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ABSTRACT. We explicitly construct new subgroups of the mapping class groups of an un-
countable collection of infinite-type surfaces, including, but not limited to, right-angled Artin
groups, free groups, Baumslag-Solitar groups, mapping class groups of other surfaces, and a
large collection of wreath products. For each such subgroup H and surface S, we show that
there are countably many non-conjugate embeddings of H into Map(S); in certain cases,
there are uncountably many such embeddings. The images of each of these embeddings
cannot lie in the isometry group of S for any hyperbolic metric and are not contained in
the closure of the compactly supported subgroup of Map(.S). In this sense, our construc-
tion is new and does not rely on previously known techniques for constructing subgroups of
mapping class groups. Notably, our embeddings of Map(S’) into Map(.S) are not induced
by embeddings of S’ into S. Our main tool for all of these constructions is the utilization
of special homeomorphisms of S called shift maps, and more generally, multipush maps.

1. INTRODUCTION

A fundamental question in low-dimensional topology asks which groups can arise as sub-
groups of the diffeomorphism group, homeomorphism group, and mapping class group of
a surface S, denoted by Homeo(S), Diffeo(.S), and Map(S), respectively. One approach to
producing such subgroups is to consider embeddings of finite-type subsurfaces S’ into an
infinite-type surface S that induce injections of Map(S’) into Map(S). In this case, every
subgroup of Map(S’) is a subgroup of Map(S). Another approach to this problem is to
show that a particular group G acts by orientation-preserving isometries on a surface S,
which implies that G can be realized as a subgroup of Homeo(S), Diffeo(.S), and Map(S).
However, these two classical approaches have limitations. For example, the strong Tits al-
ternative holds for finite-type mapping class groups, meaning every subgroup of Map(S’) is
either virtually abelian or contains a free subgroup [Iva84, McC85]. In addition, Aougab,
Patel, and Vlamis show that only finite groups can arise as the isometry group of a hy-
perbolic metric on S whenever S contains a non-displaceable subsurface (see [APV, Lemma
4.2]). They also show that no uncountable group can be obtained as the isometry group of
a hyperbolic metric on any infinite-type surface. These observations indicate that in order
to fully understand big mapping class groups, we need other constructions of subgroups in
Map(S), and we also need to understand the many different ways that a particular subgroup
can embed in Map(S). This is precisely the goal of this paper.

To streamline the statements of our results below, we construct two uncountable collections
of surfaces for which particular results hold. The precise definitions will appear in Section 3.2;
we give a brief idea of the types of surfaces contained in each collection here. The first
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collection, which we call B,,, contains the surface S whose end space is a Cantor set of
nonplanar ends (the blooming Cantor tree surface) along with the connect sum of S and any
surface S’ with only planar ends; see Definition 3.7. When 11 is a distinguished surface, we
denote by C(II) certain surfaces that admit a map which acts as a shift along a countable
collection of copies of II; see Definition 3.5. For example, II could be a torus with one
boundary component, in which case C(II) includes the ladder surface and the connect sum
of a ladder surface and any surface with only planar ends.

Our first construction produces right-angled Artin groups in Map(S) that do not lie in
Map,.(S). Although constructions of right-angled Artin groups in the finite-type setting
(e.g., the Clay-Leininger-Mangahas Embedding Theorem [CLM12]) port immediately to the
infinite-type setting through subsurface inclusion, we emphasize that we construct subgroups
of Map(S) not arising from finite-type behavior.

Theorem 1.1. For any surface S € B, there exists an infinite family of non-isomorphic
right-angled Artin subgroups of Map(S), each of which embeds into Map(S) in countably
many non-conjugate ways. Moreover, the image of each of these embeddings is not completely
contained in Map,(5).

See Corollary 6.6 for a more precise statement outlining which right-angled Artin sub-
groups we construct. As an example, each of the right-angled Artin groups defined by the
graphs in Figure 1 can be found as subgroups of the mapping class group of the Loch Ness
monster surface, the blooming Cantor tree surface, and the plane minus a Cantor set.
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FIGURE 1. Defining graphs for a few of the right-angled Artin groups found
as subgroups of big mapping class groups using Theorem 1.1.

Our second construction produces embeddings between big mapping class groups that are
not induced by embeddings of the underlying surfaces and that do not preserve the notion of
being compactly supported. Recall that a group is called indicable if it admits a surjection
onto Z.

Theorem 1.2. Let I be a distinguished surface. If Map(Il) is indicable, then for any surface
S € C(I1), there exist countably many non-conjugate embeddings of Map(Il) into Map(S) that
are not induced by an embedding of 11 into S.

The above theorem is in line with a body of work dedicated to understanding and con-
structing homomorphisms between mapping class groups; see, for example, [ALS09, AS13,
ALM21]. There are uncountably many distinguished surfaces IT for which Map(II) is indi-
cable; see Examples 5.4. When II has at least two nonplanar ends, Theorem 1.2 holds with
PMap(II) in place of Map(II); see Corollary 5.3.

Theorem 1.2 also answers Question 4.75 from the AIM problem list on surfaces of infinite

type [AIM] which asks, “Given a homomorphism f: Map(S) — Map(S’), does f preserve
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the notion of being compactly supported?” Bavard, Dowdall and Rafi [BDR20] show that
the answer is yes for surjective homomorphisms, and Aramayona, Leininger, and McLeay
[ALM21] give an example of two surfaces and self-maps for which the answer is no. In
proving the theorem above, we show that there is an uncountable family of surfaces and
maps for which the answer is also no.

These first two constructions are consequences of Theorems 6.3 and 5.2, respectively. The
latter is a general construction for embedding indicable subgroups of mapping class groups
into Map(S). Theorem 6.3 is a combination theorem for indicable subgroups of Map(S), and
we summarize its statement as Theorem 1.3 below. The x-product used in the statement
is a generalization of what is known in the literature as a “free product with commuting
subgroups,” a natural construction that has been well-studied. Some basic group theoretic
properties of such groups can be found in [MKS04, Section 4.2, Problems 22-25]. The x-
product provides a natural interpolation between free products and direct products and
includes, for example, graph products of groups. In particular, every right-angled Artin
group can be written as a *-product.

Theorem 1.3. Let G; be indicable groups that embed in Map(S;), fori =1,...,n, where S; is
a surface with exactly one boundary component. For each 1, fix a surjective map f;: G; — Z,
and let H; be the kernel of f;. The indicable group (G, Hy)x- - -x(Gp, H,) embeds in Map(S)
for S = Sp(Il), where 11 is obtained from #,5; by capping off n — 1 boundary components.

We direct the reader to Section 3 for the definition of the surface Sr(II), the construction
of which was inspired by work of Allcock [All06]. Importantly, the support of the homeo-
morphisms defined in our construction is not all of Sp(II). Consequently, we may change the
topology outside the support of the homeomorphisms in any way we choose. In this way,
Theorem 1.3 actually shows that (G, Hy)*---x(G,, H,) embeds in the mapping class group
of a wide class of infinite-type surfaces. For instance, we can arrange for the edited surface
to have a non-displaceable subsurface so that the subgroups we construct cannot arise from
a construction using isometries, as all such surfaces have finite isometry groups.

A key aspect of the proof of Theorem 1.3 is a set of criteria for a collection of shift maps (or
multipush maps) on an infinite-type surface to generate a free group, given in Theorem 4.2.
Shift maps are generalizations of handleshifts, introduced by Patel and Vlamis in [PV18],
that have become integral to the theory of infinite-type surfaces. In particular, we augment
the generators of the groups G; in the statement of the theorem with these shift maps (or
multipush maps). The fact that shift maps do not lie in Map,(S) implies that the subgroups
we construct are also not completely contained in Map,(S). The only exceptions to this are
when S is finite type or the Loch Ness Monster surface, for which Map_(S) = Map(S). We
avoid the technical statement of Theorem 4.2 here and direct the reader to Section 4.1.

There are a variety of indicable groups that can play the role of GG; in the statement of
Theorem 1.3 (or the role of G in the statement of Theorem 5.2). In particular, one can
let G; be any indicable subgroup of the mapping class group of a finite-type surface with
exactly one boundary component, for example, free groups (whose constructions come from
pseudo-Anosov elements), right-angled Artin groups, and braid groups. In the constructions
outlined below, we also produce new examples of indicable subgroups of big mapping class
groups that can be used as input for these theorems, including solvable Baumslag-Solitar

groups BS(1,n) and a large class of wreath products G H. The following theorem is a
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particular case of Proposition 4.3 and Theorem 4.5, which both hold for a more general class
of surfaces, including surfaces which contain a non-displaceable subsurface. For instance,
the theorem holds when S is the connect sum of a Cantor tree surface with a closed finite
genus surface, whose isometry group must be finite. We make the statement below to avoid
technicalities.

Theorem 1.4. If S is a Cantor tree surface, then solvable Baumslag-Solitar groups BS(1,n)
and wreath products Z" UV Z for any n > 1 arise as subgroups of Map(5).

Note that solvable Baumslag-Solitar and Z"Z cannot embed in the mapping class group
of any finite-type surfaces. Our theorem gives the first construction of these groups (for
n > 1) in the mapping class groups of many infinite-type surfaces. Lanier—Loving construct
7.7 as a subgroup of the mapping class group of any infinite-type surface without boundary
[LL20].

