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Abstract 

The Global Industry Standard on Tailings Management (GISTM) promotes performance-based approaches 

in geotechnical assessments. Hence, characterizing the spatial variability of deposited tailings is expected 

to be a key input for some tailings storage facilities (TSFs); however, it has seldom been investigated. In 

this study, we assess the spatial variability of thickened and conventional tailings that have been deposited 

into the same TSF, providing a unique opportunity to investigate two tailings technologies. A dense array 

of 15 cone penetration tests (CPTus) has been conducted to collect data. The results were processed using 

traditional and machine learning-based methods for data detrending when deriving random fields. In terms 

of correlation lengths, we find similar ranges for the thickened and conventional tailings and similar 

distributions, likely influenced by the depositional processes. In contrast, the variance in the conventional 

tailings is higher, which we attribute to its segregating nature. 

Introduction 

Previous efforts on characterizing the spatial variability of soil deposits have been mainly focused on natural 

soils, often using the random field theory (RFT). In terms of man-

(2016) study characterized the vertical spatial variability of a mine waste dump in a coal mine using CPTu. 

However, they focused only on the vertical variability due to the large spacing between the CPTus. 

Regarding mine tailings, to the best of the author’s knowledge, there have been no previous efforts to 

characterize the extent of their spatial variability at a local scale considering vertical and horizontal 

directions, which is one of the key contributions of our study.  

Advancing the spatial variability characterization of mine tailings is a step forward to enable better 

treatment of uncertainties in performance-based assessments, a framework recommended in the Global 

Industry Standard on Tailings Management (Global Tailings Review, 2020). In addition, gaining insights 

into the spatial variability of mine tailings provides valuable information to improve the planning of site 

investigation programs for TSFs. The spatial variability assessments of this study rely on data collected on 

conventional and thickened tailings using a dense array of CPTus. In addition to the traditional use of 
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polynomial functions in the detrending process to assess the extent of spatial variability, we highlight the 

significant potential of modern machine learning-based procedures for trend removal, which is a major 

contribution from our study. Unlike traditional polynomial functions with limited flexibility due to their 

fixed forms, machine learning-based methods offer greater flexibility in capturing trends in CPTu data. 

CPTu characterization

The investigated tailings were deposited using conventional deposition starting in the 1990s until 2010, 

when the deposition method was changed to high-density thickened tailings, providing a unique opportunity 

to investigate both conventional and thickened tailings in the same TSF. The solids contents for the 

conventional and high-density thickened tailings are about 50% and 62 to 70% (the variation is due to 

seasonal change), respectively. The field characterization was planned to collect data on both tailings and 

included 15 CPTus. The CPTu array was oriented parallel to the discharge points in the dam, as illustrated 

by Figure 1a. The CPTus were conducted at a standard penetration rate of 2 cm/s and were spaced at a 

distance of 1.5 m, as shown in Figure 1b. The separation was selected following the recommendations of 

Cary (2021) to minimize any potential disturbance between nearby CPTus. The dissipation tests confirmed 

a phreatic surface approximately 6.1 m below the surface. The CPTus were pushed to a depth of 16 m.

Figure 1: a) CPTu array location relative to the discharge area b) CPTu array zoom-in and labels

Figure 2a and 2b show and profiles, soil layering, and the phreatic surface inferred from the 

CPTu tests. The inferred soil profile can be divided into three layers. The layer from the surface to 2 m is a 

pad access built to access the site, which is not considered in the interpretations. The second layer, extending 

from 2.0 to about 8.5 m, corresponds to the thickened tailings showing relatively uniform , , and a linear 

trend in . The conventional tailings underlay the thickened tailings and extend to the bottom of the profile, 

showing a more erratic variation of , and values. The separation of the conventional and thickened 

tailings at about 8.5 m is consistent with the tailing’s deposition history. 
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Figure 2: a) , and b) , profiles

Spatial variability assessment

The inherent spatial variability of soils can be modeled with the random field theory (RFT), which has been 

used in several previous studies mainly focused on natural soils. In the following, we provide a brief 

overview of the RFT framework and its use in assessing spatial soil variability. Interested readers can refer 

to Jaksa et al. (1999) and Bong and Stuedlein (2017) for additional details. Under the RFT framework, a 

measurement of some spatially varying soil property of interest ( ) at a given depth can be expressed 

as the sum of a deterministic trend [ ( )] and a fluctuating component [ ( )] as expressed by Equation 1. 

