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Abstract

Objective: Children and adolescents with intellectual and developmental disabilities (IDD), particularly those with autism

spectrum disorder, are at increased risk of challenging behaviors such as self-injury, aggression, elopement, and property

destruction. To mitigate these challenges, it is crucial to focus on early signs of distress that may lead to these behaviors.

These early signs might not be visible to the human eye but could be detected by predictive machine learning (ML) models

that utilizes real-time sensing. Current behavioral assessment practices lack such proactive predictive models. This study

developed and pilot-tested real-time early agitation capture technology (REACT), a real-time multimodal ML model to detect

early signs of distress, termed “agitations.” Integrating multimodal sensing, ML, and human expertise could make behav-

ioral assessments for people with IDD safer and more efficient.

Methods: We leveraged wearable technology to collect behavioral and physiological data from three children with IDD aged

6 to 9 years. The effectiveness of the REACT system was measured using F1 score, assessing its usefulness at the time of

agitation to 20s prior.

Results: The REACT system was able to detect agitations with an average F1 score of 78.69% at the time of agitation and

68.20% 20s prior.

Conclusion: The findings support the use of the REACT model for real-time, proactive detection of agitations in children with

IDD. This approach not only improves the accuracy of detecting distress signals that are imperceptible to the human eye but

also increases the window for timely intervention before behavioral escalation, thereby enhancing safety, well-being, and

inclusion for this vulnerable population. We believe that such technological support system will enhance user autonomy,

self-advocacy, and self-determination.
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Introduction

Children and adolescents with intellectual and developmen-
tal disabilities (IDD) show increased risk of displaying chal-
lenging behaviors.1 “Challenging” behavior (as used in the
behavior analytic literature2,3), sometimes referred to as
“problem behavior” or “severe behavior,” is defined in
this work as behavior that places individuals and caregivers
at risk for injury, results in property damage, or displaces
individuals from their homes and communities. Examples
of challenging behaviors include self-injury, aggression
toward others, elopement, and property destruction, as
documented in literature.4,5 Up to 50% of people with
IDD present with some form of challenging behaviors,
with 5–10% developing more severe presentations.6 This
is especially true for children and adolescents with autism
spectrum disorder (ASD),7,8 two-thirds of whom may
display challenging behaviors before adulthood.9

Challenging behaviors exact a serious toll on individuals
and families as well as educational and healthcare systems.
Youths who present with severe challenging behaviors fre-
quently experience restrictive management techniques,
such as seclusion and restraint, and have increased emer-
gency room visits or psychiatric hospitalizations related to
these behavior concerns.4,5,9–11 Persistent challenging
behaviors can put children and their caregivers at risk of
potential physical harm12 and prevent children from learn-
ing new skills,13 excluding them from school services and
community opportunities that could increase their quality
of life.14 This situation presents a critical challenge for indi-
viduals exhibiting these behaviors, their families, and care-
givers, making it a key area for the development of
innovative technologies aimed at enhancing outcomes
within the community.

Caregivers of children with IDD often observe a pattern
of agitation or early signs that may precede challenging
behaviors. Agitation can manifest in various forms, some
of which can be visible to a human observer and others
which are more difficult to detect. An agitated state may
show up as increased restlessness, changes in facial expres-
sions, repetitive movements, or shifts in vocal tone.
Caregivers, who are experts on their children, become
skilled at recognizing subtle behavioral cues that may not
be immediately evident to others, However, they usually
cannot detect physiological markers of behavioral escal-
ation, like changes in heart rate (HR), sweating, and other
autonomic reactions. These are less salient and require spe-
cialized equipment for detection.

Caregivers of children with IDD often observe a pattern
of agitation or early signs that may precede challenging
behaviors. Agitation can manifest in various forms, some
of which can be visible to a human observer and others
which are more difficult to detect. An agitated state may
show up as increased restlessness, changes in facial expres-
sions, repetitive movements, or shifts in vocal tone.

Physiological responses require instrumentation to detect,
such as changes in HR, sweating, and other autonomic reac-
tions. These are telling signs of agitation that can provide
early warning before behaviors become more pronounced.
Caregivers, through their sustained and attentive interac-
tions with their children, become skilled at recognizing
subtle behavioral cues that may not be immediately
evident to others, although they find it challenging to
discern the physiological signs, which are less salient and
often require specialized equipment to monitor effectively.

Recognizing the earliest signs of agitation, including
subtle physiologic changes, is crucial. This provides an
opportunity for timely intervention, potentially averting
escalation of agitation into more severe incidents. By under-
standing and responding to early agitation, caregivers can
employ specific strategies or interventions tailored to the
individual’s needs, thereby creating a safer and more sup-
portive environment. This insight from parents and care-
givers is invaluable, as it contributes to a better
understanding of the child’s behavior patterns and aids pro-
fessionals in developing more effective behavioral interven-
tions.15–17

Identifying agitation before it escalates represents a sig-
nificant advancement in behavior management strategies by
proactively attempting to prevent behavior escalation
instead of responding after a behavior has already occurred.
The ability to foresee these early indicators, leveraging
cutting-edge machine learning (ML) algorithms and wear-
able sensor technology, enables an early detection frame-
work. ML algorithms are particularly adept at discerning
physiological indicators of agitation, such as HR and
sweat response, which are not apparent to human observa-
tion.18–20 Utilizing sensors, we can measure these physio-
logical responses, providing data that ML algorithms can
analyze to offer a reliable and objective assessment.
These algorithms excel not only in analyzing physiological
signals but also in observable behaviors; they can detect
patterns and nuances in behavior, ensuring a comprehensive
understanding of both overt and subtle signs of agitation.
Such early detection facilitates interventions at the
nascent stages of agitation that could potentially avert the
escalation of behaviors. Ultimately, this predictive model
could lead to a safer, more nurturing environment, enhan-
cing the quality of care and reducing the overall stress for
both individuals and their support systems.21

The integration of innovative technological applications
into the field of applied behavior analysis (ABA), particu-
larly in the detection of agitation, presents a significant
opportunity to enhance current practices. Board Certified
Behavior Analysts (BCBAs®), who conduct behavioral
assessments, may face challenges detecting subtle agitation
behaviors and have little opportunity to predict these early
warning signs that challenging behavior may follow.
These behaviors can be elusive, sometimes going unnoticed
by caregivers or misinterpreted due to their subtlety. Even
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with expert human observers, several indicators of agita-
tion, like nuanced physiological responses or minor
changes in posture, can be difficult to detect. This challenge
is not a reflection of the limitations of BCBAs but rather an
inherent constraint of human observation.22 While BCBAs
are skilled in manipulating environmental factors to initiate
and reinforce target behaviors, many existing methods for
doing so do not allow for the development of robust predict-
ive models that account for the intricate aspects of client
behavior and physiology. Developing such models could
significantly enhance the effectiveness of interventions for
clients with challenging behaviors.

