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Abstract. Let G be a random torsion-free nilpotent group generated by two
random words of length ` in Un(Z). Letting ` grow as a function of n, we
analyze the step of G, which is bounded by the step of Un(Z). We prove a
conjecture of Delp, Dymarz, and Scha↵er-Cohen, that the threshold function
for full step is ` = n2.

A group G is nilpotent if its lower central series

G = G0 � G1 � · · · � Gr = {1}

defined by Gi+1 = [G,Gi], eventually terminates. The first index r for which
Gr = {1} is called the step of G. One may ask what a generic nilpotent group
looks like, including its step. Questions about generic properties of groups can be
answered with random groups, first introduced by Gromov [5]. Since Gromov’s
original few relators and density models are nilpotent with probability 0, they
cannot tell us about generic properties of nilpotent groups. Thus there is a need
for new random group models that are nilpotent by construction.

Delp et al [3] introduced a model for random nilpotent groups, motivated by the
observation that any finitely generated torsion-free nilpotent group can be embed-
ded in the group Un(Z) of n ⇥ n upper triangular integer matrices with ones on
the diagonal [4]. Note that, since any finitely generated nilpotent group contains
a torsion-free subgroup of finite index, we are not losing much by restricting our
attention to torsion-free groups. (Another model is considered in [2]).

We construct a random subgroup of Un(Z) as follows. Let Ei,j be the elementary
matrix with 1’s on the diagonal, a 1 at position (i, j) and 0’s elsewhere. Then
S = {E±1

i,i+1 : 1  i < n} forms the standard generating set for Un(Z). We call the
entries at positions (i, i + 1) the superdiagonal entries. Define a random walk of
length ` to be a product

V = V1V2 . . . V`

where each Vi is chosen independently and uniformly from S. Let V and W be
two independent random walks of length `. Then G = hV,W i is a random sub-
group of Un(Z). We have step(G)  step(Un(Z)), and it is not hard to check that
step(Un(Z)) = n� 1. If step(G) = n� 1 we say G has full step.

Now let n ! 1 and ` = `(n) grow as a function of n. We say a proposition
P holds asymptotically almost surely (a.a.s.) if P[P ] ! 1 as n ! 1. Delp et al.
gave results on the step of G, depending on the growth rate of ` with respect to n.
Recall that f = o(g(n)) means f(n)/g(n) ! 0 as n ! 1 and f = !(g(n)) means
f(n)/g(n) ! 1 as n ! 1.

Theorem 1 (Delp-Dymarz-Scha↵er-Cohen). Let n, `(n) ! 1 and G = hV,W i
where V,W are independent random walks of length `. Then:

(1) If `(n) = o(
p
n) then a.a.s. step(G) = 1, i.e. G is abelian.
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(2) If `(n) = o(n2) then a.a.s. step(G) < n� 1.
(3) If `(n) = !(n3) then a.a.s. step(G) = n� 1, i.e. G has full step.

In this paper we close the gap between cases 2 and 3.

Theorem 2. Let n, `(n) ! 1 and G = hV,W i. If `(n) = !(n2) then a.a.s. G has
full step.

To prove this requires a careful analysis of the nested commutators that generate
Gn�1. In Section 1, we give a combinatorial criterion for a nested commutator of
V ’s and W ’s to be nontrivial. In Section 2, we show this criterion is satisfied
asymptotically almost surely when V,W are random walks.

1. Nested Commutators

Let G = G0 � G1 � . . . be the lower central series of G. We have

Gi = [G,Gi�1] = [G, [G, . . . , [G,G] . . . ]]

In particular, Gi includes all i + 1-fold nested commutators of elements of G. We
restrict our attention to commutators where each factor is V or W .

Let {0, 1}d be the d-dimensional cube, or the set of all length d binary vec-
tors. For x 2 {0, 1}d, y 2 {0, 1}e we define the norm N(x) =

P
1id xi and the

concatenation xy 2 {0, 1}d+e. For example if x = (1, 0, 0) and y = (0, 1) then
xy = (1, 0, 0, 0, 1) = 1031.

We define a family of maps Cd : {0, 1}d ! Gd as follows.

C1(1) = V

C1(0) = W

Cd(1x) = [V,Cd�1(x)]

Cd(0x) = [W,Cd�1(x)]

Thus for example C5(1031) = C5(10001) = [V, [W, [W, [W,V ]]]]. We omit the
subscript d when it is obvious. To prove G has full step it su�ces to find an
x 2 {0, 1}n�1 such that C(x) is nontrivial. We begin with Lemma 2.3 from [3],
which gives a recursive formula for the entries of a nested commutator.

