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Learning Hyperplanes for Multi-Robot Collision Avoidance in Space

Fernando Palafox!, Yue Yu2, and David Fridovich-Keil!

Abstract—A core challenge of multi-robot interactions is col-
lision avoidance among robots with potentially conflicting objec-
tives. We propose a game-theoretic method for collision avoidance
based on rotating hyperplane constraints. These constraints
ensure collision avoidance by defining separating hyperplanes
that rotate around a keep-out zone centered on certain robots.
Since it is challenging to select the parameters that define a
hyperplane without introducing infeasibilities, we propose to
learn them from an expert trajectory i.e., one collected by
recording human operators. To do so, we solve for the parameters
whose corresponding equilibrium trajectory best matches the
expert trajectory. We validate our method by learning hyperplane
parameters from noisy expert trajectories and demonstrate the
generalizability of the learned parameters to scenarios with more
robots and previously unseen initial conditions.

I. INTRODUCTION

Space robotics play an important role in advancing impor-
tant human endeavors, such as exploration, asteroid mining,
telecommunication systems, scientific research, and establish-
ing permanent human settlements on other planets. These
robots can relieve humans from undertaking tasks in remote,
inhospitable, and potentially hazardous environments, such as
outer space or the surfaces of celestial bodies.

As space gets more crowded, we must manage the chal-
lenge of safe multi-robot interactions. On-orbit construction
and/or maintenance of spacecraft, space stations, or scientific
instruments will likely require close proximity interactions
among many robots. It is crucial that we prevent collisions
between these robots, particularly in situations where they
may have conflicting objectives, as in construction or defense
applications.

In much of the existing literature on robot collision avoid-
ance, obstacles remain static or move in predetermined pat-
terns that do not depend upon the robot’s decisions. Existing
methods typically bound the minimum distance between the
robot and any obstacle and/or minimize a performance index
that penalizes the robot for getting too close to any obstacle.

In the case of multi-robot collision avoidance, the problem
is sometimes framed as a collaborative task where all robots
have the common goal of avoiding each other. However, these
methods do not model interactions for robots with conflicting
objectives. A concrete example of such a scenario is a complex
construction task in space, where robots seek different goal
positions while operating close to each other.

Multi-robot interactions can be modeled using game theory,
which provides an expressive mathematical framework to
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Fig. 1: Our method uses noisy expert trajectories (Fiéure la)
to learn the rotation rate and keep-out zone radius of a rotating
hyperplane constraint (Figure Ib). We then use the same
parameters to generate collision-free trajectories for a three-
dimensional scenario with different initial conditions and more

robots .

describe the behavior of several robots seeking to optimize
individual objectives that depend upon one another’s actions.
Dynamic gamaes further account for strategic decision-making
over time, and model the effects of sequential decisions via a
dynamical system. Equilibria of these games yield state and
control input trajectories that respect problem constraints and
trade-off robots’ individual objectives.

We propose a dynamic game-theoretic method for multi-
robot collision avoidance based on a set of rotating hyperplane
constraints that define a separating hyperplane between an ego
robot and an obstacle robot. This hyperplane rotates around a
circular keep-out zone (KOZ) centered on the obstacle robot as
seen in which the ego robot must avoid. Arbitrarily
selecting hyperplane parameters may introduce infeasiblities
to the game such as a rotation rate that requires robots to
move faster than their actuators allow, or keep-out zone (KOZ)
radii larger than the distance between robots at their initial
positions. Therefore, we learn the parameters from expert
trajectories that already avoid collisions, which could, e.g., be
collected by recording human operators. With our method, we
obtain collision-free trajectories by solving for the equilibrium
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trajectories of a game with learned hyperplane constraints
between robots.

We evaluate the performance of our method in a simulated
collision-avoidance scenario with robot dynamics modeled by
the discrete-time Hill-Clohessy-Wiltshire equations for relative
orbital motion [[1]. We validate the learning capabilities of our
method by learning hyperplane parameters from noisy expert
data with known ground truth parameter values, and we show
the generalizability of inferred parameters by applying them
to different initial conditions and a scenario with more robots.

