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RIGIDITY AND COMPACTNESS

WITH CONSTANT MEAN CURVATURE

IN WARPED PRODUCT MANIFOLDS

FRANCESCO MAGGI AND MARIO SANTILLI

Abstract. We prove the rigidity of rectifiable boundaries with constant dis-
tributional mean curvature in the Brendle class of warped product manifolds
(which includes important models in General Relativity, like the deSitter–
Schwarzschild and Reissner–Nordstrom manifolds). As a corollary we charac-
terize limits of rectifiable boundaries whose mean curvatures converge, as dis-
tributions, to a constant. The latter result is new, and requires the full strength
of distributional CMC-rigidity, even when one considers smooth boundaries
whose mean curvature oscillations vanish in arbitrarily strong Ck-norms. Our
method also establishes that rectifiable boundaries of sets of finite perimeter
in the hyperbolic space with constant distributional mean curvature are finite
unions of possibly mutually tangent geodesic spheres.
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1. Introduction

1.1. Overview. We move from two recent extensions of the classical Alexandrov
theorem [Ale62]: in the Euclidean space, spheres are the only connected, constant
mean curvature (CMC) boundaries enclosing finite volumes:

(i) In [Bre13], Brendle has proved CMC-rigidity in a class of warped product Rie-
mannian manifolds which includes important models in General Relativity, like the
deSitter–Schwarzschild and the Reissner–Nordstrom manifolds. In dimension 3 f
n f 7, when isoperimetric sets are smooth by local regularity theorems, Brendle’s
theorem allows one to solve the “horizon homologous” isoperimetric problem in this
class of warped product manifolds. In turn, since the works of Eichmair andMetzger
[EM12, EM13a, EM13b], the study of horizon-homologous isoperimetric problems in
the large volume regime has played a prominent role in the analysis of the Huisken–
Yau problem [Hui96]– see, e.g. [Cho16, CCE16, CEV17, CESZ19, CESY21, CE22].
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(ii) In [DM19], Delgadino and the first-named author have extended the Alexandrov
theorem to the class of (Borel) sets with finite volume, finite distributional perime-
ter, and constant distributional mean curvature. CMC-rigidity in the distributional
setting in turn implies, by basic varifolds theory, a general compactness theorem for
almost CMC-boundaries: in the Euclidean space, finite unions of disjoint spheres
with equal radii are the only possible limits of sequences of boundaries converging in
volume and in perimeter, and whose mean curvatures converge, as distributions, to
a constant. With stronger controls on the mean curvature oscillation one can even
provide quantitative rates of convergence towards finite unions of balls, as done,
for example, in [CM17, DMMN18, JN20, JMS21]. In addition to their geometric
interest, these results find applications to the resolution of geometric variational
problems (see, e.g., [CM17, DW22] for the characterization of local minimizers of
“free droplet energies”) and to the long time behavior of the volume-preserving
mean curvature flow (see, e.g., [JN20, MS22, JMS21]).

The main results of this paper are the distributional version of the Alexandrov
theorem in the Brendle class (Theorem 1.1) and a consequent compactness theorem
for almost-CMC boundaries (Theorem 1.2).

An interesting aspect of the method of proof of Theorem 1.1 is that we avoid
the use of “smoothness intensive” tools, like the Schätzle strong maximum principle
for integer varifolds [Sch04], which was central in [DM19]; or the Greene–Wu “ap-
proximation by convolution” theorem [GW73, GW79], which was crucially used in
[Bre13]. We rather put emphasis on the metric notion of set of positive reach, and
work with one-sided viscous mean-curvature/dimensions bounds (as formulated by
White in [Whi16]; see also [CC93]); and, as a by-product of these efforts, throughout
our analysis, we only need to use the weak maximum principle (meant as “one-sided
inclusion and contact imply mean curvature ordering”). We take the success of this
synthetic approach as a significant indication that the Alexandrov theorem should
hold in some metric version of the Brendle class.

1.2. The Brendle class and the main theorem. Given n g 3, we denote by
Bn the class of the n-dimensional manifolds (M, g) of the form

M = N × [0, r̄) , g = dr · dr + h(r)2 gN , (1.1)

for some r̄ * (0,>], compact (n 2 1)-dimensional Riemannian manifold (N, gN ),
and smooth positive function h : [0, r̄) ³ R, such that:

(H0) for some Ã > 0, RicN g Ã(n2 2) gN on N ;
(H1) h2(0) = 0 and h22(0) > 0;
(H2) h2 > 0 on (0, r̄);
(H3) 2 (h22/h) + (n2 2) [((h2)2 2 Ã)/h2] is increasing on (0, r̄) ;
(H4) (h22/h) + [(Ã2 (h2)2)/h2] is positive on (0, r̄) .

To obtain geometric interpretations of these conditions we denote by

Mç = N × (0, r̄) , N0 = N × {0} , Nt = N × {t} (t > 0) ,

the interior, the horizon, and the slices of M , and notice that

RicM = RicN 2
{
hh22 + (n2 2) (h2)2

}
gN 2 (n2 1)

(
h22

/
h
)
dr · dr , (1.2)

RM =
(
RN

/
h2

)
2 (n2 1)

(
2
(
h22

/
h
)
+ (n2 2)

(
h2
/
h
)2)

. (1.3)
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The scalar mean curvature of Nt with respect to its g-unit normal vector field "/"r

is HNt
= 〈 ~HNt

, "/"r〉g = (n2 1)h2(t)
/
h(t), so that the horizon of M is a minimal

surface by (H1), and the slices of M have positive CMC (w.r.t. to "/"r) thanks
to (H2). We next notice that (H3) implies (in combination with (1.3), (H0), and
(H2)) that RM is decreasing along "/"r. Finally, while (1.2) implies that "/"r is
an eigenvector of RicM , (H4) (combined with (H0)) adds the information that "/"r
is a simple eigenvector. We then have:

Brendle’s theorem: [Bre13, Theorem 1.1] If n g 3, (M, g) * Bn, and Σ is a
smooth closed, embedded, orientable, CMC hypersurface in M , then Σ is a slice of
M .

Remark 1.1 (Dropping (H4)). A simple remark (which seems to have gone un-
commented so far) is that Brendle’s theorem also holds in the class B7

n of those
(M, g) satisfying (1.1), (H0), (H1), (H2), and

(H3)7 2 (h22/h) + (n2 2) [((h2)2 2 Ã)/h2] is strictly increasing on (0, r̄) .

In other words, condition (H4) is not needed to conclude rigidity as soon as RM is
strictly decreasing along "/"r. (For more details on this point, see the discussions in
Section 1.4 and Remark 4.1 below.) In terms of applications to General Relativity,
it is interesting to notice that while the Reissner–Nordstrom manifolds belong to
the class B7

n, the deSitter–Schwarzschild manifolds do not; in particular, a stronger
stability mechanism for almost-CMC hypersurfaces is at work in the former class
than in the latter; see Appendix A for more information.

Remark 1.2 (Formulation with boundaries). Brendle’s theorem is, actually, a
statement about boundaries in M . Indeed, as noticed also in [Bre13, Section 3],
under the assumptions of Brendle’s theorem on Σ,

there is (a, b) ¢¢ (0, r̄) and Ω ¢M open such that

Σ ¢ N × (a, b) and either "Ω = Σ or "Ω = Σ *N0 .
(Σ µ Ω)

Now, as explained in more detail later on, there are two basic geometric problems
– the characterization of horizon-homologous isoperimetric regions and the study of
sequences of (smooth) boundaries with vanishing mean curvature oscillation – that
call for the extension of Brendle’s theorem to the class of sets of finite perimeter.
This extension is the content of our main theorem, Theorem 1.1 below. Refer-
ring to [Mag12] for a complete discussion of the subject, we just recall here that a
Borel set Ω in (M, g) is a set of finite perimeter if Per(Ω) := sup{

´

Ω divX dHn :
X * X (M) , |X |g f 1} is finite (where X (M) = {smooth vector fields on M}).
Then one can define the reduced boundary "7Ω (a locally Hn21-rectifiable set with
Per(Ω) = Hn21("7Ω)) and the measure-theoretic outer normal ¿Ω (a Borel g-
unit vector field defined on "7Ω) so that the distributional divergence theorem
´

Ω
div X dHn =

´

∂7Ω
〈X, ¿Ω〉g dHn21 holds for every X * X (M). Finally, one

says that H is the distributional mean curvature of "7Ω with respect to ¿Ω, if H is
summable in Hn21

x"7Ω, and
ˆ

∂7Ω

div ∂
7ΩX dHn21 =

ˆ

∂7Ω

H 〈X, ¿Ω〉g dHn21 , "X * X (M) ,

where div ∂
7ΩX := divX 2〈'νΩX, ¿Ω〉g. We thus have the following distributional

version of Brendle’s theorem:
3



Theorem 1.1 (Rigidity). If n g 3, (M, g) * Bn*B7
n, Ω is a set of finite perimeter

in M such that Mç + "7Ω is compact in M and » * R is such that
ˆ

Mç+∂7Ω

div ∂
7ΩX dHn21 = »

ˆ

Mç+∂7Ω

〈X, ¿Ω〉g dHn21 , (1.4)

for every X * X (M), then, for some t0 * (0, r̄), either Ω is Hn-equivalent to
N × (0, t0) (and » > 0) or Ω is Hn-equivalent to N × (t0, r̄) (and » < 0).

Remark 1.3. By Allard’s regularity theorem [All72, Sim83, DL18], (1.4) implies
that Σ = "7Ω is a smooth, CMC hypersurface in M with Hn21(Σ \ Σ) = 0. Since
Σ is not necessarily closed, rigidity cannot be deduced by the direct application
of Brendle’s theorem. The difficulty addressed in Theorem 1.1 is expressing how
the distributional CMC condition (1.4) “ties together” the (potentially countably
many) connected components of Σ, and forces them to align into a single slice,
rather than, say, allowing them to combine through the singular set Σ \ Σ into a
non-slice CMC hypersurface.

Remark 1.4. Condition (1.4) is equivalent to ask that, if ft is a smooth volume-
preserving flow of Ω (f0 = id , ("f/"t)|t=0 = X * X (M), and Hn(ft(Ω)) = Hn(Ω)
for every |t| small), then

(
d
/
dt
)∣∣
t=0

Per(ft(Ω)) = 0 .

Theorem 1.1 then says that among sets of finite perimeter, slices are the only
volume-constrained critical points of the area functional in (M, g) * Bn * B7

n.

Remark 1.5 (Necessity of “Mç + "7Ω compact” in Theorem 1.1). If v > 0 is
small enough and Ωv is a minimizer of Hn21(Mç + "7Ω) among sets Ω ¢ M with
Hn(Ω) = v, then Mç + "7Ωv is a smooth CMC hypersurface, diffeomorphic to
a hemisphere sitting on the horizon (see, e.g., [MM16] for a detailed analysis of
this kind of result in the capillarity setting). Alternatively, one can first apply the
perturbative construction of Pacard and Xu [PX09] on the horizon of the doubled
Schwarzschild manifold, as described in [BE13]. Either way, one obtains non-slice,
CMC hypersurfaces bounding sets Ω.

1.3. Compactness for almost-CMC boundaries. Theorem 1.1 is of course
strongly motivated by the following natural compactness problem for almost-

CMC hypersurfaces, which can be formulated, in very general terms, as follows:

If (M, g) * Bn * B7
n, does every sequence {Σj}j of closed,

embedded, orientable smooth hypersurfaces in M

whose scalar mean curvatures in (M, g) converge

to a constant, have slices as their only possible limits?

(CP)

This basic question appears naturally in several contexts. Two important examples
are: the analysis of the Huisken–Yau problem [Hui96, QT07, NT09, NT10, Hua10,
LMS11, BE14, Ner18, CE20], e.g., an outlying CMC hypersurface in an asymptot-
ically Schwarzschild manifold can be seen as an almost-CMC hypersurface in the
Schwarzschild manifold; and the study of the long-time behavior of the volume-
preserving mean curvature flow – since the L2-oscillation of the mean curvature is
the dissipation of the flow.

In light of (Σ µ Ω), for each Σj in (CP) there are open sets Ωj inM and intervals
(aj , bj) ¢¢ (0, r̄) such that Σj ¢ N × (aj , bj) and (up to extracting subsequences)
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either Σj = "Ωj (for every j) or Σj *N0 = "Ωj (for every j). In both cases, under
the natural set of assumptions that

a = infj aj > 0 , b = supj bj < r̄ , supj Hn21(Σj) <> , (1.5)

one finds a set Ω with finite perimeter in (M, g) such that, and up to extracting
subsequences, it holds

lim
j³>

Hn(Ωj∆Ω) = 0 , lim inf
j³>

Hn21("Ωj) g Per(Ω) . (1.6)

In the above basic setting, Theorem 1.1, combined with standard closure results
for integer varifolds, leads to an affirmative answer to (CP). This is the content of
our second main result, where the most general case of sequences of sets of finite
perimeter is directly addressed:

Theorem 1.2 (Compactness). If n g 3, (M, g) * Bn*B7
n, and {Ωj}j is a sequence

of sets of finite perimeter in M such that

(i) there are (a, b) ¢¢ (0, r̄) and a Borel set Ω ¢M s.t. Mç+"7Ωj ¢ N×(a, b)
for every j, and Hn(Ωj∆Ω) ³ 0 as j ³ >;

(ii) Per(Ωj) ³ Per(Ω) as j ³ >;
(iii) there is » * R such that, for every X * X (M), as j ³ >,
ˆ

Mç+∂7Ωj

div ∂
7ΩjX dHn21 2 »

ˆ

Mç+∂7Ωj

〈X, ¿Ωj
〉g dHn21 ³ 0 ; (1.7)

then there is t0 * (0, r̄) such that Ω if Hn-equivalent either to N × (0, t0) (and then
» > 0) or to N × (t0, r̄) (and then » < 0).

Remark 1.6. The proof of Theorem 1.2 requires the full strength of Theorem 1.1
even if one is only interested in sequences {Σj}j of closed, embedded, orientable
smooth hypersurfaces inM whose mean curvature oscillations are assumed to vanish
in every Ck-norm.

Remark 1.7. In (1.7) the mean curvature oscillation is required to vanish only
in distributional sense. This feature points to the possibility of applying Theorem
1.2 to minimizing sequences of horizon-homologous isoperimetric problems that
have been suitably selected by means of the Ekeland variational principle; see, e.g.,
[CL12, Theorem 3.2(iv)]. Similarly, Theorem 1.2 will be easily applied to the study
of horizon-homologous isoperimetric sets with fixed volume with respect to metrics
{gj}j on M such that, as j ³ >, gj ³ g with (M, g) * Bn * B7

n. In both these
examples, the perimeter convergence assumption (ii) is trivially checked by energy
comparison.