The spatially varying parameter of interest is then characterized by the correlation length ( ), and the 

coefficient of variation ( ) of ( ). is a measure of the distance within which a particular 

measurement is correlated, and is the standard deviation ( ) of ( ) normalized by the mean of ( ).( ) = ( ) + ( ) (1)

The can be calculated by different geostatistical procedures (e.g., Jaksa, 1995; Vanmarcke, 1977; 

DeGroot and Baecher, 1993). In particular, the use of autocorrelation models to fit the autocorrelation in 

the observed data is common in geotechnical applications. In this procedure, the sample autocorrelation 

function – i.e., based on the observed data, which defines the spatial correlation for a given lag 

distance ( ) on the measurement of interest – is evaluated according to Equation 2.

= × (2)
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As suggested by Box and Jenkins (1970), different lag distances  can be considered by varying the 

sampling space ( ) for = 1,2,3 … /4 , where  is the sample size. Once  is assessed,  can be 

estimated by fitting different autocorrelation models (ACMs – Table 1) to . In using the RFT 

framework, it is highly beneficial to have stationarity in , i.e., the covariance structure only depends on 

the distance between observations ( ). Thus, a key step in assessing spatial soil variability is detrending the 

data (i.e., removing ( )), ideally leading to a stationary ( ) random field.  

This study used traditional polynomial and three non-parametric machine learning (ML) methods, 

namely, Random Forest (Breiman, 2001), Gradient Boosting Decision Tree (GBDT – Friedman, 2001), and 

the K-Nearest Neighbor (KNN – Peterson, 2009) for conducting the CPTu data detrending. The 

autocorrelation models were fitted to  above the Bartlett’s limit = 1.96/ , where  is the 

number of samples, . The fitting is considered acceptable when the coefficient of determination  is above 

0.9 (Phoon et al., 2003).  

The stationarity conditions of the detrended data were assessed using the stationarity score ( ), which 

is based on the Bartlett’s statistic test.  

negative values indicate nonstationary and positive values indicate stationary.  combines the contributions 

from both  and Bartlett’s statistic and can be used as a single metric to evaluate the performance of 

different trend functions. Further details are provided in Macedo et al. (2024). 

Table 1: Autocorrelation models and corresponding correlation length  
(Uzielli and Vanucchi, 2005) 

Autocorrelation model Functional form Correlation length 

Single exponential (SNX) ( ) = | | = 2  

Cosine exponential (CSX) ( ) = | | cos  = 1  

Second-order Markov (SMK) ( ) = (1 + | |) | | = 4  

Square exponential (SQX) ( ) = ( )  =  

Vertical correlation length 

The vertical autocorrelation length ( ) was calculated by fitting four different autocorrelation models 

(Table 1) to the sample autocorrelation functions. Figure 3 illustrates the process by showing the results 

obtained for the  profile of CPT-14 for the conventional tailings using the CSX autocorrelation model 

with polynomial and random forest detrending methods. The hyperparameters that produce the highest  

for each method are noted in the figure titles. In this case, a polynomial function of order two was selected 

because it gives the highest . However,  is negative, implying nonstationarity. In contrast, all ML-based 
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methods produce stationarity (Figure 3, right column). Hence, the CSX model would be discarded if only 

traditional polynomials were considered.  

