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Abstract

The Global Industry Standard on Tailings Management (GISTM) promotes performance-based approaches
in geotechnical assessments. Hence, characterizing the spatial variability of deposited tailings is expected
to be a key input for some tailings storage facilities (TSFs); however, it has seldom been investigated. In
this study, we assess the spatial variability of thickened and conventional tailings that have been deposited
into the same TSF, providing a unique opportunity to investigate two tailings technologies. A dense array
of 15 cone penetration tests (CPTus) has been conducted to collect data. The results were processed using
traditional and machine learning-based methods for data detrending when deriving random fields. In terms
of correlation lengths, we find similar ranges for the thickened and conventional tailings and similar
distributions, likely influenced by the depositional processes. In contrast, the variance in the conventional

tailings is higher, which we attribute to its segregating nature.

Introduction

Previous efforts on characterizing the spatial variability of soil deposits have been mainly focused on natural
soils, often using the random field theory (RFT). In terms of man-made waste materials, the Baginska et al.
(2016) study characterized the vertical spatial variability of a mine waste dump in a coal mine using CPTu.
However, they focused only on the vertical variability due to the large spacing between the CPTus.
Regarding mine tailings, to the best of the author’s knowledge, there have been no previous efforts to
characterize the extent of their spatial variability at a local scale considering vertical and horizontal
directions, which is one of the key contributions of our study.

Advancing the spatial variability characterization of mine tailings is a step forward to enable better
treatment of uncertainties in performance-based assessments, a framework recommended in the Global
Industry Standard on Tailings Management (Global Tailings Review, 2020). In addition, gaining insights
into the spatial variability of mine tailings provides valuable information to improve the planning of site
investigation programs for TSFs. The spatial variability assessments of this study rely on data collected on

conventional and thickened tailings using a dense array of CPTus. In addition to the traditional use of
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polynomial functions in the detrending process to assess the extent of spatial variability, we highlight the
significant potential of modern machine learning-based procedures for trend removal, which is a major
contribution from our study. Unlike traditional polynomial functions with limited flexibility due to their

fixed forms, machine learning-based methods offer greater flexibility in capturing trends in CPTu data.

CPTu characterization

The investigated tailings were deposited using conventional deposition starting in the 1990s until 2010,
when the deposition method was changed to high-density thickened tailings, providing a unique opportunity
to investigate both conventional and thickened tailings in the same TSF. The solids contents for the
conventional and high-density thickened tailings are about 50% and 62 to 70% (the variation is due to
seasonal change), respectively. The field characterization was planned to collect data on both tailings and
included 15 CPTus. The CPTu array was oriented parallel to the discharge points in the dam, as illustrated
by Figure 1a. The CPTus were conducted at a standard penetration rate of 2 cm/s and were spaced at a
distance of 1.5 m, as shown in Figure 1b. The separation was selected following the recommendations of
Cary (2021) to minimize any potential disturbance between nearby CPTus. The dissipation tests confirmed

a phreatic surface approximately 6.1 m below the surface. The CPTus were pushed to a depth of 16 m.
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Figure 1: a) CPTu array location relative to the discharge area b) CPTu array zoom-in and labels

Figure 2a and 2b show q; and f; profiles, soil layering, and the phreatic surface inferred from the
CPTu tests. The inferred soil profile can be divided into three layers. The layer from the surface to 2 mis a
pad access built to access the site, which is not considered in the interpretations. The second layer, extending
from 2.0 to about 8.5 m, corresponds to the thickened tailings showing relatively uniform g, f;, and a linear
trend in u,. The conventional tailings underlay the thickened tailings and extend to the bottom of the profile,
showing a more erratic variation of q;, fs and u, values. The separation of the conventional and thickened

tailings at about 8.5 m is consistent with the tailing’s deposition history.
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Figure 2: a) q;, and b) f, profiles

