δ) starts like α1.

On the other hand, suppose gi(δ) exits immediately. Then T jχ(gi(δ)) begins in

S` and follows σ`. Thus gi+1(δ) = h(T jχ(gi(δ))) begins in S`−1 and either follows
σ`−1 or exits immediately. We now repeat the reasoning of this lemma for the
element gi+1(δ), and we obtain that gi+`(δ) starts in S0 and either follows σ0 or
exits immediately. However, notice that since P (1) = P (0) + 1, the only way an
arc that begins in S0 can exit immediately is if it goes to the back of the surface
right after exiting. By construction, gi+`(δ) will not immediately go to the back;
to see this, note that applying T jχ to δ introduces a copy of χ before the arc goes
to the back of the surface. Since we are assuming that ` > 1 or j ≥ 2, the image
of some portion of this copy of χ will remain as we apply Lemma 4.6, and it will
always occur before the image of δ goes to the back. Therefore, gi+`(δ) follows σ0,
and gi+`+1(δ) starts like α1 by Lemma 4.5. �

We now turn to the proof of the proposition.

Proof of Propositin 4.10. Suppose that δ begins in sector Si for any i ∈ {0, . . . , `}.
Then by Corollary 4.9, there exists 0 ≤ k0 ≤ 2`−1 such that gk0(δ) starts in sector
S0. If gk0(δ) starts like σ0 or exits immediately, Lemma 4.11 shows that gk0+`+1(δ)
starts like α1. Let j0 = k0 + `+ 1 ≤ 3`.

By Corollary 4.9, the remaining case to analyze is when k0 = i and gi(δ) begins
in sector S0 and follows σ1.

If i = 0, then δ itself begins in sector S0 and follows σ1. In this case, since δ is
disjoint from α̊0 by assumption, either δ hooks a puncture or it follows χ clockwise
for at least the character 0u but not long enough to intersect the sector S0 again,
and then exits.

On the other hand, if i 6= 0, then we conclude from Corollary 4.9 that gs(δ)
follows σi+1−s for all 0 ≤ s ≤ i and that the initial segment of gs(δ) satisfies either
(i) or (ii) of that corollary. Again using that δ is disjoint from α̊0, we see that δ
cannot follow χ long enough to intersect the sector Si again. Thus, when i 6= 0, we
must be in the case of Corollary 4.9(ii).

To summarize, we are further reduced to the following two cases:

(1) i ≥ 0 and δ begins in sector Si, follows σi+1, and hooks a puncture.
(2) i = 0 and δ begins in sector S0, follows σ1, follows χ clockwise for at least

one character but not long enough to intersect S0 again, and then exits.
Note that in this case δ does not hook a puncture.

Case 1: Assume first that (1) holds. Since gi(δ) follows σ1, the moreover state-
ment from Corollary 4.9 implies that gi(δ) must also hook a puncture. This hook-
ing blocks cancellation in T jχ(gi(δ)) by Lemma 3.1. Therefore, a reduced code

for T jχ(gi(δ)) begins with Ps0o0u, and so a reduced code for gi+1(δ) begins with
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Ps0o1o1u. In particular, gi+1(δ) begins in sector S` and exits immediately. By
Lemma 4.11 applied to gi+1(δ), there exists 0 ≤ k1 ≤ 2` + 1 such that gi+1+k1(δ)
starts like α1. Let j1 = i+ 1 + k1 ≤ 3`+ 2.

Case 2: Next, assume that (2) holds, so that i = 0 and δ begins in sector S0, follows
σ1, then turns left and follows χ clockwise for at least one character but not long
enough to return to sector S0, and then exits. There are now two possibilities to
consider, depending on whether δ exits in S` or not. First, if δ exits in Sr for some
0 < r < `, then T jχ(δ) begins in S` and follows σ` (Figure 10). In particular, g(δ)
begins in S`−1 and does not follow σ`. Therefore, by applying Lemma 4.11 to g(δ),
there is some 0 ≤ k2 ≤ 2` such that g1+k2(δ) starts like α1. Let j2 = 1+k2 ≤ 2`+1.

δ

Tχ(δ)

g(δ) δ

Tχ(δ)

g(δ)

Figure 10. Case (2) of the proof of Proposition 4.10 if δ exits in
Sr for some 0 < r < l.

δ
Tχ(δ)
g(δ)

(a)

δg(δ)

(b)

δ

g(δ)

(c)

δ

g(δ)

(d)

δ

g(δ)

(e)

Figure 11. Case (2) of the proof of Proposition 4.10 if δ begins
in sector S0, follows σ1 and then exits in S`.

On the other hand, suppose δ follows σ1 and then exits in S`. Let qo/u be the
first character of a reduced code for δ after δ exits; we allow for the possibility that
q = C. If q > P (`) or q = C (Figure 11(A)), then T jχ(δ) begins in S` and exits
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δ−3 δ−2 δ−1 δ0 δ1 δ2 δ3

Figure 12. A collection of pairwise disjoint arcs (δi)i∈Z, repre-
sented as train tracks, such that ∪iδi is fixed by the composition
of a shift and single twist about χ, when ` = 1.

immediately. Therefore, so does g(δ). By Lemma 4.11 applied to g(δ), there exists
0 ≤ k3 ≤ 2` + 1 such that gk3+1(δ) starts like α1. Let j3 = k3 + 1 ≤ 2` + 2. If
q < P (`), then we must have q = P (`) − 1. If j ≥ 2, then T jχ(δ) begins in S` and
follows σ` (see Figure 11(B)). Therefore, g(δ) begins in S`−1 and does not follow σ`.
The argument again concludes by applying Lemma 4.11: there exists 0 ≤ k2 ≤ 2`
such that gk2+1(δ) starts like α1.

