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Abstract

This dissertation consists of two parts, both of which are focused upon problems and
techniques from algebraic number theory and arithmetic geometry. In the first part, we
consider abelian varieties defined over finite fields, which are a key object in cryptography
in addition to being inherently intriguing in their own right. First, generalizing a theorem
of Lenstra for elliptic curves, we present an explicit description of the group of rational
points A(Fq) of a simple abelian variety A over a finite field Fq as a module over the
endomorphism ring EndFq(A), under some technical conditions. Next, we present an
algorithm for computing EndFq(A) in the case of ordinary abelian varieties of dimension 2,
again under certain conditions, building on the work of Bisson and Sutherland. We prove
the algorithm has subexponential running time by exploiting ideal class groups and class
field theory.

In the second part, we turn our attention to questions of decidability and definability
for algebraic extensions of Q, in the vein of Hilbert’s Tenth Problem and its generalizations.
First, we show that a key technique for proving undecidability results fails for “most”
subfields L ⊆ Q. More specifically, we view the set of subfields of Q as a topological
space, and prove there is a meager subset containing all fields L ⊆ Q for which the ring
of integers OL is existentially or universally definable in L. Finally, we present explicit
families of infinite algebraic extensions of Q whose first-order theory is undecidable. This
is achieved by leveraging the unit groups of totally imaginary quadratic extensions of
totally real fields, building on the work of Martínez-Ranero, Utreras and Videla.
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Chapter 1 |
Introduction

This dissertation considers problems from algebraic number theory and arithmetic geom-
etry. These problems are of theoretical interest and have applications to cryptography.
In the first part of the dissertation, we study abelian varieties defined over finite fields.
In the second part, we solve problems in the intersection of logic and number theory
related to Hilbert’s Tenth Problem and its generalizations.

1.1 Abelian varieties defined over finite fields
Elliptic curves have proven to be ubiquitous within number theory for the sake of both
theoretical and applied interests. For example, elliptic curves defined over finite fields
have played a crucial role within cryptography, including both the currently-used Elliptic
Curve Cryptography (ECC) and proposed post-quantum cyptosystems. The usefulness
and beauty of elliptic curves comes from the fact that elliptic curves combine an abelian
group and a smooth projective variety in one package, mixing together the structures
found in algebra and geometry. This is the motivating example we will address in a more
general context.

In the first part of this dissertation, we will consider abelian varieties over finite
fields, which are the higher-dimensional analogues of elliptic curves. Moving from elliptic
curves to the more general setting of abelian varieties of arbitrary dimension provides the
opportunity for both theoretical and practical advances. In the context of cryptography,
which enlists Jacobian varieties defined over finite fields, moving from elliptic curves to
higher dimensional varieties allows one to work over a dramatically smaller field without
lowering the level of security, as seen in genus 2-based cryptography [10] and possible
improvements to supersingular isogeny-based cryptography [21].
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1.1.1 The structure of the group of rational points

Given an abelian variety A defined over a field k, there are two important and interrelated
objects of interest: (1) the group of k-rational points A(k), and (2) the k-rational
endomorphism ring Endk(A). The group A(k) has the structure of a module over the
ring Endk(A), and is the underlying group used for ECC (Elliptic Curve Cryptography)
and its higher-dimensional generalizations. The work that follows will seek to understand
and compute these objects. First, generalizing a result of Lenstra for elliptic curves, we
describe the group of rational points under certain technical conditions.

Theorem 3.1.4. For g ≥ 1, let A be a simple abelian variety over Fq of dimension g
with Frobenius endomorphism π. Write K = Q(π) and R = EndFq(A), and let Z be the
center of R.

(a) If [K : Q] = 2g and R is a Gorenstein ring, then

A(Fqn) ∼= R/R(πn − 1).

(b) If (πn − 1)Z is the product of invertible prime ideals in Z, then there is an isomor-
phism of Z-modules

A(Fqn) ∼= (Z/Z(πn − 1))d,

where d = 2g/[K : Q]. Moreover, this Z-module has exactly one left R-module
structure, up to isomorphism. This R-module structure comes from the isomorphism
of rings R/R(πn − 1) ∼= Md(Z/Z(πn − 1)), and there is an isomorphism of R-
modules

A(Fqn)d ∼= R/R(πn − 1).

As a corollary, we show that every simple ordinary isogeny class of abelian varieties
over Fq contains an abelian variety A such that A(Fq) is a cyclic group; see Corollary 3.1.3.

1.1.2 Endomorphism ring computation

There has recently been great attention on computing endomorphism rings for abelian
varieties defined over finite fields. For example, when constructing ordinary abelian
varieties with a prescribed number of points for use in cryptography, the computation of
endomorphism rings is a serious bottleneck [1,30,58]. If A is a simple ordinary abelian
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variety over a finite field Fq with Weil q-integer π, then End(A) is isomorphic to an order
in the field Q(π) and computing the endomorphism ring means determining this order.

Theorem 4.1.1. There is a subexponential algorithm which, given an ordinary abelian
variety A of dimension 2 over a finite field Fq satisfying certain technical conditions,
computes the endomorphism ring EndA.

The technical conditions are clearly and explicitly described in Chapter 4. The key
idea for the algorithm, generalizing an algorithm of Bisson and Sutherland for elliptic
curves [8], is the action of the class group Cl(O) on the set of all abelian varieties with
endomorphism ring O via isogenies. Thus, computing isogenies probes the class group
Cl(O). Using class field theory, we show that knowing Cl(O) is enough to determine the
order O itself in the general case, thereby reducing the problem to simply computing
certain isogenies.

1.2 Decidability and definability in number theory
In the second part of this dissertation, we turn our attention to decidability. Hilbert’s
Tenth Problem, in its original form, asks for an algorithm which takes as input a multivari-
able polynomial equation f(x1, . . . , xn) = 0 with integer coefficients and outputs Yes or
No depending on whether or not the equation has an integer solution (a1, . . . , an) ∈ Zn.
Matiyasevich [66], building on earlier work by Davis, Putnam, and Robinson [23], proved
that no such algorithm exists, i.e., Hilbert’s Tenth Problem is undecidable. Since then,
analogues of this problem have been studied by asking the same question for polynomial
equations with coefficients and solutions in other recursive commutative rings R, under
the name Hilbert’s Tenth Problem over R. One of the most important unsolved questions
in this area is Hilbert’s Tenth Problem over the field of rational numbers Q, and more
generally over number fields.

1.2.1 A topological approach to undefinability

Definability is one of the key techniques used to prove undecidability results in general.
If Z were existentially definable in Q, then it would follow immediately that Hilbert’s
Tenth Problem over Q is undecidable. However, it is conjectured that Z is in fact not
existentially definable in Q, i.e., definability is an unusable technique in this context.
Unfortunately, proving unconditionally that Z is not existentially definable in Q currently

3



appears to be out of reach. In fact, it is generally very difficult to find examples of fields
L ⊆ Q where existential undefinability is currently provable.

However, we can instead consider the set of all subfields of Q simultaneously, and
prove that for “most” subfields L ⊆ Q, the ring of integers OL is existentially undefinable.
To be precise, we view the set Sub(Q) of subfields of Q to be a topological space which is
computably homeomorphic to Cantor space. With this topology, the notion of a meager
set provides a way to describe which sets are very small, and we prove the following
theorem.

Theorem 6.1.1. The set of algebraic extensions K of Q for which OK is existentially
or universally definable is a meager subset of Sub(Q).

1.2.2 Undecidability of some infinite extensions of Q

While Hilbert’s Tenth Problem over Q currently remains unknown, the decidability of the
entire first-order theory of Q, or more generally an algebraic extension of Q, is another
interesting question in its own right. Julia Robinson proved that Q has undecidable
first-order theory [80], and extended her result to every number field [81]. Rumely
generalized this result further and proved that every global field is undecidable [83].
However, the problem of decidability remains open for infinite algebraic extensions of Q
in general. In Chapter 7, we outline the current state of knowledge with a demonstration
of examples, including both decidable and undecidable infinite extensions of Q.

Before stating the following theorem, we recall some standard notation and terminology.
Given a number field F , let F (d) be the compositum of all extensions of F of degree
at most d, and let F (d)

ab be the maximal abelian subextension of F ⊆ F (d). Given an
algebraic number α ∈ Q whose minimal polynomial over Q is f(x), we say that α is
totally real if every root of f(x) in C is a real number. Similarly, α is totally imaginary if
every root is non-real. We say that a field L ⊆ Q is totally real if all of its elements are
totally real, and totally imaginary if at least one element is totally imaginary.

Following recent work of Martínez-Ranero, Utreras and Videla, we prove the first-order
undecidability for the following class of totally imaginary fields. The key idea involves
exploiting the fact that the unit group O×K is a finite-index subgroup of O×L , which allows
us to reduce the problem to the totally real subfield and apply a modification of a method
originally developed by Julia Robinson for totally real fields.
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Theorem 7.3.6. Let K be an infinite totally real extension of Q which is contained
in F

(d)
ab for some d ≥ 2 and some number field F . Assume K contains all roots of a

parametrized family of polynomials

{fa(x) = xn + pn−1(a)xn−1 + . . . p1(a)x+ p0(a) | a ∈ Z>N0}

where each pi(t) ∈ Z[t] is a polynomial, p0(t) = ±1 is constant and pj(t) is nonconstant
for some 1 ≤ j ≤ n− 1. If L is any totally imaginary quadratic extension of K, then the
first-order theory of L is undecidable.
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Part I

Abelian Varieties over Finite Fields
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Chapter 2 |
Background for Abelian Varieties

2.1 Motivation: Elliptic curves
Elliptic curves are one of the most important objects of modern number theory, and
the most natural starting point for this segment of the dissertation because all of the
results that follow are generalizations of theorems that were first discovered for elliptic
curves. Since the work that follows can be technical at points, we start with a basic
introduction to elliptic curves to establish a strong motivating example to build upon. The
subsequent sections will require additional background knowledge in algebraic geometry
(e.g., [62]), although the first section is aimed at more a general audience. For a complete
introduction to elliptic curves, we refer to Silverman’s textbook [93].

Definition 2.1.1. An elliptic curve E over a field k is a smooth curve, i.e. a smooth
projective variety of dimension 1, with a specified base point P .

When the characteristic of the field char(k) 6= 2, 3, it is possible to reduce to the case
of Weierstrass equations, taking the concrete form

E : y2 = x3 + ax+ b

where x3 + ax+ b is a polynomial with 3 distinct roots (in the algebraic closure k). The
latter condition is required simply to ensure that the curve is smooth. To be precise, the
elliptic curve E is the projectivization of the equation above, which ultimately means
there is another point, typically denoted ∞, on the elliptic curve in addition to all of the
points (x, y) satisfying the given (affine) equation y2 = x3 + ax + b. See [93, III.1] for
more details.

One of the main causes for interest in elliptic curves is their abundance of structure.
Indeed, the fact that elliptic curves are projective varieties leads to a full array of
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geometric methods and tools. However, the set of points on an elliptic curve is also
importantly an abelian group in a natural sense. In the Weierstrass equation described
above, the point ∞ is the group identity, and a full account of the group law is found
in [93, III.2]. We pause to note that elliptic curves (and abelian varieties) also have a rich
analytic theory, although this dissertation will focus on algebraic and geometric aspects
of the theory.

To complete the introduction of elliptic curves, we also need to understand the relevant
maps between elliptic curves, known as isogenies [93, III.4]. This requires the geometric
notion of a morphism, which can be found in [93, I.3].

Definition 2.1.2. Given two elliptic curves E1, E2 over a field k, an isogeny is a
nonconstant morphism

φ : E1 → E2

which maps the base point of E1 to the base point of E2. We say E1 and E2 are isogenous
if there exists an isogeny between them.

In particular, an isogeny is both a morphism and homomorphism [93, Theorem III.4.8],
combining geometric and algebraic structure. Moreover, isogenies are surjective maps
with finite kernels [93, Corollary III.4.9]. Of particular interest are the maps from an
elliptic curve to itself, which form the following ring.

Definition 2.1.3. Given an elliptic curve E over a field k, the set of all isogenies from
E to itself, together with the constant 0 map, form the endomorphism ring of E, denoted
by End(E). We write Endk(E) if it is necessary to emphasize that the maps are defined
over the field k.

These rings can be concisely classified, as follows. An analogous object and classifica-
tion will follow for abelian varieties over finite fields below in Theorem 2.3.2.

Theorem 2.1.4 (Corollary III.9.4, [93]). Given an elliptic curve E over a field k, the
endomorphism ring End(E) is either Z, an order in a quadratic imaginary field, or an
order in a quaternion algebra.

In fact, if k is a finite field, then only the latter two options are possible [93, Theorem
V.3.1], and if char(k) = 0 then only the former two are possible [93, Corollary III.9.4].

8



2.2 Some Definitions
Now we turn our attention to the higher-dimensional analogues of elliptic curves which
are the content of the first half of this dissertation. Like elliptic curves, we will find that
abelian varieties have an abundance of structure leading to a wonderful combination of
flavors. We refer to [70,71] for a complete introduction to abelian varieties and Jacobians.

Definition 2.2.1. An abelian variety A over a field k is a complete group variety.

Importantly, abelian varieties are smooth and projective [70, Theorem V.7.1], and
their group law is always abelian [70, Corollary V.2.4], as their name suggests. Although
it may appear that we leave curves behind when moving to varieties of higher dimension,
we find that one of the nicest sources of abelian varieties of dimension g are Jacobians of
curves of genus g; see [71] for details.

Another source of abelian varieties of higher dimension comes from forming products of
abelian varieties of smaller dimension. For example, one could consider an n-dimensional
abelian variety of the form E1×E2×· · ·×En where each Ei is an elliptic curve. However,
this dissertation turns in the opposite direction to rather consider simple abelian varieties,
defined as follows.

Definition 2.2.2. An abelian variety A is simple (or elementary) if A has no nontrivial
abelian subvarieties.

2.2.1 Maps between abelian varieties

Next, we must define the relevant maps between these objects. Note that, unlike the case
of elliptic curves, the relevant maps are not always guaranteed to be isogenies. However,
in the case of simple abelian varieties, every nonzero homomorphism is an isogeny by
definition.

Definition 2.2.3. Given two abelian varieties A1, A2 over a field k, a homomorphism of
abelian varieties is a morphism

φ : A1 → A2

which maps the identity element of A1 to the identity element of A2. Moreover, we say
that φ is an isogeny if the morphism is surjective and ker(φ) is a finite group scheme.
We say A1 and A2 are isogenous if there exists an isogeny between them.

9



Definition 2.2.4. Given an isogeny φ : A1 → A2, there is a corresponding map of
function fields φ∗ : K(A2) → K(A1). The degree of the isogeny φ is defined to be the
degree of the field extension [K(A1) : φ∗K(A2)]. Moreover, φ is said to be separable if its
kernel is a finite étale subgroup scheme.

For background material on étale group schemes, we refer to an introductory article
of Tate [101]. For our purposes, we will not need the full formal definition. Rather, we
only need to know that the kernel of a separable isogeny φ : A1 → A2 over a field k can
be recognized (via an equivalence of categories) as a subgroup of A1(k) whose cardinality
is deg(φ); see [101, §3.6].

Of primary importance are endomorphisms, i.e. maps from an abelian variety to
itself. Endomorphism rings will be one of the key objects in all results that follow.

Definition 2.2.5. Given an abelian variety A defined over a field k, the set of all
homomorphisms from A to itself form the endomorphism ring of A, denoted End(A).
We write Endk(A) to emphasize that all homomorphisms are defined over k if necessary.

One important tool for studying an abelian variety A concerns the dual abelian variety
A∨. To save space, we refer readers to [70, §V.9] for the definition and properties of
the dual variety. Since we will not need to work directly with polarizations in what
follows, readers can take polarizations to intuitively be some extra structure, like a kind
of “orientation”, imposed on the abelian variety. We follow [70, §V.13] exactly.

Definition 2.2.6. Given an abelian variety A, a polarization on A is an isogeny
λ : A → A∨ such that λk = ϕL for some ample invertible sheaf L on Ak. If λ is an
isomorphism, then we say φ is a principal polarization.

We say A is principally polarized if it admits a principal polarization. A pair (A, λ)
containing an abelian variety A and a fixed principal polarization λ is called a principally
polarized abelian variety. Elliptic curves, and more generally Jacobian varieties, have
a canonical principal polarization [71, Summary VII.6.11]. Thus theorems for elliptic
curves are sometimes only generalizable to the special cases of principally polarized
abelian varieties. This will come into play when we consider algorithmic aspects of
abelian varieties defined over finite fields and the computation of endomorphism rings in
Chapter 4.

10



2.2.2 Torsion and Tate modules

Recall that abelian varieties have an abelian group structure, i.e., a Z-module structure.
Thus, we can study the torsion elements. The following definitions and results are
well-known and are clearly presented in [111], for example.

Definition 2.2.7. Given an abelian variety A over a field k and n ∈ Z, the n-torsion
of A is

A[n] = {P ∈ A(k) : [n]P = 0}.

Following [111, §2], we recall how to stitch together the torsion subgroups to obtain
the Tate module.

Definition 2.2.8. Let A be an abelian variety over a field k and let ` 6= char(k) be a
prime. The (`-adic) Tate module of A is

T`A = lim
←
A[`n]

where the inverse system is given by the multiplication maps `m : A[`n]→ A[`n−m].

Since A[n] ∼= (Z/nZ)2 dimA whenever gcd(n, char(k)) = 1, we have T`A ∼= Z2 dimA
`

where Z` denotes the `-adic integers.

2.3 Abelian varieties over finite fields
In this section, we restrict to the special case of abelian varieties defined over finite fields.
We refer to [99,110,111] for introductions to the material that follows. Our first goals
are to understand the classification of abelian varieties over finite fields up to isogeny,
and to describe their endomorphism rings.

Recall that the Galois group Gal(Fq/Fq) is topologically generated by a notable
automorphism σq, the (q-)Frobenius automorphism, which is defined via x 7→ xq. Similarly,
given an abelian variety A/Fq, there is a Frobenius endomorphism π : A→ A which is
induced by the q-th power map and acts the same as σq on A(Fq). Further, we can view
π as a linear map acting on the vector space T`A⊗Z`

Q` for any prime ` - q, and define
fA to be the associated characteristic polynomial of degree 2 dimA.

Theorem 2.3.1 (Theorem 7, [111]). Let A and B be Abelian varieties over a finite field
Fq. The following are equivalent:

11



(a) A and B are isogenous

(b) fA = fB.

(c) #A(Fqn) = #B(Fqn) for all n ≥ 1.

Moreover, we can use the Frobenius endomorphism and the classification given above
to precisely describe the endomorphism rings of abelian varieties defined over finite fields.

Theorem 2.3.2 (Theorem 8, [111]). Let A be a simple abelian variety over Fq with
Frobenius endomorphism π.

(a) fA = md
A for some monic irreducible polynomial mA(t) ∈ Z[t].

(b) All roots of fA have absolute value q1/2.

(c) D = End(A)⊗Q is a division algebra whose center is the field Q(π).

(d) [D : Q] = d2[Q(π) : Q] and 2 dim(A) = d[Q(π) : Q].

It therefore follows that the isogeny class of a simple abelian variety A over Fq is
uniquely determined by the irreducible polynomial mA. In particular, it is uniquely
determined by a root of fA, up to Galois conjugacy. This leads to the following definition,
in light of the theorem above.

Definition 2.3.3. A Weil q-integer is an algebraic integer whose conjugates all have
absolute value q1/2.

With this terminology, we have the following correspondence.

Theorem 2.3.4 (Honda-Tate Theorem, [100]). There is a bijective correspondence
between

{isogeny classes of simple abelian varieties over Fq}

and
{conjugacy classes of Weil q-integers}.

Finally, we recall the definition of an ordinary abelian variety. Such varieties will be
a key example in Chapter 3 and the context of Chapter 4.

Definition 2.3.5. An abelian variety A over Fq with p = char(Fq) is called ordinary if
A contains the maximal number p2 dimA points of order dividing p.

12



Waterhouse showed the following for ordinary abelian varieties, leading us to drop
the field subscript on End(A) throughout Chapter 4.

Theorem 2.3.6 (Theorem 7.2, [110]). Let A be a simple ordinary abelian variety over
Fq. Then EndFq(A) is commutative and unchanged by base field extension.

13



Chapter 3 |
The Group of Rational Points

3.1 Main result and comparison to prior work
Given an abelian variety A over a finite field Fq, one may view the group of rational
points A(Fq) as a module over the ring EndFq(A) of endomorphisms defined over Fq.
Lenstra completely described this module structure for elliptic curves over finite fields
in the following theorem. In addition to being useful and interesting in its own right,
this theorem also determines a fortiori the underlying abelian group structure of A(Fq)
purely in terms of the endomorphism ring. The latter perspective has been leveraged for
the sake of computational number theory and cryptography; see, for example, the work
of Galbraith [37, Lemma 1], Ionica and Joux [45, §2.3], and Kohel [56, Chapter 4]. The
goal of this chapter is to generalize Lenstra’s theorem beyond elliptic curves to abelian
varieties of arbitrary dimension.

Theorem 3.1.1 ( [61], Theorem 1). Let E be an elliptic curve over Fq. Write R =
EndFq(E) and let π ∈ R be the Frobenius endomorphism of E.

(a) Suppose that π /∈ Z. Then R has rank 2 over Z and there is an isomorphism of
R-modules

E(Fqn) ∼= R/(πn − 1)R.

(b) Suppose that π ∈ Z. Then R has rank 4 over Z, we have

E(Fqn) ∼= Z/Z(πn − 1)⊕ Z/Z(πn − 1)

as abelian groups. Further, this group has up to isomorphism exactly one left
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R-module structure, and one has an isomorphism of R-modules

E(Fqn)⊕ E(Fqn) ∼= R/R(πn − 1).

Notice that E is supersingular in the second case, but not conversely. To prove the
theorem, Lenstra notes that E(Fqn) = E[πn − 1], and πn − 1 is a separable isogeny. For
part (b), the abelian group structure is simply the well-known structure of the n-torsion
of an elliptic curve for n ∈ Z. The additional statements in part (b) follow from Morita
equivalence and an isomorphism of rings, for integers n coprime to q, between R/Rn and
the ring M2(Z/nZ) of 2× 2 matrices with coefficients in Z/nZ.

For part (a) of the theorem, Lenstra uses the following proposition; see [61, Proposi-
tion 2.1].

Proposition 3.1.2. Let E be an elliptic curve over Fq, and let R = EndFq E. If
[R : Z] = 2, then for every separable element s ∈ R there is an isomorphism E[s] ∼= R/Rs

of R-modules.

Lenstra showed in his original paper that the preceding proposition does not im-
mediately generalize to all “nice” abelian varieties of higher dimension, i.e. principally
polarized ordinary abelian varieties; see [61, Proposition 6.4]. Although this means that
a certain natural generalization is not correct, the examples that Lenstra produces must
have very particular endomorphism rings. By inspecting Lenstra’s theorem through
two perspectives and imposing restrictions on the endomorphism ring, we can recover a
natural generalization to certain abelian varieties of higher dimension.

3.1.1 First perspective: Gorenstein rings

First, consider part (a) of Lenstra’s theorem, or more generally, Proposition 3.1.2. In
this case, the endomorphism ring of the elliptic curve is commutative, specifically an
order in an imaginary quadratic number field. In general, a simple abelian variety A of
dimension g over Fq with Frobenius endomorphism π has commutative endomorphism
ring exactly when [Q(π) : Q] = 2g, and in this case, EndFq(A) is an order in the field
Q(π) [111, Theorem 8]. In fact, if π is an ordinary Weil q-integer, then the rings which arise
as the endomorphism rings of abelian varieties in the corresponding isogeny class over Fq
are precisely the orders of Q(π) which contain the minimal order Z[π, π] [110, Theorem
7.4]. Since every order in a quadratic number field is Gorenstein, restricting to the
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Gorenstein case for abelian varieties of arbitrary dimension provides us with our first
natural generalization.

Proposition 3.2.1. Let A be a simple abelian variety over Fq of dimension g with
Frobenius endomorphism π. If [Q(π) : Q] = 2g and R = EndFq(A) is a Gorenstein ring,
then there is an isomorphism of R-modules

A[s] ∼= R/Rs

for every separable s ∈ R.

This proposition will be proved in Section 3.2 by using properties of finite local
Gorenstein rings. To see examples where the proposition applies, note that EndFq(A)
is guaranteed to be Gorenstein if A has maximal real multiplication, i.e. if EndFq(A)
contains the ring of integers of the maximal totally real subfield of Q(π); see [13, Lemma
4.4]. Many recent results in the algorithmic study of abelian varieties over finite fields
have productively focused on the case of maximal real multiplication, including results
on point counting [2,39], isogeny graphs [13,46,64], and endomorphism ring computation,
as in Chapter 4. At the other extreme, Centeleghe and Stix have shown that the minimal
order Z[π, π] is also always Gorenstein, where π is a Weil integer [18, Theorem 11]. In
fact, we can use this fact with the result above to prove that every simple ordinary
isogeny class over Fq contains an abelian variety whose group of rational points is cyclic,
generalizing a result of Galbraith [37, Lemma 1].

Corollary 3.1.3. If A is a simple ordinary abelian variety over Fq with Frobenius π and
endomorphism ring EndFq = Z[π, π], then A(Fq) is a cyclic group.

