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A HIERARCHY OF PLATEAU PROBLEMS
AND THE APPROXIMATION OF PLATEAU’S LAWS
VIA THE ALLEN-CAHN EQUATION
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ABSTRACT. We introduce a diffused interface formulation of the Plateau problem, where
the Allen—Cahn energy AC. is minimized under a volume constraint v and a spanning
condition on the level sets of the densities. We discuss two singular limits of these Allen—
Cahn Plateau problems: when ¢ — 0%, we prove convergence to the Gauss’ capillarity
formulation of the Plateau problem with positive volume v; and when ¢ — 0%, v — 0T
and £/v — 0", we prove convergence to the classical Plateau problem (in the homotopic
spanning formulation of Harrison and Pugh). As a corollary of our analysis we resolve
the incompatibility between Plateau’s laws and the Allen—Cahn equation implied by
a regularity theorem of Tonegawa and Wickramasekera. In particular, we show that
Plateau-type singularities can be approximated by energy minimizing solutions of the
Allen—Cahn equation with a volume Lagrange multiplier and a transmission condition
on a spanning free boundary.
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1. INTRODUCTION

1.1. Overview. The convergence of solutions to the Allen-Cahn equation €2 Au = W' (u)
to limit minimal surfaces is a result of basic importance in the study of the van der
Waals-Cahn-Hilliard theory of phase transitions [Gur87, Mod87, Ste88, KS89, HT00]. A
regularity result of Tonegawa and Wickramasekera [Ton05, TW12] shows that, in low di-
mensions, minimal surfaces arising as limits of stable solutions to the Allen—Cahn equation
are necessarily smooth. While this result makes the Allen—Cahn equation a useful tool for
constructing minimal surfaces in Riemannian manifolds, see e.g. [Gual8], it also stands
as a limitation to its descriptive power when studying soap films. Indeed, according to
Plateau’s laws, soap films can be modeled as two-dimensional smooth minimal surfaces
joining in threes at equal angles along lines of “Y-points”, which, in turn, are either
closed or meet in fours at isolated “T-points” where they asymptotically form regular
tetrahedral angles. The Tonegawa—Wickramasekera theorem implies in particular that no
minimal surface with Plateau-type singularities can arise as the limit of stable solutions
to the Allen—Cahn equation.



Here we prove that minimal surfaces with Plateau-type singularities can indeed be
approximated by energy-minimizing solutions to the Allen—Cahn equation modified by
the inclusion of a Lagrange multiplier term corresponding to a small volume constraint,
and with the introduction of a transmission condition along a “spanning” level set. These
solutions are constructed as minimizers of a “diffused interface” soap film model Y(v,¢,d),
which is introduced here for the first time. The introduction of a small volume constraint
has its origin in the Physics literature, where a distinction between “dry” and “wet” soap
films is made [WH99, CCAE'13]. While dry soap films are two dimensional surfaces
obeying Plateau’s laws, in the wet soap film model Plateau-type singularities are resolved
as Plateau borders — constant mean curvature channels of liquid developing around lines
of Y-points, that are supposed to attach tangentially to smooth interfaces with zero mean
curvature; see Figure 1.2 below. In the companion paper [MNR23] we have recently
validated the wet soap film model in the framework of Gauss’ capillarity theory. The
diffused interface soap film model introduced here thus completes a hierarchy of Plateau-
type problems including wet and dry soap film models.

The main result of this paper is showing how one can move along this hierarchy of
models by taking singular limits. In more concrete terms, and coming back to the problem
of approximating Plateau-type singularities by solutions to the Allen—Cahn equation, our
main results can be roughly described as follows. First, given a compact set W C R"+!
(the “wire frame”), a non-degenerate double-well potential W : [0,1] — [0,00), a related
volume potential V (t) = ( fg VW) and interface length scales e; — 07 and volumes
v; — 07 with €;/v; — 0T, we construct energy minimizing solutions {u;}; to the free
boundary problems

265 Auj =W (uy) — g A V' (uy), on QN {u; <1},
10 ujl = 10, uy] on QN {u; =1}, (1.1)
subject to [, V(uj) = v; and {u; = 1} spans W,

where Q = R"*1\ W, A;j € R are suitable Lagrange multipliers with £; A\; — 0, and oF
denote the one-sided directional derivative operators along the hypersurfaces {u; = 1}.
Second, we show that, up to extracting subsequences in j, for every such {u;}; there is a
(possibly singular) minimal surface S, which is area minimizing among surfaces spanning
W, and is such that, as j — oo,

L / go{sj |Vuj|2+M}—>2/god’H” (1.2)

2 Q €j S
for every p € CO(R"+1); see Figure 1.1. For various choices of W there will be only one such
area minimizing surface S, which will indeed possess Plateau-type singularities. Actually,
since our construction passes through the intermediate wet soap film model of [MNR23],
in a situation where the Plateau problem defined by W admits multiple area minimizing
surfaces, some smooth and some with Plateau-type singularities, the only possible limits
S in (1.2) will be surfaces with Plateau-type singularities.

One can of course think of other possible modifications of the Allen—-Cahn equation that
lead to a PDE-description of Plateau-type singularities. A well-known possibility consists
in working with an Allen-Cahn system [Bal90]. From the physical viewpoint this approach
corresponds to describing the three regions locally defined by a Y-singularity as occupied
by three different immiscible fluids. In this sense, the approach followed here, which insists
on the use of a single scalar equation and is based on the introduction of a small volume
constraint and of a spanning condition, seems more true to the actual nature of soap films.
The emergence, in this approach, of the physically meaningful wet soap film model studied
in [MNR23], is yet another indication of its naturalness.
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FIGURE 1.1. When W consists of three disks in the plane, the only possible
limit S in (1.2) consists of three segments, each orthogonal to one of the disks,
and meeting at a common endpoint at equal angles: (a) Heuristic arguments
suggest that, if u; is a solution to (1.1), then {u; = 1} should be equal to S, with
u; taking values close to 1 on a negatively curvilinear triangle I centered at the
triple point of S (depicted in gray), and then sharply transitioning to near zero
values on a small neighborhood of S U E (depicted by dashed lines). The normal
derivatives 9;f u; and 9, u; of u; should take non-zero, non-constant and opposite
values along S. (b) As j — oo, the pointwise limit of u; should be equal to 1 on
S U E (depicted in black).

In Section 1.2 we recall the homotopic spanning formulation ¢ of the Plateau problem
introduced by Harrison and Pugh in [HP16]. In Section 1.3 and Section 1.4 we introduce,
respectively, the capillarity approximation Wy (v) of ¢ studied in [MNR23] and the new
diffused interface problems Y (v, e,6). In Section 1.5 we state the main result of this paper,
Theorem 1.2, where we prove the existence of minimizers of Y (v, e, ) and their convergence
towards minimizers of Wy (v) and £ in the limits as e — 07, and as € — 07, v — 0" and
e/v — 07, respectively. Additionally, in Theorem 1.3 we derive the distributional form of
(1.1), see (1.15), and in Proposition 1.4 we deduce (1.1) from its distributional form under
some conditional regularity assumptions.

The results of this paper open the study of Plateau’s laws by means of free boundary
problems. This point, which seems very interesting, is discussed in detail in Section 1.6.

1.2. Plateau’s laws, the Plateau problem, and homotopic spanning. The prop-
erties of solutions to Plateau’s problem of finding area minimizing surfaces with a given
boundary depend subtly on the notions of “area” and “boundary” employed. The classical
formulation of the Plateau problem based on the theory of currents leads, in physical di-
mensions, to smooth area minimizing surfaces, so that surfaces with Plateau singularities
will be “invisible” even when having lower area.

Finding a formulation of the Plateau problem whose minimizers may actually show
Plateau-type singularities is a delicate task, with a long history, see [Dav14]. An effective
approach has been proposed by Harrison and Pugh in [HP16], with the introduction of
the notion of homotopic spanning. Following the presentation given in [DLGM17a], given
a closed set W C R"*! (the wire frame to be spanned), and setting = R*""1\ W, we
say that a family C of smooth embeddings v : S' —  defines a spanning class for W if
®(-,1) € C whenever ® € C°(St x [0,1];Q2), ®(-,t) is a smooth embedding of S* into € for
every t, and ®(-,0) € C. Then a relative closed set S C Q is said to be C-spanning W if

SnySH 4@, Wvyec, (1.3)



FIGURE 1.2. (a) A “dry” soap film S in R? with a Y-type singularity; (b) a
corresponding “wet” soap film (K, F): the Y-singularity has been wetted by a
negatively curved region F (“planar” Plateau border); (c) in R?, nearby a T-point
of adry film S, a wet film (K, F) is placing a negatively curved tube-like structure
E (Plateau border). Plateau borders are important, for example, to understand
drainage phenomena in soap films.

and the following homotopic spanning formulation of the Plateau problem is given,
¢ =inf {H"(S) : S is relatively closed in 2, S is C-spanning W}, (1.4)

where H"™ denotes the n-dimensional Hausdorff measure in R”*!. Minimizers of ¢ exist as
soon as ¢ < oo [HP16, DLGM17b], and they are Almgren minimal sets, that is to say,
they satisfy H™(S) < H"(f(S)) whenever f is a Lipschitz map, not necessarily injective,
with {f # id} cC Q. As proved by Taylor [Tay76|, when n = 2 an Almgren minimal
set S is locally C'h“-diffeomorphic either to a plane, or to a Y-cone, or to a T-cone, that
is, it obeys Plateau’s laws. An analogous result is available, by elementary means, in the
other important physical case, n = 1; and similar results also hold in dimension n > 3,
see [CES22]. In particular, in physical dimensions n = 1,2, minimizers of ¢ may satisfy
Plateau’s laws, and, for suitable choices of W and C, one can prove that this indeed the
case when n = 1 — see also [BM21] for an analysis of the appearance of singular catenoids
when n = 2. For all these reasons, our analysis will be based on the Harrison—Pugh
formulation of the Plateau problem.

1.3. Capillarity approximation of the Plateau problem. In [MSS19, KMS22a] a
model for soap films as three-dimensional regions with small but positive volume has been
introduced, based on Gauss’ capillarity theory. Let us recall that, in Gauss’ capillarity
theory, one minimizes H™ (2 N OE) among open sets F C 2 with smooth boundary under
a volume constraint |E| = v. When v is small such minimizers are close to half-balls
[MM16]. To avoid droplet-like minimizers, and actually observe soap film-like minimizers,
in [MSS19, KMS22a] the following problem

Y(v) = inf {’H”(Q NOE) : |E| =v and QN OFE is C-spanning W} ,

where F ranges among subsets of 2 with Lipschitz regular boundary, has been introduced.
As proved in [KMS22a, KMS21, KMS22b], ¢ (v) admits minimizers only in a generalized
sense, and such generalized minimizers converge to minimizers of ¢, with (v) — 2/ as
v — 07. The existence of generalized minimizers in 1)(v) corresponds to the actual physical
description [WH99, CCAE"13] of soap films as either “dry” soap films (minimizers of £) or
“wet” soap films (minimizers of ¥ (v)); see Figure 1.2. Establishing the sharp regularity of
these generalized minimizers, and in particular the validity of a sort of “third Plateau law”
for their characteristic structures known as Plateau borders, is the subject of [MNR23].
We now review the approach developed in [MNR23], which is crucial for setting up the
Allen—Cahn Plateau problem studied in this paper.

The starting point of [MNR23] is reinterpreting the notion of C-spanning set introduced
in (1.3), which is a condition sensitive to pointwise modifications, so to make it stable



under modifications by H"-null sets and under the operation of taking weak limits in the
sense of Radon measures. Postponing to Section 2 a detailed discussion of this matter, it
suffices to notice here that the work done in [MNR23] gives a meaning to the statement “S
is C-spanning W” whenever S is a Borel subset of €2, and does so in such a way that: (i) if
S is relatively closed in €2, the new condition is equivalent to (1.3); (ii) if S is C-spanning
W and S’ is H™-equivalent to S, then S’ is C-spanning W; (iii) if S; are H"-finite sets
that are C-spanning W, p is a Radon measure in ©, and H"L S; = u as Radon measures
in 2 as j — oo, then

S={zxeQ:0}(n)(x) > 1} is C-spanning W,
and H"(S) < liminf H"(S;);
j—o0

and (iv) the homotopic spanning Plateau problem /g obtained by minimizing H"(.S) among
Borel sets S that C-spans W actually coincides with problem ¢ introduced in (1.4), that is,
¢ =/ and the two problems have the same minimizers (modulo H"-equivalence of sets).

Based on this definition we can directly consider Gauss’ capillarity energy under ho-
motopic spanning conditions in the class of sets of finite perimeter, and formulate the
problem

Ypk(v) = inf {’H”(Q NIJ*E) : |[E| =v and QN (EY UJ*E) is C-spanning W} ,

where 0" E denotes the reduced boundary of a set of locally finite perimeter E C {2 and
E® is the set of points of density 1 of E. The subscript “bk” stands for “bulk” to reflect
the fact that, in formulating ¥pk(v), we are now imposing the burden of achieving the
spanning condition not on the boundary of E alone, as done with ¢ (v), but rather on the
whole bulk of E. The two approaches are evidently related (to the point that one naturally
conjectures they should lead to the same minimizers when v is small enough), and we are
not aware of a physical reason to prefer one to the other. However, the bulk variant is
much more natural to work with in view of the formulation of an Allen—Cahn Plateau
problem, which is the decisive reason for us to work with the bulk spanning condition, and
to consider ¥pg(v) in place of ¢ (v) in [MNR23], and in what follows.

It is now convenient to recall the main result from [Nov23|, a companion paper to
[MNR23]. Introducing the class
Ks
of those pairs (K, E) of Borel subsets of Q2 such that
E is of locally finite perimeter in 2 and 2 N J*F is H"-contained in K , (1.5)
and the relaxed energy
Fior(K,E;A) = H'(ANO*E)+2 H"(ANKNE®) Fok(K, E) = Fok(K, E;Q), (1.6)

(where! E© is the set of points of density 0 of F, and with A C ), the main result proved
in [Nov23]| is that i (v) = Upk(v), where

Upk(v) := inf {fbk(K,E; Q) :(K,E) € Kg, |E| =v, KUE®Y is C-spanning W} (1.7)

Notice that if E is a competitor of ¢k (v), then (&, F) € K with Fox (9, F) = H"(Q2 N
0*F), so that, trivially ¢ (v) > Upk(v). The equality ¥pi(v) = Wpk(v) thus expresses
the fact that minimizers of ¥pk(v) may fail to exist in a proper sense, and may thus be

found only in a relaxed sense as minimizers of Wy (v). The following theorem summarizes
[MNR23, Theorem 1.5, 1.6, B.1]:

1t is important to keep in mind that when E is of locally finite perimeter in , then {E® | E©® QNo*E}
is an H"-partition of 2 by a theorem of Federer.



Theorem 1.1 (Main results from [MNR23]). If W C R"*! is compact, C is a spanning
class for W, and { < oo, then Wy (v) — 24 = 24g = ¥y (0) as v — 0. Moreover:

(i): for every v > 0 there exist a minimizer (K, E) of Wpk(v), and up to an H"-null
modification of K and a Lebesque null modification of E, K is relatively closed in ), E is
open with QN cl(0*FE) = QNIE C K, KUE is C-spanning W, and K N EY = &, so
that, with disjoint unions,

K =[K\OE|U[QN(0E\0*E)] U[QNd*E];
moreover, there exists a closed set ¥ C K, with ¥ = @ if 1 <n <6, X locally finite in )
ifn="7, and H*(X) =0 for every s >n — 7 if n > 8, such that:
(a): (K \OF)\ X is a smooth minimal surface;

(b): QN O*E is a smooth hypersurface with constant mean curvature denoted by \ if
computed with respect to the outer unit normal vg to E;

(c): if QN (OE\ O*E)\ ¥ # &, then A\ < 0, and for every x € QN (OF \ 0*E) \ &
there is v > 0 such that K N B,.(x) is the union of two ordered CY1-graphs which detach
tangentially along QN (OE \ 0*E); moreover, QN (OE \ 0*E) is locally H" !-rectifiable;

ii): if v; — 07 and (K;, E;) are minimizers of Wy (v;), then, up to extracting subse-
j i g J
quences, there is a minimizer S of £ such that, as j — oo,

/ god?-l"+2/ god?-["—)Q/ wdH",
QNo* B, onK;NEY S

for every ¢ € CO(R™F1).

(iii): if, in addition, W s the closure of a bounded open set with C*-boundary, then for
every v > 0 and every minimizing sequence {(K;,E;)}; of Wpk(v) there is a minimizer
(K, E) of Ypk(v) such that K is H™-rectifiable and, up to extracting subsequences and as
j % OO’

E;—»E, 1 >H'L(QMNIE) +2H"L(KNEY), (1.8)
where ju; = H" L (2N *E;) + 2H" L (R(K;) N E}”).

1.4. A diffused interface formulation of the Plateau problem. In the diffused in-
terface approximation of capillarity theory, the position of a liquid at equilibrium is rep-
resented, rather than by a set £ C Q, by a density function u : © — [0, 1]. Surface tension
energy is then represented by the Allen—-Cahn energy of u,
W(u
AC.(u; Q) = / ace(u(x)) dz, ace(u) = e |Vul* + % ,
Q

where € > 0 has the dimensions of a length (in particular, AC.(u) has the dimensions of
surface area), and W € C'%1[0,1] is a (dimensionless) double-well potential. We assume
W to satisfy the basic structural properties

W(0)=Ww(1)=0, W >0on (0,1), w"(0),w"(1) >0, (1.9)
as well as the normalization .
/ VW(t)dt =1. (1.10)
We now introduce volume and homo%opic spanning constraints on densities u.

Volume constraint: To impose a volume constraint on u, we consider a (dimensionless)
“volume density potential” V' : [0,1] — [0,00), with V(0) = 0 and V increasing and
positive on (0, 1]. Given a choice of V', u corresponds to a soap film of volume v if

V(u; Q) = v, where  V(u; ) := /QV(u(a;))dx



The choice of V is really a matter of convenience, since any choice of V' leads to recover the
correct volume constraint in the sharp interface limit ¢ — 07, and since the model is purely
phenomenological. When working on bounded domains €2, a common choice of V' made in
the literature is taking V' (¢) = ¢. This choice does not work well on unbounded domains,
since in that case AC.(u;Q) can be made arbitrarily small (while keeping [, u fixed)
by simply “spreading” u. Following the treatment of the diffused interface isoperimetric
problem on R™! naturally associated with AC., see [MR22], we will set

V(t) = B(t)mH/n <I>(t):/0t () ds.

for t € [0,1] and u € L{ (). This choice is of course motivated by the BV-Sobolev

loc

embedding and by the “Modica—Mortola identity”
2
AC.(1;9) = 2|D(® 0 u)|(2) + / (VEIVul ~ VIWE)f2) 2 2|D(@ 0w)(@).  (MM)
Q

Notice also that we have ®(1) = V(1) = 1 thanks to the normalization (1.10) on W.

Homotopic spanning constraint: Deciding how to impose an homotopic spanning
conditions on densities u is of course a delicate choice in the setting of our model. The
idea explored here is requiring, given § € (1/2,1], that all the superlevel sets {u > t}
corresponding to® t € (1/2,5) are C-spanning W. Having extended the notion of C-
spanning from a pointwise unstable condition to an H"-stable condition is of course a
crucial feature to discuss the existence of minimizers®. This kind of stability is natural in
our problem since W12(Q) is the natural energy space for working with the Allen-Cahn
energy and since the Lebesgue representative u* of a Sobolev function u € W12(9) is
well-defined H"-a.e. on (2, so that, given two functions ui, us € I/Vlf)cz () that are £"H1-
equivalent (and thus have same AC. energy), the Borel sets {u] > ¢} and {u} > ¢} will be
H™-equivalent for every t € [0, 1].

All this said, we come to introduce the following family of Allen—Cahn Plateau
problems,

T(v,e,8) = inf {AC-(u;Q)/2: u e VV&S(Q), V(u; Q) = v, (1.11)
{u* >t} is C-spanning W for every t € (1/2,4)},
where v and ¢ are positive parameters and where 0 € (1/2,1].

For arbitrary values of (v,e,d), we do not expect minimizers of Y(v,¢e,d) to have any-
thing to do with soap films. In other words, we need to identify a soap film regime for
(v,e,6). A first constraint is that v should not be too large with respect to the size of
the boundary wire frame W: indeed, we want to avoid the “isoperimetric regime”, where
minimizers will tend to look like droplets touching W, rather than like soap films (see
[MN22]). A second constraint, borne out by heuristic calculations® involving the optimal
Allen-Cahn profile, and aimed at ensuring the boundedness of the minimum energy at
small values of v and ¢, is that ¢ << v. Correspondingly, given positive 79 > 7 > 0, we

2The lower bound ¢ > 1 /2 is assumed here for the sake of definiteness. It could have been replaced by
any other positive lower bound since the condition of being C-spanning is monotone by set inclusion.

3An alternative approach would have course been working on W12 N C° and the original definition
by Harrison and Pugh. Since this approach requires proving the regularity of minimizers in the process
of showing their existence, it seems somehow conceptually less direct and certainly less flexible than first
discussing a robust weak formulation, and then proving regularity statements.

