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RIGIDITY AND COMPACTNESS
WITH CONSTANT MEAN CURVATURE
IN WARPED PRODUCT MANIFOLDS

FRANCESCO MAGGI AND MARIO SANTILLI

ABSTRACT. We prove the rigidity of rectifiable boundaries with constant dis-
tributional mean curvature in the Brendle class of warped product manifolds
(which includes important models in General Relativity, like the deSitter—
Schwarzschild and Reissner—Nordstrom manifolds). As a corollary we charac-
terize limits of rectifiable boundaries whose mean curvatures converge, as dis-
tributions, to a constant. The latter result is new, and requires the full strength
of distributional CMC-rigidity, even when one considers smooth boundaries
whose mean curvature oscillations vanish in arbitrarily strong C¥-norms. Our
method also establishes that rectifiable boundaries of sets of finite perimeter
in the hyperbolic space with constant distributional mean curvature are finite
unions of possibly mutually tangent geodesic spheres.
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1. INTRODUCTION

1.1. Overview. We move from two recent extensions of the classical Alexandrov
theorem [Ale62]: in the Fuclidean space, spheres are the only connected, constant
mean curvature (CMC) boundaries enclosing finite volumes:

(i) In [Brel3], Brendle has proved CMC-rigidity in a class of warped product Rie-
mannian manifolds which includes important models in General Relativity, like the
deSitter—Schwarzschild and the Reissner—Nordstrom manifolds. In dimension 3 <
n < 7, when isoperimetric sets are smooth by local regularity theorems, Brendle’s
theorem allows one to solve the “horizon homologous” isoperimetric problem in this
class of warped product manifolds. In turn, since the works of Eichmair and Metzger
[EM12, EM13a, EM13b], the study of horizon-homologous isoperimetric problems in
the large volume regime has played a prominent role in the analysis of the Huisken—
Yau problem [Hui96]- see, e.g. [Chol6, CCE16, CEV17, CESZ19, CESY21, CE22].
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(ii) In [DM19], Delgadino and the first-named author have extended the Alexandrov
theorem to the class of (Borel) sets with finite volume, finite distributional perime-
ter, and constant distributional mean curvature. CMC-rigidity in the distributional
setting in turn implies, by basic varifolds theory, a general compactness theorem for
almost CMC-boundaries: in the Euclidean space, finite unions of disjoint spheres
with equal radii are the only possible limits of sequences of boundaries converging in
volume and in perimeter, and whose mean curvatures converge, as distributions, to
a constant. With stronger controls on the mean curvature oscillation one can even
provide quantitative rates of convergence towards finite unions of balls, as done,
for example, in [CM17, DMMN18, JN20, JMS21]. In addition to their geometric
interest, these results find applications to the resolution of geometric variational
problems (see, e.g., [CM17, DW22] for the characterization of local minimizers of
“free droplet energies”) and to the long time behavior of the volume-preserving
mean curvature flow (see, e.g., [JN20, MS22, JMS21]).

The main results of this paper are the distributional version of the Alexandrov
theorem in the Brendle class (Theorem 1.1) and a consequent compactness theorem
for almost-CMC boundaries (Theorem 1.2).

An interesting aspect of the method of proof of Theorem 1.1 is that we avoid
the use of “smoothness intensive” tools, like the Schétzle strong maximum principle
for integer varifolds [Sch04], which was central in [DM19]; or the Greene-Wu “ap-
proximation by convolution” theorem [GW73, GW79], which was crucially used in
[Brel3]. We rather put emphasis on the metric notion of set of positive reach, and
work with one-sided viscous mean-curvature/dimensions bounds (as formulated by
White in [Whil6]; see also [CC93]); and, as a by-product of these efforts, throughout
our analysis, we only need to use the weak maximum principle (meant as “one-sided
inclusion and contact imply mean curvature ordering”). We take the success of this
synthetic approach as a significant indication that the Alexandrov theorem should
hold in some metric version of the Brendle class.

1.2. The Brendle class and the main theorem. Given n > 3, we denote by
B,, the class of the n-dimensional manifolds (M, g) of the form

M =N x[0,7), g=dr®dr+h(r)Y?gn, (1.1)
for some 7 € (0, 00], compact (n — 1)-dimensional Riemannian manifold (N, gn),
and smooth positive function h : [0,7) — R, such that:

(HO) for some p > 0, Ricy > p(n —2) gy on N;

(H1) n'(0) =0 and A”(0) > 0;

(H2) A’ >0 on (0,7);

(H3) 2(h"/h) + (n —2)[((W)? — p)/h?] is increasing on (0,7);

(H4) (n"/Rh) + [(p — (R)?)/Rh?] is positive on (0,7).
To obtain geometric interpretations of these conditions we denote by

M° =N x (0,7), No = N x {0}, Ny =N x {t} (t>0),
the interior, the horizon, and the slices of M, and notice that
Ricy = Ricy — {hh" 4+ (n—2) (W)*} gy — (n—1) (K" /R)dr @ dr, (1.2)

Rar = (Rw/h?) = (n=1) (2 (4" /) + (n—2) (' /R)°). (13)
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The scalar mean curvature of Ny with respect to its g-unit normal vector field 9/0r
is Hy, = (Hy,,0/0r)y = (n — 1) W' (t)/h(t), so that the horizon of M is a minimal
surface by (H1), and the slices of M have positive CMC (w.r.t. to 9/9r) thanks
to (H2). We next notice that (H3) implies (in combination with (1.3), (HO), and
(H2)) that Ry is decreasing along 0/0r. Finally, while (1.2) implies that 0/0r is
an eigenvector of Ricys, (H4) (combined with (HO)) adds the information that 0/0r
is a simple eigenvector. We then have:

Brendle’s theorem: [Brel3, Theorem 1.1] If n > 3, (M,g) € B, and X is a
smooth closed, embedded, orientable, CMC hypersurface in M, then ¥ is a slice of
M.

Remark 1.1 (Dropping (H4)). A simple remark (which seems to have gone un-
commented so far) is that Brendle’s theorem also holds in the class B of those
(M, g) satisfying (1.1), (HO), (H1), (H2), and

(H3)* 2(h"/h) + (n —2) [(W')? — p)/h?] is strictly increasing on (0, 7).

In other words, condition (H4) is not needed to conclude rigidity as soon as R/ is
strictly decreasing along 9/9r. (For more details on this point, see the discussions in
Section 1.4 and Remark 4.1 below.) In terms of applications to General Relativity,
it is interesting to notice that while the Reissner-Nordstrom manifolds belong to
the class B, the deSitter-Schwarzschild manifolds do not; in particular, a stronger
stability mechanism for almost-CMC hypersurfaces is at work in the former class
than in the latter; see Appendix A for more information.

Remark 1.2 (Formulation with boundaries). Brendle’s theorem is, actually, a
statement about boundaries in M. Indeed, as noticed also in [Brel3, Section 3],
under the assumptions of Brendle’s theorem on ¥,

there is (a,b) CC (0,7) and  C M open such that

¥ C N x (a,b) and either 02 = X or 902 =X U Ny. (Eea)

Now, as explained in more detail later on, there are two basic geometric problems
— the characterization of horizon-homologous isoperimetric regions and the study of
sequences of (smooth) boundaries with vanishing mean curvature oscillation — that
call for the extension of Brendle’s theorem to the class of sets of finite perimeter.
This extension is the content of our main theorem, Theorem 1.1 below. Refer-
ring to [Magl2] for a complete discussion of the subject, we just recall here that a
Borel set Q in (M, g) is a set of finite perimeter if Per(Q) := sup{ [, div X dH" :
X € X(M),|X|ys < 1} is finite (where X (M) = {smooth vector fields on M}).
Then one can define the reduced boundary 0*Q (a locally H"~'-rectifiable set with
Per(Q) = H"1(0*Q)) and the measure-theoretic outer normal vg (a Borel g-
unit vector field defined on 9*Q2) so that the distributional divergence theorem
Jodiv XdH™ = [,.(X,va)gdH™ " holds for every X € X(M). Finally, one
says that H is the distributional mean curvature of 9*§) with respect to vq, if H is
summable in H*~1L9*Q, and

/ div? X dH" ' = [ H(X,va)gdH"", VX e€X(M),
*Q 9Q
where div? X := div X — (V,, X, vq),. We thus have the following distributional
version of Brendle’s theorem:
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Theorem 1.1 (Rigidity). Ifn >3, (M,g) € B,UB, Q is a set of finite perimeter
in M such that M° N 9*Q is compact in M and X € R is such that

/ div? X dH ™ = A / (X, vq)ydH" 1, (1.4)
MeNo*Q MeNo*Q

for every X € X (M), then, for some to € (0,7), either Q is H"-equivalent to
N x (0,tg) (and X\ > 0) or £ is H"™-equivalent to N X (to,7) (and A < 0).

Remark 1.3. By Allard’s regularity theorem [All72, Sim83, DL18], (1.4) implies
that ¥ = 9*(Q is a smooth, CMC hypersurface in M with H"~1(X \ ¥) = 0. Since
3 is not necessarily closed, rigidity cannot be deduced by the direct application
of Brendle’s theorem. The difficulty addressed in Theorem 1.1 is expressing how
the distributional CMC condition (1.4) “ties together” the (potentially countably
many) connected components of X, and forces them to align into a single slice,
rather than, say, allowing them to combine through the singular set ¥ \ ¥ into a
non-slice CMC hypersurface.

Remark 1.4. Condition (1.4) is equivalent to ask that, if f; is a smooth volume-
preserving flow of Q (fo =id, (9f/0t)|t=0 = X € X (M), and H"(f:(2)) = H"(Q)
for every |¢| small), then

(d/dt) ‘t:O Per(ft(Q)) =0.
Theorem 1.1 then says that among sets of finite perimeter, slices are the only
volume-constrained critical points of the area functional in (M, g) € B, U B.

Remark 1.5 (Necessity of “M° N 9*Q compact” in Theorem 1.1). If v > 0 is
small enough and €2, is a minimizer of H"~*(M° N §*(2) among sets Q C M with
H"(Q) = v, then M° N 9*Q, is a smooth CMC hypersurface, diffeomorphic to
a hemisphere sitting on the horizon (see, e.g., [MM16] for a detailed analysis of
this kind of result in the capillarity setting). Alternatively, one can first apply the
perturbative construction of Pacard and Xu [PX09] on the horizon of the doubled
Schwarzschild manifold, as described in [BE13]. Either way, one obtains non-slice,

CMC hypersurfaces bounding sets €.

1.3. Compactness for almost-CMC boundaries. Theorem 1.1 is of course
strongly motivated by the following natural compactness problem for almost-
CMUC hypersurfaces, which can be formulated, in very general terms, as follows:
If (M,g) € B, UB;, does every sequence {¥;}; of closed,
embedded, orientable smooth hypersurfaces in M

(CP)

whose scalar mean curvatures in (M, g) converge
to a constant, have slices as their only possible limits?

This basic question appears naturally in several contexts. Two important examples
are: the analysis of the Huisken—Yau problem [Hui96, QT07, NT09, NT10, Hual0,
LMS11, BE14, Ner18, CE20], e.g., an outlying CMC hypersurface in an asymptot-
ically Schwarzschild manifold can be seen as an almost-CMC hypersurface in the
Schwarzschild manifold; and the study of the long-time behavior of the volume-
preserving mean curvature flow — since the L2-oscillation of the mean curvature is
the dissipation of the flow.

In light of (X <> ), for each ¥; in (CP) there are open sets 2, in M and intervals
(a;,bj) CC (0,7) such that ¥; C N x (a;,b;) and (up to extracting subsequences)
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either ¥; = 9Q; (for every j) or ;U Ny = 99Q; (for every j). In both cases, under
the natural set of assumptions that

a =inf; a; >0, b=sup;b; <7, sup,; H" 1 (2;) < oo, (1.5)

one finds a set ) with finite perimeter in (M, g) such that, and up to extracting
subsequences, it holds
lim H"(Q;AQ) =0,  liminf H" 1(99Q;) > Per(Q). (1.6)
Jj—o0 Jj—o0
In the above basic setting, Theorem 1.1, combined with standard closure results
for integer varifolds, leads to an affirmative answer to (CP). This is the content of
our second main result, where the most general case of sequences of sets of finite
perimeter is directly addressed:

Theorem 1.2 (Compactness). Ifn >3, (M, g) € B,UB, and {Q;}; is a sequence
of sets of finite perimeter in M such that
(i) there are (a,b) CC (0,7) and a Borel set 2 C M s.t. M°Nd*Q; C N x (a,b)
for every j, and H™(Q;AQ) — 0 as j — oo;
(ii) Per(2;) — Per(Q) as j — oo;
(ili) there is A € R such that, for every X € X(M), as j — oo,

/ div? % X dH™ ™ — ) / (X, vg,)gdH"! = 0; (1.7)
M°no*Q, M°no*Q,

then there is to € (0,7) such that Q if H"-equivalent either to N x (0,t9) (and then
A>0)ortoN x(tg,7) (and then A < 0).