Proof. It is convenient to rewrite Z[π, π] ∼= Z[F, V ]/(FV − q, fA(F )) where fA(F ) is the
characteristic polynomial of π. Here, F and V are merely polynomial variables allowing
us to recognize Z[π, π] as a quotient of a polynomial ring. We identify F with π and V
with π, as in [18]. With this notation, Proposition 3.2.1 implies that

A(Fq) ∼= Z[π, π]/(π − 1) ∼= Z[F, V ]/(FV − q, fA(F ), F − 1) ∼= Z/(fA(1)),

which shows A(Fq) is a cyclic group.
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3.1.2 Second perspective: Modules over the center

Now consider part (b) of Lenstra’s theorem, where E is a supersingular elliptic curve over
Fq with all endomorphisms defined. Before describing the group of rational points E(Fqn)
as a module over the endomorphism ring EndFq(E), Lenstra first identifies E(Fqn) as an
abelian group, i.e. a module over Z. Importantly, Z is the center of the endomorphism
ring in this case.

Following this point of view, given a simple abelian variety A over Fq with Frobenius
endomorphism π, we will first consider the structure of A(Fqn) as a module of the center
of EndFq(A). Recall that the center of the endomorphism algebra EndFq(A)⊗Q is the
field Q(π) [111, Theorem 8]. More generally, we can study A[s] as a module over the
center of the endomorphism ring EndFq(A) for any separable endomorphism s in the
center, which leads us to the following result.

Proposition 3.3.1. Let A be a simple abelian variety over Fq of dimension g, and let
Z be the center of R = EndFq(A). If s is a separable element of Z for which sZ is the
product of invertible prime ideals in Z, then there is an isomorphism of Z-modules

A[s] ∼= (Z/Zs)d

where d = 2g/[Q(π) : Q]. Moreover, this Z-module has exactly one R-module structure,
up to isomorphism. The unique R-module structure comes from the isomorphism of rings
R/Rs ∼= Md(Z/Zs), and there is an isomorphism

A[s]d ∼= R/Rs

as R-modules.

This proposition will be proved in Section 3.3 through the study of kernel ideals. The
latter parts of this proposition will follow from Morita equivalence, similarly to Theorem
3.1.1.(b). Notice that we must require that sZ is the product of invertible prime ideals,
which is automatically true when Z is a maximal order. For example, let A be an abelian
surface defined over Fp in the isogeny class corresponding to the Weil polynomial (t2−p)2

for a prime p 6≡ 1 mod 4. This Weil polynomial corresponds to the Weil restriction of a
supersingular elliptic curve over Fp2 , and A is simple over Fp. The endomorphism ring
EndFp(A) is a noncommutative ring whose center is Z[√p], which is a maximal order by
construction because p 6≡ 1 mod 4. Hence the proposition automatically applies in this
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case for any separable s ∈ Z[√p].

3.1.3 Main Result

Combining the perspectives outlined above, we have the following main result.

Theorem 3.1.4. For g ≥ 1, let A be a simple abelian variety over Fq of dimension g

with Frobenius endomorphism π. Write K = Q(π) and R = EndFq(A), and let Z be the
center of R.

(a) If [K : Q] = 2g and R is a Gorenstein ring, then

A(Fqn) ∼= R/R(πn − 1).

(b) If (πn − 1)Z is the product of invertible prime ideals in Z, then there is an isomor-
phism of Z-modules

A(Fqn) ∼= (Z/Z(πn − 1))d,

where d = 2g/[K : Q]. Moreover, this Z-module has exactly one left R-module
structure, up to isomorphism. This R-module structure comes from the isomorphism
of rings R/R(πn − 1) ∼= Md(Z/Z(πn − 1)), and there is an isomorphism of R-
modules

A(Fqn)d ∼= R/R(πn − 1).

Notice that parts (a) and (b) of the theorem provide the same answer in the case
when all hypotheses are simultaneously satisfied, e.g. when A is a simple ordinary abelian
variety with maximal endomorphism ring. The theorem follows immediately from the
propositions above, given that A(Fqn) = A[πn − 1] and πn − 1 is a separable isogeny, as
in the elliptic curve case. Propositions 3.2.1 and 3.3.1 will be proved in Sections 3.2 and
3.3, respectively, which completes the proof of our main theorem. Finally, in Section 3.4,
we stitch together all of the isomorphisms described above to understand the structure
of A(Fq) as a module of the endomorphism ring EndFq(A).

3.2 Gorenstein rings
The goal of this section is to prove the following generalization of Proposition 3.1.2, as
outlined in the introduction.
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Proposition 3.2.1. Let A be a simple abelian variety over Fq of dimension g with
Frobenius endomorphism π. If [Q(π) : Q] = 2g and R = EndFq(A) is a Gorenstein ring,
then there is an isomorphism of R-modules

A[s] ∼= R/Rs

for every separable s ∈ R.

In order to prove this proposition, we will follow a strategy that is largely similar to
the proof of Theorem 3.1.1.(a) in Lenstra’s original paper. Our approach differs from
Lenstra by working directly with finite local Gorenstein rings, rather than using duality.
Background for Gorenstein rings can be found in Matsumura’s book [67, Chapter 18].

Lemma 3.2.2. Let R be a Gorenstein domain and s a nonzero element of R. If the
quotient S = R/Rs is finite, then every faithful S-module M contains a submodule that
is free of rank 1 over S.

Proof. Notice that S is Gorenstein because R is Gorenstein; see [67, Exercise 18.1].
Additionally, the fact that S is finite implies that it is an Artinian ring. In particular, it
is canonically isomorphic to a finite product of its localizations S = S1 × · · · × Sr. Thus
every S-module M has the form M ∼= M1 × · · · ×Mr where Mi is an Si-module for each
1 ≤ i ≤ r. This lemma therefore reduces to the following lemma.

Lemma 3.2.3. Let (T,m) be a finite local Artinian ring that is Gorenstein.

(a) Every nonzero ideal J ⊆ T contained in m contains a nonzero element that is killed
by all elements of m.

(b) Every faithful T -module N contains a submodule that is free of rank 1 over T .

Proof. To prove part (a), list the elements of the maximal ideal m = {a1, . . . , ad}. Define
J0 = J , and for each 1 ≤ i ≤ d, let Ji be the set of elements of J which are annihilated
by {a1, . . . , ai}. In other words, for each 1 ≤ i ≤ d, the ideal Ji is the kernel of the map
fi : Ji−1 → Ji−1 defined by x 7→ aix. All elements of m are nilpotent, and therefore the
kernel Ji of the map fi is nontrivial precisely when Ji−1 6= 0. Since J0 6= 0 by hypothesis,
it is clear by induction that Ji 6= 0 for all 1 ≤ i ≤ d. In particular, there are nonzero
elements in Jd ⊆ J which are annihilated by every element of m.

For part (b), let k = T/m be the residue field of T . Because T is a zero-dimensional
Gorenstein ring, the k-vector space Ext0

T (k, T ) = HomT (k, T ) is one-dimensional; see [67,
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Theorem 18.1]. Thus the annihilator of m in T is a principal ideal I = tT where t = φ(1)
for some nonzero φ : k → T . Because N is a faithful module, there is some n ∈ N such
that tn 6= 0. Let Ann(n) be the annihilator of n, which is an ideal contained in m.

If Ann(n) = 0, then the submodule Tn ⊆ N is free of rank 1 and we are done. If
Ann(n) 6= 0, then part (a) implies that Ann(n) contains a nonzero element x which is
killed by all elements of m. Since I is the annihilator of m, this means that x ∈ Ann(n)
is also a nonzero element of I. However, I is a principal ideal that can be viewed as
a module over the field k = T/m, hence every nonzero element of I is a generator. In
particular, xn 6= 0 because t ∈ I = xT and tn 6= 0. This contradiction completes the
proof.

We are now ready to prove the key proposition.

Proof of Proposition 3.2.1. Put S = R/Rs and M = A[s] for ease of notation. Notice
that M is a faithful S-module: Any r ∈ R such that rM = rA[s] = 0 factors as r = ts

for some t ∈ R, i.e. r ∈ Rs. Indeed, this follows immediately from the universal property
of quotients; see [51, Remark 7.(c)].

Therefore, Lemma 3.2.2 implies that M contains a free S-submodule of rank 1. Now,
we can count the cardinalities of these sets:

#M = deg s = NK/Qs = #R/Rs = #S.

The first equality comes from the separability of s, and the second equality above is a
well-known theorem [70, Proposition 12.12]. Therefore, M ∼= S as an S-module because
their cardinalities are the same. This proves Proposition 3.2.1.

3.3 Using kernel ideals
In this section, A is a simple abelian variety over Fq with Frobenius endomorphism π.
Then the endomorphism algebra D = EndFq(A) ⊗ Q is a division algebra with center
K = Q(π) [111, Theorem 8]. Write R = EndFq(A), and let Z be the center of the
endomorphism ring. Our goal in this section is to prove Proposition 3.3.1, which we
repeat below for convenience.

Proposition 3.3.1. If s is a separable element of Z for which sZ is the product of
invertible prime ideals in Z, then there is an isomorphism of Z-modules

A[s] ∼= (Z/Zs)d

20



where d = 2g/[Q(π) : Q]. Moreover, this Z-module has exactly one R-module structure,
up to isomorphism. This R-module structure comes from the isomorphism of rings
R/Rs ∼= Md(Z/Zs), and there is an isomorphism

A[s]d ∼= R/Rs

as R-modules.

To prove this proposition, we will inspect the isogenies associated to (left) ideals,
inspired by Waterhouse [110]; see also [51, §2] for additional background. In the con-
struction of Waterhouse, a nonzero ideal I ⊆ R is associated to an isogeny whose kernel
is A[I] = ∩α∈IA[α], where A[α] is the kernel of the endomorphism α. In other words, if
I is generated by the elements α1, . . . , αm, then the abelian variety A/A[I] is isomorphic
to the image of the map (α1, . . . , αm) : A→ Am.

Similarly, we can also associate a finite subgroup scheme H of A to a left ideal
I(H) ⊆ R, given by

I(H) = {α ∈ R : H ⊆ A[α]}.

Given a nonzero ideal I ⊆ R, we always have I ⊆ I(A[I]). If equality holds, then I is
called a kernel ideal. Every nonzero ideal I is contained in a kernel ideal J such that
A[I] = A[J ].

For our purposes, we will be concerned with isogenies that are associated to ideals
contained in the center I0 ⊆ Z. For convenience, we will write A[I0] in place of A[I0R].
The goal of this section is to describe A[s] in terms of A[pej

j ] where sZ = pe1
1 . . . per

r is
the factorization of s into invertible prime ideals in Z, which will allow us to prove
Proposition 3.3.1.

3.3.1 Basics of invertible ideals

First, we recall some basic key properties about invertible ideals in algebraic number
theory. Within this section, let L denote a number field and let O ⊆ L be an order. The
conductor ideal of O is defined to be fO = {a ∈ L : aOL ⊆ O}. The following lemmas
show the connection between the conductor ideal and the invertibility of ideals.

Lemma 3.3.2. If p ⊆ O is a nonzero prime ideal, then the following are equivalent:

1. p is invertible, i.e. pI = aO for some ideal I ⊆ O and some a ∈ O;

2. p is regular, i.e. the localization Op is integrally closed;
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3. p is coprime to the conductor ideal fO, i.e. p + fO = O.

Moreover, when these equivalent conditions hold, the localization Op is a discrete valuation
ring.

Proof. The prime ideal p is invertible if and only if it is regular by [72, Exercise I.12.5],
which is true if and only if p 6⊇ fO [72, Proposition 12.10]. To obtain the last equivalent
condition, observe thatO is a one-dimensional Noetherian integral domain [72, Proposition
I.12.2], so any nonzero prime ideal of O is maximal. In particular, p 6⊇ fO is equivalent
to p + fO = O.

Finally, if p is regular, then the localization Op is equal to the localization of the
ring of integers OL at the prime ideal p̂ = pOL [72, Proposition 12.10], and the latter
localization OL,p̂ is known to be a discrete valuation ring [72, Proposition I.11.5].

While the preceding lemma focuses on prime ideals, the following result shows the
connection between invertibility and the conductor ideal in general. In particular, we see
that Proposition 3.3.1 can be rephrased to require that sZ is coprime to the conductor
ideal fZ of Z instead of requiring that sZ is the product of invertible ideals.

Lemma 3.3.3 (Proposition 3.2, [63]). If a ⊆ O is any ideal coprime to the conductor
fO, then a is invertible and is uniquely factored into (invertible) prime ideals.

Recall that the Picard group Cl(O) is defined to be the quotient of the set of invertible
fractional ideals of O by the set of principal fractional ideals. We refer readers to [72, §I.12]
and [63] for additional background.

Lemma 3.3.4. Every class of ideals in Cl(O) contains infinitely many prime ideals.

Proof. The extension and contraction of ideals provides a natural bijection between
the set of invertible prime ideals of O and the set of prime ideals of OL which are
coprime to the conductor ideal fO [63, Lemma 3.3]. Using this bijection, there is a
natural isomorphism of groups that allows us to interpret the Picard group Cl(O) in
terms of fractional ideals of OL which are coprime to the ideal fO [63, Theorem 3.11].
This reduces the claim to a question concerning ideals in OL, and a generalization of
the Dirichlet density theorem immediately shows that there are infinitely many suitable
prime ideals [72, Theorem VII.13.2].
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3.3.2 Isogenies associated to invertible ideals

Now we focus our attention on the invertible ideals of the center Z of the endomorphism
ring R, and investigate the corresponding isogenies.

Lemma 3.3.5. If I0 ⊆ Z is an invertible ideal, then I0R is an invertible two-sided ideal
of R. In particular, I0R is a kernel ideal.

Proof. Clearly I0R is naturally a right ideal, and RI0 is naturally a left ideal, and these
two sets are equal as I0 ⊆ Z is in the center. Thus, I0R is a two-sided ideal.

Because I0 is invertible, there is a fractional ideal J0 of Z such that I0J0 = Z. Since
Z is the center of R, it also follows that

(I0R)(J0R) = (J0R)(I0R) = R.

Moreover, if J is any fractional two-sided ideal of R such that J · (I0R) = (I0R) · J = R,
then J0R = (J0R)(I0R)J = J . This proves that J0R is the unique two-sided fractional
ideal of R with this property, which we denote (I0R)−1. It follows immediately from
uniqueness that ((I0R)−1)−1 = I0R.

Now for any ideal I of R, define (R : I) = {x ∈ D : xI ⊆ R}. Then we have

(R : I0R) = {x ∈ D : xI0 ⊆ R} = {x ∈ D : I0x ⊆ R}

because xI0R ⊆ R if and only if xI0 ⊆ R, and xI0 = I0x for all x ∈ D because I0 is
contained in the center Z. In particular, (R : I0R) is a two-sided fractional ideal and it
is easy to verify that (R : I0R) = (I0R)−1. Indeed, the containments

R ⊇ (R : I0R) · I0R ⊇ (I0R)−1 · (I0R) = R

show that (R : I0R) · I0R = R, and similarly I0R · (R : I0R) = R. Therefore, we have

(R : (R : I0R)) = ((I0R)−1)−1 = I0R.

By [51, Remark 7.(d)], we know that

I(A[I0R]) ⊆
⋂

Rf⊇I0

Rf

where the intersection is taken over all elements f ∈ D.
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A routine verification shows that

(R : (R : I0R)) = {x ∈ D : x · (R : I0R) ⊆ R}

= {x ∈ D : ∀y ∈ D, if I0y ⊆ R, then xy ∈ R}

= {x ∈ D : ∀y ∈ D \ {0}, if I0 ⊆ Ry−1, then x ∈ Ry−1}

=
⋂

Ry−1⊇I0R

{x ∈ D : x ∈ Ry−1}

=
⋂

Ry−1⊇I0R

Ry−1

=
⋂

Rf⊇I0R

Rf

where the final equality comes from simply reindexing the intersection with f = y−1.
Combining all of the containments above, we see that

I0R ⊆ I(A[I0R]) ⊆
⋂

Rf⊇I
Rf = (R : (R : I0R)) = I0R

which shows that I0R is a kernel ideal by definition.

The lemma above is useful because it shows that the prime ideals appearing in
Proposition 3.3.1 are actually kernel ideals, which gives us the following important
information. We will write |H| for the rank of a finite subgroup scheme H of A, or
equivalently, the degree of the isogeny πH : A→ A/H.

Proposition 3.3.6. If I0 ⊆ Z is an invertible ideal, then

EndFq(A/A[I0]) = EndFq(A) = R.

Moreover,
|A[I0]| = NK/Q(I0)2g/[K:Q].

Proof. For convenience, write B = A/A[I0]. Because I0R is a kernel ideal by Lemma
3.3.5, the endomorphism ring EndFq (B) is equal to the right order of I0R [110, Proposition
3.9], which we denote by

Or(I0R) = {x ∈ D : (I0R) · x ⊆ I0R}
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Since I0R is a two-sided ideal, clearly R ⊆ Or(I0R). Conversely, let x ∈ Or(I0R). Then

Rx = (I0R)−1(I0R)x ⊆ (I0R)−1I0R = R

because I0R is an invertible ideal. Therefore, x ∈ R and EndFq(B) = Or(I0R) = R.
To prove the second claim, first assume that I0 = αZ is a principal ideal. Then

A[I0] = A[α] and |A[I0]| = deg(α), so the claim is known [70, Proposition 12.12].
Now suppose I0 is not principal. Because I0 is an invertible ideal of Z, we can pick

an ideal J0 ⊆ Z such that I0J0 = λZ and NK/Q(J0) is coprime to |A[I0]|. Indeed, there
are only finitely many prime factors of |A[I0]|, while there are infinitely many prime
ideals in the equivalence class [I0]−1 ∈ Cl(Z) by Lemma 3.3.4. Multiplication of ideals
corresponds to composition of isogenies [110, Proposition 3.12], and therefore

|A[I0]| · |B[J0]| = |A[I0J0]|

= |A[λ]|

= NK/Q(λ)2g/[K:Q]

= NK/Q(I0)2g/[K:Q]NK/Q(J0)2g/[K:Q]

Now the fact that the rank of A[I0] is coprime to NK/Q(J0) means that |A[I0]| divides
NK/Q(I0)2g/[K:Q]. But the same must be true for J0, so |B[J0]| divides NK/Q(J0)2g/[K:Q]

as well. Therefore, equality must hold, as claimed.

Because we are ultimately only concerned with separable isogenies, we will restrict
our attention to this case now. Recall that the kernel of a separable isogeny φ : A→ A′

can be identified with a finite subgroup of A(Fq) of cardinality deg φ.

Lemma 3.3.7. If r ≥ 1, and p ⊆ Z is an invertible prime ideal which corresponds to a
separable isogeny, then

A[pr] ∼= (Z/pr)2g/[K:Q]

is an isomorphism of Z-modules.

Proof. First, A[p] is a Z/p-module. But Z/p is a field, so A[p] is a vector space, and
therefore A[p] ∼= (Z/p)m for somem. We havem = 2g/[K : Q] by counting the cardinality
of each side with Proposition 3.3.6.

Now we proceed by induction. Given r ≥ 2, we know that A[pr] is a finitely generated
module over Z/pr ∼= Zp/p

rZp. Because Zp is a discrete valuation ring by Lemma 3.3.2,
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we can apply the structure theorem for finitely generated modules [27, Theorem 12.1.6] to
deduce that A[pr] is the direct sum of modules of the form Zp/p

iZp
∼= Z/pi for 1 ≤ i ≤ r.

Further, A[pr] contains A[pr−1], which is of the form (Z/pr−1)2g/[K:Q] by assumption.
Thus, writing A[pr] ∼= Z/pr1 × · · · × Z/prs implies that s = 2g/[K : Q]. By counting the
cardinality, we must have rj = r for all 1 ≤ j ≤ s.

3.3.3 Proof of main result

Now we are ready to prove the main result of this section.

Proof of Proposition 3.3.1. We factor (s) = pe1
1 . . . per

r . Notice that for any nonzero
I, J ⊆ R, we have A[I] ∩ A[J ] = A[I + J ] by definition because I + J is generated by
I ∪ J . Thus, coprime ideals correspond to subgroups with trivial intersection, and we
conclude that we have an isomorphism of Z-modules:

A[s] ∼= A[pe1
1 ]× · · · × A[per

r ].

For each 1 ≤ i ≤ r, we see that A[pei
i ] ∼= (Z/pei

i )2g/[K:Q] by the proposition above. By the
Chinese Remainder Theorem, we conclude that

A[s] ∼= (Z/Zs)2g/[K:Q]

as desired.
Now write d = 2g/[K : Q] for convenience. To prove the second claim, we notice that

the endomorphism ring of the Z-module A[s] ∼= (Z/Zs)d is the ring of d×d matrices over
Z/Zs, which we write as EndZ(A[s]) = Md(Z/Zs). As in the proof of Proposition 3.2.1,
we see that A[s] is a faithful R/Rs-module, so the map R/Rs→ EndZ(A[s]) induced by
the natural R-module structure on A[s] is injective. Moreover, s defines a linear map on
the lattice R ⊆ D, so we have

#(R/Rs) = ND/Q(s) = NK/Q(ND/K(s)) = NK/Q(s)[D:K],

where ND/Q(s) and ND/K(s) denote the determinants of s : D → D as a linear map over
Q and K, respectively. On the other hand, it is clear that

#Md(Z/Zs) = NK/Q(s)d2 = NK/Q(s)[D:K]

because d2 = [D : K]; see [111, Theorem 8]. Therefore, R/Rs and Md(Z/Zs) have the
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same cardinality, so the injective ring map R→ Md(Z/Zs) is an isomorphism.
Therefore, to prove that A[s] has exactly one R-module structure, it suffices to show

that (Z/Zs)d has exactly one Md(Z/Zs)-module structure. Morita equivalence states
that every Md(Z/Zs)-module M ′ is isomorphic to Md for some Z/Zs-module M , where
Md is given the natural left Md(Z/Zs)-module structure defined by applying matrices
to column vectors; see [47, Proposition 1.4]. Thus we simply need to know that if a
Z-module M satisfies Md ∼= (Z/Zs)d, then M ∼= Z/Zs. But, as above, s is the product
of invertible primes, so M must be of the desired form.

Finally, we notice that Md(Z/Zs) is isomorphic to ((Z/Zs)d)d as a module over itself,
which proves the final claim.

3.4 Considering the algebraic closure
Now that we have considered the module structure of the group of rational points of a
simple abelian variety over a finite field Fq, we turn our attention towards the algebraic
closure Fq. Because Fq is the union of all its finite subfields, we can stitch together the
isomorphisms from Propositions 3.2.1 and 3.3.1 to recover the following theorem.

As before, given a simple abelian variety A of dimension g over Fq, we write R =
EndFq(A) and define Z to be the center of R. Let [Z : Z] denote the rank of Z as a
Z-module. Write S ⊆ Z for the set of separable isogenies in Z, and RS (resp. ZS) for the
left R-submodule (resp. Z-submodule) of the endomorphism algebra R⊗Q generated by
the set {s−1 : s ∈ S}. Equivalently, these can be recognized as localizations by the set S.

Theorem 3.4.1. For g ≥ 1, let A be a simple abelian variety over Fq of dimension g.
Let R = EndFq

(A), and let Z be the center of R.

(a) If [Q(π) : Q] = 2g and R is a Gorenstein ring, then

A(Fq) ∼= RS/R.

is an isomorphism of R-modules.

(b) If Z is a maximal order, then

A(Fq) ∼= (ZS/Z)d.

is an isomorphism of Z-modules where d = 2g/[Z : Z]. Moreover, this Z-module has
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exactly one left R-module structure, up to isomorphism, and there is an isomorphism

A(Fq)d ∼= RS/R

as R-modules.

Proof. Notice that, in any case, we have

A(Fq) =
⋃
s∈S

A[s] =
⋃
n≥1

A[πn − 1] =
⋃
n≥1

A(Fqn)

where π denotes the Frobenius endomorphism of A over Fq. Indeed, it is clear that each
term contains the next, and the final term equals the first. This allows us to deduce the
theorem after describing only A[s] for s ∈ S.

For part (a), the hypotheses allow us to apply Proposition 3.2.1 to obtain isomorphisms
A[s] ∼= R/Rs ∼= s−1R/R for every separable s ∈ R. In other words, for each s ∈ S,
the set Ws of isomorphisms between A[s] and s−1R/R is nonempty. Moreover, if s
and t are two separable endomorphisms such that s divides t, then the isomorphism
A[t] ∼−→ t−1R/R maps the submodule A[s] isomorphically to s−1R/R. Thus the set
{Ws}s∈S form a projective system of nonempty finite sets, and the projective limit of this
system is nonempty [12, Théorème 1, §7.4]. In particular, there exists a simultaneous
choice of isomorphisms A[s] → s−1R/R for all s ∈ S that commutes with the natural
inclusions of sets, and the result follows by taking the union over all s ∈ S.

Part (b) follows similarly. Indeed, for each s ∈ S, Proposition 3.3.1 provides an
isomorphism A[s] ∼= (Z/Zs)d ∼= (s−1Z/Z)d. By the same projective limit argument given
for part (a), we obtain the desired isomorphism A(Fq) ∼= (ZS/Z)d. Similarly, we obtain
the isomorphism A(Fq)d ∼= RS/R.

Finally, any two R-module structures on (ZS/Z)d give rise to two R-module structures
on (s−1Z/Z)d for each s ∈ S. Since this structure is known to be unique by Proposition
3.3.1, we obtain compatible isomorphisms for all s ∈ S, and yet again obtain the desired
isomorphism through the projective limit construction.
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Chapter 4 |
Computing Endomorphism Rings

4.1 Main result and comparison to prior work

4.1.1 Background

Computing the endomorphism ring of an abelian variety is a fundamental problem of
computational number theory with applications in cryptography. Consider the founda-
tional case when E is an ordinary elliptic curve over Fq. In this case, EndE is isomorphic
to an order in the quadratic imaginary field K = Q(π) where π is the Frobenius of E.
Further, the orders in K which contain π are precisely the orders which arise as the
endomorphism ring of an elliptic curve E ′ over Fq which is isogenous to E [110, Theorem
4.2]. Because K is a quadratic imaginary field, the orders of K are uniquely identified
by their index in OK . Thus, computing EndE is equivalent to computing the index
[OK : EndE], which is a divisor of [OK : Z[π]].