4In (3.21) it is rigorously proved that Y (v(e),e,8) — +oo if v(e) /e — 0 as & — 0T, so that one definitely
wants to require, to the least, that ¢ < C'wv.



introduce the family of triples (v,€,0) € (0,00) x (0,00) x (1/2,1] defined by

SFR(ToaTl):{(v7E75) 0< <7'0, 0<E(diamW)"§7-1v,

v
(diam W)+l —
v

min{l —5, W} < ﬁ} L(1.12)

Given 19 > 0 we will work with 7; sufficiently small in terms of 7y (and W, C and W).
From this viewpoint, the third constraint defining SFR reflects the fact that if we want to
keep v “of order one”, then, in order to be close to the soap film capillarity model with
bulk spanning condition Wy (v), we need 0 to be sufficiently close to 1; if, otherwise, we
wish to keep the possibility of working with ¢ close to 1/2 (thus imposing the spanning
condition only on a thin layer of level sets around ¢ = 1/2), then we will need to work
with v sufficiently small.

1.5. Main results for the diffused interface model. We are now in the position of
formally stating the main results of our paper.

Theorem 1.2. If W C R"*! is the closure of an open bounded set with smooth boundary,
C is a spanning class for W such that £ < oo, 19 > 0, and W € C?1[0,1] satisfies (1.9)
and (1.10), then there exists 71 > 0, depending on W, W, C, and 1oy with the following
properties:

(i) Existence of minimizers: if (v,e,0) € SFR(r, 1), then there are minimizers u of
Y (v,e,0), which, for suitable X\ € R, satisfy

/acg(u) divX —2eVu - VX[Vu] = A / V(u)div X, (1.13)
Q Q

whenever X € C°(R™ LR ) with X -vg =0 on 0Q;

(ii) Convergence to bulk-spanning capillarity: ife; — 07, v; — vy > 0, and §; — 1~
as j — 0o, and if u; are minimizers of Y(vj,ej,0;), then there is a minimizer (K, E) of
Wik (vo) such that, up to extracting subsequences, u; — 1g in L'(Q) and

80, () pet| g g gL (K 1 EO) +HOL OB

as Radon measures in Q. In particular, for every vy > 0,

lim T(v,e,0) = Yp(vg);
SFR(70,71)3(v,€,0)—(v0,0,1) ( ) bk( 0)
(iii) Convergence to the Plateau problem: if v; — 0%, ¢;/v; — 07, and §; — dy €
[1/2,1] as j — oo, and if uj are minimizers of Y(vj,e;,9;), then there is a minimizer S
of 20 = Wy (0) such that, up to extracting subsequences,

20, (W) putt g %o a() ML S

as Radon measures in 2 and Y (vj,e5,0;) = 2®(d) £, as j — oo,

(iv) Equipartition of energy: in both conclusions (ii) and (iii), we also have

lim < / Va2 = lim — / W (u;). (1.14)
j—00 Q J—00 Ej QO

Theorem 1.2 establishes the existence of minimizers of Y(v,¢,d) if the soap film regime
and organizes problems ¢, Wy (v), and Y(v,e,d) into a hierarchy of Plataeu problems.
The first two problems corresponds to modeling soap films as dry or wet accordingly
to the physics descriptions given in [WH99, CCAE™13], while the last problem can be
used to provide a diffused interface approximation of both problems which is of definite
mathematical interest both from the theoretical and the numerical viewpoint.



Theorem 1.2 does not discuss which Allen—Cahn-type equation is solved by minimizers of
Y (v,e,d), nor discusses any qualitative property of such minimizers, like their regularity,
but for their convergence as Radon measures to minimizers of Wpx(v) and ¢. In the
following theorem we answer the first question (at distributional level) and derive some
basic regularity properties.

Theorem 1.3 (Euler-Lagrange equation for minimizers of Y(v,¢,6)). Let W C R"*1 be
compact and let C be a spanning class for W. If u is a minimizer of Y(v,e,d) for some
v>0,e>0andd € (1/2,1], then, in the sense of distributions, we have (with A as in

(1.13)),
(0 —u) {2E2Au — W' (u) —eAV'(w)} =0, in (1.15)

that is, for every ¢ € C°(2),
25/ |Vu|2g0:/(5—u){25Vu'Vg0+< —AV’(u)) go}, (1.16)
Q Q

In particular, u is lower-semicontinuous in . Moreover, if Q' is a connected component
of Q, then either u =0 on ', oru >0 in Q'; and, if 6 <1, then u <1 in .

W (u)
€

The relation between (1.1) and (1.15) is clarified in the following conditional regularity
statement.

Proposition 1.4 (Strong form of the Euler—Lagrange equation). Under the assumptions
of Theorem 1.3:
(i): if u is continuous in Q, then u € C’Sj({u # 0}) for every a < min{1,2/n};
(ii): if in addition |[{u = ¢}| =0, then
lim V| (X - V) dH" — / V| (X - Vu)dH" =0,  (L17)
=07 J 9+ {u>6+t} O {u<d—t}
where the limit is taken along those values of t > 0 such that {u > 6 +t} and {u < 6 —t}

are sets of finite perimeter (i.e., a.e. t >0);

(iii): if in addition u(xg) = &, {u = 8} is a C'-hypersurface in a neighborhood U of xg
with unit normal v € CO({u = 6} NU;S™), and u € C*({u < 5} NU)NC*{u > §} NU),
then

0y u(@)| =10, u(x)l,  Vee{u=dtnU,

where we have set

u(x £tv(z)) —ulz
OFu(r) = lim ( (z)) = ul )
t—0+ t
1.6. Plateau’s laws and free boundary problems. We finally describe some future
directions that naturally stem from the main results of this paper, and that generally
concern the study of Plateau’s laws in the context of free boundary problems.

A first natural class of problems concerns the regularity of solutions to (1.15) needed
to trigger Proposition 1.4. For example, continuity of minimizers (conditional assumption
(i)) is expected in general, and, indeed, it is possible to show that minimizers in the planar
case n = 1 are locally Holder continuous in 2. The regularity of the free boundaries
{u = 0} seems also very interesting. Heuristic considerations (based on the maximum
principle) suggest that {u = ¢} should always have zero Lebesgue measure (conditional
assumption (ii)), but, in general, we definitely do not expect {u = d} to a be a C'-
hypersurface (conditional assumption (iii)). It is actually natural to conjecture that, in
physical dimensions n = 1 and n = 2, {u = §} should obey Plateau’s laws. Should this
be correct, do solutions u to (1.15) have canonical blow-ups at Y-points and T-points of

{u=46}?



A second type of problem concerns the precise description of solutions to (1.15). In this
direction, the first problem one wants to solve is the construction, as small modifications
of some well-prepared Ansatz, of solutions to (1.1) that converge to a Y-cone in R? or
to a Y-cone or a T-cone in R®. This kind of result should elucidate several interesting
points, like what should be the characteristic length scales of the transition regions of
u; and of the {u; ~ 1}-regions depicted in Figure 1.1. In turn, once these fundamental
examples have been understood, one would like to prove such qualitative properties for
generic minimizers of Y (v, ¢, d).

1.7. Organization of the paper. In Section 2 we gather the main results from [MNR23]
that concern measure theoretic homotopic spanning. These results are used in Section 3
to prove some closure theorems for densities u satisfying homotopic spanning conditions.
In Section 4 we discuss the approximation of “wet soap films”, meant as competitors in
Upk(v), by competitors in Y (v,e,d). Section 5 contains one of the more delicate argu-
ments of the paper, where we prove that the Lagrange multipliers A; of minimizers u;
of T(vj,ej,d;) are such that e; \; — 07 whenever v; — 07, &; — 0T, ¢;/v; — 01 and
d; — 0o € [1/2,1]. Finally, in Section 6 and Section 7 we prove Theorem 1.2 and Theorem
1.3 (plus Proposition 1.4), respectively.

Acknowledgements. FM has been supported by NSF Grant DMS-2247544. FM, MN,
and DR have been supported by NSF Grant DMS-2000034 and NSF FRG Grant DMS-
1854344. MN has been supported by NSF RTG Grant DMS-1840314.

2. MEASURE THEORETIC HOMOTOPIC SPANNING

2.1. Sets of finite perimeter, rectifiable sets, and essential disconnection. We
generally adopt the (quite common) terminology and notation of [Mag12] for what concerns
rectifiable sets and sets of finite perimeter. Given a locally H*-finite set S in R**!, we
define the rectifiable part R(S) and the unrectifiable part P(S) of S as in [Sim83,
13.1]. Given a Borel set E C R™""! we denote by E®, t € [0,1], the points of density
t of E, by 0*E the reduced boundary of E (defined as the largest open set A wherein F
is of locally finite perimeter — it could of course be A = @), and by vg : 0*E — S™ the
measure theoretic outer unit normal to E. We shall repeatedly use that if F is of finite
perimeter in €, then Q NO*E C EY? C 9°FE where °E = R""1\ (E© U EW) is the
essential boundary of E, as well as the theorem by Federer stating that

Q2 is H"-contained in E® U E®Y U (QNI*E), (2.1)
and, in particular, that Q N 0*E is H™-equivalent to Q N O°FE.

We also recall the following notion of what it means for a Borel set K to disconnect a
Borel set G, originating in the study of rigidity for symmetrization inequalities [CCDPM17,
CCDPM14], and lying at the heart of the notion of measure theoretic homotopic spanning.
Given Borel sets K and G, we say that K essentially disconnects G if there is a Lebesgue
partition {G1,Gs} of G (i.e., |GA(G1UG2)| =0, |G1 NG| = 0) which is non-trivial (i.e.,
|G1||G2| > 0) and such that

GY N o°G1 N O°Gy is H™-contained in K .

(Notice that GV NI*G1NI°Gy = GV NIGy, for every k = 1,2.) For example, if J C (0,1)
with £1(J) = 1, then K = J x {0} essentially disconnects the open unit disk B? of R?
(although, evidently, B?\ K will be connected in topological terms as soon as (0,1)\J # 9).
We say that G is essentially connected when @ does not essentially disconnect G. In
the special case when G is of finite perimeter, being essentially connected is the same as
being indecomposable (according to the terminology introduced in [ACMMO1]).

10



(a) ’Y(Sl) (b)

FIGURE 2.1. (a) In the original homotopic spanning condition, S has to intersect
7(S'); in the new measure theoretic version, SUT[s] is (roughly speaking) required
to essentially disconnect T (for a.e. s € S'); (b) The induced essential partition
{U1,Us,Us} by S on a disk U. Notice that the tendrils of S that do not contribute
to bounding some subset of U do not contribute to the boundaries of the the U;’s,
and are thus not part of UBEP(S;U).

2.2. Homotopic spanning and induced essential partitions. We now recall the mea-
sure theoretic notion of homotopic spanning introduced in [MNR23]; see Figure 2.1-(a) for
an illustration. Given a closed set W C R"*! and a spanning class C for W, the tubular
spanning class 7 (C) associated to C is the family of triples (v, ®,7T") such that v € C,
T = ®(S' x BY) cC Q, and (setting B = {x € R" : |z| < 1}) ® : St x el (B}) — cl(T) is
a diffeomorphism with ®(s,0) = (s) for every s € St. Given s € S! we set

T[s] = ®({s} x BY)
for the slice of T corresponding to s € S'. Finally, we say that a Borel set S C  is
C-spanning W if for each (v,®,7T) € T(C), H'-a.e. s € S! has the following property:
for H™-a.e. x € T'[s]
J a partition {77, T} of T s.t. x € 9°Ty N 0Ty (2.2)
and s.t. S'UT([s| essentially disconnects T" into {T1,T5} .
As proved in [MNR23, Theorem A.1], as soon as S is closed in {2, the notion of C-spanning

just introduced is equivalent to the one of Harrison and Pugh. The dependency of the
partition {T%,T>} on x € T'[s] has a subtle reason, see [MNR23, Figure A.1].

Now, in the study of soap films, condition (2.2) is only applied to sets S that are either
locally H"-finite in €, or that are the bulk E® U (QNO*E) of a set E of finite perimeter
in €, or are a combination of these two cases, in the sense that S = K U E® for some
(K,E) € Kp (the first two cases are then obtained by taking S = K U E® with either
E=gor K=QN0"E). In all these cases the geometric meaning of (2.2) can be greatly
elucidated using the following results concerning partitions into indecomposable sets of
finite perimeter.

Given Borel sets S,U C R""!, a Lebesgue partition {U;}; of U (that is, U; C U with
U\ U, Us| =0 with |U;NU;| = @ if i # j) is induced by S if, for each 1,

UM No°U; is H"-contained in S (2.3)
The following theorem is [MNR23, Theorem 2.1]:

Theorem 2.1 (Induced essential partitions [MNR23]). If U C R"™! is a bounded set of
finite perimeter and S C R™*! is a Borel set with H"(S N UWYW) < oo, then there exists a
partition {U;}; of U induced by S such that, for every i,

S does not essentially disconnect U; . (2.4)

11



FIGURE 2.2. Condition (2.7) in a situation where T'[s] is not H™-contained in
UBEP(KUT'[s]; T') — indeed, E itself is one of the elements of the essential partition
of T induced by K UT|[s] — while at the same time T'[s] N E©® (the part of T[s]
outside of E) is H"-contained in UBEP(K UT[s];T'). The key feature here is that
K contains the boundary of E, but no points inside E, while E contains v(S*).

Moreover, if either S* = R(S) or S* is H"-equivalent to S, and if {U} }; is a partition of
U induced by S* such that S* does not essentially disconnect U; for every j, then there
s a bijection o such that \UiAU;(Z.)| = 0 for every i. For this reason, {U;}; is called the
essential partition of U induced by S.

With S and U as in Theorem 2.1, the union of the (reduced) boundaries of the
essential partition induced by S on U is uniquely defined as

UBEP(S;U) =U" n| Jo Ui, (2.5)

see Figure 2.1-(b), and correspondingly we can formulate the following characterization of
measure-theoretic homotopic spanning, cf. with [MNR23, Theorem 3.1].

Theorem 2.2 ([MNR23]). If W C R""! is a closed set in R""!, C is a spanning class
for W, and (K, E) € Kg, then

R(K)UEWM is C-spanning W, (2.6)
if and only if, for every (v,®,T) € T(C) and H'-a.e. s € S,
T[s] N E® is H™-contained in UBEP(K UT[s];T); (2.7)

see Figure 2.2.

Remark 2.3. Animmediate corollary of Theorem 2.2 is that if K is H"-finite and (K, F) €
Kp then K U EW is C-spanning W if and only if R(K)U E® is C-spanning W. Indeed,
R(K UT][s]) = R(K)UT][s], so that, by (2.5), UBEP(K UT|[s]) = UBEP(R(K) UT]s]).

2.3. Closure theorems for homotopic spanning. We finally state the two closure the-
orems for homotopically spanning sets that make the above definitions useful in the study
of minimization problems. The first result corresponds to a particular case of [MNR23,
Theorem 1.4]:

Theorem 2.4 ([MNR23]). Let W be a closed set in R"L, C be a spanning class for W,
and {(K;, Ej)}; be a sequence in Ky such that

K; U EJ(»” 18 C-spanning W, sup H"(K;) < o0.
J

Let E be a Borel set and pyx be a Radon measure in € such that, as j — oo, Ej S E and
H'L (2N E)) +2H" L (R(K;) N E) = pink
as Radon measures in 2. Then the set
Ky = (2N E) U {x € QN E 0" () (z) > 2} :
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is such that (Kyx, F) € K, Kpx U EY is C-spanning W, and
lim inf}'bk(Kj, Ej) Z Fbk(Kbka E) .
]—)OO

The second closure theorem we shall need from [MNR23] requires the introduction of
some additional terminology. Given an open set 2 and an H"-finite subset S of €, we
define the essential spanning part ESP(S) of S in (2 as the H"-rectifiable set defined
by

ESP(S) = | UBEP(S; ) = | J {Qk N U@*Ui[Qk]} , (2.8)
k k 7

where {Qy}r is the open covering of €2 defined by

{Q% e = {Br,, (Tm) bmh (2.9)

where {z,,}m = Q"TINQ and {r,., }n = QN (0, dist(x,, 0)), and where {U;[€2]}; denotes
the essential partition of €2 induced by S. In light of Theorem 2.2, the intuition behind
this definition is that, by adding up all the unions of boundaries of essential partitions
induced by S over smaller and smaller balls we are capturing all the parts of S that may
potentially contribute to achieve a spanning condition on W = R"T1\ Q. Tt is thus natural
to expect that ESP(S) is C-spanning W whenever S is. This is correct, and follows indeed
as a particular case of Theorem 2.5 below. The more general situation considered in
Theorem 2.5 requires the introduction of a notion of subsequential limit for {ESP(S;)};.
More precisely, given a sequence {S;}; of Borel subsets of 2 such that sup; H"(S;) < oo,
we say that S is a subsequential partition limit of {S;}; in Q if

s = {anUouin}, (2.10)
k i

where {U; (]} is a Lebesgue partition of £, such that, denoting by {U/ [2]}; the essential
partition of {1} induced by S;, and up to extracting a subsequence in j, for every i and
k we have |UJ[Qx]AU;[Qx]| — 0 as j — oco. The natural expectation is of course that
if each S; is C-spanning W, then every subsequential partition limit S of {S;}; should
be C-spanning W too. The next theorem, which corresponds to [MNR23, Theorem 5.1],
proves this and, actually, an even more general fact:

Theorem 2.5 ([MNR23]). Let W be a closed set in R" !, C a spanning class for W, and
{(Kj, Ej)}; a sequence in Ky such that sup; H"(K;) < oo and K;U E](-l) is C-spanning W
for every j.

If So and Ey are, respectively, a subsequential partition limit of {K;}; in Q and an
L'-subsequential limit of {E;}; (corresponding to a same not relabeled subsequence in j),
then the set

Koy=(QN9J"Ey) U Sy,
is such that (Ky, Ep) € K and Ky U E(()l) is C-spanning W. In particular:
(i): if S is C-spanning W, then ESP(S) is C-spanning W
(ii): if Sj is C-spanning W for each j and S is a subsequential partition limit of {S;}; in
Q, then S is C-spanning W.

3. CLOSURE THEOREMS FOR HOMOTOPICALLY SPANNING DIFFUSED INTERFACES

3.1. The precise representative of a Sobolev function. Given an open set {2 and a
Lebesgue measurable function u : Q — RU {£o00} the approximate upper and lower limits
of u at = € Q) are defined by

ut(z)=inf{teR:ze{u>t}"}, w (z)=sup{teR:ze{u<t}?},
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(where {u >t} = {z € Q: u(z) > t}). Both u™ and u~ are Borel functions on €2, with
values in R U {£o0}, and their value at any point in 2 does not depend on the Lebesgue
representative of u. It is easily seen that

{ut <t} c{u<t}V c{ut <t} {ut <t} = {u <}V,
{u= >t} c{u>t}" c{u >t}, {fu= >t} = {u>t}M. (3.1)

The approximate jump of u is the Borel function [u] : Q — [0, 00] defined by [u] = ut —u™.
Setting 3, = {z € Q : [u](z) > 0}, we define the precise representative u* : Q\ ¥, —
R U {00} by taking

t=u on Q\ X,.

Since it always hold that |3,| = 0, it turns out that u™, v~ and u* are all Lebesgue
representatives of u. If u € BVjoc(£2), then the distributional derivative Du of u can be
decomposed as Du = VudL" ! + [u] dH" L £, + Du (where Vu € L, (R"*1;R"!) and
D¢u is the Cantorian part of Du). In particular, if u € I/Vl}ml(Q), then H"(3,) = 0. We
shall repeatedly use the following fact: if u € VV&;(Q), then, for a.e. ¢, {u >t} is a set of
finite perimeter in Q (this is immediate from the coarea formula), is Lebesgue equivalent

to {u >t} (and thus such that QN o*{u >t} = QN O*{u > t}), and satisfies
QN o*{u >t} is H"-equivalent to {u* =t} . (3.2)

To prove (3.2) we notice that if x € 0*{u > ¢t} C {u > t}/?, then x & {u > ¢},
hence ut(z) > t; similarly, if z € 9*{u < t} C {u < t}*/?, then z & {u < t}'?, and
thus t > u™(z); since {u > t} is L l-equivalent to Q \ {u < t} for a.e. ¢, we find that
QNo*{u >t} =QNo*{u <t} for a.e. t, and thus

QN {u>ty={ut >t}n{u <t}, for a.e. t.

In particular, (3.2) follows from H"(%,) = 0. We finally notice that if u € I/Vli)cl (Q) and £
is a set of finite perimeter in 2, then u* is such that

/qu0:—/ ngu+/ ou vgdH", (3.3)
E E QNo*E

for every ¢ € C2°(Q); see [AFP00].

=

3.2. Closure theorems for homotopically spanning densities. In this section we
consider the following setting

W C R is closed and C is a spanning class for W, (3.4)
{u;}; € WL2(Q) with sup; AC, (u;) < oo and u; — u in L (), (3.5)
{uj >t} is C-spanning W for all t € (1/2,4;), (3.6)
gj >0,0; € (1/2,1], ¢ = €9 > 0, and §; — 0o € [1/2,1], (3.7

where the limits hold as j — oo and where = R""1\ W. We discuss the problem
of showing that the spanning condition (3.6) is transferred from u; to u. We consider
separately the cases when g > 0 (Theorem 3.2) or 9 = 0 (Theorem 3.4). In both cases
we use the following lemma.