Remark 1.6. The proof of Theorem 1.2 requires the full strength of Theorem 1.1
even if one is only interested in sequences {X;}; of closed, embedded, orientable
smooth hypersurfaces in M whose mean curvature oscillations are assumed to vanish
in every C*-norm.

Remark 1.7. In (1.7) the mean curvature oscillation is required to vanish only
in distributional sense. This feature points to the possibility of applying Theorem
1.2 to minimizing sequences of horizon-homologous isoperimetric problems that
have been suitably selected by means of the Ekeland variational principle; see, e.g.,
[CL12, Theorem 3.2(iv)]. Similarly, Theorem 1.2 will be easily applied to the study
of horizon-homologous isoperimetric sets with fixed volume with respect to metrics
{g;}; on M such that, as j — o0, g; — ¢ with (M,g) € B, UB}. In both these
examples, the perimeter convergence assumption (ii) is trivially checked by energy
comparison.

1.4. Strategy of proof and organization of the paper. Section 2 and Sec-
tion 3 are devoted to establishing in the Riemannian setting the several tools from
GMT that lie at the core of our analysis. In Section 2.1 we collect several prop-
erties of normal bundles to closed sets in complete Riemannian manifolds (The-
orem 2.1), extending from the Euclidean case a series of recent results obtained
in [Alb15, MS19, San20a, KS23, HS22]. In Section 2.2 we review some theorems
of Kleinjohann [Kle81] and Bangert [Ban82| concerning sets of positive reach in
complete Riemannian manifolds (Theorem 2.2 and Theorem 2.3). In Section 3.1
we recall the viscous notion of “being m-dimensional with mean curvature vector
bounded by A\’ introduced on closed subsets of Riemannian manifolds by White
in [Whil6], and recall its relation to distributional mean curvature (Theorem 3.1).
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Finally, in Section 3.2, we extend to the Riemannian setting a delicate “Lusin-type
property” of normal bundles of White’s (m, A)-sets that, in the Euclidean case, was
proved in [San20b| (Theorem 3.3).

At the basis of the distributional version of the Alexandrov theorem proved in
[DM19] (as well as of the previously cited quantitative versions of it), lies the ap-
proach to CMC-rigidity of Ros [Ros87] and Montiel-Ros [MR91]. Their method is
based on the analysis of equality cases in the (Euclidean) Heintze-Karcher inequal-
ity. Brendle’s theorem, in turn, is based on the analysis of the equality cases of
two different Heintze—Karcher-type inequalities for subsets Q of (M, g) € B, U B},
(corresponding to the cases 92 = ¥ and 92 = XU Ny appearing in (X + 2)), and,
specifically, to the fact that, when ¥ is such an equality case, then, ¥ is umbilic;
the umbilicality of ¥ is then combined with (H4) to deduce rigidity (i.e., ¥ is a
slice).

A natural strategy for proving Theorem 1.1 thus consists in: (a) establishing the
two Heintze—Karcher-type inequalities of Brendle on sets with finite perimeter; (b)
addressing the analysis of their equality cases in the distributional setting; and, (c)
deducing rigidity from an established set of necessary conditions for equality.

In Section 4 we implement this strategy. There we work with not necessar-
ily closed, smooth, embedded, hypersurfaces ¥ satisfying three assumptions: first,
HL(E\ ) = 0 with H"1(2Z) < oo (¥ \ ¥ is understood as the “singular set”
of ¥); second, either ¥ = 9Q, or Ny UX = 99, for an open set Q in M; and,
finally, ¥ is compactly contained in M° and has bounded mean curvature in the
viscous sense of White, while ¥ has positive mean curvature with respect to the
outer g-unit normal v to Q.

In Theorem 4.1 we take care of steps (a) and (b). Implementing step (a) is
particularly delicate not only because, as expected, several passages of Brendle’s
argument make a crucial use of smoothness, and thus require considerable effort to
be repeated or redesigned in a non-smooth framework; but also because, in antic-
ipation of the non-smooth rigidity discussion of step (c¢), we need a more detailed
list of necessary conditions for equality cases in Brendle’s Heintze-Karcher-type
inequalities. In this direction, we notice that we shall establish three such condi-
tions: (E1) ¥ is umbilical in (M, g) (which is the condition already pointed out in
[Brel3]); (E2) M \ Q has positive reach in (M, g*) (where ¢g* is a certain complete
metric on M, conformal to g); (E3) under (H3)*, gn(vq,vq) = 0 on X. The iden-
tification of condition (E3) is new even in the smooth case. We also notice that, in
the smooth case, condition (E2) is automatically true; and, indeed, the derivation
of (E2) requires some careful work on Brendle’s argument which is specific to the
viscous setting.

In Theorem 4.2, we further assume that ¥ has constant mean curvature in distri-
butional sense, and then address step (c). If (H3)*, and thus condition (E3), holds,
then we can infer rigidity directly from it, without using umbilicality: indeed (E3)
implies the very strong information that vq is parallel to 9/9r H" l-a.e. along ¥
— an information that gives ¥ = NV;, by a simple property of sets of finite perime-
ter (cf. with [Magl2, Exercise 15.18]). If, otherwise, only (H3) holds, then, as in
[Brel3], we need to combine (H4) and umbilicality to deduce that, H" !-a.e. on
3, vq is either parallel or orthogonal to 9/0r. The dichotomy parallel /orthogonal
prevents the use of something as simple as [Magl2, Exercise 15.18]. In the smooth
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case, one immediately excludes “orthogonality”, and thus conclude rigidity, by a
sliding argument. However, in the non-smooth setting, sliding arguments are not
equally effective (because of multiplicity issues preventing the use of Allard’s regu-
larity theorem at contact points). This is the passage where condition (E2) reveals
useful, and ultimately allows us to conclude the proof of Theorem 4.2.

Finally, Section 5 contains the proofs of Theorem 1.1 and Theorem 1.2.

1.5. Rigidity and bubbling in the hyperbolic space. It is a classical and
well known result that Alexandrov rigidity result can be generalized to smooth
boundaries in the hyperbolic space. In [Brel3, Theorem 1.4] a new proof is obtained
based on the Heintze-Karcher inequality. It is a natural and interesting question to
understand if finite unions of possibly mutually tangent balls are the only examples
of sets of finite perimeter in the hyperbolic space with constant distributional mean
curvature. The methods developed in this paper provides a positive answer to this
question.

Theorem 1.3. Suppose  is a set of finite perimeter with compact closure in the
hyperbolic space H" and X\ € R such that

/ div?" X dH" ! = A / (X, vo)mn dH™ 1, (1.8)
o*Q o*Q

for every X € X(M). Then Q is a finite union of disjoint (possibly mutually
tangent) open geodesic balls with equal radii.

Remark 1.8. In [HHW23] the authors develop a beautiful moving plane method
for a class of varifolds satisfying a suitable tameness condition and they employ it
to prove several rigidity results for stationary and CMC varifolds. In particular,
cf. [HHW23, Theorem 1.8], they prove that if ¥ C H" is the support of a (n — 1)-
dimensional tame varifold without boundary and with constant mean curvature!,
and if ¥ is connected and compact, then it is a geodesic sphere. In this direction we
point out that unions of mutually tangent geodesic spheres cannot be tame varifolds
in the sense of [HHW23] (since the tangent cone at the singular point between the
spheres is a multiplicity two plane). On the other hand, these configurations nat-
urally arise as limits of sequences of connected and compact smooth hypersurfaces
with mean curvatures converging to a constant (see [CM17] and references therein).
Hence, Theorem 1.3, in addressing rigidity and compactness in the hyperbolic space
under assumptions that do not prevent bubbling, provides a useful improvement of
[HHW23, Theorem 1.8].

1.6. Further directions. A natural question is that of obtaining quantitative es-
timates for almost-CMC boundaries, both in the Brendle class and on space forms.
In this direction we mention the recent results on space forms [CV20, CRV21],
where, based on the moving planes method, sharp decays are obtained under
a “bubbling-preventing” exterior/interior ball assumption. There are alternative
proofs of the Heintze-Karcher type inequalities behind Brendle’s theorem, based
on integral identities rather than on geodesic flows, that have been developed, for
example, in [LX19, FP22]. Correspondingly, non-sharp quantitative estimate have
been derived in [Sch21, Theorem 1.3] on space forms, and in [SX22, Theorem 1.4] on

Lef. [HHW23, eq. (8)] for the definition of varifold with bounded mean curvature, and [HHW23,
Definition 1.6] for the definition of tameness for varifolds
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a sub-class of Brendle’s class (which still includes the model manifolds from General
Relativity). Both these results require bounds on the C%#-geometry of the consid-
ered boundaries (in addition to interior ball conditions), and the resulting stability
constants (together with the non-sharp stability exponents in the case of [SX22,
Theorem 1.4]) depend to the particular 8 under consideration. For this reason the
compactness result in Theorem 1.2 is entirely new even on smooth boundaries, as
it does not require any uniform control on their geometry.
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1840314, NSF-DMS FRG 1854344, and NSF-DMS 2000034. MS acknowledges sup-
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2. SETS OF POSITIVE REACH IN RIEMANNIAN MANIFOLDS

In this section (M, g) is a complete Riemannian manifold of dimension n, with
exponential function exp and Riemannian distance d, and we denote by ¥ : TM x
[0,00) — M the map

U(p,n,t) =exp(p,tn),  V(p,n) €TM,t>0. (2.1)

We denote by df the differential of f : M — R, and by Vf and D?f the gradient
and Hessian of f with respect to g. We use V also to denote the metric connection
of (M,g). A segment in M is a unit speed geodesic v : [a,b] — M such that

d(v(a),v(b)) =b—a.

2.1. Normal bundles of closed sets. Given a closed set I' C M, the projection
map on I' is defined for at p € M as the subset of I' given by

&r(p) = {a €T : dist(p,T') = d(p,a)} .
The unit normal bundle N'T" and the normal bundle NT of I' are defined by
setting, for a € T,
N,T = {neT,M:|n=1,3s>0s.t. s=dist(exp(a,sn),T)},
NT = {tn:t> O,nEN;F}.
We define pr : N'T' — (0,00], Ar C TM, and Cut(I') C M by setting

pr(z,n) =sup {s > 0:s = dist(exp(z,sn),I)}, (2
Ar = {(p,n,t) : (p,n) e N'T ,t € (0,pr(p,m)} (2.
Cut(T) = {exp(z,sn) : (z,7) € N'T',s = pr(z,n) < 0o}, (2
so that, when T is a closed C2-hypersurface in M, pr is continuous on T', Cut(

corresponds to the usual notion of cut-locus of I" and satisfies H™(Cut(I")) = 0,
and ¥|4, is a diffeomorphism between Ar and

M(F) = \I](AF) = { exp(au 877) : (6%77) € NIF S € (Oapr(avn))} :
The following theorem relies on a series of recent results [Alb15, MS19, San20a,

KS23, HS22] to adapt/extend the above classical facts to the case when I' is merely
a closed set.

Theorem 2.1. If (M™, g) is a complete Riemannian manifold andT' C M is closed,
then:
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(i) NT is a countably n-rectifiable Borel subset of TM ;
(ii) NoT is a convex cone in Ty M for every a € T';
(iii) for each m =0,...,n—1 the set

™ .= {gel:dimN,T =n—m}
is countably (H™, m)-rectifiable; in particular’
H  ({a e T HON,T) > 2}) = 0; (2.5)
(iv) pr : NYT) — (0, +o0] is an upper-semicontinuous function;
(v) H™(Cut(I')) = 0.
(vi) For each p € U(T) there exists a unique (a,n) € TM, |n| = 1, such that
d(p,a) = dist(p,T') and exp(a, d(p, a)n) = p;
(vii) If 70 > 0 and pr(a,n) > 70 for H" ! a.e. (a,n) € NT, then
{zeM:0<dist(z,T) <7} CUT).