 

Figure 3: Results using polynomial and ML-based trend functions 
for a representative  profile, considering the conventional tailings 

Figure 4 presents the cumulative distribution functions (CDFs) of  and  for  (Figure 4a 

and 4b) and  (Figure 4c and 4d), respectively. Interestingly, the estimated  and  values are in a 

relatively narrow range. In the case of the thickened tailings, the mean  estimated from  is 0.33 m, 

which is smaller, but still comparable with the  of 0.49 m based on . In the conventional tailings, the 

mean  estimated from  is 0.35 m, quite close to the mean  of 0.31 m considering . The -based 

 CDFs for both tailings are also consistent. The -based  CDFs for the thickened tailings are shifted 

to the right with respect to the CDFs for conventional tailings, but the  are still comparable.  

The similar  values can be attributed to the combination of two aspects i) the deposition scheme 

for the conventional and thickened tailings; and ii) averaging effects in CPTu measurements. In terms of 

the deposition process, similar phenomena are involved in both the deposition of the conventional and 

thickened tailings. These phenomena include pauses in the tailings discharge (the deposition is conducted 

on layers), drying-wetting cycles, induced consolidation when new layers are deposited, and induced flow 

gradients. Moreover, even though the thickened tailings have a less segregating nature, it is still reasonable 

to expect some segregation under field conditions during the deposition process. In terms of the averaging 
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during CPTu penetration, it is well known that is influenced by the response of the units that are at a 

distance of 1 to 3 cone diameters for soft soils and 20 to 30 cone diameters for stiffer soils (Lunne et al.,

1997; Ahmadi and Robertson, 2005). Similarly, also represents an averaged measurement. Thus, the 

relatively increased heterogeneity on the conventional tailings may have also been averaged out to some 

extent by the nature of the CPTu process. 

Figure 4: Ranges of a) and b) CDFs estimated from data.
Ranges of c) and d) CDFs estimated from data

In terms of the CDFs, it is important to put in context that is a measurement of the 

fluctuation (i.e., ) of ( ) with respect to its order of magnitude (i.e., ( )). The relatively larger 

for in the conventional tailings reflects the more significant fluctuation of , potentially influenced by 

the more segregating nature of the conventional tailings. In contrast, the larger for in the thickened 

tailings reflects the significantly lower in the thickened tailings compared to the conventional tailings 

(i.e., a factor of about 3), which counteracts the contribution. 

Horizontal correlation length

Due to the relatively large sampling interval in the horizontal direction compared to the vertical, deriving 

on significantly fewer points at a given depth, the horizontal correlation length ( ) is estimated following 

the expeditive method, which was originally proposed by Vanmarcke (1977) and has been used in previous 

studies for natural soils (e.g., Stuedlein et al., 2012; Bong and Stuedlein, 2017; Cary, 2021). The expeditive 
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method estimates  as 2 , where  is the average length of the segments obtained at the crossings 

of ( ) and its linear trend function ( ), where ( ) is the metric of interest (i.e.,  or ). Following the 

recommendations of Stuedlein et al. (2012) and Bong and Stuedlein (2017), in applying the expeditive 

method, we considered a minimum of five crossings to get stable  and  estimates. Figure 5a 

illustrates the -based  estimation in the thickened and conventional tailings at depths of 4 and 12 m, 

and Figure 5b illustrates the -based  estimation at the same depths. 

 

Figure 5: Application of Vanmarcke’s expeditive method for estimating the horizontal 
autocorrelation I based on a)  and b) , considering the thickened and conventional tailings 

at selected depths (4 m for the thickened tailings and 12 m for the conventional tailings) 

Figure 6a shows the estimated  considering  and  for the entire deposit, and Figure 6b presents 

the associated horizontal coefficient of variations ( ). It can be observed that the thickened and 

conventional tailings exhibit a similar . For instance, the 16 – 84 percentiles for the -based  is in 

the range of 2 to 3.5 m for the thickened tailings and in the range of 1.8 to 3.0 m for the conventional 

tailings. In the case of the -based estimations, the 16 – 84 percentiles  is in the range of 1.7 to 3.2 m for 

the thickened tailings and 1.9 to 2.9 m for the conventional tailings. The similar  in both tailings can be 

attributed to the deposition process and associated phenomena (e.g., pauses in the discharge, flow gradient, 

drying-wetting cycles, freezing, and consolidation) as discussed before for the .  

