
Dynamic Locality Sensitive Orderings in Doubling Metrics1

An La * Hung Le†
2

Abstract3

In their pioneering work, Chan, Har-Peled, and Jones (SICOMP 2020) introduced locality-sensitive4

ordering (LSO), and constructed an LSO with a constant number of orderings for point sets in the5

d-dimensional Euclidean space. Furthermore, their LSO could be made dynamic effortlessly under6

point insertions and deletions, taking O(log(n)) time per update by exploiting Euclidean geometry.7

Their LSO provides a powerful primitive to solve a host of geometric problems in Euclidean spaces in8

both dynamic and static settings. Filtser and Le (STOC 2022) constructed the first LSO with a constant9

number of orderings in the more general setting of doubling metrics. However, their algorithm is10

inherently static since it relies on several sophisticated constructions in intermediate steps, none11

of which is known to have a dynamic version. Making their LSO dynamic would recover the full12

generality of LSO and provide a general tool to dynamize a vast number of static constructions in13

doubling metrics.14

In this work, we give a dynamic algorithm that has O(log n) time per update for constructing an15

LSO in doubling metrics under point insertions and deletions. To this end, we introduce a toolkit of16

several new data structures: a pairwise index tree (PIT) which augments the standard net tree with17

the pairwise property, a pairwise tree cover which in a certain sense is a tree counterpart of LSO, a net18

tree cover for stabilizing the net tree, and a leaf tracker for keeping track of a DFS ordering of leaves19

in a dynamic tree. A key technical problem that we solves in this work is stabilizing the dynamic20

net tree of Cole and Gottlieb (STOC 2006), a central dynamic data structure in doubling metrics,21

using a dynamic net tree cover. Specifically, we show that every update to the dynamic net tree can22

be decomposed into a few very simple updates to trees in the net tree cover. As stability is the key to23

any dynamic algorithm, our technique could be useful for other problems in doubling metrics.24

We obtain several algorithmic applications from our dynamic LSO, including dynamic fault-tolerant25

spanner, dynamic tree cover, dynamic nearest neighbor search with optimal search time, dynamic26

(bichromatic) closest pair of points, all in doubling metrics. Most notably, we obtain the first dynamic27

algorithm for maintaining an k-fault tolerant spanner in doubling metrics with optimal sparsity in28

optimal O(log n) time per update.29

*University of Massachusetts Amherst. Email: anla@umass.edu.
†University of Massachusetts Amherst. Email: hungle@cs.umass.edu.

Contents30

1 Introduction 231

1.1 Key Technical Ideas . 432

1.2 Applications . 1033

2 Preliminaries 1234

2.1 Basic Notation . 1235

2.2 Dynamic LSO from Dynamic Pairwise Tree Cover . 1236

3 Pairwise Tree Cover: Static Construction 1337

3.1 The Static Construction . 1538

3.2 The Analysis . 1739

4 Pairwise Tree Cover: Dynamic Construction 2140

4.1 Dynamic Net Tree Cover . 2541

4.1.1 Dynamic net tree cover construction . 2742

4.1.2 Analysis . 2943

4.2 Dynamic Pairing . 3244

5 Leaf Tracker 3545

5.1 Special Case: Trees without Inactive Nodes . 3746

5.2 General Case: Maintaining DFS Ordering of a PIT . 4147

5.2.1 Updating σ . 4248

5.2.2 Active tracker data structure . 4349

6 Dynamic Net Tree 4750

6.1 Rings . 4851

6.2 Containment Search and Internal Operations . 4952

6.3 Dynamic Net Tree Operations . 5453

6.4 Analysis . 5754

7 Applications of LSO 6355

7.1 Dynamic VFT Spanners . 6356

7.2 Dynamic Tree Cover . 6457

7.3 Dynamic Closest Pair . 6658

7.4 Approximate Bichromatic Closest Pair . 6759

7.5 Dynamic Approximate Nearest Neighbors . 6860

1

1 Introduction61

Chan, Har-Peled and Jones [10] introduced locality-sensitive ordering (LSO) as a powerful tool for62

solving geometric problems. Roughly speaking, an LSO of a point set S in a metric space (X , dX) is a63

collection of linear orderings of points in S that has a locality property, namely, any two points x , y ∈ X64

are close in some ordering of the collection. Here being close means the points between x and y in the65

ordering are either close to x or to y .66

Definition 1 ((τ,ϵ)-LSO). Let S be a set of points in a metric space (X , dX). A collection of linear67

orderings, denoted by Σ is a (τ,ϵ)-locality sensitive ordering if:68

• [Size.] Σ has at most τ ordering.69

• [Covering.] there is a bijection between points in each ordering and S.70

• [Locality.] for every x , y ∈ S, there exists an ordering σ ∈ Σ such that any point z between x and y71

on σ is in distance ϵdX (x , y) either from x or from y . That is, min{dX (z, x), dX (z, y)} ≤ ϵdX (x , y).72

One could think of an LSO as an “embedding” of S into a collection of lines so that geometric73

constructions for S in the (complicated and high dimensional) metric space (X , dX) could be reduced to74

the 1-dimensional line. Therefore, LSO allows significant simplification of the constructions of many75

complicated objects, such as fault-tolerant spanners [10] and reliable spanners [5, 6, 16].76

Chan, Har-Peled and Jones [10] constructed a (τ,ϵ)-LSO Σ for point sets in Rd where the number of77

orderings τ= 2O(d)ϵ−d . Thus, for a fixed ϵ and d, the number of orderings is a constant. Furthermore,78

their LSO could be easily made dynamic, since the construction is based on space partitioning. More79

specifically, for any given two points p, q ∈ Rd , one could determine their relative positions in a given80

ordering σ ∈ Σ — determine whether p ≺σ q or q ≺σ p— by applying bitwise operations on their81

coordinates. Therefore, one could represent each ordering in the LSO as a binary search tree, which82

supports point updates in O(log n) time per operation. The main takeaway here is that Euclidean83

geometry allows simple dynamization of their LSO.84

Using their dynamic LSO inRd , Chan, Har-Peled and Jones [10] obtained a host of dynamic algorithms85

for geometric problems, such as dynamic bichromatic closest pair of points, dynamic spanners, dynamic86

vertex-fault-tolerant spanners, dynamic approximate nearest neighbors, dynamic approximate MST;87

these algorithms all have O(log n) time per update. For several of these problems, they were the first to88

achieve logarithmic update time.89

The existence of an LSO in Euclidean metrics naturally motivates the question of constructing an LSO90

for doubling metrics. While doubling metrics vastly generalize Euclidean metrics, many nice properties91

of Euclidean geometry are lost in doubling metrics. The technique of Chan, Har-Peled and Jones [10]92

relied extensively on Euclidean geometry, and it is unclear if their technique can be easily extended to93

doubling metrics. Nevertheless, they are able to construct a (τ,ϵ)-LSO for point sets in doubling metrics94

of dimension λ where the number of orderings is τ= O(log(n)/ϵ)O(λ), which depends on the number95

of points. An open problem left by their work is to reduce the number of orderings to1 Oϵ,λ(1). This96

problem was recently solved by Filtser and Le [16]; the number of orderings in their construction is97