Outline. Section 2 contains preliminaries on infinite-type surfaces, mapping class groups,
and shift and multipush maps. In Section 3, we give a construction of surfaces from Schreier
graphs and describe how to obtain non-conjugate embeddings of subgroups generated by
either shift or multipush maps. Our constructions of specific subgroups of big mapping class
groups begins in Section 4, where we build embeddings of free groups, wreath products,
and solvable Baumslag—Solitar groups into big mapping class groups (Theorem 1.4). In
Section 5 we prove Theorem 1.2. Finally, in Section 6 we prove our combination theorem
(Theorem 1.3) for indicable subgroups before ending with constructions of right-angled Artin
subgroups, proving Theorem 1.1.
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2. PRELIMINARIES

2.1. Ends of surfaces. Essential to the classification of infinite-type surfaces is the notion
of an end of a surface and the space of ends for an infinite-type surface S.

Definition 2.1. An eziting sequence in S is a sequence {U, }nen of connected open subsets
of S satisfying:
(1) U, C U,, whenever m < n;
(2) U, is not relatively compact for any n € N, that is, the closure of U, in S is not
compact;
(3) the boundary of U, is compact for each n € N; and

(4) any relatively compact subset of S is disjoint from all but finitely many of the U, ’s.
4



Two exiting sequences {U, },en and {V, },en are equivalent if for every n € N there exists
m € N such that U,, C V,, and V,, C U,. An end of S is an equivalence class of exiting
sequences.

The space of ends of S, denoted by E(S), is the set of ends of S equipped with a natural
topology for which it is totally disconnected, Hausdorff, second countable, and compact. In
particular, F(S) is homeomorphic to a closed subset of a Cantor set. The definition of the
topology on the space of ends is not relevant to this paper and so is omitted.

Ends of S can be isolated or not and can be planar, if there exists an ¢ such that U;
is homeomorphic to an open subset of the plane R?, or nonplanar, if every U; has infinite
genus. The set of nonplanar ends of S is a closed subspace of E(S) and will be denoted by
E9(S); these are frequently called the ends accumulated by genus. We have the following
classification theorem of Kerékjarté [Ker23] and Richards [Ric63]:

Theorem 2.2 (Classification of infinite-type surfaces). The homeomorphism type of an ori-
entable, infinite-type surface S is determined by the quadruple

(9,6, E2(5), E(S))

where g € Zso U oo is the genus of S and b € Zsq is the number of (compact) boundary
components of S.

There is a more complicated classification of infinite-type surfaces allowing for non-compact
boundary components due to Prishlyak—Mischenko [PM07]. We use this classification once
in Section 3.2, but in our setting, the surfaces we are comparing have precisely the same
boundary, so the classification reduces to considering the triple (g, E9(S), E(S)).

2.2. Mapping class group. The mapping class group of S, denoted Map(S), is the set of
orientation-preserving homeomorphisms of .S up to isotopy that fix the boundary pointwise.
The natural topology on the set of homeomorphisms of S is the compact-open topology,
and Map(S) is endowed with the induced quotient topology. Equipped with this topology,
Map(S) is a topological group. When S is a finite-type surface, this topology on Map(S)
agrees with the discrete topology, but when S is of infinite type, the two topologies are
distinct. The pure mapping class group, denoted PMap(S), is the subgroup of Map(S) that
fixes the set of ends of S pointwise, and Map,(S) is the subgroup of compactly supported
mapping classes.

Definition 2.3. A mapping class f € Map(.S) is of intrinsically infinite type if f ¢ Map_.(S).
A subgroup H < Map(S) is of intrinsically infinite type if H is not completely contained in

Map,(S).

Note that Map.(S) < PMap(S). When S has at most one nonplanar end, Map,(S) is
actually equal to PMap(S) [APV20]. In this paper, all of the subgroups of Map(.S) that we
construct contain many intrinsically infinite-type homeomorphisms and, therefore, cannot
be completely contained in Map,(5), except when S is finite-type or the Loch Ness Monster,
in which case Map,(S) = Map(S). Recall that the Loch Ness Monster surface is the unique
infinite-genus surface with one end (up to homeomorphism).

We are particularly interested in indicable groups and various ways of embedding them
in mapping class groups of infinite-type surfaces. A group G is indicable if there exists a

surjective homomorphism f: G — Z. We show in Lemma 5.1 that a group G is indicable if
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and only if there is a presentation for G where the relators all have total exponent sum zero
in the generators of G. Importantly, many of our constructions require an indicable subgroup
G of Map(S) as an input, where S is a surface with exactly one boundary component. There
are many examples of such groups that were mentioned in the introduction, but there are
also some restrictions on what groups G can arise as subgroups of mapping class groups, as
is evidenced by the following lemma, which generalizes the same result from the finite-type
setting [FM12, Corollary 7.3].

Lemma 2.4 ([ACCL20, Corollary 3]). If S is an orientable surface with nonempty compact
boundary, the mapping class group fixing the boundary pointwise is torsion-free.

2.3. Push and shift maps. In this section, we define shift maps and push maps, which are
central to all of our constructions. A particular type of shift maps, called handle shifts, were
first studied by Patel-Vlamis in [PV18]. This inspired the following definition of Abbott,
Miller, and Patel [AMP]. A similar definition of shift maps appears in [MR19] and [L120].

Definition 2.5. Let Dy be the surface defined by taking the strip R x [—1, 1], removing
an open disk of radius ;11 with center (n,0) for n € Z, and attaching any fixed topologically
nontrivial surface I with exactly one boundary component to the boundary of each such
disk. A shift on Dy is the homeomorphism that acts like a translation, sending (z,y) to
(x 4+ 1,y) for y € [-1 + ¢, 1 — €] and which tapers to the identity on 0Dy;.

Given a surface S with a proper embedding of Dy into S so that the two ends of the strip
correspond to two different ends of S (see Figure 2), the shift on Dy induces a shift on S,
where the homeomorphism acts as the identity on the complement of Dy. If instead, we
have a proper embedding of Dy into S where the two ends of the strip correspond to the
same end, we call the resulting homeomorphism on S a one-ended shift. Given a shift or
one-ended shift A on S, the embedded copy of Dy in S is called the domain of h. By abuse
of notation, we will sometimes say that the domain of the shift or one-ended shift A is Dy
rather than referring to it as an embedded copy of Dy in S (when it is clear from context
to which embedded copy of Dy we are referring).

Remark 2.6. If the surface II in Definition 2.5 has a nontrivial end space, then a shift or
one-ended shift A on S with domain Dy is not in PMap(.S) since there are ends of S that are
not fixed by h. Thus, h ¢ Map,(S) and is of intrinsically infinite type. On the other hand, if
h is a shift map and if II is a finite-genus surface with no planar ends, then A is a power of a
handle shift on S, and the proof of [PV18, Proposition 6.3] again tells us that h ¢ Map,(.S).
However, the second conclusion does not hold when h is a power of a one-ended handle shift

since, in that case, it follows from work in [PV18] that h € Map,(.S).

We now use the construction of shift maps to introduce finite shifts, which will be used
in Section 4.3 to construct certain wreath products. These are constructed in a completely
analogous way, starting with an annulus instead of a biinfinite strip.

Definition 2.7. Let Ay be a surface defined by taking the annulus
([Oan]/o ~ 7’L) X [_17 1]7
1

removing an open disk of radius ; centered at the integer points, and attaching any fixed

topologically nontrivial surface II with exactly one boundary component to the boundary of
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FIGURE 2. A surface S that admits a shift whose domain is an embedded
copy of Dyj.

each disk. A finite shift on Ap is the homeomorphism that acts like a translation, sending
(x,y) to (x+1,y) (modulo n) for y € [-1+¢, 1 —¢€] and which tapers to the identity on 0A.
Given a surface S with a proper embedding of Ap into S, the finite shift on Ay induces a
finite shift on S, where the homeomorphism acts as the identity on the complement of Ap.
We call the embedded copy of Ay the domain of the finite shift.

Definition 2.8. A push is any map that is a finite shift, a one-ended shift, or a shift map.

In Section 3, we will introduce the notion of a multipush, which is roughly a collection
of push maps with disjoint supports, once we have developed some further notation and
language.

3. SURFACES FROM GRAPHS AND NON-CONJUGATE EMBEDDINGS

In this section, we begin by constructing a broad class of surfaces using an underlying
graph. We then introduce a specific type of homeomorphism called a multipush and show
that these maps can be utilized to produce infinitely many non-conjugate embeddings of
certain groups into mapping class groups.

3.1. A construction of surfaces. The basic building block for this construction is a d-
holed sphere. The following definition of seams restricts to the normal notion of seams for a
3-holed sphere, i.e., a pair of pants.

Definition 3.1. A set of seams on a d-holed sphere is a collection of d disjointly embedded
arcs such that each boundary component of the sphere intersects exactly two components
of the seams at two distinct points and such that the collection of seams divides the sphere
into two components. Call one component the front side and the other component the back
side. These conditions imply that each component is homeomorphic to a disk.

Starting from any graph I' with a countable vertex set and any surface Il with exactly one
boundary component, we describe a procedure for building a surface Sp(II). This mirrors a
construction of Allcock using the Cayley graph of a given group G [All06].