Affective computing is a field that enables intelligent
systems to recognize, infer, and interpret human emotions
and mental and behavior states using various signals such
as behavioral (e.g. motion and eye gaze) and physiological
(e.g. HR and body temperature) signals.23 Goodwin et al.
demonstrated that changes in physiological signals can be
used to predict imminent aggression for youths with ASD
who are minimally verbal using HR and galvanic skin
response (GSR), also known as electrodermal activity.24

Imbiriba et al. improved the accuracy of this study using
principal component analysis and a nonlinear kernel-based
support vector machine classifier with the same physio-
logical responses.25 Sarabadani et al. used an ensemble of
classifiers to detect affective states induced by high and
low arousal stimuli of positive and negative valence or
high and low arousal using GSR, electrocardiograms, res-
piration (RSP), and temperature.26 Inferred states such as
users’ engagement using GSR, RSP, and photoplethysmo-
graphy (PPG) signals were used in a virtual reality
driving simulator to improve engagement with the
systems.27 Motion data captured from children with ASD
using accelerometers have been used to recognize body
movements (e.g. hand flapping, body rocking, etc.) reflect-
ing agitation or frustration in classroom settings.28,29

Body-worn accelerometers have also been used to recog-
nize self-injurious behavior in children with ASD.30

In addition to the work presented on deciphering affect-
ive states based on unimodal signals such as physiology or
body gestures exclusively, several studies have shown
promise in using data from multimodal sources.
Multimodal sources allow for inferences that cannot be
obtained from a single sensor or whose quality exceeds
that of an inference drawn from a single source. Amat
et al. and Tauseef et al. developed a collaborative virtual
environment to encourage and measure teamwork
between autistic and neurotypical adults in a workplace
setting using speech, eye gaze, and game controller
data.31,32 Plunk et al. expanded on virtual teamwork-based
collaborative activities with semisupervised behavior label-
ing.33 A human-machine interaction system for dementia
intervention has been developed with multimodal physio-
logical data collected from its users.34,35 Adiani et al. devel-
oped a multimodal job interview simulator for training

autistic individuals.36 Siddharth et al. developed a wearable
multimodal biosensing system that can collect, synchron-
ize, record, and transmit data from multiple biosensors:
PPG, EEG, eye-gaze headset, body motion capture, GSR,
etc.37 Communication and coordination skills in children
with ASD were assessed using multimodal signals includ-
ing speech, gestures, and synchronized motion.38 Eye
gaze, video recordings, and EEG have been used for early
detection of ASD in children.39

While the prediction of agitation that precedes challen-
ging behavior is underresearched, strides have been made
in the adjacent field of forecasting challenging behaviors.
However, existing technological approaches to predicting
challenging behaviors have several limitations. First, exist-
ing ML models for predicting challenging behaviors were
not developed by embedding BCBAs during training data
collection. A prediction model grounded in clinical
insight using BCBA input as ground truth will likely have
closer overlap with expert human observation, be more
accurate and meaningful, and enhance acceptance within
care systems. Additionally, using a structured measurement
context facilitates faster sampling of valid data than
unstructured sampling.40 However, previous pioneering
studies have required nine or more hours of unstructured
observation to build a predictive model.25 In one recent
study, it was necessary for participants to aggress up to
130 times during observations for the model to be built.25

Repeatedly eliciting aggressive behaviors not only
demands considerable time but also poses risks to the well-
being and safety of both participants and observers.
This human cost for building the model may be too much
for some. Although expected to be robust and reliable,
multimodal models have been underexplored in this
field, thereby offering opportunities for innovation and
improvement.

To overcome these limitations, our prior research41

introduced a predictive multimodal framework designed
to alert caregivers about agitation behaviors in children
with ASD. It established a clinically grounded, multimodal
model that anticipated agitations in children with ASD,
leveraging technological advancements for more effective
intervention. Predictive multimodal framework to alert
caregivers of problem behaviors for children with ASD,
PreMAC, used commercial and customized sensors includ-
ing a Microsoft Kinect, an E4 wristband (Empatica Inc.), a
custom wearable intelligent noninvasive gesture sensor
(WINGS), and a specifically developed tablet application
for recording direct observations of participant behavior.
While PreMAC has proven effective in offline settings, it
has not yet been applied in real-time scenarios, which is
crucial for interventions to be most effective. To meaning-
fully help intervention and reduce risk, proactive real-time
detection of agitations is necessary.

In this study, we extend the work of, PreMAC,41 by
working closely with BCBAs, psychologists, caregivers,
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and engineers to refine, deploy, and evaluate an ML model
to proactively predict agitation behaviors. Specifically, in a
controlled laboratory environment, we car ried out behavior
assessments in collaboration with BCBAs and caregivers,
carefully evoking behaviors identified as signals of agita-
tion by caregivers, ensuring the process was safe for all par-
ticipants. Simultaneously, our multimodal system collected
physiological (e.g. HR and GSR) and behavioral (e.g. body
movement and vocalization) changes. After the assessment,
we used this information to train a ML model to recognize
the underlying physiological and behavioral changes that
could indicate the imminent occurrence of agitations.
Significantly, our approach not only identifies participant
agitation as it occurs but anticipates episodes before their
observable onset, marking a crucial step forward in pre-
empting and effectively preventing escalation to dangerous
behaviors.

Recent advancements in assistive technologies have
increasingly focused on empowering individuals with dis-
abilities by enhancing rather than diminishing their
agency.42,43 These technologies are developed to support
more autonomous and self-directed living, enabling indivi-
duals to perform daily activities more independently and
engage fully in community life. Technologies that integrate
multiple modalities, such as sensory inputs from wearable
devices, environmental controls, and communication aids,
have been particularly effective in enhancing the function-
ality and independence of people with disabilities.44,45 Our
approach empowers users and caregivers to take proactive
steps, thereby fostering a sense of control and improving
overall well-being. This approach not only aligns with con-
temporary efforts to enhance the agency of people with dis-
abilities through technology but also contributes to the
broader goals of inclusion and empowerment within the dis-
ability community.