II. RELATED WORK

In the domain of single-robot obstacle avoidance, Di
Cairano, Park, and Kolmanovsky [2] formulated collision-
avoidance constraints in terms of half-plane constraints to
facilitate safe docking maneuvers. Building on this, Weiss,
Baldwin, Erwin, et al. [3|] defined a rotating hyperplane,
effectively separating obstacles from spacecraft trajectories. In
this work, we extend their ideas to the multi-robot case.

Existing game-theoretic approaches for collision avoidance
include [4] where the authors presented a framework based on
differential feedback games to address multi-agent collision
avoidance. Their work integrates barrier terms proportional to
proximity and solves for e-Nash equilibria. Erdogan, Innocenti,
and Pollini [5] explored a game-theoretic strategy for for-
mation flying and obstacle avoidance, decomposing complex
avoidance tasks into smaller solvable components. Our work is
different because it ensures collision avoidance via constraints
in each player’s trajectory.

In this work, we solve for unknown parameters in nonlinear
constraints of an observed game-theoretic interaction (i.e.,
we solve the “inverse” game). Relevant literature includes
approaches for inverse optimal control such as [[6] where they
solved for the objective and constraints of a manipulation task
using Bellman’s principle of optimality. Their work focuses
on a linearly parameterized objective and selects constraints
from a set of candidate constraints formed by the convex hull
of all observed data points. Another example is [7] where
they detailed two approaches for learning the parameters of an
objective function based on maximum-likelihood estimation.
Solving for unknown parameters in the inequality constraints
was approached in Papadimitriou and Li [8] by employing
an alternating optimization method that minimizes the KKT
residual objective. Similarly, Chan and Kaw [9] solved for
the parameters of linearly parameterized inequality constraints
with two duality-based approaches: the first one minimizes
the duality gap and the second one seeks to satisfy strong
duality. Note that all of these approaches focus on solving for
parameters in the objective and constraints of a single expert
human (or robot), whereas our work extends to the case of a
multi-robot interaction with nonlinear inequality constraints.

Existing approaches for solving an inverse game in-
clude [10], where the authors presented a method based on
maximum-likelihood estimation to obtain unknown parameters
in linearly parameterized objectives using noisy observations.
Their work does not include inequality constraints but allows
for collision-avoiding behavior via appropriate objective func-
tions. Finally, Liu, Peters, and Alonso-Mora [11] presented

a method for trajectory planning against opponents with un-
known objectives and constraints by formulating the forward
game as a differentiable parametric mixed complementarity
problem and then using the gradient information to solve for
the unknown parameters. Their work provides the foundation
for the learning algorithm we present in this paper.

III. PROBLEM FORMULATION

In this section, we describe the specifics of the multi-robot
interaction, how it can be described as a game, and the Nash
equilibrium solution concept.

A. Robot dynamics

We focus on the case of collision avoidance for robotic
spacecraft operating in close proximity to each other. We
model each robot’s motion as a discrete-time, time-invariant
dynamical system where the equations of motion are given by
the discretized Hill-Clohessy-Wilshire equations for relative
orbital motion [1]. In the following definitions, an overdot
denotes a time-derivative, superscripts and subscripts denote
indexing by robot and time, respectively. The position of robot
i at time ¢ is given by p} = [z} y; zz]T € R? and thrust
forces in each direction are given by F,, Iy, F., € R. We
define the set of all possible states and controls as X C RS
and U C R3, respectively. Then, for robot ¢ at time ¢, state
and controls are x! € X and u} € U where
T
e a
u,:=[F, F, Fi, (1b)

We model discrete time as ¢ € [T'] = {1, ..., T} and define the
set of all robots as [N] = {1,..., N}. We use the following
indexing shorthand throughout the paper:

]T

xei= [T =TT
x = [x] <3
x' = [x}T xiTT]T
X [XlT O xG=DT g GHDT XNT}T

We describe state dynamics with the time-invariant differ-
ence equation
Xj, 1 = Ax} + Buj, 3)

where A € R6%6 and B € R3*? are given in By
defining G} := x}; — (Ax} + Buj), the equality constraints
encoding dynamic feasibility for robot ¢ are

¢=[GT .. Gl =o. )

Note that G? is implicitly parameterized by the initial state x;.

We model finite thrusting capabilities by limiting thrust
magnitude to umax € RT in any direction. Mathematically,
this is given by the constraints

Umax]-S +u Z 0

umax13 —u Z 0

(5a)
(5b)

where 13 denotes a 3 x 1 vector of ones, and > is evaluated
element-wise.