For each vertex v of valence d + 1, start with a (d + 1)-holed sphere. Remove a disk on
the interior of the front side, and attach the surface II along the boundary component. Call
the resulting surface the verter surface for v, which we denote by V,, and let II, be the copy
of IT on V,,. For each edge of the graph, define the edge surface E to be the 2-holed sphere

with seams; topologically this is an annulus.
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FIGURE 3. An example of the surface Sp(IT) where the graph I is the Cayley
graph of the group Z? = (a,b : [a, ]).

Whenever v and v are vertices of I' connected by an edge, connect the vertex surfaces V,
and V, with an edge surface F(u,v) by gluing one boundary component of the edge surface
to a boundary component of V,, and the other boundary component of the edge surface to a
boundary component of V,, so that the gluing is compatible in the following sense: the union
of the seams separates Sr into two disjoint connected components, the front and the back,
containing the front and, respectively, the back of each vertex and edge surface. Call the
resulting surface Sp(II). See Figure 3 for an example. Notice that the assumption that the
vertex set V(') of I' is countable is necessary for this construction to yield a surface. In
particular, if V(I") is uncountable, then Sp(II) is not second countable, and therefore cannot
be a surface.

We also define a more general class of surfaces constructed by editing the back of Sp(II) as
follows. As above, fix a graph I with a countable vertex set and a surface with one boundary
component II, and let S = Sp(II). Given any collection of surfaces {2, },cv(r), only finitely

many of which have boundary, we form the surface S # £, as follows. For each v € V(T'),
veV(T)

take the connect sum of V, and the corresponding €2,. It is helpful to assume that the

connect sum is done on the back of V,,, since we will perform certain homeomorphisms on

the front of S later in the paper. We note that if every €2, is a sphere, then S # (), is
veV(T)
homeomorphic to S. On the other hand, by choosing the €2, to be more complicated, we can
change the homeomorphism type of S by changing the genus or the space of ends. Thus,
even for a fixed surface II, this construction will result in a large family of surfaces, formed
by varying the €2,.
8
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FIGURE 4. Each graph can be realized as a Schreier graph but not a Cayley
graph. The graph on the left has 3 ends, and the graph on the right has end
space homeomorphic to the 2-point compactification of Z.

The underlying graph I" used to build Sp(IT) throughout this paper will often be a Schreier
graph, which is defined as follows. Let G be a finitely generated group, H a subgroup of
G, and T a finite generating set for G. The Schreier graph I'(G, T, H) is the graph whose
vertices are the right cosets of H and in which, for each coset Hg and each s € T, there is an
edge from Hg to Hgs labeled by s. If Hg = Hgs, there is a loop labeled by s at the vertex
corresponding to Hg. Our assumption on the finiteness of 7" ensures that I'(G, T, H) has a
countable vertex set. When I' is a Schreier graph, let I, be the copy of II on the vertex
surface corresponding to the coset Hg. In the special case when H = {1}, the Schreier graph
['(G,T,{1}) is simply the Cayley graph of G with respect to the generating set T', which we
denote by I'(G, T').

Definition 3.2. Let I" be a Schreier graph for a triple (G,T,H). A Schreier surface as-

sociated to (G,T,H) is a surface S = Sp(II) # €, where II has exactly one boundary
veV(T)

component and is not a disk, and {Q,} is any collection of surfaces, only finitely many of

which have boundary.

We use Schreier graphs in our construction rather than simply Cayley graphs to demon-
strate the large class of surfaces our results apply to. When II is compact, the surface Sp(II)
will have the same end space as the graph I'. A Cayley graph for a finitely generated group
will have 1, 2 or a Cantor set of ends. On the other hand, there are many more possibilities
for a Schreier graph; any regular graph with even degree can be realized as a Schreier graph
[Gro77, Lub95]. For example, there are Schreier graphs with any finite number of ends, or
end spaces isomorphic to N U {oco} or {—oo} UZ U {oo}, and so our construction yields
surfaces with these end spaces, as well. See Figure 4 for two examples of Schreier graphs
that cannot be realized as Cayley graphs.

We are now ready to define a multipush on a Schreier surface.

Definition 3.3. Let I' = I'(G, T, H) be a Schreier graph. Fix a surface IT with exactly one
boundary component. Let S = Sp(II) # €, be a Schreier surface.
veV(T)
9



FIGURE 5. A portion of the domain D, (in blue) of the multipush z, on the
surface Sp(IT), where I is the Cayley graph I' = I'(IFy, {a, b}) for Fy = (a, b).

For each s € T', we will construct a collection of push maps whose support corresponds
to connected components of the subgraph of I which includes only edges labeled by s (see
Figure 5). Fix a transversal T for the set of double cosets {Hg(s) | ¢ € G}, so that T
contains exactly one element from each double coset in the set. In the case H = {1}, that
is, when I' is a Cayley graph, the set 7 is simply a transversal for (left cosets of) (s). For
each element ¢ in the transversal, we define a push hy,y which maps Iy to 1. The
support of hyy is contained in the front of

(U VW) U (U E(Htsi,Htsi“)) .
€L 1€EZL

Recall that V. is the vertex surface associated to the vertex Hts' and E(Hts', Hts'™)
is the edge surface associated to the edge (Hts', Hts'') for each ¢ € Z. This support
corresponds to a connected component of I' with all edges labeled by s; see Figure 5. The
multipush x4 associated to s is the element of Map(S) that acts simultaneously as the pushes
hys) for each t € T. We let D, denote the domain of the multipush z,. If hy) is not a finite
shift for any ¢t € T, we say x4 is an infinite multipush.

Since supports of the pushes hyy are disjoint, the multipush z, is a well-defined home-
omorphism of the surface. Note that if Hg = Hgs, then the edge F(Hgs', Hgs"!) in the
support of hy, is a loop. In particular, finite pushes can occur as part of a multipush. In
Figure 5, all pushes are infinite, but the multipush with the orange domain shown in Figure 6
has both a finite and infinite push.
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FIGURE 6. A multipush on a surface corresponding to the Schreier graph on
the left in Figure 4 that contains both a finite and infinite push. The domain
of the multipush is highlighted in orange.

Remark 3.4. We emphasize that multipushes are not induced by an action on the graph
I', even when I' is a Cayley graph. The construction simply uses the labeling of the vertices
of T' to define the homeomorphism ;.

3.2. Non-conjugate embeddings. Given a shift map h corresponding to an embedding
of Dy into a surface S, one can define a new and distinct shift map A’ on S by omitting
some of the surfaces II; from the domain, as long as infinitely many remain. This gives
another embedding of Dy into S. See Figure 7. Since there are uncountably many infinite
subsets of Z, we can construct uncountably many distinct embeddings of Dy into .S, and thus
uncountably many distinct shift maps on S, in this way. The same argument goes through
for one-ended shifts as well. Similarly, one infinite multipush x4 associated to a generator
s € T on a surface S = Sr(II) can be used to produce uncountably many distinct domains
for multipushes associated to s by simply omitting some of the copies of Il from the domains
of z, for all s e T.

In many cases, these distinct domains give rise to isomorphic but non-conjugate subgroups
of Map(S). First, consider the case of shift maps. Given a shift map h on S, we define a new
shift map A’ on S by removing some copies of II from the domain of the shift. The groups (h)
and (h') are isomorphic subgroups of Map(.S). If they were conjugate, not only would supp(h)
and supp(h’) be homeomorphic, but their complements S \ supp(h) and S\ supp(h') would
also be homeomorphic. There are many surfaces Il and S for which this latter condition
fails. For example, II could be a handle, that is, a torus with one boundary component,
and S = Sr(II) could be obtained from I'(Z, {1}) and connect sum with a surface with only
planar ends. In this case, h = x; is a shift map and S \ supp(h) has genus zero, while
S\ supp(h’) has nonzero genus coming from the copies of Il that were removed from the

domain of h. Therefore, these complements are not homeomorphic and the embeddings of Z
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F1GURE 7. Two different embeddings of Dy;. The figure at the top corresponds
to a shift h and the embedding shown at the bottom corresponds to a new and
distinct shift A’ obtained by leaving two copies of IT out of the domain of h.

as (h) and (k') are non-conjugate. In this example, 1T is a handle, but we can generalize to
allow II to be any surface with a countable end space and one boundary component, so long
as removing copies of II from the domain of the shift map still produces non-homeomorphic
subsurfaces S\ supp(h) and S\ supp(h’). This motivates the following definition.

Definition 3.5. A distinguished surface is a surface Il with exactly one boundary compo-
nent, satisfying at least one of the following:

(1) II has finite genus,
(2) E(II) consists of finitely many planar ends, or
(3) E(II) consists of finitely many nonplanar ends.

For each distinguished surface II, let C(II) be the collection of surfaces S that admit an
embedding of Dy such that the following holds. If I satisfies (1), then S\ Dy has finite
(possibly zero) genus. If II satisfies (2) or (3), then S\ Dy has finitely many planar or
nonplanar ends, respectively. If II falls into more than one of the above categories, then
C(II) should consist of surfaces that satisfy either of the conditions on S\ Dr.

