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PLATEAU BORDERS IN SOAP FILMS
AND GAUSS’ CAPILLARITY THEORY
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ABSTRACT. We provide, in the setting of Gauss’ capillarity theory, a rigorous derivation
of the equilibrium law for the three dimensional structures known as Plateau borders
which arise in “wet” soap films and foams. A key step in our analysis is a complete
measure-theoretic overhaul of the homotopic spanning condition introduced by Harrison
and Pugh in the study of Plateau’s laws for two-dimensional area minimizing surfaces
(“dry” soap films). This new point of view allows us to obtain effective compactness
theorems and energy representation formulae for the homotopic spanning relaxation of
Gauss’ capillarity theory which, in turn, lead to prove sharp regularity properties of
energy minimizers. The equilibrium law for Plateau borders in wet foams is also addressed
as a (simpler) variant of the theory for wet soap films.
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1. INTRODUCTION

1.1. Overview. Equilibrium configurations of soap films and foams are governed, at lead-
ing order, by the balance between surface tension forces and atmospheric pressure. This
balance is expressed by the Laplace—Young law of pressures, according to which such sys-
tems can be decomposed into smooth interfaces with constant mean curvature equal to
the pressure difference across them, and by the Plateau laws, which precisely postulate
which arrangements of smooth interfaces joined together along lines of “singular” points
are stable, and thus observable.

The physics literature identifies two (closely related) classes of soap films and foams,
respectively labeled as “dry” and “wet”. This difference is either marked in terms of the
amount of liquid contained in the soap film/foam [WH99, Section 1.3], or in terms of the
scale at which the soap film/foam is described [CCAET13, Chapter 2, Section 3 and 4].

In the dry case, Plateau laws postulates that (i) interfaces can only meet in three at a
time forming 120-degree angles along lines of “Y-points”; and (ii) lines of Y-points can only



FiGURE 1.1. (a) A Plateau border develops around a “wet” line of Y-points.
The wet region is bounded by interfaces of negative constant mean curvature. The
equilibrium condition which needs to hold across the transition lines (here depicted
in bold) between the negatively curved interfaces of a Plateau border and the
incoming dry interfaces is that these interfaces meet tangentially. In the case of
soap films, where the dry interfaces have zero mean curvature, the jump in the
mean curvature across the transition lines implies a discontinuity in the gradient
of the unit normal. (b) An arrangement of Plateau borders near a tetrahedral
singularity. The transition lines are again depicted in bold. The incoming dry
interfaces are omitted for clarity.

meet in fours at isolated “T-points”, where six interfaces asymptotically form a perfectly
symmetric tetrahedral angle; see, e.g. [WH99, Equilibrium rules A1, A2, page 24].

In the wet case, small but positive amounts of liquid are bounded by negatively curved
interfaces, known as Plateau borders, and arranged near ideal lines of Y-points or isolated
T-points; see Figure 1.1 and [WH99, Fig. 1.8 and Fig. 1.9]. A “third Plateau law” is
then postulated to hold across the transition lines between wet and dry parts of soap
films/foams, and can be formulated as follows:

the unit normal to a soap film/foam changes continuously (1.1)

across the transition lines between wet and dry interfaces;

see, e.g., [WH99, Equilibrium rule B, page 25| and [CCAE"13, Section 4.1.4]. It is im-
portant to recall that Plateau borders play a crucial role in determining the mechani-
cal properties of the many physical and biological systems in which they are observed.
As a sample of older and newer papers discussing Plateau borders, we mention here
[LL65, JP92, BR97, KHS99, LC99, KHS00, GKJ05, SM15]. Postulate (1.1) is assumed in
all these works.

The goal of this paper is answering the natural problem of rigorously deriving the equi-
librium condition for Plateau borders (1.1) in the context of Gauss’ capillarity theory. Since
the case of soap films is much harder and interesting from the mathematical viewpoint,
we will postpone the discussion of foams until the very last section of this introduction.
The main highlight is that, in addressing Plateau borders of soap films, we will develop a
new “theory of spanning” for surfaces of geometric measure theory (GMT) which will find
further applications in the two companion papers [MNR23a, MNR23b]; see the closing of
this overview for more details about these additional applications.

We now give an informal description of our approach. The starting point is [MSS19],
where the idea is introduced of modeling soap films as regions E of positive volume |E| =
v contained in the complement Q = R\ W of a “wire frame” W (n = 2 is the
physical case, although the planar case n = 1 is also quite interesting in applications). We



FIGURE 1.2. Emergence of collapsing along a minimizing sequence {E; }; for the
minimization of H"(Q2 N OF) among sets £ C Q = R**1\ W with |E| = v and
QN OF spanning W, when n = 1 and W is the union of three disks in the plane.
Notice that for this choice of W the minimization of H™(S) among S C Q such
that S is spanning W is solved by three segments meeting at Y-point. Collapsing
is intuitively related to the presence of Y-type and T-type singularities.

associate to E the surface tension energy H"(Q2NOE) (where H" stands for n-dimensional

(Hausdorff) measure, i.e., area when n = 2 and length when n = 1), and minimize
H" (2N OF) under the constraints that |E| = v (for some given v > 0) and
1N OF is spanning W . (1.2)

From the mathematical viewpoint the meaning assigned to (1.2) is, of course, the crux of
the matter. In the informal spirit of this overview, we momentarily leave the concept of
“spanning” only intuitively defined.

As proved in [KMS22a], this minimization process leads to the identification of gener-
alized minimizers in the form of pairs (K, E) with E C Q, |E| = v, and such that

QNOFE C K and K is spanning W . (1.3)
These pairs are minimizing in the sense that
H'(QNOE) +2H™(K \ 0F) < H"(QNOE'), (1.4)
whenever E/ C Q, |E'| = v and QN JE’ is spanning W.

If K = QN OFE, then generalized minimizers are of course minimizers in the proper
sense. If not, the collapsed interface K \ OF is a surface whose positive area has to be
counted with a multiplicity factor 2 (which arises from the asymptotic collapsing along
K \ OF of oppositely oriented boundaries in minimizing sequences {E;};, see Figure 1.2).
We expect collapsing to occur whenever the Plateau problem for W admits one minimizer
S with Plateau-type singularities. Whenever this happens, a wetting conjecture is made:
sequences {(K,,, Ey;)}; of generalized minimizers with |E,,| = v; — 0% as j — oo will be
such that the set of Plateau’s singularities ¥(S) of S is such that sup{dist(z, E,,) : = €
¥(S)} — 0. Thus we expect that Plateau’s singularities are never “left dry” in the small
volume capillarity approximation of the Plateau problem.

A lot of information about generalized minimizers can be extracted from (1.4), and this
is the content of [KMS22a, KMS21, KMS22b]. With reference to the cases when n =1 or
n = 2, one can deduce from (1.4) that if H"(K\OFE) > 0, then K\ OF is a smooth minimal
surface (a union of segments if n = 1) and that OF contains a regular part 0*E that is a
smooth constant mean curvature surface (a union of circular arcs if n = 1) with negative
curvature. This is of course strongly reminiscent of the behavior of Plateau borders, and
invites to analyze the validity of (1.1) in this context. A main obstacle is that, due to
serious technical issues (described in more detail later on) related to how minimality is



expressed in (1.4), it turns out to be very difficult to say much about the “transition line”
OE\ 0*E

between the zero and the negative constant mean curvature interfaces in K, across which
one should check the validity of (1.1). More precisely, all that descends from (1.4) and a
direct application of Allard’s regularity theorem [All72] is that OE\0*E has empty interior
in K. Far from being a line in dimension n = 2, or a discrete set of points when n = 1,
the transition line OF \ 0* F could very well have positive H"-measure and be everywhere
dense in K! With such poor understanding of OF \ 0*E, proving the validity of (1.1) —
that is, the continuity of the unit normals to K \ OF and 0*E in passing across 0F \ 0*E
— is of course out of question.

We overcome these difficulties by performing a major measure-theoretic overhaul of the
Harrison—Pugh homotopic spanning condition [HP16, HP17] used in [MSS19, KMS22a,
KMS21, KMS22b] to give a rigorous meaning to (1.2), and thus to formulate the homotopic
spanning relaxation of Gauss’ capillarity discussed above.

The transformation of this purely topological concept into a measure-theoretic one is
particularly powerful. Its most important consequence for the problem discussed in this
paper is that it allows us to upgrade the partial minimality property (1.4) of (K, E) into
the full minimality property

H QN OE) + 2H" (K \ OE) < H'(QNOE) + 2H" (K’ \ OF') (1.5)

whenever ' C Q, |E'| =v, QN OE’ C K’ and K’ is spanning W. The crucial difference
between (1.4) and (1.5) is that the latter is much more efficient than the former when it
comes to study the regularity of generalized minimizers (K, F), something that is evidently
done by energy comparison with competitors (K’, E’). Such comparisons are immediate
when working with (1.5), but they are actually quite delicate to set up when we only have
(1.4). In the latter case, given a competitor (K’, E), to set up the energy comparison with
(K, E) we first need to find a sequence of non-collapsed competitors {EJ’ }i (with E; C Q,
|E| = v, and QNOE] spanning W) such that H"(QNOLY) — H"(QNOE")+2H" (K'\OE").
Intuitively, E% needs to be a d;-neighborhood of K’ U E’ for some d; — 0" and the energy
approximation property has to be deduced from the theory of Minkowski content. But
applying the theory of Minkowski content to (K’, E') (which is the approach followed, e.g.,
in [KMS22b]) requires (K', E') to satisfy rectifiability and uniform density properties that
substantially restrict the class of available competitors (K', E').

In contrast, once the validity of (1.5) is established, a suitable generalization (Theorem
1.2) of the partition theorem of sets of finite perimeter into indecomposable components
[ACMMO1, Theorem 1] combined with a subtle variational argument (see Figure 1.7)
allows us to show that, in any ball B CC 2 with sufficiently small radius and for some
sufficiently large constant A (both depending just on (K, E)), the connected components
{U;}i of B\ (K U E) satisfy a perturbed area minimizing property of the form

H(BNOU;) < H (BNOV) + A|U;AV (1.6)

with respect to completely arbitrary perturbations V- C B, VAU; CC B. By a classical
theorem of De Giorgi [DG60, Tam84], (1.6) implies (away from a closed singular set of
codimension at least 8, which is thus empty if n < 6) the C1*regularity of BNAU; for each
i, and thus establishes the continuity of the normal stated in (1.1). In fact, locally at each
x on the transition line, K is the union of the graphs of two C'M“-functions u; < us defined
on an n-dimensional disk, having zero mean curvature above the interior of {u; = us}, and
opposite constant mean curvature above {u; < us}. We can thus exploit the regularity
theory for double-membrane free boundary problems devised in [Sil05, FGS15] to deduce



that the transition line E \ 0*E is indeed (n — 1)-dimensional, and to improve the C1:-
regularity of BN aU; to CYl-regularity. Given the mean curvature jump across OF \ 0* E
we have thus established the sharp degree of regularity for minimizers of the homotopic
spanning relaxation of Gauss’ capillarity theory.

The measure-theoretic framework for homotopic spanning conditions laid down in this
paper provides the starting point for additional investigations that would otherwise seem
unaccessible. In two forthcoming companion papers we indeed establish (i) the conver-
gence towards Plateau-type singularities of energy-minimizing diffused interface solutions
of the Allen-Cahn equation [MNR23a], and (ii) some sharp convergence theorems for gen-
eralized minimizers in the homotopic spanning relaxation of Gauss’ capillarity theory in
the vanishing volume limit, including a proof of the above mentioned wetting conjecture
[MNR23b].

The rest of this introduction is devoted to a rigorous formulation of the results pre-
sented in this overview. We begin in Section 1.2 with a review of the Harrison and
Pugh homotopic spanning condition in relation to the classical Plateau problem and to
the foundational work of Almgren and Taylor [Alm76, Tay76]. In Section 1.3 we intro-
duce the new measure-theoretic formulation of homotopic spanning and discuss its re-
lation to the measure-theoretic notion of essential connectedness introduced by Cagnetti,
Colombo, De Philippis and the first-named author in the study of symmetrization inequal-
ities [CCDPM17, CCDPM14]. In Section 1.4 we introduce the bulk and boundary spanning
relaxations of Gauss’ capillarity theory, state a general closure theorem for “generalized
soap films” that applies to both relaxed problems (Theorem 1.4). In Section 1.5 we prove
the existence of generalized soap film minimizers (Theorem 1.5) and their convergence in
energy to solutions to the Plateau problem. A sharp regularity theorem (Theorem 1.6) for
these minimizers, which validates (1.1), is stated in Section 1.6. Finally, in Section 1.7 we
reformulate the above results in the case of foams, see in particular Theorem 1.7.

1.2. Homotopic spanning: from Plateau’s problem to Gauss’ capillarity. The
theories of currents and of sets of finite perimeter, i.e. the basic distributional theories of
surface area at the center of GMT, fall short in the task of modeling Plateau’s laws. Indeed,
two-dimensional area minimizing currents in R? are carried by smooth minimal surfaces,
and thus cannot model Y-type! and T-type singularities. This basic issue motivated the
introduction of Almgren minimal sets as models for soap films in [Alm76]: these are
sets S C R™! that are relatively closed in a given open set  C R and satisfy
H™(S) < H™(f(S)) whenever f: Q — Q is a Lipschitz (not necessarily injective) map with
{f #1id } cc Q. Taylor’s historical result [Tay76] validates the Plateau laws in this context,
by showing that, when? n = 2, Almgren minimal sets are locally C'**-diffeomorphic either
to planes, to Y-cones, or to T-cones.

The issue of proposing and solving a formulation of Plateau’s problem whose minimizers
are Almgren minimal sets, and indeed admit Plateau-type singularities, is quite elusive, as
carefully explained in [Dav14]. In this direction, a major breakthrough has been obtained
by Harrison and Pugh in [HP16] with the introduction of a new spanning condition, which,
following the presentation in [DLGM17a], can be defined as follows:

Definition A (Homotopic spanning (on closed sets)). Given a closed set W C R"*! (the
“wire frame”), a spanning class for W is a family C of smooth embeddings of S! into

Q=R""\W
LCurrents modulo 3 are compatible with Y-type singularities, but not with T-type singularities.

2Similar regularity assertions hold when n = 1 (by elementary methods) and, in much more recent
developments, when n > 3 [CES22].



FIGURE 1.3. The dashed lines denote the embeddings of S! whose homotopy
classes relative to {2 generate different spanning classes C, to which there corre-
spond different minimizers of /.

that is closed under homotopies in €, that is, if ® : [0,1] x St — Q is smooth family of
embeddings ®; = ®(¢,-) : S' — Q with & € C, then ®; € C for every t € (0,1]. A set S,
contained and relatively closed in 2, is said to be C-spanning W if

SNy #a, Vy eC.

Denoting by S(C) the class of sets S C-spanning W, one can correspondingly formulate
the Plateau problem (with homotopic spanning)

(=) :=inf {H"(S): S€S8(C)}. (1.7)

Existence of minimizers of £ holds as soon as £ < oo, and minimizers S of ¢ are Alm-
gren minimal sets in @ [HP16, DLGM17a] that are indeed going to exhibit Plateau-type
singularities (this is easily seen in the plane, but see also [BM21] for a higher dimensional
example). Moreover, given a same W, different choices of C are possible and can lead
to different minimizers, see Figure 1.3. Finally, the approach is robust enough to pro-
vide the starting point for several important extensions [DPDRG16, DR18, HP17, FK18,
DLDRG19, DPDRG20], including higher codimension, anisotropic energies, etc.

The study of soap films as minimizers of Gauss’s capillarity energy with small volume
and under homotopic spanning conditions has been initiated in [MSS19, KMS22a], with
the introduction of the model

(v) := inf {H"(Q NOE) : |E|=v, QN JE is C-spanning W} , (1.8)

where F C () is an open set with smooth boundary. Without the spanning condition, at
small volumes, minimizers of H"(2NIE) would be small diffeomorphic images of half-balls
[MM16]. However, the introduction of the C-spanning constraint rules out small droplets,
and forces the exploration of a different part of the energy landscape of H" (2N IE). As
informally discussed in Section 1.1, this leads to the emergence of generalized minimizers
(K, E). More precisely, in [KMS22a] the existence is proved of (K, F) in the class

K= {(K, E): K is relatively closed and H"-rectifiable in 2, E is open, (1.9)
E has finite perimeter in Q, and QNcl (0*E) = QNIE C K} ,

(where 0*F denotes the reduced boundary of E) such that, for every competitor E’ in
¥ (v), it holds
H'(QNI'E)+2H™"(QN (K \I'E)) <H"(QNOE'). (1.10)

Starting from (1.10) one can apply Allard’s regularity theorem [All72] and various ad hoc
comparison arguments [KMS21, KMS22b] to prove that QN 90*E is a smooth hypersurface
with constant mean curvature (negative if H"(K \ 0*E) > 0), QN (OF \ 0*F) has empty



FIGURE 1.4. (a) Homotopic spanning according to Harrison—Pugh: S must in-
tersect every curve v € C, in particular, the C-spanning property may be lost by
removing a single point from S; (b) Homotopic spanning based on essential con-
nectedness: for a.e. section T'[s] of the tube T around a curve v € C, the union
T[s]US (essentially) disconnects T' (i.e., divides T into two non-trivial parts, de-
picted here with two different shades of gray).

interior in K, and that K\ (X UOFE) is a smooth minimal hypersurface, where ¥ is a closed
set with codimension at least 8.

1.3. Measure theoretic homotopic spanning. In a nutshell, the idea behind our mea-
sure theoretic revision the Harrison—Pugh homotopic spanning condition is the following.
Rather than asking that S N ~(S') # & for every v € C, as done in Definition A, we shall
replace v with an open “tube” T containing v(S'), and ask that S, with the help of a
generic “slice” T[s] of T, “disconnects” T itself into two nontrivial regions 77 and T%; see
Figure 1.4. The key to make this idea work is, of course, giving a proper meaning to the
word “disconnects”.

To this end, we recall the notion of essential connectedness introduced in [CCDPM17,
CCDPM14] in the study of the rigidity of equality cases in Gaussian and Euclidean perime-
ter symmetrization inequalities. Essential connectedness is the “right” notion to deal with
such problems since it leads to the formulation of sharp rigidity theorems, and can indeed
be used to address other rigidity problems (see [CPS20, Per22, Dom23]). This said, it
seems remarkable that the very same notion of what it means for “one Borel set to discon-
nect another Borel set” proves to be extremely effective also in the context of the present
paper, which is of course very far from the context of symmetrization theory.

Denoting by 7™ (0 < t < 1) the points of density t of a Borel set T C R"*! (i.e.,
x € T® if and only if |T N B.(x)|/wpe1 7Tt — ¢ as 7 — 0T, where wy, is the Lebesgue
measure of the unit ball in R¥), and by 9¢T = R"*!\ (T©UT®) the essential boundary
of T, given Borel sets S, T, T} and T in R"!, and given n > 0, we say that S essentially
disconnects T into {11, 75}, if

{T1,T>} is a non-trivial Borel partition of T,

1.11
and TW N 9Ty N 9¢T5 is H™-contained in S . ( )

(For example, if K is a set of full £L-measure in [—1,1], then S = K x {0} essentially
disconnects the unit disk in R2.) Moreover, we say that T is essentially connected? if
@ does not essentially disconnect T'. The requirement that {77,75} is a non-trivial Borel
partition of 7" means that |TA(7y UT3)| = 0 and |11||T2| > 0. By saying that “E is
‘H"-contained in F” we mean that H"(E \ F') = 0. We also notice that, in (1.11), we have
TONOTINOTy, =T NOT; (i = 1,2), a fact that is tacitly and repeatedly considered
in the use of (1.11) in order to shorten formulas.

3Whenever T is of locally finite perimeter, being essentially connected is equivalent to being
indecomposable.
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FIGURE 1.5. An example of induced essential partition. The union of the bound-
aries of the U;’s (inside of U) is contained in S, and the containment may be strict.
However, the part of S not contained in U N |J, 9U; is not such to disconnect any
of the U;’s. In particular, each U; is essentially connected.

With this terminology in mind, we introduce the following definition:

Definition B (Measure theoretic homotopic spanning). Given a closed set W and a
spanning class C for W, the tubular spanning class 7 (C) associated to C is the family
of triples (v, ®,T) such that v € C, T = ®(S' x B}), and*

® : S x cl B} — Q is a diffeomorphism with Plsivgoy =7-
When (v, ®,T) € T(C), the slice of T defined by s € S! is
Tls] = ®({s} x BY) .

Finally, we say that a Borel set S C Q is C-spanning W if for each (v,®,7T) € T(C),
H!-a.e. s € S! has the following property:

for H"-a.e. x € T'[s]

3 a partition {71, T2} of T s.t. © € 0T N O°Th (1.12)

and s.t. S'UT[s| essentially disconnects T" into {71,75} .

Before commenting on (1.12), we notice that the terminology of Definition B is coherent
with that of Definition A thanks to the following theorem.

Theorem 1.1. Given a closed set W C R™1, a4 spanning class C for W, and a set S
relatively closed in ), then S is C-spanning W in the sense of Definition A if and only if
S is C-spanning W in the sense of Definition B.

Theorem 1.1 is proved in Appendix A. There we also comment on the delicate reason
why, in formulating (1.12), the partition {77, 7>} must be allowed to depend on specific
points x € T'[s]. This would not seem necessary by looking at the simple situation depicted
in Figure 1.4, but it is actually so when dealing with more complex situations; see Figure
ALl

Homotopic spanning according to Definition B is clearly stable under modifications of
S by H™-negligible sets, but there is more to it. Indeed, even a notion like “H™(SNT) > 0
for every T' € T(C)” would be stable under modifications by H"-negligible sets, and would
probably look more appealing in its simplicity. The catch, of course, is finding an extension
of Definition A for which compactness theorems, like Theorem 1.4 below, hold true. This
is evidently not the case, for example, if one tries to work with a notion like “H™(SNT) > 0
for every T' € T(C)”.

The first key insight on Definition B is that, if restricted to Borel sets S that are locally
‘H"-finite in €2, then it can be reformulated in terms of partitions into indecomposable

Here B ={z € R": |z| < 1} and S' = {s € R? : |s| = 1}.
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FIGURE 1.6. With W consisting of two disks in the plane, and T" a test tube for
the C-spanning condition: (a) S consists of a segment with a gap: since the gap
is inside of T, the essential partition of T" induced by S UT'[s] consists of only one
set, Uy =T, so that TN 9*U; = @ and (1.14) cannot hold; (b) S consists of a full
segment and in this case (with the possible exception of a choice of s such that
T[s] is contained in S), the essential partition of T" induced by SUT[s] consists of
two sets {Uy,Us}, such that T'[s] C T N 9*Uy N 0*Us; in this case (1.14) holds.

sets of finite perimeter. This is the content of the following theorem, whose case S = &
corresponds to the standard decomposition theorem for sets of finite perimeter [ACMMO1,
Theorem 1]. For an illustration of this result, see Figure 1.5.