Proof. Let ¢ : U C M — V C R" be a local chart of M. For each a € U there is a
unique symmetric bijective linear map S, : R™ — R"™ such that

(u,v)g = dé(a)(v) - Sa[do(a)(u)], Yu,v e T, M.

A routine argument shows that the map ® : TU — V x R” defined by ®(a,v) =
(¢(a), Seldp(a)(®)]), (a,v) € TU, is a diffeomorphism, with

PNTLU) =N NU))LV.
Similarly, for every a € I' and m =0, ...,n — 1, we have
[Sa 0 dg(@)](NaT) = Nyo) 6T NT), (™ nU) = [T NT)™ NV,

Hence, conclusions (i), (ii), and (iii) follow from the analogous statements in the
Euclidean case proved in [San20a, Remark 4.3] and [MS19]. Conclusion (iv) follows
by an obvious adaptation of the argument for the Euclidean space proved in [KS23,
Lemma 2.35]. Conclusion (v) is proved in [Alb15, Theorem 1]. Conclusion (vi)
follows from the remark that if s > 0 and « is a unit-speed geodesic such that
a(0) € T and dist(a(s),I") = s, then, for every 0 < ¢ < s, we have dist(a(¢),T") = ¢,
ér(a(t)) = {a(0)}, and alj 4 is the unique segment joining «(0) and «a(t). We are
left to prove conclusion (vii), which requires modifications to the proof of [HS22,
Lemma 3.19]. With ¥ as in (2.1), we define

Q* = {(aunvt) : (6%77) € Nlru 0<t< inf{T(JapF(aun)}}
and we notice that ¥(Q*) = {z € M : 0 < dist(x,I') < 19} \ Cut(T"). Let

Q= Q* N {(avnat) : PF(CL,W) > TO}

so that H™*(Q* \ Q) = 0 by assumption. Hence H*(¥(Q*)\ ¥(Q)) = 0, and, by
(v), we conclude that U(Q) is dense in {x € M : 0 < dist(z,I') < 70}. Let x € M
and ¢t = dist(z,I') with 0 < ¢ < 79. There exists a sequence (a;,7;,t;) € @ such
that W(a;,m;,t;) — x. Since d(a;,z) < d(a;, ¥(as,ni,ti)) + d(P(az,ni,t;),x) for
i > 1 and t; = dist(V(a;,n;,t;),I') — ¢, we infer that limsup, , d(a;,z) < t. By

2Indeed, if HO(NIT) > 2, then the convexity of NI implies that dim N,T" > 2, i.e. a € T(™)
for some m < n — 2.
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compactness, there are (a,n) € TM with |n| = 1 and a subsequence (a;;,7;,) such
that (as;,n:;) — (a,n) as j — oo. It follows that
t = lim dist(V(aq;,ni;,t:;), ') = dist(¥(a,n,t),T)
j—o0
and (a,n) € N''T". By conclusion (iv) and by pr(a;,n:;) > 70 we find pr(a,n) > 7o,
and thus « € U(T). O

2.2. Sets of positive reach. Introduced in the Euclidean setting by Federer
[Fed59], sets of positive reach have been studied in the Riemannian setting by
Kleinjohann [Kle81] and Bangert [Ban82]. Given a closet set I' C M, the set of
unique projection over I is defined as

UP(D) = {z e M:H(&r(z) =1} .
Given a € T, we denote by reach(T',a) the supremum of those » > 0 such that
B(a,r) C UP(T"), and say that I is a set of locally positive reach if reach(T’, a) >

0 for each a € T, and is a set of positive reach if reach(T, -) is uniformly positive
on I

Remark 2.1. If T is closed and pr(z,n) > 70 > 0 for H"! ae. (z,7) € N'T,
then by Theorem 2.1-(vii),

{r e M:0<dist(z,T') < o} CUT) CUP).
In particular, I" is of positive reach, with reach(I’,-) > 79 on I.

The following result, contained in [Kle81], is crucial in obtaining (4.50) and (4.51)
in the proof of Theorem 4.1.

Theorem 2.2 (Kleinjohann). If A C M is a set of positive reach with compact
boundary, then there exists €(A) > 0 such that for every t € (0,e(A)) the set

A ={x e M :dist(A,z) =1t}

is a compact CY'-hypersurface contained in UP(A), and the geodesic-flow map
o, : NY(A) — Ay, defined by ®4(a,n) = exp(a,tn) for (a,n) € NY(A), is bi-
Lipschitz on N*(A). In particular, N*(A) is an (n — 1)-dimensional compact Lip-
schitz submanifold of T M .

Proof. Let U be an open neighborhood of the null section of TM and V an open
subset of M x M such that the map U > (a,v) — (a, exp(a,v)) is a diffeomorphism
of U onto V. Let ® be its inverse, so that exp(p, ®(p, q)) = ¢ for every (p,q) € V. As
explained in [Kle81, middle of page 336], one can choose for each a € A a number
¢(a) > 0% so that
B(a,¢(a)) x B(a,((a)) CV foraec A

and, defining W := (J,c 4 B(a,((a)), we have that for every € W there exists a
unique minimizing geodesic joining x and A and €4 is locally lipschitz on W (see
[Kle81, Satz (2.5)]). For x € W \ A we set

)~ Plala) _ BEa)a)
@ (2, Ea(@))| [@(Ea(@),2)|

It follows from [Kle81, Satz (2.1) and Satz (2.3)] that dist(A,-) is continuously

differentiable on W\ A, with Vdist(A,z) = —v(x) for z € W \ A. In particular

and 7n(x)

3Denoted with 2/(a, €) in [Kle81, page 336].
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Vdist(+, A) is locally Lipschitz on W\ A. Since dist(4, z) = |®(£a(z), z)| for x € W,
it follows that

Ui(§a(x),n(z)) = exp(€a(@), B(§a(r),z)) = =

for z € WNA;. By applying the Lebesgue covering lemma to {B(a,((a)) : a € 8A}
we find a positive number (A) > 0 such that {z € M : dist(4,2) < e(4)} CW
and thus conclude the proof. D

Following a standard convention (see, e.g. [Gro93]) we say that p € M\ T is
a critical point for dist(-,I") if for every v € T,(M), v # 0, there exists a € T
with d(p,a) = dist(p,T") and a segment « : [0,d(p,a)] — M such that v(0) = p,
~v(d(p,a)) = a and angle(v,~'(0)) < m/2. Correspondingly, 7 > 0 is a regular
value for dist(T, -) if there are no critical points p of dist(-,I") with dist(p,T") = 7.
The following result is a special case of the main result obtained by Bangert in
[Ban82], and plays an important role in our analysis (see the proof of (4.48)).

Theorem 2.3 (Bangert). If I' C M is compact and 7 > 0 is a regular value of
dist(-,T'), then {x € M : dist(z,T") > 7} is a set of positive reach.

Proof. By [Man03, Proposition 3.4], f = —dist(T, -) is locally semiconvex on M \T.
In particular, f belongs to the class F(M \ T') introduced by Bangert in [Ban82].
Moreover, by [RZ12, Lemma 5.5], p € M \ T is a regular point of f if and only if
there exists v € T, M such that* 9, f(v) = lim;_,o+ (f(p +tv) — f(p))/t is negative.
It follows that all points of f~!(—7) are regular in the sense of [Ban82, Definition
(i)], so that f~*((—o0, —7]) is a set of locally positive reach by the main theorem of
[Ban82]. Since (M, g) is complete, f~*(—7) = 9[f~1((—o00, —7])] is compact, and
thus we conclude by the general fact that, if A C M is a set of locally positive
reach and JA is compact, then A is a set of positive reach (for example because,
by [Kle81, Lemma 1.1], reach(A, -) is continuous on A). O

3. A LUSIN-TYPE PROPERTY OF WHITE’S (m, \)-SETS

In Section 3.1 we recall a viscosity formulation of the notion of “being m-
dimensional with mean curvature vector bounded by A’ for closed subsets of a
Riemannian manifold (M, g), as introduced by White in [Whil6]. Then, in Section
3.2, we extend from the Euclidean to the Riemannian setting a “Lusin condition”
for normal bundles proved in [San20b).

3.1. White’s (m, \)-sets. Given an integer m € {1,...,n—1} and a constant A > 0,
we say that a closed subset I' of a Riemannian manifold (M, g) is a White (m, \)-
set in (M, g) if, for every f € C?(M) such that f|r admits a local maximum at
x €T, it holds that

trace,, (D% f(z)) < A\|Vf(x)]. (3.1)
Here trace,,(D%f(x)) = A + -+ + Ay if Ay < Ao < -+ < )\, are the eigenvalues of
D2 f(z) listed in increasing order. A fundamental result concerning White (m, \)-
sets relates condition (3.1) to the notion of distributional mean curvature for a
varifold. This theorem plays a key role in our analysis (specifically, it allows us to
use Theorem 4.1 in proving Theorem 4.2, see the next section).

4The function f being semiconcave, it may fail to have a differential at p. However, the limit
Op f(v) will exist for every p and v. Here are we using the same notation found in [Ban82].
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Theorem 3.1 (White). If A > 0, V is an m-dimensional varifold in (M,g), and
H is a Borel vector field in M such that HﬁVHL“’(SptHVH) < X and

/(divTX)(:c) v (z,7) = —/ (H,X),d|V],
M
for every X € X(M), then spt ||V is a White (m, \)-set in (M, g).
Proof. This is [Whil6, Corollary 2.8]. O
We shall also need the following simple fact:

Lemma 3.2. If (M, g) is a Riemannian manifold, T is a White (m, X)-set in (M, g),
€ C®(M), g* =e%%g, and

C(T, ) =sup |Vy| < 00,
N

then T' is a White (m, A+ 3m C(T, p))-set in (M, g*).

Proof. Denoting with V* and D? the Riemannian connection and the Hessian op-
erator with respect to ¢g*, it is enough to prove that

DIf(x) < D*f(x) +3[Ve()| [V f(2)| g (3-2)

whenever x € O, O is open in M, and f € C?(0). To this end, by [Sak96, II,
Proposition 3.9], we compute

DXf(U, V) =UV(f)) = (VyV)(f) =D*f(U.V) = g(Ve, U)g(V . V)
—9(Vo,V)g(V1,U) = g(U,V)g(Ve, V),
whenever U,V € X(M). Hence,
DXf(U,U) <D*f(U,U) + 3|V fI[VellU.
If now O is a neighborhood of some = € T" and f|r has a local maximum at z, then
this last inequality, combined with [Whil6, Lemma 12.3] and the fact that T is a
White (m, A)-set in (M, g), implies that
tracen, (DI f(2)) < tracen, (D f(z) + 3|V f(2)| [Vi(2)] g2 )
= trace, (D* f(2)) + 3m |V f(2)| V()|
<A+3mC(T,9) V()
thus completing the proof. ([l

3.2. A Lusin-type property of normal bundles. The following theorem is
needed at a crucial step (4.29) in the proof of Theorem 4.1.

Theorem 3.3 (Lusin-type property of normal bundles). Suppose I' C M is a White
(m, N)-set in (M, g) such that T is a countable union of sets with finite H™-measure.
Then the following implication holds:

ZCD, H™(ZNTM™) =0 (3.3)

H Y NYT)LZ) = 0.

Proof. By [San20b, 3.3, 3.8, 3.9], if W C R* is open, I" is a White (m, \)-set in W,
and T" is a countable union of sets with finite H"-measure, then

H* (NT)z) =0,
HFH(N(T)LZ) = 0.

{H"(N(F)LZ) —0,

ZCT, H™(ZnTm™) =0 (3.4)
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We now reduce the proof of (3.3) to an application of the Euclidean case (3.4). To
this end, by the Nash embedding theorem, we can directly assume that M is an
n-dimensional embedded submanifold of the Euclidean space R* (for some large k)
and g is the Riemannian metric on M induced by the Euclidean metric (-, -) of R¥.
If X C M is relatively closed in M, then we denote by N'X the normal bundle of
the closure in R¥ of X, while we keep the symbol A'X for the normal bundle of X
as a subset of (M, g) (notice NX C TM). If a € M, then 7, and 7 denote the
orthogonal projections of R¥ onto T, M and T;-M respectively. We now divide the
rest of the proof into two claims and one final argument.

