Random Nilpotent Groups of Maximal Step
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ABSTRACT. Let G be a random torsion-free nilpotent group generated by two
random words of length ¢ in Uy (Z). Letting £ grow as a function of n, we
analyze the step of G, which is bounded by the step of U,(Z). We prove a
conjecture of Delp, Dymarz, and Schaffer-Cohen, that the threshold function
for full step is £ = n2.

A group G is nilpotent if its lower central series
G=Gy>G, > - >G,={1}

defined by G;+1 = [G,G;], eventually terminates. The first index r for which
G, = {1} is called the step of G. One may ask what a generic nilpotent group
looks like, including its step. Questions about generic properties of groups can be
answered with random groups, first introduced by Gromov [5]. Since Gromov’s
original few relators and density models are nilpotent with probability 0, they
cannot tell us about generic properties of nilpotent groups. Thus there is a need
for new random group models that are nilpotent by construction.

Delp et al [3] introduced a model for random nilpotent groups, motivated by the
observation that any finitely generated torsion-free nilpotent group can be embed-
ded in the group U,(Z) of n x n upper triangular integer matrices with ones on
the diagonal [4]. Note that, since any finitely generated nilpotent group contains
a torsion-free subgroup of finite index, we are not losing much by restricting our
attention to torsion-free groups. (Another model is considered in [2]).

We construct a random subgroup of U, (Z) as follows. Let E; ; be the elementary
matrix with 1’s on the diagonal, a 1 at position (4,j) and 0’s elsewhere. Then
S = {Eljir1 :1 < i < n} forms the standard generating set for U, (Z). We call the
entries at positions (i,7 + 1) the superdiagonal entries. Define a random walk of
length ¢ to be a product

V=WV..V

where each V; is chosen independently and uniformly from S. Let V and W be
two independent random walks of length £. Then G = (V,W) is a random sub-
group of U,(Z). We have step(G) < step(U,(Z)), and it is not hard to check that
step(Un(Z)) = n — 1. If step(G) = n — 1 we say G has full step.

Now let n — oo and ¢ = #(n) grow as a function of n. We say a proposition
P holds asymptotically almost surely (a.a.s.) if P[P] — 1 as n — oo. Delp et al.
gave results on the step of G, depending on the growth rate of £ with respect to n.
Recall that f = o(g(n)) means f(n)/g(n) — 0 as n — oo and f = w(g(n)) means
f(n)/g(n) = oo as n — oc.

Theorem 1 (Delp-Dymarz-Schaffer-Cohen). Let n,¢(n) — oo and G = (V,W)
where V. W are independent random walks of length £. Then:

(1) If £(n) = o(y/n) then a.a.s. step(G) =1, i.e. G is abelian.
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(2) If €(n) = o(n?) then a.a.s. step(G) <n — 1.
(3) If £(n) = w(n®) then a.a.s. step(G) =n—1, i.e. G has full step.

In this paper we close the gap between cases 2 and 3.

Theorem 2. Let n,{(n) — oo and G = (V,W). If {(n) = w(n?) then a.a.s. G has
full step.

To prove this requires a careful analysis of the nested commutators that generate
Gy _1. In Section 1, we give a combinatorial criterion for a nested commutator of
V’s and W’s to be nontrivial. In Section 2, we show this criterion is satisfied
asymptotically almost surely when V, W are random walks.

1. Nested Commutators
Let G =Gy > G1 > ... be the lower central series of G. We have
G, =G, G;_1] =[G, [G,...,]G,G]...]]
In particular, G; includes all i + 1-fold nested commutators of elements of G. We
restrict our attention to commutators where each factor is V or W.

Let {0,1} be the d-dimensional cube, or the set of all length d binary vec-
tors. For x € {0,1}4,y € {0,1}¢ we define the norm N(z) = > 1<i<q®i and the
concatenation ry € {0,1}9*¢. For example if x = (1,0,0) and y = (0,1) then
xy = (1,0,0,0,1) = 1031.

We define a family of maps Cy : {0,1}¢ — Gy as follows.