1.4. Strategy of proof and organization of the paper. Section 2 and Sec-
tion 3 are devoted to establishing in the Riemannian setting the several tools from
GMT that lie at the core of our analysis. In Section 2.1 we collect several prop-
erties of normal bundles to closed sets in complete Riemannian manifolds (The-
orem 2.1), extending from the Euclidean case a series of recent results obtained
in [Alb15, MS19, San20a, KS23, HS22]. In Section 2.2 we review some theorems
of Kleinjohann [Kle81] and Bangert [Ban82] concerning sets of positive reach in
complete Riemannian manifolds (Theorem 2.2 and Theorem 2.3). In Section 3.1
we recall the viscous notion of “being m-dimensional with mean curvature vector
bounded by »” introduced on closed subsets of Riemannian manifolds by White
in [Whi16], and recall its relation to distributional mean curvature (Theorem 3.1).
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Finally, in Section 3.2, we extend to the Riemannian setting a delicate “Lusin-type
property” of normal bundles of White’s (m,»)-sets that, in the Euclidean case, was
proved in [San20b] (Theorem 3.3).

At the basis of the distributional version of the Alexandrov theorem proved in
[DM19] (as well as of the previously cited quantitative versions of it), lies the ap-
proach to CMC-rigidity of Ros [Ros87] and Montiel-Ros [MR91]. Their method is
based on the analysis of equality cases in the (Euclidean) Heintze-Karcher inequal-
ity. Brendle’s theorem, in turn, is based on the analysis of the equality cases of
two different Heintze–Karcher-type inequalities for subsets Ω of (M, g) * Bn * B7

n

(corresponding to the cases "Ω = Σ and "Ω = Σ*N0 appearing in (Σ µ Ω)), and,
specifically, to the fact that, when Σ is such an equality case, then, Σ is umbilic;
the umbilicality of Σ is then combined with (H4) to deduce rigidity (i.e., Σ is a
slice).

A natural strategy for proving Theorem 1.1 thus consists in: (a) establishing the
two Heintze–Karcher-type inequalities of Brendle on sets with finite perimeter; (b)
addressing the analysis of their equality cases in the distributional setting; and, (c)
deducing rigidity from an established set of necessary conditions for equality.

In Section 4 we implement this strategy. There we work with not necessar-
ily closed, smooth, embedded, hypersurfaces Σ satisfying three assumptions: first,
Hn21(Σ \ Σ) = 0 with Hn21(Σ) < > (Σ \ Σ is understood as the “singular set”
of Σ); second, either Σ = "Ω, or N0 * Σ = "Ω, for an open set Ω in M ; and,
finally, Σ is compactly contained in Mç and has bounded mean curvature in the
viscous sense of White, while Σ has positive mean curvature with respect to the
outer g-unit normal ¿Ω to Ω.

In Theorem 4.1 we take care of steps (a) and (b). Implementing step (a) is
particularly delicate not only because, as expected, several passages of Brendle’s
argument make a crucial use of smoothness, and thus require considerable effort to
be repeated or redesigned in a non-smooth framework; but also because, in antic-
ipation of the non-smooth rigidity discussion of step (c), we need a more detailed
list of necessary conditions for equality cases in Brendle’s Heintze–Karcher-type
inequalities. In this direction, we notice that we shall establish three such condi-
tions: (E1) Σ is umbilical in (M, g) (which is the condition already pointed out in
[Bre13]); (E2) M \ Ω has positive reach in (M, g7) (where g7 is a certain complete
metric on M , conformal to g); (E3) under (H3)7, gN(¿Ω, ¿Ω) = 0 on Σ. The iden-
tification of condition (E3) is new even in the smooth case. We also notice that, in
the smooth case, condition (E2) is automatically true; and, indeed, the derivation
of (E2) requires some careful work on Brendle’s argument which is specific to the
viscous setting.

In Theorem 4.2, we further assume that Σ has constant mean curvature in distri-
butional sense, and then address step (c). If (H3)7, and thus condition (E3), holds,
then we can infer rigidity directly from it, without using umbilicality: indeed (E3)
implies the very strong information that ¿Ω is parallel to "/"r Hn21-a.e. along Σ
– an information that gives Σ = Nt0 by a simple property of sets of finite perime-
ter (cf. with [Mag12, Exercise 15.18]). If, otherwise, only (H3) holds, then, as in
[Bre13], we need to combine (H4) and umbilicality to deduce that, Hn21-a.e. on
Σ, ¿Ω is either parallel or orthogonal to "/"r. The dichotomy parallel/orthogonal
prevents the use of something as simple as [Mag12, Exercise 15.18]. In the smooth
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case, one immediately excludes “orthogonality”, and thus conclude rigidity, by a
sliding argument. However, in the non-smooth setting, sliding arguments are not
equally effective (because of multiplicity issues preventing the use of Allard’s regu-
larity theorem at contact points). This is the passage where condition (E2) reveals
useful, and ultimately allows us to conclude the proof of Theorem 4.2.

Finally, Section 5 contains the proofs of Theorem 1.1 and Theorem 1.2.

1.5. Rigidity and bubbling in the hyperbolic space. It is a classical and
well known result that Alexandrov rigidity result can be generalized to smooth
boundaries in the hyperbolic space. In [Bre13, Theorem 1.4] a new proof is obtained
based on the Heintze-Karcher inequality. It is a natural and interesting question to
understand if finite unions of possibly mutually tangent balls are the only examples
of sets of finite perimeter in the hyperbolic space with constant distributional mean
curvature. The methods developed in this paper provides a positive answer to this
question.

Theorem 1.3. Suppose Ω is a set of finite perimeter with compact closure in the
hyperbolic space H

n and » * R such that
ˆ

∂7Ω

div∂
7ΩX dHn21 = »

ˆ

∂7Ω

〈X, ¿Ω〉Hn dHn21, (1.8)

for every X * X (M). Then Ω is a finite union of disjoint (possibly mutually
tangent) open geodesic balls with equal radii.

Remark 1.8. In [HHW23] the authors develop a beautiful moving plane method
for a class of varifolds satisfying a suitable tameness condition and they employ it
to prove several rigidity results for stationary and CMC varifolds. In particular,
cf. [HHW23, Theorem 1.8], they prove that if Σ ¦ H

n is the support of a (n2 1)-
dimensional tame varifold without boundary and with constant mean curvature1,
and if Σ is connected and compact, then it is a geodesic sphere. In this direction we
point out that unions of mutually tangent geodesic spheres cannot be tame varifolds
in the sense of [HHW23] (since the tangent cone at the singular point between the
spheres is a multiplicity two plane). On the other hand, these configurations nat-
urally arise as limits of sequences of connected and compact smooth hypersurfaces
with mean curvatures converging to a constant (see [CM17] and references therein).
Hence, Theorem 1.3, in addressing rigidity and compactness in the hyperbolic space
under assumptions that do not prevent bubbling, provides a useful improvement of
[HHW23, Theorem 1.8].

1.6. Further directions. A natural question is that of obtaining quantitative es-
timates for almost-CMC boundaries, both in the Brendle class and on space forms.
In this direction we mention the recent results on space forms [CV20, CRV21],
where, based on the moving planes method, sharp decays are obtained under
a “bubbling-preventing” exterior/interior ball assumption. There are alternative
proofs of the Heintze–Karcher type inequalities behind Brendle’s theorem, based
on integral identities rather than on geodesic flows, that have been developed, for
example, in [LX19, FP22]. Correspondingly, non-sharp quantitative estimate have
been derived in [Sch21, Theorem 1.3] on space forms, and in [SX22, Theorem 1.4] on

1cf. [HHW23, eq. (8)] for the definition of varifold with bounded mean curvature, and [HHW23,
Definition 1.6] for the definition of tameness for varifolds
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a sub-class of Brendle’s class (which still includes the model manifolds from General
Relativity). Both these results require bounds on the C2,β-geometry of the consid-
ered boundaries (in addition to interior ball conditions), and the resulting stability
constants (together with the non-sharp stability exponents in the case of [SX22,
Theorem 1.4]) depend to the particular ³ under consideration. For this reason the
compactness result in Theorem 1.2 is entirely new even on smooth boundaries, as
it does not require any uniform control on their geometry.

Acknowledgements: FM wishes to thank Claudio Arezzo for having introduced
him to the framework considered in this work. FM is supported by NSF-DMS RTG
1840314, NSF-DMS FRG 1854344, and NSF-DMS 2000034. MS acknowledges sup-
port of the INDAM-GNSAGA project ”Analisi Geometrica: Equazioni alle Derivate
Parziali e Teoria delle Sottovarietà”.

2. Sets of positive reach in Riemannian manifolds

In this section (M, g) is a complete Riemannian manifold of dimension n, with
exponential function exp and Riemannian distance d, and we denote by Ψ : TM ×
[0,>) ³ M the map

Ψ(p, ·, t) = exp(p, t ·) , "(p, ·) * TM , t g 0 . (2.1)

We denote by df the differential of f : M ³ R, and by 'f and D2f the gradient
and Hessian of f with respect to g. We use ' also to denote the metric connection
of (M, g). A segment in M is a unit speed geodesic ³ : [a, b] ³ M such that
d(³(a), ³(b)) = b2 a.

2.1. Normal bundles of closed sets. Given a closed set Γ ¢M , the projection
map on Γ is defined for at p *M as the subset of Γ given by

¿Γ(p) =
{
a * Γ : dist(p,Γ) = d(p, a)

}
.

The unit normal bundle N 1Γ and the normal bundle NΓ of Γ are defined by
setting, for a * Γ,

N 1
aΓ =

{
· * TaM : |·| = 1 , #s > 0 s.t. s = dist

(
exp(a, s ·),Γ

)}
,

NaΓ =
{
t · : t g 0 , · * N 1

aΓ
}
.

We define ÃΓ : N 1Γ ³ (0,>], AΓ ¢ TM , and Cut(Γ) ¢M by setting

ÃΓ(x, ·) = sup
{
s > 0 : s = dist(exp(x, s ·),Γ)

}
, (2.2)

AΓ =
{
(p, ·, t) : (p, ·) * N 1Γ , t * (0, ÃΓ(p, ·))

}
, (2.3)

Cut(Γ) =
{
exp(x, s ·) : (x, ·) * N 1Γ , s = ÃΓ(x, ·) <>

}
, (2.4)

so that, when Γ is a closed C2-hypersurface in M , ÃΓ is continuous on Γ, Cut(Γ)
corresponds to the usual notion of cut-locus of Γ and satisfies Hn(Cut(Γ)) = 0,
and Ψ|AΓ

is a diffeomorphism between AΓ and

U(Γ) = Ψ(AΓ) =
{
exp(a, s ·) : (a, ·) * N 1Γ , s *

(
0, ÃΓ(a, ·)

)}
.

The following theorem relies on a series of recent results [Alb15, MS19, San20a,
KS23, HS22] to adapt/extend the above classical facts to the case when Γ is merely
a closed set.

Theorem 2.1. If (Mn, g) is a complete Riemannian manifold and Γ ¢M is closed,
then:

8



(i) N Γ is a countably n-rectifiable Borel subset of TM ;
(ii) NaΓ is a convex cone in TaM for every a * Γ;
(iii) for each m = 0, . . . , n2 1 the set

Γ(m) := {a * Γ : dimNaΓ = n2m}
is countably (Hm,m)-rectifiable; in particular2

Hn21({a * Γ : H0(N 1
aΓ) > 2}) = 0 ; (2.5)

(iv) ÃΓ : N 1(Γ) ³ (0,+>] is an upper-semicontinuous function;
(v) Hn(Cut(Γ)) = 0.
(vi) For each p * U(Γ) there exists a unique (a, ·) * TM , |·| = 1, such that

d(p, a) = dist(p,Γ) and exp(a, d(p, a)·) = p;
(vii) If Ç0 > 0 and ÃΓ(a, ·) g Ç0 for Hn21 a.e. (a, ·) * N 1Γ, then

{
x *M : 0 < dist(x,Γ) < Ç0

}
¦ U(Γ) .

Proof. Let Ç : U ¢M ³ V ¢ R
n be a local chart of M . For each a * U there is a

unique symmetric bijective linear map Sa : Rn ³ R
n such that

〈u, v〉g = dÇ(a)(v) · Sa
[
dÇ(a)(u)

]
, "u, v * TaM .

A routine argument shows that the map Φ : TU ³ V × R
n defined by Φ(a, v) =

(Ç(a), Sa[dÇ(a)(v)]), (a, v) * TU , is a diffeomorphism, with

Φ
(
N Γ xU

)
=

(
N Ç(Γ + U)

)
xV .

Similarly, for every a * Γ and m = 0, ..., n2 1, we have

[Sa ç dÇ(a)]
(
NaΓ

)
= Nφ(a) Ç(Γ + U) , Ç(Γ(m) + U) = [Ç(Γ + U)](m) + V .