The first algorithm for computing EndE for an ordinary elliptic curve E was given by
Kohel in his thesis [56]. Kohel’s algorithm is deterministic and has exponential expected
runtime O(qε+1/3), assuming GRH. The key fact needed for this algorithm was Kohel’s
discovery that certain `-isogeny graphs (i.e., graphs whose vertices can be identified with
isomorphism classes of elliptic curves and whose edges can be identified with isogenies of
prime degree `) have a special “volcano” structure. By navigating the volcano graphs,
one may deduce the prime factors of [OK : EndE], and thus determine EndE as desired,
although this method is slow when working with large prime factors.

To make a faster algorithm for computing EndE, Bisson and Sutherland exploited
the following fact, which was proven by Waterhouse [110, Theorem 4.5]. Given an
order O ⊆ K, the class group Cl(O) acts faithfully on the set of isomorphism classes
of elliptic curves isogenous to E with endomorphism ring isomorphic to O, where an
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ideal of norm ` acts via an isogeny of degree `. Thus, one may deduce information
about the class group of EndE by computing various isogenies. In particular, one may
compare Cl(EndE) to Cl(O) for known “testing” orders O ⊆ K by simply computing
class group relations. Bisson and Sutherland prove that determining which relations hold
in Cl(EndE) is sufficient for determining the large prime factors of [OK : EndE], which
leads to a probabilistic algorithm to determine [OK : EndE] in subexponential time [8].

Bisson extended the algorithm above to absolutely simple, principally polarized,
ordinary abelian varieties of dimension 2 in [6]. The endomorphism ring of such an
abelian variety is an order in a quartic CM field. Because the isogeny graph structure
of ordinary abelian varieties of dimension 2 was essentially unknown at the time, the
correctness of Bisson’s algorithm required multiple heuristic assumptions about the
relevant isogeny graphs and polarized class groups. Additionally, these orders are no
longer uniquely identified by their index, as in the elliptic curve case. Instead, Bisson
identifies an order O by a “lattice of relations” which hold in O.

This chapter gives a different generalization of Bisson and Sutherland’s elliptic curve
algorithm. Our algorithm identifies orders by ideals in the maximal totally real subfield
of the endomorphism algebra, and its correctness only relies on the assumptions required
for computing the class group of an order in a number field in subexponential time, as
in [4]. As a trade-off, we must explicitly restrict the class of abelian varieties that we
consider.

4.1.2 Main result

Let A be an absolutely simple, principally polarized, ordinary abelian variety of dimension
2 defined over a finite field Fq with Frobenius π. Then EndA is an order containing
Z[π, π] in the quartic CM field K = Q(π). We will assume that A has maximal RM,
or maximal real multiplication, which means that EndA ⊇ OF where F is the maximal
totally real subfield of K. According to Brooks, Jetchev and Wesolowski [13, Theorem
2.1], the orders O ⊆ K which contain OF are in bijective correspondence with ideals
of OF , where O is associated to f ∩ OF and f is the conductor ideal of O. This allows
our algorithm to have a simple output, namely the ideal of OF which uniquely identifies
EndA.

The foundation of our algorithm is the free action of the ideal class group Cl(O) on
the set of isomorphism classes of abelian varieties isogenous to A with endomorphism
ring O ⊆ K. Just like in the elliptic curve case, this means that a product of ideals is
trivial in Cl(EndA) if and only if the corresponding isogeny maps A to an isomorphic
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abelian variety. Using the same tactic as Bisson and Sutherland, we compare Cl(EndA)
to Cl(O) for known “testing” orders O ⊆ K by generating class group relations. When
EndA contains OF , we show through class field theory that class group relations are
sufficient for determining the large prime factors of the ideal f+ which identifies the
endomorphism ring EndA.

However, unlike the elliptic curve case, it is not always possible to compute the action
of Cl(O) on principally polarized abelian varieties of dimension g > 1. In fact, the
isogenies corresponding to elements of Cl(O) do not even preserve principal polarizability
in general. Bisson avoided this obstruction for his abelian surface algorithm by instead
working with a convenient subgroup of the polarized class group C(O), which has a
nicer action that respects polarizations. Unfortunately, the structure of C(O) cannot be
analyzed through machinery like class field theory in the same way that we can analyze
Cl(O), so it is difficult to demonstrate the existence of sufficiently many relations in
C(O).

For our algorithm, we ensure that it is possible to compute the action of Cl(O) by
restricting our attention to the case when F has narrow class number 1. In this case,
there is a surjective map from C(O) to Cl(O) and the action of Cl(O) preserves principal
polarizability. We also assume that the index [OF : Z[π + π]] is not even, and that
O∗K = O∗F so that all isogenies are computable via Cosset, Robert, Dudeanu, et al. [20,26],
and certain isogeny graphs are volcanoes [13]. This latter fact allows us to determine the
small prime factors of f+(A), much like in the elliptic curve case.

In summary, we focus our attention on absolutely simple, principally polarized,
ordinary abelian surfaces A for which the following is true:

1. A has maximal real multiplication by F .

2. O∗K = O∗F .

3. F has narrow class number 1.

4. The conductor gap [OF : Z[π + π]] is not divisible by 2.

Theorem 4.1.1. There is a subexponential algorithm which, given an abelian variety A of
dimension 2 satisfying the conditions above, outputs the ideal of OF uniquely identifying
EndA.

Note that the restrictions imposed by Theorem 4.1.1 make this algorithm considerably
less general than the algorithm of Bisson, which accepts all absolutely simple, principally
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polarized, ordinary abelian surfaces, with only the exclusion of a certain zero-density set of
worst-case varieties. However, our extra restrictions provide benefits as a trade-off. First,
the correctness of our algorithm relies solely on the heuristic assumptions required for
Biasse and Fieker’s subexponential algorithm for solving the principal ideal problem [3,4],
thereby avoiding the nonstandard heuristic assumptions needed for Bisson’s algorithm.
Additionally, the zero-density set excluded by Bisson’s algorithm is not explicitly known,
while the conditions for Theorem 4.1.1 are explicit and verifiable.

With the notation,

L[a, c](n) = exp
(
(c+ o(1)) log(n)a(log log n)1−a

)
we heuristically bound the asymptotic runtime of the algorithm by

L[1/2, 2c](q) + L[1/2, 2
√
d+ 1](q).

where c and d are constants corresponding to the difficulty of the principal ideal problem
[3, 4] and isogeny computation [20, 26], respectively. The algorithm can also be modified
to produce a short certificate which allows a third party to verify the correctness of the
output. This takes subexponential time using the same heuristic assumptions as before.

4.2 Background

4.2.1 Notation

Fix an absolutely simple, principally polarized, ordinary abelian variety A of dimension
g over Fq with Frobenius endomorphism π. Using Pila’s algorithm [74], the characteristic
polynomial fπ of π can be computed in time polynomial in log q. Alternatively, there are
faster methods for the case of maximal RM; see [2, 39, 64]. The polynomial fπ(x) ∈ Z[x]
encodes many features of A, such as the isogeny class, the number of Fq-rational points,
and the fact that A is ordinary [99]. In the remainder of the chapter, we will assume
that fπ is known and an embedding EndA ↪→ Q(π) ∼= Q[x]/(fπ) is given for simplicity.
The field Q(π) is a CM field of degree 2g which we denote by K. Let F denote its
maximal totally real subfield. We will write O for an arbitrary order in K which is
possibly non-maximal.
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4.2.2 Identifying orders

Waterhouse [110, Theorem 7.4] showed that orders of K arising as endomorphism rings of
abelian varieties isogenous to A are precisely the orders O satisfying Z[π, π] ⊆ O ⊆ OK .
Our goal is to determine which order is EndA, although it is not clear how to uniquely
identify such orders in a simple way. In the elliptic curve case, K is a quadratic imaginary
field and for each positive integer n there is precisely one order O of index n inside OK ,
hence the orders of K can be uniquely identified by positive integers. To identify orders
in CM fields in general, we will restrict our attention to abelian varieties with maximal
RM, i.e. EndA is an order containing OF [π].

Recall that, given O ⊆ OK , the conductor ideal of O is defined as the ideal

f = {α ∈ K : αOK ⊆ O}.

Notice that f is the largest subset of K which is an ideal in both OK and O. When
K is a quadratic imaginary field, the conductor ideal f of an order O is the ideal of K
generated by the integer [OK : O]. Hence the following theorem is a generalization of the
fact that orders in a quadratic imaginary field are uniquely determined by their index.

Theorem 4.2.1 (Theorem 2.1, [13]). Orders in K containing OF are in bijective corre-
spondence with ideals of OF , as follows. To each order O ⊆ K containing OF , associate
the ideal f+ = f ∩ OF where f ⊆ OK is the conductor ideal of O. Similarly, to any ideal
f+ ⊆ OF , associate the order OF + f+OK.

The following algorithm is a modification of the algorithm of Klüners and Pauli [53, §6],
and it allows one to compute the identifying OF -ideal of any order O ⊆ OK containing
OF , thereby making the correspondence of Theorem 4.2.1 computable.
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Algorithm 1: Compute the identifying ideal
Input :An order O in a CM field K of degree 2g with maximal totally real

subfield F satisfying O ∩ F = OF , and Z-bases {α1, . . . , αg},
{τ1, . . . , τ2g} and {ω1, . . . , ω2g} for OF , O and OK , respectively.

Output : Ideal f+ ⊆ OF identifying the order O ⊆ OK containing OF .
1 Define bi,j,k ∈ Q by αiωj = ∑2g

k=1 bi,j,kτk

2 Define the matrix

M :=


M1
...

M2g


where

Mj :=


b1,j,1 . . . bg,j,1
... . . . ...

b1,j,2g . . . bg,j,2g


3 Let d be the greatest common divisor of all d′ ∈ Z with d′M ∈ Z(2g)2×g;
4 Let H ∈ Zg×g be the row Hermite normal form of dM ;
5 f+ = Zβ1 + · · ·+ Zβg where (β1, . . . , βg) = (α1, . . . , αg)dH−1.

Proposition 4.2.2. Algorithm 1 is correct.

Proof. Let β = ∑g
i=1 aiαi be an element of F . By definition, β is in f+ if and only if

βOK ⊆ O, i.e. if and only if

βωj =
g∑
i=1

aiαiωj =
g∑
i=1

ai

2g∑
k=1

bi,j,kτk =
2g∑
k=1

( g∑
i=1

aibi,j,k

)
τk ∈ O

for every 1 ≤ j ≤ 2g. Equivalently, ∑g
i=1 aibi,j,k ∈ Z for all 1 ≤ j ≤ 2g because τk is a

Z-basis for the order O.
Define Mj as the “multiplication by ωj” matrix:

Mj :=


b1,j,1 . . . bg,j,1
... . . . ...

b1,j,2g . . . bg,j,2g


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and put

M :=


M1
...

M2g


Then, β ∈ f+ if and only if M~a ∈ Z2g×2g where ~a = (a1, . . . , ag)tr. Note that M has
maximal rank g because each Mj is injective (i.e. multiplication by ωj has no kernel).

Write d for the greatest common divisor of the integers d′ such that d′M has integer
coefficients. Let H be the row Hermite Normal Form of dM . View H as a g × g matrix
by removing all of the zero rows. Because M has maximal rank g, H is invertible. Then

β ∈ f+ ⇐⇒ M~a ∈ Z(2g)2 ⇐⇒ dM~a ∈ dZ(2g)2 ⇐⇒ H~a ∈ dZg ⇐⇒ ~a ∈ dH−1Zg

Because f+ is an integral ideal, each ai must be an integer. We deduce that dH−1 is an
integer matrix whose columns are a basis for f+, written in the basis {α1, . . . , αg}. Thus
we can write a basis of f+ as

(β1, . . . , βg) = (α1, . . . , αg)dH−1.

Before analyzing the running time of Algorithm 1, we must choose integral bases
which have multiplication tables of small size. Given a basis b1, . . . , bn for an order of
discriminant ∆ in a number field of degree n, the multiplication table (xi,j,k) is defined by
bibj = ∑n

k=1 xi,j,kbk. There is a polynomial time basis reduction algorithm that provides a
basis whose multiplication table has size O(n4(2 + log |∆|)); see [59, §2.10] or [14, §5]. We
apply this to OF andOK to get reduced bases {α1, . . . , αg} and {ω1, . . . , ω2g}, respectively.
Any O ⊂ OK can be represented by a basis {a1ω1, . . . , a2gω2g} where |ai| ≤ [OK : O].

Proposition 4.2.3. Assuming that the bases for OK, O and OF are chosen as outlined
above, Algorithm 1 has running time polynomial in g and log | disc(O)|.

Proof. Consider the integers ci,j,k defined by

αiωj =
2g∑
k=1

ci,j,kωk. (4.1)

We see that ci,j,k = akbi,j,k by the choice of bases. Write bi,j,k as a rational number in
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reduced form:
bi,j,k = ci,j,k

ak
= ci,j,k/gcd(ci,j,k, ak)

ak/gcd(ci,j,k, ak)
.

Hence the integer d used in Step 3 is

d = lcm
{

ak
gcd(ak, ci,j,k)

}
.

Algorithm 1 essentially consists of computing the integer d in Step 3, the Hermite
Normal Form H of the matrix dM in Step 4, and the inverse H−1 in Step 5. Each of
these steps are polynomial time in the dimension and the size of the coefficients. We will
modify [14, Proposition 5.3] to bound the size of ci,j,k by a polynomial in g, log | disc(OK)|
and log | disc(OF )|. Because [OK : O], log | disc(OK)| and log | disc(OF )| are all bounded
by log | disc(O)|, this is sufficient for bounding the running time of the algorithm.

Recall that there are 2g conjugate pairs of complex embeddings of K, which we
denote σ1, . . . , σg, σ1, . . . , σg This provides an embedding K → R2g via

α 7→ α := (Re(σ1(α)), Im(σ1(α)), . . . ,Re(σg(α)), Im(σg(α))).

Embedding the equation (4.1) gives the linear equation

αiωj =
2g∑
k=1

ci,j,kωk.

The matrix (ωk)k has determinant 2−g| disc(OK)|1/2 by definition. Hence by Cramer’s
rule

|ci,j,k| ≤
‖αiωj‖ ·

∏
r 6=k ‖ωr‖

2−g| disc(OK)|1/2

Because the bases for OK and OF are reduced, the norms of the vectors appearing in the
numerator are bounded. Specifically, log ‖ωk‖ and log ‖αi‖ are bounded by a polynomial
in g, log | disc(OK)| and log | disc(OF )|; see [14, Proposition 5.2]. We conclude that the
sizes of the integers ci,j,k are bounded as desired.

For the purposes of this chapter, we want bound the running time in terms of the
size of the finite field Fq. This is achieved in the following corollary. Even though we will
consider g to be a constant in the remainder of the chapter, we note that the algorithm
is also polynomial in g.
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Corollary 4.2.4. Maintain the notation of the previous proposition, but additionally
assume K = Q(π) where π is the Frobenius of a simple ordinary abelian variety A of
dimension g over Fq. If O contains π, then Algorithm 1 computes the ideal f+ identifying
O in time polynomial in g and log q.

Proof. Since the algorithm is proven to be polynomial in g and log | disc(O)|, we simply
need to notice that O ⊇ Z[π] implies

| disc(O)| ≤ | disc(Z[π])| ≤ (2√q)2g(2g−1).

The second part of the inequality follows immediately from the definition of discriminant
because each root of the characteristic polynomial of π has absolute value √q. Upon
taking logarithms, we obtain our result.

For convenient notation, denote the ideal identifying an order O ⊇ OF by f+(O), and
denote the order identified by f+ as O(f+). Denote by f+(A) the ideal identifying the
order isomorphic to EndA under the fixed embedding EndA ↪→ K. Now computing
EndA is equivalent to computing f+(A), which is a divisor of f+(OF [π]). Hence we
consider the factors of f+(OF [π]) and determine which prime powers divide f+(A). We
will present different methods for dealing with small and large prime factors.

4.2.3 Class group action

Following Brooks, Jetchev and Wesolowski [13], we will focus on l-isogenies, defined
below. Assume that A has maximal RM and write v for the ideal f+(OF [π]). Given
α ∈ EndA, we write A[α] for the kernel of α.

Definition 4.2.5 (l-isogeny). Let l ⊆ OF be a prime ideal coprime to f+(A). An l-isogeny
from A is an isogeny whose kernel is a proper subgroup of A[l] = ∩α∈lA[α] which is stable
under the action of OF .

The following lemma was stated without proof in the definition of l-isogeny in [13].
We record a proof here for completeness.1

Lemma 4.2.6. Using the notation above, the degree of an l-isogeny is the norm NF/Q(l).

Proof. Recall that #A[l] = NK/Q(l) = NF/Q(l)2. A proof of this equality when EndA
is maximal is given in [110, Theorem 3.15] and the proof generalizes immediately. The

1The author thanks Benjamin Wesolowski for explaining this proof in private communication.
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action of OF on A[l] induces an action of the field OF/l. In particular, A[l] is an OF/l-
vector space of dimension 2. Therefore proper OF -stable subgroups are precisely the
1-dimensional OF/l-subspaces of A[l]. Thus, the size of the kernel of an l-isogeny is
#(OF/l) = N(l). For separable isogenies, this is the same as the degree of the isogeny.

Notice that the definition of an l-isogeny generalizes the definition of an `-isogeny for
elliptic curves. This definition is useful because of the following theorems about l-isogeny
graphs, which mirror the foundational theorems used in Bisson and Sutherland’s original
algorithm for elliptic curves [8, §2.1]. Write O(f+) for the order of K defined by the ideal
f+ ⊆ OF and Cl(f+) for the class group of O(f+). Denote by Abπ,f+ the set of abelian
varieties defined over Fq in the isogeny class defined by π whose endomorphism ring has
identifying ideal f+. Given an ideal l ⊆ OF , define the symbol (K/l) to be 1, 0, or −1
when l is split, ramified, or inert in K, respectively.

Theorem 4.2.7. There is a faithful action of Cl(f+) on Abπ,f+, where an ideal lying
over a prime l ⊆ OF acts by an l-isogeny.

Proof. The action of the class group is a classical result [87, 110]. The fact that these
isogenies are l-isogenies is clear from the definition, as pointed out in [13, Theorem
4.3].

Theorem 4.2.8. Let l be a prime of OF which does not divide v = f+(OF [π]), and let
A ∈ Abπ,f. Then there are exactly 1 + (K/l) l-isogenies starting from A which lead to
varieties with endomorphism ring isomorphic to O(f), and these are the only varieties
defined over Fq which are l-isogenous to A.

Proof. This follows immediately from Theorem 4.3 and Proposition 4.10 in [13].

4.2.4 Computing isogenies

Given an ideal a ⊆ EndA, we must determine the isogeny φa which corresponds to the
action of a. One option would be to simply compute all possible isogenies, in the style
of [8]. However, we do not have the benefit of an easily calculable modular polynomial
when the dimension of A is g > 1. Instead, we compute the target of an isogeny from
its kernel. We can determine the kerφa = ∩a∈aA[a] in the same way as Bisson [6]. If
L ⊆ O is a prime ideal lying over ` which does not divide [OK : Z[π]], then we can write
L = `O + r(π)O where r(x) is a factor modulo ` of the characteristic polynomial fπ of
Frobenius. Then the kernel of φL is simply the kernel of the isogeny r(π) restricted to
A[`].
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After obtaining the subgroup corresponding to the given ideal, we must compute the
target variety. This difficulty will be one of the main bottlenecks of the algorithm. We
will only consider computing isogenies for the case g = 2. Consider a prime l ⊆ OF lying
over `, and let φ be an l-isogeny whose kernel is known. There are two cases, depending
on the norm of the ideal l. If N l = `2, then φ is commonly called an (`, `)-isogeny, and
the target variety can be determined by the algorithm in [20]. If N l = `, then φ is
known as a cyclic isogeny and the target variety can be determined by the algorithm
in [25, Chapter 4] and [26]. In both cases, the algorithm is polynomial in ` and log q.
By an algorithm of Mestre [68], we assume that the output of these algorithms is the
Jacobian of a curve defined over the minimal field; see also [20]. By combining these
algorithms and analyzing the running times of each algorithm, we find the following
theorem.

Theorem 4.2.9. Let A be an ordinary, principally polarized abelian variety defined over
Fq of dimension g = 2 with maximal RM. Write K = Q(π), where π is Frobenius, and
let F be the maximal totally real subfield of K. Let l ⊆ OF be a prime lying over ` and
assume the following:

1. l = βOF for a totally positive element β.

2. The index [OF : Z[π + π]] is not divisible by 2`.

¥ If ` is bounded by L[1/2, c0](q) for some constant c0 > 0, then an l-isogeny with a
given kernel can be found in time L[1/2, dc0](q) where d > 0 is a constant.

The extra assumptions in Theorem 4.2.9 are required only for isogenies of degree `,
which are called cyclic isogenies. These isogenies are the hardest case to handle when
computing l-isogenies. If the extra assumptions are dropped, then it is possible that the
target variety does not admit any principal polarization, which presents a major problem
to computing the isogeny. Bisson avoided this problem by using CM-types and reflex
fields to generate relations which are easily computable [6, §4] . However, it is only known
that these easily computed relations are sufficient for determining the endomorphism
ring under certain heuristic assumptions [6, Theorem 7.1].

4.2.5 Navigating isogeny graphs and identifying abelian varieties

We need a way to identify abelian varieties as we navigate the various l-isogeny graphs
with the class group action. To do this, we follow the ideas of [49, §4.2]. Rosenhain
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invariants2 can be used to identify isomorphism classes of principally polarized simple
ordinary abelian varieties of dimension g = 2 over Fq, i.e. pairs (A, λ) where A is an
abelian variety over Fq with a fixed principal polarization λ. Meanwhile, Cl(O) acts on
unpolarized abelian varieties, i.e. abelian varieties A with no fixed polarization. We say
that A is principally polarizable if a principal polarization λ exists, but is not fixed. By
definition, a single isomorphism class of principally polarizable abelian varieties can be
partitioned into isomorphism classes of principally polarized abelian varieties according
to the different choices for principal polarization. Thus the isomorphism class of A as an
unpolarized principally polarizable abelian variety is uniquely represented by the list of
invariants which correspond to the different polarizations of A, up to isomorphism.

To investigate how the class group action relates to the different choices of polarizations,
it is useful to remember the polarized class group3, as discussed in [6, 13, 49]. For a given
order O ⊆ K, the polarized class group is defined as follows.

C(O) = {(a, α) | a ⊆ O, aa = αO, α ∈ F totally positive}/ ∼ .

Multiplication is performed component-wise, and (a, α) ∼ (b, β) if there is an element
u ∈ K× such that a = ub and β = uuα. Given an order O ⊆ K containing OF , the
structure of C(O) can be seen through the following exact sequence

1→ (O×F )+/NK/F (O×) u7→(O,u)−−−−−→ C(O) (a,α)7→a−−−−→ Cl(O)
a7→NK/F (a)
−−−−−−−→ Cl+(OF ), (4.2)

where (O×F )+ is the set of totally positive units in OF , NK/F is the relative norm from K

to F , and Cl+(OF ) is the narrow class group of F . While the usual class group Cl(O)
acts on isomorphism classes of abelian varieties, the polarized class group C(O) acts on
isomorphism classes of principally polarized abelian varieties. The image of C(O) inside
of Cl(O) is the subgroup of ideals which act freely on the set of principally polarizable
abelian varieties. By assuming that Cl+(OF ) is trivial, we ensure that C(O) → Cl(O)
is surjective, hence all isogenies arising from the action of Cl(O) preserve principal
polarizability, which is necessary for the sake of computing isogenies. The exact sequence
also shows how to count the number of isomorphism classes of principal polarizations.

Proposition 4.2.10. If A is a principally polarizable ordinary simple abelian variety
2There are other alternative invariants that can be used in a similar way, such as Gündlach or Igusa

invariants. For our purposes, the choice of invariants used is not important.
3Also known as the Shimura class group.
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over Fq with maximal RM and EndA = O, then the group

U(O) := (O×F )+/NK/F (O×)

acts freely and transitively on the set of isomorphism classes of principal polarizations of
A. When the dimension of A is g = 2, then U(O) is an F2-vector space of dimension
0 ≤ d ≤ 1 and d only depends on F and K.

Proof. This Proposition summarizes Proposition 5.4 and Lemma 5.5 of [13].

This proposition implies that one may check whether an ordinary principally polarized
abelian surface A is fixed under the action of an ideal a by simply computing the list of
one or two invariants for the target variety with different polarizations, and checking if
the invariants of A are on this list.

There are two practical improvements to mention. First, if L ⊆ O corresponds to
an (`, `)-isogeny, then one can compute φL as polarization-preserving by working with
the element (L, `) ∈ C(O), as in [6]. Thus, it is always sufficient to only check one
invariant for (`, `)-isogenies. Second, if one is computing a chain of isogenies φL1 , . . . , φLk

corresponding to prime ideals Li and φLk
is a cyclic isogeny, then we can simply make an

arbitrary choice of polarization for the target varieties at each step φL1 , . . . , φLk−1 , and
compute both polarizations for φLk

, if necessary. Hence, the issue of polarizations will
not change the complexity of any algorithms, and we will let this detail be implicit in
the remainder of our exposition.