Lemma 3.1. Let W, C, uj, €;, and 6; satisfy (3.4), (3.5), (3.6), and (3.7).
If In C (0,00) is a closed interval of positive length, then there is {t;}; C Iy such that

loc

tj—>t0610, Ej::{u]'>tj}—>E0,

as j — oo, where Ey is a set of finite perimeter in 0 and where {Q N 0*E;}; has a
subsequential partition limit Sy in Q such that

SoU(QNd*Fy) UE is C-spanning W . (3.8)
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Proof. Indeed, by the co-area formula and (MM)
][ P({® o u; > s} Q) ds = C(Ip) / V(@ o )| < CIy) AC, (uy; ).
D(1p) Q

so that sup; AC; (u;;€2) < oo and the strict monotonicity of ®(t) = fg VW imply the
existence of {t;}; C Iy such that {P(E};)}; is bounded, where E; = {u; > t;} and, by
(3.1),

{uj >ty c{u; >t} C{u; >}V CEL,  VE> ;. (3.9)

Since sup; P(Ej,Q) < oo we can find {t;}; C Io and limits ¢o, Ep and Sp as in the
statement, and are left to prove (3.8). Indeed, since §; — dp and Iy C (0,0p) is closed, we
have t; < d; for j large enough. In particular, by exploiting (3.9) with ¢ € (¢;,0;) we find
that E](-l) is C-spanning W, so that (3.1) implies that E](-I) is C-spanning W. We can thus

apply Theorem 2.5 to {(K;, E;)}; with K; = Q2N 0*E; and conclude the proof. O
Theorem 3.2. Let W, C, u;, €5, and 6; satisfy (3.4), (3.5), (3.6), and (3.7). If
1
gg >0, oo > 5 ,

then u € I/Vli)f(Q) and {u* >t} is C-spanning W for all t € (1/2,0).

Remark 3.3. Notice that in the situation of Theorem 3.2 it must be that V(u;T) > 0
for every (v,®,T) € T(C). Indeed, V(u;T) = 0 would imply {u* >t} N T = & for every
t > 0, and {u* >t} could not be C-spanning W for any ¢t € (1/2,dp), a contradiction. As
a consequence,

liminf  Y(v,&,0) = 400, g0 > 0,00 € (1/2,1], (3.10)
(v,e,6)—(0,£0,d0)

that is to say, the vanishing volume limit of T with non-vanishing phase transition length
1s always degenerate.

Proof of Theorem 3.2. Since €y > 0, (3.5) implies that u; — w in I/Vllof(Q), and in par-
ticular that u € W1’2(Q). Given N € N, let us apply Lemma 3.1 to the interval

loc

Iy = [0p — 2/N,d9 — 1/N], and correspondingly find {¢;}; C Iy such that t; — ¢y € I,
Ej = {uj > t;} =5 Eo, {QN0*E;}; has a subsequential partition limit Sy in €, and (3.8)
holds. In particular, we can prove the theorem by showing that

SoU(QNI*E) UEY C {u* >to}, (3.11)

and by then applying the fact that ¢ty = to(N) — 6, as N — oo. We divide the proof of
(3.11) in three parts:

To check that E(()l) is H"-contained in {u* > to}: Up to extract a further subsequence in
7, the set
E; ={z € Ey:1g;(x) = 1 and uj(z) — u(x) as j = oo},

is Lebesgue equivalent to Ey. If z € Efj, then uj(x) > t; for every j > j(z); letting j — oo
we find u(x) > to, and prove that Ej C {u > to}. In particular, by (3.1),

By = (E5)" € {u>to}™ C {u” > to}

and then we find the claimed H"-containment by intersecting with Q \ ¥, (and recalling
that H™(X,) = 0).

To check that QN O*Ey is H"-contained in {u* > to}: We combine the general fact that

QN Ay € QN (O A UAY), VYA C Ay CQ,
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with the inclusion E" C {u* > ty} to find that

H"

QNO*Ey = QNI EY C (2N {u* >to}) U {u* >t}
where the latter set is H"-contained in {u* > to} thanks to (3.1), (3.2), and H"(2,) = 0.

To check that Sy is H"-contained in {u* > to}: Let us recall that given the decomposition
{Q}r of Q introduced in (2.9), and denoting by {U7[Q]}; the essential partition of €
induced by £ N 0*Ej, the fact that Sy is a partition limit of {2 N 0*E;}; means that

So=J {Qk N U&*Ui[Qk]} ,
k )

where, for each k, {U;[Q]}; is a partition of € such that UZJ[Qk] — U;[Q] as j — oo and
for every i. Thus, if we fix k& and consider i such that Q N 0*U;[Q] # @, then it suffices
to show that

Q. N O*U; Q] is H™-contained in {u* = to}. (3.12)
Since Q = B,(x) (for some z € Q and r > 0) if we set G; = U;[Q], G{ = Uij[Qk],
Gy = B,(z)\ Gy and G} = B,(z) \ G}, then we see that {G}, Gy} is a non-trivial Borel
partition of B,(x) (indeed 0 < |Gy| < |B,(z)| thanks to B, (#)Nd*Gy # @), and {G}, G}} is
a non-trivial Borel partition of B,.(x) for every j large enough (thanks to G{, Gé — G1,Go
as j — o0). In particular,

VG, = —VGy H"-a.e. on B.(z) N0*Gy = By(x) N 0*Ga, (3.13)
v H"-a.e. on B,(x) N8*G = B.(x) N9*GY. (3.14)

ol = Ve
Define L; : [0,1] — [0, 1] by taking L;(t) =t for t € [t;,1] and L; to be affine on [0, ¢;] with
L;(0) =1 and L;(t;) = t;, and similarly Lo : [0,1] — [0, 1] using ¢y in place of ¢;. Since
tj,to € Iy CC (1/2,8), we have Lip(Lo), Lip(L;) < 1, and thus Ly o u, L; o u; € W,22(Q).
If we set

zj = (Lj o u;) 1Ggl- +t; 1G§ , z=(Lopou)lg, +tola,, (3.15)
then we easily see that z; — z in L'(B,(x)). Moreover, by combining (3.14) and (3.13)
with the divergence theorem (3.3) we see that, for every ¢ € C°(B,(x)),

Dzl = —tj/ w—/ (L ou;) Ve
By (z)NGY, B, (z)NGY

= —t / oV dH" — @ (Ljouy) vy dH"
By (z)Nd* G4 2 By (z)Nd* G !

+/ o V(L ouy)
Br(x)

J
NG’

= @ V(Ljouy +/ piti—(Ljouj) v dH™, (3.16
[ et [ ey wew) g a9

and, similarly, that
Delel= [ eVieou+ [ o {to~ (Loouo) fva, am".  (3.17)
BT(I)QGl BT(Z‘)ﬂa*Gl

Now, since, by construction, K; = QN 0*E; essentially disconnects B,(z) into {G{, Gg},
we have that B,(xz) N O*G{ is H"-contained in B,(x) N 0*E;, which, in turn, by (3.2), is
H"-contained in {u} = t;}; thus, by the Lipschitz continuity of L; and by L;(t;) = t;, we
conclude that

(Lj o uj)* = t; H"a.e. on By(z) N&* G (3.18)
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Combining (3.16) and (3.18) we conclude that z; € W12(B,(z)) with

VZ]' = 1Gg1' V(Lj O’LLj) = 1G{ (L; O Uj) V’LLj .
As a consequence, Lip(L;) < 1, (3.5), and the fact that ¢; = ¢p > 0 combined give
sup; [|Vzjll 12(5, (x)) < 00, and thus, thanks to z; — z in L'(B.(z)), z € Wh2(B,(x)). In
particular Dz < £ so that (3.17) implies (Lg o u)* = t9 H"-a.e. on B.(z) N 0*Gy.
Since Lo(t) = to if and only if ¢ = ¢y and Lg is Lipschitz continuous, this proves that

B,(x) N 0*G is H"-contained in {u* = ty}. Since this is (3.12), we have concluded the
proof of the theorem. 0

Theorem 3.4. Let W, C, uj, €, and ; satisfy (3.4), (3.5), (3.6), and (3.7), and assume
(as it can always be done up to extracting a further subsequence) that for some vy > 0 and
© a Radon measure in 2, as j — oo, it holds that

V(uj; Q) — vo, |V(® o uj)|dC™ T LQ > p.
If
o = 0,
then there exists (K, E) € K such that

u=1g, |E| < v, K UE®Y is C-spanning W ,
and such that
u>2®5)H'L(KNED)+H'"L(QNI'E). (3.19)
Moreover, in the particular case when vy = 0, it must be
liminf 2 > 0. (3.20)
J—00 Ej

Remark 3.5. As a consequence of (3.20) in Theorem 3.4 we see that if v(e) and () are
functions of € > 0 such that

. v(e) )
1 — =0 lim d(e) =4 1/2,1
g e =0 g =sclzdl,
then
lim Y(v(e),e,d0(g)) = +o0. (3.21)
e—=0t+

Proof of Theorem 3.4. By €; — 07, (MM), and (3.5) there is E C Q with |E| < vy such
that u = 1g, {u; >t} — E as j — oo for a.e. t € (0,1), and

p>H'L(QNOE). (3.22)
If we set
K=(Qno'E)U {:13 cQNE® : 07 (u)(z) > 2@(50)} .

then [Magl2, Theorem 6.4] implies L E© > 2®(5p) H™ L (K N E©), which combined
with (3.22) implies (3.19). We now want to prove that

K UEWY is C-spanning W . (3.23)
We divide the proof of (3.23) into three steps.
Step one: We prove that for every NV € N the Borel set

Ky =(QNd"E) U {x cQNEY 0" (u)(z) > 28(5 — 1/N)} :

is such that

Ky UEW is C-spanning W . (3.24)
To this end, we apply Lemma 3.1 to the interval Iy = [p — 1/N,dp — 1/(2N)] to find
{t;}; C Iy such that t; — to € Iy, E; = {u; > t;} =5 Eo, {QN&*E;}, has a partition limit
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loc

So in Q, and (3.8) holds. By monotonicity of ¢ — {u; > t} and since {u; > t} = E for
a.e. t € (0,1), we easily see that Ey = E. Hence, we have proved that
E®U(QNI*E)U Sy is C-spanning W . (3.25)

Thanks to Federer’s theorem (2.1) and to QNO*E C K we can deduce (3.24) from (3.25)
once we prove that

E®© NSy is H"-contained in {67 (n) >2®(6 — 1/N)}. (3.26)
We begin the proof of (3.26) by recalling that Sy = J, {Q% NU,; 0*U;[Q]}, with {Q}r as
in (2.9), {U][Q4]}; the essential partition of € induced by QN d*E;, and with {U;[Q]}; a

Lebesgue partition of €, such that Uz-j [Qx] — Ui[Q] as j — oo for every k and i. Therefore
(3.26) can be further reduced to proving that, for each k and 1,

QN E® N 9*U;[Q] is H"-contained in {07 (p) > 2®(6) — 1/N)} . (3.27)

Since k will be fixed from now on, we just set for brevity U; = U;[Q%], U7 = U7[], and
consider the sets
Xj={i:[U]|>0, (W)Y cE"},  X{={i:|U]|>0, (U)"cE"},
Xo={i:|U/|>0,U"Y cE9}, Xy={i:|U;] >0,U0" c EV}.
Since {UZ] }i is the essential partition of € induced by Q2N 9" Ej, it follows by Federer’s

theorem and by the H"-containment of Q; N9*U; into QN J*E; that for each i such that
|U7| > 0 we either have (U)® C Ej(.l) or (U)W c E](-O). Therefore, if we set

XV ={i:|U/| >0},  X:={i:|U]>0},

then we have X7 = Xg U X{ (with disjoint union); moreover, by Uij — U and Ej N E
for each i € X there exists j(i) such that i € X} for every j > j(i), so that X = XoU X,
(also with disjoint union), and thus

{Ui}iex, is a Lebesgue partition of 2 N E©®
from which we deduce
GNEONJoui E qnE9n | 9UNnoUs
i Qi EX iti!
L onEOn | oUinoUs. (3.28)
4,1/ € X0 iti!

By (3.28), the proof of (3.27) can be further reduced to showing that, for every fixed
(i,i/) € Xo x Xo with 7 # 7/,

QN O*U; N 9*Uy is H"-contained in {67 (n) > 2®(6 — 1/N)} . (3.29)
To prove (3.29), let us fix i # i’ € Xy, and set
Gi1=U; Gy=Uy, Gi=U/, Gj=U).

By (3.2) and the H"-inclusion of €, N §* G4, into Q) N 0*Ej (recall indeed that {UZJ}Z is
the essential partition of €, induced by K; = QN 0*Ej;), it follows that

Q) N *Gy, is H -contained in {uj =t;}, (3.30)
for each m = 1, 2; if, correspondingly, we set

J o— . ) . )
Uy, = Uj 1Qkﬂan + 15 1Qk\ng ,
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then by t; — to, G, — Gy, (m = 1,2), the inclusion (GJ)V U (GH)® ¢ E](-O) for j > j(4),
and the fact that E](-O) — {u =0} as j — oo, we see that

uh, = to lo\G,, 0 Li (Q), as j — 00. (3.31)

loc
Now, by (3.30) and the divergence theorem (3.3) we have
Dul L Q= V(®ou;) LML (U NGY); (3.32)
indeed, for every ¢ € C2°(£;) we have

/ uZ;Nso:/ | ujw+tj/ B2
Qk QkﬂGgm Qk\G,Jm

= —/ , goVuj+/ USPV —tj/ PV :—/ o Vu;.
QkﬂGzn Qkﬂé)*Gin " Qkﬂé)*GZn m QkﬂGgm

By combining (3.31) and (3.32) with the lower semicontinuity of the total variation we
find that, for every open set A C €y,

liminf/ V(@ ouw;)| = liminf|D(® ow,)|(A)

J= Janad, j—o0
> |[D(®o(tolag,))|(A) = ®(to) P(Gn; A) . (3.33)
Adding up over m = 1,2 with A = By(x) CC Q4 and recalling that tg > 6y — 1/N we find
2
p(cl Bg(x)) > liminf V(P ouj)| > Z liminf/ V(@ o wy)]
m Bs(z)NGH,

=0 JB,(x) - j—00

2
®(8) — 1/N) Y P(Gm; Bs(2)) .
m=1
As soon as x € Q,NO*G1NO* Gy = Q. NO*U;NO* Uy, if we divide by w,, s, and let s — 0
then we conclude that 07 (p)(x) > 2®(6p — 1/N), thus proving (3.29).

v

Step two: We prove that (3.24) implies (3.23). Indeed, let us consider the Radon measures
Ay = H'L(QNI*E)+2 H'L(R(Kx)NE®) and A = H'L(QNI*E)+2H 'L (R(K)NE®).
Since { Ky} n is decreasing in N and K = [y Ky we easily see that R(K) = [y R(Kn),
and thus deduce that Ay — X\ as N — oco. By (3.24) and Theorem 2.4 we thus conclude
that Kﬁ\k U EW is C-spanning W, where
Ky = (QNO'BE)U{zeQnE:07()\) > 2}
L (QNIE)U(R(K)NE®) X R(K)\ EW.

We have thus proved that R(K)U E® is C-spanning W, which, by Remark 2.3 implies
(3.23).

Step three: We finally prove® that (3.20) holds if vy = 0. We shall actually prove a much
stronger property, namely, that for every (v, ®,7) € T(C) it holds
lim inf 7]}(%7 )

Jj—00 &j

> 0.

If this is not the case then we can find (v, ®,T) € T(C) and a subsequence in j such that
V(uj;T) = o(g;). Let zj = uj o ®, so that z; € WH2(Y) where Y = S! x BI'. By the
slicing theory for Sobolev functions, if we set z?(s) = 2;(s,y) for (s,y) € St x B}, then we
can find a Borel set F' which is H"-equivalent to B} and is such that, for each y € F' and

5This result is not needed in the remaining parts of the paper, and its proof can be omitted on a first
reading.
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each j, ¥ € WH2(S!) with 2§ = u;(®(-,y)) on a set S;(y) which is H'-equivalent to S'.
Notice, in particular, that z;l-/ is absolutely continuous on S' for each y € F.

We claim that, given j, for H™-a.e. y € F it holds
there is s € S! such that Z;J(S) >1/2. (3.34)

If not, there is F* C F with H"(F*) > 0 and such that, for every y € F*, u;(®(-,y)) < 1/2
on a set Sj[y] which is H!-equivalent to S*. We thus find that ®(S! x F*) is a set of positive
volume which is £""!-contained in {u; < 1/2}. In particular, if ¢ > 1/2, then {u; >t}
is H"-disjoint from ®(S! x F*). However, since {u} >t} is C-spanning W, for H'-a.e. s,
T[s] U {uj > t} is essentially disconnecting 1" = (S x BY); in particular, ®(S! x F*) is
essentially disconnected by (T'[s]U {u] >t})N ®(S! x F*) which, in turn, is H"-equivalent
to T[s] N ®(S! x F*) = ®({s} x F*). We have thus concluded that for H!-a.e. s € S!,
®({s} x F*) is essentially disconnecting ®(S! x F*), a contradiction.

To conclude, up to modify F' on an H"-null set we can assume that (3.34) holds for
every j and every y € F'. Next we set

F; = {y e F: ’Hl({z;’ >1/4}) < %}, (3.35)
and notice that
coWust) 2 [ Vi) 2 wm mvay LD,
so that, setting M = H"(BT)V(1/4)/2C(®), we find
) > By (3.36)

2 )
Now, if y € Fj, then by (3.34) there is s € S' such that 2¥(s%) > 1/2, and s¥ must lie
in a non-empty connected component I¥ of {z¥ > 1/4}; by (3.35), it must be H'(I¥) <
V(uj, T)/M, so that, if j is large enough to ensure V(u;j, T)/M < H'(S'), then there must
be t?; € OSJ;.J. In particular, z?(t?) = 1/4 and dist§1(sg,t?;) < 7—[1([;-’) < V(uj;T)/M,
which, combined with z¥(s?) > 1/2, give

Yy Y(+Yy\|2
|(Zy)/|2 > / (zy)/|2 > ‘Zj (Sj) - Zj (tj)| M ‘
! J - [5; ()t ()] J B diStgl (S]y,t]y) 16 V(UJ,T)

for every y € F}, and thus, recalling (3.36),

Hr(BYY M
12> n NIEES 1 .
/Y'VZJ' _/chmy [ee s P s

Finally,

&j &j

AC. (u;Q 26-/ YVou;|? > / Vzil? > e(®, M) —L —

from which we find AC., (u;; ) — oo (a contradiction) as V(u;; T') = o(g;) as j — co. [

4. WET AND DRY SOAP FILMS AS LIMITS OF DIFFUSED INTERFACE SOAP FILMS

In the section we address the approximation in Allen—Cahn energy of minimizers (K, E)
of Upk(v) in both the wet (v > 0) and dry (v = 0) cases. We shall actually be able to
work with a slightly more general class of pairs (K, F), namely, we shall work in the class
of those (K, E) € K, with

K= {(K, E) : K is relatively closed and H"-rectifiable in Q, E is open, (4.1)
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E has finite perimeter in Q, and QNcl (0*E) = QNIE C K} ,

which also satisfy condition (4.2) and (4.3) below. In Theorem 4.1 we address the wet case
(IE| > 0), while Theorem 4.3 concerns the dry case (|E| = 0).

Theorem 4.1 (Diffused interface approximation of wet soap films). Let W C R be
compact and such that Q = R"*1\ ' W has smooth boundary, and let C be a spanning class
for W. Let (K, E) € K be such that

|E| >0, K UFE is bounded and C-spanning W , KNEY =g, (4.2)
and such that there are ¢ and ry positive such that
H"(K N B.(x)) >cr", (4.3)

for every x € cl(K) and r < rg.
Ifv:(0,1) = (0,00) and 6 : (0,1) = (1/2,1) are such that, as e — 0T,

v(e) = |E|, d(e) = & € [1/2,1],
then there are e; — 07 and {{ug}eqj }; € Lip(2;]0,1]) such that {ul > 0} cc R™! and
{ul > 6(e)} is C-spanning W, Ve <¢j, (4.4)
V(ul; Q) =v(e), Ve < gj, (4.5)
Jim sup lul =15 L@ =0, (4.6)
]1i>nolo ESEEI; w = P(E;Q) + 2®(5o)H" (K N E). (4.7)

Moreover, if ¢ is finite, then Y (v,e,0) is finite for every v >0, € >0, and 6 € (0,1], and

limsup sup Y(v,e,0) < Ui (v). (4.8)
es0+ 5€(0,1]

Remark 4.2 (Choice of spanning set for small €). Theorem 4.1 shows that given any
choice of 6(¢) such that d(g) — [1/2,80) < 1 as € — 0" we are bound to find
limsup Y (v,¢,d(¢)) < P(E;Q) +2®(6) H'(K N EY) < Fo (K, E) = Ui (v).
e—0t

where we have applied (4.7) to a minimizer (K, E) of Upk(v). This explains why, for
recovering the expected/correct limit surface tension energy along the collapsed region
one has to require () — 1~ as e — 0.