B. Objective

The objective of every robot is to minimize the distance
between its position at final time 7" and its goal position while
also minimizing control effort. Mathematically, we define it as
a scalar function J¢ : RONT x R3NT 5 R,

J16ew) = [ Ploarl, + € [l (©)

where péoal € R3 is robot i’s goal position, and 51‘ c Rt
scales the weight of the second term relative to the weight of
the first term.

Fig. 2: For constraint H(7)  the hyperplane (dotted line)

rotates at a rate w®7) around the shaded KOZ with radius
(4,9)
p\sa),

C. Rotating hyperplane constraints

In the interest of computational efficiency, we follow [3]] and
formulate collision avoidance in terms of an affine hyperplane
constraint that changes with time. We define (2 as the set of
robot pairs for which a hyperplane constraint exists in the
game. For example, Q = {(1,2),(1,3),(2,3)} in a game with
hyperplanes separating robots 1 and 2, 1 and 3, and 2 and 3.
We denote Q' as the set of pairs that include robot i. For
example, in the previous game Q? = {(1,2),(2,3)}. Robot
pair (4, j) avoids collisions by defining a separating hyperplane
that rotates at an angular velocity w(*/) € R around a circular
KOZ of radius p(*9) € Rt centered on robot j, as illustrated
in Mathematically, the constraint is defined as

Ht(i,j) >0,Vte{2,...,T} (7a)
where H{" :=n/ (p} —m) (7b)
~ Jeos(al) 4 w9 (1 — 1))
1= | sin(a9) 4 w9 (¢ — 1)) (7e)
m; := p% + p(i’j)nt. (7d)

o) € R is the angle between the z-axis and p! — p7. Note
that this formulation only depends on the planar components
of the state. This limits the range of possible trajectories since
robots’ planar positions cannot overlap even if out-of-plane

positions are at a safe distance. This trade-off can be justified
by the reduced complexity of the constraint formulation and
by noting that, in practice, this formulation is sufficient for
collision-free trajectories in common space maneuvers e.g.,
docking [2].

In general, this interaction is non-cooperative because
robots’ objectives are arbitrary and can conflict. However, we
assume that all agents are responsible for avoiding collisions,
and therefore, robot ¢’s complete set of constraints contains
constraints for robots it wishes to avoid (e.g. H(»/), a hy-
perplane centered on robot j that robot ¢ wishes to avoid),
as well as any constraints for robots trying to avoid robot
itself (e.g. H*" a hyperplane centered on robot i that robot
k wishes to avoid). Therefore, robot ¢’s hyperplane constraints
are expressed as

- o 1T
HOD) = [Hém H;m)}
H = {HY|weQ}>0

(8a)
(8b)

where the set-builder notation in is abused to return a
vector HY € R(T=DIL and > is evaluated element-wise.

D. Collision avoidance game

We model the multi-robot interaction with hyperplane con-
straints and thrust limits as an open-loop and infinite game
T(0) = (x1 {J'}{G"}, {H'}, tmax, 0, [N], [T]), where
0 = {w, p, & } contains the hyperplane parameters and
cost weights for all robots. Each robot is only given the
initial conditions x; and then solves the coupled optimization
problems

Q%

,u’™* € arg min J'(x, u) (9a)
x’,u*

subject to G =0 (9b)

H >0 (9c)

Umax 13 +u 2 0 (9d)

Umaxlz —u > 0. (%e)

Note that this problem is implicitly parameterized by 6, which
enters both J* and H'.

We seek generalized Nash equilibrium (GNE) solutions [12]
in which no robot has a unilateral incentive to change its
current strategy. This concept captures the non-cooperative na-
ture of the interaction between rational robots with potentially
conflicting objectives and is defined as follows:

Definition 1 (Generalized Nash equilibrium). A set of strate-
gies u* := {u'* ... uN*} is a generalized Nash equilibrium
of the game T'(0) if it satisfies

JHx*u*) < J(x, {u',u""*}), Vi € [N] (10)

for any feasible deviation (x,u) with u™%* denoting all but
robot i’s controls.