4.2.6 Small primes

We only use the class group action to determine the power of p dividing f+(EndA) when
p is a prime ideal dividing v = f+(OF [π]) which has large norm. For small primes p such
that pk | v, one could follow Bisson [6] and use the method of Eisenträger and Lauter [29]
to test whether EndA contains O(pk). However, this method does not immediately
produce an isogenous abelian variety A′ such that f+(EndA) is not divisible by the small
prime factors of v, which is a feature in Bisson and Sutherland’s original elliptic curve
algorithm [8]. For this, we need the following additional result about isogeny graphs.
More background may be found in [13].

Theorem 4.2.11 ( [13, Theorem 4.3]). Let V be any connected component of the l-
isogeny graph for the isogeny class of an ordinary, absolutely simple abelian variety A
with Frobenius π and maximal RM by F .
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1. The graph V consists of levels {Vi}i≥0 such that each level Vi shares a common
endomorphism ring Oi and the valuation at l of f+(Oi) is i. The valuation of
f+(Oi) at other primes is the same for all i, and the number of levels is equal to
the valuation at l of f+(OF [π]).

2. The graph V is an N(l)-volcano if and only if O×0 ⊆ F and l is principal in O0 ∩F .

This theorem implies that finding the power of each l | v which divides f+(A) is
equivalent to finding the level of A in the l-isogeny graph. When navigating the graph,
repeatedly moving from level Vi+1 to level Vi until reaching V0 is known as ascending
the graph. We know that the l-isogeny graph is a volcano in our applications with
no additional assumptions because we will assume in our algorithms that Cl+(F ) = 1
and O×F = O×K for the sake of Theorem 4.2.9 and Lemma 4.3.11. Hence the algorithms
presented for volcano navigation in [98] immediately generalize and provide a way to
find the level of a variety and ascend the graph. We call this method isogeny climbing,
following the terminology given in the elliptic curve case. Isogeny climbing allows one to
determine the power of l dividing f+(A), and also allow one to find a new abelian variety
A′ such that f+(A′) is the same as f+(A) with a given small prime factor removed. Notice
that these methods are only efficient for small primes because we have to compute a
large number of isogenies.

4.3 Class group relations
Let A be an absolutely simple, ordinary, principally polarized abelian variety with
maximal RM, of dimension g over Fq with Frobenius π. We do not restrict the dimension
g or the class group of F for this section because no simplicity is gained by focusing on
special cases. Moreover, we recover many of the statements of [8] when setting g = 1.
As before, write K = Q(π) and let F be the maximal totally real subfield. We begin by
recalling a well-known fact about class groups.

Lemma 4.3.1. If O(f+1 ) ⊆ O(f+2 ), then there is a surjective map Cl(O(f+1 ))→ Cl(O(f+2 ))
induced by mapping a 7→ aO(f+2 ).

Proof. For any order O ⊆ K of conductor f, let IK,O(f) be the group generated by ideals
of O coprime to f and let IK(f) be the group generated by ideals of OK . There is an
isomorphism IK,O(f)→ IK(f) given by the map a 7→ aOK where the inverse is given by
b 7→ b∩O [63, Proposition 3.4]. This map induces the surjective map of class groups.

42



This map allows us to define the concept of a relation analogously to Bisson [5, 6].
Note that we do not follow Bisson and Sutherland’s definition of relation in [8] because
we do not have the benefit of an easily computable modular polynomial.

Definition 4.3.2. A relation R is a tuple of ideals (a1, . . . , ak) of ideals of OF [π]. A
relation holds in an order O if the product is trivial under the map from the lemma.
Similarly, a relation holds for A if the corresponding composition of isogenies fixes A.

Combining the lemma and the definition of relation, we obtain the following key
corollary which is analogous to [8, Corollary 4]. This allows us to create an algorithm
where testing class group relations determines the prime powers pk which divide f+(A).

Corollary 4.3.3. Let v ⊆ OF be an ideal which is divisible by a prime power pk ⊆ OF .
Write

f+1 = pk−1−vp(v)v;

f+2 = pk.

Assume there is some relation R which holds in O(f+1 ) but not in O(f+2 ). Given any
f+ ⊆ OF which divides v, pk | f+ if and only if the relation R does not hold in O(f+).

Proof. If pk | f+, then O(f+) ⊆ O(f+2 ), so the lemma implies the relation R does not
hold in O(f+). Conversely, suppose R does not hold in O(f+). The lemma implies
O(f+1 ) 6⊆ O(f+). But f1 is the same as v, except that the power of p is decremented.
Because f+ divides v, we deduce that pk divides f+.

4.3.1 Review of class field theory

In order to prove that an algorithm based on Corollary 4.3.3 is unconditionally correct,
we need to find infinitely many relations R that satisfy the necessary conditions. This is
the reason why we use the traditional class group Cl(O) instead of the polarized class
group C(O) used by Bisson. Specifically, we can use ring class fields and class field theory
to understand the structure of Cl(O) because prime ideals of O are principal if and only
if they split completely in the ring class field of K; see Corollary 4.3.7 below.

Throughout this section, K remains a fixed CM-field, as before. Let us review the
definitions and notation of class field theory so that we can recall the correspondence
between finite abelian extensions of K and certain subgroups of fractional ideals of K.
We refer the reader to [48,63,72] for additional background on class field theory.
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For our purposes, a modulus m for K is an ideal of OK . In general, a modulus can
include real infinite primes which correspond to real embeddings, but CM-fields do not
have any real embeddings, hence we will ignore the infinite primes in this exposition for
simplicity. Write IK for the group of all fractional ideals in K. Given a fixed modulus
m, we denote by IK(m) the subgroup of IK generated by ideals of OK coprime to m.
Similarly, let PK be the group of all principal ideals in K. Write PK,O(m) for the group
generated by

{αOK : α ∈ O, αO + m = O}

and PK,1(m) for the group generated by

{αOK : α ∈ OK , α ≡ 1 mod mOK}.

Note that the definition of PK,1(m) must be modified if m is divisible by infinite primes,
but this is the simplest definition in our case because we will always assume m is a
product of finite primes; see [63, Lemma 3.5].

A subgroup H ⊂ IK is a congruence subgroup (defined modulo m) if

PK,1(m) ⊆ H ⊆ IK(m).

If m divides m′, then H∩IK(m′) is also a congruence subgroup, but it is defined modulo m′

rather than modulo m. In this case, we call H ∩ IK(m′) a restricted congruence subgroup.
This leads us to introduce the following equivalence relation. If H1 and H2 are congruence
subgroups modulo m1 and m2, respectively, then we say H1 and H2 are equivalent if
they have a common restriction, i.e. if there is a modulus m3 such that H1 ∩ IK(m3) =
H2∩ IK(m3). In this case, there is an isomorphism IK(m1)/H1 ∼= IK(m2)/H2 [48, Lemma
V.6.1]. For each equivalence class H of congruence subgroups, there is a unique modulus
f and a congruence subgroup Hf defined modulo f such that Hf ∈ H, and f divides the
defining modulus of every congruence subgroup in H [48, Lemma V.6.2]. Such an f is
called the conductor of H.

Let L be a finite abelian extension of K, and let ISK be the subgroup of IK generated
by prime ideals which do not ramify in L. There is an Artin map

ΦL/K : ISK → Gal(L/K)

where a prime p is sent to the Frobenius automorphism σp ∈ Gal(L/K). Specifically,
σp is the unique automorphism such that σp(x) ≡ xN(p) mod P for all x ∈ OL for any
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ideal P ⊆ OL lying over p. The map is extended to ISK multiplicatively. Write ΦL/K,m

for the restriction of ΦL/K to the subgroup IK(m) where m is a modulus divisible by all
primes of K which ramify in L. We say that the reciprocity law holds for (L,K,m) if
ker ΦL/K ⊇ PK,1(m). In this case, ker ΦL/K,m is a congruence subgroup defined modulo
m.

Definition 4.3.4. Let L be an abelian extension of K. Write H(L/K) for the equivalence
class of all congruence subgroups Hm(L/K) = ker ΦL/K,m where m is modulus such that
the reciprocity law holds for (L,K,m). The class field theory conductor f(L/K) of
the extension L/K is the conductor of the equivalence class H(L/K), i.e. the greatest
common divisor of all moduli defining congruence subgroups in H(L/K).

Theorem 4.3.5 (The Classification Theorem, [48, Theorem V.9.9]). The correspondence
L 7→ H(L/K) is a one-to-one, inclusion-reversing correspondence between finite abelian
extensions L of K and equivalence classes of congruence groups of K.

Lv and Deng showed the following consequences of the classification theorem.

Theorem 4.3.6 ( [63, Theorem 4.2]). Let O ⊆ K be an order with conductor f. Then
there exists a unique abelian extension L of K such that all primes of K ramified in L
divide f, and the Artin map

ΦL/K,f : IK(f)→ Gal(L/K)

satisfies ker ΦL/K,f = PK,O(f), providing an isomorphism

Cl(O) ∼= Gal(L/K)

The field L is called the ring class field of O. In the case where O = OK, the ring class
field coincides with the Hilbert class field of K, which is the maximal abelian unramified
extension of K.

By observing the basic properties of the Artin map, this theorem provides the following
corollary.

Corollary 4.3.7 ( [63, Corollary 4.4]). Let O ⊆ K be an order. If p ⊆ O is a prime
ideal coprime to f, then p is principal if and only if p splits completely in the ring class
field of O.
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We conclude this section by making one final observation about class field theory
conductors.

Lemma 4.3.8. If L1 and L2 are finite abelian extensions of K such that L2 ⊆ L1, then
the class field theory conductor f(L2/K) divides f(L1/K).

Proof. By definition, f(L2/K) divides every modulus for which a congruence subgroup in
H(L2/K) is defined, so we simply need to show that there is a congruence subgroup in
H(L2/K) defined modulo f(L1/K). This is equivalent to showing that ker ΦL2/K contains
PK,1(f(L1/K)). This is easy to see by the inclusion-reversing correspondence of Theorem
4.3.5 and the definition of f(L1/K), which imply

ker ΦL2/K ⊇ ker ΦL1/K ⊇ PK,1(f(L1/K)).

4.3.2 Existence of relations

Using the ring class fields defined in the preceding section, we will now find infinitely
many relations sufficient for Corollary 4.3.3. To begin, we prove the following technical
lemma.

Lemma 4.3.9. Let O(f+) be the order of K which contains OF and corresponds to the
ideal f+ ⊆ OF . The ring class field L of K of O(f+) is a Galois extension of F .

Proof. The proof is analogous to the proof of Lemma 9.3 in [22]. Because K/F is an
imaginary quadratic extension, its Galois group is generated by complex conjugation,
which we denote by τ . Hence showing that L/F is Galois is equivalent to showing that
τ (L) = L. Theorem 4.3.5 states that there is an inclusion-reversing one-to-one correspon-
dence between equivalence classes of congruence subgroups and abelian extensions of K.
Thus, we simply need ker(Φτ(L)/K,f) = ker(ΦL/K,f) where f = f+OK . Notice that τ(f) = f

because f+ is an ideal in a totally real field, and τ(OK) = OK .
Theorem 4.3.6 tells us that

ker(Φτ(L)/K,f) = PK,O(f).

It is easy to see that τ(PK,O(f)) = PK,O(f) because an ideal a is coprime to f if and only
if τ(a) is coprime to τ(f) = f. We have ker(Φτ(L)/K,f) = ker(Φτ(L)/τ(K),f) = τ(ker(ΦL/K,f))
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by definition because τ(K) = K. Therefore

ker(Φτ(L)/K,f) = τ(ker(ΦL/K,f))) = τ(PK,O(f)) = PK,O(f) = ker(ΦL/K,f),

proving that τ (L) and L corresponding to the same congruence subgroup, as desired.

Now we can prove the existence of the needed relations, using the same idea as Bisson
and Sutherland.

Proposition 4.3.10. Assume that O∗K = O∗F . Let v ⊆ OF be an ideal which is divisible
by pk ⊆ OF . If N(p) ≥ 3, then there are infinitely many relations R satisfying the
assumption of Corollary 4.3.3 above. Specifically, write f+1 = pk−1−vp(v)v and f+2 = pk.
Then there are infinitely many primes l ⊆ OF which split in OK such that R holds in
O(f+1 ) but not O(f+2 ), where R is the one-element relation consisting of any prime lying
over l.

Proof. Let S1 and S2 be the set of primes of OF which split into principal ideals in O(f+1 )
and O(f+2 ), respectively. Our goal is to show that S1 \ S2 is infinite. This proves the
claim because every prime of OF [π] lying over a prime in S1 \S2 is a relation which holds
in O(f+1 ) but not in O(f+2 ), as desired.

Write L1 and L2 for the ring class fields of O(f+1 ) and O(f+2 ), respectively. An ideal of
O(f+i ) is principal if and only if it splits completely in Li by Corollary 4.3.7 because Li is
a ring class field. Hence the sets Si are the sets of primes in OF which split completely
in Li, respectively. The Chebotarev Density Theorem implies that L2 ⊆ L1 if and only if
S1 \S2 is finite [72, Proposition VII.13.9]. But pk divides the conductor of O(f2) and does
not divide the conductor of O(f+1 ) by construction. Because N(p) ≥ 3, the lemma below
implies that pk divides the class field theory conductor f(L2/K) but does not divide
f(L1/K). By Lemma 4.3.8 we have L2 6⊆ L1, which completes the proof.

The following lemma and its proof are a generalization of [22, Exercises 9.20-22].

Lemma 4.3.11. Let K be a CM field with totally real subfield F , and let O ⊆ K be an
order containing OF . Suppose that O∗K = O∗F . If L is the ring class field of O, then the
conductor ideal f of O and the conductor ideal f(L/K) of the ring class field L may only
differ by primes of K of norm 2.

Proof. By definition, the class field theory conductor f(L/K) is a divisor of the conductor
ideal f because f is the modulus used to define the extension L/K. Thus, if f(L/K) 6= f,
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then we may write f = Pm where P is a prime ideal of K and f(L/K) divides m. Assume
that this is the case for some prime P with N(P) 6= 2. We will find a contradiction.

According to Theorem 4.3.5, there is an equivalence class H(L/K) of congruence
subgroups defined with various moduli corresponding to the extension L/K. Because
f(L/K) divides m, there is a congruence subgroup ker ΦL/K,m defined modulo m. By
construction, PK,O(f) is the restriction of ker ΦL/K,m to IK(f), i.e. ker(ΦL/K,m) ∩ IK(f) =
PK,O(f). This proves that

PK,1(m) ∩ IK(f) ⊆ PK,O(f). (4.3)

because ker(ΦL/K,m) ⊇ PK,1(m).
By inspecting definitions, the sequence below is exact.

O∗K → (OK/fOK)∗ φ−→ PK ∩ IK(f)/PK,1(f)→ 1.

Define π : (OK/f)∗ → (OK/m)∗ and β : (OF/f+)∗ → (OK/fOK)∗ as the natural maps
induced by quotients. Notice that π is surjective and β is injective. One may show that

O∗K · ker π = φ−1(IK(f) ∩ PK,1(m))

and similarly
O∗K · Imβ = φ−1(PK,O(f)),

which proves that ker π ⊆ (OK)∗ · Imβ by containment (4.3) above. Since O∗K = O∗F and
Imβ is closed under the action of O∗F , this shows

ker π ⊆ Imβ.

Recall that if a ⊆ OK is an ideal, then

|(OK/a)∗| = N(a)
∏
q|a

prime

(
1− 1

N(q)

)

This implies that

| ker(π)| = |(OK/f)∗|
|(OK/m)∗| =

N(P) if P | m;

N(P)− 1 if P - m.

We will now conclude the proof by showing that | ker π| = 1, which is only possible if
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N(P) = 2 and P - m, according to the formula for | ker π|. To prove this, we consider
two cases. Writing p = P ∩ OF , either pOK = PP or pOK = P . In the former case,
one observes that π ◦ β is injective, hence | ker π ∩ Imβ| = | ker π| = 1. Clearly this is
only possible if N(P) = 2 and P - m.

Now consider the latter case, and suppose pOK = P. Because p is an inert prime
of OF and P divides f, it follows that p divides f+. Write f+ = pm0 for some m0 ⊆ OF .
Consider the (not necessarily exact) diagram

(OF/f+)∗

θ
��

β // (OK/fOK)∗ π // (OK/m)∗

(OF/m0)∗

One shows ker π = ker π ∩ Imβ ∼= ker θ. However, we can compute ker(θ) in the same
way that we computed ker(π) to find that

| ker(θ)| = |(OF/f
+)∗|

|(OF/m0)∗| =

N(p) if p | m0;

N(p)− 1 if p - m0.

Because P is inert, N(P) = N(pOK) > N(p). Hence | ker π| = | ker θ| is impossible,
which gives the final contradiction.

4.4 Algorithms
Now that we have proven that there are sufficiently many class group relations for
determining the large prime factors of f+(A), we are able to present generalizations of
the elliptic curve algorithms in [8]. Even though the results of the previous section apply
whenever A is an ordinary simple abelian variety of arbitrary dimension with maximal
RM, there are no known results for computing an arbitrary isogeny in such generality.
We restrict our attention to a manageable case with the following requirements so that
we can compute all isogenies arising from the action of the ideal class group.

Requirements (R)

For the remainder of the chapter, we will focus on the case where the ordinary, absolutely
simple, principally polarized abelian variety A has dimension g = 2. We also assume the
following are all true, which summarizes the hypotheses found in Theorems 4.2.1, 4.2.9
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and 4.2.11, and Lemma 4.3.11. In particular, EndA is uniquely identified by an ideal
f+(A) ⊆ OF and we can compute the isogenies corresponding to the action of Cl(EndA).

1. A has maximal real multiplication by F .

2. O∗K = O∗F .

3. F has narrow class number 1.

4. The conductor gap [OF : Z[π + π]] is not divisible by 2.

Notice that that the second assumption is very mild. It is shown in [97, Lemma II.3.3]
that O∗K = O∗F is true for every primitive quartic CM field except the cyclotomic field
K = Q(ζ5).

Heuristic assumptions (H)

We collect the following heuristic assumptions that we require, and we denote all state-
ments requiring these assumptions will be decorated by the letter (H). The first three
assumptions allow us to compute a class group via [4], while the final two are moderate
heuristic assumptions, similar to those in [8], which are only needed to bound the expected
run time of the algorithms. In particular, the latter three assumptions are not needed
in order to prove the algorithm is correct. All running times will be analyzed with the
subexponential function

L[a, c](n) = exp
(
(c+ o(1)) log(n)a(log log n)1−a

)
1. GRH is true.

2. Smoothness assumption. The probability P (ι, µ) that an ideal of O of norm
bounded by eι is a power-product of prime ideals of norm bounded by eµ satisfies
P (ι, µ) ≥ exp(−u log u(1 + o(1))) for u = log(ι)/ log(µ).

3. Spanning relations If {p1, . . . , pN} is a factor base of ideals generating Cl(O)
where N = L[a, c1](∆) for some 0 < a < 1 and c1 > 0, then it suffices to collect N ′

relations to generate all possible relations if N ′/N = L[b, c2](∆) for 0 < b < a and
c2 > 0.
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4. Random Norms: Assume that the norms of the ideals generated in the reduction
step of FindRelation have approximately the distribution of random integers in
[1, n]. This allows us to analyze the probability that a norm is B-smooth.

5. Random relations. If O1 and O2 are as in Corollary 4.3.3 with sufficiently large
discriminants, then the relation for O1 generated in Find Relation algorithm does
not hold in O2 with probability bounded above 0.

6. Integer factorization and smoothness checking. The number field sieve with
expected running time L[1/3, cf ](n) by [15] and ECM finds a prime factor p of
integer n in expected time L[1/2, 2](p) log2 n by [60].

4.4.1 Finding relations

Following [5, 6, 8], we will use the reduction of random ideals to produce relations which
hold in a given order O ⊆ K of discriminant ∆ = disc(O). This is the same idea that
is used in ideal class group computation algorithms, such as [4]. For background on
ideal reduction, see [102, Chapter 5]. Given an ideal a ⊆ O ⊆ K, reduction outputs an
ideal b which is equivalent to a in Cl(O) such that Nb ≤ ∆2. By taking Na > ∆2, we
ensure that ab−1 is a nontrivial relation which holds in O. The reduction algorithm is
polynomial in log |∆| for fields of fixed degree.

To test whether this given relation also holds in a second order, we need to solve the
principal ideal problem. As shown in [3, §4.3] and [4], we can solve the principal ideal
problem in subexponential time by using the heuristic assumptions (H). In practice, one
should compute the class group once and for all at the beginning of the algorithm, then
simply do reductions as necessary when checking relations. To give some flexibility in
applications, we use a parameter µ > 0 which can be chosen arbitrarily.

Notice that a prime ideal L is inverse to its complex conjugate L because the totally
real subfield F has class number 1. Hence we can ensure that at most one of L and L

appears in the relation R. In particular, if xL−yL < 0 for any prime ideal L, then replace
the prime power LxL−yL in the relation R with L

yL−xL , which is an equivalent ideal in the
class group. Implicitly, we throw out every relation which includes an undesirable prime,
i.e. a prime ideal of OF that divides the ideal f+(OF [π]), or the index [OF : Z[π + π]]],
or the index [OK : Z[π]]. There are only O(log q) such primes, so this does not change
the complexity of the algorithm.
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Algorithm 2: FindRelation
Input :Orders O1 and O2
Output :Relation R which holds in O1 but not O2

1 Set B = L[1/2, µ](n), D1 = disc(O1) and n = |D1|2.
2 Pick xL such that xL ≤ B/N(L) for prime ideals L of norm bounded by B such

that at most k0 are nonzero and ∏N(L) > n.
3 Compute the reduced ideal b = ∏

L L
yL of a = ∏

LxL .
4 if N(b) is a B-smooth integer and the number of nonzero yL is at most

8 log(|D1|)1/2 then
5 Let R be the relation (LxL−yL)NL<B.
6 if R does not hold in O2 then
7 return R.
8 end
9 end

10 Go to Step 2.

Proposition 4.4.1 (H). Given orders O1 and O2 of discriminants D1 and D2, the
algorithm FindRelation has expected running time

L[1/2, 1/µ
√

2](|D1|) + log |D1|1+εL[1/2, c](|D2|)

where µ > 0 is a parameter that can be chosen arbitrarily, ε is arbitrarily small, and
c is the constant from the running time bound of principal ideal testing. The out-
put relation R = (Le1

1 , . . . ,L
ek
k ) has exponents ei bounded by L

[
1/2, µ

√
2
]

(|D1|) and k
bounded by 16

√
2

µ
(log |D1|)1/2. The prime numbers `i lying under the Li are bounded by

L
[
1/2, µ

√
2
]

(|D1|).

Proof. Recall that B = L[1/2, µ](n) = L[1/2, µ
√

2](|D1|) is the smoothness bound on the
norms of the primes where n = |D1|2. Notice log n/ logB = 1

µ
(log n)1/2(log log n)−1/2.

With the bound 1/ρ(z)−1 = zz+o(1) for the Dickman function ρ(z) and the same ar-
gument as [8, Proposition 6], we expect the number of attempts required to find an
ideal b with B-smooth norm to be be asymptotically bounded by ρ(log n/ logB)−1 =
L[1/2, 1/µ

√
2](|D1|), and aB-smooth integer in [1, n] is expected to have (2+o(1)) log n/ logB

distinct prime factors. Thus we expect the number of prime ideals L appearing in step 4
to be at most

k0 + 8 log n/ logB ≤ k0 + 8
√

2
µ

(log |D1|)1/2(log log |D1|)−1/2
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By heuristic assumption (H), elliptic curve factorization [60] identifies a B-smooth integer
in time L[1/2, 2](B) = L[1/4,

√
2µ](n) with high probability. Therefore, L[1/2, 1/µ

√
2](|D1|)

is a bound on the amount of time spent finding a relation which holds in O1 with B-smooth
norm.

Step 6 is solving the Principal Ideal Problem in O2, which can be done by follow-
ing Biasse’s algorithm [3, Algorithm 7]. First, one computes the class group in time
L[1/2, c](|D2|) by [4, Theorem 6.1]. This involves finding a set of relations which span
all relations on a set of primes {P1, . . . ,PM} which generate Cl(O2). Then, each ideal
L appearing in the relation R is reduced, if necessary, to an equivalent product over
the generating set, i.e. L = (α)Pe1

1 . . .PeM
M for some α ∈ K and ei ≥ 0. Each reduction

takes time log(N(L))1+o(1)L[1/2, c1](|D2|) for some constant c1 > 0 by [3, Proposition
3.1]. Recall that the ideals are bounded by

logN(L) < logB ≤ logL[1/2, µ](|D1|2)� (log |D1|)1/2(log log |D1|)1/2

By combining this bound with the bound on the number of primes appearing in R,
the cost of solving the principal ideal problem is bounded, for some constant c > 0, by
log |D1|1+εL[1/2, c](|D2|). We succeed in finding a relation which does not hold in O2

within O(1) tries because (H) assumes that the probability of success is bounded above
0. Thus, we obtain the final bound on the running time. The bounds on k, `i and ei
follow directly from the construction of the relation in the algorithm.