Theorem 4.3 (Diffused interface approximation of dry soap films). Let W C R"*! be
compact and such that @ = R"* 1\ W has smooth boundary, and let C be a spanning class
for W. Let K relatively closed in 2, H"™-rectifiable, bounded, C-spanning W, and such
that there are ¢ and ry positive with

H"(K N By(x)) >cr™, (4.9)
for every x € cl (K) and r < rq.

If v:(0,1) = (0,00) and 6 : (0,1) — (1/2,1) are such that, as e — 0T,

v(e) = 0T, 8(e) = do € [1/2,1], % -0, (4.10)

then there are e; — 07 and {{ug}KEj }iC (Wﬁ)f N Lip)(£2;[0,1]) such that
{ul > 6(e)} is C-spanning W Ve <¢j, (4.11)
V(ul; Q) = v(e), Ve < ¢y, (4.12)

21



. AC. (ul: )
lim sup sup —————

j—oo e<gj 2

< 20(50) H"(K) . (4.13)

Remark 4.4. For the necessity of the third condition in (4.10), see conclusion (3.20) in
Theorem 3.4.

In the proof of both theorems, as well as in the sequel, we will make use of the following
elementary lemma:

Lemma 4.5. (i): If A C R"™! is open, X € C°(A; R, and fi(x) = x +t X (), then
there are positive constants tg and Cy depending on X only, such that, for every |t| < to,
fi : A — A is a diffeomorphism, and for every w € WH2(A;[0,1]) we have

‘ACE(w o fy: A) — AC.(w; A)
—t / e |Vw|* + @ div X — 2¢ (Vw) - VX [Vw]| < Cy AC.(w; A) 12,
A

‘V(w ofyA) —V(w;A) —t / V(w)div X| < CoV(w; A)t2, (4.14)
A

(ii): Ifu € L*(A;[0,1]) and u is not constant on A, then there are positive constants 1o, Bo

and Cy (depending on A and u) such that for every w € W12(A;[0,1]) with J[u—wl[rreay <

Bo and every [n| < no there is a diffeomorphism fy' : A — A with {f #id} CC A such

that wy = wo f satisfies

V(wy; A) = V(w; A) + 1, |AC: (wy; A) — AC(w; A)| < Cp AC(w; A) |n] .

Proof. Statement (i) is a standard consequence of the area formula. Concerning statement
(ii), we notice that since u is not constant in A and V' is strictly increasing on [0, 1], it follows
that V(u) is not constant in A. In turn, this implies the existence of X € C°(A;R" 1)
such that [, V(u)div X > 0, and then one can argue as in [Mag12, Lemma 29.13, Theorem
29.14]. O

We now prove Theorem 4.1 and Theorem 4.3.

Proof of Theorem 4.1. We start by proving (4.8). By Theorem 1.1, ¢ < oo implies the
existence of a minimizer (K, E) of Wy (v) (|E| = v > 0) which satisfies the assumptions
in the first part of the statement. Since ul (corresponding to v(¢) = v and §(¢) = 1)
is admissible in Y(v,¢,6) for every § € (0,1] and € < ¢;, we easily deduce (4.8). The
rest of the proof is divided in four steps, to which we premise the following result and a

preliminary remark related to it:

[Vil09, Proposition 4.13]: If F is a Borel set in R™! such that (a): OF is countably
H"-rectifiable, and (b): there are ¢ and r{, positive such that

H"(B.(z)NOF) > r™, Vo € OF ,r < (), (4.15)
then for every Borel set A C R with
H'(OF NOA) =0, (4.16)

it holds
i [N F) N A
r—0+ r

where I.(F) = {z € R""! : dist(z, F) < r}.

P(F;A)+2H"(OF NFY N A), (4.17)

A remark on [Vil09, Proposition 4.13]: In this remark, let us assume F' is closed and
satisfies (a) and (b). We first point out that the open set F° satisfies these assumptions
also. This is immediate from the fact that a set and its complement share the same
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topological boundary. We now record three facts to be used later (in each of them, A
satisfies (4.16)). First, by (4.17) applied to F' and the fact that |F'\ int F| = |0F| =0,
L(FY\F)NA
lim )\ F) 0 Al = P(F;A)+2H"(OF N F© N A)

r—0t r

= P(int F; A) + 2H"(OF N (int )@ N A). (4.18)
Second, applying (4.17) to F° and again using |F'\ int F'| = 0, we find
LY N F)NA] () FY N A
r—0t r r—0t r
= P(F%A)+2H"(O(F°) N (F)Y N A)
= P(int F; A) + 2H"(OF N (int F)M' N A).  (4.19)
Third, setting sdgp(x) = —dist(x,dF) if © € F, sdgp(z) = dist(x,0F) if x € F¢, and
fe(s) = H"(AN{sdgr = e s}) for s € R, we claim that, in the limit as € — 0T in the sense
of Radon measures on R,

f-£1 = {P(int F; A) + 2H"(OF N (int F)© N A)} £'L (0,00) (4.20)
+{P(int F; A) + 2H"(OF N (int F)V' N A)} L' L (—00,0).

Indeed, setting for brevity oo = { P(int F’; A) + 2H"(0F N (int F)© N A) }, we deduce from
(4.19) that, that for every b > 0,

b b eb
1
/ £o= / MM (AN {sdor = < 5}) ds = - / HO AN {sdor = t}) dt
0 0 0
Uep(F)\F) 0 A
eb
In particular, for every (a,b) C (0,00) we have f; fe—= (b—a)aase — 07, and a similar
argument based on (4.18) completes the proof of (4.20).

Step one: We prove that F' = cl (FU K) = cl EUcl K satisfies assumptions (a) and (b) of
[Vil09, Proposition 4.13]. To prove this, we begin by showing that

OF =clKUOJE C clQ. (4.21)

The containment in ¢l € is trivial by K U E C 2, so we compute JF. Towards this end,
by the fact (since E is open) that E, 9F, and (cl E)¢ partition R"*!, we decompose

= b bo.

OF = (0OFNE)U(OFNOE)U(OF \ clE) (4.22)
and evaluate each term individually. First, since F is open and E C F,
OFNE=0. (4.23)
Second, we claim that OF C OF, so that
OENOF = 0F. (4.24)
To prove OF C OF, we must show that if z € OF, then
B (z)NF#@ and B.(x)\F#2 VYr>0. (4.25)

Indeed, if z € OF, then B,(x) N E # & for all r > 0 by definition of OF, and so £ C F
gives the first condition in (4.25). For the second, we first claim x ¢ E®. Indeed, since
r € 0FE C QUK and 00N EY = g = KNEY (due to E C , the smoothness of
99, and our assumption on K), we have x ¢ EW. Therefore, noting that £ = F® (by
|[F\ E| =|clKUOE| < |KUJQ| =0), we find that 2 ¢ F. In turn, this implies that
B,(x) \ F # @ for all r > 0 as desired, finishing the proof of (4.25) and thus (4.24). For
the last term in (4.22), we claim that

OF \clE=clK\clE. (4.26)
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To see this, we note that by the definition of F', 0F \ clE = 9(cl K) \ cl E. Now since
|cl K| < |K|+ 09| = 0, we have int (c] k) = @, and thus

J(clK)=clK \int(clK) =clK.
Thus OF \ cl E = cl K \ cl E, which is (4.26). We may now conclude the proof of (4.21).
By (4.22), (4.23), (4.24), and (4.26), OF = OFE U (c1 K \ clE) = 0E U (cl K \ int E), so we
would be done with (4.21) if cl K Nint £ = @. Now since E is open, cl K Nint £ = & if

and only if K N F = &. The latter condition holds since, by the openness of E' and our
assumption FVNK =90, ENK Cc EYNK = 2.

As a first consequence of (4.21) and E N K = &, we have
it F=clF\OF = (clKUclE)\ (clK UOJE)

=clE\ (lKUOQE)=int E\clK =FE\K=EFE. (4.27)
Also (4.21), the relative closedness of K in 2, and the containment Q NOE C K give
QNIF=QN(clKUIJE)=QN(KUJE)=QNK. (4.28)

Since 0f) is ‘H"-rectifiable, we deduce from (4.28) and the fact that K is H"-rectifiable
that OF = cl K U OF is H"-rectifiable, and thus satisfies (a). The validity of (4.15) from
(b) at every x € OF Ncl(K) is a consequence of assumption (4.3). The validity of (4.15)
at x € OF \ cl(K) C OE N 9N can be deduced as follows: with ¢ and r¢ as in (4.3), if
r < 1o and there is y € B, j5(z) N cl (K) # @, then by (4.3) and K C OF

H"(By(z) NOF) > H"(B,)2(y) N K) > c(r/2)";

if, instead, B, jo(7)Ncl (K) = @, then QNOE C K and E open imply that B, j5(z) NOF =
B, j5(x) N0, and we conclude by the fact that H"(B,(z) N Q) > cqr™ for every r < rq,
provided rq and cq are suitable positive constants.

Step two: We would like to apply [Vil09, Proposition 4.13] to F' and A = (, although
doing so would require checking that H"™(0Q2NOF') = 0, something that is potentially false
(e.g., if HM(OQ N IE) > 0). To avoid this difficulty, we “slightly stretch” K and E as
follows. Since €2 has a (bounded) smooth boundary, there is tyg > 0 such that if we define
g : Q= Q= 1(Q), t € (0,tg), by setting g:(x) = x for x € QN {distygq >t} and

91(z) = z + (distoo(z) — t) Vdiston () , x € QN {distygn < t},
then g; is diffeomorphism with g, — id and g, ' %id as t — 0F (in every C*-norm).

Setting K; = g;(K) and Ey = g;(F) we see that F; = cl (K; U E}) satisfies assumptions (a)
and (b) of [Vil09, Proposition 4.13]. Also by (4.21) and the fact that g; ' (Q) C Q,

AF)NQ=g((lKUIE)N g () = g(K Ng; () = K NQ, (4.29)
and by (4.27),

Moreover, since dist(g:(z),9Q) = 2dist(z, 0) — ¢ for every x € QN {distpn < t}, we see
that
g, (09N O(F)) = g; 1 (99Q) N OF C {distagn =t/2} NOK .

Since H™(K N {distgn = t/2}) = 0 for a.e. t € (0,tg) and g; ' is a Lipschitz map we
conclude that

H™ (0N O(Fy)) =0, for a.e. t € (0,tg) . (4.31)
As a consequence, we may apply (4.18) to F; with A = Q: by using (4.29) and (4.30) to
rewrite OF; N Q and int F}, respectively, for a.e. t € (0,%p) and as r — 0T, we obtain

[(L(F)\F)NQ| = r{PE;Q)+2H" (QNKNE")} +rogfl)
= T.Fbk(Kt,Et) + T'Ot(l)
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= r(14+w)Fox(K, E) + rwdr), (4.32)

where w(t) — 0 as t — 07 and wy(r) — 0 as r — 07, and where in the last identity we
have used the area formula and ||g; — id||cn < C(Q2)t. By the same logic applied to F¥
with (4.19) replacing (4.18), we also have

ILFONFNQ| = r(1+w(t)[PE;Q) +2H"(KNEY NQ)] + rw(r)
= r(1+w(t)P(E;Q) + rwd(r), (4.33)
where in the second line we have used our assumption that K N E® = &. Finally, we

notice that

QN F; = Ky U Ey is C-spanning W ; (4.34)
indeed, for every v € C, v(S') N (K; U Ey) = g:((g; ' 09)(S') N (K U E)) where this last set
is non-empty since g, L6 ~ is homotopic to v relatively to €.

Step three: We prove that for a.e. t < tg (tp depending on (K, FE)), every M > 0, and
every € > 0 we can define

uMt € Lip(;]0,1]), {uMt >0} cc R
(see (4.40)) in such a way that {ul"* > ()} is C-spanning W and
V)~ |B|| < C(tP(E)+:M), (4.35)
/ Mt —1p| < C(tP(E)+eM), (4.36)
Q

AC.(u"; Q)
2

where C' depends on the data of the theorem, and where w(r) (w,(r)) denotes a generic
non-negative increasing function such that the limit w(r) — 0 (wq(r) — 0) as r — 0
holds at a rate that depends on the data of the theorem (and on the parameter a). The
construction goes as follows. By the normalization (1.10) of W, the Allen-Cahn profile

n € C*(R;(0,1)) defined by —1' = /W (n) on R, n(0) = 1/2, n(—o0) =1 and n(+o00) = 0,

is such that
1
/(77’)2+W(77) =2/ VW (n) || =2/ VIV =2.
R R 0

Starting from 7, for every M > 0 we can easily construct nys € C*(R;[0,1]) with {ny =
1} = (—00,0], {na = 0} = [M, 00) and such that

— P(E;Q) — 2®(50) H"(K N E™)

< w(l/M) + w(t) + we v (€]4.37)

/oj(é )(773\4)2 + W) = 28(80) +w(1/M) (4.38)
My 90

M (60)
/_77 ()2 + W) = 2(1— (%)) +w(1/M), (4.39)

where w(1/M) — 0as M — oo. Let ng/(f) be the translation of 1y, such that ng/(f) (0) = d(e),

and similarly for §y. Corresponding to €, M, and ¢ positive, with ¢ < ¢y, we now set

uMt(z) = ) (SdF;(x)) . xeq. (4.40)

In this way, w2’ € Lip(€2; [0, 1]) with compact support on R"*1. Since {ui—wt >0(e)} =
QN F, = K, UE,, by (4.34) we deduce that {u}"" > §(¢)} is C-spanning W. Next we
notice that since 0 = V(0) < V(t) < V(1) =1 for every ¢ € [0, 1], by combining the area
formula (to deduce |EAE;| < C P(E)t) with (4.32) we find

VN E) < |(Im(FR)\ F)NQ|
< eM(1+w®)Fok(K,E) +eMuw(eM). (4.41)
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Similarly, using instead (4.33), we find
Vi onE) = |E|-O(Lu(F)NENQ|)
= |E|-O(CPE)t—eM (1+w(t))P(E;Q) —eMwi(e M)). (4.42)
Together, (4.41) and (4.42) give (4.35); we deduce (4.36) similarly. Finally, by the coarea

formula,

AC. (a2 ) 1 / () (2/0)] + W (i (2/e))
R

2 2 €

= 5 [ L@ = W) 5

where we have set for brevity
fi(s) =H" (N {sdp, =es}), s>0.
Since, by (4.20) and (4.29)-(4.30), for a.e. t € (0,%p), as € — 0T,
LR = {P(int Fy; Q) + 2H™(OF, N (int £,)© N Q }cl (0, oo)
+{P(int F; Q) + 2H"(0F, N (int /) N Q) } L' L (—o0,0)
{P(E;Q)+2H (K, NE” NQ)}L'L(0,00)
+{P(E;Q) +2H (K NEP NQ)} L'L (—00,0) ase— 0

H"(QN{sdp, = 2}) d=

and ((nj/(f))’)2 + W(n?éf)) converges uniformly to ((7]?&)’)2 + W(n?\‘/}) in C(R;[0,1]) as
e — 07, we find in particular that

3 | 1R+ W) s

. n (0)
_ P(B;9) +2”H2(KtﬁE ne) / ((139))? + W (n%%) ds + wi i (e)
+p(Et;Q)—|—2H’;(KtﬁEt(l)ﬁQ) 0 ((WM)) _|_W( W) ds + we n(e)

= Finel o, E)[®(50) + w(1/M) + wypr(e)]
+{P(E; Q) +2H (K, NEY NQ) L — (60) + w(1/M) + wim(e)],

where wy p(e) — 0 as ¢ — 01 and we have used (4.38)-(4.39). Since, as noticed in (4.32)
and (4.33),

Fbk(Kt, Et) = (1 + w(t)) fbk(K, E) and
P(E; Q)4+ 2H (K:NEPNQ) = (1+w(t)P(E;Q)
we conclude that (4.37) holds.

Step four: We conclude the proof. Given j € N, we can find t; — 07 and M; — oo (as
Jj — 00) depending on the data of the problem, and then ¢; depending on ¢;, M; and the
data of the problem, such that, e; — 07 as j — oo and, for every ¢ < ¢j,

w! =ut"" € Lip(9;0,1])
with {w! > 0} cc R"™, {w! = 1} C-spanning W, and

. ) J.
mase {V(wts )~ 1], [ fui = 161, [ 2G5 - p(ess) - 200) M 0 B©)

}

< - (4.43)

u|>~
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Next, we use |[E| > 0 to deduce that v = 1g is non-constant in the open set A = Q: by
taking j large enough we can thus apply Lemma 4.5 to w = w? and with n= U(E)—V(wg; )
for every ¢ < g;; denoting by f; the resulting diffeomorphism, we set ul = wlo fj, and
notice that, by (4.43), ul satisfies (4.4), (4.5), (4.6), and (4.7). O

Next we turn to the proof of Theorem 4.3. This will be the first situation where
we make use of the properties of the minimizers in the diffused Euclidean isoperimetric
problem ©(v,¢), consisting of the minimization of AC(u) := AC.(u;R™1) under the
volume constraint V(u) := V(u; R"*1) = v; see Appendix A for more details.

Proof of Theorem 4.3. Since the assumption “|E| > 0” was not used in the proof of The-
orem 4.1 until the definition of « in step four, we notice that, for a.e. ¢ € (0,%p) and for
every M and e positive, if we define w2 as in (4.40), then (4.35) and (4.37) combined
with F' = @ give

VM) < CeM, (4.44)
AC. (ul"'; Q)
2

Given M > 0, there is e, = €,(M) > 0 be such that C'e M < v(e) for every ¢ < e,. In
particular, for a.e. t € (0,%y) and every M > 0 and ¢ < £, we have

—20(6) MM ()| < w(1/M)+w(t) fwale),  (445)

V(' Q) < v(e) (4.46)

and (4.45). Now, given w > 0, let us denote by (., the unique minimizer of the diffused
isoperimetric problem ©(w,e) (see Appendix A), and let us consider for a.e. ¢t € (0,tp),
M>0,e<e.(M),a>0,and f €R

M,t,Ol,B —

Ug

max {u?/[’t,g‘e,w* oAy 0 7'5} , T€e,
where 7 is a fixed unit vector in R"™, 73(z) =2 — 87 and A\o(z) = z/a (z € R"1), and
where we have set w, = w,(g, M,t) = ¢ + v(e) — V(ul"'; Q); we immediately see that
ug e (W N Lip) (2 [0, 1))
and that
{ul"P > §(£)} is C-spanning W ,
since it contains {ul"* > (¢)}, as well as that
AC. (udteP Q) < AC(ul Q) + AC (G © Aai )
< AC(uMH Q)+ {14+ C(n, W) |a— 1]} Oe,wy) . (4.47)

Now, since {ué\/‘[ " > 0} is compactly contained in R"1, we have, uniformly on |a—1| < 1/2,

lim V(u?/[’t’o"ﬁ; Q) = V(uy’t; Q) + V(Cw, © Aa)

B—o0
= V(!0) +a" V(o w.)
= V@) +a (e +v(e) — V().
This last expression, evaluated at o = 1, is an € above v(g). In summary, for for a.e.

t € (0,t9), for every M > 0, ¢ < e.(M), B > Bi(M,t,e) there is a(f,e) < 1, with
a(B,e) = 1 as B — oo (uniformly in € < €,), such that

V(@98 0) = u(e).

27



We can now pick t; — 0%, M; — oo, ¢; = min{e.(M;), &5} — 07 (where £f is such
that the error wy s appearing in (4.45) satisfies wy; u; (E;‘) — 01), B; = Bi(Mj,t;,¢5),
aj(e) = a(pBj,€), and define, for every € < ¢,

uf = w0 e (W2 A Lip) (9]0, 1])

3 loc

so that {ul > 6(¢)} is C-spanning W, V(ul; Q) = v(e), and combining (4.45) with (4.47)
such that

ACc(ul;Q) < 2H™(K) + w(1/M;) + w(t;) + we, a; (€5)
+H{1+C(n, W) ay(e) — 1]} O(e, w;(e)) ,
where w;(g) = wi(e, M, tj) = e+ v(e) — V(' Q). Now, since [MR22] implies

sup O(e,w) < C(n, W)™/ (+h) Ve < go(n, W),

O<w<1
we conclude from wy; ar,(e5) — 07 and aj(e) — 1 (uniformly in e < e.) that (4.13)
holds. g

5. LAGRANGE MULTIPLIERS OF DIFFUSED INTERFACE SOAP FILMS

The following theorem is one of the key results of our analysis, as it provides an upper
bound on the size of the Lagrange multipliers A; appearing in (1.1) — precisely, we show that
ejA\j — 0 as j — oo. This information, which is of course interesting in itself, is also useful
in the proof of the existence of minimizers of Y (v, e,0) (and the inclusion of the possibility
that v; < v; in the statement is needed in that proof). We notice that our analysis
does not touch the very interesting problem of understanding the validity of positive lower
bounds on the |);|’s. Intuitively, one would indeed expect that they cannot be too small:
indeed, since (1.1) is compatible with convergence to Plateau-type singularities, it should
not be possible to identify it as a too close approximation of the standard Allen—Cahn
equation (for which convergence to Plateau-type singularities is indeed impossible).