Theorem 1.2 (Induced essential partitions (Section 2)). If U C R is a bounded set
of finite perimeter and S C R"*1 is a Borel set with H"(S N UMW) < oo, then there exists
a unique® essential partition {U;}; of U induced by S, that is to say, {U;}; is a
countable partition of U modulo Lebesque megligible sets such that, for each i, S does not
essentially disconnect Uj;.

Given U and S as in the statement of Theorem 1.2 we can define® the union of the
(reduced) boundaries (relative to U) of the essential partition induced by S on U by
setting7

UBEP(S;U) =U" n| JorUi. (1.13)

Two properties of UBEP’s which well illustrate the concept are: first, if R(S) denotes the
rectifiable part of S, then UBEP(S;U) is H"-equivalent to UBEP(R(S); U); second, if S*
is H"-contained in S, then UBEP(S;U) is H"-contained in UBEP(S;U); both properties
are proved in Theorem 2.1 (an expanded restatement of Theorem 1.2).

We can use the concepts just introduced to provide an alternative and technically more
workable characterization of homotopic spanning in the measure theoretic setting. This is
the content of our first main result, which is illustrated in Figure 1.6.

Theorem 1.3 (Homotopic spanning for locally H"-finite sets (Section 3)). If W C R**!
is a closed set in R"1, C is a spanning class for W, and S C Q is locally H"-finite in §,
then S is C-spanning W if and only if for every (v, ®,T) € T(C) we have that, for H'-a.e.
s e St

Ts] is H"-contained in UBEP(SUT[s];T) . (1.14)

5Umiquemess is meant modulo relabeling and modulo Lebesgue negligible modifications of the U;’s.

6Uniquely modulo H™-null sets thanks to Federer’s theorem recalled in (1.37) below.

"Given a Borel set E, we denote by 0*FE its reduced boundary relative to the maximal open set A
wherein F has locally finite perimeter.



1.4. Direct Method on generalized soap films and Gauss’ capillarity. The most
convenient setting for addressing the existence of minimizers in Gauss’ capillarity theory
is of course that of sets of finite perimeter [Fin86, Magl2]. However, if the notion of
homotopic spanning is limited to closed sets, as it is the case when working with Definition
A, then one cannot directly use homotopic spanning on sets of finite perimeter, and this
is the reason behind the specific formulation (1.8) of ¥ (v) used in [MSS19, KMS22al.
Equipped with Definition B we can now formulate Gauss’ capillarity theory with homotopic
spanning conditions directly on sets of finite perimeter. We shall actually consider two
different possible formulations

Ypk(v) = inf {?—["(Q NJ*E) : |E| =v and QN (0*E U EW) is C-spanning W} ,
Ypq(v) = inf {H”(Q NO*E): |E| =v and QN 0*E is C-spanning W} ,

where the subscripts “bk” and “bd” stand to indicate that the spanning is prescribed via
the bulk of E (that is, in measure theoretic terms, via the set QN (0*E U EM) or via the
(reduced) boundary of E. Inspired by the definition of the class K introduced in (1.9), we
also introduce the class Kp of generalized soap films defined by

Kg = {(K, E): K and E are Borel subsets of €2, (1.15)

FE has locally finite perimeter in €2 and 0*E N ) c K} .

Here the subscript “B” stands for “Borel”, and Kp stands as a sort of measure-theoretic
version of IC.

In the companion paper [Nov23| the following relaxation formulas for problems ) and
Ppq are proved,

wbk(v) = \Ilbk(v) s wbd(v) = \I’bd(v) s Yo > O, (1.16)

where the following minimization problems on Kp are introduced

Ui (v) = inf {]—'bk(K, E): (K,E) € Kg,|E| = v, K UE® is C-spanning W} , (1.17)

Upq(v) = inf {de(K, E): (K,FE) € Kp,|E| =v, K is C-spanning W} ) (1.18)
Here Fpx and Fq are the relaxed energies defined for (K, E) € Kg and A C Q2 as

Fok(K,E; A) =2H"(ANKNE®) +H"(ANOJ'E), (1.19

Foa(K,E; A) =2H (ANK\O*E)+ H"(ANJ'E), (1.20)

(We also set, for brevity, Fp (K, E) = Fp(K, E;Q) and Frpq(K, E) = Fra(K, E;Q).)
We refer to these problems, respectively, as the “bulk-spanning” or “boundary-spanning”
Gauss’ capillarity models. In this paper we shall directly work with these relaxed models.
In particular, the validity of (1.16), although of definite conceptual importance, is not
playing any formal role in our deductions.

A first remark concerning the advantage of working with the relaxed problems Wy, and
Wpq rather than with their “classical” counterparts 1y, and g is that while the latter
two with v = 0 are trivial (sets with zero volume have zero distributional perimeter), the
problems Wy, (0) and ¥y,4(0) are actually non-trivial, equal to each other, and amount
to a measure-theoretic version of the Harrison—Pugh formulation of Plateau’s problem ¢
introduced in (1.7): more precisely, if we set

 U(0)  Wpqa(0)
o2 2
then, by Theorem 1.1, we evidently have fg < ¢; and, as we shall prove in the course of
our analysis, we actually have that £ = {5 as soon as ¢ < co.

g = inf {’H”(S) : S is a Borel set C-spanning W} , (1.21)
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Our second main result concerns the applicability of the Direct Method on the compe-
tition classes of Wy (v) and Wpq(v).

Theorem 1.4 (Direct Method for generalized soap films (Sections 4 and 5)). Let W be a
closed set in R"™L, C a spanning class for W, {(Kj, E;)}; be a sequence in Kp such that
sup; H"(K;) < oo, and let a Borel set E and Radon measures ppx and ppq in Q be such

that E; S FE and
H'L(QNO*Ej) +2H" L (R(K;) N EJ(.O)) = bk
HOL (N0 E)) + 21 L (R(K;)\ 9 Ey) = pa
as j — oo. Then:

(i) Lower semicontinuity: the sets
Ky = (QN9*E)U {x € QN E 0" () (z) > 2} :
Kpa == (QNO"E)U {x €Q\IE : 0" (juna)(z) > 2} :
are such that (Kpy, E), (Kpq, E) € K and
bk > HPL(QNO'E) 4+ 2H"L (K N E(O)) ,
fnd > HUL(QNOE) + 2H L (Kpa \ 9E) ,
with
lim inf Pk (K}, Ej) > Fox(Kpk, E),  liminf Foq(Kj, Ej) > Foa(Kpa, E) -
J—00 j—00

(ii) Closure: we have that
if KjU E](.l) 1s C-spanning W for every j,
then Ky, U E® is C-spanning W,
and that
if K is C-spanning W for every j,
then Kyq is C-spanning W .

The delicate part of Theorem 1.4 is proving the closure statements. This will require
first to extend the characterization of homotopic spanning from locally H™-finite sets to
generalized soap films (Theorem 3.1), and then to discuss the behavior under weak-star
convergence of the associated Radon measures of the objects appearing in conditions like
(1.14) (Theorem 4.1).

1.5. Existence of minimizers in Uy, (v) and convergence to ¢. From this point on-
ward, we focus our analysis on the bulk-spanning relaxation Wy (v) of Gauss’ capillarity.
There are a few important reasons for this choice: (i) from the point of view of physical
modeling, working with the boundary or with the bulk spanning conditions seem com-
parable; (ii) the fact that W,x(0) = Upq(0) suggest that, at small values of v, the two
problems should actually be equivalent (have the same infima and the same minimizers);
(iii) the bulk spanning variant is the one which is relevant for the approximation of Plateau-
type singularities with solutions of the Allen—Cahn equations discussed in [MNR23al; (iv)
despite their similarities, carrying over the following theorems for both problems would
require the repeated introduction of two versions of many arguments, with a significant
increase in length, and possibly with at the expense of clarity.

The following theorem provides the starting point in the study of Wy (v).
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Theorem 1.5 (Existence of minimizers and vanishing volume limit for Wy (Section 6)).
If W is a compact set in R and C is a spanning class for W such that £ < oo, then

lg=1¢, (1.22)
and, moreover:

(i) Existence of minimizers and Euler—Lagrange equation: for every v > 0 there
exist minimizers (K, E) of Wpk(v) such that (K, E) € K and both E and K are bounded;
moreover, there is A € R such that

A X-yEdH”:/ divKXdH”+2/ divE X dH™, (1.23)
o*E O*E KnNE©)

for every X € CHR™ LR 1) with X - vg = 0 on 99Q;

(ii) Regularity from the Euler—Lagrange equations: if (K, FE) € K is a minimizer of
either Wy (v), then there is a closed set ¥ C K, with empty interior in K, such that K\ is
a smooth hypersurface; moreover, K\ (XUOQFE) is a smooth minimal hypersurface, QNO*E
is a smooth hypersurface with mean curvature constantly equal to A, and H"(X\ OFE) = 0;
in particular, QN (OE \ 0*F) has empty interior in K;

(iii) Convergence to the Plateau problem: if (K;, E;) is a sequence of minimizers
for Wpy(v;) with v; — 0%, then there exists a minimizer S of ¢ such that, up to extracting
subsequences, as Radon measures in §2,

H'L (0" E;NQ) +2H"L (K; N E”) = 2H"L S, (1.24)
as j — oo; In particular, Uy (v) — 24 = Wy (0) as v — 0T,

The conclusions of Theorem 1.5 about Wk (v) can be read in parallel to the conclusions
about 1 (v) obtained in [KMS22a]. The crucial difference is that, in place of the “weak”
minimality inequality (1.10), which in this context would be equivalent to Fni (K, F) <
H™ (2 N O*E’) for every competitor E’ in ¢pk(v), we now have the proper minimality
inequality

ForlK, B) < Fo( K, E) (1.25)
for every competitor (K’, E’) in Wy (v). Not only the final conclusion is stronger, but
the proof is also entirely different: whereas [KMS22a| required the combination of a whole
bestiary of specific competitors (like the cup, cone, and slab competitors described therein)
with the full force of Preiss’ theorem, the approach presented here seems more robust as
it does not exploit any specific geometry, and it is squarely rooted in the basic theory of
sets of finite perimeter.

1.6. Equilibrium across transition lines in wet soap films. We now formalize the
validation of (1.1) for soap films in the form of a sharp regularity theorem for minimizers
(K, E) of \Ika(v).

The starting point to obtain this result is the connection between homotopic span-
ning and partitions into indecomposable sets of finite perimeter established in Theorem
1.3/Theorem 3.1. This connection hints at the possibility of showing that if (K, E) is a
minimizer of Wy (v), then the elements {U;}; of the essential partition of Q induced by
K UE® are actually (A, rp)-minimizers of the perimeter in , i.e., there exist A and rg
positive constants such that

P(Ul,Br(x)) S P(VvBr(x)) + A ’VAUz| )

whenever VAU; cC Q and diam (VAU;) < r9. The reason why this property is not ob-
vious is that proving the (A,rg)-minimality of U; requires working with arbitrary local
competitors V; of U;. However, when working with homotopic spanning conditions, check-
ing the admissibility of competitors is the notoriously delicate heart of the matter — as
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FIGURE 1.7. On the left, a minimizer (K, F) of Uy (v), and the essential parti-
tion induced by (K, E) in a ball B, (x); the multiplicity 2 part of K N B,(z) are
depicted with bold lines, to distinguish them from the multiplicity one parts in
B.(z) N9*E. On the right, a choice of (K', E’) that guarantees both the energy
gap identity (1.26) and the H"-containment (1.27) needed to preserve homotopic
spanning. The volume constraint can of course be restored as a lower order perime-
ter perturbation by taking a diffeomorphic image of (K’, E’), an operation that
trivially preserves homotopic spanning.

reflected in the fact that only very special classes of competitors have been considered
in the literature (see, e.g., the cup and cone competitors and the Lipschitz deformations
considered in [DLGM17a], the slab competitors and exterior cup competitors of [KMS22a),
etc.).

The idea used to overcome this difficulty, which is illustrated in Figure 1.7, is the
following. By Theorem 1.2, we can locally represent Fii(K, F; B,(x)) as the sum of
perimeters P(U;; By (z)) + P(Uj; Br(x)) + P(Uy; Br(z)). Given a local competitor V; for U;
we can carefully define a competitor (K’, E’) so that the elements of the essential partition
induced by K’ U (E")™ in Q, that can be used to represent Fyi(K', E'; B,(z)) as the sum
P(Vi; Bp(x)) + P(Vj; By(x)) + P(Vi; Br(z)), are such that

Fox(K', E's By (x)) — Fox(K, E; Br(x)) = P(V; B,(x)) — P(Uy;; B.(2)) . (1.26)

The trick is that by suitably defining K" and E’ we can recover the entirety of B,(xz)N9*U;
and B,(z) N 0*Uy by attributing different parts of these boundaries to different terms in
the representation of Fox(K', E'; By(x)). In other words we are claiming that things can
be arranged so that we still have

B, (z) N (0°U; N 0*Uy) € K'U (E)D. (1.27)

The fact that we have been able to preserve all but one reduced boundary among those
of the elements of the essential partition of B,(z) induced by (K, E) is enough to shows
that K’ U (E")® is still C-spanning W by means of Theorem 1.3/Theorem 3.1.

By the regularity theory of (A,rg)-perimeter minimizers (see, e.g. [Magl2, Part III])
we can deduce the C1®regularity of the elements of the partition (away from a closed
singular set with area minimizing dimensional bounds). This is already sufficient to prove
the continuity of the normal across Q2 N (OF \ 0*E), but it also allows us to invoke the
regularity theory for free boundaries in the double membrane problem, and to obtain the
following sharp regularity result, with which we conclude our introduction.

Theorem 1.6 (Equilibrium along transition lines for soap films (Section 7)). If W is a
compact set in R"1 C is a spanning class for W such that £ < oo, v > 0, and (K, E.)
is a minimizer of Wy (v), then there is (K, E) € K such that K is H™-equivalent to K., E
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is Lebesgue equivalent to E., (K, E) is a minimizer of Wpx(v), both E and K are bounded,
K UFE isC-spanning W, and
KNEY = g; (1.28)
in particular, K is the disjoint union of QN O*E, QN (0E \ 0*FE), and K \ OF.
Moreover, there is a closed set X C K with the following properties:
(i): =09 if 1 < n <6, X is locally finite in Q if n =7, and H*(X) = 0 for every
s>n—"T1ifn>8;

(il): (AN O*E)\ X is a smooth hypersurface with constant mean curvature (denoted by A
if computed with respect to vg);

(iii): (K \ OF)\ X is a smooth minimal hypersurface;

(iv): if QN(OE\O*E)\ X # &, then A < 0; moreover, for every x € QN(OE\0*E)\ X, K
is the union of two CY'-hypersurfaces that detach tangentially at x; more precisely, there
arer >0, v €S", uy,ups € CHY(D%(z)) such that

ui(z) = uz(x) =0, ur < ug on DY(z),

with {u1 < ua} and int{u; = ua} both non-empty, and

Cl(z)NK = Ui—i2{y+ui(y)v:yeDl(z)}, (1.29)
Cl(z)NO'E = Ui—i2{y+uwi(y)v:y € {u <us}}, (1.30)
Clz)NE = {y+tv:te (ui(y),uy))}. (1.31)

Here,
Dj(z)=z+{yev' |y <r},
CZ(:U)::J:—I-{y—i-tl/:yEz/L,\y]<r,]t!<r}.

(v): we have
I''=QN(0FE\ 0'FE) = T'teg U sing , Dreg N lsing = 9,

where: I'yeg is relatively open in I' and for every x € I'yey there are r > 0 and B € (0, 1)
such that T'veg N By () is a CYB-embedded (n — 1)-dimensional manifold; Lsing is relatively
closed in T' and can be partitioned into a family {F';ing}z;é where, for each k, Ffing is
locally H*-rectifiable in Q.

1.7. Equilibrium across transition lines in wet foams. Based on the descriptions
provided in [WH99, CCAET13], an effective mathematical model for dry foams at equi-
librium in a container is that of locally perimeter minimizing clusters, originating with
different terminology in [Alm76], and presented in [Magl2, Part IV] as follows. Given an
open set 2 C R*! a locally perimeter minimizing clusters is a finite Lebesgue partition
{U;}; of Q into sets of finite perimeter such that, for some r¢ > 0,

S P B) <> P(Vi; B) (1.32)

whenever B CC € is a ball with radius less than ro, and {V;}; is a Lebesgue partition of
with V;AU; cC B and |V;| = |U;| for every i. The previously cited results of Almgren and
Taylor [Alm76, Tay76] imply that, up to modification of the U;’s by sets of zero Lebesgue
measure, when n = 2, K = QN J;0U; is a closed subset of Q that is locally clhe-
diffeomorphic to a plane, a Y-cone, or a T-cone; moreover, the part of K that is a surface
is actually smooth and each of its connected component has constant mean curvature.
Similar results holds when n = 1 (by elementary methods) and when n > 3 (by exploiting
[CES22]).
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The theory for the relaxed capillarity energy JFy) developed in this paper provides an
option for modeling wet foams. Again based on the descriptions provided in [WH99,
CCAE™13], the following seems to be a reasonable model for wet foams at equilibrium in
a container. Given an open set 2 C R"*! we model wet foams by introducing the class

’Cfoam
of those (K, E) € Kp such that, for some positive constants Ag and 7o,

Fok(K, B3 B) < Fox(K', E'; B) + Ao |[EAE] (1.33)

whenever B is a ball compactly contained in © and with radius less than 7o, and (K’, E’) €
Kp is such that (KAK') U(EAE’) CC B and there are finite Lebesgue partitions {U;};
and {U]}; of B induced, respectively, by K UE™ and by K'U(E")®, such that |U;| = |U/|
for every i. Notice that inclusion of the term Ag |[EAE’| in (1.33) allows for the inclusion
of energy perturbations due to gravity or other forces. Lemma 7.1 will clarify that by
taking (K, F) € Kfoam with |E| = 0 we obtain a slightly more general notion of dry foam
than the one proposed in (1.32).

Theorem 1.7 (Equilibrium along transition lines for soap films (Section 8)). If Q c R**!
is open and (K, Ey) € Ktoam, then there is (K, E) € K N Ktoam such that K is H"-
equivalent to K., E Lebesque equivalent to E,, K N EY = &, and such that, for every
ball B CC Q, the open connected components {U;}; of B\ (K U E) are such that each Uj;
is (Lebesgue equivalent to an) open set with CY*-boundary in B\ . Here ¥ is a closed
subset of Q with ¥ = @ if 1 < n <6, X locally finite in Q if n =7, and H*(X) = 0 for
every s >n — 17 if n > 8.

Organization of the paper. The sections of the paper contain the proofs of the main
theorems listed above, as already specified in the statements. To these section we add three
appendices. In Appendix A, as already noted, we prove the equivalence of Definition A and
Definition B. In Appendix B we prove that, with some regularity of 92, every minimizing
sequence of Wy (v) is converging to a minimizers, without need for modifications at infinity:
this is, strictly speaking, not needed to prove Theorem 1.5, but it is a result of its own
conceptual interest, it will be crucial for the analysis presented in [MNR23al, and it is
easily discussed here in light of the proof of Theorem 1.5. Finally, Appendix C contains
an elementary lemma concerning the use of homotopic spanning in the plane that, to our
knowledge, has not been proved in two dimensions.
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Notation. Sets and measures: We denote by B,.(x) (resp., B¥(z)) the open ball of
center x and radius r in R"! (resp., R¥), and omit () when z = 0. We denote by cl (X),
int(X), and I,(X) the closure, interior and open e-neighborhood of X C R*¥. We denote
by £ and H* the Lebesgue measure and the s-dimensional Hausdorff measure on R"*1,
s€[0,n+1]. If E C R* we set |E| = L¥(E) and wy = |Bf|. We denote by E®, t € [0, 1],
the points of density t of a Borel set £ C R"t! so that F is £*!-equivalent to E®,
and, for every pair of Borel sets E, F C R*+!,

(EUF)® = EO A F® (1.34)

We define by 0°E = R*™!\ (E© U E®™) the essential boundary of E. Given Borel sets
E;, E C Q we write
E;j—~E, E%E,
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when, respectively, |E;AE| — 0 or |(E;AE)NQY| — 0 for every Q' CC Q, as j — oo. Given
a Radon measure g on R"*1, the k-dimensional lower density of yu is the Borel function
0%(u) : R"*1 — [0, 00] defined by

K e (el (Br(2)))
0. (i) () = lim inf ok
We repeatedly use the fact that, if #¥(u) > X\ on some Borel set K and for some A > 0,
then u > AH*LK; see, e.g. [Magl2, Theorem 6.4].

Rectifiable sets: Given an integer 0 < k < n + 1, a Borel set S C R**! is locally H*-
rectifiable in an open set Q if S is locally H*-finite in Q and S can be covered, modulo
HF-null sets, by a countable union of Lipschitz images of R* in R**!. We say that S
is purely H*-unrectifiable if %*(S N M) = 0 whenever M is a Lipschitz image of R¥
into R**!. Finally, we recall that if S is a locally H*-finite set in €2, then there is a pair
(R(S),P(S)) of Borel sets, uniquely determined modulo #*-null sets, and that are thus
called, with a slight abuse of language, the rectifiable part and the unrectifiable part
of S, so that R(S) is locally HF*-rectifiable in 2, P(S) is purely H*-unrectifiable, and
S =TR(S)UP(Y); see, e.g. [Sim83, 13.1].