If TT is a distinguished surface and S € C(II), then S admits a shift A with domain Dry.
If A’ is another shift on S whose domain is embedded by omitting finitely many copies of IT
from Dy, then each of the three conditions on II ensures that S\ supp(h) and S\ supp(h’)
are not homeomorphic. In particular, S\ supp(h) and S \ supp(h’) will have different genus
or will contain a different number of planar or nonplanar ends. Similarly, if 2" and A" are
obtained from h by omitting different (finite) numbers of copies of Il from Dy, then the
complements of their supports are not homeomorphic.

The collection C(II) for a distinguished surface II is uncountable. To see this, suppose II
has finite genus or F(II) consists of finitely many nonplanar ends. Then S can be any surface
such that S\ Dy has only planar ends. On the other hand, if F(II) consists of finitely many
planar ends, then S can be any surface so that S\ Dy has no planar ends. In either case,

there are uncountably many such S.
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The definition of a distinguished surface II and the collection of surfaces C(II) ensure
that we can “count” the number of copies of II that have been removed the domain of
a shift, thus producing non-conjugate embeddings. We could expand the definition of a
distinguished surface and the collection C(II) to encompass a larger family of surfaces for
which this is possible, but we choose the streamlined definition above for simplicity, while
still demonstrating that our results hold for a broad class of surfaces.

We have shown that there are countably many non-conjugate infinite cyclic subgroups
in Map(S). In Section 5, we will use these different embeddings of Z to construct non-
conjugate embeddings of indicable subgroups into Map(S) (Theorem 1.2). The following
lemma summarizes the discussion above.

Lemma 3.6. Let S be any surface in the uncountable collection C(I1) for a distinguished
surface I1. There exist countably many non-conjugate embeddings of the subgroup generated
by the shift map on S with domain Dy into Map(S5).

We now turn our attention to constructing non-conjugate embeddings of subgroups gen-
erated by multipushes. Let S = Sp(II) be infinite-type, and let z; be the multipush defined
by s € T. In the same way as for a shift map, by omitting copies of II from the domain of z,
so that the complements of the supports are not homeomorphic, we obtain a non-conjugate
embedding of (z) in Map(.S).

If several multipushes x, for s € T" have common copies of II in their supports, such as
in Figure 14, more care needs to be taken. It is possible to remove copies of Il from the
domains of all the multipushes to obtain new multipushes z/ in such a way that (x5 | s €
T) = (2f | s € T) and so that the complements of the supports of the subgroups are not
homeomorphic. One way to formalize this is to consider the surface S,, =S # (2, where

veV(T)
exactly m of the €2, are homeomorphic to II with the boundary component capped off, and
the remainder of the €2, are spheres. By the classification of surfaces, the surfaces S and
Sy, are homeomorphic, and this homeomorphism induces an isomorphism of mapping class
groups Map(S) = Map(S,,). Let 2™ be the multipush on the surface S,, defined by s € 7.

Notice that G = (x5 | s € T') is isomorphic to (xgm) | s € T) because they are generated by
multipushes with the same supports m-embedded into different surfaces. Let G, < Map(S)
be the image of <x§m) | s € T) < Map(S,,) under the isomorphism of mapping class groups,
so that G = G,,,. By construction, there are m copies of Il that are not in the support of G,,,
while all copies of II are in the support of G, and so G and G,,, are not conjugate. Similarly,
whenever m # n, the groups G,, and G,, are isomorphic and non-conjugate.

For the remainder of the paper, when we say that we remove copies of II from the supports
of multipushes, we will mean that we do so in the above manner, so that the resulting groups
are isomorphic.

If the ends of I' contain a Cantor set, then there are uncountably many non-conjugate
copies of G in Map(S). To see this, use the procedure above to edit the domains of the
multipush maps by removing a collection of copies of II that accumulate onto a closed subset
of the Cantor set of ends of S = Sp(II). By removing copies of II that accumulate onto

non-homeomorphic closed subsets of the Cantor set, we obtain a non-conjugate embedding
of G into Map(.5).
13



Above, we assumed that S = Sp(IT). However, the argument applies more broadly. For

example, if S = Sp(II) # €, and each €2, has only planar ends and II has nonzero finite
veV(T)

genus, then adding two finite collections of handles of differing sizes to some €, still results
in the complements of the domains being non-homeomorphic subspaces. More generally,
we could let II be any surface with a countable end space and one boundary component
(of which there are uncountably many), so long as removing two finite collections of II of
differing cardinalities still results in the complement subsurfaces being non-homeomorphic.
This observation leads to the definition of the following family of surfaces.

Definition 3.7. Let B be the collection of Schreier surfaces S = Sp(I) # €, such that

veV(T)
Sr(IT) is infinite-type, IT has a countable end space, and the surfaces ), are compatible with T
in following sense: if Y = (J, ., supp(ws), with Y’ = [, supp(),) and Y = |, supp(x?),
respectively, where 2/, is obtained by moving m copies of II out of the domain of =, and z”
is obtained by moving n copies of Il out of the domain of x; with m # n, then S\ Y’ and
S\ Y” are non-homeomorphic in S. Let By, be the subset of B consisting of those Schreier
surfaces built from infinite-type surfaces II.

The above discussion demonstrates that B is uncountable and proves the following lemma.

Lemma 3.8. Let S be any surface in the uncountable collection B. Letting G be the sub-
group of Map(S) generated by the multipush maps xs on S for s € T, there exist countably
many non-conjugate copies of G in Map(S). If I has a Cantor set of ends, then there are
uncountably many non-conjugate copies of G in Map(5).

3.3. Non-isometric embeddings. Throughout the paper, all constructions of subgroups
will utilize push and multipush maps. If the complement of the domain of a (multi)push is
not simply connected, then the map cannot act as an isometry for any hyperbolic metric on
S. We can use the collection of subsurfaces {€2,} from the construction of a Schreier surface
S to ensure this condition holds, and so all of our constructions can produce subgroups that
are not contained in the isometry group of S for any hyperbolic metric on S.

For many surfaces, this is not simply an artifact of our particular construction. By choosing
the collection {2,} carefully, we can often ensure that the resulting surface S has a non-
displaceable subsurface, and hence its isometry group (with respect to any hyperbolic metric)
contains only finite groups [APV, Lemma 4.2]. In particular, the groups we construct could
not arise from a construction using isometries for any such surface.

4. FREE GROUPS, WREATH PRODUCTS, AND BAUMSLAG-SOLITAR GROUPS

In this section, we use shift maps and multipushes to construct free groups, certain wreath
products, and solvable Baumslag-Solitar groups as subgroups of big mapping class groups.

4.1. Free groups. The construction of Schreier surfaces from Section 3.1 was motivated by
the following construction of a free subgroup of intrinsically infinite type.

Example 4.1. Let I' be the Cayley graph of the free group Fy = (a, b), which is the Schreier
graph I'(Fy, {a, b}, {id}), and build the Schreier surface S = Sr(II) with II a torus with one
boundary component. See Figure 5. This Schreier surface is homeomorphic to the blooming

Cantor tree, that is, the surface with no boundary components, no planar ends, and a Cantor
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set of nonplanar ends. The multipushes x, and x;, generate a copy of Fy in PMap(S). To
see this, observe that for any ¢ € (a,b), the multipush z, maps II, to II,,, and similarly
for x,. Thus, the only way for a word w € (x,, ;) to act trivially on the surface is if the
corresponding word in (a, b) is trivial. Moreover, Remark 2.6 shows that this copy of Fy in

PMap(S) is not contained in Map,(.S).

In this example, it is straightforward to prove that a non-trivial word w € (z,,x;) acts
non-trivially on the surface because Fy has no relations and I' is a tree, so we only need to
track where w sends Il;3. With a more nuanced analysis of the action of w, however, we can
show that multipushes generate a free group in a much more general setting. Recall that the
collection B of Schreier surfaces was defined in Definition 3.7.

Theorem 4.2. Let I be a Schreier graph for a triple (G, T, H) and S any associated Schreier
surface. The set {x, | o € T} generates a free group of rank |T'| in Map(S). If |T| =1 and
[ is finite, then we require that at least one €1, is not a sphere.

Moreover, when S € B, there exist countably many non-conjugate embeddings of such a
free group in Map(S), none of which can lie entirely in the isometry group for any hyperbolic
metric on S. If S is not finite type and not the Loch Ness monster surface, these free groups
cannot be completely contained in Map,(S).

Proof. Let w = t1...t; be a nontrivial, freely reduced word in the free group generated by
the set 7', and let x,, := z, - - - x4, be the product of multipushes. We aim to show that z,,
is nontrivial in Map(S). We first observe that if x,,(I1,) = g4, # [y, for any coset Hg,
then z,, is nontrivial in Map(S). We may therefore assume that x,, returns each Iy, to
itself. In particular, this implies that Hgw = Hg for all ¢ € G, and so the edge path given
by labels (¢1,...,tx) in I'(G, T, H) based at any vertex describes a cycle.

First consider a one-generated group G. If T' is infinite, then we must have H = {id}, in
which case I'(G, T, H) = I'(Z, {1}, {id}) is the Cayley graph of Z with its standard generator.
Since this graph has no cycles, each element x,, with w € G is non-trivial in Map(S). On
the other hand, suppose I is a finite cycle of order k, and consider the multipush z;, where
t is the generator of G. Then, z¥ represents a cycle in ', but the requirement that some
(); is not a sphere guarantees that the curve v and 2% () cobound a surface with non-trivial
topology. See Figure 8 for the case k = 3. Thus v and 2¥(v) are not homotopic, so z¥ is
non-trivial and (x;) = Z.