Moreover, it is reasonable to expect segregation to have less effect in the horizontal direction 

compared to the vertical, which is reflected in a similar . The -based values tend to be slightly 

larger for the conventional tailings as the existing variance controls them, whereas the -based  

values are larger for the thickened tailings as they are controlled by the lower  values in the thickened 

tailings. 
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Figure 6: a) and b) profiles based on and , considering
the thickened and conventional tailings. CDFs of and based c) and

d) in the thickened and conventional tailings.

Figure 6c and 6d present - and -based CDFs for and ; it can be observed that the 

CDFs for and are consistent for both the thickened and conventional tailings. In addition, similar -

based CDFs for the thickened and conventional tailings are also observed, being also consistent 

with the -based for the conventional tailings, whereas the -based CDF for the thickened 

tailings is shifted to the right, showing larger values for reasons already discussed.

Discussion

The generation of random fields depends on and (or variance, ); hence, having similar , which 

is the case for the thickened and conventional tailings, does not necessarily imply similar random fields. 

This can be illustrated by generating random fields with the parameters evaluated for the thickened and 

conventional tailings using the GSTools package (Muller and Schüler, 2021). Figure 7a shows one of these 

realizations considering the SNX autocorrelation model and parameters estimated using the GBDT model 

for detrending. In this case, the -based estimated parameters for the thickened tailings are = 0.3 MPa, = 0.37 m, and = 2.45 m, whereas the parameters for the conventional tailings are = 2.6 MPa, 
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= 0.41 m, and = 2.29 m. As can be inferred from these parameters, the main difference is in . 

It is interesting to note that the extent and shape of zones with similar ( ) values are comparable for the 

two types of tailings due to the similar . However, the random field for the thickened tailings is 

significantly more stable (i.e., it presents less variability) due to the lower . Thus, despite the similar 

for both tailings, the simulated random field for the thickened tailings shows a more homogeneous structure 

than conventional tailings. 

Figure 7: a) Unconditioned and b) conditioned -based ( ) random 
field realizations for the thickened and conventional tailings

Figure 7b presents a ( ) random field realization conditioned at various depths across the 15 CPTu 

locations. This conditional random field (CRF) offers a more realistic representation of spatial variability 

by incorporating site-specific data. Consequently, CRF realizations enhance the understanding of the 

distribution of tailings properties and improve the stability analysis and modeling of TSFs, which often rely 

on simplified assumptions, such as uniform layers, isotropic and homogeneous properties, and deterministic 

characteristics. By enabling probabilistic assessments, CRFs provide a more accurate and comprehensive 

approach to evaluating TSF stability.

Conclusion

As the application of performance-based approaches to tailings management advances (Morgenstern, 

2018), the quantification of variabilities (spatial and aleatory) is expected to become crucial, particularly 

for TSFs where the geotechnical characterization of mine tailings is key in assessing the overall response 

(e.g., the overall physical stability in upstream TSFs). In this context, we have collected data using a dense 

CPTu array to assess the spatial variability of two different types of tailings deposited in the same TSF. We 

also evaluated the potential of modern machine-learning methods for informing the estimation of random 

field parameters. The examined methods provided advantages, which we attribute to the interpolation nature 

of CPTu detrending (machine learning can act as a black box for extrapolation problems). This study’s 

findings may prove valuable in geotechnical analyses that require adopting values to account for spatial 
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variability in mine tailings similar to those examined in this study, specifically thickened and conventional 

tailings produced from gold ore. Given the lack of spatial correlation information on mine tailings, we 

expect that it would also be helpful as a benchmark for future efforts. Of note, case studies exist 

documenting the importance of spatial variability parameters for water dams (Sanchez-Lizarraga and Lai, 

2014; Boulanger and Montgomery, 2016; Guo et al., 2019). Thus, it is reasonable to expect similar spatial 

variability studies focused on TSFs to translate into engineering practice in the future. 
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