Lemma 1. Let a 2 {0, 1}, x 2 {0, 1}d�1. Then C(ax) 2 Gd and we have

C(ax)i,i+d = C(a)i,i+1C(x)i+1,i+d � C(a)i+d�1,i+dC(x)i,i+d�1

and furthermore C(ax)i,j = 0 for j < i+ d.

In particular, for d = n � 1 only the upper rightmost entry C(ax)1,n can be
nonzero.

From the formula it is clear that C(ax)i,i+d is a degree-d polynomial in the
superdiagonal entries of V and W . Let us state this more precisely and analyze the
coe�cients of the polynomial.

Lemma 2. Let d � 1. There exists a function Kd : {0, 1}d⇥{0, 1}d ! Z such that
for 1  i  n� d we have

C(x)i,i+d =
X

y2{0,1}d

N(y)=N(x)

Kd(x, y)
Y

ij<i+d

V
yj

j,j+1W
1�yj

j,j+1
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Furthermore, setting Kd(x, y) = 0 for N(x) 6= N(y) we have a recursion

Kd(ax, byc) = K1(a, b)Kd�1(x, yc)�K1(a, c)Kd�1(x, by)

with base cases

K1(0, 0) = K1(1, 1) = 1

K1(0, 1) = K1(1, 0) = 0

Note that Kd(x, y) does not depend on i. We also drop the subscript d since it
can be inferred from x and y.

Proof. Abbreviate

U(i, d, y) :=
Y

ij<i+d

V
yj

j,j+1W
1�yj

j,j+1

We first prove inductively that there exist coe�cients Kd : {0, 1}d ⇥ {0, 1}d ! Z
such that

C(x)i,i+d =
X

y2{0,1}d

Kd(x, y)U(i, d, y)

The case d = 1 is trivial. Assume it holds for d�1. Let a 2 {0, 1} and x 2 {0, 1}d�1,
then we have

C(ax)i,i+d = C(a)i,i+1C(x)i+1,i+d � C(a)i+d�1,i+dC(x)i,i+d�1

Expanding C(a)i,i+1 and C(x)i+1,i+d, the first term is

= [K1(a, 1)Vi,i+1 +K1(a, 0)Wi,i+1]

2

4
X

y2{0,1}d�1

Kd�1(x, y)U(i+ 1, d� 1, y)

3

5

=
X

y2{0,1}d�1

K1(a, 1)Kd�1(x, y)U(i, d, 1y) +K1(a, 0)Kd�1(x, y)U(i, d, 0y)

=
X

b,c2{0,1}
y02{0,1}d�2

K1(a, b)Kd�1(x, y
0c)U(i, d, by0c)

Similarly the second term is

=
X

b,c2{0,1}
y02{0,1}d�2

K1(a, c)Kd�1(x, by
0)U(i, d, by0c)

Combining we get

C(ax)i,i+d =
X

b,c2{0,1}
y2{0,1}d�2

[K1(a, b)Kd�1(x, yc)�K1(a, c)Kd�1(x, by)]U(i, d, byc)

And setting Kd(ax, byc) = K1(a, b)Kd�1(x, yc)�K1(a, c)Kd�1(x, by) the lemma is
proved for d. It is also easy to see inductively that Kd(x, y) = 0 for N(x) 6= N(y),
so we may add the condition N(x) = N(y) under the sum. ⇤
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We now have a strategy for choosing x 2 {0, 1}n�1 such that C(x) is nontrivial.
In the random model, it may happen that Vi,i+1 = 0 for some i. Define the vector
v 2 {0, 1}n�1 by vi = 1 if Vi,i+1 6= 0 and vi = 0 otherwise. For now assume
0 < N(v) < n � 1. If we choose x such that N(x) = N(v), then Equation ??
simplifies to

Cn�1(x)1,n = Kd(x, v)
Y

1i<n

V vi
i,i+1W

1�vi
i,i+1

If we assume there is no i such that Vi,i+1 = Wi,i+1 = 0, the product of matrix
entries is nonzero. So we just need to choose x such that Kd(x, v) 6= 0. We can do
this with some additional assumptions on v.

Lemma 3. Let v 2 {0, 1}n�1 with 0 < N(v) < n�1. Write v = 1a101a2 . . . 1ak�101ak .
Assume that ai � 1 for all i, i.e., there are no adjacent 0’s, and that a1 6= ak. Then
there exists x 2 {0, 1}n�1 such that K(x, v) 6= 0.

