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Abstract. We provide, in the setting of Gauss’ capillarity theory, a rigorous derivation
of the equilibrium law for the three dimensional structures known as Plateau borders

which arise in “wet” soap films and foams. A key step in our analysis is a complete
measure-theoretic overhaul of the homotopic spanning condition introduced by Harrison
and Pugh in the study of Plateau’s laws for two-dimensional area minimizing surfaces
(“dry” soap films). This new point of view allows us to obtain effective compactness
theorems and energy representation formulae for the homotopic spanning relaxation of
Gauss’ capillarity theory which, in turn, lead to prove sharp regularity properties of
energy minimizers. The equilibrium law for Plateau borders in wet foams is also addressed
as a (simpler) variant of the theory for wet soap films.
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1. Introduction

1.1. Overview. Equilibrium configurations of soap films and foams are governed, at lead-
ing order, by the balance between surface tension forces and atmospheric pressure. This
balance is expressed by the Laplace–Young law of pressures, according to which such sys-
tems can be decomposed into smooth interfaces with constant mean curvature equal to
the pressure difference across them, and by the Plateau laws, which precisely postulate
which arrangements of smooth interfaces joined together along lines of “singular” points
are stable, and thus observable.

The physics literature identifies two (closely related) classes of soap films and foams,
respectively labeled as “dry” and “wet”. This difference is either marked in terms of the
amount of liquid contained in the soap film/foam [WH99, Section 1.3], or in terms of the
scale at which the soap film/foam is described [CCAE+13, Chapter 2, Section 3 and 4].

In the dry case, Plateau laws postulates that (i) interfaces can only meet in three at a
time forming 120-degree angles along lines of “Y -points”; and (ii) lines of Y -points can only

1

a
rX

iv
:2

3
1
0
.2

0
1
6
9
v
1
  
[m

a
th

.A
P

] 
 3

1
 O

c
t 

2
0
2
3



(a) (b)

Figure 1.1. (a) A Plateau border develops around a “wet” line of Y -points.
The wet region is bounded by interfaces of negative constant mean curvature. The
equilibrium condition which needs to hold across the transition lines (here depicted
in bold) between the negatively curved interfaces of a Plateau border and the
incoming dry interfaces is that these interfaces meet tangentially. In the case of
soap films, where the dry interfaces have zero mean curvature, the jump in the
mean curvature across the transition lines implies a discontinuity in the gradient
of the unit normal. (b) An arrangement of Plateau borders near a tetrahedral
singularity. The transition lines are again depicted in bold. The incoming dry
interfaces are omitted for clarity.

meet in fours at isolated “T -points”, where six interfaces asymptotically form a perfectly
symmetric tetrahedral angle; see, e.g. [WH99, Equilibrium rules A1, A2, page 24].

In the wet case, small but positive amounts of liquid are bounded by negatively curved
interfaces, known as Plateau borders, and arranged near ideal lines of Y -points or isolated
T -points; see Figure 1.1 and [WH99, Fig. 1.8 and Fig. 1.9]. A “third Plateau law” is
then postulated to hold across the transition lines between wet and dry parts of soap
films/foams, and can be formulated as follows:

the unit normal to a soap film/foam changes continuously (1.1)

across the transition lines between wet and dry interfaces ;

see, e.g., [WH99, Equilibrium rule B, page 25] and [CCAE+13, Section 4.1.4]. It is im-
portant to recall that Plateau borders play a crucial role in determining the mechani-
cal properties of the many physical and biological systems in which they are observed.
As a sample of older and newer papers discussing Plateau borders, we mention here
[LL65, JP92, BR97, KHS99, LC99, KHS00, GKJ05, SM15]. Postulate (1.1) is assumed in
all these works.

The goal of this paper is answering the natural problem of rigorously deriving the equi-
librium condition for Plateau borders (1.1) in the context of Gauss’ capillarity theory. Since
the case of soap films is much harder and interesting from the mathematical viewpoint,
we will postpone the discussion of foams until the very last section of this introduction.
The main highlight is that, in addressing Plateau borders of soap films, we will develop a
new “theory of spanning” for surfaces of geometric measure theory (GMT) which will find
further applications in the two companion papers [MNR23a, MNR23b]; see the closing of
this overview for more details about these additional applications.

We now give an informal description of our approach. The starting point is [MSS19],
where the idea is introduced of modeling soap films as regions E of positive volume |E| =
v contained in the complement Ω = Rn+1 \ W of a “wire frame” W (n = 2 is the
physical case, although the planar case n = 1 is also quite interesting in applications). We
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Figure 1.2. Emergence of collapsing along a minimizing sequence {Ej}j for the

minimization of Hn(Ω ∩ ∂E) among sets E ¢ Ω = Rn+1 \ W with |E| = v and

Ω ∩ ∂E spanning W, when n = 1 and W is the union of three disks in the plane.

Notice that for this choice of W the minimization of Hn(S) among S ¢ Ω such

that S is spanning W is solved by three segments meeting at Y -point. Collapsing

is intuitively related to the presence of Y -type and T -type singularities.

associate to E the surface tension energy Hn(Ω∩∂E) (where Hn stands for n-dimensional
(Hausdorff) measure, i.e., area when n = 2 and length when n = 1), and minimize
Hn(Ω ∩ ∂E) under the constraints that |E| = v (for some given v > 0) and

Ω ∩ ∂E is spanning W . (1.2)

From the mathematical viewpoint the meaning assigned to (1.2) is, of course, the crux of
the matter. In the informal spirit of this overview, we momentarily leave the concept of
“spanning” only intuitively defined.

As proved in [KMS22a], this minimization process leads to the identification of gener-
alized minimizers in the form of pairs (K,E) with E ¢ Ω, |E| = v, and such that

Ω ∩ ∂E ¢ K and K is spanning W . (1.3)

These pairs are minimizing in the sense that

Hn(Ω ∩ ∂E) + 2Hn(K \ ∂E) f Hn(Ω ∩ ∂E′) , (1.4)

whenever E′ ¢ Ω, |E′| = v and Ω ∩ ∂E′ is spanning W.

If K = Ω ∩ ∂E, then generalized minimizers are of course minimizers in the proper
sense. If not, the collapsed interface K \ ∂E is a surface whose positive area has to be
counted with a multiplicity factor 2 (which arises from the asymptotic collapsing along
K \ ∂E of oppositely oriented boundaries in minimizing sequences {Ej}j , see Figure 1.2).
We expect collapsing to occur whenever the Plateau problem for W admits one minimizer
S with Plateau-type singularities. Whenever this happens, a wetting conjecture is made:
sequences {(Kvj , Evj )}j of generalized minimizers with |Evj | = vj → 0+ as j → ∞ will be
such that the set of Plateau’s singularities Σ(S) of S is such that sup{dist(x,Evj ) : x ∈
Σ(S)} → 0. Thus we expect that Plateau’s singularities are never “left dry” in the small
volume capillarity approximation of the Plateau problem.

A lot of information about generalized minimizers can be extracted from (1.4), and this
is the content of [KMS22a, KMS21, KMS22b]. With reference to the cases when n = 1 or
n = 2, one can deduce from (1.4) that if Hn(K \∂E) > 0, then K \∂E is a smooth minimal
surface (a union of segments if n = 1) and that ∂E contains a regular part ∂∗E that is a
smooth constant mean curvature surface (a union of circular arcs if n = 1) with negative
curvature. This is of course strongly reminiscent of the behavior of Plateau borders, and
invites to analyze the validity of (1.1) in this context. A main obstacle is that, due to
serious technical issues (described in more detail later on) related to how minimality is
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expressed in (1.4), it turns out to be very difficult to say much about the “transition line”

∂E \ ∂∗E

between the zero and the negative constant mean curvature interfaces in K, across which
one should check the validity of (1.1). More precisely, all that descends from (1.4) and a
direct application of Allard’s regularity theorem [All72] is that ∂E\∂∗E has empty interior
in K. Far from being a line in dimension n = 2, or a discrete set of points when n = 1,
the transition line ∂E \ ∂∗E could very well have positive Hn-measure and be everywhere
dense in K! With such poor understanding of ∂E \ ∂∗E, proving the validity of (1.1) –
that is, the continuity of the unit normals to K \ ∂E and ∂∗E in passing across ∂E \ ∂∗E
– is of course out of question.

We overcome these difficulties by performing a major measure-theoretic overhaul of the
Harrison–Pugh homotopic spanning condition [HP16, HP17] used in [MSS19, KMS22a,
KMS21, KMS22b] to give a rigorous meaning to (1.2), and thus to formulate the homotopic
spanning relaxation of Gauss’ capillarity discussed above.

The transformation of this purely topological concept into a measure-theoretic one is
particularly powerful. Its most important consequence for the problem discussed in this
paper is that it allows us to upgrade the partial minimality property (1.4) of (K,E) into
the full minimality property

Hn(Ω ∩ ∂E) + 2Hn(K \ ∂E) f Hn(Ω ∩ ∂E′) + 2Hn(K ′ \ ∂E′) (1.5)

whenever E′ ¢ Ω, |E′| = v, Ω ∩ ∂E′ ¢ K ′ and K ′ is spanning W. The crucial difference
between (1.4) and (1.5) is that the latter is much more efficient than the former when it
comes to study the regularity of generalized minimizers (K,E), something that is evidently
done by energy comparison with competitors (K ′, E′). Such comparisons are immediate
when working with (1.5), but they are actually quite delicate to set up when we only have
(1.4). In the latter case, given a competitor (K ′, E′), to set up the energy comparison with
(K,E) we first need to find a sequence of non-collapsed competitors {E′

j}j (with E′
j ¢ Ω,

|E′
j | = v, and Ω∩∂E′

j spanningW) such thatHn(Ω∩∂E′
j) → Hn(Ω∩∂E′)+2Hn(K ′\∂E′).

Intuitively, E′
j needs to be a ¶j-neighborhood of K ′ ∪E′ for some ¶j → 0+ and the energy

approximation property has to be deduced from the theory of Minkowski content. But
applying the theory of Minkowski content to (K ′, E′) (which is the approach followed, e.g.,
in [KMS22b]) requires (K ′, E′) to satisfy rectifiability and uniform density properties that
substantially restrict the class of available competitors (K ′, E′).

In contrast, once the validity of (1.5) is established, a suitable generalization (Theorem
1.2) of the partition theorem of sets of finite perimeter into indecomposable components
[ACMM01, Theorem 1] combined with a subtle variational argument (see Figure 1.7)
allows us to show that, in any ball B ¢¢ Ω with sufficiently small radius and for some
sufficiently large constant Λ (both depending just on (K,E)), the connected components
{Ui}i of B \ (K ∪ E) satisfy a perturbed area minimizing property of the form

Hn(B ∩ ∂Ui) f Hn(B ∩ ∂V ) + Λ |Ui∆V | , (1.6)

with respect to completely arbitrary perturbations V ¢ B, V∆Ui ¢¢ B. By a classical
theorem of De Giorgi [DG60, Tam84], (1.6) implies (away from a closed singular set of
codimension at least 8, which is thus empty if n f 6) the C1,³-regularity of B∩∂Ui for each
i, and thus establishes the continuity of the normal stated in (1.1). In fact, locally at each
x on the transition line, K is the union of the graphs of two C1,³-functions u1 f u2 defined
on an n-dimensional disk, having zero mean curvature above the interior of {u1 = u2}, and
opposite constant mean curvature above {u1 < u2}. We can thus exploit the regularity
theory for double-membrane free boundary problems devised in [Sil05, FGS15] to deduce
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that the transition line ∂E \ ∂∗E is indeed (n− 1)-dimensional, and to improve the C1,³-
regularity of B ∩ ∂Ui to C

1,1-regularity. Given the mean curvature jump across ∂E \ ∂∗E
we have thus established the sharp degree of regularity for minimizers of the homotopic
spanning relaxation of Gauss’ capillarity theory.

The measure-theoretic framework for homotopic spanning conditions laid down in this
paper provides the starting point for additional investigations that would otherwise seem
unaccessible. In two forthcoming companion papers we indeed establish (i) the conver-
gence towards Plateau-type singularities of energy-minimizing diffused interface solutions
of the Allen–Cahn equation [MNR23a], and (ii) some sharp convergence theorems for gen-
eralized minimizers in the homotopic spanning relaxation of Gauss’ capillarity theory in
the vanishing volume limit, including a proof of the above mentioned wetting conjecture
[MNR23b].

The rest of this introduction is devoted to a rigorous formulation of the results pre-
sented in this overview. We begin in Section 1.2 with a review of the Harrison and
Pugh homotopic spanning condition in relation to the classical Plateau problem and to
the foundational work of Almgren and Taylor [Alm76, Tay76]. In Section 1.3 we intro-
duce the new measure-theoretic formulation of homotopic spanning and discuss its re-
lation to the measure-theoretic notion of essential connectedness introduced by Cagnetti,
Colombo, De Philippis and the first-named author in the study of symmetrization inequal-
ities [CCDPM17, CCDPM14]. In Section 1.4 we introduce the bulk and boundary spanning
relaxations of Gauss’ capillarity theory, state a general closure theorem for “generalized
soap films” that applies to both relaxed problems (Theorem 1.4). In Section 1.5 we prove
the existence of generalized soap film minimizers (Theorem 1.5) and their convergence in
energy to solutions to the Plateau problem. A sharp regularity theorem (Theorem 1.6) for
these minimizers, which validates (1.1), is stated in Section 1.6. Finally, in Section 1.7 we
reformulate the above results in the case of foams, see in particular Theorem 1.7.

1.2. Homotopic spanning: from Plateau’s problem to Gauss’ capillarity. The
theories of currents and of sets of finite perimeter, i.e. the basic distributional theories of
surface area at the center of GMT, fall short in the task of modeling Plateau’s laws. Indeed,
two-dimensional area minimizing currents in R3 are carried by smooth minimal surfaces,
and thus cannot model Y -type1 and T -type singularities. This basic issue motivated the
introduction of Almgren minimal sets as models for soap films in [Alm76]: these are
sets S ¢ Rn+1 that are relatively closed in a given open set Ω ¢ Rn+1, and satisfy
Hn(S) f Hn(f(S)) whenever f : Ω → Ω is a Lipschitz (not necessarily injective) map with
{f ̸= id } ¢¢ Ω. Taylor’s historical result [Tay76] validates the Plateau laws in this context,
by showing that, when2 n = 2, Almgren minimal sets are locally C1,³-diffeomorphic either
to planes, to Y -cones, or to T -cones.

The issue of proposing and solving a formulation of Plateau’s problem whose minimizers
are Almgren minimal sets, and indeed admit Plateau-type singularities, is quite elusive, as
carefully explained in [Dav14]. In this direction, a major breakthrough has been obtained
by Harrison and Pugh in [HP16] with the introduction of a new spanning condition, which,
following the presentation in [DLGM17a], can be defined as follows:

Definition A (Homotopic spanning (on closed sets)). Given a closed set W ¢ Rn+1 (the
“wire frame”), a spanning class for W is a family C of smooth embeddings of S1 into

Ω = Rn+1 \W

1Currents modulo 3 are compatible with Y -type singularities, but not with T -type singularities.
2Similar regularity assertions hold when n = 1 (by elementary methods) and, in much more recent

developments, when n ≥ 3 [CES22].
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Figure 1.3. The dashed lines denote the embeddings of S1 whose homotopy
classes relative to Ω generate different spanning classes C, to which there corre-
spond different minimizers of ℓ.

that is closed under homotopies in Ω, that is, if Φ : [0, 1] × S1 → Ω is smooth family of
embeddings Φt = Φ(t, ·) : S1 → Ω with Φ0 ∈ C, then Φt ∈ C for every t ∈ (0, 1]. A set S,
contained and relatively closed in Ω, is said to be C-spanning W if

S ∩ µ ̸= ∅ , ∀µ ∈ C .

Denoting by S(C) the class of sets S C-spanning W, one can correspondingly formulate
the Plateau problem (with homotopic spanning)

ℓ = ℓ(C) := inf
{

Hn(S) : S ∈ S(C)
}

. (1.7)

Existence of minimizers of ℓ holds as soon as ℓ < ∞, and minimizers S of ℓ are Alm-
gren minimal sets in Ω [HP16, DLGM17a] that are indeed going to exhibit Plateau-type
singularities (this is easily seen in the plane, but see also [BM21] for a higher dimensional
example). Moreover, given a same W, different choices of C are possible and can lead
to different minimizers, see Figure 1.3. Finally, the approach is robust enough to pro-
vide the starting point for several important extensions [DPDRG16, DR18, HP17, FK18,
DLDRG19, DPDRG20], including higher codimension, anisotropic energies, etc.

The study of soap films as minimizers of Gauss’s capillarity energy with small volume
and under homotopic spanning conditions has been initiated in [MSS19, KMS22a], with
the introduction of the model

È(v) := inf
{

Hn(Ω ∩ ∂E) : |E| = v , Ω ∩ ∂E is C-spanning W
}

, (1.8)

where E ¢ Ω is an open set with smooth boundary. Without the spanning condition, at
small volumes, minimizers of Hn(Ω∩∂E) would be small diffeomorphic images of half-balls
[MM16]. However, the introduction of the C-spanning constraint rules out small droplets,
and forces the exploration of a different part of the energy landscape of Hn(Ω ∩ ∂E). As
informally discussed in Section 1.1, this leads to the emergence of generalized minimizers
(K,E). More precisely, in [KMS22a] the existence is proved of (K,E) in the class

K =
{

(K,E) : K is relatively closed and Hn-rectifiable in Ω, E is open, (1.9)

E has finite perimeter in Ω, and Ω ∩ cl (∂∗E) = Ω ∩ ∂E ¢ K
}

,

(where ∂∗E denotes the reduced boundary of E) such that, for every competitor E′ in
È(v), it holds

Hn(Ω ∩ ∂∗E) + 2Hn(Ω ∩ (K \ ∂∗E)) f Hn(Ω ∩ ∂E′) . (1.10)

Starting from (1.10) one can apply Allard’s regularity theorem [All72] and various ad hoc
comparison arguments [KMS21, KMS22b] to prove that Ω∩∂∗E is a smooth hypersurface
with constant mean curvature (negative if Hn(K \ ∂∗E) > 0), Ω ∩ (∂E \ ∂∗E) has empty
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T

S S
T [s]µ(s)

µ

W

(a) (b)

Figure 1.4. (a) Homotopic spanning according to Harrison–Pugh: S must in-
tersect every curve µ ∈ C, in particular, the C-spanning property may be lost by
removing a single point from S; (b) Homotopic spanning based on essential con-
nectedness: for a.e. section T [s] of the tube T around a curve µ ∈ C, the union
T [s] ∪ S (essentially) disconnects T (i.e., divides T into two non-trivial parts, de-
picted here with two different shades of gray).

interior in K, and that K \(Σ∪∂E) is a smooth minimal hypersurface, where Σ is a closed
set with codimension at least 8.

1.3. Measure theoretic homotopic spanning. In a nutshell, the idea behind our mea-
sure theoretic revision the Harrison–Pugh homotopic spanning condition is the following.
Rather than asking that S ∩ µ(S1) ̸= ∅ for every µ ∈ C, as done in Definition A, we shall
replace µ with an open “tube” T containing µ(S1), and ask that S, with the help of a
generic “slice” T [s] of T , “disconnects” T itself into two nontrivial regions T1 and T2; see
Figure 1.4. The key to make this idea work is, of course, giving a proper meaning to the
word “disconnects”.

To this end, we recall the notion of essential connectedness introduced in [CCDPM17,
CCDPM14] in the study of the rigidity of equality cases in Gaussian and Euclidean perime-
ter symmetrization inequalities. Essential connectedness is the “right” notion to deal with
such problems since it leads to the formulation of sharp rigidity theorems, and can indeed
be used to address other rigidity problems (see [CPS20, Per22, Dom23]). This said, it
seems remarkable that the very same notion of what it means for “one Borel set to discon-
nect another Borel set” proves to be extremely effective also in the context of the present
paper, which is of course very far from the context of symmetrization theory.

Denoting by T (t) (0 f t f 1) the points of density t of a Borel set T ¢ Rn+1 (i.e.,
x ∈ T (t) if and only if |T ∩ Br(x)|/Én+1 r

n+1 → t as r → 0+, where Ék is the Lebesgue
measure of the unit ball in Rk), and by ∂eT = Rn+1\(T (0)∪T (1)) the essential boundary
of T , given Borel sets S, T , T1 and T2 in Rn+1, and given n g 0, we say that S essentially
disconnects T into {T1, T2}, if

{T1, T2} is a non-trivial Borel partition of T ,

and T (1) ∩ ∂eT1 ∩ ∂
eT2 is Hn-contained in S .

(1.11)

(For example, if K is a set of full L1-measure in [−1, 1], then S = K × {0} essentially
disconnects the unit disk in R2.) Moreover, we say that T is essentially connected3 if
∅ does not essentially disconnect T . The requirement that {T1, T2} is a non-trivial Borel
partition of T means that |T∆(T1 ∪ T2)| = 0 and |T1| |T2| > 0. By saying that “E is
Hn-contained in F” we mean that Hn(E \F ) = 0. We also notice that, in (1.11), we have
T (1) ∩ ∂eT1 ∩ ∂

eT2 = T (1) ∩ ∂eTi (i = 1, 2), a fact that is tacitly and repeatedly considered
in the use of (1.11) in order to shorten formulas.

3Whenever T is of locally finite perimeter, being essentially connected is equivalent to being
indecomposable.

7



(b)(a)
U

S

U3

U2

U1

Figure 1.5. An example of induced essential partition. The union of the bound-
aries of the Ui’s (inside of U) is contained in S, and the containment may be strict.
However, the part of S not contained in U ∩

⋃

i ∂Ui is not such to disconnect any
of the Ui’s. In particular, each Ui is essentially connected.

With this terminology in mind, we introduce the following definition:

Definition B (Measure theoretic homotopic spanning). Given a closed set W and a
spanning class C for W, the tubular spanning class T (C) associated to C is the family
of triples (µ,Φ, T ) such that µ ∈ C, T = Φ(S1 ×Bn

1 ), and
4

Φ : S1 × clBn
1 → Ω is a diffeomorphism with Φ|S1×{0} = µ .

When (µ,Φ, T ) ∈ T (C), the slice of T defined by s ∈ S1 is

T [s] = Φ({s} ×Bn
1 ) .

Finally, we say that a Borel set S ¢ Ω is C-spanning W if for each (µ,Φ, T ) ∈ T (C),
H1-a.e. s ∈ S1 has the following property:

for Hn-a.e. x ∈ T [s]

∃ a partition {T1, T2} of T s.t. x ∈ ∂eT1 ∩ ∂
eT2 (1.12)

and s.t. S ∪ T [s] essentially disconnects T into {T1, T2} .

Before commenting on (1.12), we notice that the terminology of Definition B is coherent
with that of Definition A thanks to the following theorem.

Theorem 1.1. Given a closed set W ¢ Rn+1, a spanning class C for W, and a set S
relatively closed in Ω, then S is C-spanning W in the sense of Definition A if and only if
S is C-spanning W in the sense of Definition B.

Theorem 1.1 is proved in Appendix A. There we also comment on the delicate reason
why, in formulating (1.12), the partition {T1, T2} must be allowed to depend on specific
points x ∈ T [s]. This would not seem necessary by looking at the simple situation depicted
in Figure 1.4, but it is actually so when dealing with more complex situations; see Figure
A.1.

Homotopic spanning according to Definition B is clearly stable under modifications of
S by Hn-negligible sets, but there is more to it. Indeed, even a notion like “Hn(S∩T ) > 0
for every T ∈ T (C)” would be stable under modifications by Hn-negligible sets, and would
probably look more appealing in its simplicity. The catch, of course, is finding an extension
of Definition A for which compactness theorems, like Theorem 1.4 below, hold true. This
is evidently not the case, for example, if one tries to work with a notion like “Hn(S∩T ) > 0
for every T ∈ T (C)”.

The first key insight on Definition B is that, if restricted to Borel sets S that are locally
Hn-finite in Ω, then it can be reformulated in terms of partitions into indecomposable

4Here Bn
1 = {x ∈ Rn : |x| < 1} and S1 = {s ∈ R2 : |s| = 1}.
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T

S S

T [s]T [s]

W

(b)(a)

U1

U2

Figure 1.6. With W consisting of two disks in the plane, and T a test tube for
the C-spanning condition: (a) S consists of a segment with a gap: since the gap
is inside of T , the essential partition of T induced by S ∪ T [s] consists of only one
set, U1 = T , so that T ∩ ∂∗U1 = ∅ and (1.14) cannot hold; (b) S consists of a full
segment and in this case (with the possible exception of a choice of s such that
T [s] is contained in S), the essential partition of T induced by S ∪T [s] consists of
two sets {U1, U2}, such that T [s] ¢ T ∩ ∂∗U1 ∩ ∂

∗U2; in this case (1.14) holds.

sets of finite perimeter. This is the content of the following theorem, whose case S = ∅

corresponds to the standard decomposition theorem for sets of finite perimeter [ACMM01,
Theorem 1]. For an illustration of this result, see Figure 1.5.

Theorem 1.2 (Induced essential partitions (Section 2)). If U ¢ Rn+1 is a bounded set
of finite perimeter and S ¢ Rn+1 is a Borel set with Hn(S ∩ U (1)) < ∞, then there exists
a unique5 essential partition {Ui}i of U induced by S, that is to say, {Ui}i is a
countable partition of U modulo Lebesgue negligible sets such that, for each i, S does not
essentially disconnect Ui.

Given U and S as in the statement of Theorem 1.2 we can define6 the union of the
(reduced) boundaries (relative to U) of the essential partition induced by S on U by
setting7

UBEP(S;U) = U (1) ∩
⋃

i

∂∗Ui . (1.13)

Two properties of UBEP’s which well illustrate the concept are: first, if R(S) denotes the
rectifiable part of S, then UBEP(S;U) is Hn-equivalent to UBEP(R(S);U); second, if S∗

is Hn-contained in S, then UBEP(S;U) is Hn-contained in UBEP(S;U); both properties
are proved in Theorem 2.1 (an expanded restatement of Theorem 1.2).

We can use the concepts just introduced to provide an alternative and technically more
workable characterization of homotopic spanning in the measure theoretic setting. This is
the content of our first main result, which is illustrated in Figure 1.6.

Theorem 1.3 (Homotopic spanning for locally Hn-finite sets (Section 3)). If W ¢ Rn+1

is a closed set in Rn+1, C is a spanning class for W, and S ¢ Ω is locally Hn-finite in Ω,
then S is C-spanning W if and only if for every (µ,Φ, T ) ∈ T (C) we have that, for H1-a.e.
s ∈ S1,

T [s] is Hn-contained in UBEP(S ∪ T [s];T ) . (1.14)

5Uniqueness is meant modulo relabeling and modulo Lebesgue negligible modifications of the Ui’s.
6Uniquely modulo Hn-null sets thanks to Federer’s theorem recalled in (1.37) below.
7Given a Borel set E, we denote by ∂∗E its reduced boundary relative to the maximal open set A

wherein E has locally finite perimeter.
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1.4. Direct Method on generalized soap films and Gauss’ capillarity. The most
convenient setting for addressing the existence of minimizers in Gauss’ capillarity theory
is of course that of sets of finite perimeter [Fin86, Mag12]. However, if the notion of
homotopic spanning is limited to closed sets, as it is the case when working with Definition
A, then one cannot directly use homotopic spanning on sets of finite perimeter, and this
is the reason behind the specific formulation (1.8) of È(v) used in [MSS19, KMS22a].
Equipped with Definition B we can now formulate Gauss’ capillarity theory with homotopic
spanning conditions directly on sets of finite perimeter. We shall actually consider two
different possible formulations

Èbk(v) = inf
{

Hn(Ω ∩ ∂∗E) : |E| = v and Ω ∩ (∂∗E ∪ E(1)) is C-spanning W
}

,

Èbd(v) = inf
{

Hn(Ω ∩ ∂∗E) : |E| = v and Ω ∩ ∂∗E is C-spanning W
}

,

where the subscripts “bk” and “bd” stand to indicate that the spanning is prescribed via
the bulk of E (that is, in measure theoretic terms, via the set Ω ∩ (∂∗E ∪ E(1)) or via the
(reduced) boundary of E. Inspired by the definition of the class K introduced in (1.9), we
also introduce the class KB of generalized soap films defined by

KB =
{

(K,E) : K and E are Borel subsets of Ω, (1.15)

E has locally finite perimeter in Ω and ∂∗E ∩ Ω
H

n

¢ K
}

.

Here the subscript “B” stands for “Borel”, and KB stands as a sort of measure-theoretic
version of K.