Theorem 5.1 (Lagrange multipliers estimate). If W C R"*! is compact, C is a spanning
class for W, v;, €;, and 0; are sequences with
£
v; — 0, g; — 01, - 0t §; — 8o € [1/2,1],
Uj

as j — oo, and u; are minimizers of Y(v;,€;5,0;) for some v; € (0,v;] such that

ACEj(uj;Q) < T(’Uj,Ej,(Sj), (5'1)
then
lim ¢; \; =0, (5.2)
]—)OO

where \; is the Lagrange multiplier in the inner variation Euler-Lagrange equation for u;.

Proof. Without loss of generality we can assume that ; \; admits a limit, and then prove
(5.2) by finding a subsequence jy — oo as N — oo such that €, \;, — 0 as N — oo.
Setting for the sake of brevity ac.(u) = ¢ |Vu|? + W (u)/e, we are going to achieve this by
making a suitable choice of X € C°(Q;R""!) in the Euler-Lagrange equation

/ ace, (uj) div X —2¢; Vuy - VX[Vu;] = A / V(uj)div X (5.3)
Q Q

satisfied by u;. Since the argument is long, it is convenient to first give an overview of
it. In step one we prove the convergence of acc,j(u;) L L Q to 2®(dp) H" L K, where
K is a minimizer of ¢, and characterize K as the limit of super/sub-level sets of the
u;’s. In step two we blow-up near a regular point of K, say, 0, and identify ry — 01
and jy — oo as N — oo such that K, at a scale ry near 0, is approximately flat and
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is “sandwiched” between two regions Fy and Fy on each of which u;, concentrates a
®(dp)-amount of Allen-Cahn energy per unit area (compare with (5.19)). In step three
we consider the blow-ups uy of Ug;  near 0 at scale ry, and prove that they converge to
a double transition from 0 to dy on each side of K near 0, along a length scale o — 0
(compare with (5.25)). In preparation to further blow-up 4y at the scale oy we need to
identify first a suitable thin cylinder for performing such blow-up (see the definition of Jy
in step four), and then suitable heights that locate the two transitions from 0 to g (see the
definition of sy and tx in step five). The resulting blow-ups uy of 4y are defined in step
five, where their local convergence to on one-dimensional Allen—Cahn profile is proved (see
(5.42)), and used to readily infer that £;, A;,, — 0 by testing the rescaled Euler-Lagrange
equation (5.3) for uy on a carefully selected vector field.

Step one: By the assumptions on {(v;,&;,0;)};, Theorem 4.3 gives

2®(do) ¢ > limsup Y (vj,e5,6;) > limsup AC., (u;;Q) /2. (5.4)
j—00 J—o0
In particular, sup; ACc, (uy;2) < oo, so that if we extract a subsequence and denote by u
the weak-star limit of |V(® o u;)| LT LQ as j — oo, then, by Theorem 3.4, the Borel
subset of ) defined by

K={zeQ:0(u)(r) >28(&)}

is such that K is C-spanning W and p > 2 ®(dp) H" L K. Combining this last inequality
with (5.4) and (MM) we find that K is a minimizer of ¢ (thus H"-equivalent to S =
spt H"L K) and
2 (13(50) { = ]151010 T(vj, Ej,y (5]) = ]]i)nolo T(Vj, Ej,y (5]) = ]lglolo Acgj (Uj; Q)/2 > (55)
1= 20(50) H'L K = wlim [V(® ou;)| £ L0 = whlim ~eel®)
J]—00

J]—00

L'LQ. (5.6)

We now notice that, thanks to the minimality property in ¢, K can actually be char-
acterized as a partition limit. To see this, let us recall the construction used in the
proof of Theorem 3.4. There, given N € N we applied Lemma 3.1 on the interval
IV =[50 — (1/2N), 80 — (1/N)] to find {t;-v}j C I}V such that, setting EJN = {u; > t;v},
then {QN 8*E§V }; admitted a partition limit S}’ with the property that

SY is C-spanning W and is H"-contained in Ky = {07(u) > 2®(5g — 1/N)}, (5.7
compare with (3.25) and (3.26). Having proved that in the present case pn = 2 ®(dp) H"L K,
we see that Ky = K, and therefore, by (5.7), that

{=H"(K)>H"(SY)>¢.
N HT . . N H™ .
Hence Sy C K implies S5' = K, that is, for every N € N,
K {2 nJoUniloul}, (5.8)
k i

where® {Q } is as in (2.9), and {Un ;[Q%]}; is the limit of the essential partitions ~[U]]\,Z[Qk]}Z
of Q. induced by 2N G*EJN in the sense that for every k, 7, and N, we have U ]]VZ[Qk] —

6Should {Q }x be a disjoint family — something it is definitely not! — (5.8) would imply, for each N # N’
and each k, the existence of a bijection ¢ so that Un :[] is Lebesgue equivalent to Uy o(;)[Q2] for every
i, and we could thus drop the N-dependency from the following arguments. Quite the opposite happens
though, since each )i intersects countably many different €2,/’s, and it seems there is no obvious way to
trivialize the interaction between k£ and N in the building up of K.
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Un,i[Q] as j — oo. In particular, since, by (3.2), Qﬂ(‘)*EJN is H"-equivalent to {u] = t;-v},
we find that

Q. N I*UL; (] is H"-contained in {uf = A (5.9)
where t;-v — t(])V € Iév as j — o0.
Step two: From this step onward, we focus our analysis near a regular point of K. More
precisely, since minimizers of ¢ are Almgren minimizing sets in , by [Alm76] K is a

smoothly embedded minimal surface in a neighborhood of H"-a.e. of its points. In par-
ticular, setting

Q, = {a; eER"™ |z <rfori=1,..,n+ 1} = (—r,r)"

Q:} = QT N {xn-i-l = 0} = (_T7r)n X {0}7
denoting by p the projection of R"*! onto {x, .1 = 0}, and up to a rigid motion, we
can assume that 0 € K and that there are rg > 0 and a smooth solution to the minimal
surfaces equation f € C*°(Qy; (—ro,70)) with f(0) =0, Vf(0) =0, and

QTﬂK:{xEQT:an:f(p(m))}, Vr € (0,79) .

Let us now consider the epigraph and subgraph of f in Q,, that is, let us consider

Epi(f”‘) = {IL’ €Q,: Tp41 > f(p(fl’))} ) SUb(f;T) = {‘T €Q,: Tpy1 < f(p(x))} 5

so that {Epi(f;ro),Sub(f;79)} is the essential partition of Q,, induced by K. By (5.8)
and by the smoothness of f, for each N there are ky and zj\r, # i,y such that

0e QkN N a*UNﬂ.% [QkN] .
Proceeding inductively in N, we can pick 7y < min{rg,ry,...,7y_1} so that

lim ry =0, Q2,y CC Qpy s H'(KNOQ,,) =0, (5.10)

N—oo
and thus

Qry N Uyt [y] =Epi(firn),  Quy MUy~ [Qiy] = Sub(f;ry).
In particular, for every N, as j — oo we have

Q.y N ijv Q] = Epi(firn),  Quy N Ujv [ ] — Sub(f;7n). (5.11)

N
We now prove two additional properties of U ]{”i, see (5.15) and (5.16) below, which will
"IN

be used to suitably select {jx}n such that jy — oo as N — oo:

+ _ aCe; (uj)
Ay = e
TN N,

'N

First, setting for brevity

and noticing that, thanks to (5.9), we can argue as in the proof of (3.29) in Theorem 3.4
— see, in particular, (3.33) — we prove that

lim inf a]j\tfj > lim inf/ '
a7ro0 a0 QTNHUJJV’% (79

IV (® o uj) (5.12)
> B(t') P(Uy 1+ [ Qry) = (50 — (1/2N)) H"(K N Q) -
Since (5.6) and (5.10) give
lim sup aj\rm +ay,; <20(0) H*' (K NQyy), (5.13)

Jj—00
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by applying (5.12) with m = 2 and by (5.13) we find
hmsupaN] < 2®(00) (K NQyy) — liminfay (5.14)
J—00 ’

J]—00

IN

{2(60) — @ (50 - %) b0 Qey)

By similarly applying (5.12) with m = 1 in combination with (5.13), we conclude that,

<50__>7-["(KQQTN) < liminfay ; <limsupay (5.15)

J—00 Jj—o00

IN

[20(50) @ (5 — 5o )} H' (K N Q).

Second, by (5.9), since each U]]VZ[QkN] is essentially connected, for each N, 5 and 1,
U]{,Z.[QkN] is £ 1-contained either in {u; > t;v} or in {u; < té\f}
Setting
Q+ Q; N{zn+1 > 0}, Q, = Q- N{zn1 <0},
since f(0) =0, Vf(0) = 0, and the smoothness of f imply that [Epi(f;r)AQ/| < Crnt2?
for every r < ro, we see that if U] . [Q,] is L -contained in {u; > tI'}, then, by
N
V(u;;8) = v; and (5.11),
|Q+| rn+1 CTR[—H < |QTN N Epi(f;’l"N)| < |Q7«N M UZ]\H; [QkN” + 0§V

V(uy; Q)
< H’u,] tN}‘-i- 0j Sm—i—oé\[:oé\[,

where o — 0 as j — oo at a rate depending on N. In particular, up to further decrease

the Value of 79 (so to have C'ry < Crg < |Q]|/2 for each N), and by repeating the same
considerations with Sub(f;rx) in place of Epi(f;ry), we have proved that for each N, if
7 is large enough depending on N, then

UN’ N[QkN] is L™ -contained in {u; <t} . (5.16)

Step three (selection of {jn}n and first blow-up): Using the estimates proved in step two,
we can diagonally extract a subsequence jy — oo as N — oo such that, if we set

+ IN _ Ein _ Yin
FN - QTN mUNﬁﬁ[QkN]’ ON = N ) WN = K/j_l 3

then the following holds: first, oy — 0 and wy — 0 as N — oo; second, by (5.11),

, |FNAEDi(firn)| [FyASub(firn)ly _ .
lim max{ e , e } —0; (5.17)
third, by (5.6) and (5.10) (which yield ACc,(u;; Q;y) — 2®(d0) H" (K N Qyy)),
| | ace,, (i)
\ R =2d(dp); 1
Novoo HM(K N Qry) /QTN 2 (%) (5.18)
fourth, by (5.15),
1 aCe; (ujN)
lim — A = ®(dy); 5.19
Ngnoo H”(KQQTN) ~/QrNﬂFi 2 ( 0)7 ( )

and, finally, by (5.16),
Q. NO*F5 is H"-contained in {uj, = t%{},

+ . n+1_ : : * N
Fy is L' -contained in {uf <t }.
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If we now set n,.(y) =ry (v € Q1) and

Fi
+ N N N ~
GN:ECQla 5N:thEIO7 'U,N:U]'NOTITN,

then oy — 6o as N — oo, while |Epi(f;r)AQ;}| < Cr"*2 and (5.17) give
|Fy AEDi(f; )| N [Epi(f;rv)AQL | _ |FyAEDi(f;7n)]

|GJJ\FIAQT| = ntl ntl = i +Cry,
'n 'n 'n
and an analogous estimate for G, so that,
li TAQT| = 2
Jim[GHAQT| =0, (5.20)
Q1 N 9*G5, is H -contained in {i = o}, (5.21)
G is L™ -contained in {ay < dn}. (5.22)

Similarly, taking into account that H"(K N Q,)/(2r)" — 1 as r — 01, that ry — 0 as
N — o0, and that

. f— n 7
/QTNmFﬁ aCe; (UJN) =TN /QlﬂGJj\[, acajN/rN(uN)
we deduce from (5.19) and (5.18) that

~ +
ACon @i GV | _ iy (2<I>(6o)—2—"
2 N—o00

ACoy (Un; Q)

lim ‘@(50) -2 5

N—oo

Since V (t) > ct?*+D/™ for some ¢ = ¢(W) > 0, we have

2(n+1 1 ~2(n+1
UJNE/Q wi U =t / ",
1

N

=0. (5.23)

so that wy — 0 implies 4y — 0 in L'(Q1) as N — oo; hence, taking also (5.20) and
(5.21) into account, we find that, if we set

Uy = UN 1ij\[] + N 1Q1\G§ , (5.24)
then ﬂ]j\[, € W12(Q), and, moreover,
. ~+ BT - o
]\}1_13100 o |t — o 1Q1_\ = A}gnoo/Ql |ty — o 1Q1+\ =0. (5.25)

We also record for future use that, thanks to (5.3), it holds

)\. .
/ acy,, (i) divY — 20y Viy - VY [Viy] = ”;75“ / Viay)divY,  (5.26)
1 N 1
for every Y € C°(Qq; R™"H1).

Step four (identification of the second blow-up): In this step, we show that for every N
large enough, there is {5 € Q7 such that, setting

QN=§N+QZN/2 c Qf, Jnv =Qn x (—1,1) (5.27)
we find
lim max{i/ ik — 0o 1| L/ |iy —do 1 +|} =0 (5.28)
N—oo o Sy N Qlen g N Q '
= S +
lim max{‘2q)((50) - M(, B(8y) — 2o (Wi I mGN)(} —0. (5.29)
N—00 20% 20%
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(We shall actually prove the existence of many £y with these properties). To begin with,
let us define a sequence Sy — 0 as N — oo by setting

ﬁN:maX{/ |ﬂ]"\}—501Q|,/ |ﬂ]_v—501Q+|},
Q1 ! Q1 !

and, denoting by My the integer part of 2/ox, we consider a collection

M’I’L
{Q@nvitiy, Qni=&ni+Qpy . &ni€QY,

of disjoint open cubes contained in Qf, with side length o, and such that H™(Qf \
U; @n.i) < C(n)on (of course, if 2/ itself is an integer, then such cubes can be chosen
so that H™"(QY \ U; @n,;) = 0). Noticing that

1= (Myon)"/H"(QY) <C(n)on, (5.30)

- (1 — (M on)"/2"

we consider the open cylinders {JN,Z-}?ﬁ/, JIn,i = QN % (—1,1) C Qq, so that

il =20% . |Qui\JJdni| < C)o,

and let
g}V:{1§Z’§M}@:/JN iy —dolq-| < \/5NJ"N},

g%:{lgiSM%:/JNWJ_V_‘SOlQT' < «/ﬁNU}"{,}.
On combining (5.30) with

(Mpy = #Gn) ok VBN < Z/J .|a;—501Q1,| < BN,

€GN
we find
#O8 _ VBN
<1- < < =1,2 31
0<1-TEN S e SO VB, m=12, (531)
provided N is large enough. In particular,
1 2
fim 7N NON) _ (5.32)
N—o00 M]T\L[

so that, for N large, the vast majority of the cubes {Q Nz}f\i}f satisfies (5.28). This suggests
to consider a class Gy gooa Of cubes in g}v N 912\, such that (5.29) holds: more precisely, we
set gN,good = (g]lv N g]2v) \ gN,bad7 where
. ACy v (tun; IN
GN bad = {z €GN NG% - wllni Ina) 2B (dy) + ﬁ/—aN},

n
20%

is defined in dependence of the quantity

ACUN(’LNL]\HQI)
2
~1 ) +
[@(50)— f ACUN(uMJNﬂﬁGN)] }’
i€G,NG3, 20 +

9

ay = max{‘#(g}vﬁgjzv)a%Zfb(éo)—

(where t4 := max{t,0}, t € R). We now claim that
lim ay =0, (5.33)

N—oo
lim #gN,good

dm =1, (5.34)
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and that any choice of QN € Gn good satisfies (5.28) and (5.29).

To prove (5.33): By (5.30), (5.31) we have #(GY N G%) o — H™(QF) = 2" as N — oo,
so that the first quantity in the definition of ayy is vanishing as N — oo thanks to (5.23).
We are thus left to prove that, if we set

ACy (0E; TN N G
L:=liminf inf on (U AR n)
N—oo ieGlng? 200

, (5.35)

then L > ®(dp). To prove this, let us consider Ny — oo, iy € ngVk ﬂgka, and my, € {4, -}
such that
*’LtCUN,c (ﬂ%}iﬂ Ny i N G%:)

L= lim -
k—o0 2 UNk
Up to extracting a subsequence we can assume that either my = + or my = — for every

k, and we can assume without loss of generality to be in the first case. Recalling that
QN =E&Ni+ Qo and Jni = Qn x (—1,1), if we set

Jl: = [(JNk,ik - gNkﬂ:k)/JNk] = Q?/Q X <_ 1/0Nk7 1/0Nk) )
and define
Gy =GN, —&ni)/on,  w(z) =ay (on, 2 +Eni), 2 € J5,

then we have

(5.36)
2075 2
Now, since 11;(, € WhH2(Qy) implies u, € Wh2(J¥), and, by definition of G};,
1 -
Cn) vy, = — iy, = dolg-| =on, / [uk = dolQy , x(~1/n,.0)]
Ny 7Ny iy, Iy

1/on,
=2 [ ) = oLy, O],

1/2 —1/on,

we find that, for H™-a.e. y € Qi t— uy(y, t) is absolutely continuous on (—1/on,,1/0n,)
and there are a} and b} in (—1/on,,1/on,) such that

li Yy _ i Yy _
Jim aj = —co,  lm u(y,a;) = oo,
i Yy _ i Uy — -
JLim b = +o0, Jim uy(y,by) =0;

as a consequence, by (MM), by the fact that uy, is constant on J;'\ G}, by Fubini’s theorem,
and by Fatou’s lemma, we find that

ACq(uy; Ji NGy,
lim (W T ) lim inf/ |02, 41 (P 0ug)| = lim inf/ 102,41 (P 0ug)|
JENG; k—oo )

v

k—o0 2 k—o00

2/ liminf/ 1O, (@ 0 ug)| > B(6)

1/2 kroo (ay,b%)

which, combined with (5.36), proves that L > ®(Jp), and thus that (5.33) holds.
To prove (5.34): We can estimate that

#GN bad 1 Z ACoy (Un; INi)
) < ? — 2 —
.7‘ F]?\lf ~ ]7\1[ N O'K[ (13(50) AN + BN;

1€G N bad
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where, by definition of ay and since (My on)" — H"(QF) as N — oo,

1 AC, (fLN; JNi)
AN = o —29(d)
My \/an ieg%g?v{ o }
ACoy (n; Q1) — #(Gy NGRy) oy 28(8o) < C(n) Jan
- My oy \Jan - ’
and, again by definition of ay,
1 AC, (ﬂN; JNi)
By 1= - N ~ =~ —2d(d)
My \/an ieg%;md{ oN }
2 AC, (fLN;JNZ'ﬂG]mV)
< ) 1200 - > N — < C(n) an .
MN an iegN,good{ m€{+,—} ZUN }

This shows that #Gy paa/M% — 0 as N — oo, and since #(GyNG%,)/M% — 1 as N — oo
by (5.31), we conclude the proof of (5.34).

To conclude the proof of (5.28) and (5.29): For an arbitrary choice of i(IN) € Gn good, let
QN = Qniv) and Jn == Qn X (=1,1). Since Gy good C gy n QJQ\, we deduce the validity
of (5.28). At the same time, by L > ®(dy), by G} NGy = @, by a}} = uy on Gy for
m € {4, —}, and by the very definition of Gx good, We see that

®(0p) < liminf min ACoy (@3 Jv N GY) < lim inf1 Z 2 ACon (i In N GR)
N—oo me{+,—} 200 N—oo 2 ) 200

me{+7_

ACo (in; In N (GH UGy 1 o (AN
= — liminf v (O3 In O (G n)) < = liminf ACqy (un; JN) v (; JN)
2 N 207, 2 Nhse  20%

< ®(5) + liminf Yo — a(s)),
N—o0 2

which readily implies (5.29).