Now assume |T'| = n > 2, so that every vertex of I'(G,T, H) has degree 2n > 4. Let
p: [ — T be the universal cover of the labelled graph I', which is a tree of valency 2n with
edge labels in the set 7. Construct the Schreier surface S = Sp(I) # Qj, where Q; = Q,

seV ()
whenever p(#) = v. By construction, S is a cover of S = Sp(IT) # €. See Figure 9 for an
veV(T)
example.

For each t € T, let #, be the multipush on S obtained by identifying I with the Cayley
graph of the free group with basis 7. The covering map P: S — S induces a homomorphism
from the group generated by the multipushes on S to the group generated by the multipushes
on S by mapping z; — x;. Recall that, by assumption, w = t; ...#; is a non-trivial reduced
word in the free generating set T" and x,, = @4, ... x4,. Let Ty, = Ty, ... Ty,

Suppose towards a contradiction that x,, is trivial in Map(S). Then the following com-

mutative diagram of homeomorphisms shows that z,, is a deck transformation.
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FIGURE 8. A surface S built from the Cayley graph of Z /37 = (t). The curve
7 is not homotopic to its image under z? due to the handle on the back of S.

Se(I) —2 Sp(1)

Sp(IT) 2229 §p(1D)

On the other hand, since 7, is a multipush, it moves every vertex surface of S at most
k steps away from itself, a bounded distance. We claim this is a contradiction. Indeed,
as the covering map sends vertex surfaces to vertex surfaces and edge surfaces to edge
surfaces, respecting the edge labels in 7', we see that any deck transformation of P: S — S
is determined by a deck transformation of the covering p: I — I. One readily checks that
for any such nontrivial deck transformation and for all j > 1, there exists a vertex v in the
tree I' such that the distance from v to its image is larger than j, and we have obtained our
contradiction.

When S € B, it follows from Lemma 3.8 that there are countably many non-conjugate
embeddings of the free group Fjz in Map(S). By the argument in Section 3.3, none of these
embeddings lie in the isometry group for any hyperbolic metric on S. Finally, when S is not
finite-type or the Loch Ness Monster (in which case Map_.(S) = Map(S)), each multipush in
the argument above is a collection of shift maps, so Remark 2.6 completes the proof. ([l

It follows from the proof of Theorem 4.2 that the support of every non-trivial element
of F|7| is not contained in the union of the vertex surfaces. This is clear if w does not fix
every Ily,, because the shift domains are contained in the support of z,,. On the other
hand, suppose w fixes each Ily,. Since z,, is a collection of pushes, it therefore restricts to
the identity on each vertex surface. However, the proof of the theorem shows that z,, is a
non-trivial homeomorphism, and so the support of z,, cannot be contained in the union of

the vertex surfaces. See Figure 10 for an example of what the image of a loop v might look
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FIGURE 9. An example of the surface S = Sy(IT) and lifts of multipushes
Ly Ly

J
=

Ra

FIGURE 10. A portion of the Schreier surface for (Z?, {a,b},{1}) and the
image of the curve v under the element zyq,—1,-1.

like after the application of z,, when w is trivial in G. This will be a crucial ingredient in
the proof of Theorem 6.3.
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FIGURE 11. The shifts h, and h, do not generate a free group.

4.2. Shift Maps that do not generate a free group. The construction above uses a
countable collection of intersecting push maps to ensure the resulting group is free. The
following example demonstrates why this is necessary by showing that the group generated
by two shift maps with minimal intersection is not free. We use the convention that [z, y]| =
xyxr~ty~! and choose a right action.

Let I" be the four-ended tree with a single vertex of valence four and all other vertices of
valence two. Identify I" with the coordinate axes in R? to get a labeling of the vertices as
integer coordinates. Let Il be any surface with one boundary component that is not a disk,
and construct the surface S = Sp(Il). There is a horizontal shift h, corresponding to the
+(1,0) map on the r—axis and a vertical shift h; corresponding to the +(0,1) map on the
y—axis, as shown in Figure 11. The intersection of the supports of these shifts is contained in
the front of V(g o), the vertex surface at (0,0). It can be checked that the support of [hg, hs) is
contained in the fronts of V(_; o), V(0,0), and V(o _1) and the adjoining edge surfaces. The word
w = hahyh? maps {1y, II_10), 00} to the collection {Ily gy, H20), 3,0 }. Thus, the
elements [hy, hy) and w[hg, hy)w™ have disjoint supports and so commute. More generally,
the words Wy = h2n+1hbhz map {H(O,—l)un(—l,0)7n(0,0)} to {H(1+3n,0)7H(2+3n,0)7H(3+3n,0)}-
From this, we see that H := (h,, hy) is not a free group and actually contains copies of Z"
for all n.

In fact, H is isomorphic to a 2—generated subgroup of an infinite strand braid group. To
see this, note that the group structure of H is not dependent on the surface II that we
attach, so we may assume II is a punctured disk. We can also realize each shift domains as a
disk with countably many punctures with two distinct accumulation points on the boundary.
Because braid groups are mapping class groups of punctured disks, this viewpoint allows us
to realize H as a subgroup of the infinite strand braid group in which braids are allowed
to have non-compact support. In particular, H is isomorphic to the subgroup of this braid
group generated by the elements h, and hy, viewed as braids with non-compact support.

4.3. Wreath products. Recall that if H acts on a set A, then the (restricted) wreath
product G iy H is defined as

GuwH=G"~, H,
18



that is, the semidirect product of H with the direct sum of copies of G indexed by A. Here,
G* = @G and is the set of (ga)aea. The automorphism v: H — Aut(G*) is defined by
v(h)(Gy) = hGyh™! = Gjy, so that H acts on G* by permuting the coordinates according
to the action on the indices. When it is clear from context, or when A = H, we may simply
write G H.

We now construct a collection of wreath products in big mapping class groups. The most
straightforward example of this construction is when S is a surface which admits a shift whose
domain is an embedded copy of Dy for some surface II with one boundary component. For
any G < Map(II), we generalize a construction of Lanier and Loving [LL20] to construct
G 7Z as a subgroup of Map(S). When G is chosen to be the infinite cyclic group generated
by a single Dehn twist, we recover [LL20, Theorem 4].

Proposition 4.3. Let G < Map(Il), where I1 is a surface with a single boundary component.
Let S be a surface and H < Map(S) be generated by a collection of pushes and multipushes,
all of whose domains are (unions of) embedded copies of An or Dy. Index the copies of 11
in these domains by A. The wreath product Gy H is a subgroup of Map(S).

Proof. Let hq, ..., h, be the generators of H, so A is a set indexing the copies of Il contained
in the union of the domains of the h;. Each h; permutes the copies of II in its domain and so
acts on A: if A € A, then h;()\) is defined to be the index of h; (IT)). This induces an action
of H on A.

Let G < Map(II), and let G = G be the corresponding subgroup of Map(S) supported
on ITy. Whenever A # X, the subgroups G, and G have disjoint supports and commute, so
(Gy| A€ Ay =G*. For any h € H and X € A, we have hG\h™" = Gj\) and H NG, = {1}.
Therefore, the subgroup of Map(.S) generated by (H, Gy | A € A) is isomorphic to Giy H. O

We illustrate this proposition with several examples.

Example 4.4. Proposition 4.3 applies whenever S and H are one of the following.

(1) Let S be a surface with an embedded copy of Dy, and let H be generated by a
(possibly one-ended) shift h, so that H = Z. The index set A is simply Z, and h acts
on A as addition by 1.

(2) Let S be a Schreier surface for a triple (A, T, B) such that ¢y,...,t, € T correspond
to biinfinite geodesics in I'(A, T, B). Let H be the subgroup of Map(.S) generated by
the multipushes xy,,...,2,. By Theorem 4.2, H = F,. In this case, the index set A
is the collection of right cosets { Ba | a € A}. Each generator z;, acts on A as follows:
if Ba € A, then z;, - Ba = Bat,.

(3) Let S = Sp(II) be the surface described in Section 4.2, and let H = (h,, hy) be the
subgroup of Map(S) constructed in that section. In this case, H is not free. The
index set A is the set {(0,n),(n,0) | n € Z}, and the generators h, and h; act on A
as addition by (1,0) and (0, 1), respectively.

When S € B, it follows from Lemma 3.8 that there are countably many non-conjugate
embeddings of G H in Map(S) for G, H as in the statements of Proposition 4.3. Moreover,
none of these embeddings lie in the isometry group for any hyperbolic metric on S by the
discussion in Section 3.3 or in Map,(S) by Remark 2.6.

4.4. Solvable Baumslag-Solitar groups. For our third and final construction in this

section, we focus on solvable Baumslag-Solitar groups. Fixing a positive integer n, recall
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FIGURE 12. The most straightforward example of a surface .S for which The-
orem 4.5 shows that BS(1,n) < Map(S) for all n > 0.

that the Baumslag-Solitar group BS(1,n) is the group with presentation
BS(1,n) = (a,t | tat 'a™").