Sets of finite perimeter: If E is a Borel set in R*™! and D1g is the distributional
derivative of the characteristic function of E, then we set ugp = —D1g. If A is the largest
open set of R™™! such that ug is a Radon measure in A (of course it could be A = @),
then FE' is of locally finite perimeter in A and the reduced boundary 0*E of E is defined
as the set of those z € ANsptug such that pg(B,(x))/|pe|(Br(z)) has a limit vg(z) € S®
as 7 — 0%. Moreover, we have the general identity (see [Magl2, (12.12) & pag. 168])

ANcl (9*E) = Ansptup = {m € A:0< |ENB,(z)| < |Br(z)| Vr > o} C ANJE. (1.35)

By De Giorgi’s rectifiability theorem, 0*FE is locally H™-rectifiable in A, ug = vg H" _
(ANO*E) on A, and 0*E C ANEY? C ANJ°E, and

(E—2)/r ™S Hp = {y e R"" 1y vp(z) <0}, asr — 07 . (1.36)
By a result of Federer,
A is H"-contained in E® UEW UJ*E; (1.37)

in particular, 0* F is H™-equivalent to ANJ°E, a fact frequently used in the following. By
Federer’s criterion for finite perimeter, if € is open and F is a Borel set, then

H' (2N O°E) < o0 = E is of finite perimeter in €, (1.38)

see [Fed69, 4.5.11]. If E and F are of locally finite perimeter in 2 open, then so are EUF,
ENF,and E\ F, and by [Magl2, Theorem 16.3], we have

QNo(EUF) ™ an {(E(O) NO*F)U(FYNJ*E)U{vg = uF}} : (1.39)
Qna(ENF)E an {(E<1> NO*F)U (FY NO*E) U {vg = VF}} , (1.40)
QN (E\F) % an {(E<1> NO*F)U (F N0*E) U {vp = —VF}} , (1.41)

where {vg = tvp} = {zv € O*ENJ*F : vg(z) = fvp(x)}. By exploiting Federer’s
theorem (1.37), (1.39), (1.40), and (1.41) we can also deduce (the details are left to the
reader)

H

(ENF)© £ EOUFOU{vg=—vp}, (1.42)
(E\F)® 2 EOUFYU{vg=uvp}. (1.43)
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Finally, combining (1.39), (1.41), and (1.43), we find
O (EAF) ™2 (0*E)A(0*F). (1.44)

Partitions: Given a Radon measure p on R"*! and Borel set U C R™*! we say that
{Ui}i is a p-partition of U if {U;}; is an at most countable family of Borel subsets of U
such that

M@\Um):m w(U;NU;) =0 Vi,j; (1.45)

and we say that {U;}; is a monotone p-partition if, in addition to (1.45), we also have
w(U;) > w(Uisq) for every i. When p = L' we replace “u-partition” with “Lebesgue
partition”. When U is a set of finite perimeter in R"*!, we say that {U;}; is a Caccioppoli
partition of U if {U;}; is a Lebesgue partition of U and each Uj is a set of finite perimeter
in R"*!: in this case we have

ov’c | Jous, 21 (U0 n|Jorvs) = S Hrw nouy), (1.46)

see, e.g., [AFP00, Section 4.4]; moreover,
1§#&:xeym}§2, vz e | Jou, (1.47)

thanks to (1.36) and to the fact that there cannot be three disjoint half-spaces in R™*1.

2. INDUCED ESSENTIAL PARTITIONS (THEOREM 1.2)

Given a Borel set S, we say that a Lebesgue partition {U;}; of U is induced by S if,
for each 1,
UM N o°U; is H™-contained in S'. (2.1)
We say that {U;}; is an essential partition of U induced by S if it is a Lebesgue
partition of U induced by S such that, for each i,

S does not essentially disconnect U; . (2.2)

The next theorem, which expands the statement of Theorem 1.2, shows that when H"-
finite sets uniquely determine induced essential partitions on sets of finite perimeter.

Theorem 2.1 (Induced essential partitions). If U C R"! is a bounded set of finite
perimeter and S C R is a Borel set with H"(S N UWY) < oo, then there erists an
essential partition {U;}; of U induced by S such that each U; is a set of finite perimeter
and

> PUUY) <2HY(SNTUW). (2.3)

Moreover: (a): if S* is a Borel set with H"(S* N UWY) < oo, S* is H™-contained in S,
{V;}; is a Lebesgue partition® of U induced by S*, and {U;}; is the essential partition of
U induced by S, then

U; 0"V; is H"-contained in | J; 0"U;; (2.4)
(b): if S and S* are H"-finite sets in UV, and either’ S* = R(S) or S* is H"-equivalent
to S, then S and S* induce L™ -equivalent essential partitions of U.

Proof of Theorem 1.2. Immediate consequence of Theorem 2.1. O

8Notice that here we are not requiring that S* does not essentially disconnect each Vj, i.e., we are not
requiring that {V;}, is an essential partition induced by S*. This detail will be useful in the applications
of this theorem.

YHere R(S) denotes the H"-rectifiable part of S.
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The proof of Theorem 2.1 follows the main lines of the proof of [ACMMO1, Theorem
1], which is indeed the case S = @ of Theorem 2.1. We premise to this proof two lemmas
that will find repeated applications in later sections too. To introduce the first lemma, we
notice that, while it is evident that if S is C-spanning W and S is ‘H"-contained into some
Borel set S*, then S* is also C-spanning W, however, it is not immediately clear if the
rectifiable part R(S) of S (which may not be H"-equivalent to S) retains the C-spanning

property.

Lemma 2.2. If W is compact, C is a spanning class for W, S is C-spanning W, and
H"L S is a Radon measure in Q, then R(S) is C-spanning W. Moreover, the sets T1 and
Ty appearing in (1.12) are sets of finite perimeter.

Proof. We make the following claim: if T is open, T™ HC T, H"L Z is a Radon measure
in an open neighborhood of T'; and Z essentially disconnects T" into {7}, T3}, then
T, and T3 are of locally finite perimeter in 7', (2.5)
R(Z) essentially disconnects T" into {T1,T5} . (2.6)
Indeed: Since T is open, we trivially have T C T™, and hence T is H™-equivalent to T'™.
Taking also into account that Z essentially disconnects T" into {77, T»}, we thus find
TAOTNOT, S TN TN Ty, € ZNTO C ZNT.

By Federer’s criterion (1.38) and the H"-finiteness of Z in an open neighborhood of T'
we deduce (2.5). By Federer’s theorem (1.37), 0°T; is (H"™ L T')-equivalent to 0*T;, which
combined with the H"-equivalence of T™ and T gives

0Ty NOT,NTO & 9* Ty N TLNT.

Since 0*T) N 0*Ty, N'T is H"-rectifiable and 0¢Ty N T, N TD c z , we conclude that
HM(OTy NOTo NTY N'P(Z)) = 0. Hence,

T NTNTY € R(Z),
and (2.6) follows.

To prove the lemma: Let (v,®,7) € T(C), let J be of full measure such that (A.1)
holds for every s € J, so that, for every s € J one finds that for H"-a.e. « € T'[s] there is a
partition {71, T>} of T with € 9°T1NIJ*T» and such that SUT[s] essentially disconnects T
into {T1,T»}. By applying the claim with Z = SUT[s], we see that R(SUT[s]) essentially
disconnects T' into {71,7T»}, and that T} and T have locally finite perimeter in 7. On
noticing that R(S U T[s]) is H"-equivalent to R(S) U T'[s], we conclude the proof. O

The second lemma is just a simple compactness statement for finite perimeter partitions.

Lemma 2.3 (Compactness for partitions by sets of finite perimeter). If U is a bounded
open set and {{Ug};’il};ﬁl is a sequence of Lebesque partitions of U into sets of finite
perimeter such that

sup ZP(UZJ) < 00, (2.7)
J =1

then, up to extracting a subsequence, there exists a Lebesgue partition {U;}ien of U such
that for every i and every A C U open,

lim [U/AU;| =0,  P(UsA) <liminf P(U7; A). (2.8)
J—00

j—00
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Moreover,

lim limsup S U7 =0, Vse (#1) (2.9)

1—00
IO p—i

Proof. Up to a relabeling we can assume each {U;}; is monotone. By (2.7) and the
boundedness of U, a diagonal argument combined with standard lower semicontinuity
and compactness properties of sets of finite perimeter implies that we can find a not
relabeled subsequence in j and a family {U;}; of Borel subsets of U with |U;| > |U;41| and
|Ui N Uj| = 0 for every i # j, such that (2.8) holds. We are thus left to prove (2.9) and

’U\ G Ui
i=1

We start by noticing that for each ¢ there is J(i) € N such that ]Ug\ < 2|Ug] for every
j > J(i) and 1 < k <. Therefore if k > i+ 1 and j > J(i) we find |U]| < |U}| < 2|U;],
so that, if j > J(7),

=0. (2.10)

SO UL <Cm) Y PODIUE /) < o jrpsm /) (2
k=i+1 k=it1

where we have also used the isoperimetric inequality and (2.7). Since |U;] — 0 as i — oo
(indeed, >, |U;|] < |U| < 00), (2.11) implies (2.9). To prove (2.10), we notice that if we
set M = |U \ U;U;|, and we assume that M is positive, then up to further increasing the
value of J(i) we can require that

; M
U <O+ G VISR <d, ¥ > J(), (2.12)

(in addition to |Ug| < 2|Ug|). By (2.12) we obtain that, if j > J(i), then

[eS) ' i ' i M i M M
U= D2 O =D |0 < D10kl + gy SWUI =M+ ) oms < U= - (213)
k=i+1 k=1 k=1 k=1

Rearranging (2.13) and using the sub-additivity of z — 2° we conclude that
(o.9]
(M/4)* < > UL
k=i+1
We obtain a contradiction with M > 0 by letting i — oo and by using (2.9). 0

Proof of Theorem 2.1. Let U(S) be the set of all the monotone Lebesgue partitions of U
induced by S. We notice that U(S) # &, since U(S) contains the trivial partition with
Uy=Uand U; =@ if i > 2. If U; € {U;}; for {U;}; € U(S), then 0°U; is H"-contained
in 9°U U (UM N S), which, by Federer’s criterion applied to U and H™(S N U®Y) < oo,
has finite H"-measure; it follows then that U; is a set of finite perimeter due to Federer’s
criterion. We now fix s € (n/(n+1),1), and consider a maximizing sequence {{U7 };}; for

m = max { i U;J* - {U;)s € U(S)} :
=1

By standard arguments concerning reduced boundaries of disjoint sets of finite perimeter
(see, e.g. [Magl2, Chapter 16]), we deduce from (2.1) that for every j,

SHILOU = Y HL (U NUY)+ Y H'L (U] noU)
=1 =1 =1
2H"L(SNUD)+H"LOU. (2.14)

IN
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Also, due to the sub-additivity of z — z* and the general fact that 0°(ANB) C 9°AUJ°B
we can refine {Uy J }i by replacing each Uy J with the disjoint family
{(UInU{k>1,1<0< 5},

thus obtaining a new sequence in U(S) which is still maximizing for m. As a consequence
of this remark, we can assume without loss of generality that the considered maximizing
sequence {{U/};}; for m has the additional property that

vnlJoui cunlJouitt, v (2.15)

Thanks to (2.14) we can apply Lemma 2.3 and, up to extracting a subsequence in j, we
can find a Lebesgue partition {U; };en of U by sets of finite perimeter which satisfies (2.8)

and (2.9). Moreover, after taking a subsequence, we may assume that H"L 9*U] = p; for
some Radon measures p1; such that H" L 0*U; < p; [Magl2, Prop. 12.15]. Therefore, by
(2.8), Federer’s theorem for reduced boundaries, and by (2.1) for {U} };, we see that

U)+i7—[”l_(8*UiﬁU“) ZH” ) < w hmZH" (0 U7)

J—o0 4
=w* lim H"L(9°U) + Y H"L(0°U/ NUD) <H'L(9°U) + 2H" L (SNUD).
j—00 ;
By subtracting H" L (0*U) from both sides, we deduce (2.3).

We now show, first, that {U;}; € U(5) (i.e., we check the validity of (2.1) on {U;};), and
then that S does not essentially disconnect any of the U;. This will complete the proof of
the first part of the statement.

To prove that U® N 9°U; ch S, let us introduce the H™-rectifiable set Sy defined by
So=U"nlJo vy (2.16)
1,J
By {U7}; € U(S), Sy is contained into S modulo #"-null sets. Therefore, in order to prove
(2.1) it will be enough to show that
UYNo*U; € Sy, Vi. (2.17)
Should this not be the case, it would be H"(U™ N 9*U; \ Sp) > 0 for some i. We could
thus pick € U® N 9*U; such that
O (H" L (UV NO*U; \ So))(z) =1. (2.18)

Since 0™"(H"™ L 0*U;)(x) = 1 and Sy € U™ this implies H"(Sp N B(x)) = o(r™), while
o*U; c UM? gives |U; N By (%) = (wn41/2) 7L + o(r™*1). Therefore, given § > 0 we can
find > 0 such that

H'(S0 N By(w) < 8r", min{|U; N Bo(@)], [U: \ B, (@)} = (F55 = 5) 1,
and then exploit the relative isoperimetric inequality and (2.8) to conclude that

n/(n+1) .
e(n) [ (25 —5) ] < P(Us By(x)) < liminf P(U}: B, (x)

< HY(SoN Br(z)) <617,

where in the next to last inequality we have used the definition (2.16) of Sp. Choosing
d > 0 small enough we reach a contradiction, thus deducing that {U;}; € U(S).
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Taking into account the subadditivity of z — 2° in order to prove that S does not
essentially disconnect any UZ it is sufficient to show that {U;}; is a maximizer of m. To

see this, we notice that |U/AU;| — 0 as j — co implies

m = lim E U7+ E \U7|® = E |U;|* + lim E \u?|®,
i=1 i=k+1 i=1 i=k+1

so that, letting £ — oo and exploiting (2.9), we conclude that
[e.e]
m=>Y_|Ul°. (2.19)
i=1

This completes the proof of the first part of the statement (existence of essential partitions).

Let now S, S*, {U;};, and {U] }; be as in statement (a) — that is, S* is H"-contained in
S, {U;}i is an essential partition of U induced by S, and, for every j, {U;k }; is a Lebesgue
partition of U induced by S* — and set Z = U;0"U; and Z* = U;0"U;. Arguing by
contradiction with (2.4), let us assume H"(Z* \ Z) > 0. By the definition of Lebesgue
partition we have that Z\ U™ and Z*\ U™ are both H"-equivalent to 9*U. Therefore we
have H"((Z*\Z)NU®) > 0. Since UY is H"-equivalent to the union of the {U " U8*U; }ics
we can find i € T and j € J such that H"(U" N 0*U;) > 0. This implies that both
(Ui n U)W and (U; \ U;)"/? are non-empty, and thus that {Uf N U;,U; \ Uf} is a
non-trivial Borel partition of U;. Since

U NodUINU) € UM naUr € ST,

we conclude that S* is essentially disconnecting U;, against the fact that S is not essentially
disconnecting U; and the fact that S* is H"-contained in S.

We finally prove statement (b). Let {U;}ier, and {U;}jes be essential partitions of U
induced by S and S* respectively. Given i € I such that |U;| > 0, there is at least one j € J
such that |U; NU| > 0. We claim that it must be |U; \ U;| = 0. Should this not be the
case, 0*U 7 would be essentially disconnecting U;, thus implying that S* (which contains
8*U;‘) is essentially disconnecting U;. Now, either because we are assuming that S™* is
‘H"-equivalent to S, or because we are assuming that S* = R(S) and we have Lemma 2.2,
the fact that S* is essentially disconnecting U; implies that S is essentially disconnecting
Ui, a contradiction. Having proved the claim, for each ¢ € I with |U;| > 0 there is a unique
o(i) € J such that ]UiAU:(j)\ = 0. This completes the proof. O

3. HOMOTOPIC SPANNING ON GENERALIZED SOAP FILMS (THEOREM 1.3)

The goal of this section is proving Theorem 1.3, and, actually, to obtain an even more
general result. Let us recall that the objective of Theorem 1.3 was to reformulate the
homotopic spanning property for a Borel set .S, in the case when S is locally H"™-finite,
in terms of unions of boundaries of induced essential partitions. We shall actually need
this kind of characterization also for sets S of the more general form S = K U EY, where
(K,FE) € Kg. For an illustration of the proposed characterization of homotopic spanning
on this type of sets, see Figure 3.1.

Theorem 3.1 (Homotopic spanning for generalized soap films). If W C R™*! is a closed
set in R, C is a spanning class for W, K is a Borel set locally H™-finite in Q, and E
is of locally finite perimeter in Q such that Q N O*FE is H'-contained in K, then the set

S=R(K)UE®Y (3.1)
is C-spanning W if and only if, for every (v,®,T) € T(C) and H'-a.e. s € S,
T[s] N E©® is H™-contained in UBEP(K UT|[s];T). (3.2)
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AN

Us

FIGURE 3.1. In panel (a) we have depicted a pair (K, E) where E is a tube
inside T" and K consists of the union of the boundary of E and the non-spanning
set S of Figure 1.6-(a). Notice that K is not C-spanning, if we see things from
the point of view of Definition A, since it misses every loop v contained in the
interior of F; while, of course, K U F is C-spanning because E has been added.
In panel (b) we have depicted the essential partition {U;}?_; of T induced by
K UT][s]. Notice that E = Uy, therefore no 8*U; N §*U; H'-containis T'[s] N E.
In particular, T[s] N E (which H!-equivalent to T[s] \ E®) is not H'-contained
in UBEP(K U TJ[s];T), and we see again, this time from the point of view of
Definition B as reformulated in Theorem 1.3, that K is not C-spanning. As stated
in Theorem 3.1, from the viewpoint of Definition B it is only the H!-containment
of T[s]N E into UBEP(K UT|[s];T) that establishes the C-spanning property of
K U E: and this H!-containment indeed holds, since T[s] N E® = T|[s] \ cl (E) is
H!'-contained in the union of 8*Us N 9*Us and §*Uy N O*Us.

Remark 3.2. An immediate corollary of Theorem 3.1 is that if K is H"-finite and (K, F) €
Kgp then K U E®™ is C-spanning W if and only if R(K)U E® is C-spanning W. Indeed,
R(K UTIs]) =R(K)UT]|s], so that, by (1.13), UBEP(K UT[s]) = UBEP(R(K) UT(s]).

Proof of Theorem 1.3. This is Theorem 3.1 with F = &. U

Proof of Theorem 3.1. Step one: We prove the following claim: If S essentially disconnects
G into {G1,G2} and H C G satisfies

min{|H N Gi|, |[HNGsz|} >0, (3.3)

then S essentially disconnects H into H N G; and H N Gs. Indeed, if x € HY, then
r € O°(HNG;) if and only if x € 9°G; (i = 1,2). Hence HY N9*(G1NH) C HYNO°Gy C
GM NJ°Gy, which, by (3.3) and our assumption on S and G, gives the desired conclusion.

Step two: Taking from now on S, K and FE as in the statement we preliminary notice
that if (y,®,7) € T(C), s € St, and {U;}; is the essential partition of 7' induced by
(R(K)UTIs]), then

Tno'E'C Tn|JoU;. (3.4)
Indeed, since QNO*E is H"-contained in R(K), if a Borel set G is such that |GNE| |G\ E| >

0 then, by step one, R(K) essentially disconnects G. In particular, since, for each i,
R(K)UT]s] does not essentially disconnect U;, we find that, for each i,

either U" c E© or UV ¢ EW . (3.5)

Clearly, (3.5) immediately implies (3.4).
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Step three: We prove the “only if” part of the statement, that is, given (v, ®,7T) € T(C)
and s € S!, we assume that

for H"-a.e. x € T[], (3.6)
3 a partition {T1,T5} of T with x € 9°Ty N 9T,
and s.t. R(K) U E® UT|[s] essentially disconnects T into {T4,T>},

and then prove that
T[s] N E© is H™-contained in |J; 0*U; , (3.7)

where {U;}; is the essential partition of T induced by R(K)UT'[s]. To this end, arguing by
contradiction, we suppose that for some s € S, there is G C T[s] N B© with H"(G) > 0
and such that GNU;0*U; = @. In particular, there is an index 7 such that H"(GN Ui(l)) > 0,
which, combined with (3.5) and G C E, implies

UY c B©. (3.8)

Now by (3.6) and H"(G N U") > 0, we can choose + € G N U such that R(K) U
E® UT|[s] essentially disconnects T' into some {77, 75} such that z € 9Ty N 9°T5. Then,
{U;NT1,U;NT>} is a non-trivial partition of U;, so that, by step one and (3.8), R(K)UTs]
essentially disconnects U; into {U; N Ty, U; N Ty}, This contradicts the defining property
(2.2) of essential partitions, and concludes the proof.

Step four: We prove the “if” part of the statement. More precisely, given (v, ®,T") € T(C)
and s € S, we assume that (3.7) holds at s, and then proceed to prove that (3.6) holds at
s. We first notice that, since { W, E® §*E} is a partition of Q modulo H", it is enough
to prove (3.6) for H"-a.e. x € T[s]N(E® U E® UJ*E).

If z € T[s] N O*E, then by letting 77 = TN E and T, = T\ E we obtain a partition of
T such that c € TNO*E =T No*T1 NO*Ty C 0Ty N1y, and such that 0* E essentially
disconnects T" into {71,T5}. Since QN J*E is H"-contained in R(K), we deduce (3.6).

If z € T[s] N E®, then, thanks to (3.7) and denoting by {U;}; the essential partition of
T induced by (R(K)UT|[s]), there is an index i such that z € T N 9*U;. Setting T1 = U;
and Ty = T \ U;, we have that T' N 0*U; (which contains x) is in turn contained into
0°T1 N 9Ty NT. Since the latter set is non-empty, {77, 7>} is a non-trivial partition of 7.
Moreover, by definition of essential partition,

T NOTy NOTy = TNOU; € RIK)UT]s],
so that R(K) U Ts] essentially disconnects 7', and (3.6) holds.

Finally, if 2 € T[s] N E™, we let s1 = s, pick sg # s, denote by {I1, I} the partition of
S' defined by {s1,s2}, and set

Ty =®(L x BY)NE, Ty=d(x Bl)U (@(11 x BT\ E) .
This is a Borel partition of T, and using the fact that x € E, we compute
B, (z
IT\NB,(x)| = |®(I, x BY)NENB,(z)| = |®(I; x B})NB,.(x)|+o(r" ) = “2()‘—1-0(7“"“).

Therfore x € 9°T1NO°T5, and by standard facts about reduced boundaries [Mag12, Chapter
16],

TN T,NTY € Ty NTY E (9"E U ((T[s1] U T[sa]) N ED)) N TW.
Since Q N O*E is H"-contained in R(K), we have shown (3.6). O
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FIGURE 4.1. The situation in the proof of Theorem 4.1 in the basic case when
K; = QN 0*Fj. The essential partition of T' induced by K; UT[s;] is denoted by
{U7};. The limit partition {U;}; of {U7 }; may fail to be the essential partition of T
induced by K* = T'NU,;0*U;, since some of the U; may be essentially disconnected.
In the picture, denoting by {Vj}x the essential partition of T induced by K*, we
have Us = V5 UV = T'N F. We also notice, in reference to the notation set in
(4.6), that X{ = {5} and X} = {1,2,3,4}.

4. THE FUNDAMENTAL CLOSURE THEOREM FOR HOMOTOPIC SPANNING CONDITIONS

In Theorem 1.3 and Theorem 3.1 we have presented two reformulations of the homo-
topic spanning condition in terms of H™-containment into union of boundaries of essential
partitions. The goal of this section is discussing the closure of such reformulations, and
provide a statement (Theorem 4.1 below) which will lie at the heart of the closure theorems
proved in Section 5.