Step five (analysis of the second blow-up): With Qn = £N+QZN/2 and Jy = Qn x (—1,1)
as in step five, if we now set

In = (Unv—¢&n)/on = Qi) x (=1/on,1/on),

JE = Inn{zp 20},

Gy = [(InNGY)—&nl/on,
uy(z) = un(En+onz),
uy(z) = ay(Ey+onz)

uy(z) lgx (2) + N e (=),

(where m € {+,—} and 2 € Jy), then by (5.28), (5.29), (5.21), and (5.22), we find that

A}i_r)noomax{a]v /JN luk — & 1JXr| ,ON /JN luy — do 1J1+V|} =0, (5.37)
. ACi(un;In) ACi(un; GR) |\

Jim max{(2 D (30) - =L Lo (5) - f(} ~0, (5.38)

Jn N 8*G]jf, is H"-contained in {u} = on}, (5.39)

G is L7 -contained in {uy < oy}, (5.40)
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where oy — 0 and dy — dp as N — co. We now formulate a clam, where, for a € R, we
use the notation,

T.(z) =z —aeny1, t(z) = rpt1, Vo € R (5.41)
Claim: there exists a sequence {ay}ny with oy |an| < 1/2 such that

lim luy 0 Tay — qoot]> + [(Vuy) o Ty — (ghot) ener[*dz =0, (5.42)
N—oo ?/2><Z
for every Z CC (—o00,Qp]. Here we denote by ¢ : R — (0, 1) the unique solution to
1
¢=+vW() onR, q(0)=- lim ¢(t) =0, (5.43)

4 ’ t——o00

and we define g : R — (0,d¢] as

90 = 1(—007620} q+ 1(Qo,+oo) do Qo = q_1(50) . (5.44)
(In particular, Qo > 0 by dp > 1/2, and Q¢ = +o0 if and only if §p = 1.)
Conclusion of the theorem from the claim: By (5.26), if we set An := Aj, €j,, then
/ aci(uy)divZ —2Vuy - VZ[Vuy] = Ax / V(un)div Z,
JN JN
for every Z € C°(J ;R ). In fact, setting Uy (z) = un(z —an e,4+1) and noticing that
by on |an| < 1/2 it holds that
Bl(ZO) (- qu/z X (—1/20']\[, 1/20’]\7) (- JN — apN €ép+1
where zp = (Qo — 1) ep+1, we conclude that
/ ac1(Uy)divZ —2VUy - VZ|VUyN| = Ay / V(Upn)div Z, (5.45)
Bi(z0) Bi(zo0)

for every Z € C°(By(z); R"™1). Let ¢ € C°(Bi(20)) be radially symmetric decreasing
with respect to zp, and set Z(x) = ¢(z)en+1. In this way, denoting by p the reflection
of R™! with respect to {Zn4+1 = Qo — 1} and noticing that 9,414 is odd with respect to
such reflection, we deduce by (5.42) that

lim V(UN) divZz = / V(qO(ZEn+1)) 8n+1g0
N—0o0 /B (20) Bi(z0)

{V(QO($n+1)) - V(QO(p(x)n—H))} an+1907

/;1(20)0{55114—1 >Q0_1}

Now, since qq is strictly increasing on (—oo,Qo], and V is strictly increasing on [0, 1],
we have V(qo(zn+1)) > V(qgo(p(z)nt1)) for every x € By(zp) N {xpnt1 > Qo — 1}. Since
 being radially symmetric decreasing with respect to zy implies that d,110 < 0 on
{Zp+1 > Qo — 1}, the choice of ¢ can thus be arranged so that

lim V(Uy)divZ <0. (5.46)
N—oo Bi (z0)

At the same time, by (5.42) and ¢{, = /W (qo) we find that

lim ac1(Uy)divZ — 2VUy - VZ[VUy]
N—o0 Bi(20)

[ W) = (@) wni1) Do =,
Bi(z0)

which combined with (5.45) and (5.46) implies that Ay — 0 as N — oo, and completes
the proof of the theorem.
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Proof of the claim: We begin by reducing the proof of (5.42) to showing the existence of
{bn}n and {cny}n with max{|by], |cn|}on < 1/2 such that for every W CC [Py, o0) and
Z CC (—00, Qo] we have

lim lu} 0 Tpy —poot)? + [(Vul o Tpy) — (phot) ens1|?dz =0, (5.47)
N—o0 ?/QXW
lim luy o Tey —qoot? + [(Vuy o Tey) — (¢hot) eny1|*dz =0, (5.48)
N—o00 N/

T2
where we set denote by p : R — (0, 1) the unique solution to
1
r_ _ =
p=-vWp) onR, p0)=,,  lim p(t)=0, (5.49)

and we define pg : R — (0, dp] as

Po = 1Py 100) P+ L(—00,P0) %0 ; Py=p (). (5.50)

To deduce (5.42) from (5.48) and (5.47), we first note that for any Z CC (—o0, Qo] and
W CcC [Py, 00), since Z C {qo < do} and {uy < éy} = G (which follows from the
definition (5.24) of @y,), (5.48) and the analogous statements for uj, imply that

Jim [(Qf)y x 2)\ Tey (Gl = 0= lim |(Q}) x W)\ Ty (GR)] - (5.51)

As a consequence, the moving rectangles in J y on which uj; and uj\r, are locally converging
to translations of gy o t and pg o t, respectively, cannot overlap too much: more precisely,
given C1,Cy > 0 with —2Qo + C < Oy, there exists Ny(C1,C2) such that

cy — by ¢ [—2Q0 + 01,02] VN > Np. (552)

Indeed, if (5.52) did not hold for some C; and Cy, then, up to a subsequence which we
do not notate, we would have cy — by — C' € [-2Q¢ + C1, Cs]. Then testing (5.51) with
W =[Py+ C1/3,C3] and Z = [—C3, Qo — C1/3] would give

0 = lim |(Q}) x [P+ C1/3,Ca]) \ Ty (GR)

= Jlim [(QY), x [bn + Po+ C1/3,bn + Co)) \ G| = Tim [(QF), x (by + W)\ Gyl
0 = lim [(Qf) x [=C2,Qo = C1/3]) \ Ty (Gy)|

= hm 1 |(Q1p X e = Coyen + Qo = C1/3) \ G| = lim [(Qf), x (en + 2)) \ Giyl.

Now since by + W and ¢y + Z are intervals of equal length (by Py = —Qy), we may bound
the length of their intersection from below by subtracting endpoints as follows:

li]\gl_)iglof LY((by +W)N (en + 2))
> liminfmin{cN +Qo—C1/3— (bn+ Py +C1/3),by + Co — (ey — Co)}
= l}\rfn_glofmln{cN — by +2Q0 —2C1/3,by — ey + 2C5}
= min{C’ — (—2Qq + 2C1/3),2C, — C")} > min{C,/3,Cs} > 0.
But this contradicts |G]J(, N G| = 0, since the previous two estimates yield
0= lim IGL NGy > lim inf 74" (Q7 ) x LY((by +W) N (en + 2)) > 0.

Moving on to proving (5.42), since uy = uJ_VlG;, + uNlJN\G;,’ (5.51) and (5.48) imply
that for any Z' CC (—o0, Qo,

lim luy 0 Ty — qo o t|?dz =0. (5.53)
N—o00 Q?/szl
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To finish proving (5.42), we fix Z CC (—o0,Qo]. By (5.53), it suffices to show that, for
Z CcC Z' cC (—o00,Qq] to be chosen shortly,

lim |V(uy 0 Tey) — gh ot ensi|?dr =0. (5.54)
N—oo Qn N
1/2

We observe that as a consequence of the uniform energy bound (5.38), any subsequence

{un, 0 Tey, }i of {uy o Tey}y has a further subsequence with a weak wh2( 12 X Z"

limit, which by (5.53), must be ¢p o t. Therefore, the entire sequence {uy o T¢, }n

weakly converges in W12( 12 % Z') to qo o t; in particular V(uy o T, ) — ¢jote,1 in

L?( ! 19 X Z';R™1). To upgrade this weak convergence to (5.54), it is enough to show
lim IV(uy o Tey)|?dx = / lgh ot eny1)?dx. (5.55)
N—oo Q?/2 A Q?/2 A

Assuming for contradiction that (5.55) were false, then by the lower-semicontinuity of
norms under weak convergence, we would have

liminf/ |V(uy o Tey)|?de > 7 +/ lgh ot eny1|?dz, T>0. (5.56)
N—o00 erl/QXZ/ erl/QXZ/

Since ¢ and p are optimal Allen-Cahn profiles, we may now choose 0 < C7 < 2@ small
enough and Cy > 0 large enough such that the set Z' = [—C5/2, Qo — C1/2] CC (—00, Qo]
compactly contains Z and such that Z' and W’ = [Py + C4/2, Cs/2] satisty

AC1(qo ot;qu/2 x Z") /2 + AC1(po ot;Q?/2 x W /2 >2d(5) —7/2. (5.57)

By (5.52), for each large N, either cy —by > Cy or by — ey > 2Qp — Cy. This implies that
the intervals ¢y + Z’' and by + W' are disjoint for large N: indeed, two closed intervals
[aq, ag] and [z, ay] are disjoint if and only if max{as — ag,; — @y} > 0, and

max{cN — 02/2 — (bN +Cg/2),b]v + Py —|-01/2 — (CN + Qo — 01/2)}
= maX{CN —by —Co,by — ey —2Q0 + 01} >0 for large N .

Then using in order (5.38) and the disjointness of ¢y + Z" and by + W'; (5.56), the lower
semicontinuity of norms under weak convergence, and Fatou’s lemma; and (5.57), we may
compute

2®(00) > l}ggofAcl(uN§ Q)2 % (en +27))/2 4+ AC1(un; Qq /2 x (by + W'))/2
> T+ ACi(qoot; Q2 x Z')/2+ ACi(po 0 t; Quyp x W')/2
> 28(50) +7/2.
This is a contradiction since 7 > 0. Thus (5.55) holds and gives (5.42).
The rest of the proof is thus devoted to showing the validity of (5.48); the proof of
(5.47) is the same. To begin with, we show that, setting V' = (91, ..., 9,), we have

lim V'uy? =0, limsup/ V(@ ouy)| < ®(d)- (5.58)
In

N—=oo /3y N—o0

(In particular, local limits of uﬁ will depend only on the z;,,1-variable.) Indeed, by (5.37),
for H™-a.e. y € Q?/2 we can find

1 2
s € (— —_— ——) ,oste lim uy(y,s%) =0, (5.59)

N—oo

2 1
e (——) 4 lim un(y,t%) = do.
N S NgnoouN(y V) 0
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Since, for H"-a.e. y € qu/ga

t — uj(y,t) is absolutely continuous on (—1/0x,1/oy) for every N, (5.60)

by Fubini’s theorem and Fatou’s lemma,

liminf/ a1 (® 0 uy)| 2/ liminf/ Ous1(®ouy)| > B(%).  (5.61)
Iy (shotn)

N— N—
(o.0] Q';z/2 o

Combining (5.61) with (5.38) and with V(® ouy) = 0 a.e. on G, we find

D(0y) < liminf/ |0n+1(Pouy)| = liminf/ |O0n41(P o uy)] (5.62)
In Gy

N—o0 N—o0

N—o0 N—oo

< liminf/ (|Opt1uy >+ W(uy))/2 < hmlnf/ aci(uy)/2 < ®(do).
Gy N
from which we immediately deduce the first conclusion in (5.58); the limsup inequality in
(5.58) is of course derived along similar lines.

Next, we claim that for every 1 € (0,dp), we can find sequences {cy }y and {c}} ~ with
—1/20y < ¢y < ¢}, < 1/20y such that

/ wy =1, / uy =8 — 1. (5.63)
Q?/Qx(cjf\,,c]}-l—l) 1/2><(c]\,,c]\,-‘,-1)
To prove this, let us consider the continuous function fy defined by
_ 1
fN(t)Z/ uy, It| < — —1.
X (t,t+1) ON

1/2

Denoting by ky the integer part of 1/(20y), we have that

O'N/ ‘u]_\[—éol‘];‘ > ON Z/ |U.N—(50‘+Z/
In

u-
N}
Q1/2><(kk+1 Q1/2><( h—1,—h

> aN{Z|fN<k>—5o|+ZfN<—h>},
k=0 h=0

so that, by oy ky > (1/2) —on > 1/4 (N large), we see that

nm{ inf |fn(k)—do| + inf fn(— )}:o.

N=oo Lo<k<ky 0<h<ky

In particular, for every N large enough depending on 7, we can find integers k,h €
(0,1/(20n)) such that fn(k) > do —n and fn(—h) <n, and ¢} and cj satisfying (5.63)
are then found by the intermediate value theorem.

By (5.38), both {uy o T - }N and {uy o T +}N are bounded in W12(Q" PR Z) for
every Z CC R. Thus, up to extractlng a not relabeled subsequence and taking into account
(5.58), we can find ¢y , ¢t € (W, salew 1/2)( R; [0, d0]) such that, as N — oo,

loc loc
uyoT. o =g ot, (5.64)
u]_\,oTcxéqarot, weakly in W1H2(Q" /2 x Z),NZ CCR,
uNoTC;[—>q0 ot, (5.65)
u]_\,oTc%—>q8'ot, a.e. onQ’f/2><R.
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In particular, by (5.63) and (5.64), we have that

q_ Sx) =1,
/ @ =1, / g =00 —n, Fsut.e(0,1)s.t. i( )= (5.66)
(0,1) (0,1) qp (ts) =00 — 1.

On combining (5.66), (5.65) and (5.60) we conclude that, for H"-a.e. y € Q12
— 1 — (. o= S —(a oF
n= lm uy(y,cy+s),  Go—n= lm uy(ycy ). (5.67)
Since (¢F)" € L?(R), the limits
gy (+00) = lim g5 (t),  gj(—00):= lim g5(t),

t——o0

exist, and we can prove that we always have
{49 (£00), gy (£00)} € {0,0} - (5.68)

Indeed, by (5.38), by Gy = {uy < dén} and uy = uy on G, by Fatou’s lemma, and by
(5.65),

®(6) = lim AC1(uy; Gy) > limsup1 W(uy)
- N
N—oo 2 N—o0 2 {UN<5N}

1
= limsup 3 / W(u]_v o ch)
{uyoT _ <on} N
N

N—o00

1/ o - / -
> = liminf W(uyoT,-) > Wiqg ),
2 ( N N) {qy <do} ’

{uyoT _<don} N—oo
‘N

and, similarly, we prove that |, {a <50} Wi(qd) < oo; since W > 0 on (0,4p), we deduce
(5.68). We now need to split the proof of (5.48) depending on the value of the limit
inferior of c?\} —cy > 0.
Proof of (5.48) in the case when
l}\rfriglof o —cy > 1. (5.69)

In this case we must have cy + s, < c;\r, + t, for every N large enough. Therefore, by
(5.67), we thus find

lim inf

V(@ ouy)| = (6o —n) —2(n). (5.70)
N—o0 /?/QX[CNA—S*,c;-i-t*}

We can now improve (5.68) by showing that, if n is sufficiently small in terms of Jy and
W, then

gy (+00) =do, gy (—o00) =0. (5.71)
Indeed, by using, in the order, (5.66) and the absolute continuity of ® o q§, (5.64) and the

lower semicontinuity of the total variation, the second conclusion in (5.58), and (5.70), we
find

1B(gq (—00)) — B(n)] + | (g7 (+00)) — 85 — )] < /

Sx

(@og)] +/t (@ ogl)|

< liminf/ |D(® ouy)|
N=oo JQp ,x[(—1/on cy+s )+t 1/on)]
< — limi N :
< ®(dp) l}\lfn_glof |D(® ouy) (5.72)

’11/2 X(c&—i—s*,c;-l—t*)

< &(dy) — (D(do — 1) — B(n)) .
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This inequality, combined with (5.68) and considered with 7 small enough in terms of J
and W, implies (5.71).

Armed with (5.71), we prove that qar is strictly increasing on {0 < qar < 0p}. Indeed, if
this were not the case, then

Jt1 <ty s.t. qa'(tl) > q(—)i_(tQ) S (0,50) . (5.73)

Setting for brevity Inl[t1,t2] = Q?ﬂ X [t1 + c}, to + cm we could then estimate

./41(11]_\7; GZ_V) > Al(u]_v; G]_V \IN[tl,tQ]) + ./41(11]_\7; GZ_V N IN[tl,tQ])

2/ |D(<1>oujv)|+/ W(uy). (5.74)
JN\IN[tl,tQ] GEQIN[tl,tQ]

Now, with s¥ and % as in (5.59), we have

Y 2 1 - + 1 Y
8N<—O_ < - <cy <cy < < <ty

v

so that, thanks to o — 07 as N — oo, for NV large enough we find SZ]/V < c} + t1 and
5 > cj\r, + to H™-a.e. on Q?/T In particular,

liminf/ |D(®ouy)|
N=00 JJn\In[t1,t2] N

t4 e+t
2igint [y [ p@owy)i+ [ g [ p@ouy)

Nt QYo N
2 /

s

n
1/2

tin inf [®(u (3 #,)) — B(uy (9, ¢ +12))]

n
1/2

lim inf [ (uy (y, e + 1)) = P(uy (y, s3))| dHy

12
= [9(d0) — D(qg (12)] + [(ag (1)) — D(0)
= B(d) — Blag (12)) + (ag (1)) = D (). (5.75)

where we have used g (t2) < g (1) and the fact that ® is increasing on [0, 1]. Concerning
the second term in (5.74) we notice that, thanks to G = {uy < dy} we find

G]_VﬂIN[tl,tz} {UEOTCX} <5N}O[Q'{L/2><(t1,t2)} N
so that
lim inf W(uy) >

Wi(qf) =:c, (5.76)
N—roo GyNIy[t,ta] /{q3'<6o}ﬂ(t1,t2) 0

where ¢ > 0 since g (t1),qq (t2) € (0,80), W > 0 on (0,d), and qg is continuous. By
combining (5.38) with (5.74), (5.75) and (5.76) we conclude that
(I)((S()) = ]\}im .,41(11;7; G]_V) > (I)((S()) +c > (I)((S()) ,
—00
thus obtaining a contradiction with (5.73).

Having proved that ¢g is strictly increasing on the (possibly unbounded) interval (a, b) =
{0 < g5 < o}, we see that it must be g (t) — 07 as t — a™. Since ¢f (+00) = dp implies
qq (t) = 6o as t — b~, we find

B(0y) = / (@oqt)| < / AC (g 0t) < D (dy) .
{0<qd <o} {0<qd <o}
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so that (q7) = /W (qo) on {0 < ¢f < dp}. By the Cauchy uniqueness theorem and by
definition (5.43) of the Allen—Cahn one-dimensional profile ¢, since qar is not identically
equal to 0, there exists ¢y € R such that

qq (t) = q(t — co), Vt6{0<q6r<50}:(—oo,co+Q0),
where, we recall, Qg := ¢~ (8y). Therefore, if we set cy = cj\r, + ¢p, then we conclude that
uy o Ty — qoot weakly in WhH2(Q? 12X Z),VZ CCR, (5.77)

where qo = 1(_o Qo] ¢ + 1(Qo,00) 90 18 defined as in (5.44). The fact that

AC ot; Q" X (—00,Q
(%) = /Q V(goot)|* = 1 132 (—00, Qo))

12 %(=00,Q0)
AC (5, 0 Toys Q. % (00, Qo)

< liminf < O(
= ol 2 < 2(b),
implies that
lim V(uy o Tey ) = [ V(g0 t)?,
N=eoJQp,x(=00,Q0) Q7% (—00,Q0)

and thus to improve the weak convergence stated in (5.77) to the strong convergence
claimed in (5.48). This complete the proof of (5.48) in the case when (5.69) holds.

Proof of (5.48) in the case when

li f — 1. 5.78
}\I{n_)ln CN CN< ( )

In this case, up to extracting a subsequence in N, we can assume that cj(,—c]_v — dp € ]0,1).
In particular, we find
g5 (t)=qy(t—do),  VtER,

/ a =, / a5 =d —n, (5.79)
(—do,—do+1) 0,1)

and, in particular, dp € (0,1) by taking n < d9/2. With respect to the case when (5.69)
holds, we now define s, and t, differently, by claiming that

T s <ty s.t. qq (s.) =n and qg (t) = 5o — 27. (5.80)

Indeed, by (5.79) and the continuity of g7, there is s, € (—dp, —do + 1) such that gg (s.) =
7, while again by (5.80),

—do+1 —do+1
/ qO—/qO / %-50_ _/ QS_ZCSO_Qna
do+1

so that there is also 7. € (—dp+ 1,1) (and thus, such that r, > s,) with the property that
1 /1 5o —2n
+ +
0 () 1—(=do+1) Jogor * do

Since qg (s«) = 71, we can find ¢, € (s4,7s) such that gj (t.) = 8 — 27 and conclude the
proof of (5.80).

Having proved (5.80), we find

so that, by (5.66),

lim inf

V(@ ouy)| > (5 —21) — 2(n), (5.81)
N—oo /erzmx[c;+s*,c;+t*} N

which we can use in place of (5.70) to argue as in (5.72) to prove (5.71) (that is, gg (+00) =
dp and ¢, (—oo) = 0). Without modifications one repeats the rest of the proof, from
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establishing that qar is strictly increasing on {0 < qar } to showing that qar is a translation
of ¢ and a strong W1 2-limit of T., ouy for some finite translation cy of cj\r,. The proof
of the theorem is thus complete. ]

6. A HIERARCHY OF PLATEAU PROBLEMS (PROOF OF THEOREM 1.2)

This section is devoted the proof of Theorem 1.2. We premise a simple lemma that will
be used in the course of the proof.

Lemma 6.1. If W C R" s compact, Q@ = R"™\ W, g; — 07 as j — o0, u; €
w20, 1]), uj — u in Li, (Q) with sup; ACe, (uj;2) < 00, V(u;; Q) — v >0, and

loc
ace; (uy) L2, as Radon measures in €,

as j — oo, then

liminf AC. (uj; Q) > u(Q) + O(v,¢),

Jj—00
where ©(v, €) is the diffused Fuclidean isoperimetric profile if € > 0 (see Appendiz A) and
O(v,0) = (n + 1) w [ yn/(mt1),

Proof of Lemma 6.1. This can be proved by combining a localization argument which is
quite common in the theory of concentration-compactness (and whose details are therefore
omitted) with (MM) and the Euclidean isoperimetric inequality in its sharp and diffused
versions. 0

Proof of Theorem 1.2. Momentarily assuming the validity of conclusion (i), we prove con-
clusions (ii), (iii), and (iv). To this end, let {u;}; be a sequence of minimizers for
T (vj,€4,0;), where, after achieving diam W = 1 by scaling, we can assume that, as j — oo,

v; = v € [0,70] i—f — 0t (6.1)
J
1 .

5 — 6o € [5,1], min{l — 8;,v;} — 0. (6.2)

In this way, the situation of conclusion (ii) is met when vy > 0 (in which case (6.2) forces
0p = 1) and the situation of conclusion (iii) is met when vy = 0; and, in both cases, (6.1)
implies that ¢; — 07. Since £ < oo, Q has smooth boundary, and ¢;/v; — 0%, we can
apply Theorem 4.1 (if vg > 0) and Theorem 4.3 (if vy = 0), to find

LG if
limsup Y (vj,€5,6;5) < bi(vo) 1 o0 =0,
2(13(50)€, 1fv0:O.