The condition on the surface S in the following theorem involves a partial order on E(S5)
and the notion of self-similarity of a set of ends. The precise definitions are not important
for this paper; we only use that this condition implies that S admits a shift map of a Cantor
set of ends [FPR22]. We refer the reader to [MR19] for precise definitions. The surfaces
satisfying this condition include, for example, the Cantor tree, the blooming Cantor tree,
and a Cantor tree with finite genus and finitely many punctures, but it is a much more
general class of surfaces.

Theorem 4.5. Let S be a surface such that E(S) contains a self-similar subset that contains
a Cantor set of mazimal ends. Then BS(1,n) < Map(S) for all n > 0.

Proof. Let S be as in the statement of the theorem. By [FPR22, Lemma 3.4], the surface S
admits a shift map h with domain Dy, where II is a surface with one boundary component
that contains a Cantor set of maximal ends, called C. Index the copies of IT in Dy by Z.

@@@@@@@@@@@@

0‘01 0‘02 0‘11 0‘12 0‘21 0‘22 0‘31 0‘52 0‘41 0‘42 0‘51 0‘52

0 0 0 0 0 0
Qg ag Q3 as Qy Qg

FIGURE 13. The curves for £k = —1,0,1 when n = 2. The green, blue, and
red arrows indicate ¢1, ¢g, and ¢_1, respectively.

We will first construct a collection of homeomorphisms of II. For each k € Z, we will
define a collection of simple closed curves which divide C into clopen sets. When k = 0,
define an arbitrary countable collection of disjoint clopen sets of C enclosed by a collection

of simple closed curves {a{};cz. When k = 1, for each i, divide the maximal ends contained
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in af into n clopen sets using simple closed curves «},,...,a;,. Continue in this manner
for all k > 2. When k = —1, for each i = 0 mod n, let [ = i/n and let al’l be a simple
closed curve such that a; ', af,a? ,,..., a2, | cobound an (n+1)-holed sphere. Thus, o'
groups together the ends that are cut away by of,af,,...,aY,, ;. Continue in this manner
for all £ < —2. See Figure 13.

We now define an element of Map(Il) for each k € Z. The mapping class ¢q is the shift
that sends of to of, for all i € Z. The mapping class ¢y is the shift that sends o;; to o ;,,
when 1 < j < n and o, to o}, . Define ¢} when k > 2 analogously. The mapping class
¢_1 is the shift that sends o; ' to ozljrll. Define ¢y, for k < —2 analogously.

Let ¢ € Map(S) be the element which simultaneously acts as ¢ on I, the k—th copy of
I1, for each k € Z and as the identity elsewhere. Let h € Map(S) be the shift whose domain
is Dy. See Figure 12.

Let f: BS(1,n) — Map(S) be the map defined by f(a) = ¢ and f(t) = h. We will
show that f is an isomorphism onto its image, i.e., Map(S) contains an isomorphic copy of
BS(1,n).

For each k € Z, the mapping class f(tat™!) = hoh™! first shifts II; to the left, applies ¢,
which now acts as ¢,_; on Il;, and then shifts II; back to the right. By construction, ¢,
applied to II; is equivalent to ¢} applied to II;. It follows that

f(tat™) = hoh™" = ¢" = f(a™).

Therefore, f is a well-defined homomorphism.

Suppose there exists g € BS(1,n) such that f(g) is the identity of Map(S). Using the
relation in BS(1,n), the element g can be written as g = t'a*t=7 for some k € Z and
i,j € Z>o. Since f(g) = hi¢p*h=7 is the identity, it must fix each II;, and so we must have
i = j. Consider the surface II. Then, f(g) first shifts [Ty to the left j times, applies ¢*
(which acts as ¢* ; on I1_;), and then shifts back to Ily. The result is that f(g) acts as the
shift ¢* ; on TIy. The only way that f(g) can act as the identity on Iy is if & = 0. Thus,
g =ta’t" =1, and f is injective, as desired. O

The construction above embeds solvable Baumslag-Solitar groups into mapping class
groups of certain infinite-type surfaces. This is in contrast to the finite-type case, where
BS(1,n) is never a subgroup of the mapping class group due to the Tits alternative: every
subgroup of such a mapping class group either contains a free subgroup or is virtually abelian
[Iva84, McC85]. Since BS(1,n) is solvable, it does not contain any free subgroups, but it is
also not virtually abelian.

Note that the techniques in Section 3.2 show that given one embedding of BS(1,n) into
Map(S), we can produce countably many non-conjugate copies of BS(1,n) in Map(S), but
we must edit the surface Il to contain, for example, a single handle in order to satisfy the
conditions in Definition 3.5. Once again, none of these embeddings lie in the isometry group
for any hyperbolic metric on S by the discussion in Section 3.3 or in Map,(S) by Remark 2.6.

We expect that a similar construction can be used to embed BS(m,n) into Map(S) when
m # 1. However, the lack of a normal form for elements in BS(m,n) significantly increases

the complexity of the proof.
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5. INDICABLE GROUPS

In this section, we give a general construction for embedding any indicable group which
arises as a subgroup of a mapping class group of a surface with one boundary component into
a big mapping class group in countably many non-conjugate and intrinsically infinite-type
ways. We will need the following lemma in our construction.

Lemma 5.1. A group G is indicable if and only if there exists a presentation G = (T | R)
such that for each r € R, the total exponent sum of r with respect to the generators T is
zero.

Before presenting the proof of the lemma, we give an example that motivates the ar-
gument. Consider the Baumslag-Solitar group BS(1,n) with its standard presentation
BS(1,n) = {a,t | tat"*a™™). This presentation does not have the desired property since
the total exponent sum of the relator in the generators a and t is 1 — n. However, there
exists a homomorphism f: BS(1,n) — Z defined by letting f(a) = 0 and f(t) = 1, so the
lemma tells us that there must be a presentation of BS(1,n) with the desired property. If
we augment the generator a to be at instead, then

BS(1,n) = <at,t (t-at-t~ -t t(at)" - -t(at)_1> :

N J/
-

n times

and the relator has zero total exponent sum in the generators at and ¢. In this presentation,
the generators of BS(1,7n) both map to 1 under the homomorphism f, and we will use this
property in the proof of the lemma.

Proof of Lemma 5.1. Given a group G = (T | R) with all relators having total exponent sum
zero, there is a well-defined homomorphism f: G — Z defined by sending each generator to
leZ.

For the other direction, assume there exists a homomorphism f: G — Z, and let N =
ker(f). Let N = (V | W) be a presentation for N, and let a € G be such that f(a) = 1. Then
since G/N = Z, the group G is generated by 7" = {a} U V. If we augment the generators in
V C T by a, then T = {a} U{av: v € V} is also a generating set for G. Importantly, the
image of every one of these generators under f is 1 € Z.

Let G = (T'| R) be the presentation of G for the generating set 7. If r € R is a relator,
then r is a word in (7") that is the identity in G. Thus, f(r) = 0, and given that every
element of T" maps to 1 € Z, the total exponent sum of r with respect to T must be zero.
Therefore, (T | R) is one such desired presentation for G. O

We can now begin our construction. Take any indicable group G that arises as a subgroup
of Map(II), where II is a surface with exactly one boundary component. Let h be a shift map
on an infinite-type surface S whose domain is an embedded copy of Dy in S. As discussed
in Section 3, this includes a wide range of surfaces, including surfaces Sr(II) built from any
graph with countable vertex set that contains a biinfinite path.

The most trivial way to embed G into Map(S) is to let G act on one copy of II in S.
Indexing the copies of II in Dy by Z and taking any subset of I of Z, G can also act
simultaneously on the subsurfaces II; of S for ¢« € I. Varying over all subsets of Z gives an

uncountable collection of copies of G in Map(S). Unlike these embeddings, the construction
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in the next theorem produces an uncountable collection of copies of G which do not lie in
the isometry group of S, even if G lies in the isometry group of II, and do not lie in Map,(.S),
even if II is compact. See Definition 3.5 for the definition of a distinguished surface and the

family C(II).

Theorem 5.2. Let 11 be a distinguished surface and G < Map(Il) an indicable group. Given
a surface S € C(II), there are countably many non-conjugate embeddings of G in Map(S)
such that no embedded copy is contained in Map,(S) and no embedded copy is contained in
the isometry group for any hyperbolic metric on S.

Proof. Let h € Map(S) be a shift with domain Dy, and let G be an indicable group. Fix a
presentation (7' | R) of G such that each r € R has total exponent sum zero with respect to 7,
which exists by Lemma 5.1. Since G is a subgroup of Map(IT), G acts by homeomorphisms on
each II; in Dy. For each g € G, let g € Map(S) be the element that acts as g simultaneously
on each II; in Dy. We claim that the group generated by T = {th : t € T} in Map(9) is
isomorphic to G. Let ¢: Fr — (T) < Map(S) be the surjective map defined by ¢ + th for
all t € T, where Fr is the free group on the generators 7. We claim a word is in the kernel
of this map if and only if it represents a trivial element in G.