In the companion paper [Nov23] the following relaxation formulas for problems Èbk and
Èbd are proved,

Èbk(v) = Ψbk(v) , Èbd(v) = Ψbd(v) , ∀v > 0 , (1.16)

where the following minimization problems on KB are introduced

Ψbk(v) = inf
{

Fbk(K,E) : (K,E) ∈ KB , |E| = v ,K ∪ E(1) is C-spanning W
}

, (1.17)

Ψbd(v) = inf
{

Fbd(K,E) : (K,E) ∈ KB , |E| = v ,K is C-spanning W
}

. (1.18)

Here Fbk and Fbd are the relaxed energies defined for (K,E) ∈ KB and A ¢ Ω as

Fbk(K,E;A) = 2Hn(A ∩K ∩ E(0)) +Hn(A ∩ ∂∗E) , (1.19)

Fbd(K,E;A) = 2Hn(A ∩K \ ∂∗E) +Hn(A ∩ ∂∗E) , (1.20)

(We also set, for brevity, Fbk(K,E) := Fbk(K,E; Ω) and Fbd(K,E) := Fbd(K,E; Ω).)
We refer to these problems, respectively, as the “bulk-spanning” or “boundary-spanning”
Gauss’ capillarity models. In this paper we shall directly work with these relaxed models.
In particular, the validity of (1.16), although of definite conceptual importance, is not
playing any formal role in our deductions.

A first remark concerning the advantage of working with the relaxed problems Ψbk and
Ψbd rather than with their “classical” counterparts Èbk and Èbd is that while the latter
two with v = 0 are trivial (sets with zero volume have zero distributional perimeter), the
problems Ψbk(0) and Ψbd(0) are actually non-trivial, equal to each other, and amount
to a measure-theoretic version of the Harrison–Pugh formulation of Plateau’s problem ℓ
introduced in (1.7): more precisely, if we set

ℓB :=
Ψbk(0)

2
=

Ψbd(0)

2
= inf

{

Hn(S) : S is a Borel set C-spanning W
}

, (1.21)

then, by Theorem 1.1, we evidently have ℓB f ℓ; and, as we shall prove in the course of
our analysis, we actually have that ℓ = ℓB as soon as ℓ <∞.
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Our second main result concerns the applicability of the Direct Method on the compe-
tition classes of Ψbk(v) and Ψbd(v).

Theorem 1.4 (Direct Method for generalized soap films (Sections 4 and 5)). Let W be a
closed set in Rn+1, C a spanning class for W, {(Kj , Ej)}j be a sequence in KB such that
supj H

n(Kj) < ∞, and let a Borel set E and Radon measures µbk and µbd in Ω be such

that Ej
loc
→ E and

Hn (Ω ∩ ∂∗Ej) + 2Hn (R(Kj) ∩ E
(0)

j )
∗

á µbk ,

Hn (Ω ∩ ∂∗Ej) + 2Hn (R(Kj) \ ∂
∗Ej)

∗

á µbd ,

as j → ∞. Then:

(i) Lower semicontinuity: the sets

Kbk :=
(

Ω ∩ ∂∗E
)

∪
{

x ∈ Ω ∩ E(0) : ¹n∗ (µbk)(x) g 2
}

,

Kbd :=
(

Ω ∩ ∂∗E
)

∪
{

x ∈ Ω \ ∂∗E : ¹n∗ (µbd)(x) g 2
}

,

are such that (Kbk, E), (Kbd, E) ∈ KB and

µbk g Hn (Ω ∩ ∂∗E) + 2Hn (Kbk ∩ E
(0)) ,

µbd g Hn (Ω ∩ ∂∗E) + 2Hn (Kbd \ ∂
∗E) ,

with

lim inf
j→∞

Fbk(Kj , Ej) g Fbk(Kbk, E) , lim inf
j→∞

Fbd(Kj , Ej) g Fbd(Kbd, E) .

(ii) Closure: we have that

if Kj ∪ E
(1)

j is C-spanning W for every j,

then Kbk ∪ E
(1) is C-spanning W ,

and that

if Kj is C-spanning W for every j,

then Kbd is C-spanning W .

The delicate part of Theorem 1.4 is proving the closure statements. This will require
first to extend the characterization of homotopic spanning from locally Hn-finite sets to
generalized soap films (Theorem 3.1), and then to discuss the behavior under weak-star
convergence of the associated Radon measures of the objects appearing in conditions like
(1.14) (Theorem 4.1).

1.5. Existence of minimizers in Ψbk(v) and convergence to ℓ. From this point on-
ward, we focus our analysis on the bulk-spanning relaxation Ψbk(v) of Gauss’ capillarity.
There are a few important reasons for this choice: (i) from the point of view of physical
modeling, working with the boundary or with the bulk spanning conditions seem com-
parable; (ii) the fact that Ψbk(0) = Ψbd(0) suggest that, at small values of v, the two
problems should actually be equivalent (have the same infima and the same minimizers);
(iii) the bulk spanning variant is the one which is relevant for the approximation of Plateau-
type singularities with solutions of the Allen–Cahn equations discussed in [MNR23a]; (iv)
despite their similarities, carrying over the following theorems for both problems would
require the repeated introduction of two versions of many arguments, with a significant
increase in length, and possibly with at the expense of clarity.

The following theorem provides the starting point in the study of Ψbk(v).
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Theorem 1.5 (Existence of minimizers and vanishing volume limit for Ψbk (Section 6)).
If W is a compact set in Rn+1 and C is a spanning class for W such that ℓ <∞, then

ℓB = ℓ , (1.22)

and, moreover:

(i) Existence of minimizers and Euler–Lagrange equation: for every v > 0 there
exist minimizers (K,E) of Ψbk(v) such that (K,E) ∈ K and both E and K are bounded;
moreover, there is ¼ ∈ R such that

¼

ˆ

∂∗E
X · ¿E dH

n =

ˆ

∂∗E
divK X dHn + 2

ˆ

K∩E(0)

divK X dHn , (1.23)

for every X ∈ C1
c (R

n+1;Rn+1) with X · ¿Ω = 0 on ∂Ω;

(ii) Regularity from the Euler–Lagrange equations: if (K,E) ∈ K is a minimizer of
either Ψbk(v), then there is a closed set Σ ¢ K, with empty interior in K, such that K\Σ is
a smooth hypersurface; moreover, K \(Σ∪∂E) is a smooth minimal hypersurface, Ω∩∂∗E
is a smooth hypersurface with mean curvature constantly equal to ¼, and Hn(Σ \ ∂E) = 0;
in particular, Ω ∩ (∂E \ ∂∗E) has empty interior in K;

(iii) Convergence to the Plateau problem: if (Kj , Ej) is a sequence of minimizers
for Ψbk(vj) with vj → 0+, then there exists a minimizer S of ℓ such that, up to extracting
subsequences, as Radon measures in Ω,

Hn (∂∗Ej ∩ Ω) + 2Hn (Kj ∩ E
(0)

j )
∗

á 2Hn S , (1.24)

as j → ∞; In particular, Ψbk(v) → 2 ℓ = Ψbk(0) as v → 0+.

The conclusions of Theorem 1.5 about Ψbk(v) can be read in parallel to the conclusions
about È(v) obtained in [KMS22a]. The crucial difference is that, in place of the “weak”
minimality inequality (1.10), which in this context would be equivalent to Fbk(K,E) f
Hn(Ω ∩ ∂∗E′) for every competitor E′ in Èbk(v), we now have the proper minimality
inequality

Fbk(K,E) f Fbk(K
′, E′) (1.25)

for every competitor (K ′, E′) in Ψbk(v). Not only the final conclusion is stronger, but
the proof is also entirely different: whereas [KMS22a] required the combination of a whole
bestiary of specific competitors (like the cup, cone, and slab competitors described therein)
with the full force of Preiss’ theorem, the approach presented here seems more robust as
it does not exploit any specific geometry, and it is squarely rooted in the basic theory of
sets of finite perimeter.

1.6. Equilibrium across transition lines in wet soap films. We now formalize the
validation of (1.1) for soap films in the form of a sharp regularity theorem for minimizers
(K,E) of Ψbk(v).

The starting point to obtain this result is the connection between homotopic span-
ning and partitions into indecomposable sets of finite perimeter established in Theorem
1.3/Theorem 3.1. This connection hints at the possibility of showing that if (K,E) is a
minimizer of Ψbk(v), then the elements {Ui}i of the essential partition of Ω induced by
K ∪ E(1) are actually (Λ, r0)-minimizers of the perimeter in Ω, i.e., there exist Λ and r0
positive constants such that

P (Ui;Br(x)) f P (V ;Br(x)) + Λ |V∆Ui| ,

whenever V∆Ui ¢¢ Ω and diam (V∆Ui) < r0. The reason why this property is not ob-
vious is that proving the (Λ, r0)-minimality of Ui requires working with arbitrary local
competitors Vi of Ui. However, when working with homotopic spanning conditions, check-
ing the admissibility of competitors is the notoriously delicate heart of the matter – as
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ViUi

(∂∗Vi) \ (∂
∗Ui)

E′

VjVk

Br(x)

UjUk

E

Figure 1.7. On the left, a minimizer (K,E) of Ψbk(v), and the essential parti-
tion induced by (K,E) in a ball Br(x); the multiplicity 2 part of K ∩ Br(x) are
depicted with bold lines, to distinguish them from the multiplicity one parts in
Br(x) ∩ ∂

∗E. On the right, a choice of (K ′, E′) that guarantees both the energy
gap identity (1.26) and the Hn-containment (1.27) needed to preserve homotopic
spanning. The volume constraint can of course be restored as a lower order perime-
ter perturbation by taking a diffeomorphic image of (K ′, E′), an operation that
trivially preserves homotopic spanning.

reflected in the fact that only very special classes of competitors have been considered
in the literature (see, e.g., the cup and cone competitors and the Lipschitz deformations
considered in [DLGM17a], the slab competitors and exterior cup competitors of [KMS22a],
etc.).

The idea used to overcome this difficulty, which is illustrated in Figure 1.7, is the
following. By Theorem 1.2, we can locally represent Fbk(K,E;Br(x)) as the sum of
perimeters P (Ui;Br(x))+P (Uj ;Br(x))+P (Uk;Br(x)). Given a local competitor Vi for Ui

we can carefully define a competitor (K ′, E′) so that the elements of the essential partition
induced by K ′ ∪ (E′)(1) in Ω, that can be used to represent Fbk(K

′, E′;Br(x)) as the sum
P (Vi;Br(x)) + P (Vj ;Br(x)) + P (Vk;Br(x)), are such that

Fbk(K
′, E′;Br(x))−Fbk(K,E;Br(x)) = P (V ;Br(x))− P (Ui;Br(x)) . (1.26)

The trick is that by suitably defining K ′ and E′ we can recover the entirety of Br(x)∩∂
∗Uj

and Br(x) ∩ ∂
∗Uk by attributing different parts of these boundaries to different terms in

the representation of Fbk(K
′, E′;Br(x)). In other words we are claiming that things can

be arranged so that we still have

Br(x) ∩
(

∂∗Uj ∩ ∂
∗Uk)

H
n

¢ K ′ ∪ (E′)(1) . (1.27)

The fact that we have been able to preserve all but one reduced boundary among those
of the elements of the essential partition of Br(x) induced by (K,E) is enough to shows
that K ′ ∪ (E′)(1) is still C-spanning W by means of Theorem 1.3/Theorem 3.1.

By the regularity theory of (Λ, r0)-perimeter minimizers (see, e.g. [Mag12, Part III])
we can deduce the C1,³-regularity of the elements of the partition (away from a closed
singular set with area minimizing dimensional bounds). This is already sufficient to prove
the continuity of the normal across Ω ∩ (∂E \ ∂∗E), but it also allows us to invoke the
regularity theory for free boundaries in the double membrane problem, and to obtain the
following sharp regularity result, with which we conclude our introduction.

Theorem 1.6 (Equilibrium along transition lines for soap films (Section 7)). If W is a
compact set in Rn+1, C is a spanning class for W such that ℓ < ∞, v > 0, and (K∗, E∗)
is a minimizer of Ψbk(v), then there is (K,E) ∈ K such that K is Hn-equivalent to K∗, E
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is Lebesgue equivalent to E∗, (K,E) is a minimizer of Ψbk(v), both E and K are bounded,
K ∪ E is C-spanning W, and

K ∩ E(1) = ∅ ; (1.28)

in particular, K is the disjoint union of Ω ∩ ∂∗E, Ω ∩ (∂E \ ∂∗E), and K \ ∂E.

Moreover, there is a closed set Σ ¢ K with the following properties:

(i): Σ = ∅ if 1 f n f 6, Σ is locally finite in Ω if n = 7, and Hs(Σ) = 0 for every
s > n− 7 if n g 8;

(ii): (Ω ∩ ∂∗E) \ Σ is a smooth hypersurface with constant mean curvature (denoted by ¼
if computed with respect to ¿E);

(iii): (K \ ∂E) \ Σ is a smooth minimal hypersurface;

(iv): if Ω∩(∂E \∂∗E)\Σ ̸= ∅, then ¼ < 0; moreover, for every x ∈ Ω∩(∂E \∂∗E)\Σ, K
is the union of two C1,1-hypersurfaces that detach tangentially at x; more precisely, there
are r > 0, ¿ ∈ Sn, u1, u2 ∈ C1,1(D¿

r (x)) such that

u1(x) = u2(x) = 0 , u1 f u2 on D¿
r (x) ,

with {u1 < u2} and int{u1 = u2} both non-empty, and

C¿
r (x) ∩K = ∪i=1,2

{

y + ui(y) ¿ : y ∈ D¿
r (x)

}

, (1.29)

C¿
r (x) ∩ ∂

∗E = ∪i=1,2

{

y + ui(y)¿ : y ∈ {u1 < u2}
}

, (1.30)

C¿
r (x) ∩ E =

{

y + t ¿ : t ∈
(

u1(y), u2(y)
)}

. (1.31)

Here,

Dr
¿(x) = x+ {y ∈ ¿§ : |y| < r} ,

Cr
¿(x) = x+ {y + t ¿ : y ∈ ¿§ , |y| < r , |t| < r} .

(v): we have

Γ := Ω ∩ (∂E \ ∂∗E) = Γreg ∪ Γsing , Γreg ∩ Γsing = ∅ ,

where: Γreg is relatively open in Γ and for every x ∈ Γreg there are r > 0 and ´ ∈ (0, 1)

such that Γreg ∩Br(x) is a C
1,´-embedded (n− 1)-dimensional manifold; Γsing is relatively

closed in Γ and can be partitioned into a family {Γk
sing}

n−1
k=0 where, for each k, Γk

sing is

locally Hk-rectifiable in Ω.

1.7. Equilibrium across transition lines in wet foams. Based on the descriptions
provided in [WH99, CCAE+13], an effective mathematical model for dry foams at equi-
librium in a container is that of locally perimeter minimizing clusters, originating with
different terminology in [Alm76], and presented in [Mag12, Part IV] as follows. Given an
open set Ω ¢ Rn+1, a locally perimeter minimizing clusters is a finite Lebesgue partition
{Ui}i of Ω into sets of finite perimeter such that, for some r0 > 0,

∑

i

P (Ui;B) f
∑

i

P (Vi;B) (1.32)

whenever B ¢¢ Ω is a ball with radius less than r0, and {Vi}i is a Lebesgue partition of Ω
with Vi∆Ui ¢¢ B and |Vi| = |Ui| for every i. The previously cited results of Almgren and
Taylor [Alm76, Tay76] imply that, up to modification of the Ui’s by sets of zero Lebesgue
measure, when n = 2, K = Ω ∩

⋃

i ∂Ui is a closed subset of Ω that is locally C1,³-
diffeomorphic to a plane, a Y -cone, or a T -cone; moreover, the part of K that is a surface
is actually smooth and each of its connected component has constant mean curvature.
Similar results holds when n = 1 (by elementary methods) and when n g 3 (by exploiting
[CES22]).
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The theory for the relaxed capillarity energy Fbk developed in this paper provides an
option for modeling wet foams. Again based on the descriptions provided in [WH99,
CCAE+13], the following seems to be a reasonable model for wet foams at equilibrium in
a container. Given an open set Ω ¢ Rn+1 we model wet foams by introducing the class

Kfoam

of those (K,E) ∈ KB such that, for some positive constants Λ0 and r0,

Fbk(K,E;B) f Fbk(K
′, E′;B) + Λ0 |E∆E′| (1.33)

whenever B is a ball compactly contained in Ω and with radius less than r0, and (K ′, E′) ∈
KB is such that (K∆K ′) ∪ (E∆E′) ¢¢ B and there are finite Lebesgue partitions {Ui}i
and {U ′

i}i of B induced, respectively, by K ∪E(1) and by K ′∪ (E′)(1), such that |Ui| = |U ′
i |

for every i. Notice that inclusion of the term Λ0 |E∆E′| in (1.33) allows for the inclusion
of energy perturbations due to gravity or other forces. Lemma 7.1 will clarify that by
taking (K,E) ∈ Kfoam with |E| = 0 we obtain a slightly more general notion of dry foam
than the one proposed in (1.32).

Theorem 1.7 (Equilibrium along transition lines for soap films (Section 8)). If Ω ¢ Rn+1

is open and (K∗, E∗) ∈ Kfoam, then there is (K,E) ∈ K ∩ Kfoam such that K is Hn-
equivalent to K∗, E Lebesgue equivalent to E∗, K ∩ E(1) = ∅, and such that, for every
ball B ¢¢ Ω, the open connected components {Ui}i of B \ (K ∪ E) are such that each Ui

is (Lebesgue equivalent to an) open set with C1,³-boundary in B \ Σ. Here Σ is a closed
subset of Ω with Σ = ∅ if 1 f n f 6, Σ locally finite in Ω if n = 7, and Hs(Σ) = 0 for
every s > n− 7 if n g 8.

Organization of the paper. The sections of the paper contain the proofs of the main
theorems listed above, as already specified in the statements. To these section we add three
appendices. In Appendix A, as already noted, we prove the equivalence of Definition A and
Definition B. In Appendix B we prove that, with some regularity of ∂Ω, every minimizing
sequence of Ψbk(v) is converging to a minimizers, without need for modifications at infinity:
this is, strictly speaking, not needed to prove Theorem 1.5, but it is a result of its own
conceptual interest, it will be crucial for the analysis presented in [MNR23a], and it is
easily discussed here in light of the proof of Theorem 1.5. Finally, Appendix C contains
an elementary lemma concerning the use of homotopic spanning in the plane that, to our
knowledge, has not been proved in two dimensions.
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Notation. Sets and measures: We denote by Br(x) (resp., Bk
r (x)) the open ball of

center x and radius r in Rn+1 (resp., Rk), and omit (x) when x = 0. We denote by cl (X),
int(X), and Ir(X) the closure, interior and open ε-neighborhood of X ¢ Rk. We denote
by Ln+1 and Hs the Lebesgue measure and the s-dimensional Hausdorff measure on Rn+1,
s ∈ [0, n+1]. If E ¢ Rk, we set |E| = Lk(E) and Ék = |Bk

1 |. We denote by E(t), t ∈ [0, 1],
the points of density t of a Borel set E ¢ Rn+1, so that E is Ln+1-equivalent to E(1),
and, for every pair of Borel sets E,F ¢ Rn+1,

(E ∪ F )(0) = E(0) ∩ F (0) . (1.34)

We define by ∂eE = Rn+1 \ (E(0) ∪E(1)) the essential boundary of E. Given Borel sets
Ej , E ¢ Ω we write

Ej → E , Ej
loc
→ E ,
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when, respectively, |Ej∆E| → 0 or |(Ej∆E)∩Ω′| → 0 for every Ω′ ¢¢ Ω, as j → ∞. Given
a Radon measure µ on Rn+1, the k-dimensional lower density of µ is the Borel function
¹k∗(µ) : R

n+1 → [0,∞] defined by

¹k∗(µ)(x) = lim inf
r→0+

µ(cl (Br(x)))

Ékrk
.

We repeatedly use the fact that, if ¹k∗(µ) g ¼ on some Borel set K and for some ¼ g 0,
then µ g ¼Hk

?K; see, e.g. [Mag12, Theorem 6.4].

Rectifiable sets: Given an integer 0 f k f n + 1, a Borel set S ¢ Rn+1 is locally Hk-
rectifiable in an open set Ω if S is locally Hk-finite in Ω and S can be covered, modulo
Hk-null sets, by a countable union of Lipschitz images of Rk in Rn+1. We say that S
is purely Hk-unrectifiable if Hk(S ∩M) = 0 whenever M is a Lipschitz image of Rk

into Rn+1. Finally, we recall that if S is a locally Hk-finite set in Ω, then there is a pair
(R(S),P(S)) of Borel sets, uniquely determined modulo Hk-null sets, and that are thus
called, with a slight abuse of language, the rectifiable part and the unrectifiable part
of S, so that R(S) is locally Hk-rectifiable in Ω, P(S) is purely Hk-unrectifiable, and
S = R(S) ∪ P(S); see, e.g. [Sim83, 13.1].

Sets of finite perimeter: If E is a Borel set in Rn+1 and D1E is the distributional
derivative of the characteristic function of E, then we set µE = −D1E . If A is the largest
open set of Rn+1 such that µE is a Radon measure in A (of course it could be A = ∅),
then E is of locally finite perimeter in A and the reduced boundary ∂∗E of E is defined
as the set of those x ∈ A∩ sptµE such that µE(Br(x))/|µE |(Br(x)) has a limit ¿E(x) ∈ Sn

as r → 0+. Moreover, we have the general identity (see [Mag12, (12.12) & pag. 168])

A∩cl (∂∗E) = A∩sptµE =
{

x ∈ A : 0 < |E∩Br(x)| < |Br(x)| ∀r > 0
}

¢ A∩∂E . (1.35)

By De Giorgi’s rectifiability theorem, ∂∗E is locally Hn-rectifiable in A, µE = ¿E Hn

(A ∩ ∂∗E) on A, and ∂∗E ¢ A ∩ E(1/2) ¢ A ∩ ∂eE, and

(E − x)/r
loc
→ HE,x :=

{

y ∈ Rn+1 : y · ¿E(x) < 0
}

, as r → 0+ . (1.36)

By a result of Federer,

A is Hn-contained in E(0) ∪ E(1) ∪ ∂∗E ; (1.37)

in particular, ∂∗E is Hn-equivalent to A∩∂eE, a fact frequently used in the following. By
Federer’s criterion for finite perimeter, if Ω is open and E is a Borel set, then

Hn(Ω ∩ ∂eE) <∞ ⇒ E is of finite perimeter in Ω , (1.38)

see [Fed69, 4.5.11]. If E and F are of locally finite perimeter in Ω open, then so are E∪F ,
E ∩ F , and E \ F , and by [Mag12, Theorem 16.3], we have

Ω ∩ ∂∗(E ∪ F )
H

n

= Ω ∩
{

(

E(0) ∩ ∂∗F
)

∪
(

F (0) ∩ ∂∗E
)

∪ {¿E = ¿F }
}

, (1.39)

Ω ∩ ∂∗(E ∩ F )
H

n

= Ω ∩
{

(

E(1) ∩ ∂∗F
)

∪
(

F (1) ∩ ∂∗E
)

∪ {¿E = ¿F }
}

, (1.40)

Ω ∩ ∂∗(E \ F )
H

n

= Ω ∩
{

(

E(1) ∩ ∂∗F
)

∪
(

F (0) ∩ ∂∗E
)

∪ {¿E = −¿F }
}

, (1.41)

where {¿E = ±¿F } := {x ∈ ∂∗E ∩ ∂∗F : ¿E(x) = ±¿F (x)}. By exploiting Federer’s
theorem (1.37), (1.39), (1.40), and (1.41) we can also deduce (the details are left to the
reader)

(E ∩ F )(0)
H

n

= E(0) ∪ F (0) ∪ {¿E = −¿F } , (1.42)

(E \ F )(0)
H

n

= E(0) ∪ F (1) ∪ {¿E = ¿F } . (1.43)

16



Finally, combining (1.39), (1.41), and (1.43), we find

∂∗(E∆F )
H

n

= (∂∗E)∆(∂∗F ) . (1.44)

Partitions: Given a Radon measure µ on Rn+1 and Borel set U ¢ Rn+1 we say that
{Ui}i is a µ-partition of U if {Ui}i is an at most countable family of Borel subsets of U
such that

µ
(

U \
⋃

i

Ui

)

= 0 , µ(Ui ∩ Uj) = 0 ∀i, j ; (1.45)

and we say that {Ui}i is a monotone µ-partition if, in addition to (1.45), we also have
µ(Ui) g µ(Ui+1) for every i. When µ = Ln+1 we replace “µ-partition” with “Lebesgue
partition”. When U is a set of finite perimeter in Rn+1, we say that {Ui}i is aCaccioppoli
partition of U if {Ui}i is a Lebesgue partition of U and each Ui is a set of finite perimeter
in Rn+1: in this case we have

∂∗U
H

n

¢
⋃

i

∂∗Ui , 2Hn
(

U (1) ∩
⋃

i

∂∗Ui

)

=
∑

i

Hn(U (1) ∩ ∂∗Ui) , (1.46)

see, e.g., [AFP00, Section 4.4]; moreover,

1 f #
{

i : x ∈ ∂∗Ui

}

f 2 , ∀x ∈
⋃

i

∂∗Ui , (1.47)

thanks to (1.36) and to the fact that there cannot be three disjoint half-spaces in Rn+1.

2. Induced essential partitions (Theorem 1.2)

Given a Borel set S, we say that a Lebesgue partition {Ui}i of U is induced by S if,
for each i,

U (1) ∩ ∂eUi is H
n-contained in S . (2.1)

We say that {Ui}i is an essential partition of U induced by S if it is a Lebesgue
partition of U induced by S such that, for each i,

S does not essentially disconnect Ui . (2.2)

The next theorem, which expands the statement of Theorem 1.2, shows that when Hn-
finite sets uniquely determine induced essential partitions on sets of finite perimeter.

Theorem 2.1 (Induced essential partitions). If U ¢ Rn+1 is a bounded set of finite
perimeter and S ¢ Rn+1 is a Borel set with Hn(S ∩ U (1)) < ∞, then there exists an
essential partition {Ui}i of U induced by S such that each Ui is a set of finite perimeter
and

∑

i

P (Ui;U
(1)) f 2Hn(S ∩ U (1)) . (2.3)

Moreover: (a): if S∗ is a Borel set with Hn(S∗ ∩ U (1)) < ∞, S∗ is Hn-contained in S,
{Vj}j is a Lebesgue partition8 of U induced by S∗, and {Ui}i is the essential partition of
U induced by S, then

⋃

j ∂
∗Vj is Hn-contained in

⋃

i ∂
∗Ui ; (2.4)

(b): if S and S∗ are Hn-finite sets in U (1), and either9 S∗ = R(S) or S∗ is Hn-equivalent
to S, then S and S∗ induce Ln+1-equivalent essential partitions of U .

Proof of Theorem 1.2. Immediate consequence of Theorem 2.1. □

8Notice that here we are not requiring that S∗ does not essentially disconnect each Vj , i.e., we are not
requiring that {Vj}j is an essential partition induced by S∗. This detail will be useful in the applications
of this theorem.

9Here R(S) denotes the Hn-rectifiable part of S.
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The proof of Theorem 2.1 follows the main lines of the proof of [ACMM01, Theorem
1], which is indeed the case S = ∅ of Theorem 2.1. We premise to this proof two lemmas
that will find repeated applications in later sections too. To introduce the first lemma, we
notice that, while it is evident that if S is C-spanning W and S is Hn-contained into some
Borel set S∗, then S∗ is also C-spanning W, however, it is not immediately clear if the
rectifiable part R(S) of S (which may not be Hn-equivalent to S) retains the C-spanning
property.

Lemma 2.2. If W is compact, C is a spanning class for W, S is C-spanning W, and
Hn S is a Radon measure in Ω, then R(S) is C-spanning W. Moreover, the sets T1 and
T2 appearing in (1.12) are sets of finite perimeter.

Proof. We make the following claim: if T is open, T (1)
H

n

¢ T , Hn Z is a Radon measure
in an open neighborhood of T , and Z essentially disconnects T into {T1, T2}, then

T1 and T2 are of locally finite perimeter in T , (2.5)

R(Z) essentially disconnects T into {T1, T2} . (2.6)

Indeed: Since T is open, we trivially have T ¢ T (1), and hence T is Hn-equivalent to T (1).
Taking also into account that Z essentially disconnects T into {T1, T2}, we thus find

T ∩ ∂eT1 ∩ ∂
eT2

H
n

= T (1) ∩ ∂eT1 ∩ ∂
eT2

H
n

¢ Z ∩ T (1)
H

n

¢ Z ∩ T .

By Federer’s criterion (1.38) and the Hn-finiteness of Z in an open neighborhood of T
we deduce (2.5). By Federer’s theorem (1.37), ∂eTi is (H

n T )-equivalent to ∂∗Ti, which
combined with the Hn-equivalence of T (1) and T gives

∂eT1 ∩ ∂
eT2 ∩ T

(1) H
n

= ∂∗T1 ∩ ∂
∗T2 ∩ T .