Theorem 4.1 (Basic closure theorem for homotopic spanning). Let W C R"*! be closed
and let C be a spanning class for W. Let us assume that:

(a): K; are H"-finite Borel subsets of @ with H" L K; = pu as Radon measures in §2;
(b): (v,®,T) € T(C), {s;}; is a sequence in S' with s; — so as j — oo;

(c): if {Uf}Z denotes the essential partition of T induced by K; U T[s;], then there is a
limit partition {U;}; of {U}}; in the sense of (2.8) in Lemma 2.3;

Under these assumptions, if 1(T[so]) = 0, F;, F C Q are sets of finite perimeter with
F; = F as j — oo and such that, for every j, QN 0*F; is H"-contained in K; and

T[s;]N F]@ is H"-contained in K7 (4.1)
then
T[so]) N F© 4s H"-contained in K*, (4.2)
where we have set
K =UBEP(K; UT[s;;T) =Tn| Jo*U}, K =Tn|]JoU;. (4.3)
i i

Remark 4.2. Notice that {U;}; may fail to be the essential partition of 7" induced by K*
(which is the “optimal” choice of a Borel set potentially inducing {U;}; on T): indeed,
some of the sets U; may fail to be essentially connected, even though U} — U; as j — o

and every Uij , as an element of an essential partition, is necessarily essentially connected;
see Figure 4.1.
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Proof of Theorem 4.1. Step one: We start by showing that, for each j and 7 such that
\U| > 0, we have

either (U))V Cc FY, or (U))cCF, (4.4)
and for each i such that |U;| > 0,
either UM c FW, or UMY CF©. (4.5)

Postponing for the moment the proof of (4.4) and (4.5), let us record several consequences
of these inclusions. First, if we set

x{={i:|U|>0, U0V cF"},  Xj={i:|U]|>0,(U)VCF"}, (46)

X1 ={i:|Uj| >0,U0" c FV}, Xo={i:|U;| >0,U" c F}, (4.7)
then, thanks to (4.4) and (4.5), we have
X ={i:|U)|>0}=XJuXx),  X:={i:|Uj]>0}=XoUX;. (4.8)

Combining (4.4) and (4.5) with F; — F and Uf — U;, we find that for every i € X, there
is J; € N such that, for every m € {0,1},

if i € X,,, then i € X3, for all j > J;. (4.9)

Lastly, {Uz'j}ieX{ is a Lebesgue partition of 7'M F};, and thus, by Federer’s theorem (1.37),

TnEY C JwHOvev!, TnoE C TnlJoUl ¢ TNk (4.10)
iexd iex]
To prove (4.4) and (4.5): Since {UZ }i is the essential partition of 7' induced by K; UT[s;]
and K7 = UBEP(K; UT[s;]; T), we have
K7 is H"-contained in K; U T[s;], Vi, (4.11)
K; UT][s;] does not essentially disconnect Ul-j , Vi, j . (4.12)

Since 2 N 0" F; is H"-contained in Kj; U T[s;], the combination of (4.12) with Federer’s
theorem (1.37) gives (4.4). The combination of |[U/AU;| — 0 as j — oo with (4.4) gives
(4.5).
Step two: We reduce the proof of (4.2) to that of

H' (UM NT[s0]) =0, Vi€ Xop. (4.13)

Indeed, {U" : i € Xo}U{F©ONJ*U; : i € Xo} is an H" -partition of TNF©®. In particular,
TNF® is H"-contained in U;ex, Ui(l) U 9*U;, so that, should (4.13) hold, then T'[so] N F®
would be H"-contained in U;ex,0*U;, and thus in K™, thus proving (4.2).

Step three: We change variables from T to!® Y = &~ 1(T) = S! x B}. We set Y|[s] =
®~Y(T[s]) = {s} x B} for the s-slice of Y, and

Y=o '), Y/=07NU)), Wi=Y\Yi, W/ =Y\Y/,  (414)
Since ® is a diffeomorphism, by [KMS22a, Lemma A.1] and the area formula we have that
e~ YH) =d (0" H), (@Y H)™ =& L (H™), m e {0,1}, (4.15)
for every set of finite perimeter H C T'; in particular, setting
M; = YF;nT), M=®FnT),

10Here we identify S* with R/(27Z) and, with a slight abuse of notation, denote by £"*! the “Lebesgue

measure on S' x B}, which we use to define sets of finite perimeter and points of density in S* x BY.
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by Federer’s theorem (1.37), we see that (4.1) is equivalent

Y[s;] is H"-contained in [J; 0*Y; U MY U 0* M, (4.16)
By (4.10) and (4.15), we may rewrite (4.16) as
Y[s;] is H"-contained in (J;cy &Y U Uiexs (Y7o, (4.17)
1

Similarly, ;' = ®~1(U{") for every i, and thus (4.13) is equivalent to
H' (V" NY[s0]) =0, Vi€ Xp. (4.18)
We are thus left to prove that (4.17) implies (4.18).

To this end, let us denote by p the projection of Y = S! x B? onto BY, and consider
the sets

Gi=p(Y{"'nY[s]), G =G"NG,
corresponding to the set G* C B} with H" (B} \ G*) = 0 defined as follows:

(i) denoting by H, = {s € S : (s,y) € H} the “circular slice of H C Y above y”, ify € G*,
j €N, k is an index for the partitions {Y3}r and {Y/}, and H € {Yy, Wj, Y], W]}, then
H, is a set of finite perimeter in S! with
0
1, (1), o) (), (4.19)

(and thus with 0% (H,) = (0*H),); this is a standard consequence of the slicing theory
for sets of finite perimeter, see, e.g., [BCF13, Theorem 2.4] or [Magl2, Remark 18.13];

(ii) for every y € G* and j € N,
(spp) e | Joviu | o) (4.20)
keN kEX]
this is immediate from (4.17);

(iii) for every y € G*, and k an index for the partitions {Y}}; and {ij }
lim H((Y),A(%),) = 0: (121)
j—00

this is immediate from Fubini’s theorem and Ylg — Y, as j — oo
(iv) for every y € G*,
D H(97Y])y) < oo; (4.22)

indeed, by applying in the order the coarea formula, the area formula and (2.3) we find
S| H(@Y))anm < Y P(YY) < (Lipd ! ZP Ul T
kBT k
< 2(Lip® H" H™(K; UT][s]) -
Now, let us pick y € G}. Since y € G; implies (so,y) € Yi(l), and Y(l) No*Y; = o, we
find (so,y) & 0*Y;, i.e. so & (0*Y;)y. By y € G*, we have (0"Y;), = 0% ( i)y, SO that
so & 051(Yi)y - (4.23)

Since (Y;), has finite perimeter, 0, (Y;)y is a finite set, and so (4.23) implies the existence

of an open interval A, C S!, containing sg, H!-contained either in (Y;), or in (W;),, and
such that

D51 Ay C (9°Y3), = 8% (W), - (4.24)
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We claim that there is G* C G}, with full H"-measure in G (and thus in G;), such that
A, is Hl-contained in (), , Yy € G (4.25)

Indeed, let us consider the countable decomposition {G7,, }77_; of G} given by
Gl = {y € G dist({s0}, ndy) € [1/(m+ 1), 1/m)} c BY,

and let
Zim = {y € G}, : Ay is H'-contained in (W)} .

If H"(Z;m) > 0, then there is y* € Zi(;;l, so that H"(Z;jm N B (y*)) = wpr™ + o(r™).
Therefore, if r < 1/(m + 1) and B} (sg) denotes the open interval of center sy and radius

r inside S, then

LN (BGso) < BRGO)) = [ (B Gs0) 1 (Y0, Ry
B (y*)

_ / H(BL(s0) N (Vi)y) dH? + o(r™+1) = o(r™+)
Zi,mmB'IT}(y*)

where in the last identity we have used the facts that y € Z;,, N Bl'(y*), so € Ay,
and 7 < 1/(m + 1) to conclude that B}(sg) is H'-contained in (W;),; in particular,
(s0,y*) € V", against the fact that Z;,, C Gi(= p(Y[so] N Y;")). We have thus proved
that each Z; ,, is H"-negligible, and therefore that there is G;* C G and H"-equivalent
to G, such that (4.25) holds true.

Having proved (4.25), we now notice that, by (4.20), y € G implies

sie lJ@vh,u J ()?), =Uaam),u U (7)) (4.26)
k

keN keXxi kexi

If (4.26) holds because s; € 8§1(Ylg)y for some k, then, thanks to (4.22) there must &' # k
such that s; € 95, (ij,)y too; since either k& or k' must be different from i, we conclude
that s; € 3§1(Yk](i))y for some k(i) # i; if, instead, (4.26) holds because s; € ((ij)y)(l)Sl
for some k € X{, then we can recall that, thanks to (4.9), i € Xg for every j > J;, and
thus ¢ # k; in summary, for each y € G},

it j > Ji, then 3k(j) # i s.t. 55 € 0 (Vi ;)y U ((Vi)e) " (4.27)

With the goal of obtaining a lower bound on the relative perimeters of the sets Yij in
a neighborhood of G; (see (4.31) below), we now consider y € G}*, and pick » > 0

such that cl B} (sg) C A,. Correspondingly, since s; — so and (4.27) holds, we can find
J* = J*(i,y,r) > J; such that, for j > J*,

55 € By (s0) N [05 (Vi) U (F5)0) ™ ] € Ay 0 [08 (V) U ((YVig)e) ] (4:28)

7_[1
Now, by (4.21), k(j) # i, and A, C (Y;)y, we have

: 1 J _
Jim #H' (A, 0 (V;))y) = 0. (4.29)

Since, by (4.19), (ij(j))y is H!-equivalent to a finite union of intervals, (4.28) implies the
existence of an open interval IZ such that

1 .

. . H . . N N .
sji€caly, I, C (Y)y,  OaLy C(0Y )y C (O"W))y, (4.30)
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which, due to (4.28) and (4.29), must satisfy
lim diam (Ig/) =0.

j—00
In particular,
051 T) C Bl(s0),  Vj=>J",
and thus, by the last inclusion in (4.30),
HO (B} (s0) N5 (W)),) = HO(B}(s0) N0 T)) > 2,

whenever j > J*. Since y € G7* and r > 0 were arbitrary, by the coarea formula and
Fatou’s lemma,

lim inf P(W7: Bl (so) x GI*) > liminf / HO(BY (s0) N 0% (WF),) A
J—ro0 Joroo Jgrs
> 2HNGT) = 2H(Gy). (4.31)
Now, since *W/ = 9*Y] = ®=1(9*U7), by (4.11) we have
Y NY,; 0*W/ is H"-contained in Ys;] U@~ (T N K;),

which implies, for every j large enough to have s; € B1(so),

P(W/; B} (s0) x Gi¥)

< H"(Y[s;] N (B} (s0) x GT¥)) + H™ (@~ (T N K;) N (By(s0) x BY))

=H"(G) +H" (@ (T N K;) N (B (s0) x BY))

T

< H™(G;) + Lip(@~ )" H" (K; N ®(B; (s0) x BY)). (4.32)
By combining (4.31) with (4.32) we conclude that for every r > 0
H(G) < Lip(®~1)" u(@(el (BL(s0)) % B}). (4.33)

By u(T[so]) = 0, if we let » — 0T in (4.33), we conclude that H"(G;) = 0. Now, since
G; = p(Yi(l) N Y[so]), we have

H" (Y NYso]) = H"(G), (4.34)
thus proving (4.18), and hence the theorem. a

5. DIRECT METHOD ON GENERALIZED SOAP FILMS (THEOREM 1.4)

In Section 5.1 we prove Theorem 1.4, while in Section 5.2 we notice the changes to that
argument that are needed to prove a different closure theorem that will be crucial in the
companion papers [MNR23a, MNR23b|. In particular, Section 5.2 will not be needed for
the other main results of this paper (although it is included here since it is definitely easier
to understand in this context).

5.1. Proof of Theorem 1.4. Let us first of all recall the setting of the theorem. We are
given a closed set W in R""1, a spanning class C for W, and a sequence {(Kj, E;)}; in
Kg such that

sup H"(Kj) < oo, (5.1)
j

and, for some Borel set I/ and Radon measures gk and ppq in €2, it holds that E; X E
and
H'L (2N E)) + 2H" L (R(K;) N B) = pupkc, (5.2)
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as j — oo. In this setting we want to prove that the sets

Ky == (QNI*E)U {1‘ €QNEY 07 (k) (z) > 2} , (5.4)
Ky = (2N9'E) U{z € Q\0"E : 02 (jua)(z) = 2}, (5.5)
are such that (Kpy, E), (Kpq, F) € Kp and
ppk > HPL(QNO'E) +2H"L (Kp, N E©), (5.6)
ha > H'L(QNO*E) + 2H"L (Kpq \ 0°E), (5.7)
with
lljn_lgf Fok(Kj, Ej) > Fox(Kvk, E) lljnig}f Foa(Kj, Ej) > Froa(Kpa, E) ; (5.8)

and that the closure statements

if K; U E](.l) is C-spanning W for every j, (5.9)
then Kpx U E® is C-spanning W | (5.10)
and
if K; is C-spanning W for every 7, (5.11)
then Kpq is C-spanning W, (5.12)
hold true.

Proof of Theorem 1.4. By QN I*E C Kpx N Kpq we have (Kpy, E), (Kpq, E) € K. By
[Mag12, Theorem 6.4], 67 (upx) > 2 on Kpx N E© implies ppi L (Kpx N E@) > 2H"
(Kpx N E™), and, similarly, we have pupgl (Kpq \0*E) > 2H" L (Kpq \0*E). Since, by the
lower semicontinuity of distributional perimeter, we have min{upk, ppa} > H"L(0*ENQ),
(5.6), (5.7) and (5.8) follow. We are thus left to prove that if either (5.9) or (5.11) holds,
then (5.10) or (5.12) holds respectively. We divide the proof into three parts, numbered
by Roman numerals.

I. Set up of the proof: Fixing from now on a choice of (v, ®,T) € T(C) against which
we want to test the C-spanning properties (5.10) and (5.12), we introducing several key
objects related to (v, ®,T).

Introducing so: Up to extracting subsequences, let ;1 be the weak-star limit of H" L Kj,
and set

J={seS": u(T[s]) =0}, (5.13)
so that H(SY\ J) = 0. We fix 59 € J.
Introducing s, {Ulj}z, and K7: For H'-a.e. s € St it holds that H"(K; N T[s]) = 0 for

every j and (thanks to Theorem 1.3/Theorem 3.1) the essential partition {UZ [s]}i induced
on T by K; UT|[s] is such that

T[s] N E;O) is H"-contained in UBEP(K; UT([s|;T), (if (5.9) holds),
T[s] is H"-contained in UBEP(K; UTs];T), (if (5.11) holds).
Therefore we can find a sequence s; — sy as j — oo such that
H'(K;NT[sj]) =0  Vj, (5.14)

and, denoting by {Uf}z the essential partition of 7" induced by K;UT[s;] (i.e. Uij = UZ-.j [55]),
and setting for brevity

K; = UBEP(K; UT[s;);T) = Tn| Jo*U7 , (5.15)
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we have
T[s;] N E" is H"-contained in K7, (if (5.9) holds), (5.16)
T'[sj] is H"-contained in K7, (if (5.11) holds). (5.17)

Introducing {U;}; and K*: By (5.1), Lemma 2.3, and up to extract a subsequence we can
find a Lebesgue partition {U;}; of T such that,

{Ui}; is the limit of {{Uf}l}] in the sense specified by (2.8). (5.18)

Correspondingly we set
K*=Tn|JoU;. (5.19)
i

Having introduced sg, s;, {Uf}u K3, {Ui}i, and K*, we notice that if (5.9) holds, then
we can apply Theorem 4.1 with F; = E; and find that

T[so] N E® is H"-contained in K*,  (if (5.9) holds); (5.20)
if, instead, (5.11) holds, then Theorem 4.1 can be applied with F; = F' = & to deduce
T'[so] is H™-contained in K*, (if (5.11) holds). (5.21)

We now make the following claim:

Claim: We have
K*\ (T[so] U EM) is H"-contained in Ky, (5.22)
K*\ T[so] is H"-contained in Kpq . (5.23)

The rest of the proof of the theorem is then divided in two parts: the conclusion follows
from the claim, and the proof of the claim.

II. Conclusion of the proof from the claim: Proof that (5.11) implies (5.12): By
HY(S! \ J) = 0, the arbitrariness of sy € J, and that of (y,®,T) € T(C), thanks to
Theorem 1.3 we can conclude that Kyq is C-spanning W' by showing that

T'[so] is H"-contained in UBEP(Kyq U T[sol; T). (5.24)

Now, since {U;}; is a Lebesgue partition of T" induced by K* (in the very tautological
sense that K* is defined as T'NU;0*U;!) and, by (5.23) in claim one, K* is H"-contained
in Kyq U T[sp], by Theorem 2.1-(a) we have that if {Z;}; is the essential partition of T
induced by Kyq U T'[so], then U;0*U; is H™-contained in U;0*Z;: therefore, by definition
of K* and by definition of UBEP, we have that

K* is H"-contained in UBEP (Kbd U T[so]; T) . (5.25)
By combining (5.25) with (5.21) we immediately deduce (5.24) and conclude.

Proof that (5.9) implies (5.10): Thanks to Theorem 3.1 it suffices to prove that

T[so] N E® is H"-contained in UBEP (K, U T[so]; T') . (5.26)
By (5.20), the proof of (5.26) can be reduced to that of
K* N EY is H"-contained in UBEP(Kpx U T[so]; T) . (5.27)

Now, let us consider the Lebesgue partition of T defined by {Vi}r = {U; \ E}; U{T N E}.
By [Magl2, Theorem 16.3] we easily see that for each ¢
Hn

EQNoU;, € 0*(U;\E) C (E®No*U;) UO'E, (5.28)
which combined with TNo*(TNE) =T NJ*E C Ky and with (5.22) in claim one, gives

raJove = @noBu{rnlJowi\ B} C (TnoE)U (BN K
k i
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n

C (TnaE)U (K*\EY) € Ky UTIs]. (5.29)
By (5.29) we can exploit Theorem 2.1-(a) to conclude that
T N, 0*Vy is H"-contained in UBEP(Kyx U T'[so]; T) . (5.30)

By the first inclusion in (5.28), E© N K* is H"-contained in T N Y, 0* V4, therefore (5.30)
implies (5.27), as required. We are thus left to prove the two claims.

ITI. Proof of the claim: We finally prove that K* \ (T'[so] U E™) is H"-contained in
Ky (that is (5.22)), and that K* \ T[sp] is H"-contained in Kpq (that is (5.23)).

To this end, repeating the argument in the proof of Theorem 4.1 with I} = F; and
F = E we see that, if we set Xy, = {i : (U})® C E{™} and X,, = {i : U/" C E"™} for
m € {0,1} (see (4.6) and (4.7)), then

X ={i:|U/]|>0}=XJux!,  X:={i:|U]|>0}=XoUXy; (5.31)

and, moreover, for every i there is j(i) such that i € X, implies i € X, for every j > j(@).
Thanks to (5.31) we easily see that K7 =T N U;0*U; can be decomposed as

K% U MU U Miuo o M, (5.32)
(i,k)EX]x X)) i#] (i,k)EX] x XT i#j (i,k)EX]x X]

where Mfk =TnNo* Uij No*U, Ig (an analogous decomposition of K* holds as well, and will
be used in the following, but is not explicitly written for the sake of brevity). We now
prove that

My CEP,  VikeX].i#k, (5.33)
M) Cco°E;, Vie X].keX], (5.34)
Mj, CE", VikeX{,i#k. (5.35)

To prove (5.33) and (5.35): if i # k, i,k € Xg, and x € MZJ , then (by |UZJ N U,g\ =0) Uij
and U ,g blow-up two complementary half-spaces at x, an information that combined with
the £ -inclusion of U} UU] in R™™ \ E; implies

|Br(@)| + o(r" ) = |B,(x) NU]| + | B (x) N U]| < |B,(x) \ Ejl,
that is, z € E;O), thus proving (5.33); the proof of (5.35) is analogous.
To prove (5.34): if i € X}, k € XJ, and & € M7, , then

| _ |Br(2)] n
B, () N Ej| > |B(2) NUJ| = =5 4 o(r ),
; B, (x n
B )\ B > |Bo(w) n07) = PHE gy,
so that x ¢ Ej@ and z ¢ E;l), i.e. x € 0°Fj, that is (5.34).
With (5.33)—(5.35) at hand, we now prove that
rnoE;s ) M, (5.36)
(i,k)eXIx X7
K;inEY = U M. (5.37)

(i,k)EXI x X ki

(Analogous relations hold with K* and FE in place of K} and Ej.)
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To prove (5.36): By 0*E; C 0°E; and (4.4) we find 0*E; N (Uij)(l) = o for every i,7;
hence, since {(U])™}; U {9*U}}; is an H"-partition of T, and by repeatedly applying
(5.33), (5.34) and (5.35), we find
U M, € rnor = JrnoEnaul) e | M, NoE,
(i,k)EX]x X] i ik
H” 1 *
= U szk nao Ej R
(i,k)EXIx X]

which gives (5.36).
To prove (5.37): By (5.33), (5.34), and (5.35), Mfk has empty intersection with EJ@ unless

ik € Xg, in which case Mgk is H"-contained in E;-O): hence,
§ s ) ©) j
U Mj, C KjnEY = U EY N M},
(i,k)EX X X] ki (i,k)EXEx X} ki
that is (5.37).

With (5.36) and (5.37) at hand, we now prove the following perimeter formulas: for
every open set A C T and every j,

> PUA) =H (ANO'E;) +2H (AN K; NEY), (5.38)
i€X}
> PULA) =H (AN E;) + 2H" (AN K; N EY). (5.39)
i€X]

Analogously, for a = 0,1,

> P(U;A)=H"(ANO*E) +2H"(ANK* N E®). (5.40)
1€Xa

To prove (5.38) and (5.39): Indeed, by (5.36) and (5.37),

SN rwlia = Y wAanM)+ Y Y H(ANM])
i€X} (i,k)EXIx X] i€ X] keX)\{i}
= w( U Anmg)senr( U anmg)
(i,k)eXT x X] (i,k)eXIx X7 itk

= H'ANIE)+2H"(ANK;NE"),

that is (5.38). The proof of (5.39) is analogous (since (5.39) is (5.38) applied to the
complements of the E;’s — recall indeed that QN 0*E; = QN o*(Q\ Ej)).

Conclusion of the proof of (5.22) in the claim: We want to prove that K*\ (T[so] U E™)
is H"-contained in K. Since {E®, EW 9*E} is an H"-partition of 2, and Q N 9*F is
contained in Ky, looking back at the definition (5.4) of Ky it is enough to show that

07 (k) (z) > 2 for H™-ae. z € (K*NE®)\ Tso]. (5.41)

To this end, we begin noticing that, if Yy is an arbitrary finite subset of Xo, then there is
7(Yp) such that Yy C X} for every j > j(Yp); correspondingly,

. i J. S J.
Z P(Us; 4) < lim inf Z P(U/; A) < lim inf Z P(U/; A).
€YD 1€Yp iEX(])
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By arbitrariness of Yy, (5.40) with oo = 0, (5.38), and (4.11) (notice that the H"-containment
of the H"-rectiflable set K into K;UT/[so] is equivalent to its H"-containment in R(K; U
T[s;j]) = R(K;)UT[s;]) we conclude that, if A C T is open and such that cl (A)NT[sg] = @,
so that ANT[s;] = @ for j large enough, then

H'(ANO'E)+2H"(ANK*NEY)
_ . i J.
=Y P(U;4) < lin inf Z P(U}; A)

1€Xo ¢

= 1ij;g£fH”(A NO“Ej) +2H" (AN K; N E)
P n * T n . . (0)

< liminf H (ANO“E;) +2H" (AN (R(K;) UTIs;]) N E;”)

- linl}ian"(Aﬂa*Ej) +2H (ANR(K;) NEY) < pni(cl (A)),  (5.42)
J—00

where we have used the definition (5.2) of ppk. Now, if x € (K* N E©)\ T[s], then we
we can apply (5.42) with A = Bs(z) and s > 0 such that cl (Bs(z)) N T'[so] = &, together
with the fact that z € E©® implies H"(Bs(z) N 9*E) = o(s™) as s — 0T, to conclude that

ok (cl (Bs(z))) = 2H™(Bs(z) N K* N EY) + o(s™), as s — 0T (5.43)

Since K* N E© is an H"-rectifiable set, and thus H"(B,(z) N K* N E©) = wy, s™ + o(s")
for H"-a.e. x € K* N E®, we deduce (5.41) from (5.43).