Notice that h and ¢ commute as elements of Map(S) so that for any word w € Fr with
total exponent sum k € Z, the image ¢(w) can be written as wh®. Thus, ¢(w) acts trivially
on S if and only if £ = 0 and w acts trivially on each copy of Il in S. The only elements w
with this property are those that are trivial in G, and elements that are trivial in G have
this property since products of conjugates of relators » € R have total exponent sum zero.
Thus, the group G’ generated by T in Map(.S) is isomorphic to G.

Any element of G’ that does not have total exponent sum zero with respect to T is not
in Map,(S), since it must shift the surfaces II;. Remove finitely many copies of II from the
domain of h to obtain a new shift ", and construct the group G” = (th” | t € T) < Map(S).
This group G” is isomorphic to G for the same reason that G’ = (. By the same reasoning
as in Section 3.2, the complements of the supports of G’ and G” are non-homeomorphic.
In particular, G’ and G” are not conjugate. As in Lemma 3.8, this procedure produces
countably many non-conjugate embeddings of G into Map(.S). Finally, no such embedding

is contained in Map,(S) by construction. O

It was suggested to the authors by Mladen Bestvina that one can get around constructing
the presentation in Lemma 5.1 for the indicable group G by working instead with the wreath
product construction in Proposition 4.3. More specifically, let f: G — Z be a surjection
from the indicable group to Z. Let II be a surface with exactly one boundary component
such that G arises as a subgroup of Map(II), and let S be a surface which admits a shift h
with domain Dy. For g € G, let g be the element which acts as g on each II;. Then, for
g € G, define a new map ¢: G — G Z < Map(S) via g — ghf9. One readily checks that
this map is an injective homomorphism by observing that the restriction of the image of G
to @ G is the diagonal subgroup, and so the action of Z is trivial. The embedding in the
proof of Theorem 5.2 is exactly this map.

Theorem 5.2 applies to all subgroups constructed in Section 3. Another interesting class
of examples produces embeddings of pure mapping class groups into a full mapping class

group that are not induced by embeddings of the underlying surfaces.
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The following corollary is immediate from Theorem 5.2 and work of Aramayona, Patel,
and Vlamis [APV20, Corollary 6], which shows that the pure mapping class group of any
surface with at least two nonplanar ends is indicable.

Corollary 5.3. Let II be an infinite-type surface with at least two nonplanar ends and
exactly one boundary component. Given any surface S that admits a shift whose domain is
D, there exist uncountably many embeddings of PMap(Il) into Map(S) that are not induced
by an embedding of 11 into S. In addition, none of these embeddings preserve the notion of
being compactly supported. When 11 is a distinguished surface and S € C(I1), countably many
of these embeddings are non-conjugate.

Corollary 5.3 is in line with a body of work aiming to find interesting homomorphisms
between big mapping class groups. It also gives a natural set of examples of uncountable
groups G to which one can apply Theorem 5.2. We note that determining which full mapping
class groups are indicable is an important open question for both finite- and infinite-type
surfaces. We now give a few examples of indicable big mapping class groups.

Examples 5.4. Mann and Rafi build continuous homomorphisms from finite-index sub-
groups of mapping class groups to Z* and to Z in the proofs of [MR19, Lemma 6.7 &
Theorem 1.7], respectively. To find surfaces whose full mapping class groups are indicable,
we focus on the cases where the subgroup has index 1, a few of which we list below. We will
define the homomorphism to Z explicitly for example (1); the others are defined similarly.

(1) Let II be the surface with infinite genus whose end space is homeomorphic to the two-
point compactification of Z, that is, E(Il) = {—oco} UZU{o0}, where EI(II) = {o0}.
Let A C E(II) be the subset of ends corresponding to —N, and let B be the subset
of ends corresponding to {0} UN. This surface is colloquially called the bi-infinite
flute with one end accumulated by genus, and it admits a shift with domain Dy, for
a punctured disk 3. A homomorphism ¢: Map(IT) — Z can be defined by

lp)={x e E|ze A, ¢(x) e Bl| —-[{zr € E|x € B, ¢(x) € A}.

The map ¢ counts the difference in the number of punctures mapped from negative
to positive and punctures mapped from positive to negative. Note that the shift map
mentioned above evaluates to 1 under ¢, so the map ¢ is surjective.

(2) Let II be a surface of any genus whose end space consists of a Cantor set and {—oo}U
Z U {0}, equipped with the same topology as in part (1), where the end {oo} is
identified with a point in the Cantor set. The ends corresponding to {—oco} UZU{oo}
must all be planar or all nonplanar; the other Cantor set of ends can be planar or not.
The homomorphism to Z is defined as above, with sets A = —N and B = {0} UN.

(3) Let II be the surface with infinite genus and end space N U {oco}, where only the
ends corresponding to 1 and oo are nonplanar. This surface can be visualized as the
ladder surface with punctures accumulating to one end. Here we can similarly define
a homomorphism to 7Z, which instead counts the number of genus that are moved
across a simple closed curve separating the ends in E¢.

The common thread in the examples above is that the two ends of the shift map are of
different topological types so that no element of Map(Il) can exchange the two ends. This
is the key fact necessary to ensure that the map ¢ above is a well-defined homomorphism of

Map(IT) and not of a proper subgroup of Map(II).
24



Each of the examples above can be modified to have exactly one boundary component.
The third example can be extended to uncountably many more examples by replacing one
of the isolated planar ends with a disk punctured by any closed subset of the Cantor set, of
which there are uncountably many.

Moreover, in each case, II is like a distinguished surface in the sense that if S — Dy has
finitely many nonplanar ends in Cases (1) and (3), then Map(.S) can be used as the input for
Theorem 5.2. In Case (2), if S — Dy has finitely many nonplanar (resp. planar) ends when
the ends of E(II) corresponding to {—oco} UZ U {co} are nonplanar (resp. planar), then
Map(S) can be used as the input for Theorem 5.2. Therefore, we can construct countably
many non-conjugate embeddings of Map(II) into Map(.S) in all such cases.

6. COMBINATION THEOREM

In this section, we give a construction that takes as its input a set of indicable subgroups
of mapping class groups of surfaces with one boundary component and outputs a new surface
whose mapping class group contains a new indicable subgroup of intrinisically infinite type
built from the original subgroups.

Definition 6.1. Given two subgroups H; and H, of groups GG; and G, respectively, the free
product of G and G5 with commuting subgroups Hy and H is

(G, Hi) * (Ga, Ha) := (G1 * Ga) /([H1, Hal)).
More generally, the free product of G, ..., G, with commuting subgroups Hy,..., H, is
(G1,Hy) % -+ (G, Hy) =Gy % ---x G /([Hi, Hj] 10 # ).

These groups are a natural interpolation between free products (where the H; are trivial)
and direct products (where H; = G; for all 7). Free products with commuting subgroups
arise in many natural contexts. For example, graph products of groups are a special kind of
free product with commuting subgroups, where H; = G for some indices ¢ and the remaining
H; are trivial.

We are interested in the case where the G; are indicable groups and the H; are the kernels
of the surjections to Z.

Lemma 6.2. Let Gy,...,G, be indicable groups with surjective maps f;: G; — 7Z, and let
H; = ker(f;). Then the group (G, Hy) * ---* (G, H,) is also indicable.

Proof. Let T; be a generating set for G;. Then there isamap ¢: (G, Hy)x - (G, H,) — Gy
defined by ¢(t) = 1 for each t € T; with ¢ # 1, and ¢(t') =t/ for each t' € T}. Here 1 is the
identity element of G;. This map ¢ is a homomorphism which restricts to the identity on G.
By post-composing ¢ with f;, we obtain the desired map (Gy, Hy) -+ * (G, H,) — Z. O

We are now ready to prove our main combination theorem, of which Theorem 1.3 is a
special case.

Theorem 6.3. Fori = 1,...,n, let S; be a distinguished surface, and let I1 be obtained
from #,S; by capping off n — 1 boundary components. Let S be a Schreier surface in C(II)
for a triple (G, T, H) with |T| = n. Let G; be an indicable group that embeds in Map(S;),
fix a surjective map f;: G; — 7Z for each i, and let H; = ker f;. There are countably many
non-conjugate embeddings of the indicable group (G, Hy) - - x (Gn, H,) into Map(S), none
of which lie in Map,(5).
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FIGURE 14. The domains of the two multipushes z, (blue) and z} (red) in
the proof of Theorem 1.3 in the case that I' is the Cayley graph of the free
group generated by a and b.

Proof. We prove the theorem for n = 2 for simplicity of notation, but the same proof works
for all n. Let a and b be two generators of G. By construction, S admits two multipushes
x, and x;,, where each acts as simultaneous pushes, as in Definition 3.3. See Figure 14.

By Lemma 5.1, each surjection f;: G; — 7Z gives rise to a presentation G; = (T; | R;) such
that every r € R has total exponent sum zero with respect to T; for ¢ = 1,2. Similarly to
Theorem 5.2, for each g € G;, define an element g € Map(.S), where g acts as g simultaneously
on each copy of II in the domains of z, and x;, in S. For i = 1,2, elements g; € G; act on the
copies of S; in II, and the copies of S7 and S5 in each copy of II are disjoint. Thus, g; and g
commute for any g; € Gy and go € Gy. Let T = {tx, : t € T1} and let Ty = {tzy : t € Tp}.
We claim that the group generated by T UT5 in Map(.S) is isomorphic to (G, Hy)* (G, Ha).