If j = 1, then either: g(δ) begins in S`−1 and follows σ`; g(δ) begins in S`
and follows σ`; or g(δ) begins in S` and exits immediately. Which of these occurs
depends on the behavior of δ after exiting (see Figure 11(C)-(E)). In the latter two
cases, Lemma 4.11 implies that there exists 0 ≤ k4 ≤ 2` + 1 such that gk4+1(δ)
starts like α1; let j4 = k4 + 1 ≤ 2`+ 2. In the former case, note that ` ≥ 2 implies
that ` − 1 ≥ 1, and hence g(δ) does not begin in sector S0. Moreover, the initial
form of δ ensures that g(δ) neither hooks a puncture nor follows χ long enough to
intersect the sector S`−1 again; see Figure 11(E). In particular, applying Corollary
4.9, we conclude that gk0+1(δ) begins in sector S0 and does not follow σ1, for the
constant k0 ≤ 2`+ 1 at the beginning of the proof. Applying Lemma 4.11 as in the
beginning of the proof, we conclude that there exists j5 = k0 + 1 + `+ 1 for which
gj5(δ) starts like α1, where j5 ≤ 3`+ 1.

Taking j = max{j0, j1, j2, j3, j4, j5}, we have that j ≤ 3` + 1 and that for any
arc δ disjoint from α̊0, there is some k ≤ j such that gk(δ) starts like α1. �

Corollary 4.12. Suppose that either ` ≥ 2 or that ` = 1 and g = hT jχ, where
j > 1. If ϕ(γ) = i for some i > 3` and δ is disjoint from γ, then |ϕ(δ)−ϕ(γ)| ≤ 3`.

Proof. If γ starts like αi and δ is disjoint from γ, then g−i(γ) starts like α0 and
g−i(δ) is disjoint from g−i(γ) by Lemma 4.4. Thus, Proposition 4.10 applied to
g−i(δ) shows that there exists some k ≤ 3` + 1 such that g−i+k(δ) starts like α1.
Applying Lemma 4.4 again shows that δ starts like αi−k+1 and where i− k + 1 ≥
i− 3`, and so ϕ(δ) ≥ i− 3`. Asymmetric argument swapping the roles of δ and γ
in the proof above shows that ϕ(δ) ≤ i+ 3`. Therefore, if δ is disjoint from γ, then
|ϕ(δ)− ϕ(γ)| ≤ 3`. �

Remark 4.13. If g = hTχ (a single Dehn twist composed with h) and ` = 1, then
Theorem 1.1 is actually false. Indeed, g will act elliptically with respect to the
action on A(S, p). To see this, consider the infinite sequence of pairwise disjoint
arcs (δi)i∈Z for which δi = gi(δ0), as in Figure 12. Such arcs form an infinite
1-simplex in A(S, p) preserved by g.
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5. Proof of main theorem

Let ϕ be the starts like function defined in (2), and let M = 3`.

Lemma 5.1. For any γ, δ ∈ A(S, p), we have dA(S,p)(γ, δ) ≥ 1
M |ϕ(γ)− ϕ(δ)|.

Proof. Suppose dA(S,p)(γ, δ) = 1, and assume without loss of generality that ϕ(δ) ≤
ϕ(γ). If ϕ(γ) = j, then gk(γ) begins like gk(αj) = αj+k for any k ≥ 0, by
Lemma 4.4. Since dA(S,p)(−,−) is Map(S, p)–invariant, by replacing γ and δ with

gk(γ) and gk(δ), respectively, we may assume that j ≥ M . By Corollary 4.12, it
follows that |ϕ(δ)−ϕ(γ)| ≤M . We conclude using the subadditivity of the absolute
value. �

Proof of Theorem 1.1. It suffices to show that (αj)j≥M is a quasi-geodesic half-axis

for g. To see this, note that this is an unbounded orbit of g, so g is not elliptic, and
since g acts as translation along this half-axis, it cannot be parabolic.

Let f : Z≥0 → A(S, p) be the map i 7→ αM+i = gM+i(α0). Since ϕ(αj) = j for
any j ≥ 0, it follows from Lemma 5.1 that for all i ≥ 0,

dA(S,p)(αM , αM+i) ≥
i

M
.

Moreover, the arc β = Ps0o1o1u0oPs is disjoint from α0 and α1, and so gj(β) is
disjoint from αj and αj+1 for all j ∈ Z. Thus dA(S,p)(αj , αj+1) ≤ 2, and so for all
i ≥ 0,

dA(S,p)(αM , αM+i) ≤ 2i.

Therefore, the map f is a (2M, 0)–quasi-isometric embedding. �
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