Conclusion of the proof of (5.23) in the claim: We want to prove the H"-containment of
K*\ T[sp] in Kpq. As in the proof of (5.22), combining Federer’s theorem (1.37) with the
definition (5.5) of K4, we are left to prove that

07 (1nq) (z) > 2 for H-ae. z € K*\ (T[so) USE). (5.44)

As proved in (5.42), if A C T is open and such that cl (A) NT[so] = &, then by exploiting
(5.38) and (5.40) with &« = 0 we have
H'(ANGE) +2H" (AN K*NE©) (5.45)
<liminf H"(ANO*E;) +2H" (ANR(K;) N E) ;

Jj—00
the same argument, this time based on (5.39) and (5.40) with o = 1, also gives

H'(ANO*E) +2H"(ANK*NEW) (5.46)
<liminf H" (AN I*E;) +2H" (ANR(K;) N E);

Jj—00

and, finally, since Q \ 0*E is H"-equivalent to QN (E® U E™), the combination of (5.45)
and (5.46) gives

H'(ANO'E) +2H"(ANK*\ 0*E) (5.47)
<liminf H"(ANJ*E;) + 2H"(ANR(K;) \ 0*E;) < ppa(cl(A)),
j—00
where we have used the definition (5.3) of upq. Now, for H"-a.e. x € K*\ (T[so] UO*F)
we have H"(B,(x) N0*E) = o(r™) and H"(B,(z) N K*\ 0*E) = w, r" +o(r") as r — 0T,
as well as cl (B, (x)) NT[so] = @ for r small enough, so that (5.47) with A = B,.(z) readily
implies (5.44). The proof of the claim, and thus of the theorem, is now complete. O
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5.2. A second closure theorem. We now present a variant of the main arguments
presented in this section and alternative closure theorem to Theorem 1.4. As already
noticed, this second closure theorem, Theorem 5.1 below, will play a role only in the
companion paper [MNR23a], where Plateau’s laws will be studied in the relation to the
Allen—Cahn equation, so that this section can be omitted on a first reading focused on
Gauss’ capillarity theory alone.

To introduce Theorem 1.4, let us consider the following question: given an H"-finite
set S which is C-spanning W, what parts of S are essential to its C-spanning property?
We already know from Lemma 2.2 that the unrectifiable part of S is not necessary, since
R(S) is also C-spanning. However, some parts of R(S) could be discarded too — indeed
rectifiable sets can be “porous at every scale”, and thus completely useless from the point
of view of achieving C-spanning. To make an example, consider the rectifiable set P C R?
obtained by removing from [0,1] all the intervals (¢; — €;,¢; + ;) where {¢;}; are the
rational numbers in [0,1] and 2 ), e; = ¢ for some given € € (0,1): it is easily seen that
P is a rectifiable set with positive H!-measure in R?, contained in R x {0}, which fails to
essentially disconnect any stripe of the form (a,b) x R with (a,b) CC (0,1). Intuitively, if
a set like P stands as an isolated portion of S, then R(S) \ P should still be C-spanning.

We can formalize this idea as follows. Denoting as usual Q = R**!\ W, we consider
the open covering {Q }r of Q defined by

{1tk = {Br,h (Tm) bm,h (5.48)

where {Z;}m = Q"N Q and {rn}n = QN (0, dist(xy,, 09)). For every H"-finite set S
we define the essential spanning part of S in 2 as the Borel set

BSP(S) = |J UBEP(S: ) = | {0 Jo vl }
k k %

if {U;[Q]}: denotes the essential partition of 2 induced by S. Since each UBEP(S; Q)
is a countable union of reduced boundaries and is H™-contained in the H™-finite set S,
we see that ESP(S) is always H"-rectifiable. The idea is that by following the unions
of boundaries of essential partitions induced by S over smaller and smaller balls we are
capturing all the parts of S that may potentially contribute to achieve a spanning condition
with respect to W. Thinking about Figure 1.5: the tendrils of S appearing in panel (a)
and not captured by UBEP(S; U), will eventually be included into ESP(S) by considering
UBEP’s of S relative to suitable subsets of U. Another way to visualize the construction
of ESP(S) is noticing that if B,.(z) C Bs(z) C Q, then

B, (z) N UBEP(S; Bs(z)) C UBEP(S; B,(z)),

which points to the monotonicity property behind the construction of ESP(.S). Intuitively,
we expect that

if S is C-spanning W, then ESP(S) is C-spanning W (5.49)

(where C is an arbitrary spanning class for W). This fact will proved in a moment as a
particular case of Theorem 5.1 below.

Next, we introduce the notion of convergence behind our second closure theorem. Con-
sider a sequence {S;}; of Borel subsets of {2 such that sup; H"(S5;) < oco. If we denote by

{Uij [Q2]}: the essential partition induced on €2, by S;, then a diagonal argument based on
Lemma 2.3 shows the existence of a (not relabeled) subsequence in j, and, for each k, of
a Borel partition {U;[Q]}; of Qf such that {UZJ [Q]}i converges to {U;[Q2]}i as j — oo in
the sense specified by (2.8). Since UBEP(S;; Q) = Q. N, 8*Uij [Q], we call any set S of
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the form!!

s=J {Qk N Ua*Uimk]} , (5.50)
k 7

a subsequential partition limit of {S;}; in . Having in mind (5.49), it is natural to
ask if the following property holds:

if §; is C-spanning W for each j,

and S is a subsequential partition limit of {S;}; in 2,

then S is C-spanning W . (5.51)
Our next theorem implies both (5.49) and (5.51) as particular cases (corresponding to be

taking F; = @ and, respectively, K; = S and K; = S; for every j).

Theorem 5.1 (Closure theorem for subsequential partition limits). Let W be a closed
set in R"™1 C a spanning class for W, and {(K;, E;)}; a sequence in Kp such that
sup; H" (K;) < o0 and K; U E;l) is C-spanning W for every j.

If So and Ey are, respectively, a subsequential partition limit of {K;}; in Q and an
L'-subsequential limit of {E;}; (corresponding to a same not relabeled subsequence in j),
and we set

Ky=(Q2NJ*Ey) USy,
then (Ko, Ey) € K and Ko U Eél) is C-spanning W.
Proof. Since Q N 0*Ey C Ky by definition of Ky we trivially have (Ko, Fy) € Kp. Aiming
to prove that KoU EJ" is C-spanning W, we fix (v, ®,T) € T(C), and define so, s;, {U/}i
and {U;}; exactly as in part I of the proof of Theorem 1.4. Thanks to Theorem 4.1 and
by arguing as in part II of the proof of Theorem 1.4, we have reduced to prove that

K*\ (T[so] UE®W) is H™-contained in Kj. (5.52)
By Federer’s theorem (1.37) and since Q N 9*E C K it is enough to prove
(K* N E®)\ T[sp] is H"-contained in Sp,
and, thanks to the construction of Sy, we shall actually be able to prove
K*\ T[so| is H™-contained in Sp . (5.53)

To this end let us pick k such that Qi CC T and Qi N T[so] = . Then, for j > j(k), we
have Q NT[s;] = @, so that

Q, NUBEP(K; UT|s;];T) C UBEP(K; UT|s;]; ) = UBEP(Kj; Q) .

Since {Uf}Z is the essential partition of T' induced by K; U T[s;], if {U3[%]}m is the
essential partition of €2 induced by K, we have just claimed that, for every ¢ and j > j(k),

QN o*U c e o U, [0]. (5.54)

Since {U[Q%]}m is a Lebesgue partition of Q) into essentially connected sets, by (5.54)

the indecomposable components of € N U7 must belong to {U[9%]}m. In other words,
for each i and each j > j(k) there is M (k, 1, j) such that

OnUl = | ULl

meM(k7Z7j)

HThe limit partition {U;[€2]}; appearing in (5.50) may not be the essential partition induced by S
on Q since the individual U;[Q], arising as L'-limits, may fail to be essentially connected. This said,
{U;i[Q%]}: is automatically a partition of Q induced by So.
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As a consequence of Uij — U; and of U [%] — Um[Q] as j — oo we find that, for a set
of indexes Mk, 1), it must be

Q. NU; = U Um[Qk] ,
meM (ki)
and therefore

Q. N O*U; HCn U 8*Um[(2k] c 5.
meM (k,i)

Since we have proved this inclusion for every ¢ and for every k such that Q, CC T with
Qr N T[sp] = 0, it follows that K*\ T'[so] is H"-contained in Sy, that is (5.53). O

6. EXISTENCE OF MINIMIZERS AND CONVERGENCE TO PLATEAU’S PROBLEM
(THEOREM 1.5)

In this section we prove two main results: the first one (Theorem 6.1) concerns the
equivalence of Harrison—Pugh Plateau’s problem ¢ with its measure theoretic reformulation
/g (see (1.21)); the second (Theorem 1.5) is a very refined version of Theorem 1.5.

Theorem 6.1 (Existence for /g and ¢ = ¢g). If W C R™! is closed, C is a spanning
class for W, and the Harrison—Pugh formulation of the Plateau problem

¢ =inf {H"(S): S is a closed subset Q, S is C-spanning W }
1s finite, then the problem
g = inf {H"(S) : S is a Borel subset Q, S is C-spanning W }

admits minimizers, and given any minimizer S for fg, there exists relatively closed S*
which is H™-equivalent to S and a minimizer for £. In particular, £ = {g.

Theorem 6.2 (Theorem 1.5 refined). If W is a compact set in R"*1 and C is a spanning
class for W such that £ < oo, then for every v > 0 there exist minimizers (K, E) of Ypy(v).
Moreover,

(1): if (K, Ey) is a minimizer of Wk (v), then there is (K, E) € K such that K is H"-
equivalent to K*, E is Lebesque equivalent to E,, (K, E) is a minimizer of Wp(v), both E
and K are bounded, K U E is C-spanning W, K N E®Y = &, and there is A € R such that

)\/ X -vpdH" = / divE X dH™ + 2/ div® X dH™, (6.1)
QNo*E QNo*E KNE®©)

VX € CHR"L R with X -vg =0 on 09,
and there are positive constants ¢ = ¢(n) and r1 = r1(K, E) such that

[ENBy(y)l < (1= c)wnsrp", (6.2)

for everyy € QNOE and p < min{ry, dist(y, W)}; under the further assumption that OW
is C2, then there is positive ro = ro(n, W, |)\|) such that

H"(K N Bp(x)) >cr” (6.3)
for every x € cl(K) and r < ro;

(ii): of (K, E;) is a sequence of minimizers for Wy (v;) with vj — 0%, then there exists a
minimizer S of £ such that, up to extracting subsequences, as Radon measures in €2,

H'L(QNO*E)) +2H" L (K;NE) 2 2H"LS, (6.4)

as j — oo. In particular, Uy (v) — 24 = W (0) as v — 0.
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Proof of Theorem 6.1. By Theorem A.1, if ¢ < oo, then ¢g < oco. Let now {S;}; be
a minimizing sequence for ¢, then {(S5;,@)}; is a sequence in Kp satisfying (5.1). By
Theorem 1.4, we find a Borel set .S which is C-spanning W and is such that

2 liminf’H”(Sj) = liminffbk(Sj, @) > fbk(S,Q) = 27‘[”(5) .
j—00 j—00

This shows that S is a minimizer of /5. By Lemma 2.2, S is H"-rectifiable, for, otherwise,
R(S) would be admissible for /g and have strictly less area than S. We conclude the proof
by showing that up to modifications on a H"-null set, S is relatively closed in Q (and thus
is a minimizer of ¢ too). Indeed the property of being C-spanning W is preserved under
diffeomorphism f with {f # id } CC Q. In particular, H™(S) < H"(f(S)) for every such f,
so that the multiplicity one rectifiable varifold Vs = var (.S, 1) associated to S is stationary.
By a standard application of the monotonicity formula, we can find S* H™-equivalent to
S such that S* is relative closed in . Since H"(S) = H"(S*) and C-spanning is preserved
under H"-null modifications, we conclude the proof. O

Proof of Theorem 6.2. Step one: We prove conclusion (i). To this end, let (K., F.) € Kp
be a minimizer of Wy (v). Clearly, (R(K.), Ey) € Kp is such that R(K,) U E® is C-
spanning W (thanks to Theorem 3.1/Remark 3.2) and Fpx(R(Ky), Ey) < Fok(Kx, Ey).
In particular, (R(K,), Ex) is a minimizer of Wpx(v), and energy comparison between
(R(K,), E.) and (R(K,)\ E{", E,) (which is also a competitor for ¥y (v)) proves that

HYR(K,) N ED) =0. (6.5)

Since “C-spanning W7 is preserved under diffeomorphisms, by a standard first variation
argument (see, e.g. [KMS22a, Appendix C]) wee see that (R(K,), E,) satisfies (6.1) for
some A € R. In particular, the integer n-varifold V' = var(R(K,), ), with multiplicity
function 6 = 2 on R(K,) N E” and 0 =1o0n QN 0*FE,, has bounded mean curvature in
Q, and thus satisfies |V||(B,(z)) > ¢(n)r™ for every x € K and r < min{ry, dist(x, W)},
where rg = r9(n, |A|) and, by definition,
K :=QnsptV.

In particular, since (6.5) implies ||[V]| < 2H" L R(K*) , we conclude (e.g. by [Magl2,
Corollary 6.4]) that K is H"-equivalent to R(K.), and is thus H"-rectifiable and relatively
closed in ). Now let

E={ze€Q:3r<dist(z, W) s.t. |E, N B,(z)| =|Br(z)|},
so that, trivially, £ is an open subset of Q with £ ¢ E{". By applying (1.35) to E,, and

by noticing that if x € Q\ E then |E, N B,(z)| < |By(z)| for every r > 0, and that if
r € QNcl(F) then |E, N By(z)| > 0 for every r > 0, we see that

QNOE C {z€Q:0<|E,NB(2)| <|By(z)] Vr >0} = QNcl(5*E;). (6.6)

Since ||V|| > H"L (2N 0*E,) and H™"(B,(x) N *E) = w, "™ + o(r") as r — 0T for every
r € QNO*E, we see that QN O*E, C QNspt||V] = K, and since K is relatively closed in
Q, we have QNcl (0*Ey) C K, and so QNIE C K. In particular, E is of finite perimeter,
and thus by applying (1.35) to E,

QNc(0°E) = {z€Q:0<|ENB,(z)| <|By(z)| Vr >0} C QNIE. (6.7)

Finally, if there is z € (QN E{")\ E, then it must be 0 < |E, N B,.(z)| < | B, ()| for every
r > 0, and thus z € QNcl (0*E,) C K. However, we claim that for every € QNcl (0*Ey)
and r < min{r,, dist(x, W)} (with r, = r.(K,, E,)) it holds

1B (z) N E,| < (1 —¢)wpyr 7™, (6.8)

in contradiction with 2z € E®; this proves that QN E{"” ¢ E, and thus that E, and E are
Lebesgue equivalent. Combining the latter information with (6.6) and (6.7) we conclude

37



that Q Ncl(0*FE) = QN OE C K and conclude the proof of (K, E) € K — conditional to
proving (6.8).
To prove (6.8), let us fix z € QN cl(0*Ey) and set u(r) = |By(z) \ E4|, so that, for a.e.
r > 0 we have
u'(r) = H"(E® NOB,(x)), P(B,(x)\ Ey) =/ (r) + P(Ey«; Br(x)). (6.9)

Since |Ey| = v > 0, we have H"(Q2 N 0*E,) > 0, therefore there must be yi,y2 € QN I*E,
with |y; — y2| > 4r, for some 7, depending on E,. In particular there is ¢ € {1,2} such
that By, (z) N By, (y;) = &, and we set y = y;. Since y; € Q N O*E,, there is w, > 0 and
smooth maps @ : Q x (—w,,w,) — Q such that ®(-,w) is a diffeomorphism of Q with
{‘I)(-, w) 7é Id} CC By, (y)7 and

B(Ew,w)| = B —w,  P@(E.,w); By (1) < P(Ev, Br. (9)(1+ 2|\ [w]), (6.10)

for every |w| < w,. We then consider r; such that |B,,| < ws, so that for every r <
min{ry,dist(z, W)} we have 0 < u(r) < w,, and thus we can define

(K, E,) = (cbu(’”) (K U0B,(z)),®"") (E, U B,,(x))> .

Since ®*(") is a diffeomorphism, we have QN 0*E, C K., and by the first relation in (6.10)
and ®") =1d on Q\ B, (y), we get

|Er| = |E| = | By ()] = |Br(2) N Eu| + 9“7 (E) N By, (y)| = | B« By (y)| = u(r) —u(r) = 0.
Hence Fox (K, Ey) < Fok(K,, E,), from which we deduce

P(E; By(x)) + P(E; By (y)) + 2H" (K. N E” N By (x))

< H"(By(z) N E®) + P(®“"N(EL); By (y)) < '(r) + P(Ex, B (y))(1+ 2 || |w]) ;

where we have used (6.9) and (6.10); by adding up «/(r) on both sides of the inequality,
and using (6.9) again, we find that

c(n) u(r)™ "D < P(Bu(z) \ Ey) < 24/ (r) + 2 |\ Wpk(v) u(r),

for a.e. r < min{ry,dist(x, W)}; since, by (6.6), x € Q Ncl(9*E,) implies u(r) > 0 for
every r > 0, we can apply a standard ODE argument to conclude that (6.8) holds true.

We now prove the remaining assertions in statement (i). First of all, when OW is C2, we
can argue similarly to [KMS22b, Theorem 4.1] to deduce from the modified monotonicity
formula of Kagaya and Tonegawa [KT17] that the area lower bound in (6.3) holds for every
z € cl(K) and every r < rg. The validity of the volume upper bound in (6.2) is immediate
from (6.8) and the Lebesgue equivalence of E, and E. The monotonicity formula for V
combined with H"(2 N K) < oo implies of course that V' has bounded support. Having
proved that K is bounded, |E| < co and QNOE C K imply that E is bounded too. Since
R(K,) and K are H"-equivalent, we have that K U E is C-spanning W. It turns out
that K U E® is C-spanning W too, since F and E, are Lebesgue equivalent and of finite
perimeter, therefore such that E® and E." are H"-equivalent. In fact, on noticing that
QN(EW\E)Cc QNOE C K, we see that K UE®Y = KUE, so that K U E is C-spanning
W, as claimed.

Finally, we prove that K N E® = &. We first notice that, since E C ) is open and
K = QnsptV with V]| < 2H"LR(K*), if KN E # 0, then H*(R(K,) N E) > 0; and
since B C EL" by construction, we arrive at a contradiction with (6.5). Hence, KNE = &.
Now, if z € KN EW, then, by (6.2), z € QN OFE; combining this with K N E = &, we find
KNE® cCQ\c(F)CE?, and thus KNEWY = @.

Step two: For every vy > 0 and vy > 0 we have

W (01 + v2) < Wie(vr) + (0 + 1) w0y D (6.11)
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Since Wi (0) = 24 < oo, (6.11) implies in particular that Wi (v) < oo for every v > 0
(just take v; = 0 and vo = v).

Indeed, let (K1, E1) be a competitor in Wyi(v1) and let {B,(z;)}; be a sequence of
balls with |z;| — oo and [Ey U By (x;)| = vi + v2 for every j. Setting for the sake of
brevity B; = B;,(z;), sine 9*(Ey U Bj) is H"-contained in (0*E1) U dB; we have that
(K2, Ey), with Ky = K1 U0B; and Ey = Ey U Bj, is a competitor of Wy (v1 + v2). Since
0B; N E§0> = @ implies Eéo) C Eim \ 0B, we find that

\Ilbk(v1+v2) < QHR(KQQEQO))-FHTL(QO@*EQ)
< 2HM(K1NEY\0B;) +H"(QNI*Ey) + H"(OB;)
< FulKy B + (n+ 1) w00 | B 0

Since [z;j| — oo, |E1| = v1, and |Ey U B, (75)| = v1 + vg imply |B;| — v2, we conclude by
arbitrariness of (K, Ey).

Step three: Now let {(Kj, E;)}; be a minimizing sequence for Wy (v). Since Wi (v) < oo,
assumption (5.1) of Theorem 1.4 holds. Therefore there is (K, E) € Kg with K U E® is
C-spanning W and such that, up to extracting subsequences,

lim ‘(E]AE) N BR| =0 VR>0, liminf]:bk(Kj, Ej) > ]:bk(Ka E) ; (6.12)
j—00

Jj—o0
actually, to be more precise, if © denotes the weak-star limit of H" L (QN0*E;) +2H"
(R(K;) N E;.O)) in Q, then
p>2H"L(KNE?)+H"L(QNI'E). (6.13)
We claim that
(K, E) is a minimizer of Wy (|E|).

(Notice that, at this stage of the argument, we are not excluding that v* := v — |E| is
positive, nor that |E| = 0.) Taking into account (6.11), to prove the claim it suffices to
show that

Wi (v) > Fore(I, B) + (n+ 1) w5 (o) (1) (6.14)

To see this, we start noticing that, given any sequence {r;}; with r; — oo, by (6.12) and
(6.13) we have that

E;NB., S E, |Ej\B,| v, asj— o, (6.15)
liminf 24" (R(K;) N E” N B,,) + H"(B,, N9"E;) > Fix(K,E),  (6.16)
]4)00

Moreover, since |E;| < oo, we can choose 1; — 0o so that 7—["(EJ(»1> N 9dB,;) — 0, while,
taking into account that P(Ej; \ By,) = H”(E;-” NdB,,) + H"((0*Ej) \ By,), we have

For(Kj, Ej) > 2H"(R(K;) N E” N By,) + H"(B,, N9"E})
+P(E;\ B;;) — H"(E” N 0B,,).

By combining these facts with (6.15), (6.16), and the Euclidean isoperimetric inequality,
we conclude that

Uii(v) = Jim For (K, By) > Fi(K )+ (n 4+ D7 ™ T B\ By, [0+,

that is (6.14).