Hence, conclusions (i), (ii), and (iii) follow from the analogous statements in the
Euclidean case proved in [San20a, Remark 4.3] and [MS19]. Conclusion (iv) follows
by an obvious adaptation of the argument for the Euclidean space proved in [KS23,
Lemma 2.35]. Conclusion (v) is proved in [Alb15, Theorem 1]. Conclusion (vi)
follows from the remark that if s > 0 and ³ is a unit-speed geodesic such that
³(0) * Γ and dist(³(s),Γ) = s, then, for every 0 f t < s, we have dist(³(t),Γ) = t,
¿Γ(³(t)) = {³(0)}, and ³|[0,t] is the unique segment joining ³(0) and ³(t). We are
left to prove conclusion (vii), which requires modifications to the proof of [HS22,
Lemma 3.19]. With Ψ as in (2.1), we define

Q7 = {(a, ·, t) : (a, ·) * N 1Γ, 0 < t < inf{Ç0, ÃΓ(a, ·)}}
and we notice that Ψ(Q7) = {x *M : 0 < dist(x,Γ) < Ç0} \ Cut(Γ). Let

Q = Q7 + {(a, ·, t) : ÃΓ(a, ·) g Ç0}
so that Hn(Q7 \ Q) = 0 by assumption. Hence Hn(Ψ(Q7) \ Ψ(Q)) = 0, and, by
(v), we conclude that Ψ(Q) is dense in {x * M : 0 < dist(x,Γ) < Ç0}. Let x * M
and t = dist(x,Γ) with 0 < t < Ç0. There exists a sequence (ai, ·i, ti) * Q such
that Ψ(ai, ·i, ti) ³ x. Since d(ai, x) f d(ai,Ψ(ai, ·i, ti)) + d(Ψ(ai, ·i, ti), x) for
i g 1 and ti = dist(Ψ(ai, ·i, ti),Γ) ³ t, we infer that lim supi³> d(ai, x) f t. By

2Indeed, if H0(N 1
aΓ) > 2, then the convexity of NaΓ implies that dimNaΓ ≥ 2, i.e. a ∈ Γ(m)

for some m ≤ n− 2.
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compactness, there are (a, ·) * TM with |·| = 1 and a subsequence (aij , ·ij ) such
that (aij , ·ij ) ³ (a, ·) as j ³ >. It follows that

t = lim
j³>

dist(Ψ(aij , ·ij , tij ),Γ) = dist(Ψ(a, ·, t),Γ)

and (a, ·) * N 1Γ. By conclusion (iv) and by ÃΓ(ai, ·i) g Ç0 we find ÃΓ(a, ·) g Ç0,
and thus x * U(Γ). �

2.2. Sets of positive reach. Introduced in the Euclidean setting by Federer
[Fed59], sets of positive reach have been studied in the Riemannian setting by
Kleinjohann [Kle81] and Bangert [Ban82]. Given a closet set Γ ¢ M , the set of

unique projection over Γ is defined as

UP(Γ) =
{
x *M : H0(¿Γ(x)) = 1

}
.

Given a * Γ, we denote by reach(Γ, a) the supremum of those r g 0 such that
B(a, r) ¦ UP(Γ), and say that Γ is a set of locally positive reach if reach(Γ, a) >
0 for each a * Γ, and is a set of positive reach if reach(Γ, ·) is uniformly positive
on Γ.

Remark 2.1. If Γ is closed and ÃΓ(x, ·) g Ç0 > 0 for Hn21 a.e. (x, ·) * N 1Γ,
then by Theorem 2.1-(vii),

{x *M : 0 < dist(x,Γ) < Ç0} ¢ U(Γ) ¦ UP(Γ) .

In particular, Γ is of positive reach, with reach(Γ, ·) g Ç0 on Γ.

The following result, contained in [Kle81], is crucial in obtaining (4.50) and (4.51)
in the proof of Theorem 4.1.

Theorem 2.2 (Kleinjohann). If A ¦ M is a set of positive reach with compact
boundary, then there exists ·(A) > 0 such that for every t * (0, ·(A)) the set

At = {x *M : dist(A, x) = t}
is a compact C1,1-hypersurface contained in UP(A), and the geodesic-flow map
Φt : N 1(A) ³ At, defined by Φt(a, ·) = exp(a, t·) for (a, ·) * N 1(A), is bi-
Lipschitz on N 1(A). In particular, N 1(A) is an (n2 1)-dimensional compact Lip-
schitz submanifold of TM .

Proof. Let U be an open neighborhood of the null section of TM and V an open
subset of M ×M such that the map U + (a, v) 7³ (a, exp(a, v)) is a diffeomorphism
of U onto V . Let Φ be its inverse, so that exp(p,Φ(p, q)) = q for every (p, q) * V . As
explained in [Kle81, middle of page 336], one can choose for each a * A a number
·(a) > 03 so that

B(a, ·(a)) ×B(a, ·(a)) ¦ V for a * A

and, defining W :=
⋃
a*AB(a, ·(a)), we have that for every x * W there exists a

unique minimizing geodesic joining x and A and ¿A is locally lipschitz on W (see
[Kle81, Satz (2.5)]). For x *W \A we set

¿(x) =
Φ(x, ¿A(x))

|Φ(x, ¿A(x))|
and ·(x) =

Φ(¿A(x), x)

|Φ(¿A(x), x)|
.

It follows from [Kle81, Satz (2.1) and Satz (2.3)] that dist(A, ·) is continuously
differentiable on W \ A, with 'dist(A, x) = 2¿(x) for x * W \ A. In particular

3Denoted with z2(a, ë) in [Kle81, page 336].
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'dist(·, A) is locally Lipschitz onW \A. Since dist(A, x) = |Φ(¿A(x), x)| for x *W ,
it follows that

Ψt(¿A(x), ·(x)) = exp(¿A(x),Φ(¿A(x), x)) = x

for x *W +At. By applying the Lebesgue covering lemma to {B(a, ·(a)) : a * "A},
we find a positive number ·(A) > 0 such that {x * M : dist(A, x) < ·(A)} ¦ W ,
and thus conclude the proof. �

Following a standard convention (see, e.g. [Gro93]) we say that p * M \ Γ is
a critical point for dist(·,Γ) if for every v * Tp(M), v 6= 0, there exists a * Γ
with d(p, a) = dist(p,Γ) and a segment ³ : [0, d(p, a)] ³ M such that ³(0) = p,
³(d(p, a)) = a and angle(v, ³2(0)) f Ã/2. Correspondingly, Ç > 0 is a regular

value for dist(Γ, ·) if there are no critical points p of dist(·,Γ) with dist(p,Γ) = Ç .
The following result is a special case of the main result obtained by Bangert in
[Ban82], and plays an important role in our analysis (see the proof of (4.48)).

Theorem 2.3 (Bangert). If Γ ¦ M is compact and Ç > 0 is a regular value of
dist(·,Γ), then {x *M : dist(x,Γ) g Ç} is a set of positive reach.

Proof. By [Man03, Proposition 3.4], f = 2dist(Γ, ·) is locally semiconvex on M \Γ.
In particular, f belongs to the class F(M \ Γ) introduced by Bangert in [Ban82].
Moreover, by [RZ12, Lemma 5.5], p * M \ Γ is a regular point of f if and only if
there exists v * TpM such that4 "pf(v) = limt³0+(f(p+ t v)2 f(p))/t is negative.
It follows that all points of f21(2Ç) are regular in the sense of [Ban82, Definition
(i)], so that f21((2>,2Ç ]) is a set of locally positive reach by the main theorem of
[Ban82]. Since (M, g) is complete, f21(2Ç) = "[f21((2>,2Ç ])] is compact, and
thus we conclude by the general fact that, if A ¦ M is a set of locally positive
reach and "A is compact, then A is a set of positive reach (for example because,
by [Kle81, Lemma 1.1], reach(A, ·) is continuous on A). �

3. A Lusin-type property of White’s (m,»)-sets

In Section 3.1 we recall a viscosity formulation of the notion of “being m-
dimensional with mean curvature vector bounded by »” for closed subsets of a
Riemannian manifold (M, g), as introduced by White in [Whi16]. Then, in Section
3.2, we extend from the Euclidean to the Riemannian setting a “Lusin condition”
for normal bundles proved in [San20b].

3.1. White’s (m,»)-sets. Given an integerm * {1, ..., n21} and a constant » g 0,
we say that a closed subset Γ of a Riemannian manifold (M, g) is a White (m,»)-
set in (M, g) if, for every f * C2(M) such that f |Γ admits a local maximum at
x * Γ, it holds that

tracem(D2f(x)) f »|'f(x)| . (3.1)

Here tracem(D2f(x)) = »1 + · · ·+ »m if »1 f »2 f · · · f »n are the eigenvalues of
D2f(x) listed in increasing order. A fundamental result concerning White (m,»)-
sets relates condition (3.1) to the notion of distributional mean curvature for a
varifold. This theorem plays a key role in our analysis (specifically, it allows us to
use Theorem 4.1 in proving Theorem 4.2, see the next section).

4The function f being semiconcave, it may fail to have a differential at p. However, the limit
"pf(v) will exist for every p and v. Here are we using the same notation found in [Ban82].
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Theorem 3.1 (White). If » g 0, V is an m-dimensional varifold in (M, g), and
~H is a Borel vector field in M such that ‖ ~HV ‖L>(spt‖V ‖) f » and

ˆ

(div τX)(x) dV (x, Ç) = 2
ˆ

M

〈 ~H,X〉g d‖V ‖ ,

for every X * X (M), then spt ‖V ‖ is a White (m,»)-set in (M, g).

Proof. This is [Whi16, Corollary 2.8]. �

We shall also need the following simple fact:

Lemma 3.2. If (M, g) is a Riemannian manifold, Γ is a White (m,»)-set in (M, g),
× * C>(M), g7 = e2ϕg, and

C(Γ, ×) = sup
Γ

|'×| <> ,

then Γ is a White (m,»+ 3mC(Γ, ×))-set in (M, g7).

Proof. Denoting with '7 and D2
7 the Riemannian connection and the Hessian op-

erator with respect to g7, it is enough to prove that

D2
7f(x) f D2f(x) + 3 |'×(x)| |'f(x)| gx (3.2)

whenever x * O, O is open in M , and f * C2(O). To this end, by [Sak96, II,
Proposition 3.9], we compute

D2
7f(U, V ) = U(V (f))2 ('7

UV )(f) = D2f(U, V )2 g('×,U)g('f, V )

2g('×, V )g('f, U)2 g(U, V )g('×,'f) ,
whenever U, V * X (M). Hence,

D2
7f(U,U) f D2f(U,U) + 3|'f ||'×||U |2 .

If now O is a neighborhood of some x * Γ and f |Γ has a local maximum at x, then
this last inequality, combined with [Whi16, Lemma 12.3] and the fact that Γ is a
White (m,»)-set in (M, g), implies that

tracem(D2
7f(x)) f tracem

(
D2f(x) + 3 |'f(x)| |'×(x)| gx

)

= tracem(D2f(x)) + 3m |'f(x)| |'×(x)|
f (»+ 3mC(Γ, ×)) |'f(x)| ,

thus completing the proof. �

3.2. A Lusin-type property of normal bundles. The following theorem is
needed at a crucial step (4.29) in the proof of Theorem 4.1.

Theorem 3.3 (Lusin-type property of normal bundles). Suppose Γ ¦M is a White
(m,»)-set in (M, g) such that Γ is a countable union of sets with finite Hm-measure.
Then the following implication holds:

Z ¦ Γ, Hm(Z + Γ(m)) = 0 =ó
{
Hn(N (Γ)xZ) = 0 ,

Hn21(N 1(Γ)xZ) = 0 .
(3.3)

Proof. By [San20b, 3.3, 3.8, 3.9], if W ¦ R
k is open, Γ is a White (m,»)-set in W ,

and Γ is a countable union of sets with finite Hm-measure, then

Z ¦ Γ, Hm(Z + Γ(m)) = 0 =ó
{
Hk

(
N (Γ)xZ

)
= 0 ,

Hk21
(
N (Γ)xZ

)
= 0 .

(3.4)
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We now reduce the proof of (3.3) to an application of the Euclidean case (3.4). To
this end, by the Nash embedding theorem, we can directly assume that M is an
n-dimensional embedded submanifold of the Euclidean space Rk (for some large k)
and g is the Riemannian metric on M induced by the Euclidean metric 〈·, ·〉 of Rk.
If X ¦ M is relatively closed in M , then we denote by ÑX the normal bundle of
the closure in R

k of X , while we keep the symbol NX for the normal bundle of X
as a subset of (M, g) (notice NX ¦ TM). If a * M , then Ãa and Ã§

a denote the
orthogonal projections of Rk onto TaM and T§

a M respectively. We now divide the
rest of the proof into two claims and one final argument.

Claim one : If X ¦M is relatively closed in M , then

ÑaX = NaX + T§
a M , "a * X .

Indeed, let u * ÑaX be such that Ãa(u) 6= 0 and B + X = ∅, where, for some
r > 0, B is the open Euclidean ball in R

k of radius r|u| centered at a+ ru. Since
u * T§

a ("B) and 〈Ãa(u), u〉 > 0, we conclude that Ãa(u) * TaM \Ta("B). Then we
choose an open neighborhood V of a and a continuous function · : V +M ³ Sk21

such that ·(a) = Ãa(u)/|Ãa(u)| and ·(b) * TbM for every b * V + M . Since
[b * V +M + "B] 7³ dist(·(b), Tb("B)) is continuous and dist(·(a), Ta("B)) > 0,
there is an open neighborhood W ¦ V of a such that dist(·(b), Tb("B)) > 0 for
every b *W +"B+M . Hence, dim

[
TbM+Tb("B)

]
f n21 and TbM+Tb("B) = R

k

for every b *W +M + "B. This means that the submanifolds W + "B and W +M
are transversal and consequently

"B +M +W is an n2 1-dimensional smooth submanifold of M (3.5)

with TbM + Tb("B) = Tb(M + "B) for b * W +M + "B; see [GP74, pp. 29-30].
Now, observing that if v * Ta("B +M) = Ta("B) + Ta(M), then 〈Ã§

a (u), v〉 = 0
and 〈Ãa(u), v〉 = 〈u, v〉 = 0, we find that

Ãa(u) * T§
a ("B +M) . (3.6)

For t sufficiently small, since 〈Ãa(u), u〉 > 0, we notice that exp(a, tÃa(u)) * B +
M and we conclude from (3.6) that the open geodesic ball of (M, g) centred at
exp(a, tÃa(u)) and radius t|Ãa(u)| is contained in B +M . This means, always for t
sufficiently small, that d(exp(a, tÃa(u)), X) = t|Ãa(u)| (thanks to B +X = ∅) and
Ãa(u) * Na(X).