Since ∂∗T1 ∩ ∂∗T2 ∩ T is Hn-rectifiable and ∂eT1 ∩ ∂eT2 ∩ T (1)
H

n

¢ Z, we conclude that
Hn(∂eT1 ∩ ∂

eT2 ∩ T
(1) ∩ P(Z)) = 0. Hence,

∂eT1 ∩ ∂
eT2 ∩ T

(1)
H

n

¢ R(Z) ,

and (2.6) follows.

To prove the lemma: Let (µ,Φ, T ) ∈ T (C), let J be of full measure such that (A.1)
holds for every s ∈ J , so that, for every s ∈ J one finds that for Hn-a.e. x ∈ T [s] there is a
partition {T1, T2} of T with x ∈ ∂eT1∩∂

eT2 and such that S∪T [s] essentially disconnects T
into {T1, T2}. By applying the claim with Z = S∪T [s], we see that R(S∪T [s]) essentially
disconnects T into {T1, T2}, and that T1 and T2 have locally finite perimeter in T . On
noticing that R(S ∪ T [s]) is Hn-equivalent to R(S) ∪ T [s], we conclude the proof. □

The second lemma is just a simple compactness statement for finite perimeter partitions.

Lemma 2.3 (Compactness for partitions by sets of finite perimeter). If U is a bounded

open set and {{U j
i }

∞
i=1}

∞
j=1 is a sequence of Lebesgue partitions of U into sets of finite

perimeter such that

sup
j

∞
∑

i=1

P (U j
i ) <∞ , (2.7)

then, up to extracting a subsequence, there exists a Lebesgue partition {Ui}i∈N of U such
that for every i and every A ¢ U open,

lim
j→∞

|U j
i ∆Ui| = 0 , P (Ui;A) f lim inf

j→∞
P (U j

i ;A) . (2.8)
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Moreover,

lim
i→∞

lim sup
j→∞

∞
∑

k=i+1

|U j
k |

s = 0 , ∀s ∈
( n

n+ 1
, 1
)

. (2.9)

Proof. Up to a relabeling we can assume each {U j
i }i is monotone. By (2.7) and the

boundedness of U , a diagonal argument combined with standard lower semicontinuity
and compactness properties of sets of finite perimeter implies that we can find a not
relabeled subsequence in j and a family {Ui}i of Borel subsets of U with |Ui| g |Ui+1| and
|Ui ∩ Uj | = 0 for every i ̸= j, such that (2.8) holds. We are thus left to prove (2.9) and

∣

∣

∣
U \

∞
⋃

i=1

Ui

∣

∣

∣
= 0 . (2.10)

We start by noticing that for each i there is J(i) ∈ N such that |U j
k | f 2 |Uk| for every

j g J(i) and 1 f k f i. Therefore if k g i + 1 and j g J(i) we find |U j
k | f |U j

i | f 2 |Ui|,
so that, if j g J(i),

∞
∑

k=i+1

|U j
k |

s f C(n)

∞
∑

k=i+1

P (U j
k)|U

j
k |

s−(n/(n+1)) f C |Ui|
s−(n/(n+1)) , (2.11)

where we have also used the isoperimetric inequality and (2.7). Since |Ui| → 0 as i → ∞
(indeed,

∑

i |Ui| f |U | < ∞), (2.11) implies (2.9). To prove (2.10), we notice that if we
set M = |U \ ∪iUi|, and we assume that M is positive, then up to further increasing the
value of J(i) we can require that

|U j
k | f |Uk|+

M

2k+2
, ∀1 f k f i , ∀j g J(i) , (2.12)

(in addition to |U j
k | f 2 |Uk|). By (2.12) we obtain that, if j g J(i), then

|U | −
∞
∑

k=i+1

|U j
k | =

i
∑

k=1

|U j
k | f

i
∑

k=1

|Uk|+
M

2k+2
f |U | −M +

i
∑

k=1

M

2k+2
f |U | −

M

4
. (2.13)

Rearranging (2.13) and using the sub-additivity of z 7→ zs we conclude that

(M/4)s f
∞
∑

k=i+1

|U j
k |

s .

We obtain a contradiction with M > 0 by letting i→ ∞ and by using (2.9). □

Proof of Theorem 2.1. Let U(S) be the set of all the monotone Lebesgue partitions of U
induced by S. We notice that U(S) ̸= ∅, since U(S) contains the trivial partition with
U1 = U and Ui = ∅ if i g 2. If Ui ∈ {Ui}i for {Ui}i ∈ U(S), then ∂eUi is Hn-contained

in ∂eU ∪ (U (1) ∩ S), which, by Federer’s criterion applied to U and Hn(S ∩ U (1)) < ∞,
has finite Hn-measure; it follows then that Ui is a set of finite perimeter due to Federer’s

criterion. We now fix s ∈ (n/(n+1), 1), and consider a maximizing sequence {{U j
i }i}j for

m = max
{

∞
∑

i=1

|Ui|
s : {Ui}i ∈ U(S)

}

.

By standard arguments concerning reduced boundaries of disjoint sets of finite perimeter
(see, e.g. [Mag12, Chapter 16]), we deduce from (2.1) that for every j,

∞
∑

i=1

Hn ∂∗U j
i =

∞
∑

i=1

Hn (∂∗U j
i ∩ U (1)) +

∞
∑

i=1

Hn (∂∗U j
i ∩ ∂∗U)

f 2Hn (S ∩ U (1)) +Hn ∂∗U . (2.14)
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Also, due to the sub-additivity of z 7→ zs and the general fact that ∂e(A∩B) ¢ ∂eA∪∂eB,

we can refine {U j
i }i by replacing each U j

i with the disjoint family
{

U j
i ∩ U ℓ

k : k g 1 , 1 f ℓ < j
}

,

thus obtaining a new sequence in U(S) which is still maximizing for m. As a consequence
of this remark, we can assume without loss of generality that the considered maximizing

sequence {{U j
i }i}j for m has the additional property that

U ∩
⋃

i

∂∗U j
i ¢ U ∩

⋃

i

∂∗U j+1
i , ∀j . (2.15)

Thanks to (2.14) we can apply Lemma 2.3 and, up to extracting a subsequence in j, we
can find a Lebesgue partition {Ui}i∈N of U by sets of finite perimeter which satisfies (2.8)

and (2.9). Moreover, after taking a subsequence, we may assume that Hn ∂∗U j
i

∗

á µi for
some Radon measures µi such that Hn ∂∗Ui f µi [Mag12, Prop. 12.15]. Therefore, by

(2.8), Federer’s theorem for reduced boundaries, and by (2.1) for {U j
i }i, we see that

Hn (∂∗U) +

∞
∑

i=1

Hn (∂∗Ui ∩ U
(1)) =

∞
∑

i=1

Hn (∂∗Ui) f w∗ lim
j→∞

∞
∑

i=1

Hn (∂∗U j
i )

= w∗ lim
j→∞

Hn (∂∗U) +

∞
∑

i=1

Hn (∂eU j
i ∩ U (1)) f Hn (∂∗U) + 2Hn (S ∩ U (1)) .

By subtracting Hn (∂∗U) from both sides, we deduce (2.3).

We now show, first, that {Ui}i ∈ U(S) (i.e., we check the validity of (2.1) on {Ui}i), and
then that S does not essentially disconnect any of the Ui. This will complete the proof of
the first part of the statement.

To prove that U (1) ∩ ∂eUi
H

n

¢ S, let us introduce the Hn-rectifiable set S0 defined by

S0 = U (1) ∩
⋃

i,j

∂∗U j
i . (2.16)

By {U j
i }i ∈ U(S), S0 is contained into S modulo Hn-null sets. Therefore, in order to prove

(2.1) it will be enough to show that

U (1) ∩ ∂∗Ui
H

n

¢ S0 , ∀i . (2.17)

Should this not be the case, it would be Hn(U (1) ∩ ∂∗Ui \ S0) > 0 for some i. We could
thus pick x ∈ U (1) ∩ ∂∗Ui such that

¹n(Hn (U (1) ∩ ∂∗Ui \ S0))(x) = 1 . (2.18)

Since ¹n(Hn ∂∗Ui)(x) = 1 and S0 ¢ U (1) this implies Hn(S0 ∩ Br(x)) = o(rn), while
∂∗Ui ¢ U (1/2)

i gives |Ui ∩Br(x)| = (Én+1/2) r
n+1 +o(rn+1). Therefore, given ¶ > 0 we can

find r > 0 such that

Hn(S0 ∩Br(x)) < ¶ rn , min
{

|Ui ∩Br(x)|, |Ui \Br(x)|
}

g
(Én+1

2
− ¶

)

rn+1 ,

and then exploit the relative isoperimetric inequality and (2.8) to conclude that

c(n)
[(Én+1

2
− ¶

)

rn+1
]n/(n+1)

f P (Ui;Br(x)) f lim inf
j→∞

P (U j
i ;Br(x))

f Hn(S0 ∩Br(x)) f ¶ rn ,

where in the next to last inequality we have used the definition (2.16) of S0. Choosing
¶ > 0 small enough we reach a contradiction, thus deducing that {Ui}i ∈ U(S).
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Taking into account the subadditivity of z 7→ zs, in order to prove that S does not
essentially disconnect any Ui it is sufficient to show that {Ui}i is a maximizer of m. To

see this, we notice that |U j
i ∆Ui| → 0 as j → ∞ implies

m = lim
j→∞

k
∑

i=1

|U j
i |

s +
∞
∑

i=k+1

|U j
i |

s =
k

∑

i=1

|Ui|
s + lim

j→∞

∞
∑

i=k+1

|U j
i |

s ,

so that, letting k → ∞ and exploiting (2.9), we conclude that

m =

∞
∑

i=1

|Ui|
s . (2.19)

This completes the proof of the first part of the statement (existence of essential partitions).

Let now S, S∗, {Ui}i, and {U∗
j }j be as in statement (a) – that is, S∗ is Hn-contained in

S, {Ui}i is an essential partition of U induced by S, and, for every j, {U∗
j }j is a Lebesgue

partition of U induced by S∗ – and set Z = ∪i∂
∗Ui and Z∗ = ∪j∂

∗U∗
j . Arguing by

contradiction with (2.4), let us assume Hn(Z∗ \ Z) > 0. By the definition of Lebesgue
partition we have that Z \U (1) and Z∗ \U (1) are both Hn-equivalent to ∂∗U . Therefore we
haveHn((Z∗\Z)∩U (1)) > 0. Since U (1) isHn-equivalent to the union of the {U (1)

i ∪∂∗Ui}i∈I
we can find i ∈ I and j ∈ J such that Hn(U (1)

i ∩ ∂∗U∗
j ) > 0. This implies that both

(Ui ∩ U∗
j )

(1/2) and (Ui \ U
∗
j )

(1/2) are non-empty, and thus that {U∗
j ∩ Ui, Ui \ U

∗
j } is a

non-trivial Borel partition of Ui. Since

U (1)

i ∩ ∂e(U∗
j ∩ Ui)

H
n

¢ U (1) ∩ ∂∗U∗
j

H
n

¢ S∗ ,

we conclude that S∗ is essentially disconnecting Ui, against the fact that S is not essentially
disconnecting Ui and the fact that S∗ is Hn-contained in S.

We finally prove statement (b). Let {Ui}i∈I , and {U∗
j }j∈J be essential partitions of U

induced by S and S∗ respectively. Given i ∈ I such that |Ui| > 0, there is at least one j ∈ J
such that |Ui ∩ U

∗
j | > 0. We claim that it must be |Ui \ U

∗
j | = 0. Should this not be the

case, ∂∗U∗
j would be essentially disconnecting Ui, thus implying that S∗ (which contains

∂∗U∗
j ) is essentially disconnecting Ui. Now, either because we are assuming that S∗ is

Hn-equivalent to S, or because we are assuming that S∗ = R(S) and we have Lemma 2.2,
the fact that S∗ is essentially disconnecting Ui implies that S is essentially disconnecting
Ui, a contradiction. Having proved the claim, for each i ∈ I with |Ui| > 0 there is a unique
Ã(i) ∈ J such that |Ui∆U

∗
Ã(j)| = 0. This completes the proof. □

3. Homotopic spanning on generalized soap films (Theorem 1.3)

The goal of this section is proving Theorem 1.3, and, actually, to obtain an even more
general result. Let us recall that the objective of Theorem 1.3 was to reformulate the
homotopic spanning property for a Borel set S, in the case when S is locally Hn-finite,
in terms of unions of boundaries of induced essential partitions. We shall actually need
this kind of characterization also for sets S of the more general form S = K ∪E(1), where
(K,E) ∈ KB. For an illustration of the proposed characterization of homotopic spanning
on this type of sets, see Figure 3.1.

Theorem 3.1 (Homotopic spanning for generalized soap films). If W ¢ Rn+1 is a closed
set in Rn+1, C is a spanning class for W, K is a Borel set locally Hn-finite in Ω, and E
is of locally finite perimeter in Ω such that Ω ∩ ∂∗E is Hn-contained in K, then the set

S = R(K) ∪ E(1) (3.1)

is C-spanning W if and only if, for every (µ,Φ, T ) ∈ T (C) and H1-a.e. s ∈ S1,

T [s] ∩ E(0) is Hn-contained in UBEP(K ∪ T [s];T ) . (3.2)
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W

T

K

T [s]

E

(a) (b)

U1

U2

U3

U4

U5

U3

Figure 3.1. In panel (a) we have depicted a pair (K,E) where E is a tube
inside T and K consists of the union of the boundary of E and the non-spanning
set S of Figure 1.6-(a). Notice that K is not C-spanning, if we see things from
the point of view of Definition A, since it misses every loop µ contained in the
interior of E; while, of course, K ∪ E is C-spanning because E has been added.
In panel (b) we have depicted the essential partition {Ui}

5
i=1 of T induced by

K ∪ T [s]. Notice that E = U1, therefore no ∂∗Ui ∩ ∂
∗Uj H1-containis T [s] ∩ E.

In particular, T [s] ∩ E (which H1-equivalent to T [s] \ E(0)) is not H1-contained
in UBEP(K ∪ T [s];T ), and we see again, this time from the point of view of
Definition B as reformulated in Theorem 1.3, that K is not C-spanning. As stated
in Theorem 3.1, from the viewpoint of Definition B it is only the H1-containment
of T [s]∩E(0) into UBEP(K ∪ T [s];T ) that establishes the C-spanning property of
K ∪ E: and this H1-containment indeed holds, since T [s] ∩ E(0) = T [s] \ cl (E) is
H1-contained in the union of ∂∗U2 ∩ ∂

∗U3 and ∂∗U4 ∩ ∂
∗U5.

Remark 3.2. An immediate corollary of Theorem 3.1 is that ifK isHn-finite and (K,E) ∈
KB then K ∪ E(1) is C-spanning W if and only if R(K) ∪ E(1) is C-spanning W. Indeed,
R(K ∪ T [s]) = R(K) ∪ T [s], so that, by (1.13), UBEP(K ∪ T [s]) = UBEP(R(K) ∪ T [s]).

Proof of Theorem 1.3. This is Theorem 3.1 with E = ∅. □

Proof of Theorem 3.1. Step one: We prove the following claim: If S essentially disconnects
G into {G1, G2} and H ¢ G satisfies

min{|H ∩G1| , |H ∩G2|} > 0 , (3.3)

then S essentially disconnects H into H ∩ G1 and H ∩ G2. Indeed, if x ∈ H (1), then
x ∈ ∂e(H∩Gi) if and only if x ∈ ∂eGi (i = 1, 2). Hence H (1)∩∂e(G1∩H) ¢ H (1)∩∂eG1 ¢
G(1) ∩∂eG1, which, by (3.3) and our assumption on S and G, gives the desired conclusion.

Step two: Taking from now on S, K and E as in the statement we preliminary notice
that if (µ,Φ, T ) ∈ T (C), s ∈ S1, and {Ui}i is the essential partition of T induced by
(R(K) ∪ T [s]), then

T ∩ ∂∗E
H

n

¢ T ∩
⋃

i

∂∗Ui . (3.4)

Indeed, since Ω∩∂∗E isHn-contained inR(K), if a Borel set G is such that |G∩E| |G\E| >
0 then, by step one, R(K) essentially disconnects G. In particular, since, for each i,
R(K) ∪ T [s] does not essentially disconnect Ui, we find that, for each i,

either U (1)

i ¢ E(0) or U (1)

i ¢ E(1) . (3.5)

Clearly, (3.5) immediately implies (3.4).
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Step three: We prove the “only if” part of the statement, that is, given (µ,Φ, T ) ∈ T (C)
and s ∈ S1, we assume that

for Hn-a.e. x ∈ T [s] , (3.6)

∃ a partition {T1, T2} of T with x ∈ ∂eT1 ∩ ∂
eT2 ,

and s.t. R(K) ∪ E(1) ∪ T [s] essentially disconnects T into {T1, T2} ,

and then prove that

T [s] ∩ E(0) is Hn-contained in
⋃

i ∂
∗Ui , (3.7)

where {Ui}i is the essential partition of T induced by R(K)∪T [s]. To this end, arguing by
contradiction, we suppose that for some s ∈ S1, there is G ¢ T [s] ∩ E(0) with Hn(G) > 0
and such that G∩∪i∂

∗Ui = ∅. In particular, there is an index i such thatHn(G∩U (1)

i ) > 0,
which, combined with (3.5) and G ¢ E(0), implies

U (1)

i ¢ E(0) . (3.8)

Now by (3.6) and Hn(G ∩ U (1)

i ) > 0, we can choose x ∈ G ∩ U (1)

i such that R(K) ∪
E(1) ∪ T [s] essentially disconnects T into some {T1, T2} such that x ∈ ∂eT1 ∩ ∂

eT2. Then,
{Ui∩T1, Ui∩T2} is a non-trivial partition of Ui, so that, by step one and (3.8), R(K)∪T [s]
essentially disconnects Ui into {Ui ∩ T1, Ui ∩ T2}. This contradicts the defining property
(2.2) of essential partitions, and concludes the proof.

Step four: We prove the “if” part of the statement. More precisely, given (µ,Φ, T ) ∈ T (C)
and s ∈ S1, we assume that (3.7) holds at s, and then proceed to prove that (3.6) holds at
s. We first notice that, since {E(1), E(0), ∂∗E} is a partition of Ω modulo Hn, it is enough
to prove (3.6) for Hn-a.e. x ∈ T [s] ∩ (E(1) ∪ E(0) ∪ ∂∗E).

If x ∈ T [s] ∩ ∂∗E, then by letting T1 = T ∩ E and T2 = T \ E we obtain a partition of
T such that x ∈ T ∩ ∂∗E = T ∩ ∂∗T1 ∩ ∂

∗T2 ¢ ∂eT1 ∩ ∂
eT2, and such that ∂∗E essentially

disconnects T into {T1, T2}. Since Ω ∩ ∂∗E is Hn-contained in R(K), we deduce (3.6).

If x ∈ T [s]∩E(0), then, thanks to (3.7) and denoting by {Ui}i the essential partition of
T induced by (R(K) ∪ T [s]), there is an index i such that x ∈ T ∩ ∂∗Ui. Setting T1 = Ui

and T2 = T \ Ui, we have that T ∩ ∂∗Ui (which contains x) is in turn contained into
∂eT1 ∩ ∂

eT2 ∩ T . Since the latter set is non-empty, {T1, T2} is a non-trivial partition of T .
Moreover, by definition of essential partition,

T (1) ∩ ∂eT1 ∩ ∂
eT2 = T ∩ ∂eUi

H
n

¢ R(K) ∪ T [s] ,

so that R(K) ∪ T [s] essentially disconnects T , and (3.6) holds.

Finally, if x ∈ T [s] ∩E(1), we let s1 = s, pick s2 ̸= s, denote by {I1, I2} the partition of
S1 defined by {s1, s2}, and set

T1 = Φ(I1 ×Bn
1 ) ∩ E , T2 = Φ(I2 ×Bn

1 ) ∪
(

Φ(I1 ×Bn
1 ) \ E

)

.

This is a Borel partition of T , and using the fact that x ∈ E(1), we compute

|T1∩Br(x)| = |Φ(I1×B
n
1 )∩E∩Br(x)| = |Φ(I1×B

n
1 )∩Br(x)|+o(rn+1) =

|Br(x)|

2
+o(rn+1) .

Therfore x ∈ ∂eT1∩∂
eT2, and by standard facts about reduced boundaries [Mag12, Chapter

16],

∂eT1 ∩ ∂
eT2 ∩ T

(1)
H

n

¢ ∂∗T1 ∩ T
(1)

H
n

¢
(

∂∗E ∪ ((T [s1] ∪ T [s2]) ∩ E
(1))

)

∩ T (1) .

Since Ω ∩ ∂∗E is Hn-contained in R(K), we have shown (3.6). □
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Figure 4.1. The situation in the proof of Theorem 4.1 in the basic case when
Kj = Ω ∩ ∂∗Fj . The essential partition of T induced by Kj ∪ T [sj ] is denoted by

{U j
i }i. The limit partition {Ui}i of {U

j
i }i may fail to be the essential partition of T

induced by K∗ = T ∩∪i∂
∗Ui, since some of the Ui may be essentially disconnected.

In the picture, denoting by {Vk}k the essential partition of T induced by K∗, we
have U5 = V5 ∪ V6 = T ∩ F . We also notice, in reference to the notation set in
(4.6), that Xj

1 = {5} and Xj
0 = {1, 2, 3, 4}.

4. The fundamental closure theorem for homotopic spanning conditions

In Theorem 1.3 and Theorem 3.1 we have presented two reformulations of the homo-
topic spanning condition in terms of Hn-containment into union of boundaries of essential
partitions. The goal of this section is discussing the closure of such reformulations, and
provide a statement (Theorem 4.1 below) which will lie at the heart of the closure theorems
proved in Section 5.

Theorem 4.1 (Basic closure theorem for homotopic spanning). Let W ¢ Rn+1 be closed
and let C be a spanning class for W. Let us assume that:

(a): Kj are Hn-finite Borel subsets of Ω with Hn Kj
∗

á µ as Radon measures in Ω;

(b): (µ,Φ, T ) ∈ T (C), {sj}j is a sequence in S1 with sj → s0 as j → ∞;

(c): if {U j
i }i denotes the essential partition of T induced by Kj ∪ T [sj ], then there is a

limit partition {Ui}i of {U
j
i }i in the sense of (2.8) in Lemma 2.3;

Under these assumptions, if µ(T [s0]) = 0, Fj , F ¢ Ω are sets of finite perimeter with
Fj → F as j → ∞ and such that, for every j, Ω ∩ ∂∗Fj is Hn-contained in Kj and

T [sj ] ∩ F
(0)

j is Hn-contained in K∗
j , (4.1)

then

T [s0] ∩ F
(0) is Hn-contained in K∗ , (4.2)

where we have set

K∗
j = UBEP(Kj ∪ T [sj ];T ) = T ∩

⋃

i

∂∗U j
i , K∗ = T ∩

⋃

i

∂∗Ui . (4.3)

Remark 4.2. Notice that {Ui}i may fail to be the essential partition of T induced by K∗

(which is the “optimal” choice of a Borel set potentially inducing {Ui}i on T ): indeed,

some of the sets Ui may fail to be essentially connected, even though U j
i → Ui as j → ∞

and every U j
i , as an element of an essential partition, is necessarily essentially connected;

see Figure 4.1.
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Proof of Theorem 4.1. Step one: We start by showing that, for each j and i such that

|U j
i | > 0, we have

either (U j
i )

(1) ¢ F (1)

j , or (U j
i )

(1) ¢ F (0)

j , (4.4)

and for each i such that |Ui| > 0,

either U (1)

i ¢ F (1) , or U (1)

i ¢ F (0) . (4.5)

Postponing for the moment the proof of (4.4) and (4.5), let us record several consequences
of these inclusions. First, if we set

Xj
1 =

{

i : |U j
i | > 0 , (U j

i )
(1) ¢ F (1)

j

}

, Xj
0 =

{

i : |U j
i | > 0 , (U j

i )
(1) ¢ F (0)

j

}

, (4.6)

X1 =
{

i : |Ui| > 0 , U (1)

i ¢ F (1)
}

, X0 =
{

i : |Ui| > 0 , U (1)

i ¢ F (0)
}

, (4.7)

then, thanks to (4.4) and (4.5), we have

Xj := {i : |U j
i | > 0} = Xj

0 ∪X
j
1 , X := {i : |Ui| > 0} = X0 ∪X1 . (4.8)

Combining (4.4) and (4.5) with Fj → F and U j
i → Ui, we find that for every i ∈ X, there

is Ji ∈ N such that, for every m ∈ {0, 1},

if i ∈ Xm, then i ∈ Xj
m for all j g Ji. (4.9)

Lastly, {U j
i }i∈Xj

1
is a Lebesgue partition of T ∩Fj , and thus, by Federer’s theorem (1.37),

T ∩ F (1)

j

H
n

¢
⋃

i∈Xj
1

(U j
i )

(1) ∪ ∂∗U j
i , T ∩ ∂∗Fj

H
n

¢ T ∩
⋃

i∈Xj
1

∂∗U j
i ¢ T ∩K∗

j . (4.10)

To prove (4.4) and (4.5): Since {U j
i }i is the essential partition of T induced by Kj ∪T [sj ]

and K∗
j = UBEP(Kj ∪ T [sj ];T ), we have

K∗
j is Hn-contained in Kj ∪ T [sj ] , ∀j , (4.11)

Kj ∪ T [sj ] does not essentially disconnect U j
i , ∀i, j . (4.12)

Since Ω ∩ ∂∗Fj is Hn-contained in Kj ∪ T [sj ], the combination of (4.12) with Federer’s

theorem (1.37) gives (4.4). The combination of |U j
i ∆Ui| → 0 as j → ∞ with (4.4) gives

(4.5).

Step two: We reduce the proof of (4.2) to that of

Hn(U (1)

i ∩ T [s0]) = 0 , ∀i ∈ X0 . (4.13)

Indeed, {U (1)

i : i ∈ X0}∪{F (0)∩∂∗Ui : i ∈ X0} is an Hn-partition of T ∩F (0). In particular,

T ∩F (0) is Hn-contained in ∪i∈X0U
(1)

i ∪ ∂∗Ui, so that, should (4.13) hold, then T [s0]∩F
(0)

would be Hn-contained in ∪i∈X0∂
∗Ui, and thus in K∗, thus proving (4.2).

Step three: We change variables from T to10 Y = Φ−1(T ) = S1 × Bn
1 . We set Y [s] =

Φ−1(T [s]) = {s} ×Bn
1 for the s-slice of Y , and

Yi = Φ−1(Ui) , Y j
i = Φ−1(U j

i ) , Wi = Y \ Yi , W j
i = Y \ Y j

i , (4.14)

Since Φ is a diffeomorphism, by [KMS22a, Lemma A.1] and the area formula we have that

∂∗Φ−1(H) = Φ−1(∂∗H) , (Φ−1(H))(m) = Φ−1(H (m)) ,m ∈ {0, 1} , (4.15)

for every set of finite perimeter H ¢ T ; in particular, setting

Mj = Φ−1(Fj ∩ T ) , M = Φ−1(F ∩ T ) ,

10Here we identify S1 with R/(2πZ) and, with a slight abuse of notation, denote by Ln+1 the “Lebesgue
measure on S1 ×Bn

1 ”, which we use to define sets of finite perimeter and points of density in S1 ×Bn
1 .
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by Federer’s theorem (1.37), we see that (4.1) is equivalent

Y [sj ] is H
n-contained in

⋃

i ∂
∗Y j

i ∪M (1)

j ∪ ∂∗Mj , (4.16)

By (4.10) and (4.15), we may rewrite (4.16) as

Y [sj ] is H
n-contained in

⋃

i∈N ∂
∗Y j

i ∪
⋃

i∈Xj
1
(Y j

i )
(1) . (4.17)

Similarly, Y (1)

i = Φ−1(U (1)

i ) for every i, and thus (4.13) is equivalent to

Hn(Y (1)

i ∩ Y [s0]) = 0 , ∀i ∈ X0 . (4.18)

We are thus left to prove that (4.17) implies (4.18).