Claim one: If X C M is relatively closed in M, then
NX=N,X+T+M, VaeX.

Indeed, let u € N, X be such that 7a(u) # 0 and BN X = @, where, for some
r > 0, B is the open Euclidean ball in R* of radius r|u| centered at a + ru. Since
u € T;-(OB) and (m,(u),u) > 0, we conclude that m,(u) € T,M \ T,(0B). Then we
choose an open neighborhood V' of @ and a continuous function n : VN M — Sk1
such that n(a) = m,(u)/|me(u)| and n(b) € TpM for every b € V. N M. Since
[b e VNMnNOB| — dist(n(b),T,(0B)) is continuous and dist(n(a), T,(0B)) > 0,
there is an open neighborhood W C V of a such that dist(n(b),T,(0B)) > 0 for
every b € WNOBNM. Hence, dim [T,MNT,(0B)] < n—1and T,M +T,(0B) = R*
for every b € W N M NoB. This means that the submanifolds W NaB and W N M
are transversal and consequently

OBNMNW isann — l-dimensional smooth submanifold of M (3.5)

with T,M N Ty(dB) = Ty(M N AB) for b € W N M N B; see [GPT4, pp. 29-30].
Now, observing that if v € T,(0B N M) = T,(0B) N T,(M), then (7 (u),v) =0
and (mg(u),v) = (u,v) =0, we find that

mo(u) € T;H(OBN M) . (3.6)

For t sufficiently small, since (m,(u),u) > 0, we notice that exp(a,tm,(u)) € BN
M and we conclude from (3.6) that the open geodesic ball of (M,g) centred at
exp(a, tmy(u)) and radius ¢|m, (u)| is contained in B N M. This means, always for ¢
sufficiently small, that d(exp(a,tmq(u)), X) = t|ma(u)| (thanks to BN X = &) and
ma(u) € No(X).

We have thus proved N.X C N X + T:-M for a € X. To prove the opposite
inclusion, let now v € N, X with v # 0. An open geodesic ball G in M with
sufficiently small radius is such that 0G is a smooth n — 1 dimensional submanifold
inR*, GNX = @, a € G, and v is an interior normal of G at a. Then there exists
r > 0 such that the open Euclidean ball B in R¥ of radius r centered at a + rv
satisfies BN JG = @ and BN G # . Choosing r smaller if necessary, we can also
ensure that B is contained in the tubular neighbourhood of M where the nearest
point projection onto M is single valued. This means that B N M is a connected
subset of M \ 9G; since G is a connected component of M \ G and G N B # &,
we infer that BN M C G. The latter inclusion implies that B N X = @. It follows
that BN X = @ and N, X C ﬁ/ay, Now the convexity of /\zay and the obvious
inclusion T;-M C N, X allow to conclude Ny X + T;*M C N, X + N, X = N, X
and to complete the proof of claim one.
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Claim two: If W C R” is an open set such that W N M is compact, then there is
Aw > 0 such that I'N TV is a White (m, A )-set in W. Firstly, notice that M N W
and I' N W are relatively closed in W. Now, let b € TNW and f € C?(W) such
that f|r has a local maximum at b. Denoting by V both the Euclidean gradient

. . =2 . .
operator and metric connection, and by D~ the Euclidean Hessian operator, we set
n(x) = 7t (Vf(z)) for z € W N M, notice that 7, (Vf(x)) = Vf(x), and compute
—2 [ — — —
D7 f(z)(v,w) = (Vo Vf(z),w) = (Vo Vf(2),w) + (Von(z), w)
= D?f(x)(v,w) + (Ay() (v), w) = D*f(2) (v, w) — Q(z) (v, w)

for every x € M NW and v,w € T,(M), where A,y : T.M — T, is the shape
operator of M in the direction n(z), Q(x) : TyM x Ty M — R is the symmetric
bilinear form defined as Q(z)(v,w) = (S(v,w),n(x)) and S is the second funda-
mental form of M. If Q(b)(v,v) > 0 for all v € T, M then we obtain from [JT03,
Lemma 2.3] and [Whil6, Lemma 12.3]

tracem(ﬁzf( b)) < tracem[ ()| ToM x T, M]
— trace, [D(5) — Q(b)
< trace,, (D2 f (b)) < AIVF(B)] < AIVF(b)].
Now we assume that Q(b)(v,v) < 0 for some v € T, M. Then we define
pw = inf{(S(u,u),v):x € WNM, uecT,M,ve (T,M™*, |u=|v=1}
and we notice that —oo < uw < 0 and
QB)(w,v) > pwln(®)(w,0)  for v e T,M.
Therefore, by [JT03, Lemma 2.3] and [Whil6, Lemma 12.3]

trace,, (D2 £ (b)) = trace,, [D~ f(b)|(TyM x TyM) + Q(b)]

> trace,, [( )+ pw n(®) (-, ) [ToM x Ty(M)]
> trace,,[D ( + pw [n(0)[(-, )]

= trace,, (D £(5)) + mpw ()],

and we deduce that

trace,, (D £(5)) < AIVF(B)] — mpw [n(b)] < (A = mpw ) [V £()].

Conclusion of the proof Let Z C T such that H™(Z NT™)) = 0. Since N, (T') C
T, M it follows from claim one that

dim N,T = dim N,I + dimT,"M for a € T,
so that
H™(ZN{a: dmN,T =k —m}) = 0.

It follows from claim two and (3.4) that H*(NTLZ) = 0. Let P: M x R¥ — TM
be the smooth map defined by

P(a,u) = (a,m,(u)) for (a,u) € M x R,
14



Since P(./\N/E_F) = NT by claim one, noting by Theorem 2.1 that NTLT is a
countably k-rectifiable subset of M x R¥ and N'T is a countably n-rectifiable subset
of TM. By the coarea formula [Fed69a, 3.2.22],

0= /~ apJ, P dH" = / HE (T M) dH, ) -
NT.Z NTLZ ’
Since H*¥~"(T;-M) = +oo for every a € M, we have H*(NTLZ) = 0. O

4. Viscous HEINTZE-KARCHER INEQUALITIES

In Theorem 4.1 below, we prove the Heintze—Karcher inequalities of Brendle
[Brel3], and address their equality cases, in the viscous setting of White [Whil6].
Starting from this result, in Theorem 4.2, we extend Brendle’s rigidity theorem
to the distributional setting. Throughout the section, n > 3 and (M, g) is a Rie-
mannian manifold which satisfies at least (HO0)-(H3). We consider ¥ C M such
that:

(A1) ¥ is a smooth embedded hypersurface in M with ¥ C M° and
HHEND) =0, H"'(Y)<oo.
Notice carefully that we do not assume ¥ to be closed. Thus, ¥\ ¥ may be non-
empty and may contain singular points (i.e., ¥ may fail to be an hypersurface at

points in ¥\ ¥), and ¥ may consists of countably many connected components.
Our second main assumption is that 3 is (topologically) a boundary, namely,

(A2) there is @ C M open such that
either 90 =X or 9Q = ¥ U Ny, (4.1)
Now, under (4.1), assumption (Al) implies that Q is a set of finite perimeter in
M thanks to Federer’s criterion, see [Fed69b, 4.5.12]. In particular, if we denote
by 0*Q the reduced boundary of €2, and by vq its measure theoretic outer g-unit
normal, then we observe that ¥ C 9*Q and vgq is smooth on X. It thus makes sense

to define B
Hsy =Hx -vqg on X,

where Hy, is the mean curvature vector of ¥ in (M, g).

Theorem 4.1. If n > 3, (M, g) satisfies (H0)-(H3), and the pair (X,Q) satisfies
assumptions (Al), (A2), and

(A3) for some A >0, X is a White (n — 1,)\)-set in M,
then, denoting by r the projection of M = N x (0,7) over (0,7), and setting
f=hWor, g =f"g,

the following statements hold:
(a) if 00 =X, then

_ f n—1 n.
(n 1)/2_2 dH > n/Qde : (4.2)
(b) if 092 = ¥ U Ny, then

(n—1) /E HLE dH" ! > n/Qde" + h(0)"vol (N, gn) ; (4.3)
15



(c) if either (a) or (b) holds with equality, then ¥ is umbilic in (M,g), M \ Q
has positive reach in (M, g*), and®

N 2 — ,
(27 +(n—2) w) gn(va,ve) =0, on X. (4.4)
Theorem 4.2. Ifn >3, (M, g) € B,UB}, and the pair (X,Q) satisfies assumptions

(A1),

(A2) there is 2 C M open such that either 9Q =3 or 9Q = ¥ U Ny;
(A3) there is Hy > 0 such that, for everyY € X (M),

/divEYd’H”’l = Hy /<VQ,Y> dH" 1, (4.5)
b)) b

then, for some tg € (0,7), Q= N x (0,t9) and Hy = (n — 1) ' (to)/h(to) > 0.

Remark 4.1 (On the relation between Theorem 4.1 and Theorem 4.2). As detailed
in the proof of Theorem 4.2, by testing the constant mean curvature condition (4.5)
with the vector field h (9/0r), we see that Hy appearing in (4.5) is positive (so that
(A2)’ implies (A2)), and that either (4.2) or (4.3) (depending on whether 9Q = %
or 0Q = ¥ U Ny) holds as an identity. Moreover, by Theorem 3.1, (A3)’ implies
the validity of (A3). Therefore, under the assumptions of Theorem 4.2, conclusion
(c) of Theorem 4.1 holds too. When (H3)* holds, then (4.4) immediately implies
that vq(p) is parallel to (0/0r)|, at every p € X: this information, combined with
standard facts on sets of finite perimeter and with the positivity of Hyx;, immediately
implies that  is bounded by a single slice. When, instead, only (H3) is assumed,
the information in (4.4) may be trivial. In this second case, arguing as in [Brel3],
we deduce from umbilicality and the Codazzi equations that vq(p) is an eigenvector
of (Ricar)|p at every p € X. Since (H4) implies that (0/9r)|, is a simple eigenvector
of (Ricas)lp, we thus find that, at each p € &, vq(p) is either parallel or orthogonal
to (0/0r)|p. Concluding rigidity from this weaker information using only standard
facts on sets of finite perimeter does not seem immediate; however, the fact that
M \ © has positive reach in (M, g*) can be exploited to quickly reach the desired
conclusion.

Proof of Theorem 4.1. Preparation of M: The results of Section 2 and Section
3 require the completeness of the ambient manifold. Notice that (M, g) is not
complete. A first problem is that geodesics in (M, g) may arrive in finite time to
the horizon Np: this issue is fixed by passing from g to ¢* = f~2g. A different
issue, however, is the behavior of geodesics near the 7-end of M. To fix this second
problem we argue as follows. By assumption ¥ C M°, there is (a,b) CC (0,7) such
that

a—i—b).

Ech[a,“Ter}, Qch(o, (4.6)

Correspondingly we can consider a smooth positive function h; : [0,400) = R so
that hy, = h on [0,b], hy > 0 on (0, 00), and

> dt
sup hy, < 0o, / — 7~ = +00.
[0,00) b y(t)

S5Here, given v = (7,a) € T(e,tyM = Te N x R, we have set (gN)|(z,0) (¥, v) = (9N ) (7, 7).
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We introduce the metrics g, = dr @ dr + hy(r)?gn and g; = f, > g, on N x (0, 00),
where fy(p) = hy(r(p)). Since (H1) and hy = h on [0, b] imply

/bﬁ N
oo,
o hy(t)

we easily see that g;-geodesic balls centered at points p € N x (0, +00) are contained
in compact slabs of the form N x [s,t] (0 < s < t < 00). In particular, by the Hopf-
Rinow theorem, (N x (0,00), ;) is a complete Riemannian manifold. Notice that
hy satisfies assumption (H3) on (0,b), where it coincides with h, but, possibly, not
on (0, 00).

We have thus reduced to the following situation: M = N x (0, c0); the metric
g =dr@dr+ h(r)? gy is such that (HO) and (H1) hold, (H2) holds on (0,00) (i.e.,
R’ >0 on (0,00)), (H3) holds on (0,b), and

sup f < 00} (4.7)
M

the metric g* = f~2 g is such that (M, g*) is a complete Riemannian manifold; and,
finally, 3 and Q satisfy (4.6) in addition to assumptions (A1), (A2), and (A3).