Spatial variability assessment

The inherent spatial variability of soils can be modeled with the random field theory (RFT), which has been
used in several previous studies mainly focused on natural soils. In the following, we provide a brief
overview of the RFT framework and its use in assessing spatial soil variability. Interested readers can refer
to Jaksa et al. (1999) and Bong and Stuedlein (2017) for additional details. Under the RFT framework, a
measurement of some spatially varying soil property of interest g(z) at a given depth z can be expressed
as the sum of a deterministic trend [t(z)] and a fluctuating component [w(z)] as expressed by Equation 1.
The spatially varying parameter of interest is then characterized by the correlation length (8), and the
coefficient of variation (COV) of w(z). § is a measure of the distance within which a particular

measurement is correlated, and COV is the standard deviation (o) of w(z) normalized by the mean of t(z).

9(z) = t(2) + w(z) (1

The § can be calculated by different geostatistical procedures (e.g., Jaksa, 1995; Vanmarcke, 1977;
DeGroot and Baecher, 1993). In particular, the use of autocorrelation models to fit the autocorrelation in
the observed data is common in geotechnical applications. In this procedure, the sample autocorrelation
function p(rj) — 1i.e., based on the observed data, which defines the spatial correlation for a given lag
distance (‘L’j) on the measurement of interest — is evaluated according to Equation 2.
oy I Wi X Wiy j

ng=j 2
Zi:1 Wi

2)

P(Tj) = 2
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As suggested by Box and Jenkins (1970), different lag distances 7; can be considered by varying the
sampling space (Az) for j = 1,2,3 ...n4/4 , where ny is the sample size. Once p(rj) is assessed, § can be
estimated by fitting different autocorrelation models (ACMs — Table 1) to p(‘rj). In using the RFT
framework, it is highly beneficial to have stationarity in w, i.e., the covariance structure only depends on
the distance between observations (7). Thus, a key step in assessing spatial soil variability is detrending the
data (i.e., removing t(z)), ideally leading to a stationary w(z) random field.

This study used traditional polynomial and three non-parametric machine learning (ML) methods,
namely, Random Forest (Breiman, 2001), Gradient Boosting Decision Tree (GBDT — Friedman, 2001), and
the K-Nearest Neighbor (KNN — Peterson, 2009) for conducting the CPTu data detrending. The
autocorrelation models were fitted to p(rj) above the Bartlett’s limit 15 = 1.96/\/n— , where ng is the
number of samples, . The fitting is considered acceptable when the coefficient of determination R? is above
0.9 (Phoon et al., 2003).

The stationarity conditions of the detrended data were assessed using the stationarity score (S), which
is based on the Bartlett’s statistic test. S is a normalized scalar quantity (bounded from —1 to 1), where
negative values indicate nonstationary and positive values indicate stationary. S combines the contributions
from both R? and Bartlett’s statistic and can be used as a single metric to evaluate the performance of

different trend functions. Further details are provided in Macedo et al. (2024).

Table 1: Autocorrelation models and corresponding correlation length
(Uzielli and Vanucchi, 2005)

Avutocorrelation model Functional form Correlation length
Single exponential (SNX) p(1) = ekl 6=2/k
Cosine exponential (CSX) p(r) = e kIl cos kT §=1/k

Second-order Markov (SMK) p(t) = (1 + k|z])e kI §=4/k
Square exponential (SQX) p(7) = e~ (Kk)? 5§ =+r/k

Vertical correlation length

The vertical autocorrelation length (6,,,) was calculated by fitting four different autocorrelation models
(Table 1) to the sample autocorrelation functions. Figure 3 illustrates the process by showing the results
obtained for the g, profile of CPT-14 for the conventional tailings using the CSX autocorrelation model
with polynomial and random forest detrending methods. The hyperparameters that produce the highest S
for each method are noted in the figure titles. In this case, a polynomial function of order two was selected

because it gives the highest S. However, S is negative, implying nonstationarity. In contrast, all ML-based
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methods produce stationarity (Figure 3, right column). Hence, the CSX model would be discarded if only

traditional polynomials were considered.
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Figure 3: Results using polynomial and ML-based trend functions
for a representative q; profile, considering the conventional tailings