To this end, let us denote by p the projection of Y = S1 × Bn
1 onto Bn

1 , and consider
the sets

Gi = p
(

Y (1)

i ∩ Y [s0]
)

, G∗
i = G∗ ∩Gi ,

corresponding to the set G∗ ¢ Bn
1 with Hn(Bn

1 \G∗) = 0 defined as follows:

(i) denoting by Hy = {s ∈ S1 : (s, y) ∈ H} the “circular slice of H ¢ Y above y”, if y ∈ G∗,

j ∈ N, k is an index for the partitions {Yk}k and {Y j
k }, and H ∈ {Yk,Wk, Y

j
k ,W

j
k}, then

Hy is a set of finite perimeter in S1 with

Hy
H1

= (Hy)
(1)

S1 , ∂∗S1(Hy)
H0

= (∂∗H)y , (4.19)

(and thus with ∂∗
S1
(Hy) = (∂∗H)y); this is a standard consequence of the slicing theory

for sets of finite perimeter, see, e.g., [BCF13, Theorem 2.4] or [Mag12, Remark 18.13];

(ii) for every y ∈ G∗ and j ∈ N,

(sj , y) ∈
⋃

k∈N

∂∗Y j
k ∪

⋃

k∈Xj
1

(Y j
k )

(1) ; (4.20)

this is immediate from (4.17);

(iii) for every y ∈ G∗, and k an index for the partitions {Yk}k and {Y j
k },

lim
j→∞

H1((Yk)y∆(Y j
k )y) = 0 ; (4.21)

this is immediate from Fubini’s theorem and Y j
k → Yk as j → ∞;

(iv) for every y ∈ G∗,
∑

k

H0((∂∗Y j
k )y) <∞; (4.22)

indeed, by applying in the order the coarea formula, the area formula and (2.3) we find

∑

k

ˆ

Bn
1

H0((∂∗Y j
k )y) dH

n f
∑

k

P (Y j
k ;Y ) f (LipΦ−1)n

∑

k

P (U j
k ;T )

f 2 (LipΦ−1)nHn(Kj ∪ T [sj ]) .

Now, let us pick y ∈ G∗
i . Since y ∈ Gi implies (s0, y) ∈ Y (1)

i , and Y (1)

i ∩ ∂∗Yi = ∅, we
find (s0, y) ̸∈ ∂∗Yi, i.e. s0 ̸∈ (∂∗Yi)y. By y ∈ G∗, we have (∂∗Yi)y = ∂∗

S1
(Yi)y, so that

s0 ̸∈ ∂∗S1(Yi)y . (4.23)

Since (Yi)y has finite perimeter, ∂∗
S1
(Yi)y is a finite set, and so (4.23) implies the existence

of an open interval Ay ¢ S1, containing s0, H
1-contained either in (Yi)y or in (Wi)y, and

such that

∂S1Ay ¢ (∂∗Yi)y = ∂∗S1(Wi)y . (4.24)
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We claim that there is G∗∗
i ¢ G∗

i , with full Hn-measure in G∗
i (and thus in Gi), such that

Ay is H1-contained in (Yi)y , ∀y ∈ G∗∗
i . (4.25)

Indeed, let us consider the countable decomposition {G∗
i,m}∞m=1 of G∗

i given by

G∗
i,m =

{

y ∈ G∗
i : dist

(

{s0}, ∂S1Ay

)

∈
[

1
/

(m+ 1), 1
/

m
)

}

¢ Bn
1 ,

and let

Zi,m =
{

y ∈ G∗
i,m : Ay is H1-contained in (Wi)y

}

.

If Hn(Zi,m) > 0, then there is y∗ ∈ Z(1)

i,m, so that Hn(Zi,m ∩ Bn
r (y

∗)) = Én r
n + o(rn).

Therefore, if r < 1/(m+ 1) and B1
r (s0) denotes the open interval of center s0 and radius

r inside S1, then

Ln+1
(

Yi ∩
(

B1
r (s0)×Bn

r (y
∗)
))

=

ˆ

Bn
r (y

∗)
H1(B1

r (s0) ∩ (Yi)y) dH
n
y

=

ˆ

Zi,m∩Bn
r (y

∗)
H1(B1

r (s0) ∩ (Yi)y) dH
n
y + o(rn+1) = o(rn+1)

where in the last identity we have used the facts that y ∈ Zi,m ∩ Bn
r (y

∗), s0 ∈ Ay,
and r < 1/(m + 1) to conclude that B1

r (s0) is H1-contained in (Wi)y; in particular,

(s0, y
∗) ∈ Y (0)

i , against the fact that Zi,m ¢ Gi(= p(Y [s0] ∩ Y
(1)

i )). We have thus proved
that each Zi,m is Hn-negligible, and therefore that there is G∗∗

i ¢ G∗
i and Hn-equivalent

to G∗
i , such that (4.25) holds true.

Having proved (4.25), we now notice that, by (4.20), y ∈ G∗
i implies

sj ∈
⋃

k∈N

(∂∗Y j
k )y ∪

⋃

k∈Xj
1

(

(Y j
k )

(1)
)

y
=

⋃

k

∂∗S1(Y
j
k )y ∪

⋃

k∈Xj
1

(

(Y j
k )y

)(1)
S1 . (4.26)

If (4.26) holds because sj ∈ ∂∗
S1
(Y j

k )y for some k, then, thanks to (4.22) there must k′ ̸= k

such that sj ∈ ∂∗
S1
(Y j

k′)y too; since either k or k′ must be different from i, we conclude

that si ∈ ∂∗
S1
(Y j

k(i))y for some k(i) ̸= i; if, instead, (4.26) holds because sj ∈
(

(Y j
k )y

)(1)
S1

for some k ∈ Xj
1 , then we can recall that, thanks to (4.9), i ∈ Xj

0 for every j g Ji, and
thus i ̸= k; in summary, for each y ∈ G∗

i ,

if j g Ji, then ∃k(j) ̸= i s.t. sj ∈ ∂∗S1(Y
j
k(j))y ∪

(

(Y j
k(j))y

)(1)
S1 . (4.27)

With the goal of obtaining a lower bound on the relative perimeters of the sets Y j
i in

a neighborhood of Gi (see (4.31) below), we now consider y ∈ G∗∗
i , and pick r > 0

such that clB1
r (s0) ¢ Ay. Correspondingly, since sj → s0 and (4.27) holds, we can find

J∗ = J∗(i, y, r) g Ji such that, for j g J∗,

sj ∈ B1
r (s0) ∩

[

∂∗S1(Y
j
k(j))y ∪

(

(Y j
k(j))y

)(1)
S1
]

¢ Ay ∩
[

∂∗S1(Y
j
k(j))y ∪

(

(Y j
k(j))y

)(1)
S1
]

. (4.28)

Now, by (4.21), k(j) ̸= i, and Ay
H1

¢ (Yi)y, we have

lim
j→∞

H1(Ay ∩ (Y j
k(j))y) = 0 . (4.29)

Since, by (4.19), (Y j
k(j))y is H1-equivalent to a finite union of intervals, (4.28) implies the

existence of an open interval Ij
y such that

sj ∈ cl S1I
j
y , Ij

y

H1

¢ (Y j
k(j))y , ∂S1I

j
y ¢ (∂∗Y j

k(j))y ¢ (∂∗W j
i )y , (4.30)
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which, due to (4.28) and (4.29), must satisfy

lim
j→∞

diam
(

Ij
y

)

= 0 .

In particular,

∂S1 I
j
y ¢ B1

r (s0) , ∀j g J∗ ,

and thus, by the last inclusion in (4.30),

H0
(

B1
r (s0) ∩ ∂

∗
S1(W

j
i )y

)

g H0(B1
r (s0) ∩ ∂S1I

y
j ) g 2 ,

whenever j g J∗. Since y ∈ G∗∗
i and r > 0 were arbitrary, by the coarea formula and

Fatou’s lemma,

lim inf
j→∞

P (W j
i ;B

1
r (s0)×G∗∗

i ) g lim inf
j→∞

ˆ

G∗∗
i

H0
(

B1
r (s0) ∩ ∂

∗
S1(W

j
i )y

)

dHn
y

g 2Hn(G∗∗
i ) = 2Hn(Gi) . (4.31)

Now, since ∂∗W j
i = ∂∗Y j

i = Φ−1(∂∗U j
i ), by (4.11) we have

Y ∩
⋃

i ∂
∗W j

i is Hn-contained in Y [sj ] ∪ Φ−1
(

T ∩Kj

)

,

which implies, for every j large enough to have sj ∈ B1
r (s0),

P (W j
i ;B

1
r (s0)×G∗∗

i )

f Hn
(

Y [sj ] ∩ (B1
r (s0)×G∗∗

1 )
)

+Hn
(

Φ−1(T ∩Kj) ∩ (B1
r (s0)×Bn

1 )
)

= Hn(G∗∗
i ) +Hn

(

Φ−1(T ∩Kj) ∩ (B1
r (s0)×Bn

1 )
)

f Hn(Gi) + Lip(Φ−1)nHn
(

Kj ∩ Φ(B1
r (s0)×Bn

1 )
)

. (4.32)

By combining (4.31) with (4.32) we conclude that for every r > 0

Hn(Gi) f Lip(Φ−1)n µ
(

Φ(cl (B1
r (s0))×Bn

1 )
)

, (4.33)

By µ(T [s0]) = 0, if we let r → 0+ in (4.33), we conclude that Hn(Gi) = 0. Now, since
Gi = p

(

Y (1)

i ∩ Y [s0]
)

, we have

Hn
(

Y (1)

i ∩ Y [s0]
)

= Hn(Gi) , (4.34)

thus proving (4.18), and hence the theorem. □

5. Direct Method on generalized soap films (Theorem 1.4)

In Section 5.1 we prove Theorem 1.4, while in Section 5.2 we notice the changes to that
argument that are needed to prove a different closure theorem that will be crucial in the
companion papers [MNR23a, MNR23b]. In particular, Section 5.2 will not be needed for
the other main results of this paper (although it is included here since it is definitely easier
to understand in this context).

5.1. Proof of Theorem 1.4. Let us first of all recall the setting of the theorem. We are
given a closed set W in Rn+1, a spanning class C for W, and a sequence {(Kj , Ej)}j in
KB such that

sup
j

Hn(Kj) <∞ , (5.1)

and, for some Borel set E and Radon measures µbk and µbd in Ω, it holds that Ej
loc
→ E

and

Hn (Ω ∩ ∂∗Ej) + 2Hn (R(Kj) ∩ E
(0)

j )
∗

á µbk , (5.2)

Hn (Ω ∩ ∂∗Ej) + 2Hn (R(Kj) \ ∂
∗Ej)

∗

á µbd , (5.3)
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as j → ∞. In this setting we want to prove that the sets

Kbk :=
(

Ω ∩ ∂∗E
)

∪
{

x ∈ Ω ∩ E(0) : ¹n∗ (µbk)(x) g 2
}

, (5.4)

Kbd :=
(

Ω ∩ ∂∗E
)

∪
{

x ∈ Ω \ ∂∗E : ¹n∗ (µbd)(x) g 2
}

, (5.5)

are such that (Kbk, E), (Kbd, E) ∈ KB and

µbk g Hn (Ω ∩ ∂∗E) + 2Hn (Kbk ∩ E
(0)) , (5.6)

µbd g Hn (Ω ∩ ∂∗E) + 2Hn (Kbd \ ∂
∗E) , (5.7)

with

lim inf
j→∞

Fbk(Kj , Ej) g Fbk(Kbk, E) , lim inf
j→∞

Fbd(Kj , Ej) g Fbd(Kbd, E) ; (5.8)

and that the closure statements

if Kj ∪ E
(1)

j is C-spanning W for every j, (5.9)

then Kbk ∪ E
(1) is C-spanning W , (5.10)

and

if Kj is C-spanning W for every j, (5.11)

then Kbd is C-spanning W , (5.12)

hold true.

Proof of Theorem 1.4. By Ω ∩ ∂∗E ¢ Kbk ∩ Kbd we have (Kbk, E), (Kbd, E) ∈ KB. By
[Mag12, Theorem 6.4], ¹n∗ (µbk) g 2 on Kbk ∩ E(0) implies µbk (Kbk ∩ E(0)) g 2Hn

(Kbk∩E
(0)), and, similarly, we have µbd (Kbd \∂

∗E) g 2Hn (Kbd \∂
∗E). Since, by the

lower semicontinuity of distributional perimeter, we have min{µbk, µbd} g Hn (∂∗E∩Ω),
(5.6), (5.7) and (5.8) follow. We are thus left to prove that if either (5.9) or (5.11) holds,
then (5.10) or (5.12) holds respectively. We divide the proof into three parts, numbered
by Roman numerals.

I. Set up of the proof: Fixing from now on a choice of (µ,Φ, T ) ∈ T (C) against which
we want to test the C-spanning properties (5.10) and (5.12), we introducing several key
objects related to (µ,Φ, T ).

Introducing s0: Up to extracting subsequences, let µ be the weak-star limit of Hn Kj ,
and set

J = {s ∈ S1 : µ(T [s]) = 0} , (5.13)

so that H1(S1 \ J) = 0. We fix s0 ∈ J .

Introducing sj, {U
j
i }i, and K

∗
j : For H1-a.e. s ∈ S1 it holds that Hn(Kj ∩ T [s]) = 0 for

every j and (thanks to Theorem 1.3/Theorem 3.1) the essential partition {U j
i [s]}i induced

on T by Kj ∪ T [s] is such that

T [s] ∩ E(0)

j is Hn-contained in UBEP(Kj ∪ T [s];T ) , (if (5.9) holds) ,

T [s] is Hn-contained in UBEP(Kj ∪ T [s];T ) , (if (5.11) holds) .

Therefore we can find a sequence sj → s0 as j → ∞ such that

Hn(Kj ∩ T [sj ]) = 0 ∀j , (5.14)

and, denoting by {U j
i }i the essential partition of T induced byKj∪T [sj ] (i.e. U

j
i = U j

i [sj ]),
and setting for brevity

K∗
j = UBEP(Kj ∪ T [sj ];T ) = T ∩

⋃

i

∂∗U j
i , (5.15)
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we have

T [sj ] ∩ E
(0)

j is Hn-contained in K∗
j , (if (5.9) holds) , (5.16)

T [sj ] is H
n-contained in K∗

j , (if (5.11) holds) . (5.17)

Introducing {Ui}i and K
∗: By (5.1), Lemma 2.3, and up to extract a subsequence we can

find a Lebesgue partition {Ui}i of T such that,

{Ui}i is the limit of {{U j
i }i}j in the sense specified by (2.8) . (5.18)

Correspondingly we set

K∗ = T ∩
⋃

i

∂∗Ui . (5.19)

Having introduced s0, sj , {U
j
i }i, K

∗
j , {Ui}i, and K

∗, we notice that if (5.9) holds, then
we can apply Theorem 4.1 with Fj = Ej and find that

T [s0] ∩ E
(0) is Hn-contained in K∗ , (if (5.9) holds) ; (5.20)

if, instead, (5.11) holds, then Theorem 4.1 can be applied with Fj = F = ∅ to deduce

T [s0] is H
n-contained in K∗ , (if (5.11) holds) . (5.21)

We now make the following claim:

Claim: We have

K∗ \ (T [s0] ∪ E
(1)) is Hn-contained in Kbk , (5.22)

K∗ \ T [s0] is H
n-contained in Kbd . (5.23)

The rest of the proof of the theorem is then divided in two parts: the conclusion follows
from the claim, and the proof of the claim.

II. Conclusion of the proof from the claim: Proof that (5.11) implies (5.12): By
H1(S1 \ J) = 0, the arbitrariness of s0 ∈ J , and that of (µ,Φ, T ) ∈ T (C), thanks to
Theorem 1.3 we can conclude that Kbd is C-spanning W by showing that

T [s0] is H
n-contained in UBEP(Kbd ∪ T [s0];T ). (5.24)

Now, since {Ui}i is a Lebesgue partition of T induced by K∗ (in the very tautological
sense that K∗ is defined as T ∩ ∪i∂

∗Ui!) and, by (5.23) in claim one, K∗ is Hn-contained
in Kbd ∪ T [s0], by Theorem 2.1-(a) we have that if {Zi}i is the essential partition of T
induced by Kbd ∪ T [s0], then ∪i∂

∗Ui is Hn-contained in ∪i∂
∗Zi: therefore, by definition

of K∗ and by definition of UBEP, we have that

K∗ is Hn-contained in UBEP
(

Kbd ∪ T [s0];T
)

. (5.25)

By combining (5.25) with (5.21) we immediately deduce (5.24) and conclude.

Proof that (5.9) implies (5.10): Thanks to Theorem 3.1 it suffices to prove that

T [s0] ∩ E
(0) is Hn-contained in UBEP(Kbk ∪ T [s0];T ) . (5.26)

By (5.20), the proof of (5.26) can be reduced to that of

K∗ ∩ E(0) is Hn-contained in UBEP(Kbk ∪ T [s0];T ) . (5.27)

Now, let us consider the Lebesgue partition of T defined by {Vk}k = {Ui \E}i ∪ {T ∩E}.
By [Mag12, Theorem 16.3] we easily see that for each i

E(0) ∩ ∂∗Ui
H

n

¢ ∂∗(Ui \ E)
H

n

¢
(

E(0) ∩ ∂∗Ui

)

∪ ∂∗E , (5.28)

which combined with T ∩ ∂∗(T ∩E) = T ∩ ∂∗E ¢ Kbk and with (5.22) in claim one, gives

T ∩
⋃

k

∂∗Vk = (T ∩ ∂∗E) ∪
{

T ∩
⋃

i

∂∗(Ui \ E)
}

H
n

¢ (T ∩ ∂∗E) ∪
(

E(0) ∩K∗
)
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H
n

¢ (T ∩ ∂∗E) ∪
(

K∗ \ E(1))
H

n

¢ Kbk ∪ T [s0] . (5.29)

By (5.29) we can exploit Theorem 2.1-(a) to conclude that

T ∩
⋃

k ∂
∗Vk is Hn-contained in UBEP(Kbk ∪ T [s0];T ) . (5.30)

By the first inclusion in (5.28), E(0) ∩K∗ is Hn-contained in T ∩
⋃

k ∂
∗Vk, therefore (5.30)

implies (5.27), as required. We are thus left to prove the two claims.

III. Proof of the claim: We finally prove that K∗ \ (T [s0] ∪ E
(1)) is Hn-contained in

Kbk (that is (5.22)), and that K∗ \ T [s0] is H
n-contained in Kbd (that is (5.23)).

To this end, repeating the argument in the proof of Theorem 4.1 with Fj = Ej and

F = E we see that, if we set Xj
m = {i : (U j

i )
(1) ¢ E(m)

j } and Xm = {i : U (1)

i ¢ E(m)} for

m ∈ {0, 1} (see (4.6) and (4.7)), then

Xj := {i : |U j
i | > 0} = Xj

0 ∪X
j
1 , X := {i : |Ui| > 0} = X0 ∪X1 ; (5.31)

and, moreover, for every i there is j(i) such that i ∈ Xm implies i ∈ Xj
m for every j g j(i).

Thanks to (5.31) we easily see that K∗
j = T ∩ ∪i∂

∗U j
i can be decomposed as

K∗
j

H
n

=
⋃

(i,k)∈Xj
0×Xj

0 ,i ̸=j

M j
ik ∪

⋃

(i,k)∈Xj
1×Xj

1 ,i ̸=j

M j
ik ∪

⋃

(i,k)∈Xj
0×Xj

1

M j
ik , (5.32)

where M j
ik = T ∩ ∂∗U j

i ∩ ∂∗U j
k (an analogous decomposition of K∗ holds as well, and will

be used in the following, but is not explicitly written for the sake of brevity). We now
prove that

M j
ik ¢ E(0)

j , ∀i, k ∈ Xj
0 , i ̸= k , (5.33)

M j
ik ¢ ∂eEj , ∀i ∈ Xj

0 , k ∈ Xj
1 , (5.34)

M j
ik ¢ E(1)

j , ∀i, k ∈ Xj
1 , i ̸= k . (5.35)

To prove (5.33) and (5.35): if i ̸= k, i, k ∈ Xj
0 , and x ∈ M j

ik, then (by |U j
i ∩ U j

k | = 0) U j
i

and U j
k blow-up two complementary half-spaces at x, an information that combined with

the Ln+1-inclusion of U j
i ∪ U j

k in Rn+1 \ Ej implies

|Br(x)|+ o(rn+1) = |Br(x) ∩ U
j
i |+ |Br(x) ∩ U

j
k | f |Br(x) \ Ej | ,

that is, x ∈ E(0)

j , thus proving (5.33); the proof of (5.35) is analogous.

To prove (5.34): if i ∈ Xj
0 , k ∈ Xj

1 , and x ∈M j
ik, then

|Br(x) ∩ Ej | g |Br(x) ∩ U
j
k | =

|Br(x)|

2
+ o(rn+1) ,

|Br(x) \ Ej | g |Br(x) ∩ U
j
i | =

|Br(x)|

2
+ o(rn+1) ,

so that x ̸∈ E(0)

j and x ̸∈ E(1)

j , i.e. x ∈ ∂eEj , that is (5.34).

With (5.33)–(5.35) at hand, we now prove that

T ∩ ∂∗Ej
H

n

=
⋃

(i,k)∈Xj
0×Xj

1

M j
ik , (5.36)

K∗
j ∩ E(0)

j
H

n

=
⋃

(i,k)∈Xj
0×Xj

0 ,k ̸=i

M j
ik . (5.37)

(Analogous relations hold with K∗ and E in place of K∗
j and Ej .)
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To prove (5.36): By ∂∗Ej ¢ ∂eEj and (4.4) we find ∂∗Ej ∩ (U j
i )

(1) = ∅ for every i, j;

hence, since {(U j
i )

(1)}i ∪ {∂∗U j
i }i is an Hn-partition of T , and by repeatedly applying

(5.33), (5.34) and (5.35), we find

⋃

(i,k)∈Xj
0×Xj

1

M j
ik

H
n

¢ T ∩ ∂∗Ej
H

n

=
⋃

i

(T ∩ ∂∗Ej ∩ ∂
∗U j

i )
H

n

=
⋃

i,k

M j
ik ∩ ∂

∗Ej

H
n

=
⋃

(i,k)∈Xj
0×Xj

1

M j
ik ∩ ∂

∗Ej ,

which gives (5.36).

To prove (5.37): By (5.33), (5.34), and (5.35), M j
ik has empty intersection with E(0)

j unless

i, k ∈ Xj
0 , in which case M j

ik is Hn-contained in E(0)

j : hence,

⋃

(i,k)∈Xj
0×Xj

0 ,k ̸=i

M j
ik

H
n

¢ K∗
j ∩ E(0)

j =
⋃

(i,k)∈Xj
0×Xj

0 ,k ̸=i

E(0)

j ∩M j
ik ,

that is (5.37).

With (5.36) and (5.37) at hand, we now prove the following perimeter formulas: for
every open set A ¢ T and every j,

∑

i∈Xj
0

P (U j
i ;A) = Hn

(

A ∩ ∂∗Ej

)

+ 2Hn
(

A ∩K∗
j ∩ E(0)

j

)

, (5.38)

∑

i∈Xj
1

P (U j
i ;A) = Hn

(

A ∩ ∂∗Ej

)

+ 2Hn
(

A ∩K∗
j ∩ E(1)

j

)

. (5.39)

Analogously, for ³ = 0, 1,
∑

i∈Xα

P (Ui;A) = Hn
(

A ∩ ∂∗E
)

+ 2Hn
(

A ∩K∗ ∩ E(α)
)

. (5.40)

To prove (5.38) and (5.39): Indeed, by (5.36) and (5.37),
∑

i∈Xj
0

P (U j
i ;A) =

∑

(i,k)∈Xj
0×Xj

1

Hn(A ∩M j
ik) +

∑

i∈Xj
0

∑

k∈Xj
0\{i}

Hn(A ∩M j
ik)

= Hn
(

⋃

(i,k)∈Xj
0×Xj

1

A ∩M j
ik

)

+ 2Hn
(

⋃

(i,k)∈Xj
0×Xj

0 ,i ̸=k

A ∩M j
ik

)

= Hn(A ∩ ∂∗E) + 2Hn
(

A ∩K∗
j ∩ E(0)

j

)

,

that is (5.38). The proof of (5.39) is analogous (since (5.39) is (5.38) applied to the
complements of the Ej ’s – recall indeed that Ω ∩ ∂∗Ej = Ω ∩ ∂∗(Ω \ Ej)).

Conclusion of the proof of (5.22) in the claim: We want to prove that K∗ \ (T [s0] ∪E
(1))

is Hn-contained in Kbk. Since {E(0), E(1), ∂∗E} is an Hn-partition of Ω, and Ω ∩ ∂∗E is
contained in Kbk, looking back at the definition (5.4) of Kbk it is enough to show that

¹n∗ (µbk)(x) g 2 for Hn-a.e. x ∈ (K∗ ∩ E(0)) \ T [s0] . (5.41)

To this end, we begin noticing that, if Y0 is an arbitrary finite subset of X0, then there is

j(Y0) such that Y0 ¢ Xj
0 for every j g j(Y0); correspondingly,

∑

i∈Y0

P (Ui;A) f lim inf
j→∞

∑

i∈Y0

P (U j
i ;A) f lim inf

j→∞

∑

i∈Xj
0

P (U j
i ;A) .
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By arbitrariness of Y0, (5.40) with ³ = 0, (5.38), and (4.11) (notice that theHn-containment
of the Hn-rectifiable set K∗

j into Kj ∪T [s0] is equivalent to its Hn-containment in R(Kj ∪
T [sj ]) = R(Kj)∪T [sj ]) we conclude that, if A ¢ T is open and such that cl (A)∩T [s0] = ∅,
so that A ∩ T [sj ] = ∅ for j large enough, then

Hn
(

A ∩ ∂∗E
)

+ 2Hn
(

A ∩K∗ ∩ E(0)
)

=
∑

i∈X0

P (Ui;A) f lim inf
j→∞

∑

i∈Xj
0

P (U j
i ;A)

= lim inf
j→∞

Hn
(

A ∩ ∂∗Ej

)

+ 2Hn
(

A ∩K∗
j ∩ E(0)

j

)

f lim inf
j→∞

Hn
(

A ∩ ∂∗Ej

)

+ 2Hn
(

A ∩
(

R(Kj) ∪ T [sj ]
)

∩ E(0)

j

)

= lim inf
j→∞

Hn
(

A ∩ ∂∗Ej

)

+ 2Hn
(

A ∩R(Kj) ∩ E
(0)

j

)

f µbk(cl (A)) , (5.42)

where we have used the definition (5.2) of µbk. Now, if x ∈ (K∗ ∩ E(0)) \ T [s0], then we
we can apply (5.42) with A = Bs(x) and s > 0 such that cl (Bs(x)) ∩ T [s0] = ∅, together
with the fact that x ∈ E(0) implies Hn(Bs(x) ∩ ∂

∗E) = o(sn) as s→ 0+, to conclude that

µbk(cl (Bs(x))) g 2Hn
(

Bs(x) ∩K
∗ ∩ E(0)

)

+ o(sn) , as s→ 0+ . (5.43)

Since K∗ ∩ E(0) is an Hn-rectifiable set, and thus Hn
(

Bs(x) ∩K
∗ ∩ E(0)

)

= Én s
n + o(sn)

for Hn-a.e. x ∈ K∗ ∩ E(0), we deduce (5.41) from (5.43).

Conclusion of the proof of (5.23) in the claim: We want to prove the Hn-containment of
K∗ \ T [s0] in Kbd. As in the proof of (5.22), combining Federer’s theorem (1.37) with the
definition (5.5) of Kbd, we are left to prove that

¹n∗ (µbd)(x) g 2 for Hn-a.e. x ∈ K∗ \ (T [s0] ∪ ∂
∗E) . (5.44)

As proved in (5.42), if A ¢ T is open and such that cl (A)∩ T [s0] = ∅, then by exploiting
(5.38) and (5.40) with ³ = 0 we have

Hn
(

A ∩ ∂∗E
)

+ 2Hn
(

A ∩K∗ ∩ E(0)
)

(5.45)

f lim inf
j→∞

Hn
(

A ∩ ∂∗Ej

)

+ 2Hn
(

A ∩R(Kj) ∩ E
(0)

j

)

;

the same argument, this time based on (5.39) and (5.40) with ³ = 1, also gives

Hn
(

A ∩ ∂∗E
)

+ 2Hn
(

A ∩K∗ ∩ E(1)
)

(5.46)

f lim inf
j→∞

Hn
(

A ∩ ∂∗Ej

)

+ 2Hn
(

A ∩R(Kj) ∩ E
(1)

j

)

;

and, finally, since Ω \ ∂∗E is Hn-equivalent to Ω∩ (E(0) ∪E(1)), the combination of (5.45)
and (5.46) gives

Hn
(

A ∩ ∂∗E
)

+ 2Hn
(

A ∩K∗ \ ∂∗E
)

(5.47)

f lim inf
j→∞

Hn
(

A ∩ ∂∗Ej

)

+ 2Hn
(

A ∩R(Kj) \ ∂
∗Ej

)

f µbd(cl (A)) ,

where we have used the definition (5.3) of µbd. Now, for Hn-a.e. x ∈ K∗ \ (T [s0] ∪ ∂
∗E)

we have Hn(Br(x)∩ ∂
∗E) = o(rn) and Hn(Br(x)∩K

∗ \ ∂∗E) = Én r
n + o(rn) as r → 0+,

as well as cl (Br(x))∩T [s0] = ∅ for r small enough, so that (5.47) with A = Br(x) readily
implies (5.44). The proof of the claim, and thus of the theorem, is now complete. □
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5.2. A second closure theorem. We now present a variant of the main arguments
presented in this section and alternative closure theorem to Theorem 1.4. As already
noticed, this second closure theorem, Theorem 5.1 below, will play a role only in the
companion paper [MNR23a], where Plateau’s laws will be studied in the relation to the
Allen–Cahn equation, so that this section can be omitted on a first reading focused on
Gauss’ capillarity theory alone.