Ci(1)=V
Ci(0)=W
Ci(lz) = [V, Cy—1(x)]
Ca(0z) = [W, Cq1 ()]
Thus for example C5(1031) = C5(10001) = [V, [W,[W,[W,V]]]]. We omit the
subscript d when it is obvious. To prove G has full step it suffices to find an

x € {0,1}""1 such that C(z) is nontrivial. We begin with Lemma 2.3 from [3],
which gives a recursive formula for the entries of a nested commutator.

Lemma 1. Let a € {0,1},x € {0,1}¢"1. Then C(ax) € G4 and we have
Clax)iitda = C(a)ii+1C(2)it1,i+d — C(a)itd—1,i+aC(X)iitd—1
and furthermore C'(ax);; =0 for j <i+d.

In particular, for d = n — 1 only the upper rightmost entry C(az);,, can be
nonzero.

From the formula it is clear that C(az);+q is a degree-d polynomial in the
superdiagonal entries of V' and W. Let us state this more precisely and analyze the
coeflicients of the polynomial.

Lemma 2. Letd > 1. There exists a function Kq:{0,1}¢ x {0,1}¢ — Z such that
for 1 <i<n—d we have

. 11—y
C@iiva= », Kawy) [ Vw4

ye{0,1}¢ 1<j<i+d
N(y)=N(z)
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Furthermore, setting Kq(x,y) =0 for N(x) # N(y) we have a recursion
Ka(az,byc) = Ki(a,b)Ka—1(z,yc) — Ki(a, c)Kg—1(z, by)
with base cases
K1(0,0) = K1(1,1) =1
K1(0,1) = K1(1,0) =0

Note that K4(z,y) does not depend on i. We also drop the subscript d since it
can be inferred from z and y.

Proof. Abbreviate

Yj 1 Yi
l d y H VJ,J+1 J,j+1
1<j<i+d

We first prove inductively that there exist coefficients K4 : {0,1} x {0,1}¢ — Z
such that

x)i,H»d = Z Kd(way)U(Zada y)
y€{0,1}¢

The case d = 1 is trivial. Assume it holds for d—1. Let a € {0,1} and z € {0,1}471,
then we have

C(ax)i,i+d = C(a)z‘,z‘+1c($)i+1,z‘+d - C((l)i+d—1,i+dc($)i,z‘+d—1
Expanding C(a); i+1 and C(x);41,i+4, the first term is

= [Ki(a, )Viip1 + Ki(a,0Wiin] | > Kaa(z,y)Uli+1,d—1,y)

ye{0,1}4-1
= > EKia)Kea(z,)U(i,d,1y) + Ki1(a,0)Kq_1 (2, y)U (i, d, Oy)
ye{0,1}4-1
= Z Kl(a7b)Kd—l(xay/c)U(i7d’by/C)

b,ce{0,1}

y'e€{0,1}972

Similarly the second term is

= Z Ki(a,e)Kq_1(z, by U (i,d, by c)
b,ee{0,1}
y’e{O,l}d’Q

Combining we get

Clax)iiva= Y,  [Ki(a,D) Ky (w,yc) — Ki(a,¢)Kq1(z,by) Ui, d, byc)
b,ce{0,1}
ye{o,13472
And setting Ky(az,byc) = Ki1(a,b)K4—1(x,yc) — Ki(a,c)K4—1(x, by) the lemma is
proved for d. Tt is also easy to see inductively that Ky(z,y) = 0 for N(x) # N(y),
so we may add the condition N(z) = N(y) under the sum. O
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We now have a strategy for choosing z € {0,1}"~! such that C(z) is nontrivial.
In the random model, it may happen that V; ;41 = 0 for some ¢. Define the vector
v e {0,1}"" ! by v; = 1if V;;41 # 0 and v; = 0 otherwise. For now assume
0 < N(w) < n—1. If we choose x such that N(z) = N(v), then Equation 77
simplifies to

Cro1(x)1,n = Kq(z,v) H Vzv@+1W@1;+v1

1<i<n

If we assume there is no ¢ such that V; ;41 = W, ;41 = 0, the product of matrix
entries is nonzero. So we just need to choose x such that Kg(x,v) # 0. We can do
this with some additional assumptions on v.