The “vertical” vector field X: The shortest path between points (z,t1) and (z, t2) in
(M, g*) with t; € (0,t2) is given by s € [t1,ta] — (x, s) (while distg-((z,0), (z,t)) =
+oo for every z € N and t > 0). “Vertical” segments are thus length minimizing
geodesics in (M, g*), and the vector field 9/90r has a special role in the geometry of
(M, g*). Tt is also convenient to consider, alongside with 9/0r, its rescaled version

d
X=ho.
Simple computations show that
. - f
div (9/0r) = (n—1) g (4.8)
<mmep{m—n—i]aay}f onT (4.9)
Pt (3] n g h or b) )
divX=nf onM, diviX=(mn-1)f onT, (4.10)

whenever T' is a C'-hypersurface and {o;}/-}' denotes a g-orthonormal basis of
T,T for some p € I'. An immediate consequence of (4.9) is that if I' is a closed

CM 1 hypersurface in M° with H"~ (') < oo and with mean curvature vector Hp
in (M, g), and if A" or > 0 on T, then

n— n—1 <ﬁF,X>g n—1
(n—1)H (r)zlA:__7r——dH . (4.11)
Indeed, by (4.10) we find
. XN (VI f, X)
leF(T)—(n—l)_Tga

where Vf = [(h”/h) o 7] X. Denoting by X! the projection of X along TT, we
find (X, V' f), = [(h"/}') o 7] |XT|2. Hence, by applying the divergence theorem
to X/f on T and by using h” or > 0 on I, we find (4.11).
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“Immersed” geodesic flow from X: The vector field
vo = fro
is a smooth ¢g*-unit normal to ¥, pointing out of €. Now, denoting by exp* the

exponential map in the complete Riemannian manifold (M, ¢g*), we can define a
smooth map @ : ¥ x (0,00) — M by setting

D(x,1) = By(z) = exp® (2, ~tv(z),  TEX,t>0.
In this way, denoting by J>®, the tangential Jacobian® of ®, along ¥,
0P
®(z,0) ==, E(x,()) = —f(x)va(z), J ®(x)=1, VzeX. (4.12)

By (4.6) and (4.12), we have that ®;(z) € N x (0,b) with J*®,(x) > 0 for every
t small enough. We can thus define a lower semicontinuous, positive function Ry :
¥ — (0, 00] by setting

Rs(z) = min{inf{t >0 J5®,(x) = 0},
inf {t > 0: ,(z) ¢ N x (o,b)}}, e,
so to have
®y(z) € N x (0,b) and JZ®(z) >0, (4.13)
V(z,t) € Ay = {(x,t) EDIN RS (O,Rg(x))} .
By the Gauss lemma (see, e.g., [Sak96, pag. 60]), for every (x,t) € As,

9 ) e (d@t(x)mz])l, %—f(x,t) = F(@i(a)). (4.14)

ot

In particular, the tangential Jacobian J4=® of ® along Ay, is related to J>®, by
the identity

(JA=®)(x,t) = f(Ds(x)) JZDs(x),  Y(a,t) € As. (4.15)
We now notice that, for every ¢t € (0,00), { Ry, > t} is an open subset of X, and
Iy =@ ({Rg > t}), t>0,

is a smooth immersed hypersurface in M. Indeed, by construction, for every
(x,t) € As there is an open neighborhood W of z in ¥ such that (®,)|w is a
smooth embedding. Correspondingly, we denote” by H(z,t) and II(z,t) the scalar
mean curvature and the second fundamental form (in the metric g) of the smooth
hypersurface ®,(W) at the point ®,(z) and with respect to the normal

1 0P
f(@4(x)) Ot
(see (4.15)). Notice that v(z,0) = vq(x) for z € X. Since, by (4.13), ®¢(x) €
N x (0,b) for every t € (0, Rx(x)), and since h satisfies (H3) on (0, ), the pointwise

v(z,t) = — (z,t), (4.16)

6Here and in the following, H* and J always denote Hausdorff measures and Jacobians com-
puted with respect to the metric g.

"Notice carefully that ® may not be injective on the whole Ay, therefore we will not be able
to consider H and II as functions on ®(Ayx) C M.
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calculations in [Brel3, Proposition 3.2] (which are based on (HO0) and (H3) and the
Riccati equation) can be repeated verbatim to show that, everywhere on Ay,

0/ H H?
—(—) > >—— 4.1
6t(fo<1>)_| Rk (4.17)
0 (fod 2 (fo@)? (fo®)?
el < —|II < - . 4.1
Bt(H)_ i H2 — n-1 (4.18)
Since H(-,0) > 0 on ¥ by assumption (A2), we see that (4.17) implies
H is positive on Ay . (4.19)
Moreover, we have that
0
— JZ®(2) = —[(f o ®) H](x,t) J*®(x),  V(a,t) € Az, (4.20)

ot
Indeed, given (z,t) € Ay and W as above, if W’ is an arbitrary open subset of
W C X then, by the area formula,

d Hn—l(q)S(W/)) o d / JE(I)S dHn—l :/ QJZ(I)t dHn—l
s=t ’ ’

d_S s=t B E 8t

while, by the formula for the first variation of the area and by (4.14)

d
@) = - [ (e e B0 Pe)ang
so that (4.20) follows by arbitrariness of W’. We finally notice that

if z €%, Ry(z) < o0, and JE®(z) = 0 ast — Rx(x)”,

then H(z,t) = +o0 ast — Rx(x)” . (4.21)

Indeed, (4.20) gives

log (J>®¢(z)) = —/0 [(f o®) H|(z,5)ds, vt € (0, Rn(z)).

A refinement of (4.18): We claim that, everywhere on As,

_{%(f}olfb)Jr({lo_@l)z} _ (foq))z{l%j_nil} (122)
+f132<1> W {Ricy — p(n—2)gn}(v,v)
A (M) g ).
where, by definition,
M[h]ZQh—”—(n—%LW- (4.23)

h h?
Indeed, setting T = (Af)g — D? f + f Ricy, by [Brel3, Proposition 2.1] we have
that

T = 1’ {Ricy —p(n—2)gN}+h;(M[h])’gN, (4.24)

while the computations in [Brel3, Proposition 3.2] give

%(f}}@) =(fo®)? {ﬁ - g{ij} _ <f1§2<1>>
19
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The combination of (4.24) and (4.25) leads immediately to (4.22).

Geodesic flow from ¥: We now consider the (embedded) geodesic flow of ¥ (which
is the main structure used in Brendle’s argument), i.e. we relate @ to the distance
function from ¥ in (M, g*). Let us define, for the sake of brevity, u% : @ — [0, 00)
and R} : X — (0,00) by setting

’U/E(p) = diStg* (p7 E) ) pe Q,
B(r) = p5l, —vo(e))
= sup{s>0:s=uy(Ps(2))}, rED,

(where, for I" closed in M, pf is defined as in (2.2) with respect to the metric g*)
and then consider the sets

% = {peQ:ux(p) >},

o= {peQ:ug(p) =t} =M N,
¥ = &, ({Ry >t}) CXy,

Ay = {(zt):zeX te(0,Rs(x)}.

(Notice that if 9Q = X, then 9 = ¥;; if, otherwise, 92 = ¥ U Ny, then 0§ =
2 UNp.) It is easily seen that R% is continuous on X, so that {RE > t} is an open
subset of X for every ¢t > 0, and A3, is open. The fact that ® is a diffeomorphism
on A% with values in Q is standard (since ¥ is smooth), so that

B(AL) CQ, Re(x)>Rilx) Veex, AL CAs, (4.26)

and @, is a smooth embedding of { RE > t} into M. In particular, for each ¢ > 0, X}
is a (possibly empty, embedded) hypersurface in M. (Notice that T'; is, in general,
larger than ¥}, immersed but not embedded, and unrelated to u¥.) The vector field
(see (4.16))

vi(y) = v(®;  (y),t), y e Xy, (4.27)
is a unit normal vector field to ¥} in (M, g) with the property that
H(®;'(y),t) = Hy; (y)  y e, (4.28)

where Hy: is the scalar mean curvature of 3 with respect to v;. We now prove
three important geometric properties of the family {X}};, namely, we show that

H"(Q2\ @(43)) =0, (4.29)
HU(Z\BF) =0,  for L'ae. t >0, (4.30)

and that, when 02 = ¥ U Ny,
HH(2F) > h(0)" ' vol (N),  for L'-ae. t>0. (4.31)

We begin noticing that (4.29) is immediate to prove when ¥ is a closed smooth
hypersurface, since, in that case, we trivially see that 2\ ®(A%) C Cut™(X), where
Cut” denotes the cut-locus in (M, g*), and H"(Cut* (X)) = 0 by Theorem 2.1-(v).
In our non-smooth setting, we begin noticing that, by assumption (A3) and Lemma
3.2, there is A* > 0 such that ¥ is a White (n — 1, A\*)-subset of (M, g*). Now, by
construction,
0\ B(4f) € Cut*(5) Uexp [N(E)L S\ 2]
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Since X is a White (n—1, \*)-set in (M, g*) and H"~}(X\ &) = 0 we conclude from
Theorem 3.3 that

H'NE)LE\D) =0 and H"(exp” NE)L(E\D)]) =0.

Since H"(Cut* (X)) = 0, we conclude the proof of (4.29). By (4.29) and the coarea
formula we have

0:/ |Vug |y dH" :/ HH(E, \ @(AY)) ds,

Q\B(AL) 0

which immediately implies (4.30) by ¥} = ¥, N ®(A%). Finally, to prove (4.31),
we notice that, since u3 is a Lipschitz function, Q; = {uf > t} is a set of finite
perimeter in M for £'-a.e. t > 0. Since 0 = X U Ny implies 9 = Ny U Xy, by
(4.30) the reduced boundary 9*€); of € is H"~!-equivalent to the union of Ny and
%%, with measure theoretic outer g-unit normal v, such that vo, = —9/9r on Ny
and v, = v on Xf; in particular,

/ div (9/0r) = / (V4,0 0r)y dH"1 — HP(Ny).
Q4 *

DM

By (4.8), and since both 9/dr and v; have unit length in g, we deduce H"~1(X}) >
H"1(Np), which is (4.31).

A general Heintze—Karcher inequality: We now prove a general Heintze—Karcher
inequality, see (4.33) below, which implies both (4.2) and (4.3), and which allows
one to deduce the crucial positive reach information contained in conclusion (c)

when equality holds in either (4.2) or (4.3). We start noticing that, by (4.18) and
(4.20),

Rs(x)
/d%;“l/ (f 0 ®)%(x,t) J=®y(x) dt (4.32)
b)) 0
g—(n—1)/ dHr! /RZ(w)%(f;I(I))(:v,t)szbt(:v)dt
z 0
:_(n_1)/E d%;l/ORE(I)(fo@)Q (z,t) J=®y(x) dt
—(n—1) /Z [(J[C’T‘I’) (2.1) 7@ (x)] e

By (4.15), the area formula, and (4.29) we obtain

dHIE.

t=0
R3(w)

/d%;*l/ (f o @)% (z,t) J=D,(x) dt

» 0

-,
while by (4.12),

R S I e
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so that (4.32) gives

Rx(x)
n / fdH™ + / dH 1 / (f o ®)2 (x,t) JZ®y(z) dt + L(D)
Q by

R (@)
<(n—1) / L, (4.33)
» Hs
where

[ lim (fonb) (z,t) JZ Oy ()| dHEE.

t— Ry, (I)7

£®)=m-1 [

b
Notice that, for every x € %, t — J=®(z)[(f o ®)/H](x,t) is decreasing on
(0, Rx(x)) thanks to (4.18) and (4.20): in particular, the integrand in the defi-
nition of £(X) is a well-defined non-negative function, (4.2) follows immediately
from (4.33), and conclusion (a) is proved.