τ= ϵ−O(λ) orderings. Their LSO (and its variants) are powerful primitives to solve various problems in98

metric spaces [16, 15].99

An arguably more important problem is to construct a dynamic LSO with a small number of orderings100

in doubling metrics. As mentioned above, a dynamic LSO will give dynamic algorithms for a host of101

problems in doubling metrics, recovering the full power of LSO. If all possible points in the metric occurring102

1We use the notation Oϵ,λ to hide the dependency on ϵ and λ.

2

during the course of the algorithm are given in advance, that is, the points under insertions/deletions103

belong to a specific set P given at the beginning of the algorithm, Chan, Har-Peled, and Jones [10] gave104

a simple dynamic LSO by simulating their Euclidean counterpart. The key observation is that if P is105

given, one can construct a net tree, which then can be used to “partition the space” in the same way that106

a quadtree partitions Rd . However, knowing P in advance is a very strong and artificial assumption for a107

dynamic data structure, as concurred by Chan, Har-Peled, and Jones [10].108

Another major problem of the dynamic LSO for doubling metrics by Chan, Har-Peled, and Jones [10]109

is the size: the number of orderings is poly-logarithmic instead of a constant. On the other hand, for the110

LSO of constant size by Filtser and Le [16], achieving a static construction in O(n log n) time remains an111

open problem; their LSO construction is rather complicated, relying on sophisticated objects, such as112

ultrametric covers and pairwise partition covers. Therefore, even if all the points are given in advance, it113

is not easy to dynamize the construction of Filtser and Le with a poly-logarithmic time per update. We114

note that it might be possible to construct the LSO by Filtser and Le [16] statically in time O(n log(∆))115

where ∆ is the spread2 of the point set. However, ∆ could be exponential in n, and hence the worst116

case running time remains Ω(n2). Removing the dependency on ∆ is a central problem in designing117

algorithms, both static and dynamic, for doubling metrics [20, 12, 18, 19].118

In this work, we give the first data structure, as formally defined in Definition 2 below, for maintaining119

a dynamic LSO with a constant number of orderings in doubling metrics. Our data structure could handle120

point insertions/deletions to the LSO in O(log n) time per update.121

Definition 2 (Dynamic LSO Data Structure). (τ,ϵ)-Dynamic LSO is a data structure maintaining a122

(τ,ϵ)-LSO Σ for a dynamic set of points S and supporting the following operations:123

• INSERT(q,Σ): insert a point q to Σ.124

• DELETE(q,Σ): remove q from Σ.125

• GETPREDECESSOR(q, i,Σ): return the predecessor of q in i th ordering of Σ, return null if q is the126

first point in the ordering.127

• GETSUCCESSOR(q, i,Σ): return the successor of q in i th ordering of Σ, return null if q is the last128

point in the ordering.129

One important property of our dynamic LSO is stability. We say that a data structure for maintaining130

an LSO of a dynamic point set S is stable if for every dynamic ordering σ in the LSO, when a point is131

inserted or deleted from S, the data structure does not change the relative ordering of existing points132

in the LSO. Intuitively, when a point is deleted from or inserted to S, a stable data structure simply133

deleting or inserting it, respectively, from each ordering in the LSO without mixing up the order of other134

points. A prior, it is unclear (even in the static setting) a stable LSO exists, and specifically, if there is a135

way to insert a new point to an existing LSO to get a new LSO that is also good for the new point. In136

some applications of LSO (to be discussed in more detail in Section 1.2) such as dynamic closest pair or137

approximate bichromatic closest pair, we consider adjacent pairs of points in all orderings. The stability138

of LSO allows us to keep track of these pairs in O(1) time per ordering. On the other hand, without the139

stability, we have to update the set of adjacent pairs of points in all orderings, which could cost Ω(n)140

time. The stability is even more crucial in dynamic vertex-fault-tolerant (VFT) spanners, since in this141

application, we need to query k nearest predecessors and k nearest successors of every point in each142

ordering. In the following theorem, which is our main result, we construct a stable dynamic LSO.143

2The spread is the ratio between the maximum pairwise distance over the minimum pairwise distance.

3

Theorem 1. Given ϵ ∈ (0, 1), there is a data structure maintaining (ϵ−O(λ),ϵ)-LSO for a dynamic point set144

S in doubling metrics of dimension λ supporting INSERT/DELETE in O
�

ϵ−O(λ) log(n)
�

time per operation145

and GETPREDECESSOR/GETSUCCESSOR in O(1) time per operation. Furthermore, our LSO is stable.146

We emphasize that the running time of each operation GETPREDECESSOR/GETSUCCESSOR does not147

depend on n,ϵ or λ. As we will see, in some applications, such as fault-tolerant spanner, achieving148

O(1) time per GETPREDECESSOR/GETSUCCESSOR operation as in Theorem 1 is important to get optimal149

running time, matching the best static algorithms.150

Model assumptions. Our dynamic algorithm makes the same two common assumptions either explicitly151

or implicitly used in prior works in doubling metrics [12, 18, 19]. First, we have access to an exact152

distance oracle that, given any two points in the metric, computes their distance in O(1) time. Second,153

after a point is deleted from the point set, the distance between the current point and the deleted point154

could still be computed in O(1) time. These assumptions can be naturally realized in some special cases155

such as low dimensional Euclidean or ℓp spaces for a constant p ≥ 1.156

Next, we give an overview of our technical ideas for maintaining a dynamic LSO of constant size.157

Then in Section 1.2, we discuss the applications of our dynamic LSO; some of these applications were158

studied in Euclidean spaces by Chan, Har-Peled and Jones [10].159

1.1 Key Technical Ideas160

Our first step is to interpret the (only) existing construction of LSO in doubling metrics by Filtser and161

Le [16] in terms of trees since (dynamic) trees are the basic building block of many dynamic algorithms.162