Lemma 3. Letv € {0,1}" L with0 < N(v) < n—1. Writev = 1910192 ... 1% ~1019*,
Assume that a; > 1 for alli, i.e., there are no adjacent 0’s, and that a1 # a. Then
there exists x € {0,1}"~1 such that K(z,v) # 0.

We will prove in section 2 that all assumptions used hold asymptotically almost
surely.

Proof. Using the recursion from Lemma 2, the following identities are easily veri-
fied by induction:

(1) If a,b > 0, then

K(1%0,1901%) = (a : b) (—1)b
(2) If a,b > 1,¢ > 0 with ¢ < min(a, b), then
K(1°02,1°y1%) = 0
(3) Let a,b>0. If a < b then
K(1%0z,1%0y1%) = K (z,y1°)
If b < a then
K (1°02,1%901%) = K (z,1%)(-1)"

(4) If a,b > 0 then

a+b

K(1°7°0%2,1°01y101%) = 2(
a

)R
Let v = 1%101%2 ...01% . First assume k& = 2/ is even. We set

T = 1a1+a25021a2+a257102 o 1ae+ae+10

Then applying identity 4 repeatedly followed by identity 1, we obtain

K(xz,v) = 2£(_1)02€+a2£71+“'+a£+1 (al + a2@+1> (a2 + a25> o (ae + a£+1>

a1 az ap

If k£ is odd, we apply identity 3 once and proceed as before. O
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2. Asymptotics

In Section 1 we derived a combinatorial condition on the superdiagonal entries
of V and W sufficient for G to have full step. Define
V={i:1<i<n, V41 =0}
W={i:1<i<n W, ;41 =0}
Then to apply Lemma 3 we need that

(1) V and W are nonempty.

(2) vnw =14.

(3) V has no adjacent elements.

(4) minV # n —maxV.
If condition (1) does not hold, then Theorem 2 follows by a modification of Lemma
5.4 in [3]. We now show that in the random model, if £ = w(n?), then the super-
diagonal entries satisfy conditions (2)-(4) asymptotically almost surely. Recall that
V and W are random walks

V=Wml...V
W =W Wy...W,

where each V;, W; is chosen independently and uniformly from the generating set
S = {Efﬁ_1 :1<i<n}. Define
1 if 7 = Ej,jJrl
0j(Z2)=3-1 fZ=E;],,
0 otherwise

Then we have
¢
Viier = Y 0i(V))
j=1

When ¢ > n, the superdiagonal entries V; ;1 behave roughly like independent
random walks on Z. We restate Corollary 3.2 from [3].

Lemma 4. Suppose £ = w(n). Then uniformly for 1 < ki < ko < -+ < kg <n we
have

d
Plk; € VAW for all i] ~ (%)

By the union bound we have P[V N W # @] < n?/¢ — 0. Thus condition (2)
holds a.a.s. For conditions (3) and (4) we will need a bound on the size of V.

Lemma 5. Fiz e > 0. Then P[|V| > ey/n] — 0 as n — cc.

Proof. Define random variables

v 1 V@it =0
o V(i+1)#0

So |[V| = >, X;. From Lemma 4 we have E[X;] <« y/n/¢ and E[X,;X,] < n/{ for
1 < i < j < n. Hence E[|[V|] < /n3/¢ and Var[|V|] < n?/¢. By Chebyshev’s
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inequality

PIV| = evn] < P |[V] = Vn3 /€ = Ve = /n?[0)|
1

< —0
(e = /m?/0)?(€/n?)
O
Observe that the distribution of V is invariant under permutation. In other
words, for a fixed set S C {1,...,n— 1} and a permutation 7 on {1,...,n— 1} we
have

Py = 8] = PV = 8]

and hence
1

n—1
(s)
Let A(k) be the number of sets S C {1,...,n — 1} of size k with at least one pair
of adjacent elements. We have

Aw<e-2(;3)

Let B(k) be the number of sets S for which min § = n —maxS. Summing over the
possible values of min S we have

B e 3 <n—kl_—22a>

1<a<n/2

Py = 8] = PV =15]]

One easily checks
A(k) + B(k)
n—1
)
For k < €y/n this is < 2¢2. On the other hand P[|V| > ey/n] — 0, so we are done.
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