Conditional proof of conclusions (b) and (c): We now prove conclusions (b) and (c)
assuming the validity of the following inequality:

L(Z) > h(0)"vol(N),  when Q=S U Np. (4.34)

Indeed, if (4.34) holds, then (4.33) definitely implies (4.3), that is is conclusion (b).
Moreover, if equality holds in either (4.2) or (4.3), then inequality (4.32) (appearing
in the derivation of (4.33)) must hold as an identity. Therefore, since (4.18) was
used in proving (4.32), we find that if equality holds in either (4.2) or (4.3), then

d (fo®\  (fod)

E( i )z— 7 on Ay, (4.35)
Rx(z)

/E d”H;‘_l/R*( | (f 0 ®)? (z,t) J=®,(x)dt = 0. (4.36)
o) T

By (4.22), we see that (4.35) gives
H2
1% = —,  onds, (4.37)

which, tested with ¢ = 0, implies that ¥ is umbilical in (M, g) (the first part of
conclusion (c)), as well as
h3
2

which, tested with ¢ = 0, implies the validity of (4.4). A more delicate argument is
needed to deduce from (4.36) that M \ Q has positive reach in (M, g*) (the second
part of conclusion (c)), and it goes as follows: Since f > 0 on M (by assumption
(H2)) and J¥®.(x) > 0 for every t € (0, Rx(z)) (by definition of Rx(z)), (4.36)
implies that

(M[h])/gN(V, v)=0, on Ay,

Rx(z) = R (), for H" lae. 2 €3,

whence we infer from the lower semicontinuity of Ry, and the continuity of R} that

Ry (z) = R%(z), for every z € X. (4.38)
Let 2 € ¥ be such that Rx(x) < co. Should it be that
dist g (®4(x), No U Np) — 0T ast — Rx(z)™, (4.39)
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the facts that Rx(z) < oo and distg« (Ng, X) > distg+ (No, Ng) = +00 would imply
disty« (®4(x), Np) =+ 07 ast — Rs(z)™,
and thus, by (4.38), ®(A%) C Q, and (4.6), that

lim ®,(z) €QNN, =2,
t—Rx(z)~

a contradiction. Since (4.39) cannot occur, Ry (z) < oo must then imply JZ®;(x) —
0% as ¢ — Rx(z)": in this case, (4.21) holds, and we can integrate (4.35) over
t € (0, Re(z)) and take advantage of (4.12) so to find

fl@) ) f( @)
CHy(r) /0

where sup,, f2 < oo thanks to (4.7). Since 0 < Hy, < X on ¥ by assumption (A3),
we conclude (using again (4.6)) that

R (x)

sup f?,
1 m

dt > —
n—1 - n-—

(n—1) . (n—-1) . .,
R > ff> fh'.
=() 2 A supyy f2 B /2 A supyy f2 [lar}b]

We have thus proved the existence of a positive constant ¢(X) such that® By as-
sumption (A2), (M \ Q) = %, therefore

NY M\ Q) ¢ N'E, (4.41)
N(MN\NQNN'ELE) = {(z,—v() :z € X}. (4.42)

At the same time, by applying Theorem 3.3 with I' = Y (which is admissible by
assumption (A3)), m = n—1, and Z = ¥ \ ¥ (which is admissible since, by
assumption (A1), H"1(X\ X) = 0), we find that

HIN'EL(E\D)) =0. (4.43)
By combining (4.41), (4.42) and (4.43) we thus find
(z,m) = (x, —v5(x)) for H" t-ae. (v,m) e NY(M\Q),
so that the function, for " 1-a.e. (z,7) € N1 (M \ Q) we have
panal®:n) = pynal@, —vo(z))
= sup{s>0:s=disty (exp* (z,—svi(z)), M\ Q)}.
Since dist g« (p, M \ ) = disty«(p, X) for p € Q and since
exp®(z, —svo(z)) € Q, Vs € (0,ppalx, —v5(2))),
by (4.40) we conclude that, for H" t-a.e. (z,n) € N} (M \ Q),
pana(E,m) = pglE, —vo(z)) = Ry (r) = ¢(X) > 0.

8Gince it is false that every (z,7n) € N'E is an accumulation point of {(z, —1(z)) : @ € T}, we

cannot, deduce a lower bound for ps on A’'S by simply combining (4.40), R (z) = pi(x, —14,(2)),

and the upper semicontinuity of p%- on N1Z. In general, 'Y minus the closure of {(z, —v§(z)) :

x € B}) may even be of positive H"~!-measure.

Ri(z) = Re(z) > (), Vael. (4.40)
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We can thus apply Theorem 2.1-(vii) and Remark 2.1 to finally conclude that M\
is a set of positive reach in (M, g*). We are thus left to prove (4.34) to complete
the proof of conclusions (b) and (c).

Proof of (4.34): We start by setting, for every (z,t) € ¥ x [0, 00),

sy = { () @00, e¥,1e 0Rsw),

0, r€X,t> Ry(z).

By (4.18), (4.20), and the non-negativity of f, H and J¥®;, we see that ¢ € [0, c0) >
g(z,t) is decreasing, and thus provides a non-negative extension of J*® (f o ®)/H
from Ay, to the whole 3 X [0, 00) such that

LX)=(m—1) lim [ g(x,t)dH* .

t—o0 )

Now, since {Ry, >t} C ¥ and since t < RE(z) implies t < Rx(x) we have

- fo®y s -1 / -1
gz, t) dH z/ JPO dH T = | —dH" T,
/z {RE >t} ( H ) ' sy Hs;

where we have used (4.28). Now, by the Cauchy—Schwartz inequality,

Hs -1
LdHn—l > Hn—l(zzs)2 (/ %d?—[”_l)

Dy Hs; &7

so that, in summary,

Hys -1
£(2) = (n—1) imsup A" 1(5)2 (| =Eannt) (4.44)
t—00 2; f
Claim: for every A € (0,1) there is to = to()) so that, if ¢ > to, then
igf(X, vy > Ah(0), (4.45)
(n—1)H"(E}) > Hys: 7<X’fut>g dH" !, (4.46)
=

with v as in (4.27). Notice that by combining (4.44), (4.45) and (4.46) we obtain
indeed that

LE) > (n-1) limsupin*f<X,1/,5)97-["_1(2:)2 (/ Hfz; (X, Vt>g)71
b3

t—oo 2f

> AR(0) limsup H" *(XF) > Ah(0)" vol (N),

t—o0
where in the last step we have used (4.31). By letting A — 1~ we deduce (4.34).
We are thus left to prove (4.45) and (4.46) to complete the proof of conclusions (b)
and (c).
Proof of (4.45): Recalling that Q; = {x € Q : disty (z,%) > t}, we now consider

ug, = distg« (-, Q) t>0,
and notice that, with the same argument used in the proof of [Brel3, Lemma 3.6],
for every A € (0,1) there is tg = to(\) such that, if p € O, and « is a g*-unit speed
geodesic with a(0) = p and a(u¥(p)) € %, then |o/(0)|, = f(p) and

(@'(0),0/0r)g = X f(p).- (4.47)
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(In more geometric terms, every g*-unit speed geodesic that ends up in ¥ after
originating in Q from a point at a sufficiently large distance from X, must have
an initial velocity with “almost vertical” direction). If ¢ > ¢y we can apply this
statement to any p € Xj C Xy C 4, and with o/(0) = f(p) v(p), so to find

(ve(p),0/0r)g 2 A Vpe Xy,
from which (4.45) follows since X = h9/9r and h > h(0) on M.

As an additional consequence of (4.47), setting from now on ty = to(A\)|x=1/2, we
also notice that, for every t > ¢,

Q; has positive reach in (M, g*). (4.48)

To prove this, thanks to Theorem 2.3, we only need to show that u3, has no critical
points in €, (to = to(A)[x=1/2), that is, that there cannot be p € €, such that for
every v € T, M with |v|g« = 1 one can find a g*-unit speed geodesic a with a(0) = p
and a(u¥(p)) € ¥ such that (v,a’(0)), > 0; and, indeed, any such a would satisfy
(&/(0),0/0r)g» > f(p)/2 by (4.47), so that, taking v = —f(p) (9/9r), we would
obtain a contradiction.

Proof of (4.46): The proof is based on an approximation argument. Precisely, for
t >0 and e < min{1, ¢}, we consider the sets

Wie={zeM:up,(z)=c},

so that
N CWie CQ1 \ Qs Vt > 0,e < min{l,t}, (4.49)

and reduce the proof of (4.46) to showing that

lim H" (W) = H (2, (4.50)

e—0t

X, v X
im [ Hye Sotimede et o [ B0V e g
=0t oy f S
Hy, X
lim inf / Hwis Xy jayna >0. (4.52)
e—0+t Wy, e\Z7_, f

Indeed, thanks to (H1), there is 71 > 0 such that A” > 0 on (0,271). Up to further
increase the value of ¢y, we can ensure ;1 C N x [0,r] for every ¢ > to. In
particular, by Wy . C Q;_1, we conclude that »” > 0 on W; .. Since W; . is a closed
Cl1-hypersurface in M° with H" (W, ) < oo, by (4.11) we find

Hw, X
(n—1)H" " (W) > /W %dml (4.53)
Hw, ., X _
:/ < Wies >9 dHn—l 4 HZ* <Vt 57X>9 dHn—l
Wi, \S:_ f sr. - f

where we have used ¥j__ C W, . to deduce
o = - .
I’I{/Vh5 = HEZZE = HZLE Vi_e O Et—a'

By using (4.50), (4.51), (4.52), and (4.53) we deduce immediately (4.46). We now
turn to the proof of (4.50), (4.51), and (4.52). We shall use the following preliminary
step:
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Proof of (4.50) and (4.51): Thanks to (4.48) we can apply Theorem 2.2 with
A= Q4 t >ty and find &, € (0,min{1,¢}) such that, if e € (0,e;), then W, . =
{ug,, = €} is a compact C"!-hypersurface contained in UP(£;) and the g*-geodesic
flow W' : N () x [0,¢) = {0 < uy, < e} defined by

\Ijt(pﬂ 7775) = \Ijz(pv 77) = exp*(p7‘€n) ) (pu 7775) € Nl (ﬁt) X [07 Et) )
is such that W' is a locally bi-Lipschitz map N!(Q;) to W, . when & > 0, with
Ui (p,n) = p. In particular, _
o' == N ()

is a (n — 1)-dimensional compact Lipschitz submanifold of TM. On noticing that

N () = @ for every p € £, U Ny, since 9 = ¥; U Ny we find that

P
N Q) = N ( Q) L2, ie. (p,n) € O implies p € %, . (4.54)
Moreover, by Theorem 2.1-(iii) (applied to €, see, in particular, (2.5)),
'H,O(./V; () =1, for H* lae. peX,. (4.55)
Finally, the smoothness of (p,n) € TM — exp*(p,en) € M ensures that
lim JO WL (p,n) = JO Uh(p, ), (4.56)
e—0+t

for H" '-a.e. (p,n) € O (ie., at every (p,n) such that T(, ,\O" exists). Since WL
and its differential are locally bounded in (M, g), we can apply the area formula
(to ¥l), the dominated convergence theorem (in combination with (4.56)), and the
area formula again (to ¥f) to find

lim H* (W)= lim [ JOWlan ! = / JO WL gyt

e—0t e—=0t Jot ot
:/ HO((Wh)~ () dHn— = / HO(WL(E)) dHiL,
wi(en wy(e")
which, combined with (4.55) and ¥} (0) C X, (i.e. (4.54)), gives
lim H" 1 (W,.) :/ HONG () dHEE <HPH(E). (4.57)
v

e—0t HGR)

Now, to prove (4.50), let us consider the diffeomorphisms ¢, : £} — X;__ defined
by

6-() = e (0 (1)) = exp®(a,2 (@) (), Ve X
By the area formula,

W (=) = [ e
iy
Since ¢. — Id and J = ¢ — 1 on X} as € = 0, we conclude by dominated conver-
gence that

lim H" NS5 ) =H" (D). (4.58)
e—0t

Thus, by combining (4.57) and (4.58) with the facts that 37 . C W, . and X} is
H"Lequivalent to ; (recall (4.30)), we deduce (4.50) and
lim H" ' (W, .\ 3F ) =0. (4.59)

e—0t
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To prove (4.51) we notice that, since (1)

s: = (®5)7! on ¥, we have
(@ Nls; _0¢e = ()  =(271)

so that, the area formula gives

= on EI 5

-1
HE; <X7 ’/t—a‘)g dH"Y = / (HO (q)t—a)_l) <X7 va o ((I)t—a) >g
. f . f
X
_ HE;* < O¢€aut>g J(bs dHn717
= Jooe
for every € > 0. Then (4.51) follows by dominated convergence.
Proof of (4.52): We finally prove (4.52), that is,
Hw. . X
lim inf Hweer X9 a1 5 . (4.60)
e—0t Wt,s\E:,E f
Setting, for the sake of brevity,
_ _Vub, H,.— W (4.61)
Vte = |Vu?zt|g , te = 0w, . " Vte, on Wte, .

we notice that vy . defines a Lipschitz continuous g-unit normal to W ., and that
H, . is the scalar mean curvature (as usual, with respect to g) of W, . relative to
v¢. With this notation, and thanks to (4.59), (4.60) follows by showing that

Vi[pf (V1,£,0/0r)y >0, (4.62)
H;.(z) > —A(t), for H" tae. z € Wy, (4.63)

for a (positive) constant A(t) independent of e.