Filtser and Le [16] constructed their LSO via a so-called pairwise partition cover, which is a family of163

hierarchical partitions of the input metric space, and an ultrametric cover, which a family of ultrametrics164

that have a certain distance covering property. Their overall construction is rather involved, and it is not165

clear even how to implement it statically in O(n log n) time for constants ϵ and λ. Here we introduce a166

new type of trees and tree covers called pairwise index tree (PIT) and pairwise tree cover, respectively. A167

pairwise tree cover consists of O(log(1/ϵ)) different PITs where each pair of points is “covered” by one of168

the PITs. In a PIT, each internal node is labeled with one or two points in S, and each leaf is labeled by169

exactly one point (to form a bijection to S). For a given pair of points (x , y), loosely speaking, we would170

like to have a node ηx y in some PIT T labeled with both x and y such that (the points associated with)171

leaves of the subtree rooted at ηx y of T is either in the distance ϵdX (x , y) from x or from y. (Both x172

and y will be associated with leaves in the subtree of T rooted at ηx y .) If so, then visiting each PIT in173

the cover by depth-first search (DFS) would give us a linear ordering of leaves, called DFS leaf ordering,174

satisfying the locality property (in Definition 1) for x and y: every point between x and y in the DFS175

linear ordering will be children of ηx y and hence within ϵdX (x , y). Thus, all the DFS leaf orderings from176

all the trees in the pairwise tree cover together would be an LSO. At a more technical level, having such177

node ηx y for every pair (x , y) would mean the total number of nodes would be Ω(n2), rendering any178

hope for efficient dynamic maintenance. So we relax it slightly: ηx y would be labelled by a pair (x ′, y ′)179

such that dX (x , x ′), dX (y, y ′) ≤ ϵdX (x , y). Both x and y remain associated with leaves of the subtree180

rooted at ηx y . This relaxation allows many pairs to share the same node and hence could potentially be181

maintained efficiently. The formal definitions, therefore, are less intuitive than described here.182

Definition 3 (Pairwise index tree (PIT)). Let δ ≥ 1 and ϵ be parameters. A (δ,ϵ)-pairwise index tree183

of S is a rooted tree with the following properties:184

4

1. [Pairwise labelling.] Each node is labeled with one or two elements in S. A node at level i is185

denoted as (x , y, i) where x , y ∈ S, x could be the same or different from y . A leaf is labeled with186

exactly one point in S.187

2. [Packing.] For two nodes (x , y, i) and (u, v, i), the distance between any pair of points in {x , y, u, v}188

is Ω(δ
ϵi−1).189

3. [Covering.] Label points in all children of (x , y, i) are within the distance O(δ
ϵi−1) from x or y . Let190

Ci(x , y) be the union of all labels (or leaf labels) in the subtree rooted as (x , y, i). The diameter of191

Ci(x , y) is O(δ/ϵi). We call Ci(x , y) the cluster of node (x , y, i).192

The packing and covering properties in the definition of PIT are very similar to the packing/covering193

properties of a net tree, a standard tool for navigating doubling metrics. The key difference between a194

PIT and a net tree is that these properties applied to pairs of points. In the construction of pairwise tree195

cover, different PITs in the cover will be obtained by varying the parameter δ in Definition 3.196

Given a PIT T , we say that a node at level i of T , denoted by (u, v, i), is ϵ-close to a pair (x , y)197

if every point p ∈ Ci(u, v), the cluster of (u, v, i), has (i) x , y ∈ Ci(u, v), (ii) dX (p, x) ≤ ϵdX (x , y) or198

dX (p, y)≤ ϵdX (x , y) (that is, either p is close to x or close to y).199

Definition 4 (Pairwise tree cover). A (τ,ϵ)-pairwise tree cover of a point set S, denoted by T, is a200

collection of (δ,ϵ)-PITs (for different values of δ) such that:201

• [Size.] T contains at most τ PITs.202

• [Pairwise covering.] For any pair of points x , y ∈ S whose distance in [δ
ϵi ,

2δ
ϵi) for some δ ∈203

{1,21, 22, . . . , 2⌈log(1/ϵ)⌉}, there exists a (δ,ϵ)-PIT T ∈ T such that a node at level i of T is O(ϵ)-204

close to pair (x , y).205

We remark that there could be more than one (δ,ϵ)-PITs in a pairwise tree cover T that shares the206

same value of parameter δ; they are different in internal representations as they cover different sets of207

pairs. The key points are (a) there are only O(log(1/ϵ)) different values of δ, and (b) as we will show208

later, for each δ, there are only ϵ−O(λ) different PITs sharing the same δ.209

The pairwise tree cover is our attempt to combine the strengths of the LSO construction by Chan,210

Har-Peled and Jones [10] for Euclidean spaces and the LSO construction by Filtser and Le [16] for211

doubling metrics. Specifically, Chan, Har-Peled, and Jones [10] constructed a collection of shifted212

quadtrees, a well-studied space partitioning data structure in Euclidean spaces, and visited each quadtree213

by Z-order to form an LSO. The geometrical nature of the quadtree makes it easy to dynamize their static214

LSO. An analogous but less powerful counterpart of quadtree in doubling metrics is the net tree. However,215

it is unclear if an analogous Z-order in doubling metrics exists. For this reason, Filtser and Le [16]216

developed a very different technique to construct an LSO in doubling metrics. First, they constructed a217

pairwise partition cover that has a certain pairwise property. They then used the partition to construct an218

ultrametric covers, and each LSO is constructed from an ultrametric in the cover by induction. Here219

we combine the strengths of both works in the PITs: we start with a net tree and augment it with the220

pairwise property by Filtser and Le [16], which can be seen as a replacement for the Z-order. Given the221

pairwise tree cover, we simply apply a DFS leaf ordering to each tree to get an LSO. Figure 1 (the top222

part) illustrates building blocks to construct a (static) LSO for a point set S.223

In the dynamic setting, we could use the algorithm by Cole and Gottlieb [12] to maintain a dynamic224

net tree. As PITs are built on top of net trees, in principle, one could adapt their technique to maintain225

a dynamic PIT. In our (static) construction, we show that our PIT has a certain locality condition, and226

specifically, the neighborhood of a node in a PIT is a subset of the neighborhood of the corresponding node227

5

S

static
(δ,ϵ)-net tree

δ = 20, 21, . . . , 2⌈log(1/ϵ)⌉

(Section 3)

static
(δ,ϵ)-PITs

(τ,ϵ)-pairwise tree cover

DFS leaf

ordering

(Section 2.2)

static (τ,ϵ)-LSO

dynamic
(δ,ϵ)-net tree

δ = 20, 21, . . . , 2⌈log(1/ϵ)⌉

(Section 6)

stable
dynamic
net tree

stable dynamic
net tree cover

(Section 4.1)

dynamic

pairing
stable dynamic
(δ,ϵ)-PITs

(Section 4.2) dynamic
pairwise

tree cover

DFS leaf

ordering

leaf tracker

(Section 5)