4.4.2 Computing from above

Now we present our algorithm for computing f+(A). As noted in Section 4.2.6, we
can take care of all “small” prime factors, i.e. primes p with N(p) ≤ C for some C ≥ 2,
by “isogeny climbing”. The bound C can be chosen arbitrarily In the presentation of this
and all remaining algorithms, we assume that f+(A) is not divisible by the square of any
large primes, although the algorithms can be easily modified to handle this possibility.
For example, we can modify Algorithm 3 by finding relations in Step 10 corresponding
to pk for every k ≥ 1 such that pk | v. Instead, we simplify the presentation by only
checking k = 1. The correctness of this algorithm immediately follows immediately from
Corollary 4.3.3. There are infinitely many class group relations R as required in Step 10
according to Proposition 4.3.10.
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Algorithm 3: Computing f+(A) from above
Input :Abelian variety A satisfying requirements (R)
Output :The ideal f+ ⊆ OF identifying EndA

1 Determine the ideal v ⊆ OF defining the order OF [π] ⊆ OK .
2 Fix bound C ≥ 3 and initiate u = 1.
3 for every p ⊆ OF with Np < C which divides v do
4 Use isogeny climbing to determine vp = vp(f+(A)).
5 Replace u with the product upvp .
6 Update A to be the abelian variety found by isogeny climbing
7 Remove powers of p from v.
8 end
9 for every p ⊆ OF with Np ≥ C which divides v do

10 Find relation R which holds in O(v/p) but not O(p).
11 if R does not hold in O(f+(A)) then
12 Update u to be the product up
13 end
14 end
15 return f+(A) = u.

Proposition 4.4.2 (H). Algorithm 3 has expected running time

L[1/2, 2c](q) + L[1/2, 2
√
d+ 1](q).

where c is the constant from principal ideal testing, d is the constant from Theorem 4.2.9.

Proof. Computing v takes polynomial time by Corollary 4.2.4, and factoring v reduces in
polynomial time to factoring its norm N(v). This is done in time L[1/3, cf ](q) by (H).

The number of iterations in the algorithm is the number of primes dividing v, so there
are only O(log q) iterations needed. Recall that log | disc(Z[π, π])| < 4 log q + 12 log 2
by [6, Lemma 6.1]. Since we only consider orders containing OF [π] ⊇ Z[π, π], this means
that FindRelation takes time

L[1/2, 1/µ
√

2](|D1|) + log |D1|1+εL[1/2, c](|D2|) = L[1/2,
√

2/µ](q) + L[1/2, 2c](q)

for each choice of O1 and O2, by the proposition above.
Computing whether a relation R = (Le1

1 , . . . ,L
ek
k ) holds for A requires computing∑k

i=1 ei = L[1/2, 2µ
√

2](q) many isogenies which each take time L[1/2, 2µd
√

2](q) to
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compute by Theorem 4.2.9. Thus the expected running time is

L[1/2,
√

2/µ](q) + L[1/2, 2c](q) + L[1/2, 2µ(d+ 1)
√

2](q).

Solving
√

2/µ = 2µ(d + 1)
√

2 presents µ = 1/
√

2(d+ 1) as an optimal choice for µ.
Inserting this into the bound above, we obtain the desired bound:

L[1/2, 2c](q) + L[1/2, 2
√
d+ 1](q).

4.4.3 Certifying and verifying

Algorithm 4: Certify
Input :CM field K with maximal totally real subfield F , ideals u, v ⊆ OF
Output :Certificate C

1 for For every prime p with vp(v)− vp(u) > 0 do
2 Find a Relation Rp which holds in O(u) but not O(p)
3 end
4 for For every prime p of u do
5 Find a Relation Rp which holds in O(up−1) but not O(p).
6 end
7 return the certificate C = (u, v, K, {Rp}p|v).

The relations generated throughout Algorithm 3 work for any abelian variety in
the given isogeny class which satisfies the requirements (R). Collecting these relations
without fixing a specific abelian variety A gives the Certify and Verify algorithms
below. Indeed, Certify does not require an abelian variety as input; it simply gives
a certificate that allows anyone to check the claim that f+(A) = u via the subsequent
Verify algorithm, up to small prime factors. In the presentation below, we ignore the
small prime factors, and assume they are taken care of by isogeny climbing, as before.
The two loops in Certify and Verify correspond to checking that u divides f+(A) and
u is not a proper divisor of f+(A), respectively. Again, the correctness follows immediately
from Corollary 4.3.3.

Corollary 4.4.3 (H). The expected running time of Certify is within a factor of
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O(log q) of the expected running time of FindRelation. If D1 is discriminant of the
order corresponding to the ideal u, then the certificate has size O(log |D1| log log |D1|).

Proof. Using the bound | disc(OF [π])| ≤ | disc(Z[π, π])| ≤ 46q4 from [6, Lemma 6.1], we
find that the number of prime factors of v is O(log q). Thus, FindRelation is called
O(log q) many times in Certify.

By the bounds on the `i, k and ei, we see that the size of the certificate is O(log |D1| log log |D1|).
Here, we use the fact that N(Li) ≤ `4 and the size of an ideal a in a number field of
fixed degree is O(logN(a)) [102, Corollary 3.4.13].

Algorithm 5: Verify
Input :Abelian variety A satisfying requirements (R), certificate

C = (u, v, K, {Rp}p|v)
Output : true or false

1 for For every prime p with vp(v)− vp(u) > 0 do
2 Check that Rp holds in EndA by computing isogenies
3 Immediately return false if failure occurs.
4 end
5 for For every prime p dividing u do
6 Check that Rp does not hold in EndA by computing isogenies.
7 Immediately return false if a relation holds.
8 end
9 return true

Proposition 4.4.4 (H). Given a certificate C = (u, v, K, {Rp}p|v) produced by Certify
with parameter µ > 0 and A/Fq, the expected run time of Verify is

L[1/2, µ(d+ 1)
√

2](|D1|)

where d is the constant from Theorem 4.2.9 and D1 is the discriminant of the order
identified by u.

Proof. There are at most O(log q) relations in a certificate. By Proposition 4.4.1,
each relation has at most O(log1/2 |D1|) distinct primes with exponents ei bounded
by L[1/2, µ

√
2](|D1|). The primes `i are bounded by L[1/2, µ

√
2](|D1|), which produces

the claim by Theorem 4.2.9.

56



Remark:

In [8, Algorithm 2], Bisson and Sutherland define an additional algorithm to compute
the endomorphism ring of an ordinary elliptic curve by repeatedly calling their versions
of the Certify and Verify algorithms. This algorithm performs well for large orders
because their version of FindRelation uses binary quadratic forms to quickly check
class group relations in various orders. In our case, FindRelation is much more costly
because no analogue of binary quadratic forms exists for performing computations in
the class group of orders in general CM fields. As a result, the immediate generalization
of [8, Algorithm 2] which uses the Certify and Verify algorithms above correctly
computes f+(EndA), but does not gain an performance improvement by focusing on
abelian varieties with nearly-maximal endomorphism ring.

4.5 Computational Example
We now give an illustrative example to demonstrate how Algorithm 3 computes an
endomorphism ring by using class group relations. All computations where performed
using Magma [11] and the AVIsogenies library [7] on a 2.3 GHz Intel Core i5 processor.
Although the programs were not optimized for maximum performance, running times are
given below to display how isogeny computation is the major bottleneck of the algorithm.

4.5.1 Example

Let q = 82307 and let A be the Jacobian of the hyperelliptic curve C defined over Fq by

y2 = x5 − 3x4 + 5x3 − x2 − 2x+ 1.

The curve C is the specialization to s = t = 1 of the 2-parameter family given in [39, §4.3].
By [39, Proposition 3], A has maximal real multiplication by F = Q(

√
5), which has

narrow class number 1. The characteristic polynomial of the Frobenius endomorphism π

is
fπ(t) = t4 + 658t3 + 263610t2 + 658qt+ q2.

By [44, Theorem 6], we deduce that A is absolutely simple.
We begin by computing the ideal v ⊆ OF which identifies OF [π]. Using Algorithm 1,

it takes 0.02 seconds to compute that v = p11p131 where p11 and p131 are prime ideals
of OF of norm 11 and 131, respectively. Therefore, EndA is one of the following four
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orders, using the notation of Section 4.2.2:

OK

O(p11) O(p131)

OF [π]

Next, we need suitable class group relations, as described in Corollary 4.3.3. Consider
the prime number 7, which is inert in OF and splits in OK . We find

fπ(t) ≡ (t2 + t+ 6)(t2 + 6t+ 6) mod 7,

hence the prime ideals ofOF [π] lying over 7 are L1 = (7, π2+π+6) and L′1 = (7, π2+6π+6).
It takes 0.22 and 0.16 seconds, respectively, to find that the ideal L1O(p11) has order
55 in Cl(O(p11)), and the ideal L1O(p131) has order 60 in Cl(O(p131)). Therefore the
relation R1 = (L55

1 ) holds in O(p11) but not O(p131). Thus p11 divides the identifying
ideal f+(EndA) if and only if the relation R1 does not hold for A. Similarly, R2 = (L60

1 )
is a relation which holds in O(p131) but not O(p11), hence p131 divides f+(EndA) if and
only if R2 does not hold for A.

Finally, we need to compute the chains of isogenies corresponding to the two rela-
tions R1 and R2. The kernel of the isogeny corresponding to the action of the ideal
L1 = (7, π2 + π + 6) is the rational symplectic subgroup G ⊆ A[7] whose generators are
annihilated by π2 + π + 6. Using AVIsogenies, we enumerate all possible rational sym-
plectic subgroups of A[7], find the desired G in this list, and compute the corresponding
(7, 7)-isogeny. Continuing in this way, it takes 154 seconds to compute all 60 isogenies,
and we find that neither R1 nor R2 holds for A. By Corollary 4.3.3, this implies that
f+(EndA) = v = p11p131, i.e. EndA ∼= OF [π].

This example demonstrates how our algorithm is more efficient than the algorithm of
Eisenträger and Lauter [29] in cases when the index [OK : OF [π]] is divisible by large
primes. Indeed, using Eisenträger and Lauter’s algorithm on the example above requires
the full 131-torsion of A, which is defined over an extension of degree 17030. As a
result, this method is very costly compared to the computation of the (7, 7)-isogenies
performed above. The same benefit is seen in examples of Bisson’s algorithm [6, §8],
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since it also exploits class group relations. Our algorithm differs from Bisson’s algorithm
by considerably restricting the class of abelian varieties considered, which allows us to
avoid certain unconventional heuristic assumptions.

59



Part II

Decidability and Definability
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Chapter 5 |
Background for Decidability

This chapter serves as an introduction for the remaining chapters by recalling some of the
basic background for problems of decidability in number theory. We refer to [54,75,89]
as helpful introductions to the topics at hand.

5.1 Formulas in the language of rings
Recall that Hilbert’s Tenth Problem, in its original form, asks for an algorithm which takes
as input a multivariable polynomial equation f(x1, . . . , xn) = 0 with integer coefficients
and outputs Yes or No depending on whether or not the equation has an integer solution
(a1, . . . , an) ∈ Zn. More generally, we can ask the same question with Z replaced by some
other ring R, known as Hilbert’s Tenth Problem over R. When pursuing questions in
this vein, it is useful to rephrase Hilbert’s Tenth Problem in terms of formulas in the
language of rings. The goal of this section is to introduce this terminology for future use.

Definition 5.1.1. For an integral domain R, a first-order formula (in the language of
rings) is a formula built using the ring operations + and ·, the identity elements 0 and
1, along with the symbols ¬ (Not), ∀ (For All), ∃ (There Exists), ∨ (Or), and
∧ (And). A formula containing additional coefficients from R has parameters from R.
Moreover:

(a) A formula without the symbol ∀ is an existential formula;

(b) A formula without the symbol ∃ is a universal formula;

(c) A formula without the symbol ¬ is a positive formula.
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Example 5.1.2. The formula φ1(X) defined by

∃Y1∃Y2∃Y3∃Y4 X = Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4

is a positive existential formula. By Lagrange’s four squares theorem, this formula is
satisfiable over the ring Z by precisely the non-negative integers.

In the end, we are concerned with which formulas are or are not satisfiable over a
given ring R.

Definition 5.1.3. We say the first-order theory of R is decidable if there is an algorithm
which takes as input a first-order formula and outputs Yes or No, according to whether
or not the formula is satisfiable over R. The decidability of other theories (e.g., the
positive existential theory of R) is defined analogously.

5.2 Equivalent problems
There is a well-established connection between Hilbert’s Tenth Problem over an integral
domain R and the theories defined above. Intuitively, the lemma below is summarized
as “one equals finitely many”, i.e. the problem of deciding whether a single polynomial
equation is solvable is equivalent to the same problem for a system of equations.

Lemma 5.2.1 (§1.1, [89]). Let R be an integral domain whose field of fractions is not
algebraically closed. Any formula using ∨ and ∧ can be rewritten as a formula which
does not use these symbols.

In particular, if R is a recursive integral domain whose field of fractions is not
algebraically closed, then the decidability of Hilbert’s Tenth Problem is equivalent to
the decidability of the positive existential theory of R. Moreover, in the context which
is relevant for the following chapter, we find that the restriction to positive existential
formulas is unnecessary.

Theorem 5.2.2 (Theorem 4.2, [88]). Let L ⊆ Q be a field. Any formula over OL
(resp. L) using the symbol ¬ can be rewritten as an equivalent positive formula.

5.3 Definability
One of the key techniques for showing undecidability is known as definability. In particular,
we are concerned with the following.
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Definition 5.3.1. Let R ⊆ S be rings. We say that S is existentially, universally, or
first-order definable in S if there is a formula φ(x) of the appropriate form such that for
all x ∈ S, φ(x) holds if and only if x ∈ R.

With this definition the following is immediate:

Lemma 5.3.2. Let R ⊆ T be rings, and suppose that R is first-order definable in S. If
the first-order theory of R is undecidable, then the same is true for S. The same result
holds when “first-order” is replaced by “existential” in all cases.

For example, suppose L ⊆ Q is a field. If there is a formula φ(X) such that for any
x ∈ L, φ(x) holds if and only if x ∈ OL, then we can reduce problems of decidability for
L to the same problem for its ring of integers. Using this idea in the context of first-order
decidability is a key component of Chapter 7. On the other hand, proving that this
strategy rarely works for proving the existential undecidability of fields is the content of
Chapter 6, where we will explicitly show (in a precise topological sense) that for most
fields L ⊆ Q, the ring of integers OL is neither existentially nor universally definable in
L.
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Chapter 6 |
Undefinability and Topology

6.1 Main result and comparison to prior work
As outlined in the previous chapter, we are primarily motivated by Hilbert’s Tenth Prob-
lem and its generalizations, with an eye towards the important technique of definability.
Recall that if Z is existentially definable in Q, then a reduction argument shows that
Hilbert’s Tenth Problem for Q must be undecidable. However, if Mazur’s Conjecture
holds, then Z is actually not existentially definable in Q. Proving this unconditionally
currently appears to be out of reach. In fact, it seems generally very difficult to prove
undefinability results for individual fields. One example of success is the field of all totally
real algebraic numbers Qtr. Fried, Haran and Völklein showed that its first-order theory
is decidable [34], while J. Robinson showed that the first-order theory of the ring of all
totally real integers Ztr is undecidable [82]. This difference in decidability implies that
Ztr cannot be first-order definable in the field Qtr. Another example is the ring Z of all
algebraic integers inside Q, which is undefinable by the strong minimality of Q. In both
examples, the facts used for proving undefinability are not remotely close to necessary
conditions for undefinability. Instead, they simply reflect the available pathways for
unconditionally proving undefinability in a limited number of cases.

While it is still an open question whether Z is existentially definable in Q, it is possible
to give a first-order definition of Z in Q, i.e. a definition that uses both existential and
universal quantifiers. This was first done by J. Robinson [80], who generalized this result
to define the ring of integers OK inside any number field K [81]. Later, Rumely [83]
was able to make the definition of the ring of integers uniform across number fields.
Robinson’s definition was improved by Poonen [76] who gave a ∀∃-definition that in every
number field K defines its ring of integers. Following this, Koenigsmann [55] proved that
it is possible to give a universal definition of Z in Q, i.e. a definition that only involves
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universal (∀) quantifiers, and Park extended his result to show that OK is universally
definable in K for every number field K [73]. This raises the question of whether we
can expect universal and first-order definability to continue to hold for many infinite
algebraic extensions of Q.

Currently, first-order definability results are only known for certain classes of infinite
extensions of the rationals. These are usually proved in order to prove the first-order
undecidability of certain infinite extensions via reductions. For example, Videla proved
the definability of the ring of integers over certain infinite algebraic pro-p extensions
of Q [106], while Fukuzaki was able to define the ring of integers in infinite extensions
in which every finite subextension has odd degree and that satisfy certain ramification
conditions [36]. These results were further generalized by Shlapentokh in [91], to which
we refer readers for more extensive background on known results for the first-order
definability and decidability of infinite algebraic extensions of Q. In Shlapentokh’s
framework, all known examples of algebraic extensions of Q with first-order definable
rings of integers can be viewed as relatively small extensions which are somehow “close”
to Q. On the other hand, although first-order definability seems less likely for extensions
which are similarly “far from” Q, very few such examples are known, as mentioned above.

In this chapter, we take the perspective of considering all algebraic extensions of Q
simultaneously. From this vantage point, we prove that OK is both existentially and
universally undefinable in K for “most” algebraic extensions K of Q. To make this notion
precise, we view the set Sub(Q) of subfields of Q as a topological space by considering it
as a subset of 2Q, from which it inherits the product topology. In this topology, every
nonempty open set is non-meager. The precise version of our theorem then can be written
as follows:

Theorem 6.1.1. The set of algebraic extensions K of Q for which OK is existentially
or universally definable is a meager subset of Sub(Q).

In particular, there are uncountably many algebraic extensions K of Q for which the
ring of integers OK is neither existentially nor universally definable in K. While our
initial interest in this area came from questions about the definability of rings of integers
in fields, our proofs never use the fact that the definable set in question is a ring, and the
most general version of our theorem, stated below as Theorem 6.5.9, concerns definability
for arbitrary subsets of algebraic fields. After seeing one of the authors speak on these
results, Philip Dittmann and Arno Fehm generalized Theorem 6.1.1 in a different way,
in [24], improving “existentially or universally definable” to “definable,” using the fact
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that OK forms a ring. Their proof uses techniques from model theory, entirely different
from those employed here.

Our original motivation, following [69], was to obtain Theorem 6.1.1 for the quotient
space Sub(Q)/∼= which only considers fields up to isomorphism. This goal is achieved in
Corollary 6.5.15 as a consequence of Theorem 6.1.1. However, the topology on Sub(Q)
is itself quite natural, and coincides (via the Galois correspondence) with the Vietoris
topology on the space of closed subgroups of Gal(Q/Q). We thank Florian Pop for
pointing out this connection to us, and for alerting us that the same topology appears
in [77], where it is called the strict topology. The topology has also been used by other
authors: for examples, see [32,33,38,43].

To prove this theorem, we study the existential definability of infinite sets Z ⊆ Q
whose complement is not thin, in the sense of Serre. The necessary background of
algebraic number theory, arithmetic geometry and thin sets is recalled in Section 6.2.
In order to prove the main theorem, we introduce a notion of rank in Section 6.3 that
formalizes which existential formulas are the “simplest.” In particular, rank is a well-
ordering of existential formulas, so if Z is existentially definable in Q over some field
L ⊆ Q, then there is a formula of minimal rank which does the job. By studying such
minimal-rank formulas in Section 6.4, we deduce a convenient normal form for existential
definitions; see Theorem 6.4.8. Finally, we introduce the topological spaces of Sub(Q)
and Sub(Q)/∼= in Section 6.5, and use the normal form to deduce the main result via
Hilbert’s Irreducibility Theorem. In fact, the proof also leads to an algorithm which,
given a basic open subset U ⊆ Sub(Q), produces a computable field L ∈ U in which the
ring of integers OL is neither existentially or universally definable; see Theorem 6.5.12.

6.2 Background from number theory
In this section, we will recall some of the basic facts that we will require for fields,
thin sets, and affine varieties. Readers can find additional background in the books of
Lang [57], Serre [85] and Liu [62], respectively.

6.2.1 Field extensions and the irreducibility of polynomials

In the material that follows, we will be presented with the following question: Given
number fields F ⊆ K, which field extensions of F contain elements of the complement
K \ F ? This question is intimately related to the irreducibility of polynomials. First, we
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recall a basic result on the irreducibility of multivariable polynomials.

Lemma 6.2.1. If K/F is an extension of fields within a larger field L, and z ∈ L is
algebraic over F with F (z) ∩K 6= F , then the minimal polynomial h(Z) of f over F
must be reducible over K.

Proof. By hypothesis 1 < [F (z) ∩K : F ], so

[F (z) : F (z) ∩K] < [F (z) : F (z) ∩K] · [F (z) ∩K : F ] = [F (z) : F ].

From this it follows that h(Z) must factor over F (z)∩K, so it certainly also factors over
the larger field K.

The next proposition forms a kind of converse to Lemma 6.2.1 when K/F is a finite
Galois extension. Given an algebraic function field E = Frac(F [Y0, Y1, . . . , Ym]/(f))
where f ∈ F [Y0, Y1, . . . , Ym] is an irreducible polynomial, the constant field of E is the
set of elements which are algebraic over F .

Proposition 6.2.2. Let F be a number field, and K a finite Galois extension of F . If
m ≥ 0 and f ∈ F [Y0, Y1, . . . , Ym] is an irreducible polynomial that becomes reducible in
K[Y0, Y1, . . . , Ym], then the constant field of E = Frac(F [Y0, Y1, . . . , Ym]/(f)) is larger
than F . In particular, there is an element z ∈ E \ F such that there is an F -linear field
embedding of F (z) into K with the image of z lying in K \ F .

Proof. Assume without loss of generality that Ym appears nontrivially in f , and write
L = F (Y0, Y1, . . . , Ym−1). We will view E = L(θ) for an element θ in the algebraic closure
L with minimal polynomial f . Similarly consider K to be an extension of F inside L.

Suppose that E contains no elements of K \ F . Then E ∩K = L ∩K = F , and a
basic theorem of Galois theory [57, Theorem 1.12] implies the following because K is a
Galois extension of F :

[EK : E] = [K : E ∩K] = [K : F ] = [K : L ∩K] = [LK : L].

Using the diamond written below, we deduce that [E : L] = [EK : LK]. Importantly,
these field extension degrees are also the degrees of the minimal polynomial of θ over L
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and LK, respectively.

EK

LK E

L

This shows that f remains irreducible over the field L = K(Y0, Y1, . . . , Ym−1) as a
polynomial in Ym. We claim that f is actually irreducible as an element of the ring
K[Y0, Y1, . . . , Ym], which contradicts the hypothesis. To prove this, it only remains
to show that the coefficients of f lying in K[Y0, . . . , Ym−1] have no common factor;
see [57, IV.2.3]. Clearly, as a polynomial in Ym, the coefficients of f lying in F [Y0, . . . , Ym]
have no common factor over F because f is irreducible over F . In fact, this implies that
the coefficients also have no common factor over any algebraic extension of F by the
following lemma, which completes the proof.

Lemma 6.2.3. Let F be a field and let F ′ be a separable extension. If f0, f1, . . . , fk are
a collection of polynomials in F [Y0, . . . , Ym] with no common factor, then f0, . . . , fk also
have no common factor over the extension F ′.

Proof. By writing f0, . . . , fk in terms of their irreducible factors, we can reduce without
loss of generality to the case of two irreducible polynomials f0, f1 ∈ F [Y0, . . . , Ym]. Indeed,
for every irreducible factor p of f0, there is a polynomial fj for 1 ≤ j ≤ m which is not
divisible by p, and it suffices to show that the irreducible factors of fj remain relatively
prime to p over the larger field F ′.

Notice that irreducible polynomials f0 and f1 are relatively prime over F if and only
if f0f1 generates a radical ideal in F [Y0, . . . , Ym], i.e. if and only if F [Y0, . . . , Ym]/(f0f1)
is a reduced ring. The latter condition is stable under separable field extensions, i.e.
F ′[Y0, . . . , Ym]/(f0f1) is also reduced; see [62, Proposition 3.2.7.(b)]. Therefore f0 and f1

have no common factors over F ′.

6.2.2 Dimensions of rings and affine varieties

We will require a usable notion of dimension, which can equivalently be viewed as a
geometric or algebraic phenomenon. In particular, there are related notions of the
dimension of a commutative ring A, and the dimension of the associated topological
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space SpecA consisting of all prime ideals of A with the Zariski topology. In this section,
we will review some basic facts of commutative algebra and algebraic geometry, limiting
the discussion to only what is necessary for our purposes.

First, let us recall this topology and some basic notation. Given a commutative ring
A, the set SpecA is endowed with the Zariski topology by defining the following as basic
closed and open sets, respectively. For any ideal I ⊆ A, we define V (I) to be the subset
of SpecA consisting of all prime ideals that contain I, and D(f) = SpecA \V (f). Notice
that it is natural via the isomorphism theorems for rings to identify V (I) with SpecA/I .
With this notation, the closed subsets of SpecA in the Zariski topology are precisely the
sets of the form V (I) where I ⊆ A is an ideal, and sets of the form D(f) for f ∈ A form
a base for the open subsets of SpecA. In fact, SpecA is an affine scheme, meaning that
it has even more structure than just a topology, although we will not require this full
structure; see [62, Chapter 2] for more background.

In this chapter, we consider the ring A = F [Y0, . . . , Ym] and its quotients, where
F is a subfield of Q. An affine variety over F is an object of the form V (I) =
SpecF [Y0, . . . , Ym]/I for some m ≥ 0 and some ideal I ⊆ F [Y0, Y1, . . . , Ym]. Furthermore,
if the quotient F [Y0, . . . , Ym]/I is an integral domain, then the corresponding affine variety
is called integral. We will write V (I) = V (f1, . . . , fk) when the ideal I ⊆ F [X, Y1, . . . , Ym]
is generated by {f1, . . . , fk}. If there is ambiguity about the base field, then we will write
VF instead of V for clarity.