Proof of (4.62): We start by proving the existence of a positive constant ¢ such
that

<77, X(p)>g* >c, VY(p,n) €O:,t>1. (4.64)

Since (n,v)4+ < 0 whenever n € N,(Q:) and v € T,(;) (where T,(€) is tangent
cone to Q; at p), and recalling (4.55), the validity of (4.64) (for an explicitly com-
putable constant op) can be easily deduced by showing that, for every ¢t > ¢, and
pE X C Yy,

veT,M, |vl,=1,
15 = v e T,(Q). (4.65)
<U, _(8/8T)|;D>q > 1_6 ) ?

(In geometric terms: leaving p € ¥; = (9€;) N M° along a sufficiently “vertical
and downward” direction, we stay inside €2;.) The proof of (4.65) follows closely
that of [Brel3, Lemma 3.7], but since the two statements are not immediate to
compare, we include the details. We need to consider an arbitrary g-unit speed
curve v : [0,1] = M with v(0) = p and 4/(0) = v, and prove the existence of
o € (0,1) such that uf(vy(s)) > t for every s € (0,0). To begin with, we can
definitely chose o so that

, 15
7(5) € Qto ) <7 (S)v _(a/aT)|V(s)>q > E ; Vs € [0,0’] .
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For every s € (0,0), the fact that v(s) € Q, implies u}(y(s)) > 0, and thus the
existence of a g*-unit speed geodesic oy with a(0) = v(s) and as(ug(v(s))) € .
By (4.47) (with A = 1/2), since w(s) = o/ (0)/f((s)) is a g-unit vector, we find

5 < (w(s), (010, = (w(s).7' () + (@/0r)|yco), — (w(5), 7 (5))g
< () + 0700 o], — (w(s),7' ()
= 2= 2(7(9), =0/ |99 — w(5).7 ()
< Ay, e (w7 () > 5 Vs (0,0).

Using the facts that ug(p) =t and that, for a.e. s € (0,0), u¥ o~ is differentiable
at y(s) with

(u5;07)(s) = (V'ugp(v(s)), 7' (s))g = (=

we thus find that, for every s’ € (0, 0),

~
~—~
=)
~—
=
~
—
V)
N
Nt

’

usr() =+ [ P e

as desired. This proves (4.65), and thus, as explained, (4.64).

We are now ready to deduce (4.62) from (4.64). First, by (4.64) there are positive
constants ¢ and 4 such that
(n,0/0r)g > ¢, (4.66)
whenever (g,7') lies in the §-neighborhood A (0?!) of ©f = N'1(;) in TM. Second,
by smoothness of (p,7n,e) — exp*(p,en), we can find & < ¢; depending on ¢ such
that

t
{(\Ift(p,n,s), %(p,n,s)) :(pm) €60, 0<e< 8/} C As(©h).

Third, since P! is a bijection from ©! to W; ., we see that for each x € W, . there

is a unique pair (p,n) with p € ¥, and n € N () such that = = ¥.(p,n). Thus,

taking also into account that (in general) |[V*v|g,« = f|Vol|, (by V*v = f2Vu),

that |V*ug, |4~ = 1 (wherever ug, is differentiable), and that ug, is differentiable

along ¢ — Ul(p,n) with g*-gradient given by dW!/de, we conclude that

Vug, (W (p, 7))
w0/l = (g ity ")

= f(\I]é (p, 77)) <Vu5t (\I]é (p7 77))7 a/ar>9

= T(U) (G (e).0/0r), > ¢ nf > 0,

g

provided € < ¢’. This proves (4.62).
Proof of (4.63): Let us consider the open set
Ae = U{peQ:ug, (p) <e},

that has Cl!'-boundary and g-unit outer unit normal given by VA,. = Vie ON

0A; . = Wy, with 14 . as in (4.61). Given x € W; . such that v, . is differentiable

at z (this holds at H" l-a.e. z € W, ), let B denote the g*-geodesic ball centered

at exp™(x, (u/2) V*ug, (7)), where p; < min{l,&:} is smaller than the injectivity
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radius of M in Q;_5 \ Qi11, so to entail that B} has smooth boundary. Since, by
construction,

IE&ALEQ(‘?B;, At15CM\B;,

by the weak maximum principle for C'+!'-vs-smooth hypersurfaces we find

Hyw, (z) = Ha, (2)  vie(x) > Happs - vee(x) = —Hp: (2),

where Hp-(x) denotes the scalar mean curvature of B} in (M, g), computed with
respect to the outer g-unit normal to B at = (i.e., with respect to —v; o(x)). Now,
if Hp. denotes the scalar mean curvature of B} in (M, g*) computed with respect
to the outer g*-unit normal to B} at z, then by (3.2) we find

Hpy(a) < Hp,(2)+3(n—1)|[Viog(f)(@)l,
< (n— 1) /i coth(y/fz 1e/2) + 3 (n — 1) |V log(f) (@)1, .

where in the last inequality we have denoted by —k; a negative lower bound for
the sectional curvatures of (M, g*) in Q;_2 \ Q¢y1, and have used [Kar89, pag.
184] (comparison with the mean curvature of geodesic balls in an hyperbolic model
space). Since the right-hand side can be bounded by a positive constant A(t),
we have concluded the proof of (4.63), and thus of conclusions (b) and (c) of the
theorem. 0

Proof of Theorem 4.2. Preparation: As in the proof of Theorem 4.1, we reduce the
case when M = N x (0, 00), (HO) and (H1) hold, (H2) holds on (0,00) (i.e., A’ > 0
on (0,00)), (H3) and (H4) hold on (0,b) (if (M, g) € B,,) or (H3)* holds on (0,b)
(if (M, g) € B); f = W or is bounded on M and the metric g* = f~2 g is such that
(M, g*) is a complete Riemannian manifold; and, finally, ¥ and € satisfy (4.6) in
addition to assumptions (A1), (A2)’, and (A3)’. Next, by testing (4.5) with vector
fields compactly supported in M \ (X \ ) we see that

Hs. = Hy on X,
while testing (4.5) with X = h d/9r and taking into account that diV_EX =(n-1)f
on ¥ and div (X) =n f on M by (4.10), we find, in the case 92 = X,
(n—1) / faH" !t = / div¥X dH" ' = Hy / (X,vq), dH"
b ) )

= Ho/diVX:Ho’rL f,
Q Q

i.e., Hx = Hy > 0 (so that (A2) holds) and (4.2) holds as an equality; and, in the
case 90 = T U Ny,

(n—1)/fcm"*1 = /divEXd”H"’l:Ho/<X,yg>gd7-[”’1
z P P

= H, / div X dH"™ — / (X,0/0r)y dH™
Q

Ny
= Hon [ f—h(0)"vol(N),
Q
ie, Hy = Hp > 0 (so that (A2) holds) and (4.3) holds as an equality; finally,

Theorem 3.1 and (4.5) imply the validity of assumption (A3). We can thus apply
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conclusion (c) of Theorem 4.1 to conclude that

Y is umbilical and has constant mean curvature in (M,g),  (4.67)
M \ Q has positive reach in (M, g*), (4.68)
(M[h])/gN(VQ, VQ) =0on E, (469)

with M[h] defined as in (4.23).

Conclusion of the proof if (M, g) € B} In this case, (4.6) and the validity of (H3)*
on (0,b) implies that (M[h])’ > 0 on X, so that (4.69) gives

if p € ¥, then vq(p) is parallel to (9/9r)|, - (4.70)

Now, if ¢ is a local chart of N, defined on a ball B in R"~!, then 1 (z,t) = (¢(x),t)
defines a local chart of M defined on the open set V = B x (0,7); clearly, ¢~1(£2)
is a set of finite perimeter in V' C R", with vy-1(q) parallel to e, H" lae. on
0*[p=1(Q)]; by [Magl2, Exercise 15.18], 1 ~1(2) NV is H"-equivalent to B x J,
where J is a finite union of open intervals compactly contained in (0,7); covering
N by such charts ¢, and going back to M, we conclude that €2 is H"-equivalent
to a Ny x J. Then, the fact that Hy, is constant implies that J is either equal to
(0,%9) or to (to,T) for some ¢y € (0,7), and the theorem is proved.

Conclusion of the proof if (M, g) € B,: Condition (4.67) combined with the Codazzi
equations implies that

(Ricar)p(va(p),oi(p)) =0, VpeX,i=1,...,.n—1, (4.71)
provided {o; (p)}?;ll is an g-orthonormal basis of T,,X; in particular,
if p € X, then vo(p) is an eigenvector of Ric,, . (4.72)

Since (H4) implies that (9/9r)|, is a simple eigenvector of (Ricys) (with eigenvalue
—(n—=1) (" /h)(r(p))), it follows from (4.72) that

if p € X, then vo(p) is either orthogonal or parallel to (9/9r)|, . (4.73)
Now, by (4.6), there is to > 0 and py € ¥ such that
N x (0,t9) CQ,  po€XNNy, CON. (4.74)

From here, in the smooth case when ¥ = ¥ (i.e., in the case considered in [Brel3]),
(4.73) and (4.74) immediately imply, first, that vo(po) = (0/0r)|p,, and, second,
that Ny, C X; from which a sliding argument (also required and detailed below in
the non-smooth case) proves the theorem.

However, in the non-smooth case, we cannot immediately conclude the contain-
ment of Ny, into X, and, actually, it is not even clear if ¥ is regular at the contact
point po defined in (4.74): indeed, the blow-up of (the multiplicity one varifold
associated to) ¥ at pg is an hyperplane with multiplicity possibly higher than one —
thus preventing the use of Allard’s regularity theorem to infer py € 3. To exit this
impasse we make crucial use of the positive reach property (4.68), which we use to
prove the following approzimation property: for every (p,n) € N'*(M \ Q) there are
a connected component ¥’ of ¥ and a sequence {p;}; C ¥’ such that

(pi, = f(ps)valp;) = (p,n) in N'(M\Q). (4.75)
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Indeed, by (4.68) and Theorem 2.2, there is so > 0 such that, for every s € (0, sg),
the sets

Zy={x e M :dist"(z, M\ Q) = s},

are Cll-hypersurfaces, and the map W,(p,n) = exp*(p,sn) is bi-Lipschitz from
NYHM\ Q) to Zs. We notice that

NUMN\Q)E = {(p,~f(p) va(p)) : p € B},
and set
Zr =0, N (M\Q)Z) C Z,.

By arguing as in the proof of (4.30), with the aid of Theorem 3.3 we find that, for
Ll-ae. s € (0,s0), ZF is H" l-equivalent to Z;. For any such s, Z* is an open
dense subset of Z;, and we can find a sequence {g¢,},, contained in same connected
component Z:* of Z¥, such that ¢; — ®s(p,n) € Zs. Setting w(q,7) = ¢ for every
(q,7) € TM, we see that p; = w[(®s)"*(g;)] defines a sequence contained in a same
connected subset 7[(®) 71 (Z*)] of X, and such that

(pj, —f(pj) valp))) = (@) g;) = (pn)

in T'M, thus proving (4.75). We now combine (4.75) with the fact that, by definition
of py (recall (4.74)) it holds

~f0) 52| € NI\, (1.76)

to find a sequence {p;};, contained in a connected component ¥’ of X, such that

(i, —f(j) va(p;)) = (pPo, —f(P0)(0/07r)|p,) as j — co. By (4.73), up to extracting
subsequences, there are two alternatives: either

—f(p;) va(p;) is parallel to (0/0r)|,; for every j, (4.77)

or gp, (va(p;), (0/0r)|p,) = 0 for every j, where the latter is clearly contradictory,
since |0/0r|y = 1. By smoothness and connectedness of ¥/, by (4.73), and since
Y’ contains points p; as in (4.77) with p; — po as j — o0, we conclude that ¥’ is
an open connected subset of Ny,. In fact, it must be ¥’ = N, because the above
argument, with py replaced by a possible point pf, in the boundary of ¥’ relative to
Ny, , would lead to the contradiction that an open neighborhood of pj, in Ny, would
be contained in ¥/ itself. We have thus proved that

N, C X (4.78)
The same argument also shows that
Ny NEN[N X (tg,00)] = . (4.79)

By (4.79) we could then start sliding N; upwards to prove that either Q = N x (0, o)
with M° N oY =¥ = ¥ = Ny, thus concluding the proof of the theorem, or we
could find ¢; > %o such that

(fo,tl)\M\ﬁ, pleNtlﬁfcM\Q. (480)

By construction, —f(p1) (0/9r)[,, € Ny, (M \ ), and, by arguing as in the proof

of (4.78), we would find Ny, C X, with vg = —(9/0r)|p, along Ny,. In turn, this

would give that Hy, is negative along Ny, a contradiction. This finally proves the

theorem. O
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5. RIGIDITY AND COMPACTNESS THEOREM

Proof of Theorem 1.1. Up to change © with M \ €, since vo = —vpnq on 0*Q =
O*(M \ ), we can assume that A > 0. Let V be the multiplicity one rectifi-
able varifold associated to M° N 0*Q). The distributional constant mean curvature
condition (1.4) imply lower density bounds on ||Vq||, which in turn imply

H O\ 0*Q) = 0.