The primary contribution of this work is to present a
Pilot Study of a real-time early agitation capture technology
(REACT) to detect imminent occurrence of agitation in real
time. This extends our earlier work, PreMAC, which only
provided offline analysis capabilities. In addition, we
further extended our previous work by introducing a new
auditory modality to capture agitation associated with
vocal tone and verbalization. We preliminarily validate
our work through a two-visit training-testing study with
three children with IDD with varying agitations.

Methods

Participants

All procedures were approved by the Institutional Review
Board. All participants and their caregivers provided
informed assent and consent. Less verbal participants
were provided with visual schedules to facilitate assent dis-
cussions or allow for study discontinuation. Caregivers

were present for the duration of study sessions and asked
to advocate for their children by letting study staff know
if behaviors shown were unusually intense, distressed, or
unsafe.

Participants were recruited from an existing clinical
database that includes individuals with and without docu-
mented developmental disabilities (such as ASD) whose
guardians have consented to be contacted about research
opportunities. Eligibility criteria included being between
3–17 years of age; being from a family that spoke primarily
English within the home; having a high likelihood of toler-
ating the wearable devices (no significant sensitivities to
fabric textures, sleeve length, and so on); and presenting
with predictable, frequent, and observable challenging
behaviors that could be evoked by a therapist as part of a
session. Interested caregivers completed an intake interview
with a study BCBA to determine eligibility and appropriate-
ness based on the child’s phenotypic and behavior
profile. The study’s purpose and activities, including the
use of wearable devices, were explained, with caregivers
engaged in discussion about participant sensory profiles
and the likelihood of tolerating such procedures before
the initial study visit. Additionally, we sought to learn if
the participants were likely to escalate relatively quickly
with an unfamiliar adult in a clinical setting, and if so,
would they have the same capacity to return to a calm
state. If the caregiver and the BCBA agreed that participants
could likely tolerate activities and engage safely in the
research protocol, they were enrolled in the study.

At the study visit, participants and their caregivers com-
pleted written informed consent and assent through which
study procedures were again described. Participants were
given the opportunity to interact with and try on the wear-
able sensors, facilitating an understanding of the technology
prior to participation. Ample time was provided for both
participants and their representatives to ask questions and
express any concerns.

In addition to the use of visual support for less verbal
participants, observable dissenting behaviors were moni-
tored and interpreted with the help of therapists and care-
givers, ensuring that participants’ nonverbal cues were
respected throughout the study. Importantly, participants
were informed and reminded that they could ask to stop par-
ticipation at any time during the study, further reinforcing
our commitment to ethical research practices and respect
for individual autonomy. This approach underscores the
concept of informed consent as an ongoing process
throughout the study duration.

In this work, we present data collection, analysis, and
modeling as three individual case studies. Individualized
modeling is necessary as each participant had varying
ranges of physiological and behavioral signals, as well as
different agitations.

Participant 1 was a 6-year-old male with minimal
spontaneous spoken language. Challenging behaviors of
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concern to his family included screaming, pushing items
away, hitting himself in the leg or the face, and falling to
the floor. Signs of agitation identified by his family
included unhappy sounds, an upset face, arm flapping and
tensing, and walking away.

Participant 2 was a 9-year-old male with an extensive
and expressive vocabulary. Challenging behaviors of
concern to his family included elopement and aggression
toward adults and children (hitting, kicking, biting). Signs
of agitation identified by his family included a raised
voice, running away, verbal threats, movements (balled
up fists, sudden jumping, throwing his hands at his sides),
and pulling items from another person’s grasp.

Participant 3 was an 8-year-old female with strong
receptive language but articulation errors that impacted
her expressive communication skills. Challenging beha-
viors of concern to her family included hitting, kicking,
screaming, and falling to the floor. Signals of agitation iden-
tified by her family included forcefully tensing her body,
swinging her arms, clenching her fists, or wiggling her
body in her seat; using a louder or angrier voice, or speak-
ing more rapidly; changing her facial expression (knitting
her eyebrows); pushing items away, or stating, “you are
annoying.”

Experimental design

In our study, we developed a framework that allowed
for the therapist to safely evoke agitation behaviors within
a laboratory environment, as identified by caregivers.
This framework was inspired by the principles of functional
analysis (FA) and incorporates aspects of the interview-
informed synthesized contingency analysis (IISCA). FA,
a foundational approach in ABA, methodically identifies
the functions of challenging behaviors, while IISCA specif-
ically emphasizes the critical role of caregiver insights.46

Working in collaboration with BCBAs and caregivers, we
conducted behavior assessments with a strong emphasis
on maintaining participant safety throughout the process.
Within this framework, BCBAs engage with caregivers
through an open-ended interview to understand the specific
environmental and behavioral contexts of individuals.47

This understanding informs the selection and presentation
of stimuli that can either evoke behavior, known as estab-
lishing operations (EOs),48 or serve as reinforcing stimuli
(SRs) to manage or modify the behavior. The BCBA
methodically presents and escalates EOs, closely monitor-
ing for signs of agitation, before delivering SRs. This
approach is tailored to each case, guided by the caregiver’s
real-time feedback communicated through an earbud. An
independent data collector observes the assessments and
uses a data collection application to record the conditions
of the assessment and the behaviors of the participant.
The process of EO and SR presentation repeats once the
BCBA has verified that the participant’s behavior has

returned to normal levels and can receive the reinforcers
indicated by their caregivers. The data gathered were then
instrumental in training our ML model to proactively
predict agitation behaviors in real-time, leveraging the clin-
ical expertise of BCBAs to inform model development.

For the study, each participant takes part in two assess-
ments following this framework, with each assessment
lasting approximately an hour. In Assessment 1, data are
collected for training the predictive model, and in
Assessment 2, signs of agitations are predicted in real-time
using the trained model. During each assessment, a data
collection tool called the data collection controller, which
synchronizes all modalities, is deployed for multimodal
data collection. To validate those results, a second BCBA
observes the visit to engage in traditional methods of
direct behavior observation that served as the ground
truth regarding the occurrence of agitation or challenging
behavior. Once the multimodal data have been collected
and synchronized, the data are then denoised and used to
extract features. The features extracted from Assessment
1’s data are then used to train a ML model using the
ground truth labels. This model is then used to predict the
agitation in Assessment 2. Figure 1(a) highlights the
process of training the ML model, and Figure 1(b) high-
lights the process of proactively predicting agitation
before these episodes were observable using the underlying
physiological and behavioral signals. All procedures were
reviewed by a team of expert BCBAs as well as parents
of children with ASD and approved by the Institutional
Review Board.