In general, computing Nash equilibria is computationally
intractable [[13]], so we solve for trajectories (x,u) that locally
satisfy the equilibrium conditions to first order. Assuming
linear independence of the constraints, solutions for (9) must
satisfy the intersection of every player’s Karush—Kuhn-Tucker



(KKT) conditions [[12]. To express these, we introduce La-
grange multipliers w, v, A\p;, A\l and write robot i’s La-
grangian as

Li _ Ji o wiTGi o ViTHi

- )\%T (umax13 + ui) - )\f;r(umaxlfi -

(1)

u’)

where vi = {v¥ | w € Q'}. Then, the KKT conditions are

Vi Ll =0
Vi li=0
. Gi=0

0 S umaxl?; +u L )\hi Z 0
0 S umax13 —ul )\10 Z 0.

Robots share multipliers associated with hyperplane con-
straints H' to encode shared responsibility for constraint fea-
sibility. For example, (4, 7) € Q implies that H /) € H' NH/
so v? and v/ will share some elements.

It can be shown that solving (I2) is equivalent to solving
a mixed complementarity problem (MCP) [12], parameterized
by 6 and denoted as MCP(#). The solution for MCP(#) is a
vector z* € R”™ that can be expressed in terms of the decision
variables in as

P [X*T,u*T,W*T,V*T,)\ﬁ?,ATOT]T. (13)
This equivalence is very convenient because, as shown in [11]],
it is possible to differentiate z* with respect to 6. This fact
will be fundamental in the development of the hyperplane

parameter learning algorithm, as discussed in the next section.

IV. LEARNING HYPERPLANE PARAMETERS

Selecting hyperplane parameters without introducing infea-
sibilities into the game can be challenging, particularly due to
the thrust limit constraints and [(9e). In games with two
robots, selecting parameters can be done through judicious trial
and error. However, the increasingly complicated geometry
rules out this approach for games with more robots. Instead,
we propose to learn these parameters from expert trajectories
known to satisfy all constraints, such as the trajectory of two
small satellites controlled by expert human operators.

Concretely, we begin with an observed state trajectory X,
assumed to represent the equilibrium behavior of a parametric
collision-avoidance game I'(#) (where all or only some of the
elements of ¢ are unknown), and then solve an “inverse” game
to recover the unknown parameters. The solution to the inverse
game is the set of constraint parameters for which the resulting
equilibrium best matches the observed trajectories, i.e.

min £(x,X) subject to x € X (14)
where £ : RONT x RONT 5 R /(x,%) := ||x — %]|3, and
X = {x € R°"T' | 3u, w, v, Aui, Ao, such that 5)

z=[x"u"w v ALAL] T solves MCP(6)}

We follow the approach in [[11]] and solve for the hyperplane
parameters by descending the gradient of ¢ with respect to 6 as

Algorithm 1: Learn hyperplane parameters

1 Input: Initial 0, learning rate «, decay rates (31, 2,
convergence tolerance € > 0.

2 while || Vg/|| > € do

3 (2%, Vgz") < solve MCP(0)

4 | Vol Vil V.-xVez"

5 0 <+ 0 — Adam(V/l; o, B1, B2)

6 end

7 return 0

shown in [Algorithm I. We found that scaling the gradient with
an Adam optimizer [14] greatly improved numerical stability.

In the case of rotating hyperplane constraints, gradient
descent yields a loss-optimal set of hyperplane parameters
without requiring that all hyperplane constraints be active. If a
constraint is never active, the gradient of the loss with respect
to the constraint parameters will be zero (even if the param-
eters are not optimal), rendering gradient descent useless. We
avoid this issue because a set of hyperplane parameters affects
T — 1 constraints as defined in (7a). Although most of these
constraints are not active, at least one of them must be if
a collision is avoided because of the hyperplane constraints.
Therefore, the gradient of the loss function with respect to the
hyperplane parameters will only be zero at optimal points or in
the case where the hyperplane constraint is never active at any
point in the game. In practice, the latter case was very rare and
never occurred in the Monte Carlo experiments presented in
Therefore, we can use gradient descent to converge
on a set of loss-optimal parameters.

We solve with a Julia implementation of [Algorithm T
that is publicly availableﬂ We express the MCP using Para-
metricMCPs.jl [15], a mathematical programming layer that
compiles a differentiable MCP parameterized by a runtime
vector. Within ParametricMCPs.jl, the MCP is solved via the
PATH solver [16].