We will prove in section 2 that all assumptions used hold asymptotically almost
surely.

Proof. Using the recursion from Lemma 2, the following identities are easily veri-
fied by induction:

(1) If a, b � 0, then

K(1a+b0, 1a01b) =

✓
a+ b

a

◆
(�1)b

(2) If a, b � 1, c � 0 with c < min(a, b), then

K(1c0x, 1ay1b) = 0

(3) Let a, b � 0. If a < b then

K(1a0x, 1a0y1b) = K(x, y1b)

If b < a then

K(1b0x, 1ay01b) = K(x, 1ay)(�1)b+1

(4) If a, b � 0 then

K(1a+b02x, 1a01y101b) = 2

✓
a+ b

a

◆
(�1)bK(x, 1y1)

Let v = 1a101a2 . . . 01ak . First assume k = 2` is even. We set

x = 1a1+a2`021a2+a2`�102 . . . 1a`+a`+10

Then applying identity 4 repeatedly followed by identity 1, we obtain

K(x, v) = 2`(�1)a2`+a2`�1+···+a`+1

✓
a1 + a2`+1

a1

◆✓
a2 + a2`

a2

◆
. . .

✓
a` + a`+1

a`

◆

If k is odd, we apply identity 3 once and proceed as before. ⇤
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2. Asymptotics

In Section 1 we derived a combinatorial condition on the superdiagonal entries
of V and W su�cient for G to have full step. Define

V = {i : 1  i < n, Vi,i+1 = 0}
W = {i : 1  i < n,Wi,i+1 = 0}

Then to apply Lemma 3 we need that

(1) V and W are nonempty.
(2) V \W = ;.
(3) V has no adjacent elements.
(4) minV 6= n�maxV.

If condition (1) does not hold, then Theorem 2 follows by a modification of Lemma
5.4 in [3]. We now show that in the random model, if ` = !(n2), then the super-
diagonal entries satisfy conditions (2)-(4) asymptotically almost surely. Recall that
V and W are random walks

V = V1V2 . . . V`

W = W1W2 . . .W`

where each Vi,Wi is chosen independently and uniformly from the generating set
S = {E±1

i,i+1 : 1  i < n} . Define

�j(Z) =

8
><

>:

1 if Z = Ej,j+1

�1 if Z = E�1
j,j+1

0 otherwise

Then we have

Vi,i+1 =
X̀

j=1

�i(Vj)

When ` � n, the superdiagonal entries Vi,i+1 behave roughly like independent
random walks on Z. We restate Corollary 3.2 from [3].

Lemma 4. Suppose ` = !(n). Then uniformly for 1  k1 < k2 < · · · < kd < n we
have

P[ki 2 V \W for all i] ⇠
⇣ n

2⇡`

⌘d

By the union bound we have P[V \ W 6= ;] ⌧ n2/` ! 0. Thus condition (2)
holds a.a.s. For conditions (3) and (4) we will need a bound on the size of V.

Lemma 5. Fix ✏ > 0. Then P[|V| > ✏
p
n] ! 0 as n ! 1.

Proof. Define random variables

Xi =

(
1 V (i, i+ 1) = 0

0 V (i, i+ 1) 6= 0

So |V| =
P

i Xi. From Lemma 4 we have E[Xi] ⌧
p

n/` and E[XiXj ] ⌧ n/` for

1  i < j < n. Hence E[|V|] ⌧
p
n3/` and Var[|V|] ⌧ n3/`. By Chebyshev’s
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inequality

P[|V| � ✏
p
n]  P

h
|V|�

p
n3/` �

p
n(✏�

p
n2/`)

i

 1

(✏�
p

n2/`)2(`/n2)
! 0

⇤
Observe that the distribution of V is invariant under permutation. In other

words, for a fixed set S ⇢ {1, . . . , n� 1} and a permutation ⇡ on {1, . . . , n� 1} we
have

P[V = S] = P[V = ⇡S]
and hence

P[V = S] = 1�n�1
|S|

� P[|V | = |S|]

Let A(k) be the number of sets S ⇢ {1, . . . , n� 1} of size k with at least one pair
of adjacent elements. We have

A(k)  (n� 2)

✓
n� 3

k � 2

◆

Let B(k) be the number of sets S for which minS = n�maxS. Summing over the
possible values of minS we have

B(k) 
X

1an/2

✓
n� 1� 2a

k � 2

◆

One easily checks
A(k) +B(k)�n�1

k

�  2k2

n

For k  ✏
p
n this is  2✏2. On the other hand P[|V | > ✏

p
n] ! 0, so we are done.
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