39



Step four: We prove the existence of minimizers in Wpy(v), v > 0. By step three, there is
(K, E) € K such that K U E® is C-spanning W, (K, E) is a minimizer of Wy (|F|) and,
combining (6.11) and (6.14),

Ui (v) = Ui (|B)) + (0 + 1) wh 5T (v — | B/ 04D (6.17)

Since (K, ) is a minimizer in Wy (| E|), by step one we can assume that K is H"-rectifiable
and that both K and F are bounded. We can thus find B,(z) CC €2 such that | B, (x¢)| =
v — |E|, |Br(zo) N E| = 0, and H"(K N By(x0)) = 0. In this way (K., E,) = (K U
0B, (z0), E'U By(x0)) € Kp is trivially C-spanning W and such that |E.| = v, and thus is
a competitor for Uy (v). At the same time,

Fiok(Ky, Ey) = Fok(K, E) + (n + 1)wié£’f+1) (v — |E|)M ()

so that, by (6.17), (K, E) is a minimizer of Wpy(v). Having proved that minimizers of
Upk(v) do indeed exist, a further application of step one completes the proof of statement
(i)-

Step five: We finally prove statement (ii). Let us consider a sequence v; — 01 and
corresponding minimizers (K, E;) of Wy (v;). By (6.11) with v1 = 0 and vy = v; we see
that {(Kj, E;)}; satisfies the assumptions of Theorem 1.4. Since |Ej| = v; — 0, setting
pi=H'L(QNO*E;)+2H"L(R(K;)N E](.O)), the conclusion of Theorem 1.4 is that there

are a Radon measure x in Q and a Borel set K such that K is C-spanning W and pj; — p
for a Radon measure p in © such that ¢ > 2H" L K. Thanks to (6.11) we thus have

20 = lim Yu(0) + (n+1) w%ﬁl“) v?/(nJrl) > lim inf Wy (vj)
Jj—00 j—00
= ]iminffbk(Kj,Ej) > Fk(K,0) =2H"(K) > 24.
j—00
We conclude that Wik (v;) — 24, K is a minimizer of ¢, and p = 2 H"L K, thus completing
the proof of the theorem. O
Proof of Theorem 1.5. The identity (1.22) is proved in Theorem 6.1. Conclusions (i), (ii),
and (iii) are proved in Theorem 6.2. O
7. EQUILIBRIUM ACROSS TRANSITION LINES IN WET SOAP FILMS (THEOREM 1.6)

We finally prove Theorem 1.6. We shall need two preliminary lemmas:

Lemma 7.1 (Representation of Fyy via induced partitions). If U C Q is a set of finite
perimeter, (K, E) € Kg is such that Fux (K, E) < oo, and {U;}; is a Lebesgue partition
of U\ E induced by K, then each U; has finite perimeter, and, setting K* =, 0*U;, we
have

Foc(E, B;UY) =Y "H UD N V) + 2K (U N (K\K)NE®); (7.1

see Figure 7.1.

Proof. For each i, 0°U; is contained in (9°U)U(0°E)U (U \ E), where both 9°U and 0°FE
are H"-finite being U and F of finite perimeter, and where (U \ E)YN9°U; is H"-contained
in K by assumption. Now, (U \ E)® Cc R**1\ E® 5o that

H'((U\ E)Y noU;) < HY(K\ EY) < Fiu(K,E) < 00.

This shows that, for each i, U; is a set of finite perimeter. As a consequence {UNE}U{U,};
is a Caccioppoli partition of U, so that, by (1.46),

24" (U<1> N [8*(U NE)U KD = H'(UD NI UNE) + Y H(UD Ny, (7.2)
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FIGURE 7.1. The situation in Lemma 7.1: (a) a depiction of the left hand side of
(7.1), where K\ 0*E is drawn with a bold line to indicate that, in the computation
of Fox(K,E;UM) = H" (UM NO*E) + 2H" (UM N K \ 0*E), it is counted with
multiplicity 2; (b) a depiction of the right hand side of (7.1), where K \ K* is
drawn with a bold line to indicate that it has to be counted with multiplicity 2.

with K* = |, 0*U;. Now, thanks to (1.40), (1.41), and the inclusion in (1.46), we have

UY N UNE) L UV o E € UO K,
which combined with (7.2) gives
2H"(UD NK*) =H" UV NIE) + Y _H(UVNIT;). (7.3)

Therefore, using in order
UYNO'ECUYNK*, K'CK, HY(KNEY)=0,
and Federer’s theorem (1.37), we obtain
Fox(K,E;UW) = HYUYNO'E)+2H"(UY NKNE®)
= 2H"(UYNK*NO'E)—H"(UY NI*E)
R2H(UPNK*NE?)+2H"(UY N (K\K*)NEY)

= 2H"(UYNK*)—H" (UYNIE)+2H" UV N(K\K*)NnEY)
= Y H'UDNIU) +2H (U N (K\K)NE),

where in the last identity we have used (7.3). O

The next lemma is a slight reformulation of [DLGM17a, Lemma 10] and [DLDRG19,
Lemma 4.1].

Lemma 7.2. If W s closed, C is a spanning class for W, S is relatively closed in )
and C-spanning W, and B C € is an open ball, then for any v € C we either have
Y(SYHY N (S\ B) # @, or ¥(S') has non-empty intersection with at least two connected
components of B\ S. In particular, it intersects the boundaries of both components.

We are now ready for the proof of Theorem 1.6.

Proof of Theorem 1.6. The opening part of the statement of Theorem 1.6 is Theorem 6.2-
(i), therefore we can directly consider a minimizer (K, E) € IC of Wy (v) such that both E
and K are bounded, K U F is C-spanning W, and

KNnEY =g, (7.4)

and begin by proving the existence of a closed set ¥ C K closed such that (i): ¥ = &
if 1 <n <6, X is locally finite in Q if n = 7, and H*(X) = 0 for every s > n — 7
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if n > 8; (ii): (0*E) \ X is a smooth hypersurface with constant mean curvature; (iii)
K\ (cI(F)UZY) is a smooth minimal hypersurface; (iv),: if z € [QN (OFE \ 0*E)] \ %,
then there are 7 > 0, v € S™, uy,uy € CH*(D¥(x); (—r/4,7/4)) (a € (0,1/2) arbitrary)
such that u;(z) = ue(x) = 0, u; < ug on D¥(x), {u1 < ug} and int{u; = ug} are both
non-empty, and

Cl(z)NK = Ui—io{y+ui(y)v:ycDl(z)}, (7.5)
Cl(z)NI*E = Ui—io{y+ui(y)v:y € {ur <us}}, (7.6)
Clz)NE = {y+tv:ye{u <u},ui(z) <t<wus(z)}. (7.7)

(The sharp version of conclusion (iv), that is conclusion (iv), with a = 1, and conclusion
(v), will be proved in the final step five of this proof.) The key step to prove conclusions
(i)—(iv)q is showing the validity of the following claim.

Claim: There exist positive constants A and ro such that if By, () CC €, then, denoting
by {U;}; the open connected components of By, (x) \ (E'U K),

B,(z) N K = B,(x) NU;0U; , (7.8)
#{i: B (z)NU; # 2} < o0, (7.9)
BQT(CIZ)QCI (8*U]) = Bzr(x)ﬂan, (710)
P(Uj; Br(x)) < P(Vj; Br(x)) + AU; AV, (7.11)

whenever Vj satisfies V;AU; CC By (z) and diam (U;AV;) < ro.

Deduction of (i)-(iv) from the claim: Let {Bay,(%;)}ien be a countable family of balls,
locally finite in €, such that Bs,, (x;) CC Q and Q = U; B, (x;). Setting for brevity

Q = By, (xi) ,

by (7.9) there are finitely many connected components {U;}]Jizl of Bay,(zi) \ (EU K) such
that U; N € # @. Thanks to (7.11), we deduce from [Magl2, Theorem 28.1] that, if we
set Z; =N (8U} \ 8*U;), then ©; N 8*U; is a C1%hypersurface for every a € (0,1/2),
and X7 is a closed set that satisfies the dimensional estimates listed in conclusion (i). In
particular, if we set

Y = Ujen uj;l =%, (7.12)
then ¥ C K thanks to E;- cn 8U; and to (7.8), and conclusion (i) holds by the local

finiteness of the covering { Ba,, (z;)}i of  and from J; < oo for every i. Before moving to
prove the remaining conclusions, we first notice that (7.8) gives

QNK\Y = QNUL U\ %

C YNUL U\ XY = Q;NU;L, 005 (7.13)
second, we notice that, since K is H"-finite,
{ENQ,, Uij N Qz}}];1 is a Caccioppoli partition of €; ; (7.14)
finally, we recall that, by (1.23), for every X € C}(€; R"*!) it holds
A X -vpdH" = / divE X dH"™ 4 2 / div® X dH™. (7.15)
O*E O*E KNE©)

To prove conclusion (ii): Given x € QN O*E \ X, there is ¢ € N such that x € Q;, NJ*E.

By QNo*E C K and by (7.13) there is j(z) € {1, ..., J;} such that x € a*U;(x). By (7.14),
we can use (1.47) and x € QN I*E N B*U;(gﬁ) to deduce that
T ¢ U#j(x)@*U}. (7.16)
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Let r > 0 be such that B,(z) N 8*U;($) is a Cl-hypersurface. Since ¥ contains UJOU; and
(7.10) holds, (7.16) implies that there is r > 0 such that

By(z) cCCU\E,  By(x) NUdU; = By(x) N AU,y = Br(x) N Uj,y . (7.17)
Since B, (x)N Uj#(x)aU; =@ and B,(x)N U;(x) # &, we also have that
B, (z) NU;U} = B,(z) NUj

and thus, by (7.14), that {E N Br(x),U;(m) N By(x)} is an H"-partition of B,(z). In
particular, B,(z) N 0*E = B,(x) N 8*U;f(x): intersecting with B, (z) in (7.13) and taking

into account (7.17), we conclude that
B (x)NK = By(x)N[UNK\X] C B(z)N[QNUL U] = By(x)n0Uj,
= By (x)NJ'E,
and (7.15) implies that, for every X € C}(B,(x); R"+1),

A X vpdH" = / div® X dn™. (7.18)
O*E O*E

Hence, 0*E can be represented, locally in B, (x), as the graph of distributional solutions

of class C1* to the constant mean curvature equation. By Schauder’s theory, B,.(z) N9*E

is a smooth hypersurface whose mean curvature with respect to vg is equal to A thanks

to (7.18).

To prove conclusions (iii) and (iv): Let us now pick x € K \ (X U0*E) and let i € N be
such that z € Q; N K. Let i € N be such that x € ;. By (7.13) there is j(z) € {1,..., Ji}
such that x € 8*U;(w). By (7.14) and by (1.47), either x € 0*FE (which is excluded from

the onset), or there is k(z) # j(x) such that x € O*U,i(x). We have thus proved that
WS 8*U;($) N 8*U£(m) , T ¢ Uj;,,gj(x)’k(m)a*U;. (7.19)

To prove conclusion (iii) we notice that if we are in the case when z € K \ (X UJFE) =
K\ (X Ucl(E)) (thanks to K N E = @), then z ¢ cl(F) implies that, for some r > 0,
By(x)N(XUcl(E)) = 0. In particular, by (7.14) and (7.19), {B,(x)N Ul (ay B, (z)N U,’;(x)}
is an H"-partition of B,(x), and by (7.13)

is a C1*hypersurface. Under these conditions, (7.15) boils down to
/ divE XdH" =0, VX € CY(B,(z);R"™), (7.20)
K

so that K can be represented, locally in B, (z), as the graph of distributional solutions to
the minimal surfaces equation of class C1®. By Schauder’s theory, B,.(x) N K is a smooth
minimal surface.

To finally prove conclusion (iv), let us assume that x € QN (0F \ 0*F) \ X. In this case
(7.14) and (7.19) do not imply that {B,(z) N U;(x),Br(x) N Uli(w)} is an ‘H"-partition of
B, (z); actually, by QNOE = QnNcl (0*E), the fact that € JF implies that Bs(x)NO*E # ()
for every s > 0, so that |Bs(x) N E| > 0 for every s > 0, and the situation is such that, for
every s <,

{Bs(z)N U;(I), By(x) N Uy, Bs(x) N E} is an H"-partition of By(x) (7.21)

with all three sets in the partition having positive measure.
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Now, by the first inclusion in (7.19), there exists v € S"™ such that, up to further decrease
the value of r and for some uy,uy € C1¥(DY(x); (—r/4,7/4)) with uj(x) = uz(x) = 0 and
Vui(z) = Vug(z) = 0 it must hold

Cl(z)N U;(l,) ={y+tv:yeDl(z),t>uy)},
Cl(z)N U,i(x) ={y+tv:yeD(z),t<ui(y)}.

NU
Clx)NE={y+tv:yec{u <us},ui(y) <t<us(y)},
and {u; < ug} is non-empty. Again by (7.19) and (7.13) we also have that

By U; = @ we have u; < ug on DY(z), so that (7.21) gives

(=)

Clle)NK = Ui {y+uw(y)v:yeD(x)},
Cl(z)N O*U;(x) N O*U,i(x) = {y+wy)v:yeDi(z)N{u =u}},
Cl(z)NO'E = Ui, {y+ue(y)v:yeDy(z) N{u <usg}}.

This completes the proof of conclusion (iv),.

Proof of the claim: Assuming without loss of generality that z = 0, we want to find A and
ro positive such that if By, CC Q, then, denoting by {U;}; the open connected components
of By, \ (F U K), we have

B, NK =B,N Ujan , (7.22)
#{j B NU; # 0} < o0, (7.23)
By, Ncl (8*UJ) :Bgrman, (7.24)

and that P(Uj; B,) < P(Vj;B,) + A|U;AV;| whenever V; satisfies V;AU; CC B, and
diam (U;AV;) < rp.

Step one: We prove that

KnintU" = o, intU"Y =U; Vj. (7.25)
To this end, we begin by noticing that, for every j,
By, NOU; C By, NK, (7.26)
Uj C int(U”) C Ba,NellU; C By N(U;UK), (7.27)
By, NOfint(US")] C By, NK. (7.28)

Indeed, for every k and j, U, NU; = @ with Uy, and U; open gives U, N OU; = &, so that
By, NOU; C By, \UUy = By, N (EUK) = By, N K thanks to the fact that ENoU; = @
(as U; N E = @). Having proved (7.26), one easily deduces the third inclusion in (7.27),
while the first two are evident. Finally, from (7.27), and since K is closed, we find

By, Nl (int(U;")) C Bay N (el (U;) UK),
so that subtracting int(U ;1)), and recalling that U; C int(U ;-1)) we find
By, NA[int(U;")] C Bz, N (K U ;)
and deduce (7.28) from (7.26).
Next, we claim that,
if K, =K \;int U;l), then (K, F) € K and K, U FE is C-spanning. (7.29)

To prove that (K., F) € K, the only assertion that is not immediate is the inclusion
QNOE C K,. To prove it we notice that if z € int U;l), then Bs(z) C int U;l) for some
s >0, so that UjNE = @ gives |ENB,(z)| = 0. Since E is open this implies Bs(2)NE = &,
hence z ¢ OF.
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To prove that E U K, is C-spanning: Since E U K, is relatively closed in €, it suffices to
verify that for arbitrary v € C, (K, U E) N~ # @. Since K \ By, = K, \ Ba,, we directly
assume that (K U E) N (v \ Byy) = @. Since K U E is C-spanning W, by Lemma 7.2,
there are two distinct connected components U; and Uy, of By, \ (K U E) such that there
is v(SY) N By, N (8U;) N (0UE) # @. We conclude by showing that

By, N (0U;) N (0U) C Ky, Vi#k. (7.30)
Indeed any point in By, N (0U;) N (0Uy) is an accumulation point for both U; and Uy, and
thus, by (7.27), for both intU]@ and intU,". Since U;NUj = @ implies (intU;l))ﬂ(intUél)) =
(), an accumulation point for both intU](-l) and intU" must lie in [8(intUj(-1))] N[O(intU")].
We thus deduce (7.30) from (7.28), and complete the proof of (7.29).
To deduce (7.25) from (7.29), and complete step one: By (7.29), (K, F) is admissible
in Wpi(v). Since (K, F) is a minimizer of Wyk(v), we conclude that H"(K \ K.) = 0.
Would there be z € int(U;U) N K for some j, then by (6.3), and with p > 0 such that
B,(z) C int(UJ(-l)), we would find

cp” <H'(K N By(2)) < H'(K Nint(U;")) <H"(K \ K.) = 0.

This shows that K N int(U ;U) = . Using this last fact in combination with int(U ;1)) C
By, N (UjNK) from (7.27) we conclude that int(U;-l)) C Uj, and thus that int(U;l)) =U;
by the first inclusion in (7.27).

Step two: We prove (7.24), i.e. Ba, Ncl(0*U;) = By, N OU;. The C inclusion is a
general fact, see (1.35). To prove the reverse inclusion we recall, again from (1.35), that
z € By, Ncl(0*Uy) if and only if 0 < |B,(2) NU;| < |B,| for every p > 0. Now, if
z € Bo, N OUj, then clearly, being U; open, we have |U; N B,(z)| > 0 for every p > 0;
moreover, should |B,(z) N U;| = |B,| hold for some p, then we would have z € int(U]Q)),
and thus z € U; by (7.25), a contradiction.

Step three: We prove, for each j, the H"-equivalence of 0*U; and 9Uj, that is
H”(Bgrﬂan\é)*Uj) =0. (7.31)
By a standard argument [Magl2, Theorem 21.11] it will suffice to prove the existence of

ro > 0 and a, § € (0,1/2) (depending on n) such that, for each j and each z € By, NoUj;,
it holds

a|By| < [By(z) NU;| < (1= P)|By|, (7.32)
for every p < min{rg, dist(z,0B2,)}.
Proof of the lower bound in (7.32): Since diffeomorphic images of C-spanning sets are
C-spanning, a standard argument using diffeomorphic volume fixing variations shows the
existence of positive constants A and ry such that if (K',E’") € Kg, K' U (E")® is C-
spanning W, and (K'AK) U (E'AE) CC B,(z) for some p < rg and B,(z) CC Bay,
then

For (K, E) < Fox(K',E') + A|EAE]. (7.33)
We claim that we can apply (7.33) with
E'=EU (By(z)Nal;), K =(KU(U;”NdB,(2))\ (ENY, (7.34)
where p < rg, B,(z) CC Ba,, and
H"(0B,(2) N[0*EUO*U;]) = H'(K NOB,(2)) =0. (7.35)

Indeed, K’ U (E')® contains K U E® | thus K U E being E open, and is thus C-spanning.
To check that (K',E’) € Kp, we argue as follows. First, we notice that H"({vg =
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VB,,(z)mcl(Uj)}) = 0, since it is H"-contained in the union of 9B,(z) N 0*E and {vg =
Ve (u;)} that are H"-negligible by (7.35) and by the fact that vg = —vq ;) H"-a.e. on
9*E N 9*cl(U;) thanks to |[ENcl(U;)| = 0. By H"({ve = vB,(z)na ;) }) = 0 and (1.39)
we thus have

QNIE L QN {[E9 N (B,(2) ncdU;)] U [(By(z) nclU;)” no*E]}.  (7.36)
Since U; is Lebesgue equivalent to cl(U;) (indeed, By, N OU; C K), we have U;l) =
[cl (U;)] and 0*[cl (U;)] = 0*Uj, so that (1.40) and (7.35) give

0 (By(2) Nl (U;)) = {[cl(U)]V NOB,(2)} U{By(x) NO*[cl (U;)]}
= (UVN8B,(2)) U (By(z) N9*U;) € (U NOB,(2)) UK, (7.37)
by Bz, NOU; C K. By (7.36) and H"((E")" N 0*E’) = 0 we thus find that

QNI E NO*(By(z) Nl (Uy)) € K’ (7.38)
Moreover, by QN 0*E C QNIE C K and
(0"E) N (B,y(2) NclU;)” € BY2 0 (By(z) NelU;)” c R\ (B)W,

we find (9*E) N (B,(2) NclU;)” € K\ (E')  K’, which combined with (7.38) finally
proves the H"-containment of Q@ N J*E’ into K’, and thus (K', E’) € Kg. We have thus
proved that (K',E’) as in (7.34) is admissible into (7.33). Since Fpx (K, E;0B,(z)) =0
by (7.35) and Fix(K, E; A) = Fuo(K', E'; A) if A=Q\ cl(B,(z)), we deduce from (7.33)
that

Fok(K, E; By(2)) < Fox(K', E';cl (By(2))) + A |EAE|. (7.39)
To exploit (7.39), we first notice that {B,(z) N U}y is a Lebesgue partition of B,(z) \ £
with B,(z)" N0*(B,(z) NUk) = B,(z) N 0*Uy, for every k, so that, by Lemma 7.1,

For(K, B By(2)) = 2H" (Bp(z) nE© A (K U B*Uk» +3 P(UiiBy(2)).  (7.40)
k k
Similarly, {B,(z) N Uk }r; is a Lebesgue partition of B,(z) \ E’, so that again by Lemma
7.1 we find
Fo(K' B By(2)) = 21" (B,(2) N (B) 11 (K'\ | 0°Uk) ) + 3 P(Uks By(2))
ki Py

— 2" (Bp(z) N (BN N (K \ L];Ja*Uk)) + ; P(Uy; B,(2)) (7.41)

where in the last identity we have used that, by (7.34), we have B,(z) N (E")® No*U; =0
and B,(z) N K'N(E)© = By(z) N K N (E£)®. Combining (7.39), (7.40), (7.41) and the
fact that (E')© C E©, we find that

P(Uj; By(2)) < Fox(K', E';0B,(2)) + A|By(2) N U] . (7.42)

The first term in Fui(K', E';0B,(2)) is P(E';0B,(z)): taking into account H™(9*E N
0B,(z)) =0, by (7.36) and the second identity in (7.37) we find

P(E";0B,(2)) = H"(0B,(2) N E® Nd*(B,(z) NclUj))
HY(EY NUY NOB,y(2)) = H* (U NOB,(2)),
while for the second term in Fyi (K', E';0B,(2)), by H"(K N0B,(z)) =0,
HM(K'N (BN N0B,y(2)) = H"((E)” NUMY NIB,(2)) =0
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since (E') C (B,y(2)Ncl (U;)) and B,(z)Ncl (U;) has positive Lebesgue density at points
in U;” N dB,(z). Having thus proved that Fux(K’', E';0B,(z)) = H"(Uj(.l) NOB,(z)), we
conclude from (7.42) that

P(Uj By(2)) < H'(U;” N 0By (2)) + A|Bo(=) N Ujl.

for a.e. p < rg. Since z € By,NAU; = By,Ncl (0*U;) and (1.35) imply that |B,(z)NU;| > 0
for every p > 0, a standard argument (see, e.g. [Magl2, Theorem 21.11]) implies that, up to
further decrease the value of 1y depending on A, and for some constant o = a(n) € (0,1/2),
the lower bound in (7.32) holds true.