V. EXPERIMENTAL RESULTS

In this section, we present experimental results to demon-
strate the performance of our method. First, we validate learn-
ing capabilities by presenting the performance of our method
when learning from noise-corrupted expert trajectories. Then,
we demonstrate the generalizability of the learned parameters
by presenting a six-robot collision-free trajectory using the
parameters learned from a two-robot expert trajectory. Finally,
we characterize the sensitivity of the learned parameters to
perturbations in the initial velocity of the robots.

A. Learning from noisy expert trajectories

We validate the performance of by presenting

the difference between ground truth hyperplane parameters
and parameters learned from a noisy expert trajectory. For the
expert trajectory in this experiment, we use an equilibrium
state trajectory for a two-dimensional, two-robot game with
initial conditions and ground truth parameters given in [Table T

lgithub.com/CLeARoboticsLab/InverseHyperplanes.jl


https://github.com/CLeARoboticsLab/InverseHyperplanes.jl

t=180s t=180s
S S +
— —
Es . Es
c ° c
.2 v p=l
D ot - + = o
0 . 0
o o
e o . ‘e o
>9 g >9
o s.
S 2% g
1
-100 -50 0 50 100 '_100 -50 0 50 100

X position [m] X position [m]

(a) Noisy trajectory (o = 5) (b) Learned hyperplane

Fig. 3: Using noisy expert trajectories, our method learns
hyperplane parameters and recovers the corresponding equi-
librium trajectory. Legend in

of [Appendix B! Two-dimensional dynamics are trivially im-
plemented by noting that the out-of-plane position dynamics
in (3) are decoupled from the planar position.

We generate 400 noise-corrupted trajectories by adding
isotropic additive white Gaussian noise to the expert state
trajectory at 20 levels of standard deviation o from 0.0 to 20.0
and 20 samples for each level. [Figure 3a shows a snapshot of a
typical noisy state trajectory, and [Figure 3b shows the learned
hyperplane and corresponding equilibrium trajectory.

We show the accuracy of the learned hyperplane parameters
by presenting a comparison between ground-truth and learned
parameters in [Fig 4] as a function of noise level. Learned
rotation rates are very close to the ground truth even when the
trajectory is corrupted by extreme noise levels. The learned
KOZ radius is not as accurate as noise increases, but this is
likely because the solution is not as sensitive to changes in
radius p as it is to changes in rotation rate w. That is, changes
in w require a larger change in the trajectory than changes in
p, and large changes to the controls may be infeasible due to
actuator limits (Equations (9d)| and [(9¢)).
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Fig. 4: Learned hyperplane parameters vs. noise level. A dotted

line is the ground truth value, dots are median inferred values,
and ribbons show the interquartile range.

We show that the learned parameters correspond to
an equilibrium trajectory that closely matches ground truth
by computing a measure of its difference from the noise-free
expert trajectory. Concretely, we report the reconstruction error

D:

D(GtTUth’ elearned) = % Z Z Hpéruth,t - pfearnedﬁHz
1€[N]te[T)

(16)
where piruth’t is robot 7’s position at time ¢ as given by the
noise-free expert data with ground truth parameters 6,1, and
Ploarned.s 1S TObOL i’s position at time ¢ as given by a Nash
equilibrium of a game parameterized by the learned parameters
Olearned- shows the median value of D for all trials
as well the associated interquartile range. As expected, the
error increases as noise increases. However, at reasonable
noise values (¢ < 5), reconstruction error is relatively low,
particularly when considering the scale of the problem (200m
between initial and goal positions).
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Fig. 5: Reconstruction error (16) vs. noise level. Dots are
median error values, and ribbons show the interquartile range.

B. Generalizability of learned parameters

Hyperplane parameters from expert trajectories generalize
to scenarios with more robots. For example, one can use
the parameters learned from a two-robot expert trajectory to
generate a collision-free trajectory for a six-robot game, as
shown in Our method is easily extended to games
with more robots by simply appending the KKT conditions
for each additional robot to and defining an appropriate
set of robot pairs €.

y position [m]
0 50 100

-50

-100

-100 -50 0 50 100

X position [m]

Fig. 6: Collision-free trajectory for a six-robot game. Hyper-
planes and KOZs are not shown for clarity. We adjust initial
and goal positions, add additional pairs to €2, and otherwise

reuse the parameters in [Appendix B

Learned parameters can also be used to generate collision-
free trajectories for scenarios with previously unseen initial
conditions. Anecdotally, trajectory generation from learned
parameters is robust to changes in initial position but sensitive
to changes in initial velocities. To quantify this sensitivity,



we perturb the initial velocity with noise at varying levels
and then attempt to construct a collision-free trajectory. In
Figure 7| we report trajectory generation convergence success
as a function of velocity noise level given a nominal velocity.
In this experiment, the expert trajectory has an initial velocity
of zero.