Because physiological and behavior signals as well as
signs of agitation vary between individuals, we will be pre-
senting our results as three individual case studies. While
each participant was scheduled for a one-and-a-half-hour
session, the assessment length varied across participants
due to circumstances such as different sensitivities to EOs
and SRs, varying lengths of time to return to a calm state,
and time limitations of the caregivers. Specifically, the
number of episodes featuring observable agitation evoked
within the assessments varied as certain participants
tended to be more sensitive to EOs while others were not.

Materials

As seen in Figure 1, different system components work
together to capture annotated participants’ behavioral and
physiological signals during the assessments. A wearable
physiological sensor is used to capture several peripheral
physiological signals, a custom-made movement detection
sensor, WINGS, is used to capture the upper body pose,
and a wireless microphone is used to capture the audio
signal. Additionally, a tablet-based application, behavior
data collection integrator (BDCI), is used by BCBAs to
record each occurrence of the participants’ behavior in
real- time. These components, in conjunction, lead to a
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fully annotated dataset used for training and testing pro-
active real-time agitation detection ML models. Various
technical components of our system are discussed below.

Wearable sensor for peripheral physiology. A medical-grade,
noninvasive wearable physiological sensor called the
E4 [https://www.empatica.com/research/e4/] is used to
capture real-time blood volume pulse (BVP, 64 Hz) and
GSR (64 Hz). The BVP signals are filtered through a 1
Hz to 8 Hz band-pass filter and used to calculate the HR.
Additionally, tonic skin conductance level and phasic
skin conductance response are extracted from the GSR
signal49 as they correlate with physiological arousal
level.50 Physiological signals are aggregated using a 60-s
rolling window to account for their slow-moving nature.

WINGS for motion detection. We capture the upper body
pose, such as hand flapping and body rocking, using the
roll, pitch, and yaw of the upper limbs and torso of the par-
ticipant through a custom-designed sensor called WINGS
that uses five inertial measurement units (IMUs). The
WINGS sensor, developed in our previous work,41 uses
IMUs to capture bodily orientation in space using
three internal sensors: an accelerometer, gyroscope, and
magnetometer. By placing five IMUs, one on each shoul-
der, one on each elbow, and one on the back of the
participants, the upper body pose can be reconstructed
using the measurements from each sensor. Each IMU

wirelessly communicates its reading to an Arduino Uno
microcontroller, which then transmits it to a computer
workstation.51 The internal sensors of the IMU are used
to compute the roll (θ), pitch (ψ), and yaw (ϕ) angles of
the torso and limbs. With this information, the orientation
of the participant’s upper body can be calculated through
the orientation of the shoulders, elbows, and back. The θ,
ψ, and ϕ were computed using a one-second rolling
window. Several methods exist to extract the θ, ψ, and ϕ,
but we choose to use the following functions:52

θ = tan−1 accly
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ψ =
magzSψ− magyCθ

����������������������������������������

magxCθ + magySθSψ+ magzCψSθ
√ (3)

where acclx, accly, and acclz are the accelerations in three
directions, magx, magy, and magz are the strength of mag-
netic field in three directions, and S and C represent sine
and cosine functions, respectively.

Microphone for audio signal. In this work, we also capture
vocalizations, which have been shown to reflect at least

Figure 1. Two step training and testing mechanism: (a) schematic of training of the machine learning model using physiological and

behavioral signals with BCBA provided identification of agitations; (b) schematic of the testing of the trained machine learning model using

physiological and behavioral signals to predict the occurrence of agitations.

BCBA: Board Certified Behavior Analyst.
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24 kinds of emotional states regardless of verbal content,53

to detect agitations. These audio signals are captured from
microphones and processed into various features such as
pitch, volume, and zero-cross rate, which are then used
for analysis. We use mel frequency cepstral coefficients
(MFCCs), which are a compact representation of possibly
infinite sinusoids in an audio signal.54–56

We capture audio using a wireless lavalier lapel system.
The system uses 2.4G wireless technology with dual trans-
mitters and one receiver to wirelessly record audio for up to
5 h within a range of 164 feet sampled at 441 kHz. The raw
audio signals are processed to generate the MFCCs. The
MFCCs are extracted using six steps: (a) split the audio
into small frames, (b) smoothen the transition between
frames through windowing, (c) calculate the discrete
Fourier transform, (d) apply 40 triangular filters known as
filter banks, (e) pass through a log function, and (f) apply
discrete cosine transform.57

Behavior assessment application. We modified an applica-
tion developed in a prior study that allows for behavior
annotation using a reactive and responsive cross-platform
application.58 The application has three pages: initializa-
tion, assessment, and summary (Figure 2). The initialization
page allows for the BCBA to input participant information,
therapist information, assessment number, and assessment
type (i.e. training or testing), as well as unique agitations
and challenging behaviors for a specific participant. On
the assessment page, the BCBA can record their observations

in real time while a JavaScript Object Notation file is pro-
duced with times- tamped occurrences. Once a session has
been completed, the summary page displays information per-
tinent to BCBAs regarding the session.

Procedures

Figure 3 shows the experimental setup with two rooms,
located in a clinical space, with a one-way mirror separat-
ing them. The participant and a BCBA are in the experi-
mental room while the observers and additional BCBAs
are in the observational space. The participant wears an
E4 sensor that collects physiological data. Participants
are given the choice to wear it on either an ankle or a
wrist. The WINGS system, which is a cotton hoodie out-
fitted with sensors, was worn on the upper body along
with a lapel microphone placed in the hoodie. The
BCBA in the experimental space is also wearing a lapel
microphone. Both microphones send data to a receiver at
a workstation in the observational space, which is also
occupied by an engineering researcher, the participants’
primary caregivers, the BCBA ground truth data collector,
and a BCBA assessment manager. The BCBA assessment
manager observes the assessment and takes input from the
caregiver to guide the assessment toward a safe and
data-rich outcome. The therapist in the experimental
space communicates with the observers via Bluetooth
earbud to ensure the time components of the experimental
protocol are correctly executed.