(Section 2.2)

dynamic LSO

stabilize

Figure 1: Data structures highlighted in light blue are static while those highlighted in light yellow are
dynamic. Data structures with rectangular shapes are stable; others are unstable.

in a net tree T . This allows us to maintain a dynamic PIT from a dynamic net tree in a black-box manner.228

While the high-level ideas are relatively simple, there are some conceptual difficulties in translating229

the static construction to the dynamic construction, mostly due to that a dynamic net tree has to be230

compressed and hence some nodes are not directly accessible.231

The much more difficult task is to maintain a dynamic leaf ordering of PIT, and indeed, all technical232

ideas we develop herein are to solve this task. In the static setting, one simply applies DFS to visit233

each PIT to get an ordering of the leaves. In the dynamic setting, there are two major challenges (see234

Figure 2):235

• (C1): In dynamic net trees (and hence dynamic PITs derived from dynamic net trees), nodes are236

only marked deleted rather than being explicitly deleted from the trees, and hence some leaves237

become inactive3 when their corresponding points are deleted from S. In the DFS leaf ordering238

of a PIT, we only keep track of an ordering of active leaves. Furthermore, adding a single active239

leaf to a net tree could activate Ω(n) ancestors of the leaf to become active. (A node in the tree is240

active if it has at least one active descendant leaf.)241

• (C2): Active descendant leaves of each internal node in a PIT induce a contiguous subsequence of242

the DFS leaf ordering of the PIT. When a node x changes parents from u to v as in Figure 2, if we243

3Here an inactive leaf refers to a leaf that is marked deleted. Later, in technical sections, sometimes it is convenient for us to
insert a null leaf, which is a leaf associated with no point, into a tree. There, an inactive leaf refers to a leaf that is either null or
marked deleted.

6

1 2 3 4 6 75 8 9

1 2 3 4 6 75 8 9

1 2 3 4 6 75 8 9

1 2 3 4

6 7

5 8 9

x

u v

x

u v

Figure 2: A node x in a PIT changes parent from u to v leads to changes in DFS leaf orderings of v
and its ancestors, and of u and its ancestors. Rectangular nodes are active nodes, which either leaves
corresponding to non-deleted points or internal nodes with at least one active descendant leaf.

can identify the leftmost active leaf, say lv , of v in its subsequence, then we could simply slice the244

DFS leaf subsequence of x and stitch it to the left of lv in the DFS leaf ordering. (This means that245

the recourse of a parent update in the DFS leaf ordering is small.) The difficulty is in identifying246

the leftmost (and also rightmost) leaf of v, and more generally, of an internal node. A natural idea247

is to a pointer from each internal node to the leftmost/rightmost descendant leaves, but a parent248

update of a single node in a PIT could change the pointers to the leftmost/rightmost descendant leaves249

of all of its (both old and new) ancestors. There could be Ω(n) such ancestors (if the aspect ratio ∆250

is large).251

In the special case of incremental dynamic, a.k.a. insertion only, (C1) does not happen since there is252

no deletion, it remains challenging to resolve (C2). A well-known technique for maintaining a certain253

kind of DFS of a dynamic tree is the Euler tour technique [35, 21]. However, the Euler tour maintains a254

DFS ordering of all edges in the tree (in both directions), while we only maintain a list of leave nodes,255

and hence we need to be able to query a leftmost leaf in the subtree of an internal node. There seems256

to be no easy way to modify existing dynamic tree data structures, including the Euler tour technique,257

for this purpose under parent updates. This problem is significantly compounded by the presence of258

deleted leaves: even designing a data structure for querying an (arbitrary) active descendant leaf of a259

given internal node in a PIT becomes non-trivial.260

We will take several steps to resolve both challenges, see the lower part of Figure 1. Our key idea is261

to stabilize the net tree using a net tree cover. The formal definition of a net tree cover is somewhat262

unintuitive and hence we defer it to Definition 8 in Section 4; here we describe its high-level intuition. A263

dynamic net tree cover is a collection of Oλ(1) net tree where updates to every tree are restricted to one264

of three types: inserting a new leaf, marking a leaf deleted, and subdividing an edge. Therefore, the265

only non-trivial parent update in the tree is by edge subdivision: inserting a new node z in the middle of266

an edge (x , y) between a parent x and a child y , effectively changing the parent of y from x to z. This267

type of parent change does not alter the DFS leaf ordering of a node in the tree, which is the key to our268

dynamic data structure. We say that every tree in the net tree cover is stable; updates that are not one of269

the three types above are unstable. As stable updates are too restrictive, it should not be surprising that270

the dynamic net tree by Cole and Gottlieb [12], as well as many other dynamic tree data structures, are271

unstable.272

Our basic idea is to “decompose” an (unstable) update to a net tree T into Oλ(1) stable updates to J,273

7

the corresponding net tree cover. The main observation is that when a node (p, i − 1) at level i − 1 of a274

net tree T changes its parent at level i from (u, i) to (v, i), then both dX (p, u) and dX (p, v) are bounded275

by O(δ/ϵi) and hence small compared to the radius at level i, by the covering of the net tree. Suppose276

in an ideal situation in which we have a version of T , denoted by J , where we only keep a c·δ
ϵi -net at277

level i of J for a sufficiently big constant c, and that u happens to be in the net, then both p and v will278

be children of u, and there is no need to change the parent of (p, i − 1) to (v, i). (The bound δ
ϵi is the279

packing/covering radius at level i of a (δ,ϵ)-net tree; see Definition 6.) Of course, the ideal situation280

will not always happen, and therefore, we construct many, but Oλ(1), different versions of T in the net281

tree cover, and we could show that, loosely speaking, the ideal situation will happen at one version of T .282

Our idea is to realize some kind of shifting strategy, in the same way the shifted quadtree was used in283

Euclidean space by Chan, Har-Peled, and Jones [10]. However, we do not have Euclidean geometry;284

instead, we use a standard coloring trick (e.g., [3, 24]) to color net points. To implement all of these285

ideas, we have to handle two major difficulties: (1) the ideal situation only happens at one of the trees,286

and we have to handle non-ideal situations in other trees—the key to this is that we have more leeway in287

other trees, as the important pairs were taken care of in the ideal situation; (2) when new node arrives288

due to insertions of new points to S, one has to merge it with other nodes, leading to unstable parent289

changes. (Roughly speaking, a node (v, i) is merged to a node (u, i) if (v, i)’s children become (u, i)’s290

children in a version J of T .) We resolve both problems by developing two rules on top of the net tree291

cover, namely merging by distances and merging through time: when a new node arrives, we look at its292

distance to existing nodes, and decide to merge based on both the distances and the time when the node293

arrives. All in all, we are able to show that updates to J are stable. As stability is the key to dynamic294

algorithms, we believe that this construction is of independent interest.295

Given a stable dynamic net tree (encapsulated in a dynamic net tree cover), we develop a dynamic296

algorithm, called dynamic pairing, to construct dynamic PITs. Here, we exploit the stability of the net tree297

cover to simplify and adapt our static construction to the dynamic setting. As we noted earlier, our static298

construction has a certain locality condition. An important guarantee of our dynamic pairing algorithm299

is that (updates to) our dynamic PITs are stable, given that the input dynamic net tree is stable; this is300

important for the next step: keeping track of DFS ordering of active leaves in PITs.301