We have thus proved ÑaX ¦ NaX + T§
a M for a * X . To prove the opposite

inclusion, let now v * NaX with v 6= 0. An open geodesic ball G in M with
sufficiently small radius is such that "G is a smooth n2 1 dimensional submanifold
in R

k, G+X = ∅, a * "G, and v is an interior normal of G at a. Then there exists
r > 0 such that the open Euclidean ball B in R

k of radius r centered at a + rv
satisfies B + "G = ∅ and B +G 6= ∅. Choosing r smaller if necessary, we can also
ensure that B is contained in the tubular neighbourhood of M where the nearest
point projection onto M is single valued. This means that B +M is a connected
subset of M \ "G; since G is a connected component of M \ "G and G + B 6= ∅,
we infer that B +M ¦ G. The latter inclusion implies that B +X = ∅. It follows

that B + X = ∅ and NaX ¦ ÑaX . Now the convexity of ÑaX and the obvious

inclusion T§
a M ¦ ÑaX allow to conclude NaX + T§

a M ¦ ÑaX + ÑaX = ÑaX
and to complete the proof of claim one.
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Claim two: If W ¦ R
k is an open set such that W +M is compact, then there is

»W g 0 such that Γ+W is a White (m,»W )-set in W . Firstly, notice that M +W
and Γ +W are relatively closed in W . Now, let b * Γ +W and f * C2(W ) such
that f |Γ has a local maximum at b. Denoting by ' both the Euclidean gradient

operator and metric connection, and by D
2
the Euclidean Hessian operator, we set

·(x) = Ã§
x ('f(x)) for x * W +M , notice that Ãx('f(x)) = 'f(x), and compute

D
2
f(x)(v, w) = 〈'v'f(x), w〉 = 〈'v'f(x), w〉 + 〈'v·(x), w〉

= D2f(x)(v, w) + 〈Aη(x)(v), w〉 = D2f(x)(v, w) 2Q(x)(v, w)

for every x * M +W and v, w * Tx(M), where Aη(x) : TxM ³ Tx is the shape
operator of M in the direction ·(x), Q(x) : TxM × TxM ³ R is the symmetric
bilinear form defined as Q(x)(v, w) = 〈S(v, w), ·(x)〉 and S is the second funda-
mental form of M . If Q(b)(v, v) g 0 for all v * TbM then we obtain from [JT03,
Lemma 2.3] and [Whi16, Lemma 12.3]

tracem(D
2
f(b)) f tracem

[
D

2
f(b)|TbM × TbM

]

= tracem[D2f(b)2Q(b)]

f tracem(D2f(b)) f »|'f(b)| f »|'f(b)|.

Now we assume that Q(b)(v, v) < 0 for some v * TbM . Then we define

µW = inf{〈S(u, u), ¿〉 : x *W +M, u * TxM, ¿ * (TxM)§, |u| = |¿| = 1}
and we notice that 2> < µW < 0 and

Q(b)(v, v) g µW |·(b)|〈v, v〉 for v * TbM .

Therefore, by [JT03, Lemma 2.3] and [Whi16, Lemma 12.3]

tracem(D2f(b)) = tracem
[
D

2
f(b)|(TbM × TbM) +Q(b)

]

g tracem
[(
D

2
f(b) + µW |·(b)|〈·, ·〉

)∣∣TbM × Tb(M)
]

g tracem
[
D

2
f(b) + µW |·(b)|〈·, ·〉

]

= tracem(D
2
f(b)) +mµW |·(b)|,

and we deduce that

tracem(D
2
f(b)) f »|'f(b)| 2mµW |·(b)| f (»2mµW )|'f(b)|.

Conclusion of the proof: Let Z ¦ Γ such that Hm(Z + Γ(m)) = 0. Since Na(Γ) ¦
TaM it follows from claim one that

dim ÑaΓ = dimNaΓ + dim T§
a M for a * Γ,

so that

Hm(Z + {a : dim ÑaΓ = k 2m}) = 0.

It follows from claim two and (3.4) that Hk(Ñ ΓxZ) = 0. Let P : M × R
k ³ TM

be the smooth map defined by

P (a, u) = (a, Ãa(u)) for (a, u) *M × R
k.
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Since P (Ñ ΓxΓ) = N Γ by claim one, noting by Theorem 2.1 that Ñ ΓxΓ is a
countably k-rectifiable subset ofM×R

k and N Γ is a countably n-rectifiable subset
of TM . By the coarea formula [Fed69a, 3.2.22],

0 =

ˆ

Ñ ΓxZ

apJnP dHk =

ˆ

NΓxZ

Hk2n(T§
a M) dHn

(a,u) .

Since Hk2n(T§
a M) = +> for every a *M , we have Hn(NΓxZ) = 0. �

4. Viscous Heintze–Karcher inequalities

In Theorem 4.1 below, we prove the Heintze–Karcher inequalities of Brendle
[Bre13], and address their equality cases, in the viscous setting of White [Whi16].
Starting from this result, in Theorem 4.2, we extend Brendle’s rigidity theorem
to the distributional setting. Throughout the section, n g 3 and (M, g) is a Rie-
mannian manifold which satisfies at least (H0)–(H3). We consider Σ ¢ M such
that:

(A1) Σ is a smooth embedded hypersurface in M with Σ ¢Mç and

Hn21(Σ \ Σ) = 0 , Hn21(Σ) <> .

Notice carefully that we do not assume Σ to be closed. Thus, Σ \ Σ may be non-
empty and may contain singular points (i.e., Σ may fail to be an hypersurface at
points in Σ \ Σ), and Σ may consists of countably many connected components.
Our second main assumption is that Σ is (topologically) a boundary, namely,

(A2) there is Ω ¢M open such that

either "Ω = Σ or "Ω = Σ *N0, (4.1)

Now, under (4.1), assumption (A1) implies that Ω is a set of finite perimeter in
M thanks to Federer’s criterion, see [Fed69b, 4.5.12]. In particular, if we denote
by "7Ω the reduced boundary of Ω, and by ¿Ω its measure theoretic outer g-unit
normal, then we observe that Σ ¢ "7Ω and ¿Ω is smooth on Σ. It thus makes sense
to define

HΣ = ~HΣ · ¿Ω on Σ,

where ~HΣ is the mean curvature vector of Σ in (M, g).

Theorem 4.1. If n g 3, (M, g) satisfies (H0)-(H3), and the pair (Σ,Ω) satisfies
assumptions (A1), (A2), and

(A3) for some » g 0, Σ is a White (n2 1, »)-set in M ,

then, denoting by r the projection of M = N × (0, r̄) over (0, r̄), and setting

f = h2 ç r , g7 = f22 g ,

the following statements hold:

(a) if "Ω = Σ, then

(n2 1)

ˆ

Σ

f

HΣ
dHn21 g n

ˆ

Ω

f dHn ; (4.2)

(b) if "Ω = Σ *N0, then

(n2 1)

ˆ

Σ

f

HΣ
dHn21 g n

ˆ

Ω

f dHn + h(0)nvol (N, gN ) ; (4.3)
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(c) if either (a) or (b) holds with equality, then Σ is umbilic in (M, g), M \ Ω
has positive reach in (M, g7), and5

(
2
h22

h
+ (n2 2)

((h2)2 2 Ã)

h2

)2

gN (¿Ω, ¿Ω) = 0 , on Σ . (4.4)

Theorem 4.2. If n g 3, (M, g) * Bn*B7
n, and the pair (Σ,Ω) satisfies assumptions

(A1),

(A2)’ there is Ω ¢M open such that either "Ω = Σ or "Ω = Σ *N0;

(A3)’ there is H0 g 0 such that, for every Y * X (M),
ˆ

Σ

div ΣY dHn21 = H0

ˆ

Σ

〈¿Ω, Y 〉 dHn21 ; (4.5)

then, for some t0 * (0, r̄), Ω = N × (0, t0) and H0 = (n2 1)h2(t0)/h(t0) > 0.

Remark 4.1 (On the relation between Theorem 4.1 and Theorem 4.2). As detailed
in the proof of Theorem 4.2, by testing the constant mean curvature condition (4.5)
with the vector field h ("/"r), we see that H0 appearing in (4.5) is positive (so that
(A2)’ implies (A2)), and that either (4.2) or (4.3) (depending on whether "Ω = Σ
or "Ω = Σ * N0) holds as an identity. Moreover, by Theorem 3.1, (A3)’ implies
the validity of (A3). Therefore, under the assumptions of Theorem 4.2, conclusion
(c) of Theorem 4.1 holds too. When (H3)7 holds, then (4.4) immediately implies
that ¿Ω(p) is parallel to ("/"r)|p at every p * Σ: this information, combined with
standard facts on sets of finite perimeter and with the positivity of HΣ, immediately
implies that Ω is bounded by a single slice. When, instead, only (H3) is assumed,
the information in (4.4) may be trivial. In this second case, arguing as in [Bre13],
we deduce from umbilicality and the Codazzi equations that ¿Ω(p) is an eigenvector
of (RicM )|p at every p * Σ. Since (H4) implies that ("/"r)|p is a simple eigenvector
of (RicM )|p, we thus find that, at each p * Σ, ¿Ω(p) is either parallel or orthogonal
to ("/"r)|p. Concluding rigidity from this weaker information using only standard
facts on sets of finite perimeter does not seem immediate; however, the fact that
M \ Ω has positive reach in (M, g7) can be exploited to quickly reach the desired
conclusion.

Proof of Theorem 4.1. Preparation of M : The results of Section 2 and Section
3 require the completeness of the ambient manifold. Notice that (M, g) is not
complete. A first problem is that geodesics in (M, g) may arrive in finite time to
the horizon N0: this issue is fixed by passing from g to g7 = f22 g. A different
issue, however, is the behavior of geodesics near the r̄-end of M . To fix this second
problem we argue as follows. By assumption Σ ¢Mç, there is (a, b) ¢¢ (0, r̄) such
that

Σ ¢ N ×
[
a,
a+ b

2

]
, Ω ¢ N ×

(
0,
a+ b

2

)
. (4.6)

Correspondingly we can consider a smooth positive function hb : [0,+>) ³ R so
that hb = h on [0, b], h2b > 0 on (0,>), and

sup
[0,>)

h2b <> ,

ˆ >

b

dt

h2b(t)
= +> .

5Here, given ¿ = (Ç, a) ∈ T(x,t)M ≡ TxN × R, we have set (gN )|(x,t)(¿, ¿) = (gN )x(Ç, Ç).
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We introduce the metrics gb = dr · dr + hb(r)
2gN and g7b = f22

b gb on N × (0,>),
where fb(p) = h2b(r(p)). Since (H1) and hb = h on [0, b] imply

ˆ b

0

dt

h2b(t)
= +> ,

we easily see that g7b -geodesic balls centered at points p * N×(0,+>) are contained
in compact slabs of the form N× [s, t] (0 < s < t <>). In particular, by the Hopf–
Rinow theorem, (N × (0,>), g7b ) is a complete Riemannian manifold. Notice that
hb satisfies assumption (H3) on (0, b), where it coincides with h, but, possibly, not
on (0,>).

We have thus reduced to the following situation: M = N × (0,>); the metric
g = dr· dr+ h(r)2 gN is such that (H0) and (H1) hold, (H2) holds on (0,>) (i.e.,
h2 > 0 on (0,>)), (H3) holds on (0, b), and

sup
M

f <> ; (4.7)

the metric g7 = f22 g is such that (M, g7) is a complete Riemannian manifold; and,
finally, Σ and Ω satisfy (4.6) in addition to assumptions (A1), (A2), and (A3).

The “vertical” vector field X : The shortest path between points (x, t1) and (x, t2) in
(M, g7) with t1 * (0, t2) is given by s * [t1, t2] 7³ (x, s) (while distg7((x, 0), (x, t)) =
+> for every x * N and t > 0). “Vertical” segments are thus length minimizing
geodesics in (M, g7), and the vector field "/"r has a special role in the geometry of
(M, g7). It is also convenient to consider, alongside with "/"r, its rescaled version

X = h
"

"r
.

Simple computations show that

div ("/"r) = (n2 1)
f

h ç r , (4.8)

div Γ("/"r) =
{
(n2 1)2

n∑

i=1

〈Ãi, "n〉2g
} f

h ç r , on Γ , (4.9)

div X = n f on M , div ΓX = (n2 1) f on Γ , (4.10)

whenever Γ is a C1-hypersurface and {Ãi}n21
i=1 denotes a g-orthonormal basis of

TpΓ for some p * Γ. An immediate consequence of (4.9) is that if Γ is a closed

C1,1-hypersurface in Mç with Hn21(Γ) < > and with mean curvature vector ~HΓ

in (M, g), and if h22 ç r g 0 on Γ, then

(n2 1)Hn21(Γ) g
ˆ

Γ

〈 ~HΓ, X〉g
f

dHn21 . (4.11)

Indeed, by (4.10) we find

div Γ
(X
f

)
= (n2 1)2 〈'Γf,X〉g

f2
,

where 'f = [(h22/h) ç r]X . Denoting by XΓ the projection of X along TΓ, we
find 〈X,'Γf〉g = [(h22/h2) ç r] |XΓ|2g. Hence, by applying the divergence theorem
to X/f on Γ and by using h22 ç r g 0 on Γ, we find (4.11).
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“Immersed” geodesic flow from Σ: The vector field

¿7Ω = f ¿Ω

is a smooth g7-unit normal to Σ, pointing out of Ω. Now, denoting by exp7 the
exponential map in the complete Riemannian manifold (M, g7), we can define a
smooth map Φ : Σ× (0,>) ³M by setting

Φ(x, t) = Φt(x) = exp7(x,2t ¿7Ω(x)) , x * Σ , t > 0 .

In this way, denoting by JΣΦt the tangential Jacobian6 of Φt along Σ,

Φ(x, 0) = x ,
"Φ

"t
(x, 0) = 2f(x) ¿Ω(x) , JΣΦ0(x) = 1 , "x * Σ . (4.12)

By (4.6) and (4.12), we have that Φt(x) * N × (0, b) with JΣΦt(x) > 0 for every
t small enough. We can thus define a lower semicontinuous, positive function RΣ :
Σ ³ (0,>] by setting

RΣ(x) = min
{
inf

{
t > 0 : JΣΦt(x) = 0

}
,

inf
{
t > 0 : Φt(x) 6* N × (0, b)

}}
, x * Σ ,

so to have

Φt(x) * N × (0, b) and JΣΦt(x) > 0 , (4.13)

"(x, t) * AΣ :=
{
(x, t) : x * Σ , t * (0, RΣ(x))

}
.

By the Gauss lemma (see, e.g., [Sak96, pag. 60]), for every (x, t) * AΣ,

"Φ

"t
(x, t) *

(
dΦt(x)[TxΣ]

)§

,
∣∣∣
"Φ

"t
(x, t)

∣∣∣
g
= f(Φt(x)) . (4.14)

In particular, the tangential Jacobian JAΣΦ of Φ along AΣ is related to JΣΦt by
the identity

(JAΣΦ)(x, t) = f(Φt(x))J
ΣΦt(x) , "(x, t) * AΣ . (4.15)

We now notice that, for every t * (0,>), {RΣ > t} is an open subset of Σ, and

Γt = Φt
(
{RΣ > t}

)
, t > 0 ,

is a smooth immersed hypersurface in M . Indeed, by construction, for every
(x, t) * AΣ there is an open neighborhood W of x in Σ such that (Φt)|W is a
smooth embedding. Correspondingly, we denote7 by H(x, t) and II(x, t) the scalar
mean curvature and the second fundamental form (in the metric g) of the smooth
hypersurface Φt(W ) at the point Φt(x) and with respect to the normal

¿(x, t) = 2 1

f(Φt(x))

"Φ

"t
(x, t), (4.16)

(see (4.15)). Notice that ¿(x, 0) = ¿Ω(x) for x * Σ. Since, by (4.13), Φt(x) *
N× (0, b) for every t * (0, RΣ(x)), and since h satisfies (H3) on (0, b), the pointwise

6Here and in the following, Hk and J always denote Hausdorff measures and Jacobians com-
puted with respect to the metric g.