Figure 2. Overview of the behavior assessment application, illustrating its three primary pages: initialization (for entering participant and

session details), assessment (for real-time observation and data recording), and summary (displaying session insights postassessment).
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Following a multielement design for single-subject
research, the data collection experiment had both test (T)
sessions, which alternated between EO and SR conditions,
and control (C) sessions, which maintained SR conditions
throughout. The typical session followed a Control-Test-
Control-Test-Test (CTCTT) structure; however, this was
occasionally modified during the assessment based on the
BCBAs discretion. During EO presentations, the BCBA
attempted to evoke agitation using conditions reported by
the caregivers to lead to behavioral escalation. Commonly
reported stimuli to evoke agitation included requesting the
completion of homework assignments, removing preferred
toys or electronics, and withdrawing preferred social atten-
tion. Following EO presentations in which agitation beha-
viors were witnessed, the BCBA provided preferred
attention and items/activities for at least 90 s to allow for
de- escalation during SR conditions. To ensure the partici-
pant had returned to a calm state (i.e. lack of agitation or
challenging behavior), the caregiver provided feedback to
both BCBAs. Figure 4 provides the structure of the experi-
mental procedure.

Caregivers always observed participants throughout
each session and provided input on participant comfort
and safety, as well as providing real-time feedback on the
application of procedures intended to evoke escalation or
calm states in the participant. Importantly, the goal was to
develop a prediction model not for challenging behavior
itself, but for agitations based on caregiver identification
of signs of behavior escalation. That is, the goal was not
to evoke unsafe behavior or prolong participant distress.
Notably, no parent or participant requested to stop a
session, underscoring the effectiveness of our approach in
maintaining participant comfort and safety throughout the
study.

Analysis

The predictive framework utilized Assessment 1 data for
training a ML model, and Assessment 2 data for real-time
testing and evaluation. During the assessments, the observ-
ing BCBA used the BDCI to note occurrences of

agitations. This created a log of agitation episodes with
their corresponding timestamps that we used as ground-
truth labels when training and evaluating the ML model.
The following sections explain the steps the framework
follows beginning with synchronizing and preprocessing
the multimodal data.

Preprocessing. For our ML model, we used the following
multimodal data inputs: physiological (E4) and behav-
ior (WINGs and microphone). Due to the variability
in sampling rate across modalities discussed in the
Materials section, the collected data needed to be syn-
chronized. In addition, features needed to be extracted
to train the ML model. Features were extracted by
applying a rolling window to the physiological, audio,
and WINGS data after synchronization. The rolling
window extracted the mean, minimum, and maximum
values within the specified window. We chose these
features based on our previous work41 as well as
other published literature in the field21,37,59 that
showed potential for these features to capture challen-
ging behaviors. MFCCs were extracted from the audio
modality. Table 1 shows the features extracted and
their units. Table 2 details the length of each assessment
and the number of agitations displayed in each assess-
ment across the three participants.

ML model and real-time prediction. In our ML analysis, we
utilized 32 ML models for proactive real-time prediction
analysis such as Logistic Regression, AdaBoost Classifier,
and Ridge Classifier. Each model was subjected to
Bayesian optimization to determine the most effective
hyperparameters through maximizing the F1 score,
thereby ensuring optimal performance for each participant.
Bayesian optimization is a powerful strategy for hyperpara-
meter tuning, particularly effective in high-dimensional
spaces. It works by construct ing a probabilistic model
that maps hyperparameters to a probability of a score on
the objective function. This method iteratively updates the
model with results from previous evaluations, using these
insights to choose the next set of hyperparameters to evalu-
ate. The models were implemented in Python using
Scikit-Learn.60 The optimization approach also included
determining the ideal window length for our labels,
acknowledging that agitations occur over a period rather
than instantaneously; they start seconds before their annota-
tion and last for a few seconds afterward. An example of a
30-s window is shown in Figure 5.

After a thorough evaluation, we chose the AdaBoost
Classifier as our predictive model. Adaptive Boosting is
an ensemble learning technique that works by combining
multi ple weak learners, typically decision trees, to create
a robust classifier. Each successive model in the
AdaBoost sequence focuses on the instances that were
incorrectly predicted by the previous model, thereby

Figure 3. Data collection setup, showing two connected spaces: the

experimental room for participants and BCBAs, equipped with

sensors, and the observational room for the research team and

caregivers, with equipment for monitoring and communication.

BCBA: Board Certified Behavior Analyst.
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continuously improving its performance. We trained the
AdaBoost Classifier to predict agitation behaviors using
the preprocessed data collected in Assessment 1. Once the

model was trained with Assessment 1’s data, Assessment
2’s data were preprocessed to make real-time predictions
by feeding the data into the model as if the data were
coming from an experimental session as a real-time data
stream. An additional step was taken to process the predic-
tions made on Assessment 2’s data before evaluating the
performance of the model. Since an agitation is not an
instantaneous event, we decided that if our model predicts
an agitation within the identified window around an agita-
tion, then the remainder of the band following the correct
prediction should also be marked as correct as shown in
Figure 6.

Figure 4. Overview of experimental procedure for BCBAs outlining the structured approach followed by BCBAs, a CTCTT sequence of test

and control sessions, adaptable based on their discretion. It includes evoking agitations under specific conditions and implementing

strategies for deescalation, with caregiver feedback ensuring participant calmness.

BCBA: Board Certified Behavior Analyst; CTCTT: Control-Test-Control-Test-Test.

Table 1. Features extracted for the machine learning model derived

from physiological, audio, and WINGS data.

Modality Features Extracted

Physiological data from

E4

12 total features

Average, standard deviation,

minimum, maximum

Heart rate (beats per minute)

Skin conductance level (µS)

Skin conductance response (µS)

Body movement data

from WINGS

60 total features

Average, standard deviation,

minimum, maximum

Roll, pitch, yaw (◦)

Vocalization from

microphone

12 total features

MFCCs (unit of time)

MFCC: mel frequency cepstral coefficient; WING: wearable intelligent

noninvasive gesture sensor.

Table 2. Duration of each assessment and the frequency of

agitations observed for each of the three participant case studies.