Therefore, it is not restrictive to assume that €2 is an open set such that M° N 9N
is compact, 0*Q = 9 and

H 00\ 07 Q) = 0. (5.1)

(see for instance the construction in the proof of [DRKS20, Lemma 6.2]). Notice
that 0*Q = 9*Q C 9Q C 99, hence taking the closure we find that 9Q = 9Q. By
Allard’s regularity theorem [All72], if we set

Y= {:v € spt||Vall : lim [Vall(By(z)) = 1} ,
p

S0t Wy pn !
then ¥ is a smooth, embedded hypersurface and
Y =M°No*Q. (5.2)

We now check that the pair (X, Q) satisfies the assumptions (A1), (A2)’ and (A3)’ of
Theorem 4.2, thus concluding the proof of the theorem. Clearly, (A3)’ is equivalent
o (1.4). Since M° N S is compact, we infer that ¥ C M°; moreover (5.1) means
that H"~1(X \ £) = 0. Henceforth (A1) holds. Concerning (A2)’, since M° N 99
is compact, we notice that lg is constant in a neighborhood A of Ny in M; if
lg = 0 on A then 9Q = ¥; if, otherwise 1o = 1 on A, then Ny C 99, and thus
0N =NyUZ. O

Proof of Theorem 1.2. From H"(Q;AQ) — 0 as j — oo we easily deduce that for
every xo € M° N 0*Q) there is z; € 0*Q; such that z; — xo in M; for, otherwise,
there would be p > 0, with B,(x9) N 0*Q; = & for every j, and X € C>°(B,(xo))
such that

1 = / (X, vq), dH" :/ div X dH"
Bp(wo)ﬁa*ﬂ Q
= lim div X dH" = lim (X,va;)q dH ' =0.
I Jq, I J B, (50)Nd*Q;

We thus conclude that
M°No*Q C N x [a,b] cC M°. (5.3)

By H"(Q;AQ) — 0 and, crucially, by Per(£2;) — Per(Q), as j — oo, we see that the
multiplicity one rectifiable varifolds V; associated to 0*Q2; converge, in the sense of
varifolds on M, to the multiplicity one rectifiable varifold V' associated to 9*2: in
particular, for every X € X(M),

lim div? U X aH™ ! = / div? X dHnt.
7700 J Meno* Meno*Q
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Again by H"(Q;AQ) — 0 as j — oo and thanks to the divergence theorem

fMoma*Qj (X,va;)q dH™ ! — fM°ﬂ6*9<X’ va)y dH" ! as j — oco. Therefore, (1.7)

implies
/ div? X dnn—! = A / (X,vo)y dH™ . (5.4)
M°N9*Q M°N9*Q
By (5.3) and (5.4) we can apply Theorem 1.1 to © and conclude the proof of the
theorem. (]

6. PROOF OF THEOREM 1.3

The key observation to prove Theorem 1.3 is contained in the following result,
that can be proved employing the same method of Theorem 4.1.

Theorem 6.1. Suppose (M, g) is a n-dimensional Riemannian manifold (notice
carefully that we do not assume this space to be geodesically complete) and f is a
smooth positive function on M such that

fRic—D?f + (Af)g>0 on M. (6.1)

Suppose Q C M is an open set with finite perimeter, with exterior unit-normal v,
such that Q is compact, and suppose ¥ C 0Q is a smooth embedded hypersurface
such that ¥ = 0Q is a White (n — 1,\)-set of (M,g), H* 1 (X \ ) = 0, and
Hy, = ﬁg - v 1S positive on 3.

Then

n/ FdH™ < (n— 1)/ L, (6.2)
Q s Hs
If the equality holds, then there exists to > 0 such that the sets

S ={p€Q:disty(p,X) =t}, for0<t<ty,

where g* = %, are closed embedded C1'-hypersurfaces, and for L' a.e. t € (0,t0)
there exists a smooth embedded umbilical hypersurface ¥} C ¥; such that

HP LS\ ) = 0.

Proof. Let N C M be a compact set with smooth boundary such that Q C int(N).
By [PV20, Corollary B], there exists a geodesically complete Riemannian extension
(M*,g*) of (N,g/f?) with 9M* = @. We denote by exp* the exponential map of
(M*,g*) and define

DX x[0,4+00) = M*, O(x,t) = Pi(x) = exp™(z, —tf (x)va(z))
and, for z € ¥,
Rx:(x) = min{inf{t > 0 : J*®;(2) = 0}, inf{t > 0: ®;(x) ¢ int(N)}}.

The conclusion now can be obtained by tracing the argument of Theorem 4.1 that
gives the Heintze-Karcher inequality (4.2). We omit to repeat these details here,
and we point out a couple of remarks. First, one needs to employ (6.1) in order
to obtain (4.17) and (4.18) in the present setting: in fact, one can repeat verbatim
the pointwise computations of [Brel3, Proposition 3.2], where only (6.1) is used.
Second, to analyze the equality case, firstly we observe, exactly in the same way
as in the proof of Theorem 4.1, that M* \ Q is a set of positive reach; henceforth,
by Theorem 2.2, there exists ¢, > 0 such that ¥; is a compact embedded C':!-
hypersurface for every 0 < t < tp; then, combining (4.30) and (4.37) we infer that
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3} is a smooth umbilical embedded hypersurface relatively open in 3; for every
t>0,and H" (X, \ X7) =0 for £ a.e. t > 0. O

We consider the upper-half space model of the hyperbolic space H™: namely
H* =R"} = {z € R" : x,, > 0} and

1
gun = E(dw% +... +d2?).

Proof of Theorem 1.3. Choose p € H" \  and define
r(z) = distas (2,),  £(z) = cosh(r(x)),

for € H"”. Recalling that the geodesic spheres in H" of radius p are smooth
embedded umbilical hypersurface with all principal curvatures equal to coth(p), a
straightforward computation gives that

D?f = sinh(r) D*r 4 cosh(r) dr ® dr,

D?f(x)(v,v) = cosh(r(x)), (6.3)
Af(z) = ncosh(r(z)),

f(x) Ricga (v,v) = D* f(2)(v,v) + Af(x)
= —(n — 1) cosh(r(z)) — cosh(r(z)) + n cosh(r(z)) =0,

for every v € T,(H") with |v] = 1. Henceforth, the Riemannian manifold (H™ \
{p}, gu~) endowed with the function f satisfies the hypothesis of Theorem 6.1.
Arguing as in the proof of Theorem 1.1, we notice that it is not restrictive to assume
that € is an open set such that 9Q = 9Q = 9*Q and H"~1(9Q\ 9*Q) = 0; by Allard
regularity theorem we also have that 9*() is a smooth embedded hypersurface. We
set ¥ = 9*2. By Theorem 3.1, X is a White (n — 1, \)-set of H". Finally, we need
to check that Hy is positive and the couple (€2, ) fulfills the equality in (6.2). The
equality (1.8) clearly implies that Hyx(x) = A for € 3. Moreover, since by (6.3)
and (6.4) we have that

V(Y F)(2) = Af () — D f(va (@), vo(@) = (n— Df(z) forz e,
we infer from (1.8) that

n— n—1 _ iVZ n—1 _ v " n—1
( 1)/2de /Ed (Vf)dH )\/E< 0, V [ dH

:)\/Adenzn)\/de".
Q Q

This implies that Hy = A > 0 and (2, X) fulfills the equality case in (6.2). We
conclude that there exists tg > 0 such that the sets

Y ={p€Q:disty-(p,T) =t}, for L' ae. 0 <t < tg,

qn

where g* = g}*—Q, are closed embedded C'+!-hypersurfaces with respect to the hyper-
bolic metric. Since the hyperbolic metric is conformally equivalent to the Euclidean
metric, and since changing conformally the metric of the ambient space preserves
umbilicity, we infer that 3, is also umbilical with respect to the Euclidean metric.
Henceforth, by [DRKS20, Lemma 3.2], we conclude that each ¥, is a finite disjoint
union of Euclidean spheres. Now the conclusion follows letting ¢ — 0.
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APPENDIX A. AsSUMPTION (H3)* AND MODELS IN GENERAL RELATIVITY

In this appendix we check that the Reissner-Nordstrom manifolds satisfy as-
sumption (H3)*, while the deSitter—Schwarzschild manifolds do not. This simple
fact, combined with the analysis of equality cases in Brendle’s Heintze—Karcher
type inequalities, shows that a stronger stability mechanism for almost-CMC hy-
persurfaces is at a play in the R-N manifolds. Indeed, when (H3)* holds, Brendle’s
argument also provides, in addition to almost-umbilicality, a direct control on the
oscillation of the normals with respect to the radial directions as measured by
gn(va, vq); see, for example, condition (4.4).

Let us set G = S"~1 x (s1, s2) for some 0 < 57 < 53 < +0o. The dS—S manifold
is then (G, gass), where

ds ® ds

gdss = 1 — ms2—" — pg? + 52 gsn—1,
with
4 1/(n—2)
m >0, —oo<n<(n—2)( ) .
n"m?2

When x > 0 the upper bound on s guarantees that 1 —m s2~" — ks? has exactly two

zeros s1 < sz on (0,00), while if kK < 0 we set so = 400, while s; is the unique zero
of 1 —ms?>™™ — ks? on (0,00). The R-N manifold is defined instead as (G, grn),
where

ds ® ds

2
1_m52—n+q284_2n+5 gsn—1, m>2q>0.

gRN =

2 847271

In this case s; is the largest of the two solutions of 1 —m s2~™ + ¢ =0on

(0, 00), while we set so = +00. Both examples can be modeled as
9w = (1/w(s))ds @ ds + s* ggn1
for a smooth function w : (s1, s2) — (0,00). We then define

F(s) = S% Vs € (s1,82), h(t) = F~1(t) Vte (0,7),7:= F(sy),

so that h(F(s)) = s for every s € (s1, s2), and
R (F(s)) = Vw(s), R'(F(s)) =w'(s)/2, Vi € (0,7). (A1)
Setting M = S"~! x (0,7), the map ¢ : M — G defined by ¢(7,t) = (1,h(t)) is
such that
(d)* go, = dr @ dr + h(r)* ggn—1 =: gn,
so that (G, g.,) is isometric to (M, g), and rigidity of CMC-hypersurfaces in dS—S

and R—N manifolds can be studied in their (M, g) representations. Since (H0) holds
with p = 1 we have
h (h/)z -1

27+(n—2)

B w(s)—1
h2 ‘F(s) s +(n=2) 2 {(s),
2—n

for every s € (s1, s2). We thus find, in the case of gqss, where w(s) =1 —ms*™" —

K 52,

n—2
52

L(s) =

[V

((n —2)ms!™" — 2k s) +
35
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so that (H3) holds (but (H3)* does not); in the case of grn, where w(s) = 1 —

ms2 " +q

254727 we have an identical cancellation of the mass term, but thanks

to the ¢?-term we rather find

n— 2
(o) = - DL

so that £(s) is strictly increasing on (s, s2), and (H3)* holds.
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