Figure 4 presents the cumulative distribution functions (CDFs) of §,,,,, and COV,,,, for q; (Figure 4a
and 4b) and f; (Figure 4c and 4d), respectively. Interestingly, the estimated 6,,,, and COV,,,,, values are in a
relatively narrow range. In the case of the thickened tailings, the mean §,,,, estimated from q; is 0.33 m,
which is smaller, but still comparable with the §,,,,, of 0.49 m based on f;. In the conventional tailings, the
mean 6,,,, estimated from q; is 0.35 m, quite close to the mean &,,,, of 0.31 m considering f;. The g;-based
6y CDFs for both tailings are also consistent. The fs-based 8,,,,, CDFs for the thickened tailings are shifted
to the right with respect to the CDFs for conventional tailings, but the §,,,, are still comparable.

The similar §,,,, values can be attributed to the combination of two aspects 1) the deposition scheme
for the conventional and thickened tailings; and ii) averaging effects in CPTu measurements. In terms of
the deposition process, similar phenomena are involved in both the deposition of the conventional and
thickened tailings. These phenomena include pauses in the tailings discharge (the deposition is conducted
on layers), drying-wetting cycles, induced consolidation when new layers are deposited, and induced flow
gradients. Moreover, even though the thickened tailings have a less segregating nature, it is still reasonable

to expect some segregation under field conditions during the deposition process. In terms of the averaging
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during CPTu penetration, it is well known that g; is influenced by the response of the units that are at a
distance of 1 to 3 cone diameters for soft soils and 20 to 30 cone diameters for stiffer soils (Lunne et al.,
1997; Ahmadi and Robertson, 2005). Similarly, f; also represents an averaged measurement. Thus, the
relatively increased heterogeneity on the conventional tailings may have also been averaged out to some

extent by the nature of the CPTu process.
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Figure 4: Ranges of a) §,,,, and b) COV,,,,, CDFs estimated from q; data.
Ranges of ¢) §,,, and d) COV,,, CDFs estimated from f; data

In terms of the COV;,,, CDFs, it is important to put in context that COV,,,, is a measurement of the
fluctuation (i.e., o) of w(z) with respect to its order of magnitude (i.e., t(z)). The relatively larger COV,,,
for g, in the conventional tailings reflects the more significant fluctuation of q;, potentially influenced by
the more segregating nature of the conventional tailings. In contrast, the larger COV,,,, for f; in the thickened
tailings reflects the significantly lower f in the thickened tailings compared to the conventional tailings

(i.e., a factor of about 3), which counteracts the o contribution.

Horizontal correlation length

Due to the relatively large sampling interval in the horizontal direction compared to the vertical, deriving
on significantly fewer points at a given depth, the horizontal correlation length (8,,,) is estimated following
the expeditive method, which was originally proposed by Vanmarcke (1977) and has been used in previous

studies for natural soils (e.g., Stuedlein et al., 2012; Bong and Stuedlein, 2017; Cary, 2021). The expeditive

2302



SPATIAL VARIABILITY ASSESSMENT OF MINE TAILINGS

method estimates 6, as /2/71 d, where d is the average length of the segments obtained at the crossings

of g(z) and its linear trend function t(z), where g(z) is the metric of interest (i.e., q; or f;). Following the
recommendations of Stuedlein et al. (2012) and Bong and Stuedlein (2017), in applying the expeditive
method, we considered a minimum of five crossings to get stable COV,,, and 6,,, estimates. Figure 5a
illustrates the g;-based &,,;, estimation in the thickened and conventional tailings at depths of 4 and 12 m,
and Figure 5b illustrates the f;-based 6, estimation at the same depths.