Proof of the upper bound in (7.32): We argue by contradiction that, no matter how small
B € (0,1/2) is, we can find j, z € By, N OU;, and p < min{ry, dist(z, Ba,)}, such that

[Bu(=) NUj| > (1 B) B, (7.43)

We first notice that for every k # j it must be B,/(z) N OUy = &: indeed if w €
B, /5(2) N OUy, for some k # j, then by the lower bound in (6.2) and by (7.43) we find

a|Bypa| < |Up N Byja(w)| < |By(2) \ Uj| < BBy
which gives a contradiction if 3 < a/2"*!. By B,2(2) N OUy, = & it follows that
B,2(2) C cl(Uj) Ucl(E). (7.44)
Let us now set
E' = E\ B,)(2), K' = (K\ B,2(2)) U (EY NOB,(2)) . (7.45)
By (1.41), if H"(0*E N 0B,;;) = 0, then (K',E') € K, since (2 \ B,2(2)) N 0*E C
K\ B,5(z) C K’ implies
QNo'E' = an {((0*E) \ Bp/g(z)) U(EYN 8Bp/2(z))} CK'.
Moreover K" U (E™)" is C-spanning W since it contains (K U E) \ B, /»(2), and
(K UE)\ B,(z) is C-spanning W . (7.46)

Indeed, if v € C and ~(S') N (K U E) \ B,/2(z) = 0, then by applying Lemma 7.2 to
S = KUEFE and B = By, we see that either v(S!) N (K U E) \ Bs, # @ (and thus
Y(SYN(KUE)\B,5(2) # @ by B,2(2) C By), or there are k # h such that v(S')NOU}, #
@ and y(S')NOU}, # @. Up to possibly switch k and h, we have that k # j, so that (7.44)
implies that & # v(S') N AU, = v(S') NOU \ B,/2(z), where the latter set is contained in
K\ B,5(2) by (7.22) and B,/5(2) C B,. This proves (7.46).

We can thus plug the competitor (K’, E') defined in (7.45) into (7.39), and find
Fik(K, B3 Bya(2)) < Fox (K, E'5cl(Bya(2))) + AE N Bya(2)]

for every p < min{ro,dist(z,9Bz,)} such that H"(K NIB,/5(2)) = 0. Now, by Lemma
7.1 and by (7.44) we have

Fox(K, E; By o(2)) = P(Uj; Bya(2)) = P(E; Bya(2))
while (1.40) gives
cl(Byja/2) NK' ™ cl(B,)2/2) NO*E' & EVNOB,(2),
thus proving that, for a.e. p < min{ro, dist(z,0Ba,)},
P(E; B,j5(2)) < HYEW N B,5(2)) + AEN B, ()|
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Since z € By, NOU; and B,y(2) N 0*U; = B,s(2) N 0" E, by (1.35) we see that [E N
B,2(2)| > 0 for every p < min{ro,dist(z,0B2,)}. By a standard argument, up to further
decrease the value of 79, we find that for some o/ = o/(n) it holds

|[ENB,(z)| > a Bl Vp < min{rg, dist(z,0Bs,)},
and since |EN B, 3(2)| = |B,/2(2) \ Uj| this give a contradiction with (7.43) up to further
decrease the value of .

Step three: We prove (7.22) and (7.23). The lower bound in (7.32) implies (7.23), i.e
J=#{j:U;NB, # &} < oo. Next, by By, N0U; C K (last inclusion in (7.27)), to prove
(7.22) it suffices to show that

KN B, CUL_,0U;. (7.47)
Now, if z € KN B,, then by KN E = & we have either z € K\ cl(FE) or z € B,NOJE, and,
in the latter case, |[E N B,(z)| < (1 — ¢)|B,| for every p < min{rg, dist(z,0W)} thanks
0 (6.2). Therefore, in both cases, z is an accumulation point for (U}]:lUj)“) N B,.. Since
J is finite, there must be at least one j such that z € ¢l (U;) — hence z € U; thanks to
KN Uj = .

Before moving to the next step, we also notice that
Fiux(K, E; By) ZP (U}; By) (7.48)

Indeed, by (7.22), (7.23), and (7.31) we have

KNB, =B, NU_0U; = B.nUL_,0'U;, (7.49)

so that, in the application of Lemma 7.1, i.e. in (7.40), the multiplicity 2 terms vanishes,
and we find (7.48).

Step four: In this step we consider a set of finite perimeter V; such that, for some B :=
B,(z) C B, with p < rg and H"(K N9JB) = 0, we have

UiAVy CC B. (7.50)
We then define a pair of Borel sets (K', E') as
E' = (E\B)U [Bn(ViA(EUlY))], (7.51)
K' = (K\B)U[BN(0"ViUdUU---UOUy)], (7.52)
and show that (K',E’") € Kg, K' U (E")™ is C-spanning W, and
Fix(K', E') — Fu(K, E) < P(Vi; B) — P(Uy; B). (7.53)

As a consequence of (7.53), (7.33) and |[EAE’| = |U1AVy|, we find of course that P(Uy; Q) <
P(V1;Q) + A|U1AV;], thus showing that U; is a (A, rp)-perimeter minimizer in 2.

Proving that (K’, E’) € Kp is immediately reduced to showing that B N 9*E’ is H"-
contained in BN (0*V4 UJ*Ua U --- U J*Uy) thanks to H"(K N9IB) = 0. Now, on taking
into account that, by (1.39) and (1.41), 0*(X UY) and 0*(X \ Y) are both H"-contained
n (0*X)U (0"Y), and thus 0*(XAY) is too, we easily see that

BNO'E =BN[VIA(EUUY)] € (BN V1)U (BN (EUTY)).
However, BN (EUU1) = B\ (U/_,Uj), so that 8*X = &*(R"!\ X) gives

BNo (EUU,) = Bma*(uJ L Uj) € BN U;j»20"U;,

where we have used again the H"-containment of 0* (X UY) in (0*X)U(9*Y"). This proves
that (K/,E/) € Kp.
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To prove that K' U (E")® is C-spanning W, we show that the set S defined by
S = ((K UE)\ B) U (Cl (B)N szQ@Uj) ,
is H"-contained in K’ U (E’)™ and is C-spanning W.

To prove that S is H™-contained in K'U(E")™, we start by noticing that (KUFE)\cl (B)
is H"-equivalent to (K U E® UJ*E) \ cl(B) ¢ KUE®Y (by (K,E) € Kg), whereas
|(EAE')\ B| = 0 implies (EMWA(E")™) \ cl(B) = @: hence S\ cl(B) if H"-contained in
K'U(E")®. Next, by (7.31) and by definition of K’,

SNB=BnN szgan e BN szga*Uj Cc K.

Finally, by H"(K N0B) =0, (7.26), and Federer’s theorem, (SN9dB)\ K is H"-equivalent
to (EY NOB)\ K, where EY N A= (E')™ N A in an open neighborhood A of B thanks
to U1AVy CC B.

To prove that S is C-spanning W, since S is relatively closed in €2 and thanks to Theorem
A.1, we only need to check that S N~(S') # @ for every v € C. Since (K UE)N~(S!) # @
for every v € C, this is immediate unless v is such that S N ~(S!)\ B = @; in that
case, however, Lemma 7.2 implies the existence of j # k such that y(S') N BN 0U; and
v(S') N B N QU are both non-empty. Since either j > 2 or k > 2, we conclude by (7.26)
that v(SY) N BN K’ # @, thus completing the proof.

We are thus left to prove the validity of (7.53). Keeping (7.48) and Fpi(K', E'; B) <
Fva(K', E'; B) into account, this amounts to showing that

J
Foa(K',E'; B) = H"(BNO*E')+2H"(BNK'\0"E') = P(Vi;B)+» P(Uj;; B). (7.54)
§=2
To this end we notice that by (1.44) and BN E' = BN [V1A(E U U;)| we have
BNOo*E £ Bn{oViud(Eul))}
L Bn{(@Vi) U (UPNIE) U (EQNoUy)},

where we have used (1.39) and H"({vg = vy, }) = 0 (as ENU; = @). By (1.46) and
(1.47), since {BN E,BN Uj}évzl is a Caccioppoli partition of B, we have

U No*E = (0"E)n | J(0"U;),  EQno T = (0"Uh)n | J(0T)),

Jj=2 Jj=2
so that
BnoE Y Bn {(a*vl) U ([(a*E) U@ )] N U(@*Uj))} :
j>2
NK'\OE) X Bn ( U a*Uj) \ [("B) U (0°Th)] .
Jj=>2
We thus find

HYBNIE)+2H (BN (K'\ 0*E"))
= P(Vi; B) + 21" U )\ (O*EUOUL) ) + H" 8*U; ) N (" E U U,y)
oo (Yo @ pvo) (Y ow) nesoos)
=P(Wi;B)+ > P(U;;B),
3>2
that is (7.54).

Step five: In this final step we prove conclusions (iv) and (v). To this end we fix z €
QN (OE \ 0*E)] \ ¥, and recall that, by conclusion (iv),, there are r > 0, v € S",
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ui,ug € CH¥(DY(x); (—r/4,7/4)) (a € (0,1/2) arbitrary) such that uy(x) = ug(x) = 0,
uy < ug on DY(z), {u1 < UQ} and int{u; = us} are both non-empty, and

Cl(x)NK = Uimip{y +ui(y)v:yeDj(z)}, (7.55)
({L‘) NO*E = Ui:l,Q{y + ul(y)u Yy € {u1 < UQ}} , (7.56)
Cl(z)N = {y+tv:ye{u <ul},ui(z) <t <us(z)}. (7.57)
We claim that (ug, u2) has the minimality property
A(ul,uQ) < A(wl,wg) = \/1+ ]Vw1]2+ \/1‘1‘ \Vw2|2, (7.58)
D} (z)

among all pairs (wq,ws) with wy,ws € Lip(D¥(z); (—r/2,7/2)) that satisfy

wy <wz, on DY(z), .
wg =up, onoDY(x), k=12, /Dz(x)wz—w1—/$(z)u2—u1. (7.59)

Indeed, starting from a given a pair (w1, ws) as in (7.59), we can define (K’ N CY(x), E' N
CY(z)) by replacing (u1,ug) with (wy,ws) in (7.55) and (7.57), and then define (K', E') €
Kg by setting K'\ CY(z) = K\ C%(z) and E'\ C¥(z) = E\ C¥(x). Since OCY\ (K'UE") =
OCY \ (K UE) it is easily seen (by a simple modification of Lemma 7.2 where balls are
replaced by cylinders) that (K’, E) is C-spanning W. Since |E’| = |E|, the minimality
of (K, FE) in ¥k(v) implies that Foi(K, E) < Fpk(K', E’), which readily translates into
(7.58).

Recalling that both Ay = 1nt{u1 = u2} and A = {u1 < ug} are non-empty open subsets

of DY(z), and denoting by MS(u va ¢ - [(Vu)//1+|Vul?] the distributional
mean curvature operator, we ﬁnd that
MS(u1) + MS(ug2) =0, on DY(z),
MS(ug) =0, on Ag for each k=1,2,
MS(ug) = —MS(uq) = A, on A, (7.60)

for some constant A € R; in particular, uy,us € C*(Ag) N C*°(A4). We notice that it
must be
A<O0. (7.61)

Indeed, arguing by contradiction, should it be that A > 0, then by (7.60) we find MS(ug) >
0 and MS(u;) < 0 on A;. Since A4 is open an non-empty, there is an open ball B C
Ay such that 0B N 0A; = {yo}. Denoting by z( the center of B and setting v =
(ro — v0)/|zo — Yo, by u1 < ug2, ui1(yo) = u2(yo) and up € CH(DY(x)) we find that
Vui(yo) = Vua(yo). At the same time, by applying Hopf’s lemma in B at yo, we see that
since MS(u2) > 0 and MS(u1) < 0 on B, it must be v - Vua(yp) < 0 and v - Vuy(yp) > 0,
against Vui(yo) = Vua(yo)-

By (7.60), (7.61), and ug > u; on DY (z) we can apply the sharp regularity theory for
the double membrane problem developed in [Sil05, Theorem 5.1] and deduce that uy, ug €
CH1(D¥(x)). Next we notice that, for every o € C°(A,), and setting uy = up — uy,

2 [ o= Ms(um)lg] — M(u)le] = / AE[T] Ve,
where we have set, with f(z) = /1 + |2|?,
1
A(z) = / V2 f (s Vua(z) + (1 — s) Vui () ds.
0

In particular, uy € Cb 1(DV ( )) is a non-negative distributional solution of
v (A(@)Vus) = 2%, on Ay,
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with a strictly positive right-hand side (by (7.61)) and with A € Lip(A4; REY) uniformly

elliptic. We can thus apply the regularity theory for free boundaries developed in [FGS15,
Theorem 1.1, Theorem 4.14] to deduce that

FB=D!(z)Nd{uy =0} =DY(z) NO{uz = u1 },
can be partitioned into sets Reg and Sing such that Reg is relatively open in FB and such
that for every z € Reg there are 7 > 0 and 8 € (0,1) such that B.(z) N FB is a C15-

embedded (n — 1)-dimensional manifold, and such that Sing = UZ;éSingk is relatively
closed in FB, with each Sing,, locally H*-rectifiable in D¥(x). Since, by (7.56),

Cl(z)N(OE\O"E) = {y+wui(y)v:y € FB}

and u; € CHY(D¥(x)), we conclude by a covering argument that QN (OF \ 0*E) has all
the required properties, and complete the proof of the theorem. ]

8. EQUILIBRIUM ACROSS TRANSITION LINES IN WET FOAMS (THEOREM 1.7)

Proof of Theorem 1.7. Let Q C R"*! be open and let (K., E.) € Kiam. We can find
(K,E) € K such that K is H"-equivalent to K,, E Lebesgue equivalent to E,, and
K N EY = @ by repeating with minor variations the considerations made in step one
of the proof of Theorem 6.2 (we do not have to worry about the C-spanning condition,
but have to keep track of the volume constraint imposed for each U;, which can be done
by using the volume-fixing variations for clusters from [Magl2, Part IV]). In proving the
regularity part of the statement, thanks to Theorem 2.1-(a) we can directly work with
balls B CC € having radius less than ro (with ro as in (1.33)), and consider the open
connected components {U;}; of B induced by K U E. Using Lemma 7.1 and, again,
volume-fixing variation techniques in place of the theory of homotopic spanning, we can
proceed to prove analogous statement to (7.8), (7.9), (7.10), and (7.11), thus proving the
(A, ro)-minimality of each U; in B. The claimed C!®-regularity of each U; outside of a
closed set ¥ with the claimed dimensional estimates follows then from De Giorgi’s theory
of perimeter minimality [DG60, Tam82, Magl2]. O

APPENDIX A. EQUIVALENCE OF HOMOTOPIC SPANNING CONDITIONS

In Theorem A.1 we prove that, when S is a closed set, the notion of “S is C-spanning
‘W7 introduced in Definition B boils down to the one in Definition A. We then show that
the property of being C-spanning is stable under reduction to the rectifiable part of a Borel
set, see Lemma 2.2.

Theorem A.l. Given a closed set W C R"1, a spanning class C for W, and a set S
relatively closed in 2, the following two properties are equivalent:
(i): for every v € C, we have SN ~(S') # @;
(ii): for every (v, ®,T) € T(C) and for H'-a.e. s € S*, we have
for H"-a.e. x € T[s], (A.1)
3 a partition {T1,To} of T with x € 0Ty N 0Ty,
and s.t. SUT][s] essentially disconnects T into {T1, T} .
In particular, S is C-spanning W according to Definition A if and only if it does so
according to Definition B.

Remark A.2 (z-dependency of {T1,75}). In the situation of Figure 1.4 it is clear that
the same choice of {T7,T>} can be used to check the validity of (A.1) at every x € T's].
One may thus wonder if it could suffice to reformulate (A.1) so that the partition {77, 75}
is independent of z. The simpler example we are aware of and that shows this simpler
definition would not work is as follows. In R3, let W be a closed d-neighborhood of a
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Ay

Y Y

FIGURE A.l. The situation in Remark A.2. The components A;, Ay and As
(depicted in purple, yellow, and green respectively) of U \ T'[s] are bounded by the
three disks {D;}?_; (depicted as boldface segments).

circle T, let U be the open d-neighborhood of a loop with link number three (or higher odd
number) with respect to W, let K be the disk spanned by I, and let S = QN [(K\U)UJU],
see Figure A.1. Now consider a “test tube” T" which compactly contains U and is such that,
for every s, U N T|[s] consists of three disks {D;}3_,. Since U C T, the property “SUT|s]
essentially disconnects 7" into {77,72} in such a way that T'[s] C T'N 0Ty N 0°T” would
immediately imply “U N (S UT[s]) = U N T[s] essentially disconnects TN U = U into
{U1,Us} with UNT[s] C UNo°U;NO°Uy”, where U; = T; NU (see step one in the proof of
Theorem 3.1 for a formal proof of this intuitive assertion). However, the latter property
does not hold. To see this, denoting by {4;}?_, the three connected components of U\ T'[s],
we would have Uy = A; U A; and Uy = Ay, for some choice of i # j # k # i, whereas,
independently of the choice made, U N 9°U; N 9°Us always fails to contain one of the disks
{Di}g’zl: for example, if Uy = Ay U Ay and Uy = Ag, then U N 0°U; N 0°Us = Dy U Dy,
and D; is entirely missed. We conclude that the set S just constructed, although clearly
C-spanning W in terms of Definition A, fails to satisfy the variant of (A.1) where a same
partition {77, 75} is required to work for H"-a.e. choice of x € T'[s].

Proof of Theorem A.1. Step one: We prove that (ii) implies (i). Indeed, if there is v € C
such that S N ~(S') = &, then, S being closed, we can find (y,®,7) € T(C) such that
dist(S,T) > 0. By (ii), there is s € S! such that S U T[s] essentially disconnects T. By
dist(S,T) > 0 we see that (SUT[s]) NT = T'[s], so that T[s] essentially disconnects T', a
contradiction.

Step two: We now prove that (i) implies (ii). To this end we consider an arbitrary
(v,®,T) € T(C) and aim at proving the existence of J of full #'-measure in S' such
that, if s € J, then (A.1) holds.

This is trivial, with J = S, if |[SNT| = |T|. Indeed, in this case, we have T = S® NT,
that, combined with S being closed, implies 7' = SN T. In particular, SUT[s] = T for
every s € S!, and since, trivially, T essentially disconnects T, the conclusion follows.

We thus assume that [S N T| < |T|: in particular,

U=T\S

is a non-empty, open set, whose connected components are denoted by {U; };cr (I a count-
able set). By the Lebesgue points theorem, £ 1-a.e. 2 € T belongs either to U® or to
U. Then, by the smoothness of & and by the area formula, we can find a set J of full
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H1-measure in S! such that
H"(T[s] \ (UO U U)) =0, Vse J. (A.2)

In particular, given s € J, we just need to prove (A.1) when either z € T[s]NU® or
x € T[s]NU. Before examining these two cases we also notice that we can further impose
on J that

W (T n[ovuassu O\ v)uJUP\U)]) =0, vses.  (A3)
el
Indeed, again by the Lebesgue points theorem, the sets 9°U, 9°S, UV \U, and U UV \U;
are all £ negligible.

Case one, xz € T[s] NU®: To fix ideas, notice that U # & implies |[SNT| > 0, and in
particular S has positive Lebesgue measure. Given an arbitrary s’ € J\ {s} we denote by
{I1, I} the partition of S' bounded by {s,s’}, and then consider the Borel sets

T = oL x BY)NS,  To=0(kx B)U (2 x BY)\S).

We first notice that {T1,7%} is a non-trivial partition of T: Indeed |T7| > 0 since z has
density 1/2 for ®([; x B}) and (by x € U©) density 1 for S N T; at the same time
|To| = |T'\T1| > |T"\ S| > 0. Next, we claim that

TW N Ty N O°Th is H™-contained in S'. (A.4)
Indeed, since ®(I; x B}') is an open subset of T' with TN 9[®(I; x B})] = T[s]UT|[s'], and
since 9°T coincides with 9¢S inside the open set ®(I; x B}'), we easily see that

TN TN T, = TNOTI =TNI(®(I, x BY)NS)
C (®(I x BY)No°S) U ((T[s] uT[s)) \s<°>) .
Now, on the one hand, by H"(9°S N (T'[s]UT[s'])) = 0 (recall (A.3)), it holds
(T[s]UT[s"]) \ S is H"-contained in T N SD;

while, on the other hand, by 2N oS C QN9S C QNS (since S is closed in ) and by
®(I; x BYY) C T C Q, we also have that ®(I; x B}) N9°S C T' N S; therefore

TW N Ty N O°Ty is H"-contained in TN (SUSH)=TnNS,

where we have used that S is closed to infer S C S. Having proved (A.4) and the
non-triviality of {11, 7>}, we conclude that S (and, thus, S UT[s]) essentially disconnects
T into {T1,T>}. We are left to prove that z € T'NO°T; NOTy. To this end, we notice that
zeT[s|N(T\S)® and ®(I; x BY) C T imply

|Br(z)]

|TiNB,(z)| = |®([1 x B} )NSNB,(x)| = |®(11 xB?)ﬂBr(:c)Ho(r"H) = T—i—o(r"“),

so that x € (T1)"/? C 9°Ty; since TNO°Ty = T NO°Ty NO°T, and = € T we conclude the
proof in the case when z € T[s] N U®.

Case two, z € T[s] N U: In this case there exists i € I such that x € U;, and, correspond-
ingly, we claim that

3{V1, Va} a non-trivial Borel partition of U; \ T'[s], (A.5)
st. € VI NOVo and TN (OVL UIOVR) C SUT]s].

Given the claim, we conclude by setting 77 = V4 and T = Vo U (T \ U;). Indeed, since
Vo NU; = Ty, N U; with U; open implies U; N 0V = U; N 9°Ty, we deduce from (A.5) that

relU;NIVINIVy=U;,NOTy NOTy;
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at the same time, S U T[s] essentially disconnects 7" into {T7,T>} since, again by (A.5),
T NOTINOT, =TNOTy =TNoVi, CcT NV, C SUT[S].

We are thus left to prove (A.5). To this end, let us choose r(z) > 0 small enough to have
that B,.(,)(x) C U;, and that B, (,(x) \ T'[s] consists of exactly two connected components
{V{*, Vi’ }; in this way,

z e (V)2 n (V). (A.6)
Next, we define

V1 = the connected component of U; \ T'[s] containing V¥,
Vo =Ui\ (T[s]uW1).
Clearly {V1,Va} is a partition of U; \ T'[s], and, thanks to 0V, UdVa C T'[s] UQU;, we have
TNV UOVa) CTN(T[s]Udl;) C SUTTs].

Therefore (A.5) follows by showing that |Vi||Va| > 0. Since V;j contains the connected
component Vi* of B,.(,)(z)\T'[s], which is open and non-empty, we have [Vi| > 0. Arguing
by contradiction, we assume that

[Va| = Ui\ (T[sJUW1)] = 0.
Since V; is a connected component of the open set U; \ T[s] this implies that

Ui \ T[S] = Vl .