To introduce Theorem 1.4, let us consider the following question: given an Hn-finite
set S which is C-spanning W, what parts of S are essential to its C-spanning property?
We already know from Lemma 2.2 that the unrectifiable part of S is not necessary, since
R(S) is also C-spanning. However, some parts of R(S) could be discarded too – indeed
rectifiable sets can be “porous at every scale”, and thus completely useless from the point
of view of achieving C-spanning. To make an example, consider the rectifiable set P ¢ R2

obtained by removing from [0, 1] all the intervals (qi − εi, qi + εi) where {qi}i are the
rational numbers in [0, 1] and 2

∑

i εi = ε for some given ε ∈ (0, 1): it is easily seen that
P is a rectifiable set with positive H1-measure in R2, contained in R× {0}, which fails to
essentially disconnect any stripe of the form (a, b)× R with (a, b) ¢¢ (0, 1). Intuitively, if
a set like P stands as an isolated portion of S, then R(S) \ P should still be C-spanning.

We can formalize this idea as follows. Denoting as usual Ω = Rn+1 \ W, we consider
the open covering {Ωk}k of Ω defined by

{Ωk}k = {Brmh
(xm)}m,h , (5.48)

where {xm}m = Qn+1 ∩ Ω and {rmh}h = Q ∩ (0, dist(xm, ∂Ω)). For every Hn-finite set S
we define the essential spanning part of S in Ω as the Borel set

ESP(S) =
⋃

k

UBEP(S; Ωk) =
⋃

k

{

Ωk ∩
⋃

i

∂∗Ui[Ωk]
}

,

if {Ui[Ωk]}i denotes the essential partition of Ωk induced by S. Since each UBEP(S; Ωk)
is a countable union of reduced boundaries and is Hn-contained in the Hn-finite set S,
we see that ESP(S) is always Hn-rectifiable. The idea is that by following the unions
of boundaries of essential partitions induced by S over smaller and smaller balls we are
capturing all the parts of S that may potentially contribute to achieve a spanning condition
with respect to W. Thinking about Figure 1.5: the tendrils of S appearing in panel (a)
and not captured by UBEP(S;U), will eventually be included into ESP(S) by considering
UBEP’s of S relative to suitable subsets of U . Another way to visualize the construction
of ESP(S) is noticing that if Br(x) ¢ Bs(x) ¢ Ω, then

Br(x) ∩UBEP(S;Bs(x)) ¢ UBEP(S;Br(x)) ,

which points to the monotonicity property behind the construction of ESP(S). Intuitively,
we expect that

if S is C-spanning W, then ESP(S) is C-spanning W (5.49)

(where C is an arbitrary spanning class for W). This fact will proved in a moment as a
particular case of Theorem 5.1 below.

Next, we introduce the notion of convergence behind our second closure theorem. Con-
sider a sequence {Sj}j of Borel subsets of Ω such that supj H

n(Sj) <∞. If we denote by

{U j
i [Ωk]}i the essential partition induced on Ωk by Sj , then a diagonal argument based on

Lemma 2.3 shows the existence of a (not relabeled) subsequence in j, and, for each k, of

a Borel partition {Ui[Ωk]}i of Ωk such that {U j
i [Ωk]}i converges to {Ui[Ωk]}i as j → ∞ in

the sense specified by (2.8). Since UBEP(Sj ; Ωk) = Ωk ∩
⋃

i ∂
∗U j

i [Ωk], we call any set S of
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the form11

S =
⋃

k

{

Ωk ∩
⋃

i

∂∗Ui[Ωk]
}

, (5.50)

a subsequential partition limit of {Sj}j in Ω. Having in mind (5.49), it is natural to
ask if the following property holds:

if Sj is C-spanning W for each j ,

and S is a subsequential partition limit of {Sj}j in Ω ,

then S is C-spanning W . (5.51)

Our next theorem implies both (5.49) and (5.51) as particular cases (corresponding to be
taking Ej = ∅ and, respectively, Kj = S and Kj = Sj for every j).

Theorem 5.1 (Closure theorem for subsequential partition limits). Let W be a closed
set in Rn+1, C a spanning class for W, and {(Kj , Ej)}j a sequence in KB such that

supj H
n(Kj) <∞ and Kj ∪ E

(1)

j is C-spanning W for every j.

If S0 and E0 are, respectively, a subsequential partition limit of {Kj}j in Ω and an
L1-subsequential limit of {Ej}j (corresponding to a same not relabeled subsequence in j),
and we set

K0 = (Ω ∩ ∂∗E0) ∪ S0 ,

then (K0, E0) ∈ KB and K0 ∪ E
(1)

0 is C-spanning W.

Proof. Since Ω ∩ ∂∗E0 ¢ K0 by definition of K0 we trivially have (K0, E0) ∈ KB. Aiming

to prove that K0 ∪E
(1)

0 is C-spanning W, we fix (µ,Φ, T ) ∈ T (C), and define s0, sj , {U
j
i }i

and {Ui}i exactly as in part I of the proof of Theorem 1.4. Thanks to Theorem 4.1 and
by arguing as in part II of the proof of Theorem 1.4, we have reduced to prove that

K∗ \ (T [s0] ∪ E
(1)) is Hn-contained in K0 . (5.52)

By Federer’s theorem (1.37) and since Ω ∩ ∂∗E ¢ K0 it is enough to prove

(K∗ ∩ E(0)) \ T [s0] is H
n-contained in S0 ,

and, thanks to the construction of S0, we shall actually be able to prove

K∗ \ T [s0] is H
n-contained in S0 . (5.53)

To this end let us pick k such that Ωk ¢¢ T and Ωk ∩ T [s0] = ∅. Then, for j g j(k), we
have Ωk ∩ T [sj ] = ∅, so that

Ωk ∩UBEP
(

Kj ∪ T [sj ];T
)

¢ UBEP
(

Kj ∪ T [sj ]; Ωk

)

= UBEP
(

Kj ; Ωk

)

.

Since {U j
i }i is the essential partition of T induced by Kj ∪ T [sj ], if {U j

m[Ωk]}m is the
essential partition of Ωk induced byKj , we have just claimed that, for every i and j g j(k),

Ωk ∩ ∂
∗U j

i ¢ Ωk ∩
⋃

m

∂∗U j
m[Ωk] . (5.54)

Since {U j
m[Ωk]}m is a Lebesgue partition of Ωk into essentially connected sets, by (5.54)

the indecomposable components of Ωk ∩ U
j
i must belong to {U j

m[Ωk]}m. In other words,
for each i and each j g j(k) there is M(k, i, j) such that

Ωk ∩ U
j
i =

⋃

m∈M(k,i,j)

U j
m[Ωk] .

11The limit partition {Ui[Ωk]}i appearing in (5.50) may not be the essential partition induced by S
on Ωk since the individual Ui[Ωk], arising as L1-limits, may fail to be essentially connected. This said,
{Ui[Ωk]}i is automatically a partition of Ωk induced by S0.
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As a consequence of U j
i → Ui and of U j

m[Ωk] → Um[Ωk] as j → ∞ we find that, for a set
of indexes M(k, i), it must be

Ωk ∩ Ui =
⋃

m∈M(k,i)

Um[Ωk] ,

and therefore

Ωk ∩ ∂
∗Ui

H
n

¢
⋃

m∈M(k,i)

∂∗Um[Ωk] ¢ S0 .

Since we have proved this inclusion for every i and for every k such that Ωk ¢¢ T with
Ωk ∩ T [s0] = ∅, it follows that K∗ \ T [s0] is H

n-contained in S0, that is (5.53). □

6. Existence of minimizers and convergence to Plateau’s problem
(Theorem 1.5)

In this section we prove two main results: the first one (Theorem 6.1) concerns the
equivalence of Harrison–Pugh Plateau’s problem ℓ with its measure theoretic reformulation
ℓB (see (1.21)); the second (Theorem 1.5) is a very refined version of Theorem 1.5.

Theorem 6.1 (Existence for ℓB and ℓ = ℓB). If W ¢ Rn+1 is closed, C is a spanning
class for W, and the Harrison–Pugh formulation of the Plateau problem

ℓ = inf
{

Hn(S) : S is a closed subset Ω, S is C-spanning W
}

is finite, then the problem

ℓB = inf
{

Hn(S) : S is a Borel subset Ω, S is C-spanning W
}

admits minimizers, and given any minimizer S for ℓB, there exists relatively closed S∗

which is Hn-equivalent to S and a minimizer for ℓ. In particular, ℓ = ℓB.

Theorem 6.2 (Theorem 1.5 refined). If W is a compact set in Rn+1 and C is a spanning
class for W such that ℓ <∞, then for every v > 0 there exist minimizers (K,E) of Ψbk(v).
Moreover,

(i): if (K∗, E∗) is a minimizer of Ψbk(v), then there is (K,E) ∈ K such that K is Hn-
equivalent to K∗, E is Lebesgue equivalent to E∗, (K,E) is a minimizer of Ψbk(v), both E
and K are bounded, K ∪E is C-spanning W, K ∩E(1) = ∅, and there is ¼ ∈ R such that

¼

ˆ

Ω∩∂∗E
X · ¿E dH

n =

ˆ

Ω∩∂∗E
divK X dHn + 2

ˆ

K∩E(0)

divK X dHn , (6.1)

∀X ∈ C1
c (R

n+1;Rn+1) with X · ¿Ω = 0 on ∂Ω ,

and there are positive constants c = c(n) and r1 = r1(K,E) such that

|E ∩BÄ(y)| f (1− c)Én+1 Ä
n+1 , (6.2)

for every y ∈ Ω∩∂E and Ä < min{r1, dist(y,W)}; under the further assumption that ∂W
is C2, then there is positive r0 = r0(n,W, |¼|) such that

Hn(K ∩Br(x)) g c rn (6.3)

for every x ∈ cl (K) and r < r0;

(ii): if (Kj , Ej) is a sequence of minimizers for Ψbk(vj) with vj → 0+, then there exists a
minimizer S of ℓ such that, up to extracting subsequences, as Radon measures in Ω,

Hn (Ω ∩ ∂∗Ej) + 2Hn (Kj ∩ E
(0)

j )
∗

á 2Hn S , (6.4)

as j → ∞. In particular, Ψbk(v) → 2 ℓ = Ψbk(0) as v → 0+.
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Proof of Theorem 6.1. By Theorem A.1, if ℓ < ∞, then ℓB < ∞. Let now {Sj}j be
a minimizing sequence for ℓB, then {(Sj ,∅)}j is a sequence in KB satisfying (5.1). By
Theorem 1.4, we find a Borel set S which is C-spanning W and is such that

2 lim inf
j→∞

Hn(Sj) = lim inf
j→∞

Fbk(Sj ,∅) g Fbk(S,∅) = 2Hn(S) .

This shows that S is a minimizer of ℓB. By Lemma 2.2, S is Hn-rectifiable, for, otherwise,
R(S) would be admissible for ℓB and have strictly less area than S. We conclude the proof
by showing that up to modifications on a Hn-null set, S is relatively closed in Ω (and thus
is a minimizer of ℓ too). Indeed the property of being C-spanning W is preserved under
diffeomorphism f with {f ̸= id } ¢¢ Ω. In particular, Hn(S) f Hn(f(S)) for every such f ,
so that the multiplicity one rectifiable varifold VS = var (S, 1) associated to S is stationary.
By a standard application of the monotonicity formula, we can find S∗ Hn-equivalent to
S such that S∗ is relative closed in Ω. Since Hn(S) = Hn(S∗) and C-spanning is preserved
under Hn-null modifications, we conclude the proof. □

Proof of Theorem 6.2. Step one: We prove conclusion (i). To this end, let (K∗, E∗) ∈ KB

be a minimizer of Ψbk(v). Clearly, (R(K∗), E∗) ∈ KB is such that R(K∗) ∪ E(1) is C-
spanning W (thanks to Theorem 3.1/Remark 3.2) and Fbk(R(K∗), E∗) f Fbk(K∗, E∗).
In particular, (R(K∗), E∗) is a minimizer of Ψbk(v), and energy comparison between
(R(K∗), E∗) and (R(K∗) \ E

(1)
∗ , E∗) (which is also a competitor for Ψbk(v)) proves that

Hn(R(K∗) ∩ E
(1)
∗ ) = 0 . (6.5)

Since “C-spanning W” is preserved under diffeomorphisms, by a standard first variation
argument (see, e.g. [KMS22a, Appendix C]) wee see that (R(K∗), E∗) satisfies (6.1) for
some ¼ ∈ R. In particular, the integer n-varifold V = var(R(K∗), ¹), with multiplicity
function ¹ = 2 on R(K∗) ∩ E

(0)
∗ and ¹ = 1 on Ω ∩ ∂∗E∗, has bounded mean curvature in

Ω, and thus satisfies ∥V ∥(Br(x)) g c(n) rn for every x ∈ K and r < min{r0, dist(x,W)},
where r0 = r0(n, |¼|) and, by definition,

K := Ω ∩ sptV .

In particular, since (6.5) implies ∥V ∥ f 2Hn R(K∗) , we conclude (e.g. by [Mag12,
Corollary 6.4]) that K is Hn-equivalent to R(K∗), and is thus Hn-rectifiable and relatively
closed in Ω. Now let

E =
{

x ∈ Ω : ∃ r < dist(x,W) s.t. |E∗ ∩Br(x)| = |Br(x)|
}

,

so that, trivially, E is an open subset of Ω with E ¢ E(1)
∗ . By applying (1.35) to E∗, and

by noticing that if x ∈ Ω \ E then |E∗ ∩ Br(x)| < |Br(x)| for every r > 0, and that if
x ∈ Ω ∩ cl (E) then |E∗ ∩Br(x)| > 0 for every r > 0, we see that

Ω ∩ ∂E ¢
{

x ∈ Ω : 0 < |E∗ ∩Br(x)| < |Br(x)| ∀r > 0
}

= Ω ∩ cl (∂∗E∗) . (6.6)

Since ∥V ∥ g Hn (Ω ∩ ∂∗E∗) and Hn(Br(x) ∩ ∂
∗E) = Én r

n + o(rn) as r → 0+ for every
x ∈ Ω∩ ∂∗E, we see that Ω∩ ∂∗E∗ ¢ Ω∩ spt∥V ∥ = K, and since K is relatively closed in
Ω, we have Ω∩ cl (∂∗E∗) ¢ K, and so Ω∩ ∂E ¢ K. In particular, E is of finite perimeter,
and thus by applying (1.35) to E,

Ω ∩ cl (∂∗E) =
{

x ∈ Ω : 0 < |E ∩Br(x)| < |Br(x)| ∀r > 0
}

¢ Ω ∩ ∂E . (6.7)

Finally, if there is x ∈ (Ω∩E(1)
∗ ) \E, then it must be 0 < |E∗ ∩Br(x)| < |Br(x)| for every

r > 0, and thus x ∈ Ω∩cl (∂∗E∗) ¢ K. However, we claim that for every x ∈ Ω∩cl (∂∗E∗)
and r < min{r∗, dist(x,W)} (with r∗ = r∗(K∗, E∗)) it holds

|Br(x) ∩ E∗| f (1− c)Én+1 r
n+1 , (6.8)

in contradiction with x ∈ E(1); this proves that Ω∩E(1)
∗ ¢ E, and thus that E∗ and E are

Lebesgue equivalent. Combining the latter information with (6.6) and (6.7) we conclude
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that Ω ∩ cl (∂∗E) = Ω ∩ ∂E ¢ K and conclude the proof of (K,E) ∈ K – conditional to
proving (6.8).

To prove (6.8), let us fix x ∈ Ω ∩ cl (∂∗E∗) and set u(r) = |Br(x) \E∗|, so that, for a.e.
r > 0 we have

u′(r) = Hn(E(0)
∗ ∩ ∂Br(x)) , P (Br(x) \ E∗) = u′(r) + P (E∗;Br(x)) . (6.9)

Since |E∗| = v > 0, we have Hn(Ω ∩ ∂∗E∗) > 0, therefore there must be y1, y2 ∈ Ω ∩ ∂∗E∗

with |y1 − y2| > 4r∗ for some r∗ depending on E∗. In particular there is i ∈ {1, 2} such
that Br∗(x) ∩ Br∗(yi) = ∅, and we set y = yi. Since yi ∈ Ω ∩ ∂∗E∗, there is w∗ > 0 and
smooth maps Φ : Ω × (−w∗, w∗) → Ω such that Φ(·, w) is a diffeomorphism of Ω with
{Φ(·, w) ̸= Id } ¢¢ Br∗(y), and

|Φ(E∗, w)| = |E∗| − w , P (Φ(E∗, w);Br∗(y)) f P (E∗, Br∗(y))(1 + 2 |¼| |w|) , (6.10)

for every |w| < w∗. We then consider r1 such that |Br1 | < w∗, so that for every r <
min{r1, dist(x,W)} we have 0 f u(r) < w∗, and thus we can define

(Kr, Er) =
(

Φu(r)
(

K ∪ ∂Br(x)
)

,Φu(r)
(

E∗ ∪Br(x)
)

)

.

Since Φu(r) is a diffeomorphism, we have Ω∩∂∗Er ¢ Kr, and by the first relation in (6.10)

and Φu(r) = Id on Ω \Br∗(y), we get

|Er|− |E| = |Br(x)|− |Br(x)∩E∗|+ |Φu(r)(E∗)∩Br∗(y)|− |E∗∩Br∗(y)| = u(r)−u(r) = 0 .

Hence Fbk(K∗, E∗) f Fbk(Kr, Er), from which we deduce

P (E;Br(x)) + P (E;Br∗(y)) + 2Hn(K∗ ∩ E
(0)
∗ ∩Br(x))

f Hn(Br(x) ∩ E
(0)) + P (Φu(r)(E∗);Br∗(y)) f u′(r) + P (E∗, Br∗(y))(1 + 2 |¼| |w|) ;

where we have used (6.9) and (6.10); by adding up u′(r) on both sides of the inequality,
and using (6.9) again, we find that

c(n)u(r)n/(n+1) f P (Br(x) \ E∗) f 2u′(r) + 2 |¼|Ψbk(v)u(r) ,

for a.e. r < min{r1, dist(x,W)}; since, by (6.6), x ∈ Ω ∩ cl (∂∗E∗) implies u(r) > 0 for
every r > 0, we can apply a standard ODE argument to conclude that (6.8) holds true.

We now prove the remaining assertions in statement (i). First of all, when ∂W is C2, we
can argue similarly to [KMS22b, Theorem 4.1] to deduce from the modified monotonicity
formula of Kagaya and Tonegawa [KT17] that the area lower bound in (6.3) holds for every
x ∈ cl (K) and every r < r0. The validity of the volume upper bound in (6.2) is immediate
from (6.8) and the Lebesgue equivalence of E∗ and E. The monotonicity formula for V
combined with Hn(Ω ∩K) < ∞ implies of course that V has bounded support. Having
proved that K is bounded, |E| <∞ and Ω∩ ∂E ¢ K imply that E is bounded too. Since
R(K∗) and K are Hn-equivalent, we have that K ∪ E(1)

∗ is C-spanning W. It turns out
that K ∪ E(1) is C-spanning W too, since E and E∗ are Lebesgue equivalent and of finite
perimeter, therefore such that E(1) and E(1)

∗ are Hn-equivalent. In fact, on noticing that
Ω∩ (E(1) \E) ¢ Ω∩ ∂E ¢ K, we see that K ∪E(1) = K ∪E, so that K ∪E is C-spanning
W, as claimed.

Finally, we prove that K ∩ E(1) = ∅. We first notice that, since E ¢ Ω is open and
K = Ω ∩ sptV with ∥V ∥ f 2Hn R(K∗), if K ∩ E ̸= ∅, then Hn(R(K∗) ∩ E) > 0; and
since E ¢ E(1)

∗ by construction, we arrive at a contradiction with (6.5). Hence, K∩E = ∅.
Now, if x ∈ K ∩E(1), then, by (6.2), x ̸∈ Ω∩ ∂E; combining this with K ∩E = ∅, we find
K ∩ E(1) ¢ Ω \ cl (E) ¢ E(0), and thus K ∩ E(1) = ∅.

Step two: For every v1 g 0 and v2 > 0 we have

Ψbk(v1 + v2) f Ψbk(v1) + (n+ 1)É
1/(n+1)
n+1 v

n/(n+1)
2 . (6.11)
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Since Ψbk(0) = 2 ℓ < ∞, (6.11) implies in particular that Ψbk(v) < ∞ for every v > 0
(just take v1 = 0 and v2 = v).

Indeed, let (K1, E1) be a competitor in Ψbk(v1) and let {Brj (xj)}j be a sequence of
balls with |xj | → ∞ and |E1 ∪ Brj (xj)| = v1 + v2 for every j. Setting for the sake of
brevity Bj = Brj (xj), sine ∂

∗(E1 ∪ Bj) is Hn-contained in (∂∗E1) ∪ ∂Bj we have that
(K2, E2), with K2 = K1 ∪ ∂Bj and E2 = E1 ∪ Bj , is a competitor of Ψbk(v1 + v2). Since

∂Bj ∩ E
(0)

2 = ∅ implies E(0)

2 ¢ E(0)

1 \ ∂Bj , we find that

Ψbk(v1 + v2) f 2Hn
(

K2 ∩ E
(0)

2 ) +Hn(Ω ∩ ∂∗E2)

f 2Hn(K1 ∩ E
(0)

1 \ ∂Bj) +Hn(Ω ∩ ∂∗E1) +Hn(∂Bj)

f Fbk(K1, E1) + (n+ 1)É
1/(n+1)
n+1 |Bj |

n/(n+1) .

Since |xj | → ∞, |E1| = v1, and |E1 ∪Brj (xj)| = v1 + v2 imply |Bj | → v2, we conclude by
arbitrariness of (K1, E1).

Step three: Now let {(Kj , Ej)}j be a minimizing sequence for Ψbk(v). Since Ψbk(v) <∞,
assumption (5.1) of Theorem 1.4 holds. Therefore there is (K,E) ∈ KB with K ∪ E(1) is
C-spanning W and such that, up to extracting subsequences,

lim
j→∞

|(Ej∆E) ∩BR| = 0 ∀R > 0 , lim inf
j→∞

Fbk(Kj , Ej) g Fbk(K,E) ; (6.12)

actually, to be more precise, if µ denotes the weak-star limit of Hn (Ω ∩ ∂∗Ej) + 2Hn

(R(Kj) ∩ E
(0)

j ) in Ω, then

µ g 2Hn (K ∩ E(0)) +Hn (Ω ∩ ∂∗E) . (6.13)

We claim that

(K,E) is a minimizer of Ψbk(|E|) .

(Notice that, at this stage of the argument, we are not excluding that v∗ := v − |E| is
positive, nor that |E| = 0.) Taking into account (6.11), to prove the claim it suffices to
show that

Ψbk(v) g Fbk(K,E) + (n+ 1)É
1/(n+1)
n+1 (v∗)n/(n+1) . (6.14)

To see this, we start noticing that, given any sequence {rj}j with rj → ∞, by (6.12) and
(6.13) we have that

Ej ∩Brj
loc
→ E , |Ej \Brj | → v∗ , as j → ∞ , (6.15)

lim inf
j→∞

2Hn
(

R(Kj) ∩ E
(0)

j ∩Brj

)

+Hn(Brj ∩ ∂
∗Ej) g Fbk(K,E) , (6.16)

Moreover, since |Ej | < ∞, we can choose rj → ∞ so that Hn(E(1)

j ∩ ∂Brj ) → 0, while,

taking into account that P (Ej \Brj ) = Hn(E(1)

j ∩ ∂Brj ) +Hn((∂∗Ej) \Brj ), we have

Fbk(Kj , Ej) g 2Hn
(

R(Kj) ∩ E
(0)

j ∩Brj

)

+Hn(Brj ∩ ∂
∗Ej)

+P (Ej \Brj )−Hn(E(1)

j ∩ ∂Brj ) .

By combining these facts with (6.15), (6.16), and the Euclidean isoperimetric inequality,
we conclude that

Ψbk(v) = lim
j→∞

Fbk(Kj , Ej) g Fbk(K,E) + (n+ 1)É
1/(n+1)
n+1 lim

j→∞
|Ej \Brj |

n/(n+1) ,

that is (6.14).
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Step four: We prove the existence of minimizers in Ψbk(v), v > 0. By step three, there is
(K,E) ∈ KB such that K ∪E(1) is C-spanning W, (K,E) is a minimizer of Ψbk(|E|) and,
combining (6.11) and (6.14),

Ψbk(v) = Ψbk(|E|) + (n+ 1)É
1/(n+1)
n+1 (v − |E|)n/(n+1) . (6.17)

Since (K,E) is a minimizer in Ψbk(|E|), by step one we can assume thatK isHn-rectifiable
and that both K and E are bounded. We can thus find Br(x0) ¢¢ Ω such that |Br(x0)| =
v − |E|, |Br(x0) ∩ E| = 0, and Hn(K ∩ Br(x0)) = 0. In this way (K∗, E∗) = (K ∪
∂Br(x0), E ∪Br(x0)) ∈ KB is trivially C-spanning W and such that |E∗| = v, and thus is
a competitor for Ψbk(v). At the same time,

Fbk(K∗, E∗) = Fbk(K,E) + (n+ 1)É
1/(n+1)
n+1 (v − |E|)n/(n+1)

so that, by (6.17), (K∗, E∗) is a minimizer of Ψbk(v). Having proved that minimizers of
Ψbk(v) do indeed exist, a further application of step one completes the proof of statement
(i).

Step five: We finally prove statement (ii). Let us consider a sequence vj → 0+ and
corresponding minimizers (Kj , Ej) of Ψbk(vj). By (6.11) with v1 = 0 and v2 = vj we see
that {(Kj , Ej)}j satisfies the assumptions of Theorem 1.4. Since |Ej | = vj → 0, setting

µj = Hn (Ω∩ ∂∗Ej)+ 2Hn (R(Kj)∩E
(0)

j ), the conclusion of Theorem 1.4 is that there

are a Radon measure µ in Ω and a Borel set K such that K is C-spanning W and µj
∗

á µ
for a Radon measure µ in Ω such that µ g 2Hn K. Thanks to (6.11) we thus have

2 ℓ = lim
j→∞

Ψbk(0) + (n+ 1)É
1/(n+1)
n+1 v

n/(n+1)
j g lim inf

j→∞
Ψbk(vj)

= lim inf
j→∞

Fbk(Kj , Ej) g Fbk(K, ∅) = 2Hn(K) g 2 ℓ .

We conclude that Ψbk(vj) → 2 ℓ, K is a minimizer of ℓ, and µ = 2Hn K, thus completing
the proof of the theorem. □

Proof of Theorem 1.5. The identity (1.22) is proved in Theorem 6.1. Conclusions (i), (ii),
and (iii) are proved in Theorem 6.2. □

7. Equilibrium across transition lines in wet soap films (Theorem 1.6)

We finally prove Theorem 1.6. We shall need two preliminary lemmas:

Lemma 7.1 (Representation of Fbk via induced partitions). If U ¢ Ω is a set of finite
perimeter, (K,E) ∈ KB is such that Fbk(K,E) < ∞, and {Ui}i is a Lebesgue partition
of U \ E induced by K, then each Ui has finite perimeter, and, setting K∗ =

⋃

i ∂
∗Ui, we

have

Fbk(K,E;U (1)) =
∑

i

Hn(U (1) ∩ ∂∗Ui) + 2Hn
(

U (1) ∩ (K \K∗) ∩ E(0)
)

; (7.1)

see Figure 7.1.

Proof. For each i, ∂eUi is contained in (∂eU)∪(∂eE)∪(U \E)(1), where both ∂eU and ∂eE
are Hn-finite being U and E of finite perimeter, and where (U \E)(1)∩∂eUi is H

n-contained
in K by assumption. Now, (U \ E)(1) ¢ Rn+1 \ E(1), so that

Hn
(

(U \ E)(1) ∩ ∂eUi

)

f Hn(K \ E(1)) f Fbk(K,E) <∞ .