100 —
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Figure 5: Application of Vanmarcke’s expeditive method for estimating the horizontal
autocorrelation | based on a) q; and b) f, considering the thickened and conventional tailings
at selected depths (4 m for the thickened tailings and 12 m for the conventional tailings)

Figure 6a shows the estimated 6,,, considering g, and f; for the entire deposit, and Figure 6b presents
the associated horizontal coefficient of variations (COV,,,). It can be observed that the thickened and
conventional tailings exhibit a similar §,,,. For instance, the 16 — 84 percentiles for the q,-based J,,;, is in
the range of 2 to 3.5 m for the thickened tailings and in the range of 1.8 to 3.0 m for the conventional
tailings. In the case of the fy-based estimations, the 16 — 84 percentiles §y, is in the range of 1.7 to 3.2 m for
the thickened tailings and 1.9 to 2.9 m for the conventional tailings. The similar §,,;, in both tailings can be
attributed to the deposition process and associated phenomena (e.g., pauses in the discharge, flow gradient,
drying-wetting cycles, freezing, and consolidation) as discussed before for the 6,,,.

Moreover, it is reasonable to expect segregation to have less effect in the horizontal direction
compared to the vertical, which is reflected in a similar 8,,;,. The g¢-based COV,,, values tend to be slightly
larger for the conventional tailings as the existing variance controls them, whereas the f;-based COV,,,
values are larger for the thickened tailings as they are controlled by the lower f; values in the thickened

tailings.
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Figure 6: a) 8,,, and b) COV,,, profiles based on q; and f, considering
the thickened and conventional tailings. CDFs of q; and f based ¢) §,,, and
d) COV,,;, in the thickened and conventional tailings.
Figure 6¢ and 6d present q;- and fs-based CDFs for §,,,, and COV,,;; it can be observed that the 6,
CDFs for g; and f; are consistent for both the thickened and conventional tailings. In addition, similar q;-
based COV,,;, CDFs for the thickened and conventional tailings are also observed, being also consistent
with the f;-based COV,,;, for the conventional tailings, whereas the f;-based COV,,;, CDF for the thickened

tailings is shifted to the right, showing larger values for reasons already discussed.

Discussion

The generation of random fields depends on § and COV (or variance, o2); hence, having similar &, which
is the case for the thickened and conventional tailings, does not necessarily imply similar random fields.
This can be illustrated by generating random fields with the parameters evaluated for the thickened and
conventional tailings using the GSTools package (Muller and Schiiler, 2021). Figure 7a shows one of these
realizations considering the SNX autocorrelation model and parameters estimated using the GBDT model
for detrending. In this case, the q;-based estimated parameters for the thickened tailings are 62 = 0.3 MPa,

8wy = 0.37 m, and 8,5, = 2.45 m, whereas the parameters for the conventional tailings are 02 = 2.6 MPa,
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Sy = 0.41m, and 8,,;, = 2.29 m. As can be inferred from these parameters, the main difference is in o2

It is interesting to note that the extent and shape of zones with similar w(z) values are comparable for the
two types of tailings due to the similar §. However, the random field for the thickened tailings is
significantly more stable (i.e., it presents less variability) due to the lower o2. Thus, despite the similar §
for both tailings, the simulated random field for the thickened tailings shows a more homogeneous structure

than conventional tailings.
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Figure 7: a) Unconditioned and b) conditioned q; -based w(z) random
field realizations for the thickened and conventional tailings

Figure 7b presents a w(z) random field realization conditioned at various depths across the 15 CPTu
locations. This conditional random field (CRF) offers a more realistic representation of spatial variability
by incorporating site-specific data. Consequently, CRF realizations enhance the understanding of the
distribution of tailings properties and improve the stability analysis and modeling of TSFs, which often rely
on simplified assumptions, such as uniform layers, isotropic and homogeneous properties, and deterministic
characteristics. By enabling probabilistic assessments, CRFs provide a more accurate and comprehensive

approach to evaluating TSF stability.