7Notice carefully that Φ may not be injective on the whole AΣ, therefore we will not be able
to consider H and II as functions on Φ(AΣ) ⊂ M .
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calculations in [Bre13, Proposition 3.2] (which are based on (H0) and (H3) and the
Riccati equation) can be repeated verbatim to show that, everywhere on AΣ,

"

"t

( H

f ç Φ
)
g |II|2 g H2

n2 1
, (4.17)

"

"t

(f ç Φ
H

)
f 2|II|2 (f ç Φ)2

H2
f 2 (f ç Φ)2

n2 1
. (4.18)

Since H(·, 0) > 0 on Σ by assumption (A2), we see that (4.17) implies

H is positive on AΣ . (4.19)

Moreover, we have that

"

"t
JΣΦt(x) = 2[(f ç Φ)H ](x, t)JΣΦt(x) , "(x, t) * AΣ . (4.20)

Indeed, given (x, t) * AΣ and W as above, if W 2 is an arbitrary open subset of
W ¢ Σ then, by the area formula,

d

ds

∣∣∣
s=t

Hn21(Φs(W
2)) =

d

ds

∣∣∣
s=t

ˆ

W 2

JΣΦs dHn21 =

ˆ

W 2

"

"t
JΣΦt dHn21

while, by the formula for the first variation of the area and by (4.14)

d

ds

∣∣∣
s=t

Hn21(Φs(W
2)) = 2

ˆ

W 2

[(f ç Φ)H ](y, t)JΣΦt(y) dHn21
y ,

so that (4.20) follows by arbitrariness of W 2. We finally notice that

if x * Σ, RΣ(x) <>, and JΣΦt(x) ³ 0 as t³ RΣ(x)
2 ,

then H(x, t) ³ +> as t³ RΣ(x)
2 . (4.21)

Indeed, (4.20) gives

log
(
JΣΦt(x)

)
= 2

ˆ t

0

[(f çΦ)H ](x, s) ds , "t * (0, RΣ(x)) .

A refinement of (4.18): We claim that, everywhere on AΣ,

2
{ "

"t

(f ç Φ
H

)
+

(f ç Φ)2
n2 1

}
= (f ç Φ)2

{ |II|2
H2

2 1

n2 1

}
(4.22)

+
f ç Φ
H2

h2
{
RicN 2 Ã (n2 2) gN

}
(¿, ¿)

+
h3

2

(
M[h]

)2
gN(¿, ¿) ,

where, by definition,

M[h] = 2
h22

h
2 (n2 2)

Ã2 (h2)2

h2
. (4.23)

Indeed, setting T = (∆f) g 2 D2 f + f RicM , by [Bre13, Proposition 2.1] we have
that

T = h2
{
RicN 2 Ã (n2 2) gN

}
+
h3

2

(
M[h]

)2
gN , (4.24)

while the computations in [Bre13, Proposition 3.2] give

"

"t

(f ç Φ
H

)
= (f ç Φ)2

{ 1

n2 1
2 |II|2

H2

}
2 (f ç Φ)

H2
T (¿, ¿) . (4.25)
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The combination of (4.24) and (4.25) leads immediately to (4.22).

Geodesic flow from Σ: We now consider the (embedded) geodesic flow of Σ (which
is the main structure used in Brendle’s argument), i.e. we relate Φ to the distance
function from Σ in (M, g7). Let us define, for the sake of brevity, u7Σ : Ω ³ [0,>)
and R7

Σ : Σ ³ (0,>) by setting

u7Σ(p) = distg7(p,Σ) , p * Ω ,

R7
Σ(x) = Ã7

Σ
(x,2¿7Ω(x))

= sup
{
s > 0 : s = u7Σ(Φs(x))

}
, x * Σ ,

(where, for Γ closed in M , Ã7Γ is defined as in (2.2) with respect to the metric g7)
and then consider the sets

Ωt =
{
p * Ω : u7Σ(p) > t

}
,

Σt =
{
p * Ω : u7Σ(p) = t

}
=Mç + "Ωt ,

Σ7
t = Φt({R7

Σ > t}) ¢ Σt ,

A7
Σ =

{
(x, t) : x * Σ, t * (0, R7

Σ(x))
}
.

(Notice that if "Ω = Σ, then "Ωt = Σt; if, otherwise, "Ω = Σ * N0, then "Ωt =
Σt *N0.) It is easily seen that R7

Σ is continuous on Σ, so that {R7
Σ > t} is an open

subset of Σ for every t > 0, and A7
Σ is open. The fact that Φ is a diffeomorphism

on A7
Σ with values in Ω is standard (since Σ is smooth), so that

Φ(A7
Σ) ¢ Ω , RΣ(x) g R7

Σ(x) "x * Σ , A7
Σ ¢ AΣ , (4.26)

and Φt is a smooth embedding of {R7
Σ > t} intoM . In particular, for each t > 0, Σ7

t

is a (possibly empty, embedded) hypersurface in M . (Notice that Γt is, in general,
larger than Σ7

t , immersed but not embedded, and unrelated to u7Σ.) The vector field
(see (4.16))

¿t(y) = ¿(Φ21
t (y), t) , y * Σ7

t , (4.27)

is a unit normal vector field to Σ7
t in (M, g) with the property that

H(Φ21
t (y), t) = HΣ7

t
(y) y * Σ7

t , (4.28)

where HΣ7

t
is the scalar mean curvature of Σ7

t with respect to ¿t. We now prove
three important geometric properties of the family {Σ7

t}t, namely, we show that

Hn(Ω \ Φ(A7
Σ)) = 0 , (4.29)

Hn21(Σt \ Σ7
t ) = 0 , for L1-a.e. t > 0 , (4.30)

and that, when "Ω = Σ *N0,

Hn21(Σ7
t ) g h(0)n21 vol (N) , for L1-a.e. t > 0 . (4.31)

We begin noticing that (4.29) is immediate to prove when Σ is a closed smooth
hypersurface, since, in that case, we trivially see that Ω \Φ(A7

Σ) ¦ Cut7(Σ), where
Cut7 denotes the cut-locus in (M, g7), and Hn(Cut7(Σ)) = 0 by Theorem 2.1-(v).
In our non-smooth setting, we begin noticing that, by assumption (A3) and Lemma
3.2, there is »7 > 0 such that Σ is a White (n 2 1, »7)-subset of (M, g7). Now, by
construction,

Ω \ Φ(A7
Σ) ¦ Cut7(Σ) * exp

[
N (Σ)x(Σ \ Σ)

]
,
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Since Σ is a White (n21, »7)-set in (M, g7) and Hn21(Σ\Σ) = 0 we conclude from
Theorem 3.3 that

Hn(N (Σ)x(Σ \ Σ)) = 0 and Hn
(
exp7

[
N (Σ)x(Σ \ Σ)

])
= 0 .

Since Hn(Cut7(Σ)) = 0 , we conclude the proof of (4.29). By (4.29) and the coarea
formula we have

0 =

ˆ

Ω\Φ(A7

Σ
)

|'u7Σ|g dHn =

ˆ >

0

Hn21(Σs \ Φ(A7
Σ)) ds ,

which immediately implies (4.30) by Σ7
s = Σs + Φ(A7

Σ). Finally, to prove (4.31),
we notice that, since u7Σ is a Lipschitz function, Ωt = {u7Σ > t} is a set of finite
perimeter in M for L1-a.e. t > 0. Since "Ω = Σ * N0 implies "Ωt = N0 * Σt, by
(4.30) the reduced boundary "7Ωt of Ωt is Hn21-equivalent to the union of N0 and
Σ7
t , with measure theoretic outer g-unit normal ¿Ωt

such that ¿Ωt
= 2"/"r on N0

and ¿Ωt
= ¿t on Σ7

t ; in particular,

ˆ

Ωt

div ("/"r) =

ˆ

Σ7

t

〈¿t, "/"r〉g dHn21 2Hn21(N0) .

By (4.8), and since both "/"r and ¿t have unit length in g, we deduce Hn21(Σ7
t ) g

Hn21(N0), which is (4.31).

A general Heintze–Karcher inequality: We now prove a general Heintze–Karcher
inequality, see (4.33) below, which implies both (4.2) and (4.3), and which allows
one to deduce the crucial positive reach information contained in conclusion (c)
when equality holds in either (4.2) or (4.3). We start noticing that, by (4.18) and
(4.20),

ˆ

Σ

dHn21
x

ˆ RΣ(x)

0

(f ç Φ)2(x, t)JΣΦt(x) dt (4.32)

f 2(n2 1)

ˆ

Σ

dHn21
x

ˆ RΣ(x)

0

"

"t

(f ç Φ
H

)
(x, t)JΣΦt(x) dt

= 2(n2 1)

ˆ

Σ

dHn21
x

ˆ RΣ(x)

0

(f ç Φ)2 (x, t)JΣΦt(x) dt

2(n2 1)

ˆ

Σ

[(f ç Φ
H

)
(x, t)JΣΦt(x)

]∣∣∣
t=RΣ(x)

t=0
dHn21

x .

By (4.15), the area formula, and (4.29) we obtain

ˆ

Σ

dHn21
x

ˆ R7

Σ(x)

0

(f ç Φ)2 (x, t)JΣΦt(x) dt

=

ˆ

A7

Σ

(f ç Φ)JAΣΦ dHn =

ˆ

Φ(A7

Σ
)

f dHn =

ˆ

Ω

f dHn ,

while by (4.12),

[ˆ

Σ

(f ç Φ
H

)
(x, t)JΣΦt(x)dHn21

x

]∣∣∣
t=0

=

ˆ

Σ

f

HΣ
dHn21 ,
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so that (4.32) gives

n

ˆ

Ω

f dHn +

ˆ

Σ

dHn21
x

ˆ RΣ(x)

R7

Σ
(x)

(f ç Φ)2 (x, t)JΣΦt(x) dt + L(Σ)

f (n2 1)

ˆ

Σ

f

HΣ
dHn21 , (4.33)

where

L(Σ) = (n2 1)

ˆ

Σ

[
lim

t³RΣ(x)2

(f ç Φ
H

)
(x, t)JΣΦt(x)

]
dHn21

x .

Notice that, for every x * Σ, t 7³ JΣΦt(x) [(f ç Φ)/H ](x, t) is decreasing on
(0, RΣ(x)) thanks to (4.18) and (4.20): in particular, the integrand in the defi-
nition of L(Σ) is a well-defined non-negative function, (4.2) follows immediately
from (4.33), and conclusion (a) is proved.

Conditional proof of conclusions (b) and (c): We now prove conclusions (b) and (c)
assuming the validity of the following inequality:

L(Σ) g h(0)n vol(N) , when "Ω = Σ *N0 . (4.34)

Indeed, if (4.34) holds, then (4.33) definitely implies (4.3), that is is conclusion (b).
Moreover, if equality holds in either (4.2) or (4.3), then inequality (4.32) (appearing
in the derivation of (4.33)) must hold as an identity. Therefore, since (4.18) was
used in proving (4.32), we find that if equality holds in either (4.2) or (4.3), then

"

"t

(f ç Φ
H

)
= 2 (f çΦ)2

n2 1
, on AΣ , (4.35)

ˆ

Σ

dHn21
x

ˆ RΣ(x)

R7

Σ
(x)

(f ç Φ)2 (x, t)JΣΦt(x) dt = 0 . (4.36)

By (4.22), we see that (4.35) gives

|II|2 =
H2

n2 1
, on AΣ , (4.37)

which, tested with t = 0, implies that Σ is umbilical in (M, g) (the first part of
conclusion (c)), as well as

h3

2

(
M[h]

)2
gN (¿, ¿) = 0 , on AΣ ,

which, tested with t = 0, implies the validity of (4.4). A more delicate argument is
needed to deduce from (4.36) that M \Ω has positive reach in (M, g7) (the second
part of conclusion (c)), and it goes as follows: Since f > 0 on M (by assumption
(H2)) and JΣΦt(x) > 0 for every t * (0, RΣ(x)) (by definition of RΣ(x)), (4.36)
implies that

RΣ(x) = R7
Σ(x) , for Hn21-a.e. x * Σ ,

whence we infer from the lower semicontinuity of RΣ and the continuity of R7
Σ that

RΣ(x) = R7
Σ(x) , for every x * Σ . (4.38)

Let x * Σ be such that RΣ(x) <>. Should it be that

distg7(Φt(x), N0 *Nb) ³ 0+ as t³ RΣ(x)
2 , (4.39)
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the facts that RΣ(x) <> and distg7(N0,Σ) g distg7(N0, Na) = +> would imply

distg7(Φt(x), Nb) ³ 0+ as t³ RΣ(x)
2 ,

and thus, by (4.38), Φ(A7
Σ) ¢ Ω, and (4.6), that

lim
t³RΣ(x)2

Φt(x) * Ω +Nb = ∅ ,

a contradiction. Since (4.39) cannot occur, RΣ(x) <>must then imply JΣΦt(x) ³
0+ as t ³ RΣ(x)

2: in this case, (4.21) holds, and we can integrate (4.35) over
t * (0, RΣ(x)) and take advantage of (4.12) so to find

2 f(x)

HΣ(x)
= 2

ˆ RΣ(x)

0

f(Φt(x))
2

n2 1
dt g 2RΣ(x)

n2 1
sup
M

f2 ,

where supM f2 <> thanks to (4.7). Since 0 < HΣ f » on Σ by assumption (A3),
we conclude (using again (4.6)) that

RΣ(x) g
(n2 1)

» supM f2
inf
Σ
f g (n2 1)

» supM f2
inf
[a,b]

h2 .