This shows that, for each i, Ui is a set of finite perimeter. As a consequence {U∩E}∪{Ui}i
is a Caccioppoli partition of U , so that, by (1.46),

2Hn
(

U (1) ∩
[

∂∗(U ∩ E) ∪K∗
])

= Hn
(

U (1) ∩ ∂∗(U ∩ E)
)

+
∑

i

Hn(U (1) ∩ ∂∗Ui) , (7.2)
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C1

U

C2

E

K
K \K∗

(b)(a)

Figure 7.1. The situation in Lemma 7.1: (a) a depiction of the left hand side of
(7.1), where K \∂∗E is drawn with a bold line to indicate that, in the computation
of Fbk(K,E;U (1)) = Hn(U (1) ∩ ∂∗E) + 2Hn(U (1) ∩K \ ∂∗E), it is counted with
multiplicity 2; (b) a depiction of the right hand side of (7.1), where K \ K∗ is
drawn with a bold line to indicate that it has to be counted with multiplicity 2.

with K∗ =
⋃

i ∂
∗Ui. Now, thanks to (1.40), (1.41), and the inclusion in (1.46), we have

U (1) ∩ ∂∗(U ∩ E)
H

n

= U (1) ∩ ∂∗E
H

n

¢ U (1) ∩K∗ ,

which combined with (7.2) gives

2Hn(U (1) ∩K∗) = Hn
(

U (1) ∩ ∂∗E
)

+
∑

i

Hn(U (1) ∩ ∂∗Ui) . (7.3)

Therefore, using in order

U (1) ∩ ∂∗E
H

n

¢ U (1) ∩K∗ , K∗ H
n

¢ K , Hn(K∗ ∩ E(1)) = 0 ,

and Federer’s theorem (1.37), we obtain

Fbk(K,E;U (1)) = Hn(U (1) ∩ ∂∗E) + 2Hn(U (1) ∩K ∩ E(0))

= 2Hn(U (1) ∩K∗ ∩ ∂∗E)−Hn(U (1) ∩ ∂∗E)

+2Hn(U (1) ∩K∗ ∩ E(0)) + 2Hn(U (1) ∩ (K \K∗) ∩ E(0))

= 2Hn(U (1) ∩K∗)−Hn(U (1) ∩ ∂∗E) + 2Hn(U (1) ∩ (K \K∗) ∩ E(0))

=
∑

i

Hn(U (1) ∩ ∂∗Ui) + 2Hn(U (1) ∩ (K \K∗) ∩ E(0)) ,

where in the last identity we have used (7.3). □

The next lemma is a slight reformulation of [DLGM17a, Lemma 10] and [DLDRG19,
Lemma 4.1].

Lemma 7.2. If W is closed, C is a spanning class for W, S is relatively closed in Ω
and C-spanning W, and B ¢ Ω is an open ball, then for any µ ∈ C we either have
µ(S1) ∩ (S \ B) ̸= ∅, or µ(S1) has non-empty intersection with at least two connected
components of B \ S. In particular, it intersects the boundaries of both components.

We are now ready for the proof of Theorem 1.6.

Proof of Theorem 1.6. The opening part of the statement of Theorem 1.6 is Theorem 6.2-
(i), therefore we can directly consider a minimizer (K,E) ∈ K of Ψbk(v) such that both E
and K are bounded, K ∪ E is C-spanning W, and

K ∩ E(1) = ∅ , (7.4)

and begin by proving the existence of a closed set Σ ¢ K closed such that (i): Σ = ∅

if 1 f n f 6, Σ is locally finite in Ω if n = 7, and Hs(Σ) = 0 for every s > n − 7
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if n g 8; (ii): (∂∗E) \ Σ is a smooth hypersurface with constant mean curvature; (iii)
K \ (cl (E) ∪ Σ) is a smooth minimal hypersurface; (iv)³: if x ∈ [Ω ∩ (∂E \ ∂∗E)] \ Σ,
then there are r > 0, ¿ ∈ Sn, u1, u2 ∈ C1,³(D¿

r (x); (−r/4, r/4)) (³ ∈ (0, 1/2) arbitrary)
such that u1(x) = u2(x) = 0, u1 f u2 on D¿

r (x), {u1 < u2} and int{u1 = u2} are both
non-empty, and

C¿
r (x) ∩K = ∪i=1,2

{

y + ui(y) ¿ : y ∈ D¿
r (x)

}

, (7.5)

C¿
r (x) ∩ ∂

∗E = ∪i=1,2

{

y + ui(y)¿ : y ∈ {u1 < u2}
}

, (7.6)

C¿
r (x) ∩ E =

{

y + t ¿ : y ∈ {u1 < u2} , u1(x) < t < u2(x)
}

. (7.7)

(The sharp version of conclusion (iv), that is conclusion (iv)³ with ³ = 1, and conclusion
(v), will be proved in the final step five of this proof.) The key step to prove conclusions
(i)–(iv)³ is showing the validity of the following claim.

Claim: There exist positive constants Λ and r0 such that if B2r(x) ¢¢ Ω, then, denoting
by {Uj}j the open connected components of B2r(x) \ (E ∪K),

Br(x) ∩K = Br(x) ∩ ∪j∂Uj , (7.8)

#
{

i : Br(x) ∩ Uj ̸= ∅} <∞ , (7.9)

B2 r(x) ∩ cl (∂∗Uj) = B2 r(x) ∩ ∂Uj , (7.10)

P (Uj ;Br(x)) f P (Vj ;Br(x)) + Λ |Uj∆Vj | , (7.11)

whenever Vj satisfies Vj∆Uj ¢¢ Br(x) and diam (Uj∆Vj) < r0.

Deduction of (i)-(iv) from the claim: Let {B2ri(xi)}i∈N be a countable family of balls,
locally finite in Ω, such that B2ri(xi) ¢¢ Ω and Ω = ∪iBri(xi). Setting for brevity

Ωi = Bri(xi) ,

by (7.9) there are finitely many connected components {U i
j}

Ji
j=1 of B2ri(xi) \ (E ∪K) such

that U i
j ∩ Ωi ̸= ∅. Thanks to (7.11), we deduce from [Mag12, Theorem 28.1] that, if we

set Σi
j = Ωi ∩ (∂U i

j \ ∂
∗U i

j), then Ωi ∩ ∂
∗U i

j is a C1,³-hypersurface for every ³ ∈ (0, 1/2),

and Σi
j is a closed set that satisfies the dimensional estimates listed in conclusion (i). In

particular, if we set

Σ = ∪i∈N ∪Ji
j=1 Σ

i
j , (7.12)

then Σ ¢ K thanks to Σi
j ¢ Ωi ∩ ∂U

i
j and to (7.8), and conclusion (i) holds by the local

finiteness of the covering {B2ri(xi)}i of Ω and from Ji <∞ for every i. Before moving to
prove the remaining conclusions, we first notice that (7.8) gives

Ωi ∩K \ Σ = Ωi ∩ ∪Ji
j=1∂U

i
j \ Σ

¢ Ωi ∩ ∪Ji
j=1(∂U

i
j \ Σ

i
j) = Ωi ∩ ∪Ji

j=1∂
∗U i

j ; (7.13)

second, we notice that, since K is Hn-finite,

{E ∩ Ωi, U
j
i ∩ Ωi}

Ji
j=1 is a Caccioppoli partition of Ωi ; (7.14)

finally, we recall that, by (1.23), for every X ∈ C1
c (Ω;R

n+1) it holds

¼

ˆ

∂∗E
X · ¿E dH

n =

ˆ

∂∗E
divK X dHn + 2

ˆ

K∩E(0)

divK X dHn . (7.15)

To prove conclusion (ii): Given x ∈ Ω ∩ ∂∗E \ Σ, there is i ∈ N such that x ∈ Ωi ∩ ∂
∗E.

By Ω∩∂∗E ¢ K and by (7.13) there is j(x) ∈ {1, ..., Ji} such that x ∈ ∂∗U i
j(x). By (7.14),

we can use (1.47) and x ∈ Ω ∩ ∂∗E ∩ ∂∗U i
j(x) to deduce that

x ̸∈ ∪j ̸=j(x)∂
∗U i

j . (7.16)
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Let r > 0 be such that Br(x)∩ ∂
∗U i

j(x) is a C
1-hypersurface. Since Σ contains ∪j∂U

i
j and

(7.10) holds, (7.16) implies that there is r > 0 such that

Br(x) ¢¢ Ωi \ Σ , Br(x) ∩ ∪j∂U
i
j = Br(x) ∩ ∂U

i
j(x) = Br(x) ∩ ∂

∗U i
j(x) . (7.17)

Since Br(x) ∩ ∪j ̸=j(x)∂U
i
j = ∅ and Br(x) ∩ U

i
j(x) ̸= ∅, we also have that

Br(x) ∩ ∪jU
i
j = Br(x) ∩ U

i
j(x) ,

and thus, by (7.14), that {E ∩ Br(x), U
i
j(x) ∩ Br(x)} is an Hn-partition of Br(x). In

particular, Br(x) ∩ ∂
∗E = Br(x) ∩ ∂

∗U i
j(x): intersecting with Br(x) in (7.13) and taking

into account (7.17), we conclude that

Br(x) ∩K = Br(x) ∩ [Ωi ∩K \ Σ] ¢ Br(x) ∩ [Ωi ∩ ∪Ji
j=1∂

∗U i
j ] = Br(x) ∩ ∂

∗U i
j(x)

= Br(x) ∩ ∂
∗E ,

and (7.15) implies that, for every X ∈ C1
c (Br(x);R

n+1),

¼

ˆ

∂∗E
X · ¿E dH

n =

ˆ

∂∗E
divK X dHn . (7.18)

Hence, ∂∗E can be represented, locally in Br(x), as the graph of distributional solutions
of class C1,³ to the constant mean curvature equation. By Schauder’s theory, Br(x)∩∂

∗E
is a smooth hypersurface whose mean curvature with respect to ¿E is equal to ¼ thanks
to (7.18).

To prove conclusions (iii) and (iv): Let us now pick x ∈ K \ (Σ ∪ ∂∗E) and let i ∈ N be
such that x ∈ Ωi ∩K. Let i ∈ N be such that x ∈ Ωi. By (7.13) there is j(x) ∈ {1, ..., Ji}
such that x ∈ ∂∗U i

j(x). By (7.14) and by (1.47), either x ∈ ∂∗E (which is excluded from

the onset), or there is k(x) ̸= j(x) such that x ∈ ∂∗U i
k(x). We have thus proved that

x ∈ ∂∗U i
j(x) ∩ ∂

∗U i
k(x) , x ̸∈ ∪j ̸=j(x),k(x)∂

∗U i
j . (7.19)

To prove conclusion (iii) we notice that if we are in the case when x ∈ K \ (Σ ∪ ∂E) =
K \ (Σ ∪ cl (E)) (thanks to K ∩ E = ∅), then x ̸∈ cl (E) implies that, for some r > 0,
Br(x)∩ (Σ∪ cl (E)) = ∅. In particular, by (7.14) and (7.19), {Br(x)∩U

i
j(x), Br(x)∩U

i
k(x)}

is an Hn-partition of Br(x), and by (7.13)

Br(x) ∩K = Br(x) ∩ ∂
∗U i

j(x) = Br(x) ∩ ∂
∗U i

k(x) ,

is a C1,³-hypersurface. Under these conditions, (7.15) boils down to
ˆ

K
divK X dHn = 0 , ∀X ∈ C1

c (Br(x);R
n+1) , (7.20)

so that K can be represented, locally in Br(x), as the graph of distributional solutions to
the minimal surfaces equation of class C1,³. By Schauder’s theory, Br(x)∩K is a smooth
minimal surface.

To finally prove conclusion (iv), let us assume that x ∈ Ω∩ (∂E \ ∂∗E) \Σ. In this case
(7.14) and (7.19) do not imply that {Br(x) ∩ U

i
j(x), Br(x) ∩ U

i
k(x)} is an Hn-partition of

Br(x); actually, by Ω∩∂E = Ω∩cl (∂∗E), the fact that x ∈ ∂E implies that Bs(x)∩∂
∗E ̸= ∅

for every s > 0, so that |Bs(x)∩E| > 0 for every s > 0, and the situation is such that, for
every s < r,

{Bs(x) ∩ U
i
j(x), Bs(x) ∩ U

i
k(x), Bs(x) ∩ E} is an Hn-partition of Bs(x) (7.21)

with all three sets in the partition having positive measure.
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Now, by the first inclusion in (7.19), there exists ¿ ∈ Sn such that, up to further decrease
the value of r and for some u1, u2 ∈ C1,³(D¿

r (x); (−r/4, r/4)) with u1(x) = u2(x) = 0 and
∇u1(x) = ∇u2(x) = 0 it must hold

C¿
r (x) ∩ U

i
j(x) =

{

y + t ¿ : y ∈ D¿
r (x) , t > u2(y)

}

,

C¿
r (x) ∩ U

i
k(x) =

{

y + t ¿ : y ∈ D¿
r (x) , t < u1(y)

}

.

By U i
j(x) ∩ U

i
k(x) = ∅ we have u1 f u2 on D¿

r (x), so that (7.21) gives

C¿
r (x) ∩ E =

{

y + t ¿ : y ∈ {u1 < u2} , u1(y) < t < u2(y)
}

,

and {u1 < u2} is non-empty. Again by (7.19) and (7.13) we also have that

C¿
r (x) ∩K = ∪2

k=1

{

y + uk(y) ¿ : y ∈ D¿
r (x)

}

,

C¿
r (x) ∩ ∂

∗U i
j(x) ∩ ∂

∗U i
k(x) =

{

y + u1(y) ¿ : y ∈ D¿
r (x) ∩ {u1 = u2}

}

,

C¿
r (x) ∩ ∂

∗E = ∪2
k=1

{

y + uk(y) ¿ : y ∈ D¿
r (x) ∩ {u1 < u2}

}

.

This completes the proof of conclusion (iv)³.

Proof of the claim: Assuming without loss of generality that x = 0, we want to find Λ and
r0 positive such that if B2r ¢¢ Ω, then, denoting by {Uj}j the open connected components
of B2r \ (E ∪K), we have

Br ∩K = Br ∩ ∪j∂Uj , (7.22)

#
{

j : Br ∩ Uj ̸= ∅
}

<∞ , (7.23)

B2 r ∩ cl (∂∗Uj) = B2 r ∩ ∂Uj , (7.24)

and that P (Uj ;Br) f P (Vj ;Br) + Λ |Uj∆Vj | whenever Vj satisfies Vj∆Uj ¢¢ Br and
diam (Uj∆Vj) < r0.

Step one: We prove that

K ∩ intU (1)

j = ∅ , intU (1)

j = Uj ∀j . (7.25)

To this end, we begin by noticing that, for every j,

B2 r ∩ ∂Uj ¢ B2 r ∩K , (7.26)

Uj ¢ int(U (1)

j ) ¢ B2 r ∩ clUj ¢ B2 r ∩ (Uj ∪K) , (7.27)

B2 r ∩ ∂[int(U
(1)

j )] ¢ B2 r ∩K . (7.28)

Indeed, for every k and j, Uk ∩ Uj = ∅ with Uk and Uj open gives Uk ∩ ∂Uj = ∅, so that
B2r ∩ ∂Uj ¢ B2r \ ∪kUk = B2 r ∩ (E ∪K) = B2 r ∩K thanks to the fact that E ∩ ∂Uj = ∅

(as Uj ∩ E = ∅). Having proved (7.26), one easily deduces the third inclusion in (7.27),
while the first two are evident. Finally, from (7.27), and since K is closed, we find

B2 r ∩ cl
(

int(U (1)

j )
)

¢ B2 r ∩ (cl (Uj) ∪K) ,

so that subtracting int(U (1)

j ), and recalling that Uj ¢ int(U (1)

j ) we find

B2 r ∩ ∂[int(U
(1)

j )] ¢ B2 r ∩ (K ∪ ∂Uj)

and deduce (7.28) from (7.26).

Next, we claim that,

if K∗ = K \
⋃

j intU
(1)

j , then (K∗, E) ∈ K and K∗ ∪ E is C-spanning . (7.29)

To prove that (K∗, E) ∈ K, the only assertion that is not immediate is the inclusion
Ω ∩ ∂E ¢ K∗. To prove it we notice that if z ∈ intU (1)

j , then Bs(z) ¢ intU (1)

j for some

s > 0, so that Uj∩E = ∅ gives |E∩Bs(z)| = 0. Since E is open this implies Bs(z)∩E = ∅,
hence z /∈ ∂E.
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To prove that E ∪K∗ is C-spanning: Since E ∪K∗ is relatively closed in Ω, it suffices to
verify that for arbitrary µ ∈ C, (K∗ ∪ E) ∩ µ ̸= ∅. Since K \ B2r = K∗ \ B2r, we directly
assume that (K ∪ E) ∩ (µ \ B2r) = ∅. Since K ∪ E is C-spanning W, by Lemma 7.2,
there are two distinct connected components Uj and Uk of B2r \ (K ∪ E) such that there
is µ(S1) ∩B2 r ∩ (∂Uj) ∩ (∂Uk) ̸= ∅. We conclude by showing that

B2 r ∩ (∂Uj) ∩ (∂Uk) ¢ K∗ , ∀j ̸= k . (7.30)

Indeed any point in B2r ∩ (∂Uj)∩ (∂Uk) is an accumulation point for both Uj and Uk, and

thus, by (7.27), for both intU (1)

j and intU (1)

k . Since Uj∩Uk = ∅ implies (intU (1)

j )∩(intU (1)

k ) =

∅, an accumulation point for both intU (1)

j and intU (1)

k must lie in [∂(intU (1)

j )]∩ [∂(intU (1)

k )].

We thus deduce (7.30) from (7.28), and complete the proof of (7.29).

To deduce (7.25) from (7.29), and complete step one: By (7.29), (K∗, E) is admissible
in Ψbk(v). Since (K,E) is a minimizer of Ψbk(v), we conclude that Hn(K \ K∗) = 0.
Would there be z ∈ int(U (1)

j ) ∩ K for some j, then by (6.3), and with Ä > 0 such that

BÄ(z) ¢ int(U (1)

j ), we would find

c Än f Hn(K ∩BÄ(z)) f Hn(K ∩ int(U (1)

j )) f Hn(K \K∗) = 0 .

This shows that K ∩ int(U (1)

j ) = ∅. Using this last fact in combination with int(U (1)

j ) ¢

B2 r ∩ (Uj ∩K) from (7.27) we conclude that int(U (1)

j ) ¢ Uj , and thus that int(U (1)

j ) = Uj

by the first inclusion in (7.27).

Step two: We prove (7.24), i.e. B2 r ∩ cl (∂∗Uj) = B2 r ∩ ∂Uj . The ¢ inclusion is a
general fact, see (1.35). To prove the reverse inclusion we recall, again from (1.35), that
z ∈ B2 r ∩ cl (∂∗Uj) if and only if 0 < |BÄ(z) ∩ Uj | < |BÄ| for every Ä > 0. Now, if
z ∈ B2 r ∩ ∂Uj , then clearly, being Uj open, we have |Uj ∩ BÄ(z)| > 0 for every Ä > 0;

moreover, should |BÄ(z) ∩ Uj | = |BÄ| hold for some Ä, then we would have z ∈ int(U (1)

j ),

and thus z ∈ Uj by (7.25), a contradiction.

Step three: We prove, for each j, the Hn-equivalence of ∂∗Uj and ∂Uj , that is

Hn(B2 r ∩ ∂Uj \ ∂
∗Uj) = 0 . (7.31)

By a standard argument [Mag12, Theorem 21.11] it will suffice to prove the existence of
r0 > 0 and ³, ´ ∈ (0, 1/2) (depending on n) such that, for each j and each z ∈ B2 r ∩ ∂Uj ,
it holds

³ |BÄ| f |BÄ(z) ∩ Uj | f (1− ´)|BÄ| , (7.32)

for every Ä < min{r0, dist(z, ∂B2 r)}.

Proof of the lower bound in (7.32): Since diffeomorphic images of C-spanning sets are
C-spanning, a standard argument using diffeomorphic volume fixing variations shows the
existence of positive constants Λ and r0 such that if (K ′, E′) ∈ KB, K

′ ∪ (E′)(1) is C-
spanning W, and (K ′∆K) ∪ (E′∆E) ¢¢ BÄ(z) for some Ä < r0 and BÄ(z) ¢¢ B2 r,
then

Fbk(K,E) f Fbk(K
′, E′) + Λ |E∆E′| . (7.33)

We claim that we can apply (7.33) with

E′ = E ∪
(

BÄ(z) ∩ clUj

)

, K ′ =
(

K ∪ (U (1)

j ∩ ∂BÄ(z)
)

\ (E′)(1) , (7.34)

where Ä < r0, BÄ(z) ¢¢ B2 r, and

Hn
(

∂BÄ(z) ∩ [∂∗E ∪ ∂∗Uj ]
)

= Hn(K ∩ ∂BÄ(z)) = 0 . (7.35)

Indeed, K ′ ∪ (E′)(1) contains K ∪E(1), thus K ∪E being E open, and is thus C-spanning.
To check that (K ′, E′) ∈ KB, we argue as follows. First, we notice that Hn({¿E =
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¿Bρ(z)∩cl (Uj)}) = 0, since it is Hn-contained in the union of ∂BÄ(z) ∩ ∂∗E and {¿E =

¿cl (Uj)}, that are Hn-negligible by (7.35) and by the fact that ¿E = −¿cl (Uj) Hn-a.e. on

∂∗E ∩ ∂∗cl (Uj) thanks to |E ∩ cl (Uj)| = 0. By Hn({¿E = ¿Bρ(z)∩cl (Uj)}) = 0 and (1.39)
we thus have

Ω ∩ ∂∗E′ H
n

= Ω ∩
{[

E(0) ∩ ∂∗
(

BÄ(z) ∩ clUj

)]

∪
[(

BÄ(z) ∩ clUj

)(0)
∩ ∂∗E

]}

. (7.36)

Since Uj is Lebesgue equivalent to cl (Uj) (indeed, B2 r ∩ ∂Uj ¢ K), we have U (1)

j =

[cl (Uj)]
(1) and ∂∗[cl (Uj)] = ∂∗Uj , so that (1.40) and (7.35) give

∂∗
(

BÄ(z) ∩ cl (Uj)
)

H
n

=
{

[cl (Uj)]
(1) ∩ ∂BÄ(z)

}

∪
{

BÄ(x) ∩ ∂
∗[cl (Uj)]

}

,

=
(

U (1)

j ∩ ∂BÄ(z)
)

∪
(

BÄ(x) ∩ ∂
∗Uj

)

¢
(

U (1)

j ∩ ∂BÄ(z)
)

∪K , (7.37)

by B2 r ∩ ∂Uj ¢ K. By (7.36) and Hn((E′)(1) ∩ ∂∗E′) = 0 we thus find that

Ω ∩ ∂∗E′ ∩ ∂∗
(

BÄ(z) ∩ cl (Uj)
) H

n

¢ K ′ . (7.38)

Moreover, by Ω ∩ ∂∗E ¢ Ω ∩ ∂E ¢ K and

(∂∗E) ∩
(

BÄ(z) ∩ clUj

)(0)
¢ E(1/2) ∩

(

BÄ(z) ∩ clUj

)(0)
¢ Rn+1 \ (E′)(1) ,

we find (∂∗E) ∩
(

BÄ(z) ∩ clUj

)(0)
¢ K \ (E′)(1) ¢ K ′, which combined with (7.38) finally

proves the Hn-containment of Ω ∩ ∂∗E′ into K ′, and thus (K ′, E′) ∈ KB. We have thus
proved that (K ′, E′) as in (7.34) is admissible into (7.33). Since Fbk(K,E; ∂BÄ(z)) = 0
by (7.35) and Fbk(K,E;A) = Fbk(K

′, E′;A) if A = Ω \ cl (BÄ(z)), we deduce from (7.33)
that

Fbk(K,E;BÄ(z)) f Fbk(K
′, E′; cl (BÄ(z))) + Λ |E∆E′| . (7.39)

To exploit (7.39), we first notice that {BÄ(z) ∩ Uk}k is a Lebesgue partition of BÄ(z) \ E
with BÄ(z)

(1) ∩ ∂∗(BÄ(z) ∩ Uk) = BÄ(z) ∩ ∂
∗Uk for every k, so that, by Lemma 7.1,

Fbk(K,E;BÄ(z)) = 2Hn
(

BÄ(z) ∩ E
(0) ∩

(

K \
⋃

k

∂∗Uk

))

+
∑

k

P (Uk;BÄ(z)) . (7.40)

Similarly, {BÄ(z) ∩Uk}k ̸=j is a Lebesgue partition of BÄ(z) \E
′, so that again by Lemma

7.1 we find

Fbk(K
′, E′;BÄ(z)) = 2Hn

(

BÄ(z) ∩ (E′)(0) ∩
(

K ′ \
⋃

k ̸=j

∂∗Uk

))

+
∑

k ̸=j

P (Uk;BÄ(z))

= 2Hn
(

BÄ(z) ∩ (E′)(0) ∩
(

K \
⋃

k

∂∗Uk

))

+
∑

k ̸=j

P (Uk;BÄ(z)) (7.41)

where in the last identity we have used that, by (7.34), we have BÄ(z)∩ (E′)(0) ∩ ∂∗Uj = 0
and BÄ(z) ∩K

′ ∩ (E′)(0) = BÄ(z) ∩K ∩ (E′)(0). Combining (7.39), (7.40), (7.41) and the
fact that (E′)(0) ¢ E(0), we find that

P (Uj ;BÄ(z)) f Fbk

(

K ′, E′; ∂BÄ(z)
)

+ Λ |BÄ(z) ∩ Uj | . (7.42)

The first term in Fbk

(

K ′, E′; ∂BÄ(z)
)

is P (E′; ∂BÄ(z)): taking into account Hn(∂∗E ∩
∂BÄ(z)) = 0, by (7.36) and the second identity in (7.37) we find

P (E′; ∂BÄ(z)) = Hn
(

∂BÄ(z) ∩ E
(0) ∩ ∂∗

(

BÄ(z) ∩ clUj

))

= Hn(E(0) ∩ U (1)

j ∩ ∂BÄ(z)) = Hn(U (1)

j ∩ ∂BÄ(z)) ,

while for the second term in Fbk

(

K ′, E′; ∂BÄ(z)
)

, by Hn(K ∩ ∂BÄ(z)) = 0,

Hn(K ′ ∩ (E′)(0) ∩ ∂BÄ(z)) = Hn((E′)(0) ∩ U (1)

j ∩ ∂BÄ(z)) = 0

46



since (E′)(0) ¢ (BÄ(z)∩cl (Uj))
(0) and BÄ(z)∩cl (Uj) has positive Lebesgue density at points

in U (1)

j ∩ ∂BÄ(z). Having thus proved that Fbk

(

K ′, E′; ∂BÄ(z)
)

= Hn(U (1)

j ∩ ∂BÄ(z)), we

conclude from (7.42) that

P (Uj ;BÄ(z)) f Hn(U (1)

j ∩ ∂BÄ(z)) + Λ |BÄ(z) ∩ Uj | ,

for a.e. Ä < r0. Since z ∈ B2 r∩∂Uj = B2 r∩cl (∂
∗Uj) and (1.35) imply that |BÄ(z)∩Uj | > 0

for every Ä > 0, a standard argument (see, e.g. [Mag12, Theorem 21.11]) implies that, up to
further decrease the value of r0 depending on Λ, and for some constant ³ = ³(n) ∈ (0, 1/2),
the lower bound in (7.32) holds true.

Proof of the upper bound in (7.32): We argue by contradiction that, no matter how small
´ ∈ (0, 1/2) is, we can find j, z ∈ B2 r ∩ ∂Uj , and Ä < min{r0, dist(z, ∂B2 r)}, such that

|BÄ(z) ∩ Uj | > (1− ´) |BÄ| . (7.43)

We first notice that for every k ̸= j it must be BÄ/2(z) ∩ ∂Uk = ∅: indeed if w ∈
BÄ/2(z) ∩ ∂Uk for some k ̸= j, then by the lower bound in (6.2) and by (7.43) we find

³ |BÄ/2| f |Uk ∩BÄ/2(w)| f |BÄ(z) \ Uj | < ´ |BÄ|

which gives a contradiction if ´ < ³/2n+1. By BÄ/2(z) ∩ ∂Uk = ∅ it follows that

BÄ/2(z) ¢ cl (Uj) ∪ cl (E) . (7.44)

Let us now set

E′ = E \BÄ/2(z) , K ′ =
(

K \BÄ/2(z)
)

∪
(

E(1) ∩ ∂BÄ/2(z)
)

. (7.45)

By (1.41), if Hn(∂∗E ∩ ∂BÄ/2) = 0, then (K ′, E′) ∈ K, since (Ω \ BÄ/2(z)) ∩ ∂∗E ¢
K \BÄ/2(z) ¢ K ′ implies

Ω ∩ ∂∗E′ H
n

= Ω ∩
{(

(∂∗E) \BÄ/2(z)
)

∪
(

E(1) ∩ ∂BÄ/2(z)
)}

¢ K ′ .