Given an affine variety V = SpecF [Y0, . . . , Ym]/I, the rational points of V (over
F ) are the tuples (y0, . . . , ym) ∈ Fm such that f(y0, . . . , ym) = 0 for all f ∈ I. The
set of rational points can be identified with the set of all F -algebra homomorphisms
ϕ : F [Y0, . . . , Ym]/I → F . We refer the reader to [62, Section 2.3.2] for more details. As we
are frequently working over non-algebraically closed fields, it is possible for nontrivial affine
varieties to have no rational points, such as the affine variety SpecQ[Y0, . . . , Ym]/(Y 2

0 +
· · ·+ Y 2

m + 1) for any m ≥ 0. We can view the varieties as geometric objects which help
us find and describe the rational points.

The Krull dimension of a ring A, written dimA, is the supremal length r of a chain
of prime ideals p0 ( · · · ( pr in A. Similarly, given a topological space X, we define
dimX to be the supremal length r of a chain of irreducible closed subsets Z0 ( · · · ( Zr

in X. The following proposition equates these two notions of dimension. Recall that the
nilradical of a commutative ring is the set of all nilpotent elements, or equivalently the
intersection of all prime ideals.

Proposition 6.2.4 (Proposition 2.5.8, [62]). Let A be a (commutative) ring and let N
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be the nilradical of A. Then dim SpecA = dimA = dimA/N .

In our applications, we need to understand the dimension of subsets of affine varieties.
Recall that if X is any topological space and Y is any subset of X endowed with the subset
topology, then dim Y ≤ dimX [62, Proposition 2.5.5]. In the context of affine varieties
and open subsets, this inequality is often an equality due to the fact that open subsets
in the Zariski topology are “large”. This idea is formulated precisely in the following
proposition. Given a field extension L/F , we write trdegF L for the transcendence degree
of L over F . If X = SpecA is an integral affine variety, we call Frac(A) the function
field of X.

Proposition 6.2.5 (Proposition 2.5.19, [62]). If X = SpecA is an integral affine variety
over a field F , then

dimU = dimX = trdegF Frac(A)

for any nonempty open subset U ⊆ X.

Similarly, it is helpful to know when a subset of a topological space X has strictly
smaller dimension than X. In contrast to the result immediately above, this often
happens for proper closed subsets of an affine variety.

Proposition 6.2.6 (Corollary 2.5.26, [62]). Let X = SpecA be an integral affine variety.
If f ∈ A is nonzero, then every irreducible component of V (f) has dimension dimX − 1.
In particular, every proper closed subset of X has strictly smaller dimension than X.

So far in this section, the definition of dimension depends on the base field F ⊆ Q,
a priori. However, the result below clarifies that dimension stays the same under base
extension. This allows us to ignore the field of definition to some extent, especially when
defining the rank of a formula below, although the notion of integrality truly does depend
on the base field, so care is still required when applying the previous two propositions.

Proposition 6.2.7 (Proposition 3.2.7, [62]). Let F ⊆ L ⊆ Q be fields. Given an affine
variety VF (f1, . . . , fk) = SpecF [Y0, . . . , Ym]/(f1, . . . , fk), the affine variety

VL(f1, . . . , fk) = SpecL[Y0, . . . , Ym]/(f1, . . . , fk)

is the base extension of the variety VF (f1, . . . , fk) to L, and these affine varieties have
the same dimension.
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To apply this proposition to open sets, we remark that open sets can be equivalently
viewed as affine varieties themselves, albeit in a different ambient space with an extra
variable.

Corollary 6.2.8. Let F ⊆ Q be a field. For polynomials g, f1, . . . , fk ∈ F [Y0, . . . , Ym],
define A = F [Y0, . . . , Ym]/(f1, . . . , fk) and let Ag be the localization of A be the element
g. Then there are isomorphisms of ringed topological spaces

VF (f1, . . . , fk) ∩D(g) ∼= Spec(Ag) ∼= VF (f1, . . . , fk, Ym+1g − 1).

In particular, dim VF (f1, . . . , fk) ∩D(g) = dim VL(f1, . . . , fk) ∩D(g) for any algebraic
extension of fields L ⊇ K.

Proof. The first isomorphism is [62, Lemma 2.3.7]. The second isomorphism actually
follows from a well-known isomorphism of underlying rings

Ag ∼= F [Y0, . . . , Ym+1]/(f1, . . . , fk, Ym+1g − 1);

see [79, Lemma §6.2]. Therefore, the statement on dimension follows immediately from
Proposition 6.2.7.

6.2.3 Thin sets

Hilbert’s Irreducibility Theorem can take many different forms, but we put a simple
version here that suffices for the purposes of this article. For brevity, we present thin sets
as a black box, and refer the reader to [85, Prop. 3.3.5] for more details. Essentially, a
thin subset T ⊆ K of a number field is small, in the view of arithmetic geometry. For
example, any set of points that is contained in a closed subvariety of affine n-space Kn,
and which is different from the entire space, is thin with respect to K. All necessary
details can be deduced from the results we recall below .

Theorem 6.2.9 (Hilbert’s Irreducibility Theorem). Let f(Y0, Y1, . . . , Ym) be a polynomial
with coefficients in a number field K which is irreducible as an (m+1)-variable polynomial.
There exists a thin set T ⊆ Km such that if (y1, . . . , ym) ∈ Km \ T , then f(Y0, y1, . . . , ym)
is an irreducible single-variable polynomial of degree degY0(f).

In order for the theorem above to be non-trivial, we need to know that Km is not
a thin subset of itself, and this is indeed true for all number fields [85, Prop 3.4.1].

71



Moreover, the propositions below show that thin sets cannot contain arithmetically
important subsets, which will allow us to use Hilbert’s Irreducibility Theorem in the
cases we care about.

Proposition 6.2.10 (Proposition 3.2.1, [85] ). If L/K is a finite extension of fields and
T ⊆ Lm is thin with respect to L, then T ∩Km is thin with respect to K.

Proposition 6.2.11. If K is a number field, then no thin subset of K contains either Z
or Q \ Z.

Proof. Thin sets of Q cannot contain Z or Q \ Z by [85, Theorem 3.4.4] and [85, Prop.
3.4.2], respectively. Thus, the result for arbitrary number fields follows from Proposition
6.2.10.

Moreover, we can understand thin sets in products. This lemma will be used to show
that if a set Z ⊆ Q is not thin, then the product Z ×Qn cannot be thin, either.

Lemma 6.2.12. If n ≥ 0 and S ⊆ Q is a set such that S × Qn ⊆ Qn+1 is thin, then
S ⊆ Q is thin.

Proof. There is a line L ⊆ Qn+1 such that L∩ (S×Qn) is thin in L and the projection of
L to the first coordinate is all of Q [85, Proposition 3.2.3]. As L is a line, this projection
is an isomorphism and L ∩ (S × Qn) maps onto to the set S. Therefore, S is thin in
Q.

Finally, we prove a proposition that lets us stitch this material together. This is
ultimately the result that is required in the proof of our main theorem.

Proposition 6.2.13. Let K be a number field and let f(X, Y1, . . . , Ym), g(X, Y1, . . . , Ym) ∈
K[X, Y1, . . . , Ym] be relatively prime irreducible polynomials. Then there is a thin set
T ⊆ Km such that f(x, y1, . . . , ym−1, Y ) and g(x, y1, . . . , ym−1, Y ) are relatively prime
irreducible single-variable polynomials for every (x, y1, . . . , ym−1) ∈ Km \ T , of degrees
degYm

(f) and degYm
(g), respectively.

Proof. Take T0 to be the union of the two thin sets given by applying Hilbert’s Irre-
ducibility Theorem to f and g separately. By construction, f(x, y1, . . . , ym−1, Y ) and
g(x, y1, . . . , ym−1, Y ) are irreducible polynomials in Y for every (x, y1, . . . , ym−1) ∈ Km\T0,
and it only remains to check the claim of relative primality.

If degYm
(f) 6= degYm

(g), then this claim is trivial. Therefore, write d = degYm
(f) =

degYm
(g), and consider (x, . . . , ym−1) ∈ Km\T . Since the polynomials f(x, y1, . . . , ym−1, Y )
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and g(x, y1, . . . , ym−1, Y ) are irreducible, the failure of relative primality implies that
they are unit multiples of each other, i.e., f(x, y1, . . . , ym−1, Y ) = zg(x, y1, . . . , ym−1, Y )
for some nonzero z ∈ K. In particular, if we write

f(X, Y1, . . . , Ym) =
d∑
i=0

fi(X, Y1, . . . , Ym−1)Y i
m,

g(X, Y1, . . . , Ym) =
d∑
i=0

gi(X, Y1, . . . , Ym−1)Y i
m,

where fi, gi ∈ K[X, Y1, . . . , Ym−1] are polynomials, then this condition is the same as

fi(x, y1, . . . , ym−1) = zgi(x, y1, . . . , ym−1)

for all 0 ≤ i ≤ d. Multiplying these conditions together, we get the equations

figj = zgigj = gifj

for 0 ≤ i, j ≤ d. We will show that this system of equations holds only inside a thin set,
which completes the proof.

We claim that the polynomial

fi(X, Y1, . . . , Ym−1)gj(X, Y1, . . . , Ym−1)− gi(X, Y1, . . . , Ym−1)fj(X, Y1, . . . , Ym−1)

is nonzero for some choice of i and j. Indeed, if this were not the case, then we would
find that

fi(X, Y1, . . . , Ym−1)g(X, Y1, . . . , Ym) =
d∑
j=0

fi(X, Y1, . . . , Ym−1)gj(X, Y1, . . . , Ym−1)Y j
m

=
d∑
j=0

gi(X, Y1, . . . , Ym−1)fj(X, Y1, . . . , Ym−1)Y j
m

= gi(X, Y1, . . . , Ym−1)f(X, Y1, . . . , Ym)

for all i. As g and f are irreducible and the only polynomials on the left and right sides
of the equation containing the variable Ym, we conclude that they are unit multiples of
each other, which contradicts the hypothesis of relative primality.
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Therefore, let T1 be the set of all K-rational points on the affine variety

VK({figj − gifj : 0 ≤ i < j ≤ degYm
(f)}).

Since one of the polynomials in the defining set is nonzero, the affine variety is a proper
closed variety, which implies that T1 is a thin set by definition. By construction, the set
T = T0 ∪ T1 is the desired thin set.

6.3 Rank of a Formula
The goal of this section is to define a notion of rank for existential formulas in the
language of fields, using degrees of polynomials and dimensions of varieties, as well as the
number of ∃-quantifiers used. Certain formulas will have the same rank, just as certain
polynomials have the same degree. Crucially, the ranks are well-ordered.

6.3.1 A useful well-ordering

Definition 6.3.1. Let (L, <) be a linear order. For a finite tuple (a0, . . . , an) ∈ L<ω,
write ~a∗ for the tuple of the same (n+ 1) elements (including repetitions) arranged in
<-descending order: ~a∗ = (aα(0), . . . , aα(n)) where α is a permutation and aα(i+1) ≤ aα(i)

for all i < n. Write ~a =∗ ~b just if ~a∗ = ~b∗.
Then the ∗-order (L∗, <∗) is the lexicographic order <∗ (defined using < on individual

coordinates) on the set L∗ of =∗-equivalence classes in L<ω. To be clear: if ~a∗ is a proper
initial segment of ~b∗, then ~a∗ <∗ ~b∗.

Equivalently, one can view the elements of L∗ as finite multisets of elements of L,
with the elements of each multiset listed in <-nonincreasing order.

Lemma 6.3.2. If (L, <) is a well order, then so is (L∗, <∗).

Proof. Clearly <∗ is a linear order. If it were not a well order, there would be a least
a ∈ L such that some infinite <∗-descending sequence begins with an ~a∗ whose greatest
element is a. Choose such an ~a∗ = (ak, a1, . . . , an), in nonincreasing order with a1 < a

after a appears k times, with k as small as possible (and allowing n = 0). Then the
infinite descending sequence beginning with this ~a∗ can only have finitely many terms
that begin with ak, for if there were infinitely many, then by “chopping off” the ak from
each term, we would get an infinite sequence contradicting the choice of a. But then,
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immediately after the last term beginning with ak comes a term beginning with aj for
j < k, and this term also begins an infinite descending sequence in L∗, contradicting
either the minimality of k (if j > 0) or the minimality of a (if j = 0).

6.3.2 Definition of rank

We present an explicit way to put a well-ordering on the set of existential formulas with
parameters in any given field. This is done by associating a rank to every existential
formula.

Any existential formula α(X) can be written in disjunctive normal form

α(X) = ∃~Y (α1 ∨ α2 ∨ · · · ∨ αn),

where each αi(X, ~Y ) is a conjunction of equations and inequations. Bringing the existential
quantifiers inside the disjunctions and discarding any unused quantifiers, any existential
formula can be rewritten as

((∃Y1 · · · ∃Ym1)α1) ∨ · · · ∨ ((∃Y1 · · · ∃Ymn)αn),

where all variables Y1, . . . , Ymi
appear in αi. One can also easily rearrange any αi(X, ~Y )

into a conjunction of the form

f1(X, ~Y ) = · · · = fk(X, ~Y ) = 0 & g(X, ~Y ) 6= 0.

Only one inequation g 6= 0 is needed, as several gi(X, ~Y ) could be multiplied together. It
is allowed for g to be the constant 1. We call an existential formula rankable if it is given
in the above format. It is trivial to rearrange any existential formula into rankable format,
so in this chapter any existential formula which appears is assumed to be rankable.

Before defining rank, we present a way to order tuples of polynomials. Notice that
this notion depends on a specific order for the variables.

Definition 6.3.3. For the variables X, Y1, . . . , Ym, the multidegree of a monomial
XcY d1

1 · · ·Y dm
m is (c, d1, . . . , dm), and these (m + 1)-tuples are ordered by the reverse

lexicographic order. The multidegree mdeg(f) of a polynomial f is the maximum of the
multidegrees of each monomial appearing (with nonzero coefficient) in it.

Observe that the linear order defined above on multidegrees is a well-ordering.

75



Definition 6.3.4. A basic rankable formula is an existential formula of the form

∃Y1 · · · ∃Ym [f1(X, Y1, . . . , Ym) = · · · = fk(X, Y1, . . . , Ym) = 0 & g(X, ~Y ) 6= 0],

and the rank of such a formula is the triple

rk(β) = (m, e, (mdeg(f1), . . . ,mdeg(fk))∗),

where the second component is the dimension e of VQ(~f)∩D(g), as defined in Section 6.2.2,
and the third component uses the =∗-classes of tuples of multidegrees, as in Definition
6.3.1.

In this definition, we see that VQ(~f)∩D(g) is a subset of an ambient space of dimension
m+ 1. Therefore, the first coordinate of the definition of rank can be equivalently viewed
as a measure of the dimension of this ambient space. Additionally, by Corollary 6.2.8,
the base field does not matter in the definition of the dimension e, so we will usually
drop the Q from this notation.

We define an order ≺ on ranks of basic rankable formulas in forwards lexicographic
order, meaning that

(m, e, (d1, . . . , dk)∗) ≺ (m′, e′, (d′1, . . . , d′k′)∗)

if and only if one of the following holds:

• m < m′, i.e., the first formulas uses fewer ∃-quantifiers; or

• m = m′ and e < e′, so the first formula defines an open variety of lesser dimension
than the second; or

• m = m′ and e = e′ and (d1, . . . , dk)∗ <∗ (d′1, . . . , d′k′)∗, so the first formula uses
polynomials of lower multidegree.

The least possible rank of a (satisfiable) basic rankable formula is (0, 0, (1)∗), which
is the rank of the quantifier-free formula X = x for any specific value x: here m = 0,
k = 1 and the variety, which has a single component whose dimension is 0, is defined by
f1 = X − x = 0 whose multidegree (in the single variable X, since m = 0) is simply 1.
(The variety defined by 0 = 0 has dimension 1, so the formula 0 = 0 has higher rank.)

Let R denote the set of all possible ranks of basic rankable formulas. Then (R,≺)
is a well-ordering. (The third component of ≺ is well-ordered by Lemma 6.3.2.) Let
(R∗,≺∗) be the result of applying Definition 6.3.1 to (R,≺).
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Observe that an existential formula is rankable if and only if it is the finite disjunction
of basic rankable formulas.

Definition 6.3.5. If α = ∨ri=1βi is a rankable formula, the rank of α is defined to be

rk(α) = (rk(β1), . . . , rk(βn))∗ ∈ R∗

The rankable formulas can then be compared using the ordering ≺∗. By Lemma 6.3.2,
(R∗,≺∗) is a well-order.

6.4 Minimal formulas and hypersurfaces
The well-ordering of ranks means that every nonempty set of existential formulas has an
element of minimal rank. For example, if there exists an existential formula that defines
OL in L, then there is an existential formula α that accomplishes this which has minimal
rank among all such formulas. Such a formula can be considered a minimal successful
formula. This motivates the following general definition.

Definition 6.4.1. For a field L ⊆ Q and an existential formula α(X) with coefficients
from L, we say α is L-minimal if α has minimal rank among all existential formulas α′

for which
∀x(α(x) ⇐⇒ α′(x))

holds over L.

In order for the above to make sense, α′ ranges only over those existential formulas
which have coefficients from L. We will show that any L-minimal formula must take the
form of a disjunction of formulas with two very simple formats: quantifier-free formulas,
and formulas with only one equation and one inequation.

We will start by considering a general rankable formula, then minimize it as much
as possible. First, we want to minimize the number of quantifiers, which is the first
component of rank. Clearly, we can eliminate the quantifier for any variable that does
not appear in any polynomial of the formula. The following simple lemma allows us also
to remove any variables that appear in the inequation, but none of the equations.

Lemma 6.4.2. Let 1 ≤ e < m and let δ(X) be the basic rankable existential formula

∃Y1 · · · ∃Ym [f1(X, Y1, . . . , Ye) = · · · = fk(X, Y1, . . . , Ye) = 0 6= g(X, Y1, . . . , Ym)],
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where fi ∈ F [X, Y1, . . . , Ye] and g ∈ F [X, Y1, . . . , Ym] for some field F .
Then there are polynomials g1, . . . , gr ∈ F [X, Y1, . . . , Ye] such that δ(X) is equivalent

over F to the disjunction of formulas

∨ri=1∃Y1 · · · ∃Ye [f1(X, ~Y ) = · · · = fk(X, ~Y ) = 0 6= gi(X, ~Y )].

Proof. Write out g = ∑dm
i=0 gi(X, Y1, . . . , Ym−1)Y i

m as a polynomial in Ym. Notice that if
(x, y1, . . . , ym−1) ∈ Qm is any tuple, then there is a ym ∈ Q such that g(x, y1, . . . , ym) 6= 0
if and only if gi(x, y1, . . . , ym−1) 6= 0 for some 0 ≤ i ≤ dm. Therefore, we can remove the
quantifier for Ym and instead use a disjunction where g is replaced by gj for 0 ≤ j ≤ dm

in each formula. By induction, this completes the proof.

To continue minimizing the number of quantifiers, we can take a more geometric
perspective. A basic rankable formula β(X) with m quantifiers

∃Y1 · · · ∃Ym [f1(X, ~Y ) = · · · = fk(X, ~Y ) = 0 6= g(X, ~Y )]

corresponds to the projection to the X-coordinate of the points on the variety D(g) ∩
V (f1, . . . , fk). Minimizing the number of quantifiers m is equivalent to minimizing the
dimension m + 1 of the ambient space where the variety lives. If k is large, then we
expect the dimension e of the variety to be much smaller than m+ 1, and we can consider
this “wasteful,” as it uses more variables than necessary. The following proposition uses
a basic result of algebraic geometry to show that, in a special case with integral affine
varieties, we only need m = e quantifiers and a single equation to describe all but a
lower-dimensional closed subset. To complete the section, we will the show that this is
enough to deduce the result in general.

Proposition 6.4.3. Let F ⊆ Q be a field and p = (f1, . . . , fk) ⊆ F [X, Y1, . . . , Ym] a
prime ideal. Define β(X) to be the formula

β(X) = ∃Y1, . . . , Ym[f1(X, Y1, . . . , Ym) = · · · = fk(X, Y1, . . . , Ym) = 0]

and set e = dim VF (p). If β(X) is satisfied by infinitely many values of X in Q and e ≤
m− 1, then after possibly reordering indices, there are polynomials h ∈ F [X, Y1, . . . , Ye]
and s ∈ F [X, Y1, . . . , Ye−1] with h irreducible and s 6∈ p such that β(X) is equivalent to
γ1(X) ∨ γ2(X) over F , where

γ1(X) =∃Y1 · · · ∃Ye [h(X, . . . , Ye) = 0 6= s(X, ~Y )],
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γ2(X) =∃Y1 · · · ∃Ym [s(X, . . . , Ym) = f1(X, . . . , Ym) = · · · = fk(X, . . . , Ym) = 0].

Proof. Write L = Frac(F [X, Y1, . . . , Ym]/p). By Proposition 6.2.5, we know that e is
equal to the transcendence degree of L over F . Since the images of {X, Y1, . . . , Ym}
generate L over F , there is a transcendence basis consisting of a subset of these elements,
and we can force X̄ to be in this basis because X̄ is not algebraic over F [57, Theorem
VIII.1.1]. Indeed, if X̄ were algebraic over F , then it would be the root of a single-variable
polynomial over F , and therefore β(X) would only be solvable over Q by finitely many
X, which is not the case by hypothesis.

Reorder the variables so that {X̄, Ȳ1, . . . , Ȳe−1} is a transcendence basis of L over F .
Write L0 = F (X, Y1, . . . , Ye−1). Although a particular ordering of the variables is used
when defining the multidegree component of rank in Definition 6.3.4, we will produce
lower-rank formulas purely in terms of quantifiers and dimension, and therefore the
multidegree will not matter here. As L is a finite separable extension of L0, the primitive
element theorem states that L = L0(θ) for a single element θ. Write h ∈ L0[Y ] for
the minimal polynomial of θ. By clearing denominators if necessary, we can assume
without loss of generality that h ∈ F [X, Y1, . . . , Ye−1, Y ] is an irreducible multivariable
polynomial. Therefore, writing p = (f1, . . . , fk), we have an isomorphism of fields:

L0[Ye, . . . , Ym]/(f1, . . . , fk) ∼= L ∼= L0[Y ]/(h) ∼= Frac(F [X, Y1, . . . , Ye−1, Y ]/(h)).

Geometrically, this says that the integral affine variety VF (p) is birational to the hyper-
surface VF (h). In fact, we can see that the two varieties contain isomorphic open sets, as
follows.

Using the isomorphism of fields we can write Yj = ∑Nj

`=0 cj,`Y
` for every ep ≤ j ≤ m,

and Y = ∑
~a d~aY

a0
ep . . . Y

am−ep
m , where cj,` and d~a are elements of L0, and in particular

not contained in p because L0 is a subfield of the function field of VF (p). Let s be
the products of all denominators appearing in these terms. Then these equations give
an isomorphism of the open sets VF (p) ∩D(s) and VF (h) ∩D(s); see [62, Lemma 3.7].
Moreover, the X-coordinate of rational points is unchanged by the isomorphism because
we included X in the transcendence basis. As VF (p) = (VF (p) ∩ D(s)) ∪ VF (p + (s)),
this proves the claim that the formula β is equivalent over F to the disjunction stated
above.

Next we show that minimal formulas all have a very convenient structure.
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Proposition 6.4.4. If α(X) = ∨ri=1βi(X) is the disjunction of basic rankable formulas
which is L-minimal for some field L ⊆ Q, then each βi(X) has one of the following
forms:

(i) The quantifier-free formula X = z0 for a fixed z0 ∈ L.

(ii) The “hypersurface formula”, ∃Y1 . . . ∃Ye [f(X, Y1, . . . , Ye) = 0 6= g(X, Y1, . . . , Ye)]
for an irreducible f ∈ L[X, Y1, . . . , Ye] and a polynomial g ∈ L[X, Y1, . . . , Ye].

Proof. Let β(X) be a fixed βi(X) which does not have the desired form. Write β in the
form

∃Y1 · · · ∃Ym [f1(X, . . . , Ym) = · · · = fk(X, . . . , Ym) = 0 6= g(X, ~Y )]

and consider the ideal I = (f1, . . . , fk). Define e = dim V (I) ∩D(g). Without loss
of generality, we can assume that each fi is irreducible. Otherwise, if f1 = h1h2 is a
nontrivial factorization, then we could write β as the disjunction of two formulas with f1

replaced by h1 or h2, respectively, which have smaller multidegree.
Since f1 is irreducible, VL(I) is a closed subset of the integral affine variety VL(f1)

which has dimension dim VL(f1) = m by Proposition 6.2.6. In fact, we see that either
V (f1) = V (I), in which case we are done, or we have

e = dim V (I) ∩D(g) ≤ dim V (I) < dim V (f1) = m.

By assumption, we are in the latter case, and we will produce a set of formulas with
parameters in L which explicitly contradicts the minimality of α.

The ideal I has a primary decomposition I = q1 ∩ · · · ∩ qr where each qi is a primary
ideal associated to a prime ideal pi. Indeed, the rational points on V (I) ∩D(g) are the
same as the rational points on ∪ri=1V (pi) ∩D(g). Notice that the open set V (pi) ∩D(g)
might be empty for some i, but whenever it is nonempty, V (pi) ∩ D(g) has the same
dimension as V (pi) by Proposition 6.2.5.