Let 1 € V¥ and zo € V5¥ (where V{* and V¥ are the two connected components of
Bi(y(w) \ T[s]). Since V; is connected and {1, 72} C U; \ T[s] = V1, there is a smooth
embedding 7, of [0, 1] into V; with 71(0) = x; and (1) = x2. Arguing as in [DLGM17b,
Proof of Lemma 10, Step 2] using Sard’s theorem, we may modify ; by composing with
a smooth diffeomorphism such that the modified v, intersects 0B,.(,)(z) transversally at
finitely many points. Thus v1([0,1]) \ ¢l B,.(;) () is partitioned into finitely many curves
71((ai, b;)) for disjoint arcs (a;,b;) C [0,1]. Since B,(y)(z) \ T'[s] is disconnected into V{*
and V3¥ and v is disjoint from T[s], there exists 7 such that, up to interchanging V;* and
Vs’ y(a;) € el Vi N OB,y () and 7(b;) € cl ViF N OB,y (7). Let us call 47 the restriction
of 71 to [a;, b;]. Next, we choose a smooth embedding vz of [0,1] into B,.(;)(z) such that
72(0) = F1(ai), v2(1) = 71(b;), and 42([0, 1]) intersects T'[s] N B,(,)(z) at exactly one point,
denoted by x12 = ¥2(to), with

Y3(to) # 0. (A.7)
Since 71((ai, b)) N cl By (y)(z) = @ and ~2([0,1]) C clB.(x), we can choose 72 so that
the concatenation of v; and 7 defines a smooth embedding 7, of S! into U; € T. Up to
reparametrizing we may assume that v,(1) = x12. Since 71([0,1]) C V5 and ViN(SUT'[s]) =
&, we have that

%S N (SUTs]) = 72([0,1]) N (SUTTs]) = {z12} € T[s] N By (). (A.8)

A first consequence of (A.8) is that 74(S') NS = @. Similarly, the curve 74, : St — Q
defined via 74 (t) = V() (¢t € S') where the bar denotes complex conjugation, has the
same image as 7, and thus satisfies 7,«(S') NS = @ as well. Therefore, in order to obtain
a contradiction with |Vo| = 0, it is enough to prove that either v, € C or 7. € C. To this
end we are now going to prove that one of 7, or 7. is homotopic to v in T (and thus
in ), where « is the curve from the tube (v, ®,T) € T(C) considered at the start of the
argument.

Indeed, let p : S x B — S! denote the canonical projection p(¢, ) = t, and consider the
curves o, = po®~lov, : St = St and 0y, = po®~lon,,. By (A.8), 0;1({3}) ={1},and 1
is a regular point of o, by (A.7) and since @ is a diffeomorphism. Similarly, o;!({s}) = {1}

54



and 1 is a regular point of o... Now by our construction of 7., exactly one of v, or V.«
is orientation preserving at 1 and the other is orientation reversing. So we may compute
the winding numbers of o, and o, via (see e.g. [Mil97, pg 27]):

dego, =sgn det Do, (1) = —sgn det Do, (1) = —deg o, € {+1,—1}.

If we define 0 = p o ®! 0+, then ¢ has winding number 1, and so is homotopic in S*
to whichever of o, or o, has winding number 1. Since @ is a diffeomorphism of St x BT
into €2, we conclude that v is homotopic relative to € to one of 7, or 74, and, thus, that
v* € C or v € C as desired. O

APPENDIX B. CONVERGENCE OF EVERY MINIMIZING SEQUENCE OF W (v)

In proving Theorem 1.5 we have shown that every minimizing sequence {(Kj, E;)}; of
Uy (v) has a limit (K, E) such that, denoting by B(") a ball of volume w, it holds

Ui (v) = V(| E|) + P(BUIED) Upk(|E]) = Fox(K, E),

with both K and F bounded. In particular, minimizers of Wy (v) can be constructed in
the form (K UdB~1ED (z), EUBO-IED (2)) provided z is such that BU~IED(z) is disjoint
from K UEUW. This argument, although sufficient to prove the existence of minimizers
of Upk(v), it is not sufficient to prove the convergence of every minimizing sequence of
Uk (v), i.e., to exclude the possibility that |F| < v. This is done in the following theorem
at the cost of assuming the CZ%-regularity of 92. This result will be important in the
companion paper [MNR23a].

Theorem B.1. If W s the closure of a bounded open set with C?*-boundary, C is a
spanning class for W, and £ < oo, then for every v > 0 and every minimizing sequence
{(Kj, Ej)}j of Yk (v) there is a minimizer (K, E) of Wyi(v) such that K is H"-rectifiable
and, up to extracting subsequences and as j — 0o,

Ej—E, jp »H'LQNIE)+2H"L(KNEY), (B.1)
where pj = H'L (QNO"E;) +2H" L (R(K;) N E”).

Proof. By step three in the proof of Theorem 6.2, there is (K, F) € Kp satisfying (B.1) and
such that K and F are bounded, (K, E) is a minimizer of Wy (|F|), K is H"-rectifiable,
and |E| < v; moreover, if v > |E|, then there is € R"*! such that B~1FD(z) is disjoint
from K UEUW and (K',E') = (K UdBY~1ED(z), E U BC~IED(2)) is a minimizer of
Uk (v). We complete the proof by deriving a contradiction with the v* = v —|E| > 0 case.
The idea is to relocate B (”*)(x) to save perimeter by touching OW or JF; see Figure B.1.

First of all, we claim that K = QNAJE. If not, since (K, F) and (K’, E’) respectively are
minimizers of Ui (|E|) and Wy (v), then there are A\, \ € R such that (K, F) and (K', E’)
respectively satisfy (6.1) with A and \'. By localizing (6.1) for (K’, E’) at points in QNJ*E
we see that it must be A\ = X; by localizing at points in 63(”*‘E|)(x), we see that A is
equal to the mean curvature of 83(”_‘E|)(x), so that A > 0; by arguing as in the proof of
[KMS21, Theorem 2.9] (see [Nov23] for the details), we see that if K\ (RQNJE) # &, then
A <0, a contradiction.

Having established that K = Q2 N dF, we move an half-space H compactly containing
cl (E) U W until the boundary hyperplane 0H first touches cl (E) U W. Up to rotation
and translation, we can thus assume that H = {z,,41 > 0} and

0€c(E)UW C cl(H). (B.2)

We split (B.2) into two cases, 0 € QN IJE and 0 € W, that are then separately discussed
for the sake of clarity. In both cases we set © = (2/,2,.1) € R® x R = R"*! and set

Cs = {z:zp41€(0,0),|2| <},
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FIGURE B.1. (a): the construction of Es when 0 € QNIE; (b) the construction
of Es when 0 € W.

Ls = {z:]2|=0,zn41 € (0,9)},

Ty = {o:zen =6, <3},

D; = {z:2,11=0,[2'| <6},
for every d > 0.

Case one, 0 € QNIE: In this case, by the maximum principle [DM19, Lemma 3], (6.1), and
the Allard regularity theorem, we can find dp > 0 and u € C?(Ds,; [0, o)) with u(0) = 0
and Vu(0) = 0 such that Cs5, CC 2 and

EnNn 050 = {a: € 050 200 > Tpy1 > u($/)}, (B.3)
(OE)NCyy = {w € Cyy : n1 = u(a')}.
Since 0 < u(z’) < C'|2'|? for some C = C(E), if we set

s — {:c €Cs:0 < api1 < u(m')} . 6€(0,0), (B.4)

then we have
Ts] < ComF2, (B.5)
P(I's;Ls) < €&t (B.6)

We then set
Es =EUTsU (Br(z5) \ H), (B.7)
see Figure B.1-(a), where rs > 0 and zs € R**!\ cl(H) are uniquely determined by
requiring that, first,
cl (B (25)) NOH = 0Cs NOH = {x : 241 =0, |2'| < 5}, (B.8)
and, second, that
|Es| =v. (B.9)
To see that this choice is possible, we first notice that, since ENT's = &, (B.9) is equivalent

to
}Bré(z(;) \H\ =v— |E|—|Ts| =v* —|Ts]|. (B.10)
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Taking (B.5) into account we see that (B.8) and (B.10) uniquely determine z5 € R*!
and 75 > 0 as soon as dg is small enough to guarantee v* — |I's,| > 0. In fact, by (B.5),
v* —|Ts] = v* > 0 with H"(OCsNOH) — 0 as § — 0T, so that, up to further decrease dy,
we definitely have zs ¢ H, and

*

‘7‘5 B ( v )1/(n+1)‘ <O, (B.11)

Wn41

where C = C(E,n,v").
We now use the facts that K U E® is C-spanning W and that E C Ejs to prove that
(Ks, Es) = (2N 0*Es) U (K N Ey”), Es) (B.12)

is such that K5 U E{" is C-spanning W (and thus is admissible in Wi (v) by (B.9)). To
this end, it is enough to show that

KUEY € KyUEY. (B.13)
Indeed, by F C Es and Federer’s theorem (1.37) we have

EOVCEY,  EPCEY,  EVUYEC EYUIE;. (B.14)
Notice indeed that *E ¢ E®/? ¢ R"t1\ E”). Next, using in order Federer’s theorem
0
(1.37), (B.14) and K C , and the definition of Ks, we have
EVU(K\EM)™ ED UK N (0°Es UEY)] c EMU(QNO*Es) C By UK;.

But K N Ef;m C K;s by definition, which combined with the preceding containment com-
pletes the proof of (B.13). Having proved that (K, Es) is admissible in Wi (v), we have

For (K, E) + P(BY)) = Uy (v) < Fox (K5, Es) . (B.15)
By (B.15), the definition of Kj, and (B.14), we find
P(E;Q) +2H"(K N E©) 4+ P(B"“")) < P(Es; Q) + 2H"(K; N EY)
< P(Es;Q) +2H"(KNEY) < P(Es; Q) +2H" (KN E),
from which we deduce
P(E; Q)+ P(B")) < P(Es; Q). (B.16)

We now notice that Ej5 coincides with E in the open set QN H \ ¢l (Cys), and with B, (2s)
in the open set R"*1\ cl (H), so that

(Q N H\cl(C(;)) NO*Ejs = (Q NH\d (05)) no*E,
(Q\ el (H)) N 9" Es = (0By;(25)) \ el (H),
and (B.16) is equivalent to
P(E;QN (0H Ul (Cs)) + P(BY)) (B.17)
< P(Es; QN (0H Ucl(Cy)) + P(Byy(25); R\ cl (H)).

In fact, it is easily proved that (0*E) N (0H) \ cl(Cs) = (0" Es) N (0H) \ ¢l (Cs) (which is
evident from Figure B.1), so that (B.17) readily implies

P(B"Y)) < P(E5; QN ¢cl(Cy)) + P(Byy(25); R\ el (H)). (B.18)

Now, Cs CC Q. Moreover, by (B.3), we have that Ts (the top part of 9Cs) is contained
in E® ¢ E{", and is thus H"-disjoint from 0*Es. Similarly, again by (B.3) we have
EUTs = Gy, and thus Dy C (E UTy)*?; at the same time, by (B.8) we have Dy C
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(B (2s) \ H)1/?; therefore Ds ¢ E\”, and thus D4 is H"-disjoint from 0*Ej. Finally,
again by E UT's = Cs we see that P(Eg; Cs) = 0. Therefore, in conclusion,

P(Es;QNcl(Cys)) = P(Es;Ls) = P(I's;Ls) < C o™, (B.19)
where we have used again first (B.3), and then (B.6). Combining (B.18)-(B.19) we get
P(BW)) < P(By,(25); R" ™\ ¢l (H)) + C 6™, (B.20)
Finally, by (B.8), (B.5), and (B.11) we have
P(By,(25); R\ ol (H)) < P(BY")) = C(n) 8"
by combining this estimate with (B.20), we reach a contradiction for § small enough.

Case two, 0 € W: In this case, by the C?-regularity of 9Q we can find §o > 0 and
u € C%(Dyg,; [0, 0]) with u(0) =0 and Vu(0) = 0 such that

W NCs, ={z € Cs,: 00 > zpp1 > u(a')}, (B.21)
(02)NCs = {x € Cs, : xpt1 =u(a')}.

We have 0 < u(z’) < C'|2/|? for every |2/| < dp (and some C' = C(W)), so that defining T's
as in (B.4) we still obtain (B.5) and (B.6). We then define Es, 5, and zs, as in (B.7), (B.8)
and (B.9). Notice that now F and I's may not be disjoint (see Figure B.1-(b)), therefore
(B.9) is not equivalent to (B.10), but to

|Bys(25) \ H| =v—|E| = [Ts \ E| =v* = |T; \ E|.

This is still sufficient to repeat the considerations based on (B.8) and (B.5) proving that
rs and zs are uniquely determined, and satisfy (B.11). We can repeat the proof that
(K5, Es) defined as in (B.12) is admissible in Wy (v) (since that proof was based only on
the inclusion E C Ej), and thus obtain (B.16). The same considerations leading from
(B.16) to (B.18) apply in the present case too, and so we land on

P(B™)) < P(Es: QN cl(Cy)) + P(Byy (z); ™1\ ol (H)). (B.22)

Now, by (B.21), Ts is contained in W, so that P(Es;Ts) = 0. At the same time, if
z = (2/,0) € Ds N Q, then u(a’) > 0, and thus z € (Es N H)"/?; since, by (B.8), we also
have z € (Es \ H)"/?, we conclude that Ds N Q C E\", and thus that

P(Es;QNcl(Cys)) = P(Es; QNLs) < H" (2N Ls) < O™,
where we have used 0 < u(z') < C |2/|? for every |2| < &y again. We thus deduce from
(B.22) that
P(BY)) < P(Bry(2); R* ™ \ el (H)) + C 6™

and from here we conclude as in case one. O

APPENDIX C. AN ELEMENTARY LEMMA

In this appendix we provide a proof of Lemma 7.2. The proof is an immediate corollary
of a geometric property of closed C-spanning sets (see (C.2)-(C.3) below) first proved in
R for n > 2 [DLDRG19, Lemma 4.1]. Here we extend this property to the plane.
The difference between R? and R™*! for n > 2 stems from a part of the argument where
one constructs a new admissible spanning curve by modifying an existing one inside a
ball. Specifically, ensuring that the new curve does not intersect itself requires an extra
argument in R2.
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Lemma C.1. Letn > 1, W C R"! be closed, C be a spanning class for W, S C Q :=
R\ W be relatively closed and C-spanning W, and B,(z) cC Q. Let {I';}; be the
countable family of equivalence classes of OB, (x) \ S determined by the relation:

Y~z = F5 e C0,1),cd Br(@) \ S) : 5(0) =y, 3(1) = 2, 7(0,1) € Bo(a). (C.1)
Then if v € C, either
YN (S\ Br(z)) # 0 (C.2)

or there exists a connected component o of v N cl B.(x) which is homeomorphic to an
interval and such that

the endpoints of o belong to two distinct equivalence classes of OB, (x) \ S. (C.3)

In particular, the conclusion of Lemma 7.2 holds.

Remark C.2. The planar version of Lemma C.1 allows one to extend the main existence
result [DLDRG19, Theorem 2.7] to R2.

Proof of Lemma C.1. The proof is divided into two pieces. First we show how to deduce
Lemma 7.2 from the fact that at least one of (C.2)-(C.3) holds. Then we show in R? that
(C.3) must hold whenever (C.2) does not, completing the lemma since the case n > 2 is
contained in [DLDRG19, Lemma 4.1].

Conclusion of Lemma 7.2 from (C.2)-(C.3): We must show that either v(S!)\ B, (z) # @ or
that it intersects at least two open connected components of B,.(z)\S. If v(SY)\ B.(z) # @
we are done, so suppose that y(S') \ B,(z) = @. Then (C.3) must be true, so that the
endpoints of some arc o = v((a,b)) C B,(z) for an interval (a,b) C S* belong to distinct
equivalence classes. Choose p small enough so that B,(y(a)) U B,(v(b)) C 2\ S and d/,
b' € I such that y(a’) € B,(v(a)) and v(b') € B,(v(b)). If v(a’) and ~(b’) belonged to the
same open connected component of B,(x) \ S, we would contradict (C.3), so they belong
to different components as desired.

Verification of (C.2)-(C.3) in R?%: Asin [DLGM17a, Lemma 10], we may reduce to the case
where 7 intersects 0B, (x) transversally at finitely many points {v(ag)} <, U {v(bg)}E,
such that vN B,.(z) = Ugy((ax, bx)) and {[ag, bx]}x are mutually disjoint closed arcs in S!.
If (C.2) holds we are done, so we assume that

yN S\ By(x) =2 (C4)

and prove (C.3). Note that each pair {vy(ax),v(br)} bounds two open arcs in B, (z); we
make a choice now as follows. Choose sg € 9B, () \ Ur{v(ax),v(bx)}. Based on our choice
of 5o, for each k there is a unique open arc £, C dB;(z) such that dyp, (z) 0k = {7y(ax),v(bk)}
and 89 ¢ clyp, (2)0k- We claim that

if k # K/, then either ¢, CC ¢}, or {4y CC ¥y, . (C.5)

To prove (C.5): We consider simple closed curves 7y with images v((ax, bx)) U clop, (2)Ck-
By the Jordan curve theorem, each 7y, defines a connected open subset Uy of B,(x) with
OU, N OB, (x) = clyp, (2)lk- Aiming for a contradiction, if (C.5) were false, then for some
k # k', either

Y(ag) € by C clUy and 7(bg) € 0B () \ clpp, (z)lr C 0B, () \ clUp or
Y(br) € b C clUpr and y(ay) € B (v) \ clpp, (2)lr C OBy (z) \ clUy ;

in particular, y((ax, b)) has non-trivial intersection with both the open sets Uy and
B, (z) \ clUy. By the continuity of v and the connectedness of (ay,by), we thus deduce
that vy((ag, bx)) NOU # @. Upon recalling that v((ax, bx)) C By(x), we find v((ag, b)) N
U NBy(x) = v((ak, b)) Ny((ar, byr)) # @. But this contradicts the fact that v smoothly
embeds S! into Q. The proof of (C.5) is finished.
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Returning to the proof of (C.3), let us assume for contradiction that
y(ag) ~y(br) V1I<k<K. (C.6)

We are going to use (C.4), (C.5), and (C.6) to create a piecewise smooth embedding
7 : S' — Q which is a homotopic deformation of v (and thus approximable by elements
in C) such that 7 NS = @. After reindexing the equivalence classes I';, we may assume
that {I't,...,I'z, } are those equivalence classes containing any pair {~y(ax),y(bx)} for 1 <
k < K. We will construct 7 in steps by redefining - on those [aj, b;] with images under
~ having endpoints belonging to the same I';. For future use, let {2; be the equivalence
classes of B,(x) \ S determined by the relation (C.1). Note that they are open connected
components of B, (x) \ S.

Construction corresponding to I'y: Relabelling in k if necessary, we may assume that
{1,..., K1} for some 1 < K; < K are the indices such that {y(ax),vy(bx)} C T'y. By
further relabelling and applying (C.5) we may assume: first, that ¢; is a “maximal” arc
among {/1, ..., kg, }, in other words

for given k € {2,... K3}, either {1 N ¢ = & or £, CC {1 (C.7)

and second, that for some K{ < Kj, {fs,... ,EK%} are those arcs contained in ¢1. Since
Q; is open and connected, we may connect y(a;) to v(b;) by a smooth embedding 7, :
[a1,b1] = cl By(x) \ S with 7;((a1,b1)) C €. Also, by the Jordan curve theorem, ¢; U7,
defines an open connected subset W; of B,(z) with 0W; NS = @. Using (C.5), we now
argue towards constructing pairwise disjoint smooth embeddings 7, : [ag, bx] — I'1 U Q.

We first claim that
Wi\ S is path-connected . (C.8)

To prove (C.8), consider any y,z € Wi\ S. Since Q1 D W7\ S is open and path-connected,
we may obtain continuous 7 : [0,1] — €Q; connecting y and z. If ([0,1]) € W7 \ S, we
are done. Otherwise, @ # 7N (21 \ (W1 \ 9)) = Q1 \ Wi, with the equality following
from €3 NS = @. Combining this information with 5({0,1}) C W; \ S, we may therefore
choose [d1,d2] C (0,1) to be the smallest interval such that 5([0,1] \ [01,d2]) C Wi\ S.
On (61, 92), we redefine 4 using the fact that 5({d1,02}) C oW1 N B.(z) = 7;((a1,b1)) by
letting 4((d1,02)) = 7, (I), where 7, (I) has endpoints 4(d1) and 5(d2) and I C (a1, by). The
modified 4 is a concatenation of continuous curves and is thus continuous; furthermore,
YWy \ S) = [0,01) U (02, 1]. Tt only remains to “push” 7 entirely inside W; \ S, which
we may easily achieve by projecting 4((01 — €,02 + €)) inside W; \ S for small ¢ using
the distance function to the smooth curve ¥,(ai,b1) = W1 N B.(z) C B,(z) \ S. This
completes (C.8).

But now since Wi \ S is path-connected and open, we may connect any two points in it
by a smooth embedding of [0, 1], which in particular allows us to connect y(ag2) and ~y(b2)
by smooth embedding 7, : [ag, ba] — cl W1 \ S with F5((az,b2)) C Wi\ S. Let Wy be the
connected open subset of W; determined by the Jordan curve 7, U £2. Arguing exactly as
in (C.8), Wa \ S is open and path-connected, so we can iterate this argument to obtain
mutually disjoint embeddings 7, : [ak, bg] — clWi \ S C T'1 UQy with 7, ((ak, b)) C
for1<k<K 11

Next, let ¢ Klt1 be another maximal curve with endpoints in I'j. The same argument
as in proving (C.8) implies that € \ cl Wy is path-connected, and so v(agi141), ¥(bgi11)
may be connected by a smooth embedding Y141 : [ag1i1,bg141] = (T U Q) \ cl W7,
that, together with £1,,, defines a connected domain W1, C £ by the Jordan curve
theorem. In addition, Wg1,, N W1 = @ since (b2 U7¥g14,) NclWi = @ by (C.7) and
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the definition of Viis1: Repeating the whole iteration procedure for those intervals con-
tained in £ Klt1 and then the rest of the maximal arcs, we finally obtain mutually disjoint
embeddings 7, : [ag, bx] — 't U Qy with 7, ((ag, b)) C Q1 as desired for 1 < k < Kj.

Conclusion of the proof of (C.3): Repeating the I'y procedure for {I's,...,I'r,} and
using the mutual pairwise disjointness of I';, we obtain mutually disjoint embeddings
Y ¢ lag, bk] — cl Br(x) \ S with 7, ((ag, b)) C Bp(x) \ S for 1 < k < K;. We define
7:S!— Q by

y(t)  t €S\ Ulak, by]

o
=150 tefanbd, 1<k< K.

Since ¥ = ~ outside B,(z) CC 2, 7 is homotopic to v relative to Q. Furthermore, 7 is
piecewise smooth and homotopic to v, and so it can be approximated in the C° norm by
{~j} c C. However, by (C.4) and the construction of 7, ¥ NS = &, which implies that
S N~; = @ for large j. This contradicts the fact that S is C-spanning W, and so (C.3) is
true. Il
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