Moreover K ′ ∪ (E(1))′ is C-spanning W since it contains (K ∪ E) \BÄ/2(z), and

(K ∪ E) \BÄ/2(z) is C-spanning W . (7.46)

Indeed, if µ ∈ C and µ(S1) ∩ (K ∪ E) \ BÄ/2(z) = ∅, then by applying Lemma 7.2 to

S = K ∪ E and B = B2 r we see that either µ(S1) ∩ (K ∪ E) \ B2 r ̸= ∅ (and thus
µ(S1)∩(K∪E)\BÄ/2(z) ̸= ∅ by BÄ/2(z) ¢ Br), or there are k ̸= h such that µ(S1)∩∂Uk ̸=

∅ and µ(S1)∩∂Uh ̸= ∅. Up to possibly switch k and h, we have that k ̸= j, so that (7.44)
implies that ∅ ̸= µ(S1)∩ ∂Uk = µ(S1)∩ ∂Uk \BÄ/2(z), where the latter set is contained in
K \BÄ/2(z) by (7.22) and BÄ/2(z) ¢ Br. This proves (7.46).

We can thus plug the competitor (K ′, E′) defined in (7.45) into (7.39), and find

Fbk(K,E;BÄ/2(z)) f Fbk

(

K ′, E′; cl (BÄ/2(z))
)

+ Λ |E ∩BÄ/2(z)| ,

for every Ä < min{r0, dist(z, ∂B2 r)} such that Hn(K ∩ ∂BÄ/2(z)) = 0. Now, by Lemma
7.1 and by (7.44) we have

Fbk(K,E;BÄ/2(z)) g P (Uj ;BÄ/2(z)) = P (E;BÄ/2(z)) ,

while (1.40) gives

cl (BÄ/2/z) ∩K
′ H

n

= cl (BÄ/2/z) ∩ ∂
∗E′ H

n

= E(1) ∩ ∂BÄ/2(z) ,

thus proving that, for a.e. Ä < min{r0, dist(z, ∂B2 r)},

P (E;BÄ/2(z)) f Hn(E(1) ∩BÄ/2(z)) + Λ |E ∩BÄ/2(z)| .
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Since z ∈ B2 r ∩ ∂Uj and BÄ/2(z) ∩ ∂∗Uj = BÄ/2(z) ∩ ∂∗E, by (1.35) we see that |E ∩
BÄ/2(z)| > 0 for every Ä < min{r0, dist(z, ∂B2 r)}. By a standard argument, up to further
decrease the value of r0, we find that for some ³′ = ³′(n) it holds

|E ∩BÄ/2(z)| g ³′ |BÄ/2| , ∀Ä < min{r0, dist(z, ∂B2 r)} ,

and since |E ∩BÄ/2(z)| = |BÄ/2(z) \Uj | this give a contradiction with (7.43) up to further
decrease the value of ´.

Step three: We prove (7.22) and (7.23). The lower bound in (7.32) implies (7.23), i.e.,
J = #{j : Uj ∩Br ̸= ∅} <∞. Next, by B2 r ∩∂Uj ¢ K (last inclusion in (7.27)), to prove
(7.22) it suffices to show that

K ∩Br ¢ ∪J
j=1∂Uj . (7.47)

Now, if z ∈ K ∩Br, then by K ∩E = ∅ we have either z ∈ K \ cl (E) or z ∈ Br ∩∂E, and,
in the latter case, |E ∩ BÄ(z)| f (1 − c) |BÄ| for every Ä < min{r0, dist(z, ∂W)} thanks
to (6.2). Therefore, in both cases, z is an accumulation point for (∪J

j=1Uj)
(1) ∩ Br. Since

J is finite, there must be at least one j such that z ∈ cl (Uj) – hence z ∈ ∂Uj thanks to
K ∩ Uj = ∅.

Before moving to the next step, we also notice that

Fbk(K,E;Br) =
J
∑

j=1

P (Uj ;Br) . (7.48)

Indeed, by (7.22), (7.23), and (7.31) we have

K ∩Br = Br ∩ ∪J
j=1∂Uj

H
n

= Br ∩ ∪J
j=1∂

∗Uj , (7.49)

so that, in the application of Lemma 7.1, i.e. in (7.40), the multiplicity 2 terms vanishes,
and we find (7.48).

Step four: In this step we consider a set of finite perimeter V1 such that, for some B :=
BÄ(z) ¢ Br with Ä < r0 and Hn(K ∩ ∂B) = 0, we have

U1∆V1 ¢¢ B . (7.50)

We then define a pair of Borel sets (K ′, E′) as

E′ =
(

E \B
)

∪
[

B ∩
(

V1∆(E ∪ U1)
)]

, (7.51)

K ′ =
(

K \B
)

∪
[

B ∩
(

∂∗V1 ∪ ∂
∗U2 ∪ · · · ∪ ∂∗UJ

)]

, (7.52)

and show that (K ′, E′) ∈ KB, K
′ ∪ (E′)(1) is C-spanning W, and

Fbk(K
′, E′)−Fbk(K,E) f P (V1;B)− P (U1;B) . (7.53)

As a consequence of (7.53), (7.33) and |E∆E′| = |U1∆V1|, we find of course that P (U1; Ω) f
P (V1; Ω) + Λ |U1∆V1|, thus showing that U1 is a (Λ, r0)-perimeter minimizer in Ω.

Proving that (K ′, E′) ∈ KB is immediately reduced to showing that B ∩ ∂∗E′ is Hn-
contained in B ∩ (∂∗V1 ∪ ∂

∗U2 ∪ · · · ∪ ∂∗UJ) thanks to Hn(K ∩ ∂B) = 0. Now, on taking
into account that, by (1.39) and (1.41), ∂∗(X ∪ Y ) and ∂∗(X \ Y ) are both Hn-contained
in (∂∗X) ∪ (∂∗Y ), and thus ∂∗(X∆Y ) is too, we easily see that

B ∩ ∂∗E′ = B ∩ ∂∗[V1∆(E ∪ U1)]
H

n

¢ (B ∩ ∂∗V1) ∪ (B ∩ ∂∗(E ∪ U1)) .

However, B ∩ (E ∪ U1) = B \ (∪J
j=2Uj), so that ∂∗X = ∂∗(Rn+1 \X) gives

B ∩ ∂∗(E ∪ U1) = B ∩ ∂∗(∪J
j=2Uj)

H
n

¢ B ∩ ∪jg2∂
∗Uj ,

where we have used again the Hn-containment of ∂∗(X∪Y ) in (∂∗X)∪(∂∗Y ). This proves
that (K ′, E′) ∈ KB.
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To prove that K ′ ∪ (E′)(1) is C-spanning W, we show that the set S defined by

S =
(

(K ∪ E) \B
)

∪
(

cl (B) ∩ ∪jg2∂Uj

)

,

is Hn-contained in K ′ ∪ (E′)(1) and is C-spanning W.

To prove that S is Hn-contained in K ′∪(E′)(1), we start by noticing that (K∪E)\cl (B)
is Hn-equivalent to (K ∪ E(1) ∪ ∂∗E) \ cl (B) ¢ K ∪ E(1) (by (K,E) ∈ KB), whereas
|(E∆E′) \ B| = 0 implies (E(1)∆(E′)(1)) \ cl (B) = ∅: hence S \ cl (B) if Hn-contained in
K ′ ∪ (E′)(1). Next, by (7.31) and by definition of K ′,

S ∩B = B ∩ ∪jg2∂Uj
H

n

= B ∩ ∪jg2∂
∗Uj ¢ K ′ .

Finally, by Hn(K ∩∂B) = 0, (7.26), and Federer’s theorem, (S ∩∂B)\K is Hn-equivalent
to (E(1) ∩ ∂B) \K, where E(1) ∩A = (E′)(1) ∩A in an open neighborhood A of ∂B thanks
to U1∆V1 ¢¢ B.

To prove that S is C-spanningW, since S is relatively closed in Ω and thanks to Theorem
A.1, we only need to check that S ∩µ(S1) ̸= ∅ for every µ ∈ C. Since (K ∪E)∩µ(S1) ̸= ∅

for every µ ∈ C, this is immediate unless µ is such that S ∩ µ(S1) \ B = ∅; in that
case, however, Lemma 7.2 implies the existence of j ̸= k such that µ(S1) ∩ B ∩ ∂Uj and
µ(S1) ∩ B ∩ ∂Uk are both non-empty. Since either j g 2 or k g 2, we conclude by (7.26)
that µ(S1) ∩B ∩K ′ ̸= ∅, thus completing the proof.

We are thus left to prove the validity of (7.53). Keeping (7.48) and Fbk(K
′, E′;B) f

Fbd(K
′, E′;B) into account, this amounts to showing that

Fbd(K
′, E′;B) = Hn(B∩∂∗E′)+2Hn

(

B∩K ′ \∂∗E′
)

= P (V1;B)+
J
∑

j=2

P (Uj ;B) . (7.54)

To this end we notice that by (1.44) and B ∩ E′ = B ∩ [V1∆(E ∪ U1)] we have

B ∩ ∂∗E′ H
n

= B ∩
{

∂∗V1 ∪ ∂
∗(E ∪ U1)

}

H
n

= B ∩
{

(∂∗V1) ∪ (U (0)

1 ∩ ∂∗E) ∪ (E(0) ∩ ∂∗U1)
}

,

where we have used (1.39) and Hn({¿E = ¿U1}) = 0 (as E ∩ U1 = ∅). By (1.46) and
(1.47), since {B ∩ E,B ∩ Uj}

N
j=1 is a Caccioppoli partition of B, we have

U (0)

1 ∩ ∂∗E = (∂∗E) ∩
⋃

jg2

(∂∗Uj) , E(0) ∩ ∂∗U1 = (∂∗U1) ∩
⋃

jg2

(∂∗Uj) ,

so that

B ∩ ∂∗E′ H
n

= B ∩
{

(∂∗V1) ∪
(

[

(∂∗E) ∪ (∂∗U1)
]

∩
⋃

jg2

(∂∗Uj)
)}

,

B ∩ (K ′ \ ∂∗E′)
H

n

= B ∩
(

⋃

jg2

∂∗Uj

)

\
[

(∂∗E) ∪ (∂∗U1)
]

.

We thus find

Hn(B ∩ ∂∗E) + 2Hn(B ∩ (K ′ \ ∂∗E′))

= P (V1;B) + 2Hn
((

⋃

jg2

∂∗Uj

)

\ (∂∗E ∪ ∂∗U1)
)

+Hn
((

⋃

jg2

∂∗Uj

)

∩ (∂∗E ∪ ∂∗U1)
)

= P (V1;B) +
∑

jg2

P (Uj ;B) ,

that is (7.54).

Step five: In this final step we prove conclusions (iv) and (v). To this end we fix x ∈
[Ω ∩ (∂E \ ∂∗E)] \ Σ, and recall that, by conclusion (iv)³, there are r > 0, ¿ ∈ Sn,
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u1, u2 ∈ C1,³(D¿
r (x); (−r/4, r/4)) (³ ∈ (0, 1/2) arbitrary) such that u1(x) = u2(x) = 0,

u1 f u2 on D¿
r (x), {u1 < u2} and int{u1 = u2} are both non-empty, and

C¿
r (x) ∩K = ∪i=1,2

{

y + ui(y) ¿ : y ∈ D¿
r (x)

}

, (7.55)

C¿
r (x) ∩ ∂

∗E = ∪i=1,2

{

y + ui(y)¿ : y ∈ {u1 < u2}
}

, (7.56)

C¿
r (x) ∩ E =

{

y + t ¿ : y ∈ {u1 < u2} , u1(x) < t < u2(x)
}

. (7.57)

We claim that (u1, u2) has the minimality property

A(u1, u2) f A(w1, w2) :=

ˆ

Dν
r (x)

√

1 + |∇w1|2 +
√

1 + |∇w2|2 , (7.58)

among all pairs (w1, w2) with w1, w2 ∈ Lip(D¿
r (x); (−r/2, r/2)) that satisfy

{

w1 f w2 , on D¿
r (x) ,

wk = uk , on ∂D¿
r (x), k = 1, 2 ,

ˆ

Dν
r (x)

w2 − w1 =

ˆ

Dν
r (x)

u2 − u1 . (7.59)

Indeed, starting from a given a pair (w1, w2) as in (7.59), we can define (K ′ ∩C¿
r (x), E

′ ∩
C¿

r (x)) by replacing (u1, u2) with (w1, w2) in (7.55) and (7.57), and then define (K ′, E′) ∈
KB by setting K ′\C¿

r (x) = K \C¿
r (x) and E

′\C¿
r (x) = E \C¿

r (x). Since ∂C
¿
r \(K

′∪E′) =
∂C¿

r \ (K ∪ E) it is easily seen (by a simple modification of Lemma 7.2 where balls are
replaced by cylinders) that (K ′, E′) is C-spanning W. Since |E′| = |E|, the minimality
of (K,E) in Ψbk(v) implies that Fbk(K,E) f Fbk(K

′, E′), which readily translates into
(7.58).

Recalling that both A0 = int{u1 = u2} and A+ = {u1 < u2} are non-empty open subsets

of D¿
r (x), and denoting by MS(u)[φ] =

´

Dν
r (x)

∇φ · [(∇u)/
√

1 + |∇u|2] the distributional

mean curvature operator, we find that

MS(u1) +MS(u2) = 0 , on D¿
r (x) ,

MS(uk) = 0 , on A0 for each k = 1, 2 ,

MS(u2) = −MS(u1) = ¼ , on A+ , (7.60)

for some constant ¼ ∈ R; in particular, u1, u2 ∈ C∞(A0) ∩ C
∞(A+). We notice that it

must be
¼ < 0 . (7.61)

Indeed, arguing by contradiction, should it be that ¼ g 0, then by (7.60) we find MS(u2) g
0 and MS(u1) f 0 on A+. Since A+ is open an non-empty, there is an open ball B ¢
A+ such that ∂B ∩ ∂A+ = {y0}. Denoting by x0 the center of B and setting ¿ =
(x0 − y0)/|x0 − y0|, by u1 f u2, u1(y0) = u2(y0) and uk ∈ C1(D¿

r (x)) we find that
∇u1(y0) = ∇u2(y0). At the same time, by applying Hopf’s lemma in B at y0, we see that
since MS(u2) g 0 and MS(u1) f 0 on B, it must be ¿ · ∇u2(y0) < 0 and ¿ · ∇u1(y0) > 0,
against ∇u1(y0) = ∇u2(y0).

By (7.60), (7.61), and u2 g u1 on D¿
r (x) we can apply the sharp regularity theory for

the double membrane problem developed in [Sil05, Theorem 5.1] and deduce that u1, u2 ∈
C1,1(D¿

r (x)). Next we notice that, for every φ ∈ C∞
c (A+), and setting u+ = u2 − u1,

2¼

ˆ

A+

φ = MS(u2)[φ]−MS(u1)[φ] =

ˆ

A+

A(x)[∇u+] · ∇φ ,

where we have set, with f(z) =
√

1 + |z|2,

A(x) =

ˆ 1

0
∇2f

(

s∇u2(x) + (1− s)∇u1(x)
)

ds .

In particular, u+ ∈ C1,1(D¿
r (x)) is a non-negative distributional solution of

div (A(x)∇u+) = −2¼ , on A+ ,
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with a strictly positive right-hand side (by (7.61)) and with A ∈ Lip(A+;R
n×n
sym ) uniformly

elliptic. We can thus apply the regularity theory for free boundaries developed in [FGS15,
Theorem 1.1, Theorem 4.14] to deduce that

FB = D¿
r (x) ∩ ∂{u+ = 0} = D¿

r (x) ∩ ∂{u2 = u1} ,

can be partitioned into sets Reg and Sing such that Reg is relatively open in FB and such
that for every z ∈ Reg there are r > 0 and ´ ∈ (0, 1) such that Br(x) ∩ FB is a C1,´-
embedded (n − 1)-dimensional manifold, and such that Sing = ∪n−1

k=0Singk is relatively

closed in FB, with each Singk locally Hk-rectifiable in D¿
r (x). Since, by (7.56),

C¿
r (x) ∩ (∂E \ ∂∗E) =

{

y + u1(y) ¿ : y ∈ FB
}

and u1 ∈ C1,1(D¿
r (x)), we conclude by a covering argument that Ω ∩ (∂E \ ∂∗E) has all

the required properties, and complete the proof of the theorem. □

8. Equilibrium across transition lines in wet foams (Theorem 1.7)

Proof of Theorem 1.7. Let Ω ¢ Rn+1 be open and let (K∗, E∗) ∈ Kfoam. We can find
(K,E) ∈ K such that K is Hn-equivalent to K∗, E Lebesgue equivalent to E∗, and
K ∩ E(1) = ∅ by repeating with minor variations the considerations made in step one
of the proof of Theorem 6.2 (we do not have to worry about the C-spanning condition,
but have to keep track of the volume constraint imposed for each Ui, which can be done
by using the volume-fixing variations for clusters from [Mag12, Part IV]). In proving the
regularity part of the statement, thanks to Theorem 2.1-(a) we can directly work with
balls B ¢¢ Ω having radius less than r0 (with r0 as in (1.33)), and consider the open
connected components {Ui}i of B induced by K ∪ E. Using Lemma 7.1 and, again,
volume-fixing variation techniques in place of the theory of homotopic spanning, we can
proceed to prove analogous statement to (7.8), (7.9), (7.10), and (7.11), thus proving the
(Λ, r0)-minimality of each Ui in B. The claimed C1,³-regularity of each Ui outside of a
closed set Σ with the claimed dimensional estimates follows then from De Giorgi’s theory
of perimeter minimality [DG60, Tam82, Mag12]. □

Appendix A. Equivalence of homotopic spanning conditions

In Theorem A.1 we prove that, when S is a closed set, the notion of “S is C-spanning
W” introduced in Definition B boils down to the one in Definition A. We then show that
the property of being C-spanning is stable under reduction to the rectifiable part of a Borel
set, see Lemma 2.2.

Theorem A.1. Given a closed set W ¢ Rn+1, a spanning class C for W, and a set S
relatively closed in Ω, the following two properties are equivalent:

(i): for every µ ∈ C, we have S ∩ µ(S1) ̸= ∅;

(ii): for every (µ,Φ, T ) ∈ T (C) and for H1-a.e. s ∈ S1, we have

for Hn-a.e. x ∈ T [s] , (A.1)

∃ a partition {T1, T2} of T with x ∈ ∂eT1 ∩ ∂
eT2 ,

and s.t. S ∪ T [s] essentially disconnects T into {T1, T2} .

In particular, S is C-spanning W according to Definition A if and only if it does so
according to Definition B.

Remark A.2 (x-dependency of {T1, T2}). In the situation of Figure 1.4 it is clear that
the same choice of {T1, T2} can be used to check the validity of (A.1) at every x ∈ T [s].
One may thus wonder if it could suffice to reformulate (A.1) so that the partition {T1, T2}
is independent of x. The simpler example we are aware of and that shows this simpler
definition would not work is as follows. In R3, let W be a closed ¶-neighborhood of a
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D1 D3

D2

A3

A2

W
U \ T [s]

S
A1

Figure A.1. The situation in Remark A.2. The components A1, A2 and A3

(depicted in purple, yellow, and green respectively) of U \T [s] are bounded by the
three disks {Di}

3
i=1 (depicted as boldface segments).

circle Γ, let U be the open ¶-neighborhood of a loop with link number three (or higher odd
number) with respect to W, let K be the disk spanned by Γ, and let S = Ω∩[(K\U)∪∂U ],
see Figure A.1. Now consider a “test tube” T which compactly contains U and is such that,
for every s, U ∩ T [s] consists of three disks {Di}

3
i=1. Since U ¢ T , the property “S ∪ T [s]

essentially disconnects T into {T1, T2} in such a way that T [s] ¢ T ∩ ∂eT1 ∩ ∂
eT2” would

immediately imply “U ∩ (S ∪ T [s]) = U ∩ T [s] essentially disconnects T ∩ U = U into
{U1, U2} with U ∩T [s] ¢ U ∩∂eU1∩∂

eU2”, where Ui = Ti∩U (see step one in the proof of
Theorem 3.1 for a formal proof of this intuitive assertion). However, the latter property
does not hold. To see this, denoting by {Ai}

3
i=1 the three connected components of U \T [s],

we would have U1 = Ai ∪ Aj and U2 = Ak for some choice of i ̸= j ̸= k ̸= i, whereas,
independently of the choice made, U ∩ ∂eU1 ∩ ∂

eU2 always fails to contain one of the disks
{Di}

3
i=1: for example, if U1 = A1 ∪ A2 and U2 = A3, then U ∩ ∂eU1 ∩ ∂

eU2 = D2 ∪ D3,
and D1 is entirely missed. We conclude that the set S just constructed, although clearly
C-spanning W in terms of Definition A, fails to satisfy the variant of (A.1) where a same
partition {T1, T2} is required to work for Hn-a.e. choice of x ∈ T [s].

Proof of Theorem A.1. Step one: We prove that (ii) implies (i). Indeed, if there is µ ∈ C
such that S ∩ µ(S1) = ∅, then, S being closed, we can find (µ,Φ, T ) ∈ T (C) such that
dist(S, T ) > 0. By (ii), there is s ∈ S1 such that S ∪ T [s] essentially disconnects T . By
dist(S, T ) > 0 we see that (S ∪ T [s]) ∩ T = T [s], so that T [s] essentially disconnects T , a
contradiction.

Step two: We now prove that (i) implies (ii). To this end we consider an arbitrary
(µ,Φ, T ) ∈ T (C) and aim at proving the existence of J of full H1-measure in S1 such
that, if s ∈ J , then (A.1) holds.

This is trivial, with J = S1, if |S ∩ T | = |T |. Indeed, in this case, we have T = S(1) ∩ T ,
that, combined with S being closed, implies T = S ∩ T . In particular, S ∪ T [s] = T for
every s ∈ S1, and since, trivially, T essentially disconnects T , the conclusion follows.

We thus assume that |S ∩ T | < |T |: in particular,

U = T \ S

is a non-empty, open set, whose connected components are denoted by {Ui}i∈I (I a count-
able set). By the Lebesgue points theorem, Ln+1-a.e. x ∈ T belongs either to U (0) or to
U . Then, by the smoothness of Φ and by the area formula, we can find a set J of full
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H1-measure in S1 such that

Hn
(

T [s] \ (U (0) ∪ U)
)

= 0 , ∀s ∈ J . (A.2)

In particular, given s ∈ J , we just need to prove (A.1) when either x ∈ T [s] ∩ U (0) or
x ∈ T [s]∩U . Before examining these two cases we also notice that we can further impose
on J that

Hn
(

T [s] ∩
[

∂eU ∪ ∂eS ∪
(

U (1) \ U
)

∪
⋃

i∈I

(

U (1)

i \ Ui

)

])

= 0 , ∀s ∈ J . (A.3)

Indeed, again by the Lebesgue points theorem, the sets ∂eU , ∂eS, U (1)\U , and ∪i∈IU
(1)

i \Ui

are all Ln+1-negligible.

Case one, x ∈ T [s] ∩ U (0): To fix ideas, notice that U (0) ̸= ∅ implies |S ∩ T | > 0, and in
particular S has positive Lebesgue measure. Given an arbitrary s′ ∈ J \ {s} we denote by
{I1, I2} the partition of S1 bounded by {s, s′}, and then consider the Borel sets

T1 = Φ(I1 ×Bn
1 ) ∩ S , T2 = Φ(I2 ×Bn

1 ) ∪
(

Φ(I1 ×Bn
1 ) \ S

)

.

We first notice that {T1, T2} is a non-trivial partition of T : Indeed |T1| > 0 since x has
density 1/2 for Φ(I1 × Bn

1 ) and (by x ∈ U (0)) density 1 for S ∩ T ; at the same time
|T2| = |T \ T1| g |T \ S| > 0. Next, we claim that

T (1) ∩ ∂eT1 ∩ ∂
eT2 is Hn-contained in S . (A.4)

Indeed, since Φ(I1×B
n
1 ) is an open subset of T with T ∩∂[Φ(I1×B

n
1 )] = T [s]∪T [s′], and

since ∂eT1 coincides with ∂eS inside the open set Φ(I1 ×Bn
1 ), we easily see that

T (1) ∩ ∂eT1 ∩ ∂
eT2 = T ∩ ∂eT1 = T ∩ ∂e

(

Φ(I1 ×Bn
1 ) ∩ S

)

¢
(

Φ(I1 ×Bn
1 ) ∩ ∂

eS
)

∪
(

(

T [s] ∪ T [s′]
)

\ S(0)

)

.

Now, on the one hand, by Hn(∂eS ∩ (T [s] ∪ T [s′])) = 0 (recall (A.3)), it holds
(

T [s] ∪ T [s′]
)

\ S(0) is Hn-contained in T ∩ S(1) ;

while, on the other hand, by Ω ∩ ∂eS ¢ Ω ∩ ∂S ¢ Ω ∩ S (since S is closed in Ω) and by
Φ(I1 ×Bn

1 ) ¢ T ¢ Ω, we also have that Φ(I1 ×Bn
1 ) ∩ ∂

eS ¢ T ∩ S; therefore

T (1) ∩ ∂eT1 ∩ ∂
eT2 is Hn-contained in T ∩ (S ∪ S(1)) = T ∩ S ,

where we have used that S is closed to infer S(1) ¢ S. Having proved (A.4) and the
non-triviality of {T1, T2}, we conclude that S (and, thus, S ∪ T [s]) essentially disconnects
T into {T1, T2}. We are left to prove that x ∈ T ∩∂eT1∩∂

eT2. To this end, we notice that
x ∈ T [s] ∩ (T \ S)(0) and Φ(I1 ×Bn

1 ) ¢ T imply

|T1∩Br(x)| = |Φ(I1×B
n
1 )∩S∩Br(x)| = |Φ(I1×B

n
1 )∩Br(x)|+o(rn+1) =

|Br(x)|

2
+o(rn+1) ,

so that x ∈ (T1)
(1/2) ¢ ∂eT1; since T ∩ ∂eT1 = T ∩ ∂eT1 ∩ ∂

eT2 and x ∈ T we conclude the
proof in the case when x ∈ T [s] ∩ U (0).

Case two, x ∈ T [s] ∩ U : In this case there exists i ∈ I such that x ∈ Ui, and, correspond-
ingly, we claim that

∃{V1, V2} a non-trivial Borel partition of Ui \ T [s] , (A.5)

s.t. x ∈ ∂eV1 ∩ ∂
eV2 and T ∩ (∂V1 ∪ ∂V2) ¢ S ∪ T [s] .

Given the claim, we conclude by setting T1 = V1 and T2 = V2 ∪ (T \ Ui). Indeed, since
V2 ∩ Ui = T2 ∩ Ui with Ui open implies Ui ∩ ∂

eV1 = Ui ∩ ∂
eT1, we deduce from (A.5) that

x ∈ Ui ∩ ∂
eV1 ∩ ∂

eV2 = Ui ∩ ∂
eT1 ∩ ∂

eT2 ;
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at the same time, S ∪ T [s] essentially disconnects T into {T1, T2} since, again by (A.5),

T (1) ∩ ∂eT1 ∩ ∂
eT2 = T ∩ ∂eT1 = T ∩ ∂eV1 ¢ T ∩ ∂V1 ¢ S ∪ T [s] .

We are thus left to prove (A.5). To this end, let us choose r(x) > 0 small enough to have
that Br(x)(x) ¢ Ui, and that Br(x)(x) \T [s] consists of exactly two connected components
{V x

1 , V
x
2 }; in this way,

x ∈ (V x
1 )

(1/2) ∩ (V x
2 )

(1/2) . (A.6)

Next, we define

V1 = the connected component of Ui \ T [s] containing V
x
1 ,

V2 = Ui \ (T [s] ∪ V1) .

Clearly {V1, V2} is a partition of Ui \ T [s], and, thanks to ∂V1 ∪ ∂V2 ¢ T [s]∪ ∂Ui, we have

T ∩ (∂V1 ∪ ∂V2) ¢ T ∩ (T [s] ∪ ∂Ui) ¢ S ∪ T [s] .

Therefore (A.5) follows by showing that |V1| |V2| > 0. Since V1 contains the connected
component V x

1 of Br(x)(x)\T [s], which is open and non-empty, we have |V1| > 0. Arguing
by contradiction, we assume that

|V2| = |Ui \ (T [s] ∪ V1)| = 0 .

Since V1 is a connected component of the open set Ui \ T [s] this implies that

Ui \ T [s] = V1 .