We have thus proved the existence of a positive constant c(Σ) such that8 By as-
sumption (A2), "(M \ Ω) = Σ, therefore

N 1(M \ Ω) ¢ N 1Σ , (4.41)

N 1(M \ Ω) +
(
N 1Σ xΣ

)
=

{
(x,2¿7Ω(x)) : x * Σ

}
. (4.42)

At the same time, by applying Theorem 3.3 with Γ = Σ (which is admissible by
assumption (A3)), m = n 2 1, and Z = Σ \ Σ (which is admissible since, by
assumption (A1), Hn21(Σ \ Σ) = 0), we find that

Hn21
(
N 1Σ x

(
Σ \Σ

))
= 0 . (4.43)

By combining (4.41), (4.42) and (4.43) we thus find

(x, ·) = (x,2¿7Ω(x)) for Hn21-a.e. (x, ·) * N 1(M \ Ω) ,
so that the function, for Hn21-a.e. (x, ·) * N 1(M \ Ω) we have

Ã7M\Ω(x, ·) = Ã7M\Ω(x,2¿7Ω(x))
= sup

{
s > 0 : s = distg7

(
exp7

(
x,2s ¿7Ω(x)

)
,M \ Ω

)}
.

Since distg7(p,M \ Ω) = distg7(p,Σ) for p * Ω and since

exp7(x,2s ¿7Ω(x)) * Ω , "s * (0, Ã7M\Ω(x,2¿7Ω(x))) ,
by (4.40) we conclude that, for Hn21-a.e. (x, ·) * N 1(M \ Ω),

Ã7M\Ω(x, ·) = Ã7
Σ
(x,2¿7Ω(x)) = R7

Σ(x) g c(Σ) > 0 .

8Since it is false that every (x, ·) ∈ N 1Σ is an accumulation point of {(x,−¿7Ω(x)) : x ∈ Σ}, we

cannot deduce a lower bound for ÃΣ on N 1Σ by simply combining (4.40), R7

Σ(x) = Ã7
Σ
(x,−¿7Ω(x)),

and the upper semicontinuity of Ã7
Σ

on N 1Σ. In general, N 1Σ minus the closure of {(x,−¿7Ω(x)) :

x ∈ Σ}) may even be of positive Hn21-measure.

R7

Σ(x) = RΣ(x) ≥ c(Σ) , ∀x ∈ Σ . (4.40)
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We can thus apply Theorem 2.1-(vii) and Remark 2.1 to finally conclude thatM \Ω
is a set of positive reach in (M, g7). We are thus left to prove (4.34) to complete
the proof of conclusions (b) and (c).

Proof of (4.34): We start by setting, for every (x, t) * Σ× [0,>),

g(x, t) =

ù
ú
û

(f ç Φ
H

)
(x, t)JΣΦt(x) , x * Σ , t * (0, RΣ(x)) ,

0 , x * Σ , t g RΣ(x) .

By (4.18), (4.20), and the non-negativity of f ,H and JΣΦt, we see that t * [0,>) 7³
g(x, t) is decreasing, and thus provides a non-negative extension of JΣΦ (f çΦ)/H
from AΣ to the whole Σ× [0,>) such that

L(Σ) = (n2 1) lim
t³>

ˆ

Σ

g(x, t) dHn21
x .

Now, since {R7
Σ > t} ¢ Σ and since t < R7

Σ(x) implies t < RΣ(x) we have
ˆ

Σ

g(x, t) dHn21
x g

ˆ

{R7

Σ
>t}

(f ç Φ
H

)
JΣΦt dHn21

x =

ˆ

Σ7

t

f

HΣ7

t

dHn21 ,

where we have used (4.28). Now, by the Cauchy–Schwartz inequality,
ˆ

Σ7

t

f

HΣ7

t

dHn21 g Hn21(Σ7
t )

2
(ˆ

Σ7

t

HΣ7

t

f
dHn21

)21

so that, in summary,

L(Σ) g (n2 1) lim sup
t³>

Hn21(Σ7
t )

2
(ˆ

Σ7

t

HΣ7

t

f
dHn21

)21

. (4.44)

Claim: for every » * (0, 1) there is t0 = t0(») so that, if t > t0, then

inf
Σ7

t

〈X, ¿t〉g g »h(0) , (4.45)

(n2 1)Hn21(Σ7
t ) g

ˆ

Σ7

t

HΣ7

t

〈X, ¿t〉g
f

dHn21 , (4.46)

with ¿t as in (4.27). Notice that by combining (4.44), (4.45) and (4.46) we obtain
indeed that

L(Σ) g (n2 1) lim sup
t³>

inf
Σ7

t

〈X, ¿t〉gHn21(Σ7
t )

2
(ˆ

Σ7

t

HΣ7

t

f
〈X, ¿t〉g

)21

g »h(0) lim sup
t³>

Hn21(Σ7
t ) g »h(0)n vol (N) ,

where in the last step we have used (4.31). By letting » ³ 12 we deduce (4.34).
We are thus left to prove (4.45) and (4.46) to complete the proof of conclusions (b)
and (c).

Proof of (4.45): Recalling that Ωt = {x * Ω : distg7(x,Σ) > t}, we now consider

u7Ωt
= distg7(·,Ωt) , t > 0 ,

and notice that, with the same argument used in the proof of [Bre13, Lemma 3.6],
for every » * (0, 1) there is t0 = t0(») such that, if p * Ωt0 and ³ is a g7-unit speed
geodesic with ³(0) = p and ³(u7Σ(p)) * Σ, then |³2(0)|g = f(p) and

〈³2(0), "/"r〉g g » f(p) . (4.47)
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(In more geometric terms, every g7-unit speed geodesic that ends up in Σ after
originating in Ω from a point at a sufficiently large distance from Σ, must have
an initial velocity with “almost vertical” direction). If t > t0 we can apply this
statement to any p * Σ7

t ¢ Σt ¢ Ωt0 and with ³2(0) = f(p) ¿t(p), so to find

〈¿t(p), "/"r〉g g » "p * Σ7
t ,

from which (4.45) follows since X = h "/"r and h g h(0) on M .

As an additional consequence of (4.47), setting from now on t0 = t0(»)|λ=1/2, we
also notice that, for every t g t0,

Ωt has positive reach in (M, g7) . (4.48)

To prove this, thanks to Theorem 2.3, we only need to show that u7Σ has no critical
points in Ωt0 (t0 = t0(»)|λ=1/2), that is, that there cannot be p * Ωt0 such that for
every v * TpM with |v|g7 = 1 one can find a g7-unit speed geodesic ³ with ³(0) = p

and ³(u7Σ(p)) * Σ such that 〈v, ³2(0)〉g g 0; and, indeed, any such ³ would satisfy
〈³2(0), "/"r〉g7 g f(p)/2 by (4.47), so that, taking v = 2f(p) ("/"r), we would
obtain a contradiction.

Proof of (4.46): The proof is based on an approximation argument. Precisely, for
t > 0 and · < min{1, t}, we consider the sets

Wt,ε =
{
x *M : u7Ωt

(x) = ·
}
,

so that

Σ7
t2ε ¢Wt,ε ¢ Ωt21 \ Ωt , "t > 0 , · < min{1, t} , (4.49)

and reduce the proof of (4.46) to showing that

lim
ε³0+

Hn21(Wt,ε) = Hn21(Σt) , (4.50)

lim
ε³0+

ˆ

Σ7

t2ε

HΣ7

t2ε

〈X, ¿t2ε〉g
f

dHn21 =

ˆ

Σ7

t

HΣ7

t

〈X, ¿t〉g
f

dHn21 , (4.51)

lim inf
ε³0+

ˆ

Wt,ε\Σ7

t2ε

〈 ~HWt,ε
, X〉g

f
dHn21 g 0 . (4.52)

Indeed, thanks to (H1), there is r1 > 0 such that h22 > 0 on (0, 2 r1). Up to further
increase the value of t0, we can ensure Ωt21 ¦ N × [0, r1] for every t g t0. In
particular, byWt,ε ¢ Ωt21, we conclude that h

22 > 0 onWt,ε. Since Wt,ε is a closed
C1,1-hypersurface in Mç with Hn21(Wt,ε) <>, by (4.11) we find

(n2 1)Hn21(Wt,ε) g
ˆ

Wt,ε

〈 ~HWt,ε
, X〉g
f

dHn21 (4.53)

=

ˆ

Wt,ε\Σ7

t2ε

〈 ~HWt,ε
, X〉g
f

dHn21 +

ˆ

Σ7

t2ε

HΣ7

t2ε

〈¿t2ε, X〉g
f

dHn21

where we have used Σ7
t2ε ¢Wt,ε to deduce

~HWt,ε
= ~HΣ7

t2ε
= HΣ7

t2ε
¿t2ε on Σ7

t2ε .

By using (4.50), (4.51), (4.52), and (4.53) we deduce immediately (4.46). We now
turn to the proof of (4.50), (4.51), and (4.52). We shall use the following preliminary
step:
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Proof of (4.50) and (4.51): Thanks to (4.48) we can apply Theorem 2.2 with
A = Ωt, t g t0 and find ·t * (0,min{1, t}) such that, if · * (0, ·t), then Wt,ε =
{u7Ωt

= ·} is a compact C1,1-hypersurface contained in UP(Ωt) and the g7-geodesic

flow Ψt : N 1(Ωt)× [0, ·t) ³ {0 f u7Ωt
< ·t} defined by

Ψt(p, ·, ·) = Ψtε(p, ·) = exp7(p, · ·) , (p, ·, ·) * N 1(Ωt)× [0, ·t) ,

is such that Ψtε is a locally bi-Lipschitz map N 1(Ωt) to Wt,ε when · > 0, with
Ψt0(p, ·) = p. In particular,

Θt := N 1(Ωt)

is a (n 2 1)-dimensional compact Lipschitz submanifold of TM . On noticing that
N 1
p (Ωt) = ∅ for every p * Ωt *N0, since "Ωt = Σt *N0 we find that

N 1(Ωt) = N 1(Ωt) xΣt , i.e. (p, ·) * Θt implies p * Σt . (4.54)

Moreover, by Theorem 2.1-(iii) (applied to Ωt, see, in particular, (2.5)),

H0(N 1
p (Ωt)) = 1 , for Hn21-a.e. p * Σt . (4.55)

Finally, the smoothness of (p, ·) * TM 7³ exp7(p, · ·) *M ensures that

lim
ε³0+

JΘt

Ψtε(p, ·) = JΘt

Ψt0(p, ·) , (4.56)

for Hn21-a.e. (p, ·) * Θt (i.e., at every (p, ·) such that T(p,η)Θ
t exists). Since Ψtε

and its differential are locally bounded in (M, g), we can apply the area formula
(to Ψtε), the dominated convergence theorem (in combination with (4.56)), and the
area formula again (to Ψt0) to find

lim
ε³0+

Hn21(Wt,ε) = lim
ε³0+

ˆ

Θt

JΘt

Ψtε dHn21 =

ˆ

Θt

JΘt

Ψt0 dHn21

=

ˆ

Ψt
0(Θ

t)

H0
(
(Ψt0)

21(x)
)
dHn21

x =

ˆ

Ψt
0(Θ

t)

H0
(
N 1
x (Ωt)

)
dHn21

x ,

which, combined with (4.55) and Ψt0(Θ
t) ¢ Σt (i.e. (4.54)), gives

lim
ε³0+

Hn21(Wt,ε) =

ˆ

Ψt
0(Θ

t)

H0
(
N 1
x (Ωt)

)
dHn21

x f Hn21(Σt) . (4.57)

Now, to prove (4.50), let us consider the diffeomorphisms Çε : Σ7
t ³ Σ7

t2ε defined
by

Çε(x) = Φt2ε
(
Φ21
t (x)

)
= exp7(x, · f(x) ¿t(x)) , "x * Σ7

t .

By the area formula,

Hn21(Çε(Σ
7
t )) =

ˆ

Σ7

t

JΣ7

t Çε dHn21 .

Since Çε ³ Id and JΣ7

t Çε ³ 1 on Σ7
t as · ³ 0, we conclude by dominated conver-

gence that

lim
ε³0+

Hn21(Σ7
t2ε) = Hn21(Σ7

t ). (4.58)

Thus, by combining (4.57) and (4.58) with the facts that Σ7
t2ε ¢ Wt,ε and Σ7

t is
Hn21-equivalent to Σt (recall (4.30)), we deduce (4.50) and

lim
ε³0+

Hn21(Wt,ε \ Σ7
t2ε) = 0 . (4.59)
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To prove (4.51) we notice that, since (Φ21)|Σ7

s
= (Φs)

21 on Σ7
s , we have

(Φ21)|Σ7

t2ε
ç Çε = (Φt)

21 = (Φ21)|Σ7

t
on Σ7

t ,

so that, the area formula gives
ˆ

Σ7

t2ε

HΣ7

t2ε

〈X, ¿t2ε〉g
f

dHn21 =

ˆ

Σ7

t2ε

(H ç (Φt2ε)21)
〈X, ¿Ω ç (Φt2ε)21〉g

f

=

ˆ

Σ7

t

HΣ7

t

〈X ç Çε, ¿t〉g
f ç Çε

JÇε dHn21 ,

for every · > 0. Then (4.51) follows by dominated convergence.

Proof of (4.52): We finally prove (4.52), that is,

lim inf
ε³0+

ˆ

Wt,ε\Σ7

t2ε

〈 ~HWt,ε
, X〉g

f
dHn21 g 0 . (4.60)

Setting, for the sake of brevity,

¿t,ε =
'u7Ωt

|'u7Ωt
|g
, Ht,ε = ~HWt,ε

· ¿t,ε , on Wt,ε , (4.61)

we notice that ¿t,ε defines a Lipschitz continuous g-unit normal to Wt,ε, and that
Ht,ε is the scalar mean curvature (as usual, with respect to g) of Wt,ε relative to
¿t. With this notation, and thanks to (4.59), (4.60) follows by showing that

inf
Wt,ε

〈¿t,ε, "/"r〉g g 0 , (4.62)

Ht,ε(x) g 2Λ(t) , for Hn21-a.e. x *Wt,ε , (4.63)

for a (positive) constant Λ(t) independent of ·.

Proof of (4.62): We start by proving the existence of a positive constant c such
that 〈

·,X(p)
〉
g7

g c , "(p, ·) * Θt , t > t0 . (4.64)

Since 〈·, v〉g7 f 0 whenever · * Np(Ωt) and v * Tp(Ωt) (where Tp(Ωt) is tangent
cone to Ωt at p), and recalling (4.55), the validity of (4.64) (for an explicitly com-
putable constant Ã0) can be easily deduced by showing that, for every t > t0 and
p * Σt ¢ Ωt0 , ù

ú
û

v * TpM , |v|g = 1 ,

〈
v,2("/"r)|p

〉
g
>

15

16
,

ó v * Tp(Ωt) . (4.65)

(In geometric terms: leaving p * Σt = ("Ωt) +Mç along a sufficiently “vertical
and downward” direction, we stay inside Ωt.) The proof of (4.65) follows closely
that of [Bre13, Lemma 3.7], but since the two statements are not immediate to
compare, we include the details. We need to consider an arbitrary g-unit speed
curve ³ : [0, 1] ³ M with ³(0) = p and ³2(0) = v, and prove the existence of
Ã * (0, 1) such that u7Σ(³(s)) > t for every s * (0, Ã). To begin with, we can
definitely chose Ã so that

³(s) * Ωt0 ,
〈
³2(s),2("/"r)|γ(s)

〉
g
g 15

16
, "s * [0, Ã] .
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For every s * (0, Ã), the fact that ³(s) * Ωt0 implies u7Σ(³(s)) > 0, and thus the

existence of a g7-unit speed geodesic ³s with ³s(0) = ³(s) and ³s(u
7
Σ(³(s))) * Σ.