Finally, we develop a data structure, called leaf tracker, to keep track of the DFS ordering of active302

leaves in a PIT. Recall that the ordering is obtained by visiting each PIT by DFS, breaking ties by the303

insertion time. We will store the DFS ordering using a doubly linked list σ. We also build a skip list on304

top of σ to perform some kind of binary search. We design the keys to the skip lists to be what we call305

ancestral arrays. Roughly speaking, an ancestral array of a node u ∈ T is an array O(log n) “important”306

ancestors stemming from a centroid decomposition of T (see Definition 11). Though there is no linear307

order between the ancestral arrays to use them as keys in the traditional sense, we could use them to308

determine if a leaf x is a descendant of a query node u or not by Lemma 14, which turns out to be309

sufficient for binary search using skip lists. There are several subtleties in the implementation, which we310

will discuss in detail later in Section 5.1. Here the stability of the updates in PITs helps in two ways: (i)311

only leaves get inserted into a PIT and hence the ancestral arrays of a node do not change by much after312

an insertion; and (ii) a node could only change parent due to edge subdivision, but edge subdivision313

does not change the DFS leaf ordering σ. Therefore, we could rely on the data structure of Kopelowitz314

and Lewenstein [25] to maintain ancestral arrays (and their associated centroid decomposition) under315

stable updates in O(log n) time.316

Now, to keep track of the DFS leaf ordering, when a new node q is inserted to a PIT as a leaf child317

of a node u, we will locate the current rightmost active descendant leaf, say ru of u in σ—assume for318

now that u has at least one such leaf— and then insert q after ru in σ. The basic idea is to first find an319

arbitrary active descendant leaf x of u and then start a binary search procedure to search for ru in the320

skip list using ancestral arrays as keys. In the case where the parent u of q does not have any active321

8

descendant leaf before inserting q, our idea is to search for the lowest ancestor, say v, of u that has at322

least one active descendant leaf, find the leftmost/rightmost active descendant leaf of v, and insert q next323

to the leftmost/rightmost leaf. Finding an arbitrary active descendant leaf and the lowest active ancestor324

are rather non-trivial: in the former case, u might contain up to Ω(n) inactive descendant leaves, while325

in the latter case, we might end up checking a large number of ancestors of u. Here we develop a new326

data structure called active tracker to support both operations.327

With all ideas together, we are able to develop a dynamic data structure for a pairwise tree cover,328

formally defined in Definition 5 below, which maintains a set of stable dynamic PITs and their corre-329

sponding DFS leaf orderings (using leaf trackers). One important corollary is that the DFS leaf ordering330

of every stable PIT is also stable: we say that a DFS leaf ordering is stable if the insertion or deletion of a331

new active leaf does not change the relative DFS ordering of all existing active leaves. The stability of332

the DFS leaf ordering is because edge subdivision does not change DFS leaf ordering and inserting a new333

active leaf does not change the relative order of existing nodes. See Figure 1 for a graphical illustration334

of all ideas.335

Definition 5 (Dynamic pairwise tree cover data structure). A data structure for maintaining a (τ,ϵ)-336

pairwise tree cover T and a stable DFS leaf ordering of every PIT in T, and supporting the following337

operations:338

• INSERT(q,T): insert a new point q to T.339

• DELETE(q,T): remove an existing point q from T.340

• GETPREDECESSOR(q, i,T): return the predecessor of q in σi where σi is the DFS leaf ordering of341

the i th tree of T. The result is null if q is the first element in σi .342

• GETSUCCESSOR(q, i,T): return successor of q in σi where σi is the DFS leaf ordering of the i th
343

tree of T. The result is null if q is the last element in σi .344

Since we maintain DFS leaf orderings by a doubly linked list, we can support querying the predecessor345

or successor of a point in O(1) time. The following theorem, whose proof will be given in Section 4,346

summarizes our main technical result.347

Theorem 2. Given ϵ > 0, there is a data structure maintaining (τ,ϵ)-pairwise tree cover with τ = ϵ−O(λ)
348

supporting INSERT/DELETE in O
�

ϵ−O(λ) log(n)
�

time per operation, and GETPREDECESSOR/GETSUCCESSOR349

in O(1) time per operation.350

As we mentioned above, each ordering in an LSO is basically a DFS ordering of (active) leaves in a PIT.351

Hence, once we can maintain PITs and their DFS leaf orderings, we could obtain an LSO as a corollary.352

As the DFS leaf orderings are stable, the LSO we obtain is also stable. The following theorem formalizes353

our results; the proof is rather simple, and will be given in the preliminaries section (Section 2.2).354

Theorem 3. If there is a data structure for dynamic (τ,ε)-pairwise tree cover supporting INSERT/DELETE355

in T1(n,ϵ) time per operation and GETPREDECESSOR/GETSUCCESSOR in T2(n,ϵ) time per operation, then356

we can construct a data structure for (τ, O(ϵ))-LSO supporting INSERT/DELETE in O(T1(n, O(ϵ))) time357

per operation, and GETPREDECESSOR/GETSUCCESSOR in O(T2(n, O(ϵ))) time per operation. Furthermore,358

the LSO is stable (due to the stability of the DFS leaf orderings in the pairwise tree cover).359

We observe that Theorem 1 follows directly from Theorem 3 and Theorem 2.360

9

1.2 Applications361

We now give examples of applications of our dynamic LSO in Theorem 1. We note that the list of362

applications mentioned here is not meant to be exhaustive. We believe that LSO could find many more363

applications in handling dynamic point sets in doubling metrics. As we remarked earlier, the stability of364

our dynamic LSO is the key to applications. All but the dynamic tree cover application were shown for365