Jj—00

(6.3)

Therefore, by Theorem 3.4, up to extracting subsequences, there exist y a Radon measure
on Q and (K,FE) € Kp with |E| < vp and K U E® is C-spanning, such that p is the
weak-star limit of {|D(® o u;)|};, 1g is Li . (92)-limit of {u;};, and

loc

n (0) n * :
Z{Q”H L(KNEQ)+H'"L(*ENQ), ifvy >0, (6.4

20(5) H'L K , if vy =0.

We claim that |E| = vg. If vg = 0 this is trivial, while if v9 > 0 we can combine (6.4) with
Lemma 6.1 to conclude that

\I’bk(vo) > fbk(K, E) + (n + 1) Wnal (v _ |E‘)n/(n+1) .
In particular, if |E| < vy, then we can construct a minimizing sequence for Wy (vg) with

positive volume loss at infinity, thus contradicting Theorem 1.1-(iii). Having proved |E| =
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vo, and thus that (K, E) is a minimizer of Wy, (vp), we can combine (6.3), (MM) and (6.4)
to find, in the case vg > 0,

AC.. (uj; Q2
Upi(vg) > limsup# > limsup |D(® o u;)|(2) (6.5)

j—o0 Jj—o00

> () > Fox(K, E) = Y (vo) ;

and, in the case vg = 0,

Ce; ';Q .
2®(dp) ¢ > limsup ACe, (43 ) > limsup |[D(® o u;)|(2) > p(2) > 2P(dp) L. (6.6)

Jj—00 Jj—00

From (6.5) and (6.6) we find

]i}rgo (U]7€]75])

\Ilbk(v())7 if Vg > 07
28(0) ¢, ifwy=0,

thus proving conclusions (ii) and (iii), as well as, looking back at (MM),

i [, (V8 9l = W) <o,

from which conclusion (iv) follows immediately.

Proof of conclusion (i): Since the validity of the Euler-Lagrange equation in inner variation
form is immediate from Lemma 4.5-(i), it is really a matter of proving that for every
positive 7y there is a positive 71 (depending on the data of the problem) such that Y(v, ¢, d)
admits a minimizer for every (v,e,0) € SFR(79,71). We shall actually prove that for
every such (v,¢,d), every minimizing sequence of Y (v,e,d) converge (modulo extracting
subsequences) to a minimizer. To do this, after a rescaling that sets diam W = 1, we argue
by contradiction. This means assuming that there are a sequence {(vj,¢;,9;)}; satisfying
(6.1) and (6.2), and, for each j, a minimizing sequence {uf}k for Y(vj;,e5,0;), such that,
up to extracting a diagonal subsequence, for each j there is ug-) € I/Vli)f (€2;[0,1]) such that
u? — ug-) in LllOC

Now, by Theorem 3.2 and Theorem 3.4, we know that
{(ug)* >t} is C-spanning W for every ¢ € (1/2,0;), (6.7)
for every j, while by lower semicontinuity of the Allen—Cahn energy we have

AC., (u(])-; )

(Q) as k — oo, but, for no index j, ug-) is a minimizer of Y(vj,e;,0;).

T(vj,ej,éj) 2 9 s V] (68)
Therefore the only possibility for ug-) not to be a minimizer of Y (v;,€;,d;) is that
Vi = = V(u} Q) >0, Vi (6.9)

We shall conclude the proof of the theorem by exploiting (6.9) to identify a subsequence
{j (i) }ien such that, for every i large enough,

k
lim ACe,) (uj(z'))
thus obtaining the desired contradiction.

The idea behind the proof of (6.10) under (6.9) is to “bring back from infinity” the
lost volume v;?" in the form of a “half-bubble” that touches the wire frame, and then
to exploit the fact that the isoperimetric profile of half-spaces is strictly less than the
isoperimetric profile of R**!1. There are several issues that must be addressed to make
this approach work. First is the fact that we do not yet know that the sharp interface

limit is a good approximation for the behavior of the escaping volume at infinity, since

> Y (V55 €5(i)s 95(3)) » (6.10)
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the sharp interface problem is, roughly speaking, closely describing the escaping volume
only if €;/ (v;-’o)l/ (n+1) 5 0. Second, unlike sharp interface problems, in which escaping
volumes can be “brought back” and placed somewhere that does not disturb the rest of
the configuration, Allen-Cahn minimizers will always have interacting tails. Without the
regularity of minimizers (or even of limits of minimizing sequences), controlling these tail
interactions will require care. Last but not least is the fact that the energy corresponding
to a volume escaping at infinity corresponds to a lower order energy term whose presence
does not contradict the leading order convergence of Y (vj,€5,6;) to, respectively, Wy (vo)
or to 2®(dp) £. Any sort of analysis leading to the existence of minimizers must therefore be
fine enough to detect vanishingly small inefficiencies in minimizing sequences with escaping
volumes.

We divide the argument into steps. In step one, we sharply improve (6.8) to (6.11)
and establish minimality and criticality properties of ug-). In step two, we conclude the
contradiction in the case when vy > 0 by using Theorem 1.1-(iii). Step three deals with
the case vg = 0, and it is in this case that the difficulties described in the previous
paragraph are carefully addressed.

Step one: Denoting by (; a radial minimizer with maximum at the origin for the diffused
Euclidean isoperimetric problem @(V;O,Ej) and by A; the Lagrange multiplier of (j;, so
that 25? A = W'(¢) —e; Aj V'(¢;) on R™L (see Appendix A), we claim that,

T(’Uj,Ej, 5]) = (.ACE(ug), Q)/Z) + @(V;?O,Ej), (6.11)

ug is a minimizer of Y (v; — v3°,€;,d;), (6.12)

for every j, where ug-) satisfies (1.13) with A = A;, that is

W (u?
/Q (sj Vul)? + %)divX —2¢;Vud - VX[Val] = A, /QV(ug?)divX, (6.13)
J

whenever X € C°(R" 1 R" ) with X - vg = 0 on 99Q.

Indeed, we can prove the <-part of (6.11) by constructing a competitor for Y (v;,e;,d;)
obtained as a slight modification via Lemma 4.5-(ii) of the Ansatz x — u(;(a:) +(j(x—ke)
(e € S™, k large). The matching lower bound is obtained by applying Lemma 6.1 to the
minimizing sequence {u;‘/’ i of Y(vj,€4,65) (notice that the lemma is applied here “at fixed
£”). Having proved (6.11), we notice that, again by the construction of Theorem 4.3,

T (vj,e5,05) < Y(v; —vi°,€5,05) + OV, €5) . (6.14)

This inequality, combined with (6.11), implies (6.12). By (6.12), (6.13) holds indeed with
some Lagrange multiplier A;: the fact that A\; = A; thus follows by a standard first
variation argument (it they were different, we could violate (6.11)).

Step two: We conclude the proof in the case when vg > 0. Indeed, up to extracting a further
subsequence there is v{°® € [0, vo] such that vi® — vg® as j — oo. Since V(u?; Q) =v; —
v — o —vg© and (thanks to (6.3)) sup; AC; (ug; Q) < o0, up to extracting subsequences
we can apply Theorem 3.4 to conclude the existence of (K, E) € Kp such that ug — 1gin
L}, (), KUEY is C-spanning W, |E| < vy —v§°, and liminf; AC. (u};Q)/2 > Fp(K, E)
(when exploiting (3.19), recall that in the present argument vg > 0 implies §; — 17). We

can actually improve on this lower bound by using Lemma 6.1, thus concluding that
AC.. (u9; 0
lim inf 763( 55
j—00

> Fp(K, E) + (n+ Vw1 (v — vg° — |E))" Y. (6.15)
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By (6.3), (6.11), (6.15), the continuity of © (see Theorem A.1-(ii)), and the concavity of
the Euclidean isoperimetric profile, we find that

Wg(vg) > limsup Y (vj,e;,d;) = liminf (AC., (ug;Q)/2) +O(v;%, &)

Jj—00
> Fp(K,E) +(n+1) wi{i_(?"rl) {(VSO)n/(n—i-l) + (UO - V8° . ‘E|)n/(n+1)}

> Fp(K, E) + (n+ 1) w7 2 (v — B0 (6.16)

Now, thanks to Theorem 1.1-(iii), no minimizing sequence in ¥p(vy) can lose volume at
infinity. Therefore (6.16) implies that |E| = vp and v§° = 0.

We can use the latter information to obtain a contradiction by arguing as follows. Since
|E| = vg > 0 implies that 1g is not constant in  and ug-) — 1 in L] (©), by Lemma
4.5-(ii) and V(ug;Q) = v; — vo we can find diffeomorphisms f; : € — € such that
V(ug-) o f;;) = v; and

[AC:, (uf © f1:2) — ACe, (u; )] < Co ACe, (u; ) [V(uf: Q) — v < O e,
where Cy depends on ) and E as in Lemma 4.5-(ii), and C' = Cp sup; AC., (u(;; 2). Since
the homotopic spanning constraint is preserved under composition with a diffeomorphism
of Q, we find that u(; o fj is a competitor in Y (vj,e5,0;), so that
27 (vj,€4,65) §AC5j(u§-);Q)—|—CV;?°; (6.17)
at the same time, by (6.11), we have

27 (v),2;,6;) = ACe, (% Q) + 20(v¥, ;) > AC., (ul5 Q) + 2 (n + 1w+ (voo)n/ (4D
(6.18)

where the combination of (6.17) and (6.18) leads to a contradiction since v3° — 0.

Step three: We are now left to consider the case when vg = 0. Thanks to (6.12), (6.11),
vo =0, and (6.1), {ug}j is a sequence of minimizers for Y(v;,¢;,d;) for some
vji=v; — v € (0,v5)
such that AC., (ug;Q) < Y(vj,ej,0;), vj = 0T, and €;/v; — 0. Therefore, by Theorem
5.1 and taking (6.13) into account, we have that
lim €j Aj = 0, (619)

Jj—00
as well as that (compare with (5.6))
0
ace (u?
20 (dp) H"L K = w*lim |V(®oul)| L' L Q = w*lim ace; (17)
j—o0

Jj—00

LN, (6.20)

where K is a minimizer of /.

Recalling that ¢; is a minimizer in ©(v3°, €;) and that A; = A((;), by (A.4) (see Theorem
A.1-(iii)) we have that
c(n, W)

>
Aj > T (6.21)
This inequality, combined with (6.19), gives in particular
lim —— 2 =. (6.22)

j—00 (v;?o)l/(”""l)

Hence, for j large enough, we have ¢; < oq (2 v}’o)l/(”*l) for o9 = og(n,W) > 0 as in
Theorem A.1-(iv). Setting o; = ¢;/(2 Vjo-o)l/(”ﬂ), and recalling that (,. denotes the
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unique modulo translations radially symmetric decreasing minimizer of ©(v,e) when € <
oo v () et us now consider that

C2v;?°,a]- (x) — Cl,cr]- (33/(2 V]QO)l/(n+l)) , Vo € R ’

where we have set 7;(z) = x/(2 V?O)l/(”ﬂ) (z € R™"1); denoting by B, the unit volume
ball with center at the origin, the fact that o; — 0 guarantees that

Jm —_— ICLo; = 1By =0, ;= max {V(Clv"a‘; Bsr(m)ﬂ“%(@ﬂj;Bgﬂn))} -0
Hence, by Lemma 4.5, there exist 1y > 0 such that for every j large enough and every
In| < no there is a radially symmetric diffeomorphism f}' : Byyiy — Bapmy with {f] #
id} CcC BQr(n) and

V(Cl,aj © f]’7) = V(Cl,crj) +n= 1+ m,

|'ACUJ‘ (Cl,Uj o f]n) - 'ACUj (CL%‘)‘ < C(n) @(17 Uj) ‘77| :
By radial symmetry of (1., o f;? and (1,4;, if we set H = {xn41 > 0}, then, for every
In| < mo and j large enough,

1
V(Cro; 0 fiH) = > tm
ACo,(Croy o {3 H) < (1+C(n) |n]) ©(L, ) .
Then the functions C;? = (1,0, © f]’.7 o 7; satisfy

V( :,H) =2V V(G0 © ]’7,H) = v +nv;,
AC., (15 H) = (v ) AC, (15 H) < (14 C(n) i) ©(2vEF, ;)
At the same time, by (6.22) we can use (A.5) to find
. @(2 v;.’o’gj)
tim -0
j—o0 @(Vj ,Ej)

so that there are #(n) € (0,1) and Jy € N such that

= on/(nH1) (6.23)

@(ZVJO»O,EJ') <1 O(v® S
— < (1 B) OV e), Y 2,
and, in summary,
AC., (¢ H) .
% < (1= B8(n) +Cn)nl) ©(v,e5),  Vi>jo.Inl <mo- (6.24)

We next notice that, by the smoothness of W and up to a rigid motion that takes 0 € OW
and vw(0) = e,4+1, we can find positive constant C' and r’ depending on W such that

H'(HAQ)NOB,) < Cr™ . vr<y/, (6.25)
where x = (2/, 2,,,1) € R"*! = R" x R. Therefore, if we set for brevity
rj = (V;?O)l/(”ﬂ) 27r(n)
them,, up to increase the value of Jy so to have r; < r’ when j > Jp, and noticing that

ace; (C]n) is a radial function, by (1,5, = (1,0, © f;? on BST(H) and by definition of ~;,

‘Acaj( 7:Q) — AC ( ?;H)‘ < /(QAH)OBT]. ace, ((f) + 2 AC, (¢} By,)

= / " HM(QAH) N OB,) ace, (¢ dr +2 (Vi) ") AC (Cro; © 1] B )
0
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{H”((QAH) NoB,)

<
P AT H(HNOB,)

O<T<Tj
<C(n,W)r; (v ej) + 2 (VJO-O)”/(”H) ¥ = onw (quo)n/(n+1) ‘

where in the last two inequalities we have used, in the order, by (6.25), (6.24), (A.5), and
v; — 0. By combining this inequality with (6.24) we thus conclude that

ACe, (5 9)

fAC, (¢ H) +2(v52)/ D o

< (1= B() +C) ) O, 25) + o (vi7) /Y, (6.26)

(where we recall that @(VJO»O,E]')/(VJO»O)"/(”+1) — ¢(n) > 0 as j — oo by (A.5).) By an
identical argument we also find that

V( ]7-7; 0) = (1 + 77) v;?o + On,W(VJO»O) .

In summary, we can claim the existence of Jy € N and 7y > 0 such that for each x € OW
we can find (f’n with the properties that

V(™ By, (2)9) = 0w (V). ACCT By, (2)°) = o (v0) Y (6.27)

V(™ Q) = (1+n) v§© +onw (v°) (6.28)

Acsj(gg‘ﬂm;Q) ~ sovn/(n

+ < (1 — B(n) +C(n) |77|) O(v§, &) + onw (V) /orl) (6.29)
where 7; = (V;?O)l/(”ﬂ) 2r(n).

The final step in the construction is making a choice of x = z; € OW such that the
interaction between (f’n and ué in minimized. We claim that indeed x; € OW can be
found such that '

V(ug; QN By, () = o(v5e). (6.30)
We now show, first, how to derive a contradiction from (6.27), (6.28), (6.29), and (6.30);
and, finally, how to prove (6.30). In this way the proof of the theorem will be complete.

Derivation of a contradiction from (6.27), (6.28), (6.29), and (6.30): Let us consider the
functions
i T, .
h;?:ma‘x{u‘(j)agjjn}7 ]2J07‘TI|<7]O
Since h;? > ) on €, we have that {(h?)* >t} is C-spanning W for every ¢ € [1/2,4;). We
claim that we can find |n;| < 7y such that

V(h};Q) = vj, lim 7, = 0. (6.31)
J—00

We start noticing that by (6.27), (6.30), V(u{)) < V(ij’n) on {u{) < C;-Cj’n}, and V(u{)) >

V(C;.cj’n) on {ué > C;cj’n}, we find that
V(R1;Q) = V(ul; Q) + V(7" Q) + o(v0).

Therefore, by (6.28), and recalling that, by definition V(ug-); Q) =v; — v3°, we find that

V(h];Q) = v +nv5® +o(v5®). (6.32)
In particular, up to increase the value of Jy, if j > Jy we have V(h?o/ 2;(2) > v; and
V(hj_noﬂ; Q) < v;. By continuity of (|| < no/2) — V(h?; Q) we find |n;| < no/2 such that
V(h?j ;2) = v;. Plugging this information back into (6.32) we find that n; — 0 as j — occ.
To derive a contradiction we notice that, being h;?j admissible in Y (v;,€;,9;), by (6.11)
and (6.29)
AC(u; ) +20(v,g;5) = 2 (vj,¢5,05) < ACe; (h); Q)
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= ACe, (ufi AN {uf > (7} + AC, (7520 {7 > u})

< AC.; (uf; Q) + AC., (75 90)

< AC, (13 @) +2 (1= B(n) + C(n) Iny|) OV, &) + 0w (vi) "V
which leads to a contradiction with 5(n) € (0,1) as soon as j is large enough.

Proof of (6.30): We finally prove the existence of x; € OW such that (6.30) holds. To
this end, we recall the validity of (6.20), where K is a minimizer of /. By exploiting this
minimality property as done in [KMS22a, Proof of Theorem 1.4, Step 6], we see that K
does not concentrate area near W, that is

H™(K N {z: dist(z,0W) <r}) < Cr, Vr >0, (6.33)

with some C' depending on K. Moreover, as shown for example in [KMS22a, Appendix
BJ,

H"(K N By(x)) > cor" Vrxec(K), re(0,rg). (6.34)
By combining (6.33) and (6.34) we see that K is not “wetting” the whole OW, that is
(OW)\ cl(K) # 2. (6.35)

In particular, there are oy € OW and ro > 0 such that cl B,,(zg) N K = &, so that, by
(6.20), and taking also into account that ug-) — 0in L{ (2), we find

loc

lim AC., (u}; By, (z0) N2) =0. (6.36)
j—00

Correspondingly to x(, and up to decreasing the value of rg, we can find a cube @ C R™ and
an embedding g of Q x [0, 7¢) into QN B, (7o) so that g embeds Q x {0} into (9Q)N B, (o)
and ¢ is arbitrarily C'-close to an isometry, in such a way that if @’ is a cube contained
in @ with side length 2 s and center z, then

QN Bs(g(2)) € 9(Q" x (0,5)). (6.37)

If j is large enough, then we can find a partition F; = {Q;‘:}iv:({) of @ into subcubes of
sidelength s; > r; for some s; and NN; satisfying

s; = OVl Ny = O(vee) T/t (6.38)
The subfamily G; defined by

) Ac€j( QQBro( )09)1/2
gj = {Q? HAC; (u; 9(Q5 % (0,57))) < . N(jfo }

is of course such that

#G;

0<1— NG) < AC., (uY; By (20) N Q)2 (6.39)
and by (6.36) and (6.38) we have
AC., (ud; g(QF % (0,5))) = o(ve) " | vk eg;. (6.40)

We now claim that, for every j large enough, there is Q?(j e G; such that
. (i
V(g g(@QFY) % (0,57))) = o(v) (6.41)

Denoting by z; the center of Qf(j) and setting x; = ¢(z;), and by applying (6.37) with
s = s; > rj, we conclude that

V(e 20 By () < V(i 9(Q5) x (0,57))) = 0(v5°) ,
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and complete the proof of (6.30). To prove (6.41), we argue by contradiction. Should
(6.41) fail, then, up to extracting a subsequence in j and for some constant ¢y > 0, we
would have that

V(uf; g(Q% x (0,5))) > cosi™ . vQFeg;, (6.42)

j 9
so that, for some ¢; € (0,1),

cls][ Vidog), VQied;.
Q?X(O,S]')

Since V (u}, o g) takes values in [0,1] we find that
c ; c
SR x 0.5 = [{s) €@ x(0,5)): Vg og) = T

2
H({ve Qb s V() ) 2 3} 5,

IN

that is, for some ¢ € (0, 1) and recalling that V' is strictly increasing on (0, 1),

H'(@Q) < ({ye Qf s sup (W) (900, ) = cf), VR €.