By (4.47) (with » = 1/2), since w(s) = ³2
s(0)/f(³(s)) is a g-unit vector, we find

1

2
f

〈
w(s), ("/"r)|γ(s)

〉
g
=

〈
w(s), ³2(s) + ("/"r)|γ(s)

〉
g
2 〈w(s), ³2(s)〉g

f
∣∣³2(s) + ("/"r)|γ(s)

∣∣
g
2 〈w(s), ³2(s)〉g

=
√
22 2 〈³2(s),2("/"r)|γ(s)〉g 2 〈w(s), ³2(s)〉g

f 1

4
2 〈w(s), ³2(s)〉g , i.e. 〈2w(s), ³2(s)〉g g

1

4
"s * (0, Ã) .

Using the facts that u7Σ(p) = t and that, for a.e. s * (0, Ã), u7Σ ç ³ is differentiable
at ³(s) with

(u7Σ ç ³)2(s) = 〈'7u7Σ(³(s)), ³
2(s)〉g7 = 〈2³2

s(0), ³
2(s)〉g7 =

〈³2(s),2w(s)〉g
f(³(s))

,

we thus find that, for every s2 * (0, Ã),

u7Σ(³(s
2)) = t+

ˆ s2

0

ds

4 f(³(s))
> t

as desired. This proves (4.65), and thus, as explained, (4.64).

We are now ready to deduce (4.62) from (4.64). First, by (4.64) there are positive
constants c and · such that

〈·2, "/"r〉g g c , (4.66)

whenever (q, ·2) lies in the ·-neighborhood Aδ(Θ
t) of Θt = N 1(Ωt) in TM . Second,

by smoothness of (p, ·, ·) 7³ exp7(p, · ·), we can find ·2 < ·t depending on · such
that {(

Ψt(p, ·, ·),
"Ψt

"·
(p, ·, ·)

)
: (p, ·) * Θt , 0 < · < ·2

}
¢ Aδ(Θ

t) .

Third, since Ψtε is a bijection from Θt to Wt,ε, we see that for each x * Wt,ε there

is a unique pair (p, ·) with p * Σt and · * N 1
p (Ωt) such that x = Ψtε(p, ·). Thus,

taking also into account that (in general) |'7v|g7 = f |'v|g (by '7v = f2 'v),
that |'7u7Ωt

|g7 = 1 (wherever u7Ωt
is differentiable), and that u7Ωt

is differentiable

along · 7³ Ψtε(p, ·) with g
7-gradient given by "Ψtε/"·, we conclude that

〈¿t,ε(x), "/"r〉g =
〈 'u7Ωt

(Ψtε(p, ·))

|'u7Ωt
(Ψtε(p, ·))|g

, "/"r
〉

g

= f
(
Ψtε(p, ·)

)
〈'u7Ωt

(Ψtε(p, ·)), "/"r〉g

= f
(
Ψtε(p, ·)

) 〈"Ψt
"·

(p, ·, ·), "/"r
〉
g
g c inf

[a,b]
h2 > 0 ,

provided · < ·2. This proves (4.62).

Proof of (4.63): Let us consider the open set

At,ε = Ωt *
{
p * Ω : u7Ωt

(p) < ·
}
,

that has C1,1-boundary and g-unit outer unit normal given by ¿At,ε
= ¿t,ε on

"At,ε = Wt,ε, with ¿t,ε as in (4.61). Given x * Wt,ε such that ¿t,ε is differentiable
at x (this holds at Hn21-a.e. x *Wt,ε), let B

7
x denote the g7-geodesic ball centered

at exp7(x, (µt/2)'7u7Ωt
(x)), where µt < min{1, ·t} is smaller than the injectivity
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radius of M in Ωt22 \ Ωt+1, so to entail that B7
x has smooth boundary. Since, by

construction,

x * "At,ε + "B7
x , At,ε ¢M \B7

x ,

by the weak maximum principle for C1,1-vs-smooth hypersurfaces we find

HWt,ε
(x) = ~HAt,ε

(x) · ¿t,ε(x) g ~HM\B7

x
· ¿t,ε(x) = 2HB7

x
(x) ,

where HB7

x
(x) denotes the scalar mean curvature of B7

x in (M, g), computed with
respect to the outer g-unit normal to B7

x at x (i.e., with respect to 2¿t,ε(x)). Now,
if H7

B7

x
denotes the scalar mean curvature of B7

x in (M, g7) computed with respect

to the outer g7-unit normal to B7
x at x, then by (3.2) we find

HB7

x
(x) f H7

B7

x
(x) + 3 (n2 1) |' log(f)(x)|g

f (n2 1)
:
»t coth(

:
»t µt/2) + 3 (n2 1) |' log(f)(x)|g ,

where in the last inequality we have denoted by 2»t a negative lower bound for
the sectional curvatures of (M, g7) in Ωt22 \ Ωt+1, and have used [Kar89, pag.
184] (comparison with the mean curvature of geodesic balls in an hyperbolic model
space). Since the right-hand side can be bounded by a positive constant Λ(t),
we have concluded the proof of (4.63), and thus of conclusions (b) and (c) of the
theorem. �

Proof of Theorem 4.2. Preparation: As in the proof of Theorem 4.1, we reduce the
case when M = N × (0,>), (H0) and (H1) hold, (H2) holds on (0,>) (i.e., h2 > 0
on (0,>)), (H3) and (H4) hold on (0, b) (if (M, g) * Bn) or (H3)7 holds on (0, b)
(if (M, g) * B7

n); f = h2 ç r is bounded onM and the metric g7 = f22 g is such that
(M, g7) is a complete Riemannian manifold; and, finally, Σ and Ω satisfy (4.6) in
addition to assumptions (A1), (A2)’, and (A3)’. Next, by testing (4.5) with vector
fields compactly supported in M \ (Σ \ Σ) we see that

HΣ c H0 on Σ ,

while testing (4.5) withX = h "/"r and taking into account that div ΣX = (n21) f
on Σ and div (X) = n f on M by (4.10), we find, in the case "Ω = Σ,

(n2 1)

ˆ

Σ

f dHn21 =

ˆ

Σ

div ΣX dHn21 = H0

ˆ

Σ

〈X, ¿Ω〉g dHn21

= H0

ˆ

Ω

divX = H0 n

ˆ

Ω

f ,

i.e., HΣ c H0 > 0 (so that (A2) holds) and (4.2) holds as an equality; and, in the
case "Ω = Σ *N0,

(n2 1)

ˆ

Σ

f dHn21 =

ˆ

Σ

div ΣX dHn21 = H0

ˆ

Σ

〈X, ¿Ω〉g dHn21

= H0

ˆ

Ω

divX dHn 2
ˆ

N0

〈X, "/"r〉g dHn21

= H0 n

ˆ

Ω

f 2 h(0)n vol (N) ,

i.e, HΣ c H0 > 0 (so that (A2) holds) and (4.3) holds as an equality; finally,
Theorem 3.1 and (4.5) imply the validity of assumption (A3). We can thus apply
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conclusion (c) of Theorem 4.1 to conclude that

Σ is umbilical and has constant mean curvature in (M, g) , (4.67)

M \ Ω has positive reach in (M, g7) , (4.68)

(M[h])2 gN (¿Ω, ¿Ω) = 0 on Σ , (4.69)

with M[h] defined as in (4.23).

Conclusion of the proof if (M, g) * B7
n: In this case, (4.6) and the validity of (H3)7

on (0, b) implies that (M[h])2 > 0 on Σ, so that (4.69) gives

if p * Σ, then ¿Ω(p) is parallel to ("/"r)|p . (4.70)

Now, if Ç is a local chart of N , defined on a ball B in R
n21, then Ë(x, t) = (Ç(x), t)

defines a local chart of M defined on the open set V = B × (0, r̄); clearly, Ë21(Ω)
is a set of finite perimeter in V ¢ R

n, with ¿ψ21(Ω) parallel to en Hn21-a.e. on

"7[Ë21(Ω)]; by [Mag12, Exercise 15.18], Ë21(Ω) + V is Hn-equivalent to B × J ,
where J is a finite union of open intervals compactly contained in (0, r̄); covering
N by such charts Ç, and going back to M , we conclude that Ω is Hn-equivalent
to a N0 × J . Then, the fact that HΣ is constant implies that J is either equal to
(0, t0) or to (t0, r̄) for some t0 * (0, r̄), and the theorem is proved.

Conclusion of the proof if (M, g) * Bn: Condition (4.67) combined with the Codazzi
equations implies that

(RicM )p(¿Ω(p), Ãi(p)) = 0 , "p * Σ , i = 1, ..., n2 1 , (4.71)

provided {Ãi(p)}n21
i=1 is an g-orthonormal basis of TpΣ; in particular,

if p * Σ, then ¿Ω(p) is an eigenvector of Ricp . (4.72)

Since (H4) implies that ("/"r)|p is a simple eigenvector of (RicM ) (with eigenvalue
2(n2 1) (h22/h)(r(p))), it follows from (4.72) that

if p * Σ, then ¿Ω(p) is either orthogonal or parallel to ("/"r)|p . (4.73)

Now, by (4.6), there is t0 > 0 and p0 * Σ such that

N × (0, t0) ¢ Ω , p0 * Σ +Nt0 ¢ "Ω . (4.74)

From here, in the smooth case when Σ = Σ (i.e., in the case considered in [Bre13]),
(4.73) and (4.74) immediately imply, first, that ¿Ω(p0) = ("/"r)|p0 , and, second,
that Nt0 ¢ Σ; from which a sliding argument (also required and detailed below in
the non-smooth case) proves the theorem.

However, in the non-smooth case, we cannot immediately conclude the contain-
ment of Nt0 into Σ, and, actually, it is not even clear if Σ is regular at the contact
point p0 defined in (4.74): indeed, the blow-up of (the multiplicity one varifold
associated to) Σ at p0 is an hyperplane with multiplicity possibly higher than one –
thus preventing the use of Allard’s regularity theorem to infer p0 * Σ. To exit this
impasse we make crucial use of the positive reach property (4.68), which we use to
prove the following approximation property: for every (p, ·) * N 1(M \Ω) there are
a connected component Σ2 of Σ and a sequence {pj}j ¢ Σ2 such that

(
pj ,2f(pj) ¿Ω(pj)

)
³ (p, ·) in N 1(M \ Ω) . (4.75)
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Indeed, by (4.68) and Theorem 2.2, there is s0 > 0 such that, for every s * (0, s0),
the sets

Zs =
{
x *M : dist7(x,M \ Ω) = s

}
,

are C1,1-hypersurfaces, and the map Ψs(p, ·) = exp7(p, s ·) is bi-Lipschitz from
N 1(M \Ω) to Zs. We notice that

N 1(M \ Ω)+Σ =
{
(p,2f(p) ¿Ω(p)) : p * Σ

}
,

and set

Z7
s = Φs

(
N 1(M \ Ω)+Σ

)
¢ Zs .

By arguing as in the proof of (4.30), with the aid of Theorem 3.3 we find that, for
L1-a.e. s * (0, s0), Z

7
s is Hn21-equivalent to Zs. For any such s, Z7

s is an open
dense subset of Zs, and we can find a sequence {qj}j, contained in same connected
component Z77

s of Z7
s , such that qj ³ Φs(p, ·) * Zs. Setting Ã(q, Ç) = q for every

(q, Ç) * TM , we see that pj = Ã[(Φs)
21(qj)] defines a sequence contained in a same

connected subset Ã[(Φs)
21(Z77

s )] of Σ, and such that
(
pj,2f(pj) ¿Ω(pj)

)
= (Φs)

21(qj) ³ (p, ·) ,

in TM , thus proving (4.75). We now combine (4.75) with the fact that, by definition
of p0 (recall (4.74)) it holds

2f(p0)
"

"r

∣∣∣
p0

* N 1
p0(M \ Ω) , (4.76)

to find a sequence {pj}j , contained in a connected component Σ2 of Σ, such that
(pj ,2f(pj) ¿Ω(pj)) ³ (p0,2f(p0)("/"r)|p0) as j ³ >. By (4.73), up to extracting
subsequences, there are two alternatives: either

2f(pj) ¿Ω(pj) is parallel to ("/"r)|pj for every j , (4.77)

or gpj (¿Ω(pj), ("/"r)|pj ) = 0 for every j, where the latter is clearly contradictory,
since |"/"r|g = 1. By smoothness and connectedness of Σ2, by (4.73), and since
Σ2 contains points pj as in (4.77) with pj ³ p0 as j ³ >, we conclude that Σ2 is
an open connected subset of Nt0 . In fact, it must be Σ2 = Nt0 , because the above
argument, with p0 replaced by a possible point p20 in the boundary of Σ2 relative to
Nt0 , would lead to the contradiction that an open neighborhood of p20 in Nt0 would
be contained in Σ2 itself. We have thus proved that

Nt0 ¢ Σ . (4.78)

The same argument also shows that

Nt0 + Σ + [N × (t0,>)] = ∅ . (4.79)

By (4.79) we could then start sliding Nt upwards to prove that either Ω = N×(0, t0)
with Mç + "Ω = Σ = Σ = Nt0 , thus concluding the proof of the theorem, or we
could find t1 > t0 such that

(t0, t1) \M \ Ω , p1 * Nt1 +Σ ¢M \ Ω . (4.80)

By construction, 2f(p1) ("/"r)|p1 * N 1
p1(M \ Ω), and, by arguing as in the proof

of (4.78), we would find Nt1 ¢ Σ, with ¿Ω = 2("/"r)|p1 along Nt1 . In turn, this
would give that HΣ is negative along Nt1 , a contradiction. This finally proves the
theorem. �
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5. Rigidity and compactness theorem

Proof of Theorem 1.1. Up to change Ω with M \ Ω, since ¿Ω = 2¿M\Ω on "7Ω =
"7(M \ Ω), we can assume that » g 0. Let VΩ be the multiplicity one rectifi-
able varifold associated to Mç + "7Ω. The distributional constant mean curvature
condition (1.4) imply lower density bounds on ‖VΩ‖, which in turn imply

Hn21("7Ω \ "7Ω) = 0.