Euclidean spaces by Chan, Har-Peled and Jones [10].366

Dynamic vertex-fault-tolerant spanners. Given a set of points S in a doubling metric of dimension λ,367

we denote by GS the complete graph representing the submetric induced on S. A t-spanner of S is a368

spanning subgraph H of GS such that dH(x , y) ≤ t · dGS
(x , y) for every x , y ∈ S. Given k ∈ [1, n− 2],369

we say that H is an k-fault-tolerant t-spanner, or (k, t)-VFTS for short, if for every subset F ⊂ S of size at370

most k, called a faulty set, H \ F , the graph obtained by removing every vertex in F from H, is a (1+ ϵ)371

of S \ F .372

Observe that in a (k, 1+ ϵ)-VFTS, every vertex must have a degree at least k, and therefore at least373

Ω(nk) edges. Levcopoulos, Narasimhan, and Smid [28] introduced and constructed the first k-fault-374

tolerant (1+ ϵ)-spanner in Euclidean spaces of constant dimensions that has O(k2n) edges. There was375

then a long line of work, see e.g.,[29, 13, 8, 9, 34, 27], aiming to improve the Euclidean construction by376

Levcopoulos, Narasimhan, and Smid as well as extend their result to doubling metrics. Specifically, in377

doubling metrics, it is possible to achieve degree bound O(k) and/or O(nk) number of edges [34, 27].378

Some constructions are simple but could only achieve O(nk) number of edges (without any reasonable379

bound on the degree) [8], or the degree is Ω(k2) [9]; other constructions achieving optimal degree380

bound of O(k) (for constant ϵ and λ) are sophisticated [34].381

A more ambitious goal is to construct an optimal k-fault-tolerant (1+ ϵ)-spanner efficiently, even in382

the static setting. Solomon [34] devised an O(n(log n+ k))-time algorithm to construct a k-fault-tolerant383

(1+ ϵ)-spanner with degree O(k) (and diameter O(log k) and lightness O(k2 log n)); the running time is384

of Solomon’s algorithm is optimal in both n and k. Solomon’s result settled an important open problem385

raised in the book of Narasimhan and Smid (Problems 26 and 27 in [31]). Recently, Le, Solomon, and386

Than [27] designed a different algorithm with the same running time but achieving both optimal degree387

and lightness. Given the slow progress on static algorithms, it is understandable that the problem of388

maintaining a dynamic (k, t)-VFTS in doubling metrics under point updates remains wide open. Even389

maintaining a dynamic and non-fault-tolerant spanner, a much simpler problem, proved to be very390

challenging. Gottlieb and Roddity [19] were the first to achieve O(log n) time per update after several391

attempts [32, 18, 19]. Their dynamic algorithm is much more complicated than its static counterpart [7].392

It is, therefore, unlikely that their technique could be extended to handle (k, t)-VFTS.393

Given our dynamic LSO in Theorem 1 as a black box, following [10], we obtain a dynamic algorithm394

for maintaining (k, 1+ ϵ)-VFTS in Oλ,ϵ(log n+ k) time per update in a very simple way: for each point395

p ∈ S, add edges to its k+ 1 predecessors and k+ 1 successors in each ordering of Σ. As |Σ|= ϵ−O(λ),396

our dynamic (k, 1+ ϵ)-VFTS spanners achieve both optimal running time per update, optimal degree (and397

hence the number of edges), and optimal running time to query all neighbors of a vertex.398

Theorem 4. Given ϵ ∈ (0, 1), k ∈ [1, n− 2] and a dynamic point set S in doubling metrics of dimension399

λ, there is a data structure D such that D (implicitly) maintains a (k, 1+ ϵ)-VFTS H of degree k · ϵ−O(λ)
400

for S in O(log nϵ−O(λ)) time per update, and D returns all neighbours of a given vertex of H in kϵ−O(λ)
401

time. The update time and query time are optimal for fixed ϵ,λ.402

Dynamic tree covers. This result is an application of our technique rather than a direct application403

of LSO. Given a set of points S in a doubling metric (X , dX), a tree cover for S is a collection of edge-404

10

weighted trees T such that for every tree T ∈ T, S ⊆ V (T) and dX (x , y)≥ dT (x , y). The size of the tree405

cover T, denoted by |T|, is the number of trees in T. The stretch of T is the smallest t ≥ 1 such that406

dX (x , y)≤ t ·minT∈T dT (x , y). Tree covers have been studied extensively both in general metrics [36]407

and special metrics, such as Euclidean [1], planar [3, 11], and doubling [3, 24]. Tree covers also have408

many algorithmic applications, such as spanners, routing, and distance oracles; see [24] for a thorough409

discussion. In doubling metrics, a tree cover for n points could be (statically) constructed in O(n log n)410

time [24]. However, there is no known dynamic construction of tree covers. Indeed, dynamically411

maintaining a tree cover is at least as hard as maintaining a dynamic spanner, which, as discussed above,412

is a difficult problem. Our technique for maintaining a dynamic pairwise tree cover could be adapted413

directly to maintain a tree cover with Oλ,ϵ(log n) per point update.414

Theorem 5. Given a dynamic point set S in doubling metrics of dimension λ and any ϵ ∈ (0, 1), there is415

a data structure DJ explicitly maintaining a tree cover J for S such that J has stretch of 1+ ϵ and size of416

ϵ−O(λ), and the running time per update is O(ϵ−O(λ) log(n)).417

Closest pair of points. Finding the closest pair in a point set is a very well-studied problem in418

computational geometry. In Euclidean spaces, there is a vast amount of literature on this problem. In419

the Euclidean spaces of constant dimension, the dynamic closest pair can be maintained in O(log n) time420

per update [4, 17, 10]. In metrics of bounded doubling dimension, there are two fast static algorithms421

for finding the closest pair: one based on well-separated pair decomposition (WSPD) [20], and the422

other is divide and conquer [33]. Both algorithms are randomized and have an expected running time423

of O(n log n). Using our dynamic LSO, we could maintain the closest pair in O(log n) time per update.424

Applying our dynamic algorithm to the static setting, we obtain a deterministic algorithm for the closest425

pair in metrics of bounded doubling dimension in time Oλ,ϵ(n log n).426

Theorem 6. Given a dynamic point set S in doubling metrics of dimension λ, we construct a data427

structure for maintaining the closest pair in S in 2O(λ) log(n) time per update.428

Bichromatic closest pair of points. This is another fundamental problem in computational geometry:429

given two point sets R (red) and B (blue) in a metric space, find the closest pair of points, one red and430

one blue, among all red-blue pairs of points. In Euclidean metrics, both static and dynamic versions of431

this problem have been studied extensively (see, e.g. [14] and references therein). However, in doubling432

metrics, there is no known dynamic algorithm for this problem. Here we use our dynamic LSO to provide433

the first approximate dynamic algorithm.434

Theorem 7. Given a parameter ϵ ∈ (0,1) and two dynamic point sets R, B in doubling metric of435

dimension λ, there is a data structure such that it maintains (1+ ϵ)-closest pair (r, b) where r ∈ R, b ∈ B,436

and runs in O(ϵ−O(λ) log(n)) per update of R or B, where n= |R|+ |B|.437

Approximate nearest neighbor search. One problem that motivated the early study of dynamic438

algorithms for point sets in doubling metrics is the approximate nearest neighbor: given a query point p,439

find a point q such that dX (p, q) ≤ (1+ ϵ)minx∈X\p dX (p, x). We would like to design a dynamic data440

structure that could support fast update time and query time. The pioneering work of Krauthgamer and441