For a set A, we let Fy denote the free group on generators A. Let ¢: Frup, — (ThUT5) <
Map(S) be the surjective map defined by t — tz, for all t € T} and t — tay, for all t € T. In
order to show that (T, UT,) < Map(S) is isomorphic to (G1, Hy) x (Ga, Hy), we must show
that the kernel of ¢ is generated by all relators in R; U Ry and the commutator [Hy, Hs).

For any t € Ty U Ty, the element ¢ commutes with both z, and 3, and so we can write
¢(w) = uw where u € (x4, xp). As in the proof of Theorem 5.2, if r € R; for i = 1,2, then

¢(r) is the identity element in Map(S), and so Ry U Ry C ker(¢). Next, given w; € H;,
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we claim that ¢(w;) = w;. This follows from the fact that the subgroup H; is the kernel of
fi so that w; has total exponent sum zero in the generators T;. Therefore, ¢(w;) has total
exponent sum zero with respect to T;. Since we can write ¢(w;) = uiw;, for u € (x,) when
i =1 and u € (zp) for i = 2, the total exponent sum zero condition implies that w is in fact
trivial and ¢(w;) = w;. The supports of w; and wy as elements of Map(II) are disjoint by the
construction of II so that the supports of w; and w, as elements Map(S) are disjoint. Thus,
these elements commute and the image ¢(wjwow; 'wy ') = W1wWow; ' 1w, " is the identity in
Map(S). It follows that [Hy, Hs] C ker(o).

Lastly, we show that if w € Fpup is in ker¢, then w is in the group generated by
Ry U Ry U [Hy, Hy). Fix any nontrivial w in Fr,r, such that ¢(w) acts as the identity on S,
and write ¢(w) = uw, where u € (4, ). By Theorem 4.2, the group (z,, x;) is isomorphic
to Fy. If u is non-trivial, then the support of u is not contained in the union of the vertex
surfaces by the discussion at the end Section 4.1, while the support of w is contained in the
union of the vertex surfaces by definition. Thus, w could not be in ker(¢), a contradiction.
Therefore, ¢(w) = w.

Since w is nontrivial by assumption, w is a nontrivial word in the free group generated
by {t:t € Ty UTy}. We will now show that since ¢(w) = w is the trivial homeomorphism
and, therefore, acts trivially on each copy of II, the element w is a product of elements in
[Hl, HQ] and Rl U RQ.

There are natural maps from Fp, to G; and from Fpp, to G * Go. Decompose w as
w = c1dy ... cedy for some ¢ > 1, where ¢; € Fp, and d; € Fr,, and each ¢; and d; is
non-trivial except possibly ¢; and d,. Then

p(w) = d(cr) ... o(de)

= xslélleZJl e xi”*légx]g”cﬂ,
sou =zl .w’é”’lxlgﬂ. Since w is the trivial element in the free group (z,,x}), we must
have k; = ky = --- = kgy = 0. In particular, using the fact that the surjections f;: G; — Z
send each element of T; to 1, the image of each c; under the natural maps defined above lies
in H; < G, and the image of d; lies in Hy < G, for all j = 1,...,¢. Thus, the image of w
in Gy % Go lies in Hy * Hy. Moreover, because ¢(w) € Map(S) acts as the identity on every
copy of S; and Sy in S, the image of w under the projections from H; x Hy to H; < Gj is
trivial for 2 = 1, 2.

If w = ¢y, the image of w in G * Gy lies completely in Hy, and the fact that ¢(w) acts
trivially on S, and in particular on each copy of S; in S, means that w € R;. Similarly, if
w = dy, then w € Ry. On the other hand, if the image of w is not completely contained in one
factor of HyxHj, then the fact the projections to each H; are trivial, implies that w € [Hy, Hs).
In all cases, we have proved that w is in the group generated by Ry U Ry U [Hy, Hs].

We have shown that (G, H1)*(G2, Hs) embeds in Map(.S). As in the proof of Theorem 1.2,
by removing finitely many copies of II from the domains of x, and x;, we obtain countably
many non-conjugate embeddings of (G, Hy) * (G2, H2) into Map(S). By construction, no
such embedding is contained in Map,(.S). O

6.1. Constructing right-angled Artin groups. In this subsection, we describe how to
use Theorem 1.3 to produce certain right-angled Artin groups A, that embed in big mapping

class groups in countably many non-conjugate ways. The groups A, are never completely
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contained in Map,.(S) and can never act by isometries for any hyperbolic metric on the
infinite-type surface.

Theorem 1.3 produces embeddings of free products with commuting subgroups into Map(.S).
In general, the free product of G; and G5 with commuting subgroups H; and H, will not be
finitely presented, even when the groups G; are finitely presented. For example, consider the
indicable group Fy = (a,b) with the map to Z defined by a +— 1 and b+ 0. It is an exercise
to see that the kernel K of this map is not finitely generated, see FExercise 7 of Section 1.A
in [Hat02]. Therefore, if G; = Gy = Fy and H; = Hy = K, then (Gy, Hy) x (G, Hy) is a
finitely generated but infinitely presented group.

However, there are instances where the free product of indicable groups with commuting
subgroups is a recognizable finitely presented group. Let H; be right-angled Artin groups
with defining graphs A; for ¢ = 1,...,n, and let G; = Z x H;. The group (G1, Hy) * -+ *
(G,, H,) is the right-angled Artin group defined by the graph shown in Figure 15.

FIGURE 15. The lines between A; and A; signify that each vertex of A; is
adjacent to every vertex in A;.

Examples 6.4. We now give some explicit examples of right-angled Artin groups arising
as the free product with commuting subgroups (G1, Hy) x (G, Hy). In each graph, the blue
vertices correspond to generators of G; and the orange correspond to generators of Gs.

(1) Taking G; = Z™ and G5 = Z"™, we produce the right-angled Artin groups defined by
the following graphs. Specifically, Figure 16 shows the defining graphs for (Z% Z) %
(22,7, (Z3,72) % (Z*,Z), (Z3,7%) = (Z3,7Z*) and a general schematic for the group
(Zm+17 Zm) * (ZnJrl7 Zn)

——— <P <K (e

FIGURE 16.

(2) Taking G; =Z x F,,, H = F,, and Gy = Z?*, with H, being one of the Z factors, we
produce the right-angled Artin groups defined by the following graphs. Specifically,
Figure 17 shows the defining graphs for n = 2, n = 3, n = 4, and a schematic for

general n.
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FIGURE 17.

(3) Taking G4 = Z x F,,,, H = F,, and Gy = Z x F,,, Hy, = F,, we produce the right-
angled Artin group defined by the graphs shown in Figure 18. These are the defining
graphs for m =n =2, m =n = 3, and a schematic for general m, n.

FIGURE 18.

Free products with commuting subgroups can also be used to construct free products of
right-angled Artin groups with F,,. We demonstrate this in the case n = 2 with the example
below, using the fact that if A’ is an induced subgraph of A, then the right-angled Artin
group Ay is a subgroup of the right-angled Artin group Aj.

A A/l
>
|

FIGURE 19. The induced subgraph A’ of A corresponds to the right-angled
Artin group Ay = Ap, * F5. This group can be found as a subgroup of the
mapping class group of any surface in the collection B.

Example 6.5. Let Ax be a right-angled Artin group. Let G; = Z x Ax and Gy = G5 = Z2.
Denote by A the defining graph for (G, Ax) x (Z%,Z) = (Z*,Z) given by Figure 15. Now, let
A’ be the induced subgraph on the vertices of A which are not adjacent to the copy of A in
A, and the copy of A. The corresponding right-angled Artin group is Ay = Aa * Fo. See
Figure 19 for an example where A = P,, the path graph on four vertices.

We now show how to apply Theorem 1.3 to produce right-angled Artin subgroups of
mapping class groups.

Corollary 6.6. For any surface S € By, and any graph A from FExamples 6.4 and FExam-
ple 6.5, there are countably many non-conjugate embeddings of the right-angled Artin group
Ay in Map(S), such that no embedded copy is contained in Map,(S) and such that no em-
bedded copy is contained in the isometry group for any hyperbolic metric on S.

Proof. We need to show that each of the groups G; from Examples 6.4 and Example 6.5

arise as subgroups of mapping class groups of surfaces with one boundary component and
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that, in each case, the subgroup H; is the kernel of a surjection G; — Z. The result will
then follow immediately from Theorem 1.3.

The group Z™ can be realized as a subgroup of the mapping class group of a surface S
by considering the group generated by Dehn twists about m disjoint simple closed curves
on S. The group Z x Fy is generated by suitably high powers of 2 independent partial
pseudo-Anosov elements and a Dehn twist with disjoint support from both. Because F,, is a
subgroup of Fy for any n, the group Z x IF,, is a subgroup of Z x F5. Thus, each of the groups
G; in Examples 6.4 and 6.5 can be found as subgroups of Map(II), where II is a distinguished
surface of sufficient topological complexity. Since every surface S € B, (see Definition 3.7)
is built from a surface II of infinite type, this condition on complexity is always satisfied.

Finally, in each example, the group G; is the direct product of Z and H;, and so H; is the
kernel of the projection map onto the first factor. Thus, Theorem 1.3 applies, completing
the proof of the corollary. 0
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