Therefore, it is not restrictive to assume that Ω is an open set such that Mç + "Ω
is compact, "7Ω = "Ω and

Hn21("Ω \ "7Ω) = 0. (5.1)

(see for instance the construction in the proof of [DRKS20, Lemma 6.2]). Notice
that "7Ω = "7Ω ¦ "Ω ¦ "Ω, hence taking the closure we find that "Ω = "Ω. By
Allard’s regularity theorem [All72], if we set

Σ =
{
x * spt‖VΩ‖ : lim

ρ³0+

‖VΩ‖(Bρ(x))
Ën21 Ãn21

= 1
}
,

then Σ is a smooth, embedded hypersurface and

Σ =Mç + "7Ω . (5.2)

We now check that the pair (Σ,Ω) satisfies the assumptions (A1), (A2)’ and (A3)’ of
Theorem 4.2, thus concluding the proof of the theorem. Clearly, (A3)’ is equivalent
to (1.4). Since Mç + "Ω is compact, we infer that Σ ¦ Mç; moreover (5.1) means
that Hn21(Σ \ Σ) = 0. Henceforth (A1) holds. Concerning (A2)’, since Mç + "Ω
is compact, we notice that 1Ω is constant in a neighborhood A of N0 in M ; if
1Ω = 0 on A then "Ω = Σ; if, otherwise 1Ω = 1 on A, then N0 ¢ "Ω, and thus
"Ω = N0 * Σ. �

Proof of Theorem 1.2. From Hn(Ωj∆Ω) ³ 0 as j ³ > we easily deduce that for

every x0 * Mç + "7Ω there is xj * "7Ωj such that xj ³ x0 in M ; for, otherwise,

there would be Ã > 0, with Bρ(x0) + "7Ωj = ∅ for every j, and X * C>
c (Bρ(x0))

such that

1 =

ˆ

Bρ(x0)+∂7Ω

〈X, ¿Ω〉g dHn21 =

ˆ

Ω

div X dHn

= lim
j³>

ˆ

Ωj

div X dHn = lim
j³>

ˆ

Bρ(x0)+∂7Ωj

〈X, ¿Ωj
〉g dHn21 = 0 .

We thus conclude that

Mç + "7Ω ¢ N × [a, b] ¢¢Mç . (5.3)

By Hn(Ωj∆Ω) ³ 0 and, crucially, by Per(Ωj) ³ Per(Ω), as j ³ >, we see that the
multiplicity one rectifiable varifolds Vj associated to "7Ωj converge, in the sense of
varifolds on M , to the multiplicity one rectifiable varifold V associated to "7Ω: in
particular, for every X * X (M),

lim
j³>

ˆ

Mç+∂7Ωj

div ∂
7ΩjX dHn21 =

ˆ

Mç+∂7Ω

div ∂
7ΩX dHn21 .
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Again by Hn(Ωj∆Ω) ³ 0 as j ³ > and thanks to the divergence theorem
´

Mç+∂7Ωj
〈X, ¿Ωj

〉g dHn21 ³
´

Mç+∂7Ω〈X, ¿Ω〉g dHn21 as j ³ >. Therefore, (1.7)

implies
ˆ

Mç+∂7Ω

div ∂
7ΩX dHn21 = »

ˆ

Mç+∂7Ω

〈X, ¿Ω〉g dHn21 . (5.4)

By (5.3) and (5.4) we can apply Theorem 1.1 to Ω and conclude the proof of the
theorem. �

6. Proof of Theorem 1.3

The key observation to prove Theorem 1.3 is contained in the following result,
that can be proved employing the same method of Theorem 4.1.

Theorem 6.1. Suppose (M, g) is a n-dimensional Riemannian manifold (notice
carefully that we do not assume this space to be geodesically complete) and f is a
smooth positive function on M such that

fRic2D2f + (∆f)g g 0 on M . (6.1)

Suppose Ω ¦M is an open set with finite perimeter, with exterior unit-normal ¿Ω,
such that Ω is compact, and suppose Σ ¦ "Ω is a smooth embedded hypersurface
such that Σ = "Ω is a White (n 2 1, »)-set of (M, g), Hn21(Σ \ Σ) = 0, and

HΣ =
2³
HΣ · ¿Ω is positive on Σ.

Then

n

ˆ

Ω

f dHn f (n2 1)

ˆ

Σ

f

HΣ
dHn21. (6.2)

If the equality holds, then there exists t0 > 0 such that the sets

Σt = {p * Ω : distg7(p,Σ) = t}, for 0 < t < t0,

where g7 = g
f2 , are closed embedded C1,1-hypersurfaces, and for L1 a.e. t * (0, t0)

there exists a smooth embedded umbilical hypersurface Σ7
t ¦ Σt such that

Hn21(Σt \ Σ7
t ) = 0.

Proof. Let N ¦M be a compact set with smooth boundary such that Ω ¦ int(N).
By [PV20, Corollary B], there exists a geodesically complete Riemannian extension
(M7, g7) of (N, g/f2) with "M7 = ∅. We denote by exp7 the exponential map of
(M7, g7) and define

Φ : Σ× [0,+>) ³M7, Φ(x, t) = Φt(x) = exp7(x,2tf(x)¿Ω(x))
and, for x * Σ,

RΣ(x) = min{inf{t > 0 : JΣΦt(x) = 0}, inf{t > 0 : Φt(x) /* int(N)}}.
The conclusion now can be obtained by tracing the argument of Theorem 4.1 that
gives the Heintze-Karcher inequality (4.2). We omit to repeat these details here,
and we point out a couple of remarks. First, one needs to employ (6.1) in order
to obtain (4.17) and (4.18) in the present setting: in fact, one can repeat verbatim
the pointwise computations of [Bre13, Proposition 3.2], where only (6.1) is used.
Second, to analyze the equality case, firstly we observe, exactly in the same way
as in the proof of Theorem 4.1, that M7 \ Ω is a set of positive reach; henceforth,
by Theorem 2.2, there exists t0 > 0 such that Σt is a compact embedded C1,1-
hypersurface for every 0 < t < t0; then, combining (4.30) and (4.37) we infer that
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Σ7
t is a smooth umbilical embedded hypersurface relatively open in Σt for every

t > 0, and Hn21(Σt \ Σ7
t ) = 0 for L1 a.e. t > 0. �

We consider the upper-half space model of the hyperbolic space H
n: namely

H
n = R

n
+ = {x * R

n : xn > 0} and

gHn =
1

x2n
(dx21 + . . .+ dx2n).

Proof of Theorem 1.3. Choose p * H
n \ Ω and define

r(x) = distHn(x, p), f(x) = cosh(r(x)),

for x * H
n. Recalling that the geodesic spheres in H

n of radius Ã are smooth
embedded umbilical hypersurface with all principal curvatures equal to coth(Ã), a
straightforward computation gives that

D2f = sinh(r)D2r + cosh(r) dr · dr,

D2f(x)(v, v) = cosh(r(x)), (6.3)

∆f(x) = n cosh(r(x)), (6.4)

f(x)RicHn(v, v)2D2f(x)(v, v) + ∆f(x)

= 2(n2 1) cosh(r(x)) 2 cosh(r(x)) + n cosh(r(x)) = 0,

for every v * Tx(H
n) with |v| = 1. Henceforth, the Riemannian manifold (Hn \

{p}, gHn) endowed with the function f satisfies the hypothesis of Theorem 6.1.
Arguing as in the proof of Theorem 1.1, we notice that it is not restrictive to assume
that Ω is an open set such that "Ω = "Ω = "7Ω and Hn21("Ω\"7Ω) = 0; by Allard
regularity theorem we also have that "7Ω is a smooth embedded hypersurface. We
set Σ = "7Ω. By Theorem 3.1, Σ is a White (n2 1, »)-set of Hn. Finally, we need
to check that HΣ is positive and the couple (Ω,Σ) fulfills the equality in (6.2). The
equality (1.8) clearly implies that HΣ(x) = » for x * Σ. Moreover, since by (6.3)
and (6.4) we have that

divΣ('f)(x) = ∆f(x) 2D2f(¿Ω(x), ¿Ω(x)) = (n2 1)f(x) for x * Σ,

we infer from (1.8) that

(n2 1)

ˆ

Σ

f dHn21 =

ˆ

Σ

divΣ('f) dHn21 = »

ˆ

Σ

〈¿Ω,'f〉Hn dHn21

= »

ˆ

Ω

∆f dHn = n»

ˆ

Ω

f dHn.

This implies that HΣ c » > 0 and (Ω,Σ) fulfills the equality case in (6.2). We
conclude that there exists t0 > 0 such that the sets

Σt = {p * Ω : distg7(p,Σ) = t}, for L1 a.e. 0 < t < t0,

where g7 = gHn

f2 , are closed embedded C1,1-hypersurfaces with respect to the hyper-

bolic metric. Since the hyperbolic metric is conformally equivalent to the Euclidean
metric, and since changing conformally the metric of the ambient space preserves
umbilicity, we infer that Σt is also umbilical with respect to the Euclidean metric.
Henceforth, by [DRKS20, Lemma 3.2], we conclude that each Σt is a finite disjoint
union of Euclidean spheres. Now the conclusion follows letting t³ 0.
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Appendix A. Assumption (H3)7 and models in General Relativity

In this appendix we check that the Reissner–Nordstrom manifolds satisfy as-
sumption (H3)7, while the deSitter–Schwarzschild manifolds do not. This simple
fact, combined with the analysis of equality cases in Brendle’s Heintze–Karcher
type inequalities, shows that a stronger stability mechanism for almost-CMC hy-
persurfaces is at a play in the R–N manifolds. Indeed, when (H3)7 holds, Brendle’s
argument also provides, in addition to almost-umbilicality, a direct control on the
oscillation of the normals with respect to the radial directions as measured by
gN(¿Ω, ¿Ω); see, for example, condition (4.4).

Let us set G = Sn21 × (s1, s2) for some 0 < s1 < s2 f +>. The dS–S manifold
is then (G, gdSS), where

gdSS =
ds· ds

12ms22n 2 »s2
+ s2 gSn21 ,

with

m > 0 , 2> < » < (n2 2)
( 4

nnm2

)1/(n22)

.

When » > 0 the upper bound on » guarantees that 12ms22n2»s2 has exactly two
zeros s1 < s2 on (0,>), while if » f 0 we set s2 = +>, while s1 is the unique zero
of 1 2ms22n 2 »s2 on (0,>). The R–N manifold is defined instead as (G, gRN),
where

gRN =
ds· ds

12ms22n + q2 s422n
+ s2 gSn21 , m > 2 q > 0 .

In this case s1 is the largest of the two solutions of 1 2ms22n + q2 s422n = 0 on
(0,>), while we set s2 = +>. Both examples can be modeled as

gω = (1/Ë(s)) ds· ds+ s2 gSn21

for a smooth function Ë : (s1, s2) ³ (0,>). We then define

F (s) =

ˆ s

s1

1:
Ë

"s * (s1, s2) , h(t) = F21(t) "t * (0, r̄) , r̄ := F (s2) ,

so that h(F (s)) = s for every s * (s1, s2), and

h2(F (s)) =
√
Ë(s) , h22(F (s)) = Ë2(s)

/
2 , "t * (0, r̄) . (A.1)

Setting M = Sn21 × (0, r̄), the map Ç : M ³ G defined by Ç(Ç, t) = (Ç, h(t)) is
such that

(dÇ)7gω = dr · dr + h(r)2 gSn21 =: gh ,

so that (G, gω) is isometric to (M, g), and rigidity of CMC-hypersurfaces in dS–S
and R–N manifolds can be studied in their (M, g) representations. Since (H0) holds
with Ã = 1 we have

2
h22

h
+ (n2 2)

(h2)2 2 1

h2

∣∣∣
F (s)

=
Ë2(s)

s
+ (n2 2)

Ë(s)2 1

s2
= 3(s) ,

for every s * (s1, s2). We thus find, in the case of gdSS, where Ë(s) = 12ms22n2
» s2,

3(s) =
1

s

(
(n2 2)ms12n 2 2» s

)
+
n2 2

s2

(
2ms22n 2 » s2

)
= 2n» ,
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so that (H3) holds (but (H3)7 does not); in the case of gRN, where Ë(s) = 1 2
ms22n + q2 s422n, we have an identical cancellation of the mass term, but thanks
to the q2-term we rather find

3(s) = 2 (n2 2) q2

s2n22
,

so that 3(s) is strictly increasing on (s1, s2), and (H3)7 holds.
�
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harmonic functions. Ann. Sci. École Norm. Sup. (4), 12(1):47–84, 1979.

[GW73] R. E. Greene and H. Wu. On the subharmonicity and plurisubharmonicity of geodesi-
cally convex functions. Indiana Univ. Math. J., 22:641–653, 1972/73.

[HHW23] Robert Haslhofer, Or Hershkovits, and Brian White. Moving plane method for vari-
folds and applications. Amer. J. Math., 145(4):1051–1076, 2023.

[HS22] Daniel Hug and Mario Santilli. Curvature measures and soap bubbles beyond con-
vexity. Adv. Math., 411(part A):Paper No. 108802, 89, 2022.

[Hua10] L.-H. Huang. Foliations by stable spheres with constant mean curvature for isolated
systems with general asymptotics. Comm. Math. Phys., 300(2):331–373, 2010.

[Hui96] S.-T. Huisken, G.and Yau. Definition of center of mass for isolated physical systems
and unique foliations by stable spheres with constant mean curvature. Invent. Math.,
124(1-3):281–311, 1996.

[JMS21] V. Julin, M. Morini, M.and Ponsiglione, and Emanuele Spadaro. The asymptotics of
the area-preserving mean curvature and the mullins-sekerka flow in two dimensions.
2021.

[JN20] V. Julin and J. Niinikoski. Quantitative alexandrov theorem and asymptotic behavior
of the volume preserving mean curvature flow. 2020.

[JT03] L. P. Jorge and F. Tomi. The barrier principle for minimal submanifolds of arbitrary
codimension. Ann. Global Anal. Geom., 24(3):261–267, 2003.

[Kar89] H. Karcher. Riemannian comparison constructions. Global differential geometry,
pages 170–222, 1989.
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