Lee [26] proposed the first dynamic solution for this problem with Oϵ,λ(log∆ log log(∆)) update time442

and O(log∆+ϵ−O(λ)) query time, which is optimal. Cole and Gottlieb [12] then removed the dependency443

on the spread ∆ and improved the update time to Oϵ,λ(log n) and the query time to O(log(n) + ϵ−O(λ)).444

Ideally, we would like the query time to be much faster than the update time; for example, in database445

applications, querying nearest neighbors is done much more frequently than deleting/inserting points.446

11

Our dynamic LSO in Theorem 1 gives a simple solution for this problem. For a given query point p, the447

idea is to first insert p to the current LSO of the point set, return the closest neighbor in the orderings of448

p, and then delete p from the LSO. As the number of orderings is Oϵ,λ(1), and p has at most 2 neighbors449

per ordering, the query time is Oϵ,λ(1), plus the time to insert and delete p from the LSO, which is450

ϵ−O(λ) log(n). We note that log(n) query time is optimal for a constant ϵ,λ for any data structure with451

linear space [2].452

Theorem 8. Given a dynamic point set S in doubling metrics of dimension λ, we can construct a (1+ϵ)-453

nearest neighbor data structure for supporting point deletions/insertions in O(ϵ−O(λ) log(n)) time per454

update, and ϵ−O(λ) log(n) query time.455

2 Preliminaries456

2.1 Basic Notation457

Given a metric space (X , dX), let ∆ be the ratio between the maximum and the minimum distance in458

the space. A ball of p radius r is a set of all points in distance r from p: B(p, r) = {q ∈ X : d(p, q)≤ r}.459

(X , dX) has doubling dimension λ if any ball with radius 2r can be covered by at most 2λ balls of radius460

r. The packing property of a doubling metric states that any set of points with maximum distance R and461

minimum distance r has at most
�4R

r

�λ
points.462

Y is a r-net of point set S if Y is a subset of S such that: (i) for all x , y ∈ Y and x ̸= y , dX (x , y)> r463

(this property is called packing), (ii) for every point x ∈ S, there exists a point y ∈ Y such that dX (x , y)≤ r464

(this property is called covering). Net tree is a hierarchical tree where: each node has a label where the465

set of leaf labels is a bijection into S, and the set of points at level i, denoted as Yi , is r i-net of Yi−1. We466

denote a node by a pair (t, i), where t is a point in S and i is the level of the node. Sometimes we simply467

use t instead of (t, i) when the level is clear from the context. The distance between two nodes in the468

net tree means the distance between two points labeled these nodes.469

For a dynamic point set S, Cole and Gottlieb [12] showed how to construct a net tree with relaxed470

packing and covering properties: (i) for x , y,∈ Yi and x ̸= y, dX (x , y) > α 1
ϵi , (ii) for x ∈ Yi−1, there471

exists y ∈ Yi such that dX (x , y) ≤ φ 1
ϵi , where α and φ are some constants. In this work, we use the472

notion of (δ,ϵ)-net tree to mention the net tree with relaxed packing and covering properties, and Yi is473

the δ
ϵi -net of Yi−1 for any level i.474

Definition 6 ((δ,ϵ)-net tree). The (δ,ϵ)-net tree is a net tree with packing and covering properties as475

follows:476

• [Packing.] two nodes (x , i), (y, i) have dX (x , y)> Ω(δ
ϵi).477

• [Covering.] if (x , i) is the parent of (y, i − 1), then dX (x , y)≤ O(δ
ϵi).478

2.2 Dynamic LSO from Dynamic Pairwise Tree Cover479

We now show how to construct LSO from a pairwise tree cover; the proof addresses both static and480

dynamic settings.481

Theorem 3. If there is a data structure for dynamic (τ,ε)-pairwise tree cover supporting INSERT/DELETE482

in T1(n,ϵ) time per operation and GETPREDECESSOR/GETSUCCESSOR in T2(n,ϵ) time per operation, then483

we can construct a data structure for (τ, O(ϵ))-LSO supporting INSERT/DELETE in O(T1(n, O(ϵ))) time484

per operation, and GETPREDECESSOR/GETSUCCESSOR in O(T2(n, O(ϵ))) time per operation. Furthermore,485

the LSO is stable (due to the stability of the DFS leaf orderings in the pairwise tree cover).486

12

Proof: We show how to construct (τ, O(ϵ))-LSO from a (τ,ϵ)-pairwise tree cover T, then we obtain a487

(τ,ϵ)-LSO by scaling ϵ with a constant factor.488

First, we show a static construction.489

Given a (τ,ϵ)-pairwise tree cover T = {T1, T2, . . . , Tτ}, let Σ be the set of {σ1,σ2, . . .στ},490

where σi is the DFS leaf ordering of Ti ∈ T.491

By the covering of the pairwise tree cover, for any pair x , y with dX (x , y) ∈ [δ
ϵi ,

2δ
ϵi], there is a tree T j492

such that a node at level i of T j is O(ϵ)-close to (x , y). Let that node be (u, v, i). Recall that Ci(u, v)493

is a set of all leaf labels under the subtree rooted at (u, v, i) and x , y ∈ Ci(u, v). By DFS, all points494

in Ci(u, v) are written consecutively in σ j. This implies that any point p between x and y in σ j has495

dX (p, x)≤ O(ϵ)dX (x , y) or dX (p, y)≤ O(ϵ)dX (x , y). Therefore, Σ is a (τ, O(ϵ))-LSO.496

Here is the dynamic maintenance for Σ:497

Suppose that we are given a data structure DT maintaining the (τ,ϵ)-pairwise tree cover T498

under insertions and deletions. Our data structure DΣ maintaining (τ, O(ϵ))-LSO Σ dynami-499

cally invokes operations of DT directly. To update a point p, INSERT(p,Σ) calls INSERT(p,T),500

and DELETE(p,Σ) calls DELETE(p,T). To access orderings, we use operations of getting501

the predecessor or the successor of DΣ, where GETPREDECESSOR(p, i,Σ) and GETSUCCES-502