Participant

1

Participant

2

Participant

3

Assessment 1 length 1 h 13 m 1 h 2 m 1 h 1 m

Assessment 1

number of

agitations

18 18 16

Assessment 2 length 49 m 1 h 11 m 45 m

Assessment 1

number of

agitations

14 21 13
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Model analysis. We evaluated the performance of our model
using Assessment 2 data. Data from Assessment 2 were col-
lected and fed into the model trained on Assessment 1 data
as a real-time data stream to simulate prediction capability.
To do so, we implemented a time shifts to simulate real-
time predictions. We implemented six time shifts of 5 s,
10 s, 15 s, 20 s, 25 s, and 30 s to see how far in advance
agitations can be predicted. Considering the specific
requirements of our study, we emphasized the importance
of the F1 score as a key metric in our model evaluation as
shown in equation (4). It is vital in situations like ours
where both false negatives and false positives carry signifi-
cant consequences as our predictions need to be trusted.
Missing an agitation (false negative) could potentially
lead to challenging behaviors, and inaccurately predicting
an agitation (false positive) could lead to mistrust in the
model. This approach ensures that the model is not only
sensitive to detecting agitations but also maintains a low
rate of false predictions, striking a balance for effective
and reliable predictions.

f 1 = 2
Precision ∗ Recall

Precision+ Recall
(4)

where precision is defined as the ratio of true positives
(TP) to the sum of true positives and false positives
(TP+ FP), and recall is defined as the ratio of true posi-
tives to the sum of true positives and false negatives (TP
+ FN).

While recall, precision, and accuracy are important
during analysis, they are not the primary metrics in this
study. High recall ensures minimal missed detections of
agitation precursors. However, recall alone could increase
the propensity for false positives, which could undermine
confidence in the model. Precision is valuable in confirming
the relevance of detected behaviors, but relying on it exclu-
sively does not capture the model’s ability to consistently
identify all relevant agitation precursors. Accuracy, reflect-
ing the overall rate of correct predictions, does not always
present a clear picture, especially in datasets where agita-
tion events are sparse compared to nonagitation events.

Results

In our analysis, we evaluated numerous ML models.
Table 3 presents the top four algorithms we identified
based on performance, detailing the F1 score, recall, and

Figure 5. Example of applying a 30-s window to agitation labels, reflecting the duration over which agitations typically unfold.

Figure 6. Example of how predictions were refined to account for the duration of agitation events, with a focus on marking the extended

period following a correctly predicted agitation as accurate.
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Table 3. Performance evaluation of the top four machine learning algorithms, presenting F1 score, recall, and accuracy metrics,

complemented by their respective optimized hyperparameters.

AdaBoost Logistic regression Random forest K-neighbors

Hyper parameters Estimator: Decision tree Max iter: 2500 n estimators: 350 n neighbors: 15

n estimators: 100 Max depth: 20 Algorithm: kd tree

Learning rate: 1.0 Leaf size: 45

At agitation

F1 score 78.69 78.15 77.96 77.91

Recall 69.97 68.70 69.50 69.41

Accuracy 88.17 88.04 87.99 87.53

5 s prior to agitation

F1 score 77.45 77.10 76.36 76.69

Recall 68.64 68.27 67.84 68.23

Accuracy 87.23 87.44 87.54 86.78

10 s prior to agitation

F1 score 76.30 75.94 76.25 75.12

Recall 67.63 67.77 66.47 66.62

Accuracy 87.64 86.49 87.30 87.29

15 s prior to agitation

F1 score 72.43 71.28 71.63 72.09

Recall 64.39 64.38 63.88 63.23

Accuracy 85.31 84.63 84.82 85.21

20 s prior to agitation

F1 score 68.20 67.90 68.13 67.25

Recall 63.75 63.75 62.78 63.16

Accuracy 83.89 82.70 83.92 82.77

25 s prior to agitation

F1 score 61.86 60.86 61.19 61.58

Recall 55.81 55.13 54.79 54.97

Accuracy 82.07 81.59 82.19 81.35

(continued)
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accuracy metrics, as well as the optimized hyperparameters
for each. Among these, AdaBoost Classifier consistently
demonstrated exceptional performance across the metrics,
leading us to adopt it as our primary classifier for further
analyses. Figure 7 displays the confusion matrices for the
AdaBoost Classifier.

Figure 8 shows the metrics for each participant with dif-
ferent prediction distances. In general, we would expect the
scores to drop as predictions are made further in advance of
the agitation until a certain threshold. Across all three
experiments, the scores began to drop below an acceptable
performance when making predictions more than 20 s in
advance. Our results showed an average F1 score across
the three participants of 78.69% at the time of agitation,
77.45% at 5 s prior, 76.30% at 10 s prior, 72.43% at 15 s
prior, 68.20% at 20 s prior, 61.86% at 25 s prior, and
55.38% at 30 s prior.

Additionally, we conducted an ablation study focusing
on predictions at the time of agitations to gauge the signifi-
cance of individual modalities on the overall performance
of our classification model. In this study, we sequentially

omitted one of the following modalities: WINGS, HR,
GSR, and audio. The objective was to discern the distinct
contributions of each modality to the classifier’s accuracy
and probe for potential dependencies or redundancies.
The outcomes of this ablation assessment provided valuable
insights into the hierarchical significance of these modal-
ities within our classification framework, as delineated in
Table 4.

In our commitment to advancing scientific knowledge
and supporting reproducibility, both the code and the
dataset used in this study are available upon request
through Vanderbilt University, via the following link:
https://lab.vanderbilt.edu/rasl/dataset-and-or-code-request/.

Discussion

In our work, we employed ML and affective computing
techniques to proactively identify agitations in children
with IDD, as reported by caregivers. This approach is
based on the understanding that these agitations, if

Table 3. Continued.

AdaBoost Logistic regression Random forest K-neighbors

30 s prior to agitation

F1 score 55.38 54.25 54.64 55.09

Recall 49.26 48.72 49.03 48.90

Accuracy 80.58 80.39 79.43 79.49

Figure 7. Confusion matrices displaying the true positives, true negatives, false positives, and false negatives for the AdaBoost model used

in agitation prediction. Each matrix corresponds to various distances from the agitation.
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recognized promptly, could help in preventing their escal-
ation into challenging behaviors.

We build upon existing work to demonstrate several
promising technological advancements. First, we advanced
the capabilities of our previous wearable system41 by inte-
grating the capacity for proactive real-time prediction,
enabling BCBAs to adapt their interventions before partici-
pants’ behavior escalates. Additionally, we expanded our
multimodal data capture to include audio, to integrate voca-
lizations. This led to more robust agitation detection than
achieved in our previous study. We also expanded upon
our data capture application to include customizable,
BCBA- defined agitations for child-specific annotation.
Each of these achievements represents promising steps
toward wearable systems capable of multimodal data
capture and agitation detection within community settings.