Conclusion

As the application of performance-based approaches to tailings management advances (Morgenstern,
2018), the quantification of variabilities (spatial and aleatory) is expected to become crucial, particularly
for TSFs where the geotechnical characterization of mine tailings is key in assessing the overall response
(e.g., the overall physical stability in upstream TSFs). In this context, we have collected data using a dense
CPTu array to assess the spatial variability of two different types of tailings deposited in the same TSF. We
also evaluated the potential of modern machine-learning methods for informing the estimation of random
field parameters. The examined methods provided advantages, which we attribute to the interpolation nature
of CPTu detrending (machine learning can act as a black box for extrapolation problems). This study’s

findings may prove valuable in geotechnical analyses that require adopting § values to account for spatial

2305



TAILINGS AND MINE WASTE 2024 ¢ COLORADO, USA

variability in mine tailings similar to those examined in this study, specifically thickened and conventional
tailings produced from gold ore. Given the lack of spatial correlation information on mine tailings, we
expect that it would also be helpful as a benchmark for future efforts. Of note, case studies exist
documenting the importance of spatial variability parameters for water dams (Sanchez-Lizarraga and Lai,
2014; Boulanger and Montgomery, 2016; Guo et al., 2019). Thus, it is reasonable to expect similar spatial

variability studies focused on TSFs to translate into engineering practice in the future.

Acknowledgments

This material is based upon work supported by the National Science Foundation (NSF) under Grant No.
CMMI 2145092. Any opinions, findings, conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF. The PRONABEC program of the
Peruvian government also provided complementary support. In addition, we would like to thank ConeTec,
Newmont, and WSP-Golder for supporting the site characterization efforts. Finally, we thank Prof. Armin
Stuedlein for sharing VBA codes that we used to validate our implementations and Prof. Jason Dejong for

discussions when planning the CPTu campaign for the spatial variability characterization.

References

Ahmadi, M.M. and Robertson, P.K. 2005. Thin-layer effects on the CPT qc measurement. Canadian Geotechnical
Journal 42(5): 1302—-1317.

Bong, T. and Stuedlein, A.W. 2017. Spatial variability of CPT parameters and silty fines in liquefiable beach sands.

Journal of Geotechnical and Geoenvironmental Engineering 143(12).

Boulanger, R.W. and Montgomery, J. 2016. Nonlinear deformation analyses of an embankment dam on a spatially

variable liquefiable deposit. Soil Dynamics and Earthquake Engineering 91: 222-233.
Box, G. and Jenkins, G. 1970 Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco.
Breiman, L. 2001. Random forests. Machine Learning 45: 5-32.

Breysse, D., Niandou, H., Elachachi, S. and Houy, L. 2007. A generic approach to soil-structure interaction

considering the effects of soil heterogeneity. Risk and Variability in Geotechnical Engineering 117—124.

Cai, G., Lin, J., Liu, S. and Puppala, A.J., 2017. Characterization of spatial variability of CPTU data in a
liquefaction site improved by vibro-compaction method. KSCE Journal of Civil Engineering 21(1): 209-219.

Cami, B., Javankhoshdel, S., Phoon, K.-K. and Ching, J. 2020. Scale of fluctuation for spatially varying soils:
Estimation methods and values. Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil

Engineering 6(4).

2306



SPATIAL VARIABILITY ASSESSMENT OF MINE TAILINGS

Cary, J. 2021. An investigation into the role of spatial variability on liquefaction consequence severity. Master’s

thesis, Oregon State University.

Ching, J., Wu, T.-J., Stuedlein, A.W. and Bong, T. 2018. Estimating horizontal scale of fluctuation with limited CPT
soundings. Geoscience Frontiers 9(6): 1597-1608.