SOR(p, i,Σ) of DΣ return the result of GETPREDECESSOR(p, i,T) and GETPREDECESSOR(p, i,T)503

respectively.504

The running time follows directly from the construction. The stability of the LSO follows from that505

of DFS leaf ordering of T, implying the theorem. □506

3 Pairwise Tree Cover: Static Construction507

In this section, we show the static construction for a collection of (δ,ϵ)-PITs as claimed in Theo-508

rem 9. Then we construct an (ϵO(−λ),ϵ)-pairwise tree cover by simply constructing PITs for each509

δ ∈ {1,21, 22, . . . , 2⌈lg(1/ϵ)⌉}.510

Theorem 9. Given a (δ,ϵ)-net tree T of a point set S, we can construct from T a collection of (δ,ϵ)-PITs511

T with ϵ−O(λ) trees such that for any pair of points (x , y) whose distance in [δ
ϵi ,

2δ
ϵi), there exist a PIT T ′512

in the collection and a node at level i of T ′ that is O(ϵ)-close to (x , y).513

We call a node in a PIT T ′ as a pairwise node, to distinguish with a node in net tree T . We simply514

refer to a pairwise node as a node when the tree in the context is a PIT. A pairwise node at level i can be515

labeled by a single point of the form (p, p, i) or two different points of the form (x , y, i). In the former516

case, we say that the node has a single-label and in the latter case, double-label. For a given point p ∈ S,517

we define the node (pairwise node) at level i of point p to be the ancestor at level i of the leaf (p, 0)518

((p, p, 0), resp.) in the net tree T (PIT T ′, resp.). If (u, v, i) is the pairwise node at level i in T ′ of p,519

and p ∈ Yi−1, we also say (u, v, i) is the pairwise node in T ′ of (p, i − 1) (in T), for some u, v ∈ Yi−1; it520

could be that p ̸∈ {u, v}, and hence it is not always the case that the corresponding pairwise node of521

(p, i) is labeled with the same point p. Observe that level i of a PIT corresponds to level i − 1 in the522

corresponding net tree; they are off by one level.523

First, we describe intuitively an O(ϵ)-close node for a pair of points x0, y0 with dX (x0, y0) ∈ [
δ
ϵi ,

2δ
ϵi).524

We denote by Yi the set of net points at level i; these are points associated with nodes at level i of T .525

Recall that in (δ,ϵ)-net tree, given a level i, any point p0 in S has a node (p, i) such that p0 ∈ B(p, 2δ
ϵi),526

we say the ball of (p, i) covers p0. Let (x , i − 1) and (y, i − 1) be nodes at level i − 1 whose balls cover527

13

x0 and y0, respectively. Observe that for every p ∈ B(x , 2δ
ϵi−1), dX (x0, p) ≤ 4δ

ϵi−1 by triangle inequality.528

Similarly, for every p ∈ B(y, 2δ
ϵi−1), dX (y0, p)≤ 4δ

ϵi−1 . Therefore, if we have a pairwise node in a PIT such529

that its cluster is the union of B(x , 2δ
ϵi−1) and B(y, 2δ

ϵi−1), this node is O(ϵ)-close to (x0, y0). To see this,530

suppose that we have a node (x , y, i) in the PIT and its cluster Ci(x , y) = B(x , 2δ
ϵi−1)∪ B(y, 2δ

ϵi−1), then it531

satisfies: (i) x0, y0 ∈ Ci(x , y), (ii) for any p ∈ Ci(x , y), dX (p, x0) or dX (p, y0) is at most 4δ
ϵi−1 , which is532

4ϵ δ
ϵi = O(ϵ)dX (x0, y0).533

Now, we sketch our main idea for the static construction. Observe by the triangle inequality,534

||dX (x , y) − dX (x0, y0)|| ≤ dX (x , x0) + dX (y, y0), which means dX (x , y) ∈
�

δ
ϵi − 4δ

ϵi−1 , 2δ
ϵi +

4δ
ϵi−1

�

. To535

have O(ϵ)-close nodes for all pairs with the distance in
�

δ
ϵi ,

2δ
ϵi

�

, we consider all pairs u, v of Yi−1, for536

each pair if dX (u, v) ∈
�

δ
ϵi − 4δ

ϵi−1 , 2δ
ϵi +

4δ
ϵi−1

�

, then we create a pairwise node (u, v, i). Next, we arrange537

these nodes into PITs such that: (i) for each PIT, every point in Yi−1 belongs to the label of at most one538

level-i pairwise node, (ii) clusters of nodes at level i are the union of some clusters of nodes at level i−1,539

(iii) these level-i clusters are disjoint. Then, in each PIT, for any point p ∈ Yi−1 that does not belong to540

a cluster of any pairwise node at level i, we create a single-label node (p, p, i) in that PIT. Finally, we541

create edges connecting pairwise nodes at level i and level i − 1: if the cluster of a node u at level i − 1542

is a subset of the cluster of a node v at level i, v becomes the parent of u.543

Assigning points to nodes requires careful attention. To guarantee that all clusters are disjoint as544

specified by the condition (iii) of arranging nodes, we maintain a property that for each PIT, given any545

two points u, v ∈ Yi−1 which are in (the same or different) double-label nodes at level i, dX (u, v)> 8δ
ϵi−1 .546

Here, we reuse the red-blue matching algorithm of Filtser and Le [15] to determine which pairwise547

nodes could be placed in the same PIT while guaranteeing the three conditions above.548

In the end, we obtain a collection of PITs T, and the levels of PIT in T are off from the levels of the549

net tree by 1. At the leaf level, pairwise nodes are single-label, and these labels are exactly the points in550

S. For a level i > 0, we construct pairwise nodes from the nodes of T at level i − 1, and they could be551

single-label or double-label depending on how we pair up points in Yi−1. Some points in Yi−1 might not552

appear in the labels of pairwise nodes at level i of a PIT. See Figure 3.553

Figure 3: Illustrating a net tree T (left), a PIT T ′ derived from T (right). We create (x , y, i) by pairing
up (x , i − 1) and (y, i − 1) in T , and this nodes is O(ϵ)-close to the pair (x0, y0). The dashed arrows
show corresponding single-label pairwise nodes, and the dot arrows show corresponding double-label
pairwise nodes.

Now, we show details of the static construction. We need the following lemma of Filtser and Le [16]:554

14

Lemma 1 ([16]). Consider a graph G = (V, Eb ∪ Er) that consists of disjoint edge sets called blue and555

red respectively. Let δr ≥ 1 (δb > 1) be the maximal red (blue) degree. There exists a set M of O(δbδr)556

maximal matchings such that: 1) their union covers all blue edges; 2) there is no red edges whose both557

endpoints are matched by any matching in M.558

The algorithm to construct M of Filtser and Le