Let x1 ∈ V x
1 and x2 ∈ V x

2 (where V x
1 and V x

2 are the two connected components of
Br(x)(x) \ T [s]). Since V1 is connected and {x1, x2} ¢ Ui \ T [s] = V1, there is a smooth
embedding µ1 of [0, 1] into V1 with µ1(0) = x1 and µ1(1) = x2. Arguing as in [DLGM17b,
Proof of Lemma 10, Step 2] using Sard’s theorem, we may modify µ1 by composing with
a smooth diffeomorphism such that the modified µ1 intersects ∂Br(x)(x) transversally at
finitely many points. Thus µ1([0, 1]) \ clBr(x)(x) is partitioned into finitely many curves
µ1((ai, bi)) for disjoint arcs (ai, bi) ¢ [0, 1]. Since Br(x)(x) \ T [s] is disconnected into V x

1

and V x
2 and µ1 is disjoint from T [s], there exists i such that, up to interchanging V x

1 and
V x
2 , µ(ai) ∈ clV x

1 ∩ ∂Br(x)(x) and µ(bi) ∈ clV x
2 ∩ ∂Br(x)(x). Let us call µ̃1 the restriction

of µ1 to [ai, bi]. Next, we choose a smooth embedding µ2 of [0, 1] into Br(x)(x) such that
µ2(0) = µ̃1(ai), µ2(1) = µ̃1(bi), and µ2([0, 1]) intersects T [s]∩Br(x)(x) at exactly one point,
denoted by x12 = µ2(t0), with

µ′2(t0) ̸= 0 . (A.7)

Since µ̃1((ai, bi)) ∩ clBr(x)(x) = ∅ and µ2([0, 1]) ¢ clBr(x), we can choose µ2 so that

the concatenation of µ1 and µ2 defines a smooth embedding µ∗ of S1 into Ui ¢ T . Up to
reparametrizing we may assume that µ∗(1) = x12. Since µ1([0, 1]) ¢ V1 and V1∩(S∪T [s]) =
∅, we have that

µ∗(S
1) ∩ (S ∪ T [s]) = µ2([0, 1]) ∩ (S ∪ T [s]) = {x12} ¢ T [s] ∩Br(x)(x) . (A.8)

A first consequence of (A.8) is that µ∗(S
1) ∩ S = ∅. Similarly, the curve µ∗∗ : S1 → Ω

defined via µ∗∗(t) = µ∗(t) (t ∈ S1) where the bar denotes complex conjugation, has the
same image as µ∗ and thus satisfies µ∗∗(S

1)∩ S = ∅ as well. Therefore, in order to obtain
a contradiction with |V2| = 0, it is enough to prove that either µ∗ ∈ C or µ∗∗ ∈ C. To this
end we are now going to prove that one of µ∗ or µ∗∗ is homotopic to µ in T (and thus
in Ω), where µ is the curve from the tube (µ,Φ, T ) ∈ T (C) considered at the start of the
argument.

Indeed, let p : S1×Bn
1 → S1 denote the canonical projection p(t, x) = t, and consider the

curves Ã∗ = p◦Φ−1◦µ∗ : S
1 → S1 and Ã∗∗ = p◦Φ−1◦µ∗∗. By (A.8), Ã−1

∗ ({s}) = {1}, and 1
is a regular point of Ã∗ by (A.7) and since Φ is a diffeomorphism. Similarly, Ã−1

∗∗ ({s}) = {1}
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and 1 is a regular point of Ã∗∗. Now by our construction of µ∗∗, exactly one of µ∗ or µ∗∗
is orientation preserving at 1 and the other is orientation reversing. So we may compute
the winding numbers of Ã∗ and Ã∗∗ via (see e.g. [Mil97, pg 27]):

degÃ∗ = sgn detDÃ∗(1) = −sgn detDÃ∗∗(1) = −degÃ∗∗ ∈ {+1,−1} .

If we define Ã = p ◦ Φ−1 ◦ µ, then Ã has winding number 1, and so is homotopic in S1

to whichever of Ã∗ or Ã∗∗ has winding number 1. Since Φ is a diffeomorphism of S1 ×Bn
1

into Ω, we conclude that µ is homotopic relative to Ω to one of µ∗ or µ∗∗, and, thus, that
µ∗ ∈ C or µ∗∗ ∈ C as desired. □

Appendix B. Convergence of every minimizing sequence of Ψbk(v)

In proving Theorem 1.5 we have shown that every minimizing sequence {(Kj , Ej)}j of

Ψbk(v) has a limit (K,E) such that, denoting by B(w) a ball of volume w, it holds

Ψbk(v) = Ψbk(|E|) + P (B(v−|E|)) , Ψbk(|E|) = Fbk(K,E) ,

with both K and E bounded. In particular, minimizers of Ψbk(v) can be constructed in

the form (K ∪∂B(v−|E|)(x), E ∪B(v−|E|)(x)) provided x is such that B(v−|E|)(x) is disjoint
from K ∪E ∪W. This argument, although sufficient to prove the existence of minimizers
of Ψbk(v), it is not sufficient to prove the convergence of every minimizing sequence of
Ψbk(v), i.e., to exclude the possibility that |E| < v. This is done in the following theorem
at the cost of assuming the C2-regularity of ∂Ω. This result will be important in the
companion paper [MNR23a].

Theorem B.1. If W is the closure of a bounded open set with C2-boundary, C is a
spanning class for W, and ℓ < ∞, then for every v > 0 and every minimizing sequence
{(Kj , Ej)}j of Ψbk(v) there is a minimizer (K,E) of Ψbk(v) such that K is Hn-rectifiable
and, up to extracting subsequences and as j → ∞,

Ej → E , µj
∗

á Hn (Ω ∩ ∂∗E) + 2Hn (K ∩ E(0)) , (B.1)

where µj = Hn (Ω ∩ ∂∗Ej) + 2Hn (R(Kj) ∩ E
(0)

j ).

Proof. By step three in the proof of Theorem 6.2, there is (K,E) ∈ KB satisfying (B.1) and
such that K and E are bounded, (K,E) is a minimizer of Ψbk(|E|), K is Hn-rectifiable,

and |E| f v; moreover, if v > |E|, then there is x ∈ Rn+1 such that B(v−|E|)(x) is disjoint

from K ∪ E ∪ W and (K ′, E′) = (K ∪ ∂B(v−|E|)(x), E ∪ B(v−|E|)(x)) is a minimizer of
Ψbk(v). We complete the proof by deriving a contradiction with the v∗ = v−|E| > 0 case.

The idea is to relocate B(v∗)(x) to save perimeter by touching ∂W or ∂E; see Figure B.1.

First of all, we claim that K = Ω∩∂E. If not, since (K,E) and (K ′, E′) respectively are
minimizers of Ψbk(|E|) and Ψbk(v), then there are ¼, ¼′ ∈ R such that (K,E) and (K ′, E′)
respectively satisfy (6.1) with ¼ and ¼′. By localizing (6.1) for (K ′, E′) at points in Ω∩∂∗E
we see that it must be ¼ = ¼′; by localizing at points in ∂B(v−|E|)(x), we see that ¼ is

equal to the mean curvature of ∂B(v−|E|)(x), so that ¼ > 0; by arguing as in the proof of
[KMS21, Theorem 2.9] (see [Nov23] for the details), we see that if K \ (Ω∩∂E) ̸= ∅, then
¼ f 0, a contradiction.

Having established that K = Ω ∩ ∂E, we move an half-space H compactly containing
cl (E) ∪ W until the boundary hyperplane ∂H first touches cl (E) ∪ W. Up to rotation
and translation, we can thus assume that H = {xn+1 > 0} and

0 ∈ cl (E) ∪W ¢ cl (H) . (B.2)

We split (B.2) into two cases, 0 ∈ Ω ∩ ∂E and 0 ∈ W, that are then separately discussed
for the sake of clarity. In both cases we set x = (x′, xn+1) ∈ Rn × R ≡ Rn+1, and set

C¶ = {x : xn+1 ∈ (0, ¶) , |x′| < ¶} ,
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δ
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Γ¶
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rδ

zδ

(a)

W

(b)

Figure B.1. (a): the construction of Eδ when 0 ∈ Ω∩∂E; (b) the construction
of Eδ when 0 ∈ W.

L¶ = {x : |x′| = ¶, xn+1 ∈ (0, ¶)} ,

T¶ = {x : xn+1 = ¶ , |x′| < ¶} ,

D¶ = {x : xn+1 = 0 , |x′| < ¶} ,

for every ¶ > 0.

Case one, 0 ∈ Ω∩∂E: In this case, by the maximum principle [DM19, Lemma 3], (6.1), and
the Allard regularity theorem, we can find ¶0 > 0 and u ∈ C2(D¶0 ; [0, ¶0]) with u(0) = 0
and ∇u(0) = 0 such that C¶0 ¢¢ Ω and

E ∩C¶0 =
{

x ∈ C¶0 : ¶0 > xn+1 > u(x′)
}

, (B.3)

(∂E) ∩C¶0 =
{

x ∈ C¶0 : xn+1 = u(x′)
}

.

Since 0 f u(x′) f C |x′|2 for some C = C(E), if we set

Γ¶ =
{

x ∈ C¶ : 0 < xn+1 < u(x′)
}

, ¶ ∈ (0, ¶0) , (B.4)

then we have

|Γ¶| f C ¶n+2 , (B.5)

P
(

Γ¶;L¶

)

f C ¶n+1 . (B.6)

We then set
E¶ = E ∪ Γ¶ ∪

(

Brδ(z¶) \H
)

, (B.7)

see Figure B.1-(a), where r¶ > 0 and z¶ ∈ Rn+1 \ cl (H) are uniquely determined by
requiring that, first,

cl (Brδ(z¶)) ∩ ∂H = ∂C¶ ∩ ∂H =
{

x : xn+1 = 0 , |x′| f ¶
}

, (B.8)

and, second, that
|E¶| = v . (B.9)

To see that this choice is possible, we first notice that, since E∩Γ¶ = ∅, (B.9) is equivalent
to

∣

∣Brδ(z¶) \H
∣

∣ = v − |E| − |Γ¶| = v∗ − |Γ¶| . (B.10)
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Taking (B.5) into account we see that (B.8) and (B.10) uniquely determine z¶ ∈ Rn+1

and r¶ > 0 as soon as ¶0 is small enough to guarantee v∗ − |Γ¶0 | > 0. In fact, by (B.5),
v∗− |Γ¶| → v∗ > 0 with Hn(∂C¶ ∩ ∂H) → 0 as ¶ → 0+, so that, up to further decrease ¶0,
we definitely have z¶ ̸∈ H, and

∣

∣

∣
r¶ −

( v∗

Én+1

)1/(n+1)∣
∣

∣
f C ¶n+2 , (B.11)

where C = C(E, n, v∗).

We now use the facts that K ∪ E(1) is C-spanning W and that E ¢ E¶ to prove that

(K¶, E¶) = ((Ω ∩ ∂∗E¶) ∪ (K ∩ E(0)

¶ ), E¶) (B.12)

is such that K¶ ∪ E
(1)

¶ is C-spanning W (and thus is admissible in Ψbk(v) by (B.9)). To
this end, it is enough to show that

K ∪ E(1)
H

n

¢ K¶ ∪ E
(1)

¶ . (B.13)

Indeed, by E ¢ E¶ and Federer’s theorem (1.37) we have

E(1) ¢ E(1)

¶ , E(0)

¶ ¢ E(0) , E(1) ∪ ∂∗E
H

n

¢ E(1)

¶ ∪ ∂∗E¶ . (B.14)

(Notice indeed that ∂∗E ¢ E(1/2) ¢ Rn+1 \ E(0)

¶ ). Next, using in order Federer’s theorem
(1.37), (B.14) and K ¢ Ω, and the definition of K¶, we have

E(1) ∪ (K \ E(0)

¶ )
H

n

= E(1) ∪ [K ∩ (∂∗E¶ ∪ E
(1)

¶ )]
H

n

¢ E(1)

¶ ∪ (Ω ∩ ∂∗E¶) ¢ E(1)

¶ ∪K¶ .

But K ∩ E(0)

¶ ¢ K¶ by definition, which combined with the preceding containment com-
pletes the proof of (B.13). Having proved that (K¶, E¶) is admissible in Ψbk(v), we have

Fbk(K,E) + P (B(v∗)) = Ψbk(v) f Fbk(K¶, E¶) . (B.15)

By (B.15), the definition of K¶, and (B.14), we find

P (E; Ω) + 2Hn(K ∩ E(0)) + P (B(v∗)) f P (E¶; Ω) + 2Hn(K¶ ∩ E
(0)

¶ )

f P (E¶; Ω) + 2Hn(K ∩ E(0)

¶ ) f P (E¶; Ω) + 2Hn(K ∩ E(0)) ,

from which we deduce

P (E; Ω) + P (B(v∗)) f P (E¶; Ω) . (B.16)

We now notice that E¶ coincides with E in the open set Ω∩H \ cl (C¶), and with Brδ(z¶)
in the open set Rn+1 \ cl (H), so that

(

Ω ∩H \ cl (C¶)
)

∩ ∂∗E¶ =
(

Ω ∩H \ cl (C¶)
)

∩ ∂∗E ,
(

Ω \ cl (H)
)

∩ ∂∗E¶ =
(

∂Brδ(z¶)
)

\ cl (H) ,

and (B.16) is equivalent to

P
(

E; Ω ∩ (∂H ∪ cl (C¶)
)

+ P (B(v∗)) (B.17)

f P
(

E¶; Ω ∩ (∂H ∪ cl (C¶)
)

+ P (Brδ(z¶);R
n+1 \ cl (H)) .

In fact, it is easily proved that (∂∗E) ∩ (∂H) \ cl (C¶) = (∂∗E¶) ∩ (∂H) \ cl (C¶) (which is
evident from Figure B.1), so that (B.17) readily implies

P (B(v∗)) f P
(

E¶; Ω ∩ cl (C¶)
)

+ P (Brδ(z¶);R
n+1 \ cl (H)) . (B.18)

Now, C¶ ¢¢ Ω. Moreover, by (B.3), we have that T¶ (the top part of ∂C¶) is contained
in E(1) ¢ E(1)

¶ , and is thus Hn-disjoint from ∂∗E¶. Similarly, again by (B.3) we have
E ∪ Γ¶ = C¶, and thus D¶ ¢ (E ∪ Γ¶)

(1/2); at the same time, by (B.8) we have D¶ ¢
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(Brδ(z¶) \ H)(1/2); therefore D¶ ¢ E(1)

¶ , and thus D¶ is Hn-disjoint from ∂∗E¶. Finally,
again by E ∪ Γ¶ = C¶ we see that P (E¶;C¶) = 0. Therefore, in conclusion,

P
(

E¶; Ω ∩ cl (C¶)
)

= P (E¶;L¶) = P (Γ¶;L¶) f C ¶n+1 , (B.19)

where we have used again first (B.3), and then (B.6). Combining (B.18)-(B.19) we get

P (B(v∗)) f P (Brδ(z¶);R
n+1 \ cl (H)) + C ¶n+1 . (B.20)

Finally, by (B.8), (B.5), and (B.11) we have

P (Brδ(z¶);R
n+1 \ cl (H)) f P (B(v∗))− C(n) ¶n ;

by combining this estimate with (B.20), we reach a contradiction for ¶ small enough.

Case two, 0 ∈ W: In this case, by the C2-regularity of ∂Ω we can find ¶0 > 0 and
u ∈ C2(D¶0 ; [0, ¶0]) with u(0) = 0 and ∇u(0) = 0 such that

W ∩C¶0 =
{

x ∈ C¶0 : ¶0 > xn+1 > u(x′)
}

, (B.21)

(∂Ω) ∩C¶ =
{

x ∈ C¶0 : xn+1 = u(x′)
}

.

We have 0 f u(x′) f C |x′|2 for every |x′| < ¶0 (and some C = C(W)), so that defining Γ¶

as in (B.4) we still obtain (B.5) and (B.6). We then define E¶, r¶, and z¶, as in (B.7), (B.8)
and (B.9). Notice that now E and Γ¶ may not be disjoint (see Figure B.1-(b)), therefore
(B.9) is not equivalent to (B.10), but to

∣

∣Brδ(z¶) \H
∣

∣ = v − |E| − |Γ¶ \ E| = v∗ − |Γ¶ \ E| .

This is still sufficient to repeat the considerations based on (B.8) and (B.5) proving that
r¶ and z¶ are uniquely determined, and satisfy (B.11). We can repeat the proof that
(K¶, E¶) defined as in (B.12) is admissible in Ψbk(v) (since that proof was based only on
the inclusion E ¢ E¶), and thus obtain (B.16). The same considerations leading from
(B.16) to (B.18) apply in the present case too, and so we land on

P (B(v∗)) f P
(

E¶; Ω ∩ cl (C¶)
)

+ P (Brδ(z¶);R
n+1 \ cl (H)) . (B.22)

Now, by (B.21), T¶ is contained in W, so that P (E¶;T¶) = 0. At the same time, if
x = (x′, 0) ∈ D¶ ∩ Ω, then u(x′) > 0, and thus x ∈ (E¶ ∩H)(1/2); since, by (B.8), we also
have x ∈ (E¶ \H)(1/2), we conclude that D¶ ∩ Ω ¢ E(1)

¶ , and thus that

P
(

E¶; Ω ∩ cl (C¶)
)

= P
(

E¶; Ω ∩ L¶

)

f Hn(Ω ∩ L¶) f C ¶n+1 ,

where we have used 0 f u(x′) f C |x′|2 for every |x′| < ¶0 again. We thus deduce from
(B.22) that

P (B(v∗)) f P (Brδ(z¶);R
n+1 \ cl (H)) + C ¶n+1 ,

and from here we conclude as in case one. □

Appendix C. An elementary lemma

In this appendix we provide a proof of Lemma 7.2. The proof is an immediate corollary
of a geometric property of closed C-spanning sets (see (C.2)-(C.3) below) first proved in
Rn+1 for n g 2 [DLDRG19, Lemma 4.1]. Here we extend this property to the plane.
The difference between R2 and Rn+1 for n g 2 stems from a part of the argument where
one constructs a new admissible spanning curve by modifying an existing one inside a
ball. Specifically, ensuring that the new curve does not intersect itself requires an extra
argument in R2.
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Lemma C.1. Let n g 1, W ¢ Rn+1 be closed, C be a spanning class for W, S ¢ Ω :=
Rn+1 \ W be relatively closed and C-spanning W, and Br(x) ¢¢ Ω. Let {Γi}i be the
countable family of equivalence classes of ∂Br(x) \ S determined by the relation:

y ∼ x ⇐⇒ ∃µ̃ ∈ C0([0, 1], clBr(x) \ S) : µ̃(0) = y, µ̃(1) = z, µ̃((0, 1)) ¢ Br(x) . (C.1)

Then if µ ∈ C, either

µ ∩ (S \Br(x)) ̸= ∅ (C.2)

or there exists a connected component Ã of µ ∩ clBr(x) which is homeomorphic to an
interval and such that

the endpoints of Ã belong to two distinct equivalence classes of ∂Br(x) \ S. (C.3)

In particular, the conclusion of Lemma 7.2 holds.

Remark C.2. The planar version of Lemma C.1 allows one to extend the main existence
result [DLDRG19, Theorem 2.7] to R2.

Proof of Lemma C.1. The proof is divided into two pieces. First we show how to deduce
Lemma 7.2 from the fact that at least one of (C.2)-(C.3) holds. Then we show in R2 that
(C.3) must hold whenever (C.2) does not, completing the lemma since the case n g 2 is
contained in [DLDRG19, Lemma 4.1].

Conclusion of Lemma 7.2 from (C.2)-(C.3): We must show that either µ(S1)\Br(x) ̸= ∅ or
that it intersects at least two open connected components of Br(x)\S. If µ(S

1)\Br(x) ̸= ∅

we are done, so suppose that µ(S1) \ Br(x) = ∅. Then (C.3) must be true, so that the
endpoints of some arc Ã = µ((a, b)) ¢ Br(x) for an interval (a, b) ¢ S1 belong to distinct
equivalence classes. Choose Ä small enough so that BÄ(µ(a)) ∪ BÄ(µ(b)) ¢ Ω \ S and a′,
b′ ∈ I such that µ(a′) ∈ BÄ(µ(a)) and µ(b

′) ∈ BÄ(µ(b)). If µ(a
′) and µ(b′) belonged to the

same open connected component of Br(x) \ S, we would contradict (C.3), so they belong
to different components as desired.

Verification of (C.2)-(C.3) in R2: As in [DLGM17a, Lemma 10], we may reduce to the case
where µ intersects ∂Br(x) transversally at finitely many points {µ(ak)}

K
k=1 ∪ {µ(bk)}

K
k=1

such that µ ∩Br(x) = ∪kµ((ak, bk)) and {[ak, bk]}k are mutually disjoint closed arcs in S1.
If (C.2) holds we are done, so we assume that

µ ∩ S \Br(x) = ∅ (C.4)

and prove (C.3). Note that each pair {µ(ak), µ(bk)} bounds two open arcs in ∂Br(x); we
make a choice now as follows. Choose s0 ∈ ∂Br(x)\∪k{µ(ak), µ(bk)}. Based on our choice
of s0, for each k there is a unique open arc ℓk ¢ ∂Br(x) such that ∂∂Br(x)ℓk = {µ(ak), µ(bk)}
and s0 /∈ cl ∂Br(x)ℓk. We claim that

if k ̸= k′, then either ℓk ¢¢ ℓk′ or ℓk′ ¢¢ ℓk . (C.5)

To prove (C.5): We consider simple closed curves µk with images µ((ak, bk)) ∪ cl ∂Br(x)ℓk.
By the Jordan curve theorem, each µk defines a connected open subset Uk of Br(x) with
∂Uk ∩ ∂Br(x) = cl ∂Br(x)ℓk. Aiming for a contradiction, if (C.5) were false, then for some
k ̸= k′, either

µ(ak) ∈ ℓk′ ¢ clUk′ and µ(bk) ∈ ∂Br(x) \ cl ∂Br(x)ℓk′ ¢ ∂Br(x) \ clUk′ or

µ(bk) ∈ ℓk′ ¢ clUk′ and µ(ak) ∈ ∂Br(x) \ cl ∂Br(x)ℓk′ ¢ ∂Br(x) \ clUk′ ;

in particular, µ((ak, bk)) has non-trivial intersection with both the open sets Uk′ and
Br(x) \ clUk′ . By the continuity of µ and the connectedness of (ak, bk), we thus deduce
that µ((ak, bk))∩ ∂Uk′ ̸= ∅. Upon recalling that µ((ak, bk)) ¢ Br(x), we find µ((ak, bk))∩
∂Uk′∩Br(x) = µ((ak, bk))∩µ((ak′ , bk′)) ̸= ∅. But this contradicts the fact that µ smoothly
embeds S1 into Ω. The proof of (C.5) is finished.
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Returning to the proof of (C.3), let us assume for contradiction that

µ(ak) ∼ µ(bk) ∀1 f k f K . (C.6)

We are going to use (C.4), (C.5), and (C.6) to create a piecewise smooth embedding
µ : S1 → Ω which is a homotopic deformation of µ (and thus approximable by elements
in C) such that µ ∩ S = ∅. After reindexing the equivalence classes Γi, we may assume
that {Γ1, . . . ,ΓIγ} are those equivalence classes containing any pair {µ(ak), µ(bk)} for 1 f
k f K. We will construct µ in steps by redefining µ on those [ak, bk] with images under
µ having endpoints belonging to the same Γi. For future use, let Ωi be the equivalence
classes of Br(x) \ S determined by the relation (C.1). Note that they are open connected
components of Br(x) \ S.

Construction corresponding to Γ1: Relabelling in k if necessary, we may assume that
{1, . . . ,K1} for some 1 f K1 f K are the indices such that {µ(ak), µ(bk)} ¢ Γ1. By
further relabelling and applying (C.5) we may assume: first, that ℓ1 is a “maximal” arc
among {ℓ1, . . . , ℓK1}, in other words

for given k ∈ {2, . . .K1}, either ℓ1 ∩ ℓk = ∅ or ℓk ¢¢ ℓ1 ; (C.7)

and second, that for some K1
1 f K1, {ℓ2, . . . , ℓK1

1
} are those arcs contained in ℓ1. Since

Ω1 is open and connected, we may connect µ(a1) to µ(b1) by a smooth embedding µ1 :
[a1, b1] → clBr(x) \ S with µ1((a1, b1)) ¢ Ω1. Also, by the Jordan curve theorem, ℓ1 ∪ µ1
defines an open connected subset W1 of Br(x) with ∂W1 ∩ S = ∅. Using (C.5), we now
argue towards constructing pairwise disjoint smooth embeddings µk : [ak, bk] → Γ1 ∪ Ω1.

We first claim that

W1 \ S is path-connected . (C.8)

To prove (C.8), consider any y, z ∈W1 \S. Since Ω1 £W1 \S is open and path-connected,
we may obtain continuous µ̃ : [0, 1] → Ω1 connecting y and z. If µ̃([0, 1]) ¢ W1 \ S, we
are done. Otherwise, ∅ ̸= µ̃ ∩ (Ω1 \ (W1 \ S)) = Ω1 \ W1, with the equality following
from Ω1 ∩ S = ∅. Combining this information with µ̃({0, 1}) ¢W1 \ S, we may therefore
choose [¶1, ¶2] ¢ (0, 1) to be the smallest interval such that µ̃([0, 1] \ [¶1, ¶2]) ¢ W1 \ S.
On (¶1, ¶2), we redefine µ̃ using the fact that µ̃({¶1, ¶2}) ¢ ∂W1 ∩ Br(x) = µ1((a1, b1)) by
letting µ̃((¶1, ¶2)) = µ1(I), where µ1(I) has endpoints µ̃(¶1) and µ̃(¶2) and I ¢ (a1, b1). The
modified µ̃ is a concatenation of continuous curves and is thus continuous; furthermore,
µ̃−1(W1 \ S) = [0, ¶1) ∪ (¶2, 1]. It only remains to “push” µ̃ entirely inside W1 \ S, which
we may easily achieve by projecting µ̃((¶1 − ε, ¶2 + ε)) inside W1 \ S for small ε using
the distance function to the smooth curve µ1(a1, b1) = ∂W1 ∩ Br(x) ¢ Br(x) \ S. This
completes (C.8).

But now since W1 \S is path-connected and open, we may connect any two points in it
by a smooth embedding of [0, 1], which in particular allows us to connect µ(a2) and µ(b2)
by smooth embedding µ2 : [a2, b2] → clW1 \ S with µ2((a2, b2)) ¢ W1 \ S. Let W2 be the
connected open subset of W1 determined by the Jordan curve µ2 ∪ ℓ2. Arguing exactly as
in (C.8), W2 \ S is open and path-connected, so we can iterate this argument to obtain
mutually disjoint embeddings µk : [ak, bk] → clW1 \ S ¢ Γ1 ∪ Ω1 with µk((ak, bk)) ¢ Ω1

for 1 f k f K1
1 .

Next, let ℓK1
1+1 be another maximal curve with endpoints in Γ1. The same argument

as in proving (C.8) implies that Ω1 \ clW1 is path-connected, and so µ(aK1
1+1), µ(bK1

1+1)

may be connected by a smooth embedding µK1
1+1 : [aK1

1+1, bK1
1+1] → (Γ1 ∪ Ω1) \ clW1,

that, together with ℓK1
1+1, defines a connected domain WK1

1+1 ¢ Ω1 by the Jordan curve

theorem. In addition, WK1
1+1 ∩ W1 = ∅ since (ℓ2 ∪ µK1

1+1) ∩ clW1 = ∅ by (C.7) and
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the definition of µK1
1+1. Repeating the whole iteration procedure for those intervals con-

tained in ℓK1
1+1 and then the rest of the maximal arcs, we finally obtain mutually disjoint

embeddings µk : [ak, bk] → Γ1 ∪ Ω1 with µk((ak, bk)) ¢ Ω1 as desired for 1 f k f K1.

Conclusion of the proof of (C.3): Repeating the Γ1 procedure for {Γ2, . . . ,ΓIγ} and
using the mutual pairwise disjointness of Γi, we obtain mutually disjoint embeddings
µk : [ak, bk] → clBr(x) \ S with µk((ak, bk)) ¢ Br(x) \ S for 1 f k f K1. We define
µ : S1 → Ω by

µ(t) =

{

µ(t) t ∈ S1 \ ∪[ak, bk]

µk(t) t ∈ [ak, bk] , 1 f k f K .

Since µ = µ outside Br(x) ¢¢ Ω, µ is homotopic to µ relative to Ω. Furthermore, µ is
piecewise smooth and homotopic to µ, and so it can be approximated in the C0 norm by
{µj} ¢ C. However, by (C.4) and the construction of µk, µ ∩ S = ∅, which implies that
S ∩ µj = ∅ for large j. This contradicts the fact that S is C-spanning W, and so (C.3) is
true. □
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