To summarize, we have shown that the formula β(X) is equivalent to the disjunction
∨ri=1δpi

(X) where each δpi
(X) is defined as a formula

δpi
(X) = ∃Y1, . . . , Ym[pi1(X, ~Y ) = · · · = pin(i)(X, ~Y ) = 0 6= g(X, ~Y )],

where pi = (pi1, . . . , pin(i)). For each i, we will replace δpi
(X) itself with an equivalent

disjunction of basic rankable formulas, each of which has rank strictly smaller than β.
By definition, this contradicts the minimality of α, and the proof will be done.
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To this end, we analyze the primes S = {p1, . . . , pr} and divide them accordingly. Let
Sfinite be the set of primes p ∈ S such that only finitely many elements of L satisfy δp(X)
in F , and let S∞ be all other primes of S. Partition S∞ = Sbig ∪ Ssmall where

Sbig = {p ∈ S∞ | dim V (p) = e},

Ssmall = {p ∈ S∞ | dim V (p) < e}.

For any prime p ∈ Sfinite, let {z1, . . . , zn} be the finite set of elements of L which
satisfy δp(X) in L. We may therefore replace δp(X) with the disjunction of quantifier-free
formulas ∨ni=1(X−zi). Each of these quantifier-free formulas consisting of a single-variable
polynomial of degree 1 has the smallest rank possible for a nontrivial basic rankable
formula and β(X) has strictly larger rank.

For any p ∈ Ssmall, the formula δp(X) is already of smaller rank than β. Indeed, the
ambient space is the same, and the dimension is strictly smaller by definition.

For any p ∈ Sbig, letting p = (p1, . . . , pn), we apply Proposition 6.4.3 to see that
∃~Y [p1(X, ~Y ) = · · · = pn(X, ~Y ) = 0] is equivalent to the disjunction of two formulas

∃Y1 · · · ∃Ye [f(X, . . . , Ye) = 0 6= s(X, ~Y )],

∃Y1 · · · ∃Ym [s(X, . . . , Ym) = p1(X, . . . , Ym) = · · · = pn(X, . . . , Ym) = 0],

where f ∈ L[X, Y1, . . . , Ye] is irreducible and s ∈ L[X, Y1, . . . , Ye−1] is not contained in p.
Thus, δp(X) is equivalent to the disjunction of the following two formulas

∃Y1 · · · ∃Ym [f(X, . . . , Ye) = 0 6= g(X, Y1, . . . , Ym)s(X, Y1, . . . , Ye−1)], (6.1)

∃Y1 · · · ∃Ym [s(X, . . . , Ye−1) = p1(X, . . . , Ym) = · · · = pn(X, . . . , Ym) = 0 6= g(X, ~Y )].
(6.2)

By Lemma 6.4.2, we can replace the formula (6.1) with a disjunction of basic rankable
formulas, each of which uses only e quantifiers. Since e < m, all these formulas have
strictly smaller rank than β.

On the other hand, formula (6.2) has m quantifiers just like β, but we claim the
associated variety has smaller dimension. Indeed, we see that

dim V (p + (s)) ∩D(g) ≤ dim V (p + (s)) < dim V (p) = dim V (p) ∩D(g) = e,

where the strict inequality follows by Proposition 6.2.6. Therefore this formula also has
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strictly smaller rank than β. This completes the proof.

We can say more about the hypersurface formula appearing in the previous result.
First, we present a simple result on elements of the function field of an irreducible
hypersurface.

Lemma 6.4.5. Let F ⊆ Q be a field and f ∈ F [X, Y1, . . . , Ym] an irreducible polynomial
whose degree in Ym is positive. If p̄/q̄ ∈ Frac(F [X, Y1, . . . , Ym]/(f)), then there are lifts
of p and q to F [X, Y1, . . . , Ym] such that degYm

(q) < degYm
(f).

Proof. Write f = ∑d
i=0 biY

i
m where bi ∈ F [X, Y1, . . . , Ym−1]. Choose arbitrary lifts

p0, q0 ∈ F [Y0, . . . , Ym] of p̄ and q̄. If degYm
q0 < degYm

f , then we are already done.
Otherwise, define p1 = bdp0 and q1 = bdq0, which define the same fraction in the function
field because bd, q0 6∈ (f). Then the leading coefficient of q1 is divisible by bd, so we write
it as h1bd for h1 ∈ F [Y0, . . . , Ym−1]. Define q2 = q1 − h1Y

(degYm
q1)−d

m f1, and notice that
degYm

q2 < degYm
q1. Continuing in this way, the claim follows.

Proposition 6.4.6. Suppose L ⊆ Q is a field and β(X) is a formula with coefficients
from L of the following form

β(X) = ∃Y1 . . . ∃Ye[f(X, Y1, . . . , Ye) = 0 6= g(X, Y1, . . . , Ye)]

Suppose β(X) is L-minimal. Then f is absolutely irreducible.

Proof. First, it is clear that f is irreducible in L; if it were reducible then β could be
equivalently expressed as the disjunction of two hypersurface formulas of strictly smaller
rank.

Suppose for contradiction that f is not absolutely irreducible. We will use this fact
to define {x ∈ L : β(x) holds in L} by a smaller rank formula using coefficients from L.

Let F ⊆ L be a number field containing all the coefficients which appear anywhere in
β. Let K be a finite Galois extension of F containing the coefficients of the absolutely
irreducible factors of f over Q, and let F ′ = K ∩ L. Then F ⊆ F ′ ⊆ K, and K is Galois
over F ′ because it was Galois over F . We remark that F ′ is a subfield of L, and therefore
f is irreducible over F ′.

For each of the finitely many number fields E with F ′ ⊂ E ⊆ K, let pE ∈ F ′[Z] be a
minimal polynomial for a primitive generator of E over F ′. Since K is Galois over F ′,
none of these finitely many pE have a root in L. Let h = ∏

E:F ′⊂E⊆K pE.
We claim that L has a lower-ranked formula φ with coefficients from F ′ and with the

property that for all x ∈ L, φ(x) holds over L if and only if β(x) does.
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Let M be the function field of f over F ′. By Proposition 6.2.2, M therefore contains
some element z0 ∈ K \ F ′. Moreover, F ′(z0) is a subfield of K which strictly contains F ′.
So F ′(z0) contains a root z of h.

As an element of M , the root z will be of the form p(X,~Y )+(f)
q(X,~Y )+(f) , with p, q ∈ F

′[X, ~Y ].
We may view p and q as polynomials p, q ∈ F ′[X, Y1, . . . , Ye], modulo the ideal (f). These
polynomials will satisfy

h

(
p(x, ~y)
q(x, ~y)

)
= 0

whenever (x, ~y) is a solution to f = 0 and q(x, ~y) 6= 0. Therefore, every solution
(x, ~y) ∈ Lm+1 to f = 0 has q(x, ~y) = 0.

By Lemma 6.4.5, we may choose our specific q ∈ F ′[X, ~Y ] so that degYe
(q) < degYe

(f).
Notice that q /∈ (f) because q + (f) is the denominator of an element of the function
field, hence nonzero. Below we will consider q as a polynomial of degree d in Ye, writing
q = ∑

i≤d ciY
i
e with all ci ∈ F [X, Y1, . . . , Ye−1]. Without loss of generality, the leading

nonzero coefficient cd does not lie in (f). If it happens that Ye does not appear in q, then
d = 0 and c0 = q.

But now we can use these facts to give a lower-ranked disjunction φ(X) = γ0(X) ∨
γ1(X) which is equivalent to β(X) in L. Since Ye has lower degree in q than in f , the
trick is to use the Euclidean algorithm here, using the leading term in the expansion
f = ∑d1

i=0 Y
i
e · bi(X, Y1, . . . , Ye−1) and writing

r(X, ~Y ) = cd(X, . . . , Ye−1) · f(X, ~Y )− bd1(X, Y1, . . . , Ye−1) · Y d1−d
e · q(X, ~Y )

as a remainder with degYe
(r) < degYe

(q). Recall that the polynomial cd is the coefficient
of Y d

e in q, hence does not involve Ye. Observe also that all coefficients of r are in F ′.
We claim that in this situation, a tuple (x, ~y) ∈ Lm+1 is a point on V (f) ∩D(g) if

and only if one of the following conditions holds:

q(x, ~y) = r(x, ~y) = 0 6= g(x, ~y) · cd(x, y1, . . . , ye−1) (6.3)

or
f(x, ~y) = cd(x, y1, . . . , ye−1) = 0 6= g(x, ~y). (6.4)

To see the claim, first let (x, ~y) be a point on V (f)∩D(g). As shown above, we must
have q(x, ~y) = 0. But the Euclidean equation shows that r(x, ~y) = 0 as well, so the tuple
satisfies one of the conditions, according to whether cd(x, y1, . . . , ym−1) = 0 or not. The
converse of the claim follows by applying the Euclidean equation to the first condition,
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and the latter condition directly defines a subset of V (f) ∩D(g).
The formulas γ0(X) and γ1(X) that we promised above are simply the conditions

in (6.3) and (6.4), each prefixed by ∃Y1 · · · ∃Ye. Clearly these formulas have the same
number of quantifiers as β. The first formula corresponds to a subset V (r, q) ∩D(gcd)
of V (f) ∩D(g) because r + bd1Y

d1−d
e q = cdf . Hence the dimension of the subset cannot

exceed the dimension of V (f) ∩D(g). However, r and q were constructed to have lower
multidegree than f , so γ0 has strictly smaller rank than β.

On the other hand, the affine variety over F ′ defined by the latter formula is a proper
closed subset of V (f), hence

dim V (f, cd)) ∩D(g) ≤ dim V (f, cd)) < dim V (f) = dim V (f)) ∩D(g)

showing that γ1 has strictly smaller rank than β.

Putting these results together yields the following normal form theorem for existential
formulas in algebraic extensions of Q.

Definition 6.4.7. An absolutely irreducible hypersurface formula is a formula of the
form

∃Y1 . . . ∃Ye [f(X, Y1, . . . , Ye) = 0 6= g(X, Y1, . . . , Ye)]

for polynomials f, g ∈ Q[X, Y1, . . . , Ye], where f is absolutely irreducible and does not
divide g.

Theorem 6.4.8 (Normal Form for Existential Definitions). For any field L ⊆ Q, if
A ⊆ L is existentially definable in L, then A is definable in L by a formula of the form

α(X) = ∨ri=1βi(X),

where each βi(X) has one of the following forms:

(i) The quantifier-free formula X = z0 for a fixed z0 ∈ L.

(ii) An absolutely irreducible hypersurface formula with coefficients from L which is
satisfied by infinitely many x ∈ L.

Proof. Apply Propositions 6.4.4 and 6.4.6, plus the following two observations. If f
divides g in any of the hypersurface formulas, then that formula is unsatisfiable. If
a hypersurface formula is satisfied by at most finitely many x ∈ L (including if it is
unsatisfiable), then it could be replaced by a (possibly empty) disjunction of formulas of
the form X = z0, lowering the rank.
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6.5 The meagerness of definability

Recall that by identifying a subset of Q with its characteristic function, we can consider
the set Sub(Q) = {L ⊆ Q : L is a field} as a subset of 2Q, from which it inherits the
product topology. A basis for the topology is given by the sets

U~a,~b = {L ∈ Sub(Q) : a1, . . . an ∈ L and b1, . . . , bk 6∈ L}

for any finite sequences of elements ~a,~b from Q. If ~b is empty, we write simply U~a.
Recall that Cantor space, denoted 2ω, is the set of infinite binary sequences with the

product topology.

Proposition 6.5.1. The space Sub(Q) is homeomorphic to Cantor space.

Proof. Since Sub(Q) is a closed subset of the Cantor-homeomorphic space 2Q, it suffices to
show that Sub(Q) has no isolated points. But it is clear that whenever U~a,~b is non-empty,
there is c ∈ Q such that both U(~a,c),~b and U~a,(~b,c) are nonempty.

The upshot of Proposition 6.5.1 is a structure on the set Sub(Q) which allows us to
describe when a set is “large” or “small” in terms of topology. In particular, we enlist
the notions of meager sets and the property of Baire.

Definition 6.5.2. A subset of a topological space is called nowhere dense if its closure
has empty interior, and meager if it is the countable union of nowhere dense sets. A
topological space is Baire1 if every non-empty open subset is non-meager.

Cantor space 2ω is Baire, and by Proposition 6.5.1 the same is true for Sub(Q), which
allows us to consider meager sets to be small.

Definition 6.5.3. For any Z ⊆ Q, and formula β(X) with coefficients ~a from Q, we
define Sβ(Z) to be the set of algebraic fields in which β defines a subset of Z in Q:

Sβ(Z) = {L ∈ U~a : {x ∈ Q : β(x) holds over L} ⊆ Z}.

Proposition 6.5.4. Let Z be a subset of Q such that Q \ Z is not thin in Q. Then for
every absolutely irreducible hypersurface formula

β(X) = ∃~Y [f(X, ~Y ) = 0 6= g(X, ~Y )]
1Some authors use the terminology Baire space to refer to topological spaces with this property.

However, we reserve the name Baire space for the particular topological space ωω, which is discussed in
related papers, such as [69], although we will not use it in this chapter.
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with coefficients ~a from Q, the set Sβ(Z) is nowhere dense in U~a.

Proof. Let~b and ~c be any sequences of elements ofQ such that U(~a,~c),~b 6= ∅. Let F = Q(~a,~c)
and let K = F (~b). By the application of Hilbert’s Irreducibility Theorem in Proposition
6.2.13, there is a thin set T ⊆ Ke such that for any (x, y1, . . . , ye−1) ∈ Ke \ T , the
polynomial f(x, y1, . . . , ye−1, Ye) is irreducible of degree degYe

(f), and g(x, y1, . . . , ye−1, Ye)
is not divisible by f . Because K is a number field, TQ = T ∩Qe is also a thin set in Qe

by Proposition 6.2.10. Further, since Q \ Z is not thin in Q, the thin set TQ does not
contain all of (Q \ Z) × Qe−1 by Lemma 6.2.12. For any such tuple (x, y1, . . . , ye−1) ∈
(Q \ Z) × Qe−1 outside this thin set, the irreducibility of f(x, y1, . . . , ye−1, Y ) over K
implies that adjoining to F any root y of f(x, y1, . . . , ye−1, Y ) will not generate any
element of K: we will have F (y) ∩K = F , by Lemma 6.2.1. Thus U(~a,~c,y),~b is nonempty.
Additionally, the divisibility condition implies that g(x, y1, . . . , ym−1, y) 6= 0. Therefore,
U(~a,~c,y),b ∩ Sβ(Z) = ∅.

Theorem 6.5.5. The set of all fields L ∈ Sub(Q) such that OL is either existentially or
universally definable in L is meager.

Proof. By Proposition 6.2.11, neither Z nor Q \ Z is thin in Q. Therefore, Proposition
6.5.4 shows that for all absolutely irreducible hypersurface formulas β with coefficients
from Q, the sets Sβ(Z) and Sβ(Q \ Z) are nowhere dense. Let

S =
⋃
β

(Sβ(Z) ∪ Sβ(Q \ Z)). (6.5)

This is a countable union of nowhere dense sets, and is thus meager. We claim that if
L ∈ Sub(Q) \ S, then neither OL nor L \ OL are existentially definable in L.

If OL is existentially definable in L, then it is definable in L by a formula α = ∨i<rβi
in normal form, according to Theorem 6.4.8. This formula also defines Z = Q∩OL inside
Q over L. Because OL is infinite and r is finite, some βi must be a hypersurface formula.
Since L 6∈ Sβi

, there is some x ∈ Q \ Z for which βi(x), and therefore also α(x), holds
over L, contradicting that α defines OL in L.

The same argument applied to L \ OL shows that this set cannot be existentially
definable in L, and thus OL is not universally definable in L.

The proof has shown a slightly stronger consequence.

Porism 6.5.6. Let L ∈ Sub(Q) and suppose A ⊆ L is infinite and either existentially or
universally definable in L. If either A∩Q ⊆ Z or A∩Q ⊆ Q \Z, then L must lie in the
meager set S defined in (6.5) above.
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Corollary 6.5.7. The set of fields L ∈ Sub(Q) such that Z itself is either existentially
or universally definable in L is meager.

We can also use the same approach when considering the definability of subfields.
The set Q is co-thin in itself, so Proposition 6.5.4 does not apply to it. Nevertheless,
Porism 6.5.6 yields a further result about the definability of Q in algebraic field extensions
of itself, and more generally about the definability of number fields.

Corollary 6.5.8. If F is a number field, then the set of fields L ∈ Sub(Q) containing F
such that F has an existential definition in L is a meager set.

Proof. By Park’s generalization [73] of a theorem of Koenigsmann [55], there is a quantifier-
free formula φ(X, Y1, . . . , Yn), in the language of fields, such that ∃~Y φ(X, ~Y ) defines the
algebraic non-integers F \ OF in the field F . In particular, it defines Q \ Z in Q over
F . Now if γ(Y ) is existential and defines F in L, then the following formula with free
variable X,

γ(X) & ∃~Y [ γ(Y1) & · · ·& γ(Yn) & φ(X, ~Y ) ],

is an existential definition of (Q \ Z) in Q over L. By Porism 6.5.6, L ∈ S.

Our initial interest in these questions involved definability of rings of integers in fields,
but the proof of Proposition 6.5.4 never used the fact that Z is a ring. Therefore, we can
apply the same proof to arbitrary subsets Z of Q. Recall that a formula φ(X) defines Z
within Q in a field extension L of Q if

(∀x ∈ Q) [x ∈ Z ⇐⇒ φ(x) holds in L].

Then our theorem, in its full strength, is as follows.

Theorem 6.5.9. If Z is any coinfinite subset of Q that is not thin in Q (in the sense of
Subsection 6.2.3), then the set

{L ∈ Sub(Q) : Z is ∀-definable within Q in L}

is a meager set. Dually, if Z is infinite and (Q \ Z) is not thin in Q, then

{L ∈ Sub(Q) : Z is ∃-definable within Q in L}

is a meager set.

Proof. This follows directly from Theorem 6.4.8 and Proposition 6.5.4.
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6.5.1 Computable fields

Next we effectivize Theorem 6.5.5 to obtain many computable algebraic extensions of Q
whose algebraic integers are not existentially or universally definable.

Our arguments below will require the decidability of absolute irreducibility. Recall
some standard terminology: a computable field E has a splitting algorithm if the splitting
set SE = {f ∈ E[T ] : f is reducible in E[T ]} is decidable, and has a root algorithm if the
root set RE = {f ∈ E[T ] : f has a root in E} is decidable. Notice that these are both
stated for single-variable polynomials. The next lemma is a specific case of the fact that
splitting algorithms can be extended to more variables.

Lemma 6.5.10. Fix any computable presentation of Q. Then it is decidable which
polynomials in Q[X1, X2, . . .] are absolutely irreducible.

Proof. Q has a splitting algorithm, of course: all polynomials in Q[T ] of degree > 1 are
reducible. The lemma now follows from another theorem of Kronecker (found in [28, §§
58-59]), stating that whenever a computable field F has a splitting algorithm and t

is transcendental over F (within a larger computable field), the field F (t) also has a
splitting algorithm. The irreducible polynomials of Q[X1, X2] are precisely the irreducible
polynomials of Q[X1] along with the polynomials which are irreducible in Q(X1)[X2] and
have no common factor among the coefficients lying in Q[X1]; see [57, Theorem IV.2.3].
Therefore, reducibility is clearly decidable using Kronecker’s result. Thus we can decide
reducibility in Q[X1, X2], and one continues by induction on the number n of variables,
noting that the resulting decision procedures are uniform in n.

Therefore, there is a computable listing β1, β2, . . . of all absolutely irreducible hyper-
surface formulas. Furthermore, we have the following effective version of Proposition
6.5.4.

Proposition 6.5.11. Let Z be a computable subset of Q such that Q\Z is not thin in Q.
Then there is an algorithm which, given any absolutely irreducible hypersurface formula
β with coefficients ~a, and any ~c,~b such that U(~a,~c),~b 6= ∅, returns y such that U(~a,~c,y),~b is
non-empty and has empty intersection with Sβ(Z).

Proof. The proof of Proposition 6.5.4 shows that there is a tuple (x, y1, . . . , ye−1, y) ∈
(Q \ Z)×Qe−1 ×Q which witnesses that β(x) holds in any field extending Q(y) while
keeping U(~a,~c,y),~b non-empty. So an algorithm can search all such x, y1, . . . , ye−1, y until it
finds one. This works because Z is computable, and it is computable to check whether a
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given tuple from Q satisfies the polynomials appearing in β, and computable to check
whether U(~a,~c,y),~b is empty.

Theorem 6.5.12. For every pair of Q-tuples ~a,~b, there is a computable L ∈ U~a,~b such
that OL is neither existentially or universally definable in L. Moreover, every computable
presentation of L has a splitting algorithm.

Proof. We define sequences ~a = ~a0,~a1, . . . and ~b = ~b0,~b1, . . . in stages as follows. Recall
that β1, β2, . . . is a computable listing of all absolutely irreducible hypersurface formulas.
Let c1, c2, . . . be a computable listing of all elements of Q.

At stages of the form s = 3t+ 1, given U~as−1,~bs−1
nonempty, use Proposition 6.5.11 to

find a y such that U(~as−1,y),~bs−1
is non-empty and disjoint from Sβt(Z). Let ~as = (~as−1, y)

and ~bs = ~bs−1.
At stages of the form s = 3t+ 2, use an analogous process to avoid Sβt(Q \ Z).
At stages of the form s = 3t + 3, consider U(~as−1,ct),~bs−1

and if it is nonempty, set
~as = (~as−1, ct),~bs = ~bs−1. Otherwise, set ~as = ~as−1 and ~bs = (~bs−1, ct).

Let E = {a ∈ Q : a appears in some ~as}. Then E is computable because by stage
3(t+ 1) it has been decided whether ct is included. And E does not have any existential
or universal definition of OE because by construction E avoids the set S from Theorem
6.5.5.

The splitting algorithm for L follows from Rabin’s Theorem (see [78]), since L is
given as a decidable subfield of (our computable presentation of) Q. Finally, whenever
L ∼= L̃ are computable algebraic fields, their splitting sets are Turing-equivalent, so all
computable presentations of L have splitting algorithms.

6.5.2 The topological space of algebraic extensions of Q up to
isomorphism

The questions of definability we have considered have the same answer over isomorphic
fields. Although Sub(Q) contains at least one isomorphic copy of every possible algebraic
extension of Q, it contains exactly one copy of an algebraic extension L of Q if and only
if L is Galois over Q. A number field F of degree n is isomorphic to at most n fields in
Sub(Q), but there are some infinite non-Galois extensions of Q which are isomorphic to
uncountably many elements in Sub(Q). Therefore, given the isomorphism invariance of
the property under consideration, one might wonder if the results of the previous section
have been skewed by the fact that some isomorphism classes are more represented in
Sub(Q) than others.
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Thus it is also of interest to consider the collection of algebraic extensions of Q up to
isomorphism as a topological space, as was done in [69]. We denote this set by Sub(Q)/∼=.
From the perspective of number theory, the set Sub(Q)/∼= can be identified as a quotient
of Sub(Q) by the absolute Galois group G = GalQQ, which equates isomorphic fields.
The topology on Sub(Q)/∼= is the quotient topology which it inherits from Sub(Q).

Alternatively, from the perspective of computability theory, one could begin with
the space ALG∗0 of all possible presentations of algebraic extensions of Q in a certain
language. This is done in [69] and the relevant language in this case is the language of rings
enlarged to include additional predicates for the existence of roots of monic one-variable
polynomials. Equating isomorphic fields and taking the quotient topology leads to the
space ALG∗0/∼=, which coincides with Sub(Q)/∼= despite various differences between
ALG∗0 and Sub(Q). For example, in ALG∗0, every isomorphism class is represented with
uncountably many copies. For details about ALG∗0, we refer the reader to [69].

Returning now to Sub(Q)/ ∼=, observe that for any U~a,~b, the following set is the
smallest G-invariant subset of Sub(Q) containing U~a,~b. It is also clopen, as there are only
finitely many images φ(~a), φ(~b).

GU~a,~b := {φ(L) : L ∈ U~a,~b, φ ∈ G} =
⋃
φ∈G

Uφ(~a),φ(~b)

It follows that the quotient map q : Sub(Q)→ Sub(Q)/∼= is open and the images of the
sets GU~a,~b form a clopen basis for Sub(Q)/∼=.

Proposition 6.5.13 (Theorem 3.3, [69]). Sub(Q)/∼= is homeomorphic to Cantor space.

Proof. The follows because Sub(Q)/∼= is compact, has a countable clopen basis, and has
no isolated points. The last condition follows because any non-empty GU~a,~b contains at
least two non-isomorphic fields.

Therefore, notions of meager and co-meager make sense in Sub(Q)/∼=. In order to
transfer the all our results about Sub(Q) to results about Sub(Q)/∼=, we only need to
check the following.

Proposition 6.5.14. Let S ⊆ Sub(Q) be as defined in (6.5), and let q : Sub(Q) →
Sub(Q)/∼= be the quotient map. Then q(S) is meager in Sub(Q)/∼=.

Proof. Observe that S = ∪βGSβ, where β ranges over the absolutely irreducible hyper-
surface formulas and

GSβ :=
⋃
φ∈G

Sφ(β).
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Here φ(β) denotes the result of applying φ to all coefficients appearing in β. There are
only finitely many possible outcomes, so GSβ is a finite union of nowhere dense sets,
and thus is nowhere dense. Additionally, since each Sβ is closed, so is GSβ. Also, by
construction GSβ is G-invariant. Since Sub(Q)\GSβ is dense open and q is an open map,
its image q(Sub(Q) \GSβ) is dense open. Therefore, by G-invariance of GSβ, q(GSβ) is
nowhere dense. Thus q(S) = ∪βq(GSβ) is meager.

Therefore, we have the following analogues of the results of the previous section.