Results show that learned parameters readily generalize to
scenarios with more robots as long as the initial velocity is
close to the initial velocity of the expert trajectories. This
may not be an issue under the assumption that conditions
encountered in practice will be similar to those in the expert
trajectories. We also note that the parameters are more sensi-
tive to changes in initial velocity as we include more robots.
This is likely because the more robots we include, the more
crowded the space becomes, and it naturally becomes harder
to optimize their trajectory.

Finally, since the hyperplanes only constrain planar po-
sitions and the dynamics of the out-of-plane positions are
decoupled from the planar dynamics, collision-free trajectory
generation can be trivially extended to three dimensions. We

present an example trajectory in

N 100
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0 S T,

0.0 05 10
Velocity noise standard deviation [m/s]

Fig. 7

Fig. 8: Success of collision-free trajectory generation as a
function of velocity noise level. The initial velocity of the
expert trajectory is zero and we ran 20 trials at each noise
level.

VI. CONCLUSION

We propose a game-theoretic method for multi-robot colli-
sion avoidance in space robotic applications. Our method is
different from existing techniques as it extends collision avoid-
ance with rotating hyperplanes to a multi-robot setting, using
parameters learned from expert trajectories. Unlike previous
inverse game solvers, we explicitly solve for parameters in
the inequality constraints.

We conduct extensive numerical simulations to validate
learning capabilities from noise-corrupted expert trajectories
and demonstrate the generalizability of the learned parameters
to games with different initial conditions and/or more robots.
Future areas of work include applying this method to other
dynamical systems and using real expert trajectories like
tracked on-orbit maneuvers.
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APPENDIX A
ROBOT DYNAMICS

Here we present the complete robot dynamics as a
linear-time invariant system of equations representing the
discrete-time Hill-Clohessy-Wiltshire equations for relative
orbital motion as defined in Jewison and Miller [1]]. This
system describes the robot’s state as a function of applied
controls and state at the previous time step.

xi 1 = Ax; + Buj

4—3cos(nAt) 0 0
6(sin(nAt)—nAt) 1 0
A= 0 0 cos(nAt)
- 3nsin(nAt) 0 0
—6n(1—cos(nAt)) 0 0
0 0 —nsin(nAt)

L sin(1—-nAt) 2 (1—cos(nAt)) 0
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— 2 (1—cos(nAt)) 4 sin(nAt)—3At
0 0
0
0
T%Z(lfcos(nAt))
' 0
0

1 sin(nAt)
where At is the discretization interval and m is the satellite
mass. n &~ /G /a is the angular speed required for a body
to complete one orbit (mean motion) and is defined in terms
of the universal constant of gravitation G and the orbit semi-
major axis a. We assume a circular orbit around Earth, in this
case, a = (orbital altitude + Earth’s radius).

APPENDIX B
SIMULATION PARAMETERS

In we include relevant simulation parameters for the
two-dimensional, two-robot inverse game solved in
In the six-robot trajectory in [Figure 6, we adjust initial and
goal positions, add additional pairs to (2, and reuse parameters
otherwise.

’ H Parameter ‘ Value ‘ Units ‘
Players 2
Initial state [o10000—100000]T m
Goal positions [0-100]T,[1000]T m
Orbital altitude 400 km
Game Satellite mass 100 kg
Umax 1.0 N
gt 0.0001
Q {(1,2)}
At 5.0 s
Total time 220 S
Ground w(1:2) 0.015 rad/s
truth p(1,2) 30.0 m
Initial guess w(1:2) 0.008 rad/s
g;:szse Initial guess p(1:2) 10.0 m
Num. of grad. steps 30
Experi- o range 0:5:40 m
ments Trials 20

TABLE I: Simulation parameters for hyperplane learning using
noisy expert trajectories. The initial guess for the hyperplane
rotation rate has empirically been shown to work well in a
single-robot scenario [|17].
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