DeGroot, D.J. and Baecher, G.B. 1993. Estimating autocovariance of in situ soil properties. J. Geotech. Geoenviron.
Eng. 119(1): 147-166.
Fenton, G.A. and Griffiths, D.V. 2005. Three-dimensional probabilistic foundation settlement. Journal of

Geotechnical and Geoenvironmental Engineering 131(2): 232-239.

Friedman, J. 2001. Greedy function approximation: A gradient boosting machine. The Annals of Statistics 29(5):
1189-1232.

GTR (Global Tailings Review). 2020. Global Industry Standard on Tailings Management.
https://globaltailingsreview.org/wp-content/uploads/2020/08/global-industry-standard EN.pdf

Griffiths, D.V., Fenton, G.A. and Manoharan, N. 2006. Undrained bearing capacity of two-strip footings on spatially

random soil. International Journal of Geomechanics 6(6): 421-427.

Guo, X., Dias, D. and Pan, Q. 2019. Probabilistic stability analysis of an embankment dam considering soil spatial

variability. Computers and Geotechnics 113: 103093.

Hu, Y.-G. and Ching, J. 2015. Impact of spatial variability in undrained shear strength on active lateral force in clay.

Structural Safety 52: 121-131.

Jaksa, M.B. 1995. The influence of spatial variability on the geotechnical design properties of a stiff,
overconsolidated clay. PhD thesis, Faculty of Engineering, University of Adelaide, Adelaide, SA.

Jaksa, M.B., Goldsworthy, J.S., Fenton, G.A., Kaggwa, W.S., Griffiths, D.V., Kuo, Y.L. and Poulos, H.G. 2005.

Towards reliable and effective site investigations. Géotechnique 55(2): 109—121.

Jaksa, M.B., Kaggwa, W.S. and Brooker, P.I. 1999. Experimental evaluation of the scale of fluctuation of a stiff
clay. Proceedings of the 8" International Conference on Application of Statistics and Probability, A.A.
Balkema, Rotterdam, The Netherlands, 415-422.

Lunne, T., Robertson, P. and Powell, J. 1997. Cone penetration testing in geotechnical practice. Soil Mechanics and

Foundation Engineering 46. 10.1007/s11204-010-9072-x.

Miiller, S. and Schiiler, L. 2021. GeoStat — Framework/GSTools: v1.3.5 “Pure Pink”, Zenodo [code],
https://doi.org/10.5281/zenodo.5883346

Vergaray, L. and J. Macedo. 2024. Mechanical response of mine tailings under constant shear drained loading.

Journal of Geotechnical and Geoenvironmental engineering 150(10): 04024082

Peterson, L. 2009. K-nearest neighbor. Scholarpedia 4: 1883. 10.4249/scholarpedia.1883.

2307



TAILINGS AND MINE WASTE 2024 ¢ COLORADO, USA

Phoon, K.K., Quek, S.-T. and An, P. Identification of statistically homogeneous soil layers using modified bartlett
statistics. Journal of Geotechnical and Geoenvironmental Engineering 129(7):

https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(649)

Sanchez Lizarraga, H. and Lai, C.G. 2014. Effects of spatial variability of soil properties on the seismic response of

an embankment dam. Soil Dynamics and Earthquake Engineering 64: 113—-128.

Stuedlein, A.W., Kramer, S.L., Arduino, P. and Holtz, R.D. 2012. Geotechnical characterization and random field
modeling of desiccated clay. J. Geotech. Geoenviron. Eng. 1301-1313.

Uzielli, M. and Vanucchi, G. 2005. Investigation of correlation structures and weak stationarity using the CPT soil
behavior classification index. Proceedings of the 9" International Conference on Structural Safety and

Reliability — ICOSSAR 2005, Rome.

Vanmarcke, E.H. 1977. Probabilistic modeling of soil profiles. Journal of the Geotechnical Engineering Division

103(11): 1227-1246.

2308