Our preliminary trial with three participants highlighted
the predictive value of our ML model. We were able to

predict agitation based on physiological, body movement
behavior, and vocalization behavior data captured through
various sensors. Our sensors accurately captured subtle
signals such as HR and electrodermal activity, which are
imperceptible to the observing BCBA. Sensors also cap-
tured joint angles of the upper body and vocalizations,
both of which were described as important reflections of
agitations by participants’ caregivers. Body motions such
as hand flapping and body rocking were recognized in
other studies to detect agitation and self- injurious beha-
viors in children with ASD.28–30 Nonlexical vocal sounds
and vocalization have been captured to recognize at least
24 kinds of various emotions.53 Our work incorporates
multimodal data through joint angles for body motion
detection and vocalization for emotion to generate robust
agitation detection models.

We found that as participants approached an occur-
rence of agitation, the signals we captured varied from
their calm state. In this work, our algorithm capitalized
on that deviation to determine that agitation was likely.
Each participant had an individualized model trained
during the first visit. These models were tested with
data from the second visit. It was shown that agitation
can be reliably predicted with an average F1 score of
68.20% at 20 s prior to the agitation behavior. While the
predictive performance decreases as the prediction
window extends further into the future, this is an expected
tradeoff. The ability to provide earlier warnings, even
with somewhat reduced performance, is a significant
advantage, offering caregivers the opportunity to take
preventative measures. Some forms of agitation are
more readily detectable than others. For instance, beha-
viors like fist banging present clearer signals for the
model, whereas more subtle actions such as a making a
fist pose a greater challenge. Although these variations
influence the overall predictive scores, the results are
still promising. Despite the variation in detectability, the

Figure 8. Comparative metrics across participants focusing on the change in performance metrics as predictions are made increasingly

earlier before the agitation occurs.

Table 4. Ablation study results illustrating the impact on classifier

performance when omitting individual modalities: WINGS, HR, GSR,

and audio. This provides insights into each modality’s contribution

and potential interdependencies within the classification

framework.

Excluded modalities F1 score Recall Accuracy

None 78.69 69.97 88.17

WINGS 68.48 62.91 80.43

HR 71.87 64.03 81.94

GSR 69.13 60.94 81.21

Audio 71.34 63.32 83.41

GSR: galvanic skin response; HR: heart rate; WING: wearable intelligent

noninvasive gesture sensor.
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models maintain a significant capacity to predict crucial
signs of agitation, providing valuable insights for
caregivers.

In our ablation study, we examined the distinct contribu-
tions of each modality by selectively omitting them and
observing the resultant classification performance. The
removal of WINGS led to discernible reductions in all
metrics, underscoring its central significance. When we
removed HR and GSR modalities, distinct outcomes
emerged. Excluding HR resulted in a significant but less
pronounced drop than the other modalities, highlighting
its auxiliary role in the classification. In contrast, the omis-
sion of GSR led to performance metrics closely mirroring
those seen with the removal of WINGS, elucidating its inte-
gral contribution. Notably, when audio data was excluded,
the drop in metrics was more substantial than that observed
with HR, emphasizing audio’s pivotal role in the classifica-
tion process. These results accentuate the individual and
collective relevance of the modalities in enhancing classifi-
cation outcomes.

To our knowledge, our study is the first to employ multi-
modal data capture and ML for the specific purpose of
early-stage agitation prediction, shifting the focus from
behaviors that have already escalated. Other teams have
predicted imminent aggression (escalated behavior) one
minute before they occur.24 We take this concept further
by focusing on early signs of agitation, as identified by care-
givers, thereby reducing risk, and providing valuable time
for preventative measures before behaviors escalate to chal-
lenging levels. Specifically, our goal is to maximize utility
and participant safety during behavior assessment
approaches that can place individuals at significant risk of
harm. An important focus of ongoing work is evaluation
not only of efficacy, but also of safety, tolerability, and
acceptability to future potential users, including youths
with challenging behaviors.

Building on the capability to proactively detect agita-
tions, the next progression in behavioral analysis is the
identification of precursors to problem behaviors. While
agitation indicates a general state of distress—often identi-
fied by caregivers—it is the precursors that bear a closer
relation to the challenging behaviors themselves. These pre-
cursors are the final observable behaviors before a chal-
lenge occurs, serving as a critical alert to imminent
escalation. By focusing on these precursors, caregivers
and clinicians are afforded crucial additional time to imple-
ment targeted interventions aimed at preventing the chal-
lenging behaviors from occurring.21 Within this
context, our model has the potential to be an asset in
FA and practical functional assessment (PFA). FA is a
methodical approach for identifying the causes and
functions of challenging behaviors through observation
and manipulation of environmental variables for the
purpose of treating challenging behavior. PFA, a novel
set of FA procedures streamlines this process by focusing

on the immediate precursors to challenging behavior,
thus minimizing the occurrence of challenging behaviors
during the assessment. As we continue to refine our
model, we anticipate it could play a critical role in the
future of behavior assessments, offering a more proactive
and less intrusive means to support individuals with IDD
and their caregivers.

Ethical considerations

Introducing ML into clinical settings can open the door to
privacy and security concerns. The REACT system involves
the collection of sensitive behavioral data. Ensuring the
privacy and security of this data is of utmost importance.
Therefore, data collection and storage policies were clearly
established, and any applications were encrypted to ensure
the protection of privacy for participants.

An additional issue is ensuring informed consent and
assent. Many individuals with IDD receiving services are
nonspeaking, making it difficult to explain the wearable
sensors and ensure comfort during data collection.
Therefore, we set clear guidelines to ensure no one was
forced to wear sensors against their will, to confirm under-
standing of the system by guardians, to respect the auton-
omy of the individuals, and to guarantee complete
transparency when including ML in behavioral therapy.

ML is highly susceptible to bias. When developing algo-
rithms, this is an important consideration especially when
utilizing group models. One way to avoid this is to
always utilize individualized ML models for agitation pre-
diction as we did in this study. However, this is not always
possible as training a model requires large amounts of data.
When group models are utilized, it is essential to ensure
equal representation across race, gender, and ethnicity to
reduce bias in ML. In the application of predicting agita-
tions, models must be trained on data representative of
varying types of agitations as they are individual-specific.