(073]')

Adding up over all the cubes in G;, and recalling (6.39) and that F; is a partition of @,
we thus conclude (up to further decrease the value of ¢) that

w({veQ: s () () 2 o}) 2 M@, Vi (6.43)

However, by (6.36), (MM), Fubini’s theorem, the area formula, and the slicing theory for
Sobolev functions (see, e.g. [EG92, Section 4.9.2]), there is a set Z C @ with full H"-

measure in () such that, for every y € Z, (u{))*(g(y, -)) is absolutely continuous on (0,79),
(ud)*(g(y,-)) — 0 H'-a.e. on (0,79) as j — oo (recall indeed that V(u); ) — 0), and

. . Jyx
2 / IV[® o (u})]|dH' < / iV (ud)* | + Wiluy)") dH' = 0.
9({y}x(0,r0)) 9({y}x(0,r0)) €
In particular, we find that

lim sup (u))*(g(y,")) =0, VyeZ,

Jj—00 (0,r0)

and obtain a contradiction with (6.43). O

7. EULER-LAGRANGE EQUATION AND REGULARITY (PROOF OF THEOREM 1.3)

We finally prove Theorem 1.3 and Proposition 1.4.
Proof of Theorem 1.3. By Theorem 1.2.(i), there is A\ € R such that

/Q (€|Vu|2 + @)div)( —2eVu - VX[Vu| = A /Qv(u) div X , (7.1)

whenever X € C°(Q; R™1); also, (7.1) extends to X € C}(Q;R™"1) by density.
Step one: We claim that if ¢ € C1(Q2) and h € Lip,([0,1)) with ¢ > 0 and h > 0, then

0< /ngh'(u) IVul|? 4+ h(u) Vu - Vo + ¢ h(u) F(u), (7.2)
where
Ft) = i {Wg(t) avem), tel.
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To prove this, we start by noticing that there is o9 > 0 small enough (depending on h and
) such that, if o € [0,00), then

Uy = u + o h(u) ¢ takes values in [0, 1].

Since u, > u implies that {u} > t} is C-spanning W for every ¢ € (1/2,6), in order to
make u, admissible in Y (v,¢e,d) we just need to compose with a diffeomorphism in order
to restore the volume constraint. To this end, given X € C°(Q; R"™!) with

/ V(u)div X =1, (7.3)
Q

let 79 > 0 be small enough so that, defining ® € C*((—79,70) x ;R*"™1) by &(r,2) =
O (x) = z+7 X(x), we have that @, is a diffeomorphism of Q for every |7| < 79. Denoting
by W, the inverse of ®,, and letting g(o,7) = V(ug o \IIT), we observe that ¢(0,0) = v
with 9-¢(0,0) = [, V(u)div X =1 by (7.3). Therefore, by the implicit function theorem,
up to decreasing the value of o(, we can find m(o) with m(0) = 0, |m(o)| < 70, and
g(o,m(o)) = v for every o € [0,00) — in particular, differentiating g(c,m(c)) = v and
recalling (7.3), we find

0=m'(0) + /Q h(u) o V'(u). (7.4)

Since vy = Uy © ¥y (o) is admissible in Y (v,¢,d) for every o € [0,00), the minimality of
U = us=o in YT(v,¢,d) implies that f(c) = AC.(us © ¥,,()) has a minimum on [0, 09) at
o = 0. By combining f’(0) > 0 with (7.4), (7.1) and (7.3) we thus find

0 < m’(O)/Q{€|Vu|2—I—@}divX—QVu-VX[Vu]

—I-/QQz—:Vu-V[h(u)go] —I—@h(u)@
= —)\/Qh(u)go‘/'(u)—i—/QQEgoh’(u)WuP+2€h(u)Vu-Vg0+W/E(u) h(u) @,

that is (7.2) by definition of F.(t).
Step two: We prove that
26 Au < W'(u) —AeV'(u) as distributions on Q. (7.5)

Indeed, let {hy}r C CL(]0,1)) be a sequence such that 0 < hg(t) < hyy1(t) — 1 for every
t € [0,1) and such that A} < 0 on [0,1). Then for any ¢ € C(2;[0,00)), we have
oh) (u)|Vul? < 0. Therefore, letting k — oo and applying (7.2) we can deduce

0< [ VeVu-tpRla) Ve ClS:[.0x)
QN{u<1}
by means of the dominated convergence theorem. Since F.(1) = 0 and Vu = 0 a.e. on

{u =1}, we immediately deduce (7.5).
Step three: We prove that, if o € Q and ro = dist(zg, 992), then the function

g(r) = e §(r),  where ¢<r>=][ w,  k=sup|F,
By (o) [0,1]

is decreasing on (0,71) where r1 = min{rg, 2}. Indeed, assuming without loss of generality
that xop = 0 and testing (7.5) with a sequence {¢x} C C(Q;[0,00)) such that ¢g(x) —
[(r? — |z|?)/2]+ uniformly and Ve, — V[(r? — |2|?)/2]+ in L? yields

2 |2 2
/xVug/B%\Fé(uﬂgk%/ w, Vr <ro, (7.6)

T
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where we have used F/(0) = 0 and the fundamental theorem of calculus to bound |F/(u)| <
ku. Now, for a.e. r € (0,79) we have that

T

$0) = - Vulry)dy = f (o Vula) da. (7.7)

By combining (7.6) with (7.7) and using 1 < 2 we find ¢/(¢) < k ¢(r) for a.e. 7 <7y and
conclude.

Step four: We prove that u is (Lebesgue equivalent to) a lower semicontinuous function
on 2. Indeed, by step three, we can define @ : Q — [0, 1] by setting

(x) = lim e_kT][ u, x e .
Br(x)

r—0t

Denoting by @ this limit, we have 4 = u a.e. on ) by the Lebesgue points theorem. We
conclude by proving that « is lower semicontinuous: indeed, if z; — = € Q as j — oo,
then

e kT ][ u= lim e *" ][ w < liminf a(z;),
Br(z) I7reo Br(z) J7reo
where we have used e *" JCBT(:cj) u < 4(z;) for every r < min{2, dist(z;,02)}. The con-
clusion follows by letting r» — 0.

Step five: We prove that for every Q' connected component of 2, either u = 0 on Q' or
u > 0 on €; and that, if § < 1, then u < 1 on Q.

To prove the first assertion we notice that the lower semicontinuity and the non-
negativity of u imply that {u = 0} is relatively closed in Q. At the same time, if
x € {u = 0}, then by step three 0 = u(z) > e *" fBr(x)u > 0 implies that u = 0 on
B, (x) for every r < min{dist(z, d12),2}; in particular, {u = 0} is open. Since {u = 0} is
both open and relatively closed in 2, we conclude that © =0 on €’ or v > 0 on ' for any
given connected component of 2.

Next, we show that if § < 1, then {u > §} is open and
1
2eAu = EW,(U) — AV'(u), as distributions on {u > §}. (7.8)

By a standard application of the strong maximum principle [MR22, Theorem 6.2], (7.8)
allows us to show that u < 1 on Q if § < 1, finishing the proof of Theorem 1.3.(iii). We
first notice that {u > ¢} is open by step four. To prove (7.8), the inequality (7.5) reduces
our task to showing that for every B, (x) CC {u > ¢} and every ¢ € C°(B,(x);[0,00)),

OE/VU-ch—i-goFe’(u). (7.9)
Q

And indeed, by lower semicontinuity of u, there is do > 0 such that u > §+dg on cl (B, (z)).
In particular, for every ¢ € C°(B,(x)) with ¢ > 0 there is og > 0 such that, for every
o € (0,00], us = u — o ¢ takes values in (6, 1] on B,(z), and agrees with u on 2\ B,(z).
It is therefore immediate to check that {u} >t} = {u* > t} for every t € (1/2,0), so that
{u’ >t} is C-spanning W for every t € (1/2,5). We can then repeat the volume-fixing
argument of step one and prove (7.9), as desired.

Step siz: We claim that for every ¢ € C1(2) and h € Lip,([0,1] \ {d}), it holds

0= /ngh'(u) |Vaul? + h(w) Vu - Vo + o h(u) FL(u). (7.10)
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By virtue of step 5, we can assume without loss of generality that ¢ is supported in a con-
nected component of Q2 where u > 0. Since u is lower semicontinuous, then inf u > 0.
So, for oy small enough, if |o| < oy then

supp(g)

Uy =u+oh(u)p takes values in [0, 1].

We wish to test the minimality of u against u,, which requires verifying the spanning
condition and then fixing volumes and testing as in step one. Regarding the spanning
condition, if § = 1, then h € Lip,([0,9")) for some ¢’ < §, and so {u > v} = {u, > v}
for v € [¢',1] and small enough o, implying that {u} > ¢} is C-spanning W for every
te(1/2,6). If 6 < 1, then (6 —n,6 +n) C supp(h)¢ for some n > 0, and so again for small
enough 7 depending on o we find that {u > v} = {uy >~} for 6 —n/2 <~ <d+n/2. So
we can repeat the volume-fixing argument of step one to obtain (7.10).

Step seven: We finally show that w satisfies (1.16). By the coarea formula and since
u € WH3(Q), Ll-ae. ty € (0,8) is a Lebesgue point of t — f{u:t} |Vu|ldH™. For such a
value of £, let us consider the functions

1, r€[0,tg —27%],
hk(T) = Qk(to — 7“), r e [to — Z_k,to],
0, re Ho,ll

By plugging hy into (7.10), taking k — oo, and using the coarea formula, we deduce

/ |Vul o dH" :/ Vu-Vo+ pF.l(u).
{u=to}

{u<to}

Integrating between 0 and ¢, using the coarea formula and Fubini’s theorem, we find

4
/ Vul?o = / dt / Vu- Vo + oF.(u)
{u<d} 0 {u<t}
- / (6 —u) (vu.w+<pF;(u)). (7.11)
{u<d}

By analogous reasoning, we deduce

—/ |Vul o dH" :/ Vu-Vo+ pF.(u)
{u:to} {U>t0}

for a.e. ty € (6,1) and thus

/ |Vu|? p = / (6 —u) (Vu -V + goFE’(u)) : (7.12)

{u>d} {u>d}

By combining (7.11) and (7.12), we obtain (1.16), and complete the proof of the theorem.
O

We finally prove Proposition 1.4.

Proof of Proposition 1.4. To prove statement (i), let us assume that u is continuous in Q.
This implies that {u = 6} is closed, and we can thus proceed as in step five to deduce that

Au = F.(u) on {u #d}. (7.13)

Since W € C%1(0,1] implies V' € C?Y™[0,1] with v(n) = min{1,2/n} (see [MR22, Ap-
pendix 3]), we have F/ € C'(™[0,1]. The continuity of u implies that Au is continuous
on {u # ¢}, hence that u € Cllog({u # 0}) for every a < 1. Hence F!(u) € C’llog({u #0d})

for every av < y(n), and thus u € Cif({u # 0}) for every a < 7y(n), as claimed.
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Since statement (iii) follows easily from statement (i), we give a detailed proof of
the latter only. We employ an argument similar to [ACF84, Theorem 2.4]. Given X €
C2(Q;R"1) Tet us set

YV ={|Vu? +2F.(u)} X — 2(X - Vu) Vu.

In this way Y € C'({u # §}; R"™!), and by direct computation we find that, on {u # &},
divy = {|Vu?+2F.(u)}div X —2Vu-VX[Vu] +2(X - Vu) (F(u) — Au)

= {|Vu’ + 2 F.(u)} div X — 2Vu - VX[Vu], (7.14)

where in the second identity we have used (7.13). Now, let us set

LIX] = {|Vul* + 2 F.(u)} div X —2Vu - VX[Vu],
so that, thanks to Vu = 0 £""-a.e. on {u = §}, we have

LIX]eLYQ), L[X]=2F.(6)divX  L'-ae. on {u=7}. (7.15)

If we set Sy = {u>0+t}U{u<d—t}, t>0,then, by the inner variation critical point
condition (7.1), which gives [, L[X] =0, and by divY = L[X] on {u # d}, we find

/ divy = [ £[X]= —/ £[x]
St St {\u—5|<t}

where, by (7.15),
lim L[X]dcm T = /
t=0% J{|u—d|<t} {u=0}
We now write Y = Y7 + Y, with
Vi =|Vu? X —2(X -Vu)Vu, Yo=2F.(u)X.
Since u € W12(Q) and X € C°(9) it turns out that Yo € Whi(Q; R 1) with

L[X]dL™ =2 F.(5) / div X dc"
{u=3}

lim div Y2 = / div Y2 =0.
St Q

t—0t+
We have thus proved that
lim [ divY; =2F.(0) / div X dcn (7.16)
t—=0t+ /g, {u=6}

where we are stressing that the integral over {u = 0} is respect with the Lebesgue measure.
Now, for a.e. t > 0, we have that S; is a set of finite perimeter in Q, with 9*S; = 0*{u >
d+t}Ud{u<d—t}and

vs, = —|§—Z| , H™-a.e. on O*{u > +1t},
Vs, = |g—uu| ; H"-a.e. on O*{u < —t},
and thus
S, orfucoi—ty VUl Joqussry [Vl
= —/ (X-Vu)\VuH—/ (X - Vu) |Vul.
9 fu<s—t} O {u>6+t)
By (7.16), if we assume that |[{u = 0}| = 0, we conclude that
lim (X - Vu) |Vu| — / (X -Vu)|Vu| =0, (7.17)
t=0% Jo* {u<s—t} 0 {u>d+t}
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with the limit taken with ¢ such that S; has finite perimeter. This is (1.17), and the proof
of the proposition is complete. ]

APPENDIX A. THE DIFFUSED INTERFACE EUCLIDEAN ISOPERIMETRIC PROBLEM
In this appendix we collect some important properties of the diffused interface Euclidean
isoperimetric problem considered in [MR22], i.e
AC.(u
O(v,e) := inf {% :V(u) = v} , (A1)

(where V(u) = V(u; R" ™) and AC.(u) = AC.(u; R™*1)), including the uniqueness of min-
imizers and the characterization of minimizers as the only critical points in the “geometric
regime” where £ < v/ which is one the main results proved in [MR22].

Theorem A.1. If W € C*'(0,1] satisfies (1.9) and (1.10), then the following holds:

(i): for every v and € positive, there exists a radial decreasing symmetric minimizer ¢ of
O(v,e) such that ¢ € CEO’S(R"H; (0,1)) for some a € (0,1);

(ii): © is continuous on (0,00) x (0,00) with O(v,e) = r" O(v/r" Tt e/r) for every r > 0;
moreover, for every e > 0, the function v > 0~ O(v,¢e)/v is strictly decreasing;

(iii): of ¢ is a minimizer of ©(v,¢), then there exists A(() € R such that for all X €
Ocoo (Rn-l-l; Rn—i—l)

/ ace(¢)divX —2eV( - VXIV(] = A(Q) / V(()divX, (A.2)
Rn+1 Rn+1
as well as
2e2AC=W'(C) —eAOV'(C), on R, (A.3)
Moreover, for some positive constant ¢ = c¢(n, W), we have
AQ) 2 iy (A4)

(iv): there is o9 = oo(n, W) > 0 such that if 0 < & < ogv™ 1) then there is a unique
modulo translation radial decreasing symmetric minimizer ¢, . of ©(v,e) with maximum
at the origin, which satisfies

_ . n/(n+1) 1/(n+1) <
O(v,e) =v {(n—i— Dw,ly +O"v”’(vl/(n+1))}’ (A.5)
as e/vt/ () 0.

Proof. 1t is convenient to notice that by (1.9) there are 8y € (0,1) and ¢y > 0 (depending
on W) such that

— >W(t) > cot?, >tV'(t)  Vte(0,5). (A.6)

Step one: We prove the existence of ¢ = ¢(n, W) such that, if u is a competitor of ©(v,¢)
and (3 € (0, 5p), then

AC.(u; A) S _¢
V(u; A) — ep2/n’
Indeed, by (A.6), if A C {0 < u < 8} for some 8 € (0, ), then

22 [Ww=2 [ e,

while V (t) = (fy VW) +D/m < 02 0/m (¢ < By) implies V(u; A) < C 2" [, u?

VAC{0<u<§B}. (A7)

55



Step two: We prove’ conclusion (i). By the Pélya-Szegé inequality [BZ88] we can consider

a minimizing sequence {u;}; of O(v,¢) such that each w; is radial decreasing symmetric
with respect to the origin. Up to extracting subsequences we can assume that u; — ¢ in
LIIOC(R”H), where ( is radial decreasing symmetric with respect to the origin and such that
AC.(¢) <20(v,e). We prove that V(() = v, and thus that ¢ is a minimizer of ©(v, ), by
showing that
lim sup V(uj; R\ Bg) =0. (A.8)
R—oo 5
To prove (A.8), let us set u;(x) = g;(|x|) and {(x) = g(]z|), and notice that, since g; — g
a.e. on (0,00) with g; and g decreasing on (0,00) and g(R) — 0 as R — oo, it holds
that sup; g;(R) — 0 as R — oo. In particular, for every R large enough to ensure
sup; gj(R) < Bo we can apply (A.7) to conclude that
(R 2/n
Viug: R\ Bg) < ST e ).
€o i
which implies (A.8) thanks (again) to sup; g;(R) — 0 as R — oo. The fact that ¢ €

CE*(R™;(0,1)) for some a € (0,1) is proved as in [MR22, Proof of Theorem 2.1, Step

loc
four].

Step three: We prove conclusion (ii). Since the scaling property and the continuity of ©
can be proved as in [MR22, Appendix A] and [MR22, Step 3, Proof of Theorem 2.1], we
focus on showing that, for ¢ > 0 fixed, v — O(v,e)/v is strictly decreasing on (0, c0).
Indeed, by Fubini’s theorem, if ¢ is a minimizer for ©(v,¢) and we set

20y~ V2 Sz )

Jipi=n V(QdH
then, trivially, ©(v,e) > v infg Z, with equality if and only if Z is constant on R. Since ( is
radial decreasing symmetric, we have 3(t) = supg,,— ¢ — 0 as ¢ — co. Since V(() < oo,
we can find ¢; — oo with f{xlztj} V(¢)dH™ — 0 as j — oo. Correspondingly, 8(¢;) — 0T
and, by (A.7), Z(t;) — 400 as j — oo. In particular, Z is not constant on (0, 00), so that
O(v,e) > v infr Z, i.e., there is ty € R such that

O(v,e) > v Z(ty) . (A.9)

Now, given ¢ > v, if we pick § = (v — v)/(2 f{xlzto} V(()), decompose z = (z1,2') €
R x R® = R"*! and set

€R,

C(t07x/)7 1ft0—5§$1§t0+57
'LL(.’E) = C($1+5,$/), lfxl §t0_5)
C(l‘l —5,1‘/), ifxg >to+9,
then
AC. (u; {|z1 — to] < 6}) =26 Z(to) /{ : V(¢) = Z(to) (v —v), (A.10)
xr1=tg
and, similarly, V(u) = V(¢) + 29 f{xlzto} V(¢) = 0. Since u is admissible in ©(v,¢), by
(A.10) we find, as desired,
O(0,¢) < AC€(~u)/2 - O(v,e) + Z(to) (0 — v) - O(v,¢)

~ = ~ ’

0 0 0 v
where in the last inequality we have used (A.9).

"We notice that the analysis performed in [MR22], which is focused on uniqueness and stability issues,

is limited to the regime where E/vl/("H) is small enough in terms of n and W.
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Step four: The validity of (A.2) is immediate from Lemma 4.5, while (A.3) can be deduced
from (A.2) via integration by parts. To prove (A.4) (and thus complete the proof of
conclusion (iii)) it is enough to show that, for some constant C' = C(n, W), it holds

CAC)v > AC-(C). (A.11)

(Indeed, AC.(¢)/v = O(v,e)/v > ¢(n) v/ thanks to O(v,e) > c(n)v™ ™)) To
prove (A.11) we first notice that testing (A.3) with suitable radial vector fields as done in
[MR22, Equation (2.32)] one finds

(n+DAQY = ndce)+ [ v
> (n—1)AC.(O) + R@ (A12)

Clearly (A.12) implies (A.11) when n > 2, but leaves open the case n = 1; however, it
always ensures that A(¢) > 0. Next, we notice that by testing (A.3) with ¢ = (¢? for
¢r € C°(Biy1;[0,1]) with ¢, = 1 on By, and Lip(¢y) < 2 for every k, and keeping in
mind that V/ > 0 and that A(¢) > 0, we find

2 2 /
25/Rn+1 ¢ [V §25/Rn+1 ¢k<lv<|lv¢k|+/wl A(Q) /meg)g.

Since for k > k(¢) we have ¢ < By on R*™!\ By, and we can thus use (A.6) and the
Cauchy—Schwartz inequality to deduce, for some C' = C(W),

2|V 2 2 W QI ¢
E/]Rn+1 ?xI V(| SOE/{&BO}C —l—/Rn+1 +CAQ)V(Q), (A.13)

W'(¢) € dx N
£

€

where we have used cot V'(t) < t2FD/m < V() /¢q for every t € (0,1) (which, in turns,
easily follows from W (t) > cot? on (0,5y) and W (t) < t?/cy on (0,1)). Finally, by (1.9),
and up to decreasing the value of Sy, we have W’ < 0 on (1 — Sy, 1). Using this fact in
combination with inf(g, g,y W > 0 and t W'(t) < W (t)/co for t € (0, 5)), we see that

/ WO ¢ < / W'(C) ¢ + Lip(W) / ¢
Rnt1 {¢<Bo} {Bo<¢<1—-Bo}

1 Lip(W) (1 — o)
< {—+ W),
B {CO inf(5071_50) w } Rn+1 (C)
and thus conclude from (A.13) that
w
o[ aweze [ e

By letting k£ — oo, by addlng fRnH ({)/e to both sides of this inequality, and by noticing
that (A.12) implies [p.1 W(¢)/e < C(n) A(¢) v for every n > 1, we conclude the proof of
(A.11).

Step five: The outer form of the Euler-Lagrange equation (A.3) follows from Lemma
4.5, and a classical computation (based on integration by parts made possible by the
C%regularity of () allows one to derive (A.2) from (A.3). This completes the proof of
conclusion (iii). Conclusions (iv) is contained in [MR22, Theorem 1.1]. O
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