Corollary 6.5.15. The following sets are meager in Sub(Q)/∼=:

1. The set of isomorphism types of fields L in which OL is existentially or universally
definable.

2. The set of isomorphism types of fields in which Z is existentially or universally
definable.

3. The set of isomorphism types of fields L in which some number field F ⊂ L is
existentially definable.

Proof. These sets are all contained in q(S).

It may seem equally natural to consider the Lebesgue measure on Cantor space
and transfer it to Sub(Q)/ ∼=, using some computable homeomorphism such as that
obtained in [69, Theorem 3.3]. This is attempted to some extent in [69], but the resulting
measure is not canonical: it depends to a great extent on arbitrary choices that are made
during the construction of the homeomorphism. Indeed, the notion of Haar-compatible
measure, put forth in [69], has had to be abandoned, as the reality is more complicated
than the analysis in that article recognized. We hope to investigate this situation, and
measure-theoretic perspectives in general, more fully in the near future.
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Chapter 7 |
Undecidability and Unit Groups

7.1 Main result and comparison to prior work
In this chapter, we are concerned with the question of which infinite algebraic extensions
of Q have undecidable first-order theory. There are many results which demonstrate that
some infinite algebraic extensions of Q have undecidable first-order theory, while others
do not. Our framing of this question comes from the work of Shalpentokh [91], whose
definability results play a crucial role in the proof of the main result of this chapter.

To start, Shlapentokh proved that every abelian extension of Q which is ramified
at only finitely many primes is undecidable [91, Theorem 5.5], generalizing a result of
Videla [108]. On the other hand, recall that an algebraic number is said to be totally
real if its minimal polynomial has only real roots. Fried, Haran and Völklein proved that
the field Qtr of all totally real numbers is decidable [35].

One way to prove that a field K is undecidable is to show that the ring of integers
OK is undecidable and definable in K. For example, this method proves that the field
K = Q({√p : p prime}) is undecidable. In this case, the definability of OK in K

was shown by Videla [107, §5.4], while the undecidability of OK was proven by Julia
Robinson [82] and follows from a general “blueprint” that she described. The blueprint,
in a more general form due to C.W. Henson [103, §3.3], states that a ring of integers is
undecidable if there is a definable family of subsets which contains finite sets of arbitrarily
large cardinality. As an application of this blueprint, Julia Robinson showed how such
families of sets could be constructed for rings of totally real numbers by using totally
positive elements. Vidaux and Videla expanded on her ideas to prove the undecidability
of a large class of rings of integers OK in totally real fields K [104,105]. When combined
with definability results, such as those of Fukuzaki [36], Shlapentokh [91], and Videla [107],
this proves the undecidability of many totally real fields.

92



Recently, Martínez-Ranero, Utreras and Videla [65] leveraged these methods, which
were developed for totally real fields, to instead prove the undecidability of the totally
imaginary field Q(2), the compositum of all degree 2 extensions of Q. The key to their
strategy was noticing that Q(2) is a totally imaginary quadratic extension of the totally
real field K = Q({√p : p prime}), and therefore O×K is a finite-index subgroup of O×Q(2) .
Using this fact, they produce a special “large” set W , which is definable in OQ(2) and
contains only totally real elements. The undecidability of Q(2) then follows from the
aforementioned methods for totally real rings of integers and the definability of OQ(2) in
Q(2). The goal of this chapter is to generalize their strategy and produce more examples
of totally imaginary infinite extensions of Q with undecidable first-order theory.

Now we recall the necessary notation and present the main result of the chapter.
Given a number field F , let F (d) be the compositum of all extensions of F of degree at
most d, and let F (d)

ab be the maximal abelian subextension of F ⊆ F (d). The following
theorem will be proved as Theorem 7.3.6, and the undecidability of Q(2) follows as a
special case. In Section 7.4, we give additional explicit examples of totally real fields
K and families of polynomials {fa(x) | a ∈ Z≥N0} which satisfy the conditions of the
theorem.

Theorem 7.3.6. Let K be an infinite totally real extension of Q which is contained
in F

(d)
ab for some d ≥ 2 and some number field F . Assume K contains all roots of a

parametrized family of polynomials

{fa(x) = xn + pn−1(a)xn−1 + . . . p1(a)x+ p0(a) | a ∈ Z>N0}

where each pi(t) ∈ Z[t] is a polynomial, p0(t) = ±1 is constant and pj(t) is nonconstant
for some 1 ≤ j ≤ n− 1. If L is any totally imaginary quadratic extension of K, then the
first-order theory of L is undecidable.

In this theorem, the ring of integers OK is undecidable by a result of Vidaux and
Videla [105]. This fact is used to deduce the undecidability of OL, and therefore the
undecidability of L because OL is definable in L by a result of Shlapentokh [91]. The
strategy, as in the case of Q(2), is to exploit the unit group O×L to define a sufficiently
large subset W of OL which contains only totally real elements. This is done by explicitly
using a polynomial whose values are power-sums of the units defined by the family
{fa(x)}. Producing this special polynomial is the main ingredient required to extend
the method for Q(2) to this more general setting. It would be interesting to investigate
whether the the undecidability of a totally real field K implies the undecidability of its
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totally imaginary quadratic extensions in a more general context, without the need for
the explicit parametrized family of polynomials or the field F (d)

ab containing K.
For completeness, we pause to note that the work of Martínez-Ranero, Utreras and

Videla described above is not the first time that a problem of decidability for the ring of
integers of an infinite algebraic extension has been reduced to a subextension of degree 2.
In the earlier work of Shlapentokh [90], a similar reduction argument proves, for certain
totally real fields K, the undecidability of Hilbert’s Tenth Problem for the ring of integers
OL of any quadratic extension L of K. In contrast to the methods above which rely
on unit groups and the so-called JR-number, Shlapentokh’s theorem [90, Theorem 7.9]
requires an elliptic curve E defined over a finite extension K ′ of K such that E(K ′) is
finitely generated with positive rank. There are examples of totally real fields K for
which such an elliptic curve exists [90, Example 10.1]. More work is required to determine
whether such elliptic curves exist for the fields under consideration in this paper.

7.2 Sufficient Conditions For Undecidability
Throughout this chapter, K will denote a totally real infinite extension of Q, and L a
totally imaginary quadratic extension of K. The goal of this section is to find a suitable
sufficient condition for when L has undecidable first-order theory. We will begin by
reviewing some definability results and recall the methods used to prove undecidability
in the totally real case.

Clearly, if OL is definable in L and the first-order theory of OL is undecidable, then
the first-order theory of L is also undecidable. There are many results on the definability
of rings of integers in infinite algebraic extensions of Q; see, for example, the work of
Fukuzaki [36], Shlapentokh [91], and Videla [107]. The following result of Shlapentokh,
presented in [91, Example 4.3], will suffice for our purposes in this chapter.

Theorem 7.2.1. If L is the compositum of finite extensions of Q of degree less than
some positive integer d, then OL is first-order definable in L.

Now our problem reduces to finding undecidable rings of integers. The following
condition, first presented by Julia Robinson [82, Theorem 2] and later generalized by
C.W. Henson [103, §3.3], gives a sufficient condition for when a ring of integers has
undecidable first-order theory.

Lemma 7.2.2. Let O be a ring of algebraic integers. If there is a family F of subsets
of O, parametrized by an Lring-formula, which contains finite sets of arbitrarily large
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cardinality, then O has undecidable first-order theory.

7.2.1 Totally real fields

For totally real rings of integers, Lemma 7.2.2 enables a concrete method, first used by
Julia Robinson [82] and developed further by Vidaux and Videla [104, 105], to prove
undecidability. Given a set X of totally real algebraic numbers, define

Xt = {α ∈ X : 0� α� t}

where 0 � α � t means that every conjugate of α lies in the interval (0, t). The
JR-number of X is

JR(X) = inf{t ∈ R : #Xt =∞}.

When X = OK for a totally real field K, the sets Xt are definable in X because every
totally positive algebraic number is the sum of four squares by a theorem of Siegel [92],
and therefore the following theorem follows from Lemma 7.2.2.

Theorem 7.2.3 ( [82]). If K is a totally real field and the JR-number JR(OK) is either
a minimum or infinite, then the first-order theory of OK is undecidable.

Examples where this theorem applies include the ring of all totally real algebraic
integers Ztr, and the ring of integers of Q({√p : p prime}). The JR-numbers are 4 and
∞, respectively, in these cases [82]. For many years, there were no known examples of
rings of totally real integers whose JR-numbers were finite and either different from 4,
or not a minimum. Recently, infinitely many such examples have been constructed by
Castillo Fernandez, Vidaux and Videla [16, 17, 104], and by Gillibert and Ranieri [40].
For the purposes of this chapter, we will only be concerned with totally real fields whose
JR-number is infinite.

More examples of totally real fields K with JR(OK) =∞ come from a connection to
the Northcott property, discovered by Vidaux and Videla [105]. A set X is said to have
the Northcott property if

{α ∈ X : ĥ(α) < t}

is a finite set for every positive real number t, where ĥ(α) denotes the logarithmic Weil
height.

Proposition 7.2.4 ( [105, Theorem 2]). If a totally real field K has the Northcott
property, then JR(OK) =∞.
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The following theorem of Bombieri and Zannier provides many examples of fields with
the Northcott property; see also [19,112] for more examples. By definition, it suffices to
show that the totally real field K is contained in a (possibly imaginary) field which has
the Northcott property.

Theorem 7.2.5 ( [9, Theorem 1]). If F is a number field, then F (d)
ab has the Northcott

property.

7.2.2 Moving to totally imaginary fields

Recall that the field Q(2) is a totally imaginary quadratic extension of the totally real
field K = Q({√p : p prime}). The proof of the undecidability of Q(2) given by Martínez-
Ranero, Utreras and Videla [65] uses the fact that JR(OK) =∞ to deduce that OQ(2)

is also undecidable. Essentially, they find a special set which is definable in OQ(2) and
contains only totally real elements, which allows them to apply some of the methods
created for the totally real case. Below, we make this explicit by generalizing their
strategy to a set of lemmas which provide a sufficient condition for undecidability.

Lemma 7.2.6. If there is a first-order definable subset W ⊆ OL such that N ⊆ W ⊆ OK ,
then the first-order theory of OL is undecidable.

Proof. This result follows quickly from Lemma 7.2.2. Using W , define a family F of
subsets of OL parametrized by the formula φW (x; a, b):

ax 6= 0 ∧ ax 6= b ∧ ∃x1, . . . , x8 ∈ W [ax = x2
1 + · · ·+ x2

4 ∧ (b− ax) = x2
5 + · · ·+ x2

8]

If a, b ∈ N, then φW (x; a, b) implies 0� ax� b, and φW (n; a, b) holds for every natural
number 0 < n < b

a
by Lagrange’s four square theorem. Therefore, we have

{
n ∈ N : 0 < n <

b

a

}
⊆ {x ∈ OL : φW (x; a, b)} ⊆

{
x ∈ OK : 0� x� b

a

}
. (7.1)

for every b
a
∈ Q>0. Because JR(OK) = ∞, the sets on the righthand side above are

finite for all b
a
∈ Q>0 by definition. Hence, the family of sets F contains finite sets of

arbitrarily large size as b
a
→∞, and therefore Lemma 7.2.2 applies.

The proof above demonstrates why we restrict to the case of JR(OK) = ∞. If
we instead have that JR(OK) < ∞ is a minimum, then we could attempt to perform
a similar trick. However, the sets on the right-hand side of (7.1) are only finite for
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b
a
< JR(OK) <∞ in this case. Thus we would need to replace the lower bound given by

N on the left-hand side of (7.1) with a larger lower bound to obtain our finite sets of
arbitrarily large cardinality. This corresponds to modifying the hypothesis of the lemma
to require S ⊆ W ⊆ OK for some subset S such that #{x ∈ S : φS(x; a, b)} → ∞ as b

a

approaches JR(OK) from below. There are no obvious candidates for a convenient and
useful choice of S, due in part to the difficulties involved in constructing examples of
totally real fields K such that JR(OK) is finite. Hence we will only consider the case
JR(OK) =∞.

The upshot of the previous lemma is that we simply need to produce the desired set
W . In the case of Q(2), Martínez-Ranero, Utreras and Videla use a discrete derivative
trick and Hilbert’s solution to Waring’s problem to produce the set W ; see [65, Lemma 7].
Their strategy also works in our more general setting, but we will instead use a theorem
of Kamke which solves a more general conjecture of Waring. In the following section, we
will use families of polynomials and the unit group O×L to produce the polynomial f(x)
and definable set X0 required by the lemma.

Lemma 7.2.7. Let f ∈ Z[x] be a nonconstant polynomial, and let X0 ⊆ OK be a subset
which is definable in OL. If f(n) ∈ X0 for each sufficiently large natural number n ≥ N0,
then there is a first-order definable subset W of OL such that N ⊆ W ⊆ OK.

Proof. Define X1 = {±x : x ∈ X0}. By replacing f(x) with ±f(x+ k) for some k ≥ N0,
we can assume that f(n) ∈ X1 is a nonnegative integer for all integers n ≥ 0 without
loss of generality. Then Kamke’s theorem [50] states that there is an integer r ≥ 1 such
that every m ∈ N can be written in the form

m = f(a1) + · · ·+ f(as1) + s2

where s1, s2 ∈ N satisfy s1 + s2 ≤ r and a1, . . . , as1 ∈ N.
Thus, we may simply define

W =
r⋃

s1=0

r−s1⋃
s2=0
{x1 + · · ·+ xs1 + s2 : x1, . . . , xs1 ∈ X1}.

97



7.3 Using the group of units
To complete the proof of our main theorem, we will exploit the structure of the group
of units O×L to apply Lemma 7.2.7. We begin by recalling two basic facts, which
generalize [65, Lemmas 5-6]. Throughout this section, we assume that JR(OK) =∞.

Lemma 7.3.1. The group of roots of unity µL ⊂ O×L is finite.

Proof. If ω ∈ µL is a root of unity, then 2 + ω + ω−1 ∈ K satisfies 0� 2 + ω + ω−1 � 4.
Because JR(OK) > 4, there are only finitely many elements α ∈ K satisfying 0� α�
4.

Lemma 7.3.2. Write #µL = 2N . If u ∈ O×L , then u2N ∈ O×K.

Proof. Use the following notation. Let K = ∪∞i=0Ki where K0 ⊆ K1 ⊆ . . . is an infinite
tower of totally real number fields such that L0 is a totally imaginary quadratic extension
of K0, Ln = KnL0 and L = KL0. The lemma then immediately follows from the fact
that [O×Ln

: µLnO×Kn
] ∈ {1, 2} for all n ≥ 0 [109, Theorem 4.12].

The previous lemma implies (O×L )2N ⊆ OK is definable in OL, which will allow us
to produce a subset X0 ⊆ OK which is definable in OL. Next, we will define a useful
multivariable polynomial, then specialize it to a certain single-variable polynomial f(x)
which satisfies Lemma 7.2.7.

We will use the following notation. For each k, n ≥ 1, write qk(x1, . . . , xn) =
xk1 + · · · + xkn for the k-th power-sum polynomial, and let sk be the k-th elementary
symmetric polynomial. The Newton-Girard formulae provide the following relation for
any k, n ≥ 1. For ease of notation, we suppress the variables on the right-hand side.

qk(x1, . . . , xn) = (−1)k−1ksk +
k−1∑
i=1

(−1)k+i−1sk−iqi.

Lemma 7.3.3. Given any integers m,n ≥ 1, there is a polynomial

Qm(x0, . . . , xn−1) ∈ Z[x0, . . . , xn−1]

such that for any (a0, . . . , an−1) ∈ Zn,

Qm(a0, . . . , an−1) = αm1 + · · ·+ αmn

where α1, . . . , αn are the roots of f(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ C[x].
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Proof. For any polynomial xn + an−1x
n−1 + · · · + a0 ∈ C[x], the roots α1, . . . , αn ∈ C

satisfy

s1(α1, . . . , αn) = α1 + · · ·+ αn = −an−1

...

sn(α1, . . . , αn) = α1 . . . αn = (−1)na0.

Therefore, by using the Newton-Girard formulae and induction, we can write qm(α1, . . . , αn)
as a polynomial in an−k = (−1)ksk(α1, . . . , αn) for 1 ≤ k ≤ n, as claimed.

We focus our attention on the values that Qm takes on the coefficients of particular
families of polynomials whose roots are totally real units. Importantly, we need the
resulting single-variable polynomial to be nonconstant to apply Lemma 7.2.7.

Lemma 7.3.4. Let p0(t), . . . , pn−1(t) ∈ Z[t] be polynomials which parametrize a family
of polynomials

{fa(x) = xn + pn−1(a)xn−1 + . . . p1(a)x+ p0(a) : a ∈ Z≥N0}

where pj(x) is nonconstant for some 0 ≤ j ≤ n− 1. For any N ≥ 1, there is some k ≥ 1
such that

QkN(p0(x), . . . , pn−1(x))

is nonconstant.

Proof. Factor each polynomial fa(x) = ∏n
i=1(x− αi,a) over the algebraic closure. First

consider the case of N = 1. By assumption, there is a smallest index 1 ≤ j0 ≤ n such
that sj0(α1,a, . . . , αn,a) = (−1)j0pn−j0(a) is nonconstant as a varies. For each 1 ≤ k ≤ n,
the Newton-Girard formulae

qk = (−1)k−1ksk +
k−1∑
i=1

(−1)k+i−1sk−iqi.

can be expanded recursively to write qk in terms of s1, . . . , sk. This implies that

Qk(p0(a), . . . , pn−1(a)) = qk(α1,a, . . . , αn,a)

is constant for 1 ≤ k < j0 − 1, and nonconstant for k = j0.
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Now let N > 1. We will reduce to the previous case by defining a new family of
polynomials f̂a(x) = ∏n

i=1(x − αNi,a). First, we show that the new family {f̂a(x) : a ∈
Z≥N0} is also parametrized. For each 1 ≤ j ≤ n, the (n − j)-th coefficient of f̂a(x) is
equal to (−1)jsj(αN1 , . . . , αNn ). Clearly the polynomial sj(xN1 , . . . , xNn ) is invariant under
permutation of variables, so there is a polynomial gj(t1, . . . , tn) ∈ Z[t1, . . . , tn] such that

sj(xN1 , . . . , xNn ) = gj(s1(x1, . . . , xn), . . . , sn(x1, . . . , xn));

see [57, Theorem IV.6.1]. Therefore,

f̂a(x) = xn + p̂n−1(a)xn−1 + · · ·+ p̂0(a)

where p̂n−j(x) = (−1)jgj(−pn−1(x), . . . , (−1)np0(x)) for each 1 ≤ j ≤ n.
This shows that {f̂a(x) : a ∈ Z≥N0} is a parametrized family of polynomials, so it only

remains to see that some p̂j(x) is nonconstant. If p̂j(x) is constant for all 1 ≤ j ≤ n− 1,
then the family {f̂a(x) : a ∈ Z≥N0} contains a single polynomial. But this is clearly
impossible by the definition of f̂a(x) because the family {fa(x) : a ∈ Z≥N0} is infinite by
assumption. Hence applying the base case to the family {f̂a(x) : a ∈ Z≥N0} completes
the proof because

QkN(p0(a), . . . , pn−1(a)) = αkN1,a + · · ·+ αkNn,a = Qk(p̂0(a), . . . , p̂n−1(a))

for all k ≥ 1 by construction.

We are now ready to prove the main theorem of this section on the undecidability of
rings of integers in totally imaginary fields.

Theorem 7.3.5. Let K be a totally real field with JR(OK) =∞, and let p0(t), . . . , pn−1(t) ∈
Z[t] be polynomials which parametrize a family of polynomials

{fa(x) = xn + pn−1(a)xn−1 + . . . p1(a)x+ p0(a)}

where p0(a) = ±1 is constant, and pj0(t) is nonconstant for some 1 ≤ j0 ≤ n−1. Assume
that K contains all roots of fa(x) for all natural numbers a ≥ N0. If L is a totally
imaginary quadratic extension of K, then the first-order theory of OL is undecidable.

Proof. By Lemma 7.2.7, it suffices to find a nonconstant polynomial f and a definable
subset X0 ⊆ OK such that f(n) ∈ X0 for all sufficiently large n ∈ Z≥N0 .
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Let N = #µL, as in Lemma 7.3.2. We choose our polynomial to be

f(x) = Q2Nk(p0(x), . . . , pn−1(x)),

where Q2Nk is defined in Lemma 7.3.3 and k is chosen according to Lemma 7.3.4 so that
f(x) is nonconstant. By definition, f(a) = Q2N(p0(a), . . . , pn−1(a)) is the sum of 2N -th
powers of units of OK for each a ≥ N0, so we may define

X0 = {α2N
1 + · · ·+ α2N

n | αi ∈ O×L}.

This subset is definable in OL, contains f(n) for n ≥ N0 by assumption, and X0 ⊆ OK
by Lemma 7.3.2.

By using the results discussed in the previous section, this theorem implies the our
main theorem on the undecidability of totally imaginary fields.

Theorem 7.3.6. Let K be an infinite totally real extension of Q which is contained
in F

(d)
ab for some d ≥ 2 and some number field F . Assume K contains all roots of a

parametrized family of polynomials

{fa(x) = xn + pn−1(a)xn−1 + . . . p1(a)x+ p0(a) | a ∈ Z>N0}

where each pi(t) ∈ Z[t] is a polynomial, p0(t) = ±1 is constant and pj(t) is nonconstant
for some 1 ≤ j ≤ n− 1. If L is any totally imaginary quadratic extension of K, then the
first-order theory of L is undecidable.

Proof. Using Proposition 7.2.4 and Theorem 7.2.5, we see that JR(OK) = ∞. By
Theorem 7.2.1, OL is definable in L. Thus the undecidability follows from Theorem
7.3.5.

7.4 Examples
We will now give some concrete examples of families of polynomials {fa(x) : a ∈ Z≥N0}
which satisfy Theorem 7.3.6. In each case, K can be taken to be the totally real field
generated by all roots of the polynomials {fa(x)}, or any extension thereof which is
contained in F (d)

ab for some number field F and some integer d ≥ 1. Then Theorem 7.3.6
implies that any totally imaginary quadratic extension L of K has undecidable first-order
theory.
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7.4.1 Polynomials generating cyclic extensions of Q

1. The quadratic case: Choosing fa(x) = x2 − 2ax − 1 produces the family of
polynomials considered by Martínez-Ranero, Utreras and Videla to prove the
undecidability of Q(2) [65, Lemma 7] . More generally, one may use the family of
polynomials x2− p(a)x− 1, where p(t) is any nonconstant polynomial. Using these
polynomials also shows that the fields Q(d)

ab are undecidable for all d ≥ 2, since each
field is a totally imaginary quadratic extension of a totally real field.

2. The cubic case: Shanks describes some “simplest cubic extensions” [86] which
are totally real and generated by roots of polynomials of the form

x3 − ax2 − (a+ 3)x− 1

for a ≥ −1. Similarly, Kishi [52] gives the family of polynomials

x3 − n(n2 + n+ 3)(n2 + 2)x2 − (n3 + 2n2 + 3n+ 3)x− 1

for n ∈ Z. Each polynomial in both families generates a totally real cyclic cubic
extension of Q.

3. The quartic case: For t ≥ 4, the following polynomials, constructed by Gras [41,
Proposition 6], generate cyclic quartic totally real extensions of Q.

x4 − tx3 − 6x2 + tx+ 1.

4. The quintic case: The following quintic polynomials, found by E. Lehmer,
generate cyclic quintic totally real extensions of Q for any a ∈ Z; see the paper of
Schoof and Washington [84, §3].

x5 + a2x4 − (2a3 + 6a2 + 10a+ 10)x3

+ (a4 + 5a3 + 11a2 + 15a+ 5)x2 + (a3 + 4a2 + 10a+ 10)x+ 1.

5. The sextic case: For a ≥ 7, the following polynomials generate cyclic sextic
totally real extensions of Q, as proved by Gras, [42].

x6 − 2(a− 1)x5 − 5(a+ 2)x4 − 20x3 + 5(a− 1)x2 + (2a+ 4)x+ 1.
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7.4.2 Polynomials generating non-abelian extensions of Q

1. Let F = Q(
√
d) for some fixed square-free d ∈ N. For any a, b ∈ Z, the element

(a+ b
√
d)2 + 1 is totally positive, so a+ b

√
d+

√
(a+ b

√
d)2 + 1 is a totally real

unit whose minimal polynomial is

x4 − 4ax3 + (4(a2 − b2d)− 2)x2 + 4ax2 + 1

We therefore get an infinite 2-parameter family of suitable polynomials. Although
the roots of such polynomials do not generally generate abelian extensions of Q,
the roots lie in F (2) = F

(2)
ab , so our theorem applies.

2. More generally, if θ is any totally real algebraic integer, then u(θ) = θ +
√
θ2 + 1

is a totally real unit which satisfies x2 − 2θx − 1. Let α be a fixed totally real
algebraic integer with conjugates {α = α1, . . . , αn} and let F be a number field
containing α, enlarged to be Galois without loss of generality. Let h(t1, t2) ∈ Z[t1, t2]
be a polynomial satisfying degt1(h) > 0 and degt2(h) = [Q(α) : Q] − 1. Define
θ(a) = h(a, α). Then θ(a) is totally real for all a ∈ Z and we can take

fa(x) =
n∏
i=1

(x2 − 2h(a, αi)x− 1)

which has u(θ(a)) as a root by design. The coefficients of fa(x) are polynomials in a
which depend on α, and at least one is nonconstant because the degree restrictions
on h(t1, t2) ensures that h(a, α) outputs infinitely many values as a varies. Again,
the roots of all the polynomials fa(x) lie in F (2) = F

(2)
ab , so our theorem applies,

although it will not generally be contained in an abelian extension of Q.
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