The most crucial ethical consideration when introducing
ML into a clinical setting is to acknowledge that while ML
can offer valuable insights, it is not infallible and may occa-
sionally generate errors or inaccurate recommendations.
ML should be utilized to inform and aid clinicians in
decision-making, not replace them. Therefore, it is essential
for clinicians to exercise caution and never solely rely on
ML without critical evaluation and human judgment.

It is crucial to emphasize that the REACT system is
designed to augment, not replace, the human elements of
care and intervention strategies. The application of ML in
this context is intended to support BCBAs and caregivers
by providing additional tools for understanding and
responding to the needs of individuals with IDD, rather
than diminishing the caregiver’s role or the individual’s
autonomy. To ensure that technology is used respectfully
and ethically, the REACT system must be integrated into
care strategies in a way that promotes collaboration
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between the technology and human caregivers. This
approach fosters a balance on both technological and
human insights, ensuring that interventions remain
person- centered. Additionally, continuous training for
caregivers on the ethical use of this technology and
ongoing dialogue with stakeholders about its impact are
vital in maintaining a humane approach to behavioral man-
agement. These steps help safeguard against any potential
depersonalization and ensure that technology serves as an
aid, enhancing the ability to deliver compassionate and
individualized care.

Furthermore, incorporating these technologies into
behav ioral interventions not only augments the capabilities
of BCBAs but also promotes user autonomy and supports
self- advocacy and self-determination among individuals
with dis abilities. By providing real-time data and predictive
insights, these tools could empower individuals to better
understand and communicate their own emotional and
physiological states, fostering a greater sense of control
over their environment and interactions. This shift toward
technology- enhanced, personalized interventions aligns
with contemporary goals in disability rights, emphasizing
respect for individual agency, and the enabling of people
with disabilities to lead more self-directed lives.

Limitations and future directions

Several limitations exist that warrant attention in future
work. Individualized models were developed in our
current study to account for the unique characteristics
and variations in physiological and behavioral signals,
as well as agitations, among participants. This persona-
lized approach allowed us to tailor the predictive model
to each individual’s specific needs. However, as we con-
tinue our research, we envision moving toward the devel-
opment of group models. By working with larger
participant cohorts, we aim to explore the potential for
building models that can generalize across individuals
while still accommodating individual differences. The
development of group models will enhance the scalability
and broader application of our approach, facilitating more
widespread implementation and benefiting a larger popu-
lation of individuals with IDD.

We focused on creating individualized model in this
initial investigative work to assess the feasibility of the pre-
sented approach. Although the results are promising, more
participants will be required to generalize the findings of
our approach across a broader spectrum of the IDD popula-
tion. However, the insights gained from this limited cohort
are critical for initial model testing, providing a founda-
tional understanding for subsequent larger-scale studies.
Future research will aim to include a larger number of par-
ticipants, which will not only validate and potentially
enhance the accuracy of our predictive models but also
ensure that our findings are more broadly applicable and

representative of the diverse needs and conditions within
the IDD community.

Our main goal during the assessments is to safely collect
information about the most prevalent agitations to a child
without pushing them toward challenging behavior. While
this ensures safety, we are limited in how many occurrences
of agitations can be evoked during assessments leading to a
paucity of data for each agitation. Therefore, in future itera-
tions of this work, longer assessments, or multiple assess-
ments, particularly those already being conducted as
behavior standards of care in the community, are required
to collect more thorough training data.

Additionally, to reduce excessive stimulus from wires and
electronics, the next version of WINGS will be wireless, and
the clothing which holds WINGs needs to be purposefully
built using comfortable clothing for children with various
sensory profiles as determined through stakeholder input. We
also found that the wristband used to capture physiological
signals was prone to occasional loss of connectivity, dropping
of data packets, and stagnant signals despite the high cost, war-
ranting the need for the development of more reliable wearable
physiological sensors. To make REACT portable, data collec-
tion and prediction need to be moved from computer-based to
smartphone-based.

In this study, formal feedback from participants or their
caregivers was not systematically collected as part of the
methodology. However, it is important to note that during
the study period, no adverse comments or concerns were
raised by either caregivers or participants regarding the
use of the technology. Recognizing the value of such feed-
back in evaluating the impact and acceptance of assistive
technologies, future works will include a more structured
feedback collection process in future studies. This will
enable us to better understand the reception of the technol-
ogy by the disability community and to ensure that it not
only meets functional expectations but also aligns with
the personal and social contexts of the users.

Despite these limitations, our current system can
produce a robust ML algorithm for the proactive real-time
detection of agitations with multimodal data collected
using wearable sensors and a customized tablet for data
annotation. In this work, we produced a real-time agitation
prediction system to provide BCBAs with valuable inter-
vention time without escalating to challenging behaviors.
Technology of this kind could improve the safety and effi-
ciency of treatment protocols by notifying interventionists,
caregivers, or, in the future, people with challenging beha-
viors themselves that behavior escalation is likely, prompt-
ing them to use evidence-based interventions for timely
deescalation or redirection.

Conclusion

This study demonstrates the efficacy of REACT in pro-
actively predicting early signs of agitation in children
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with IDD using a multimodal data approach. By integrat-
ing ML techniques with sensory data capture from wear-
able technologies, our model successfully provides
real-time, anticipatory alerts that allow caregivers and
behavior analysts to intervene before behaviors escalate.
The inclusion of multiple data modalities, such as physio-
logical signals, body movements, and vocalizations,
enriches the robustness of our predictions, significantly
enhancing the predictive value of our model.
Furthermore, our ablation study highlights the essential
contributions of each modality to the overall perform-
ance, emphasizing the need for a comprehensive approach
in future designs. As we continue to refine our system, we
aim to extend its application to broader community set-
tings and integrate it into existing behavioral analysis fra-
meworks to maximize both participant safety and the
effectiveness of interventions. The findings support the
use of the REACT model for real-time, proactive detec-
tion of agitations in children with IDD. This approach
not only improves the accuracy of detecting distress
signals that are imperceptible to the human eye but also
increases the window for timely intervention before
behavioral escalation, thereby enhancing safety, well-
being, and inclusion for this vulnerable population.

As development continues, maintaining an ongoing dia-
logue with the IDD community is crucial to ensure that the
technology aligns with the real-world needs and preferences
of those it is designed to support.

This collaboration is essential not only for optimizing
functionality and effectiveness but also for reinforcing
ethical standards that protect and empower the community
of individuals with IDD. Through these efforts, techno-
logical advancements in behavioral analysis can continue
to promote inclusion, respect, and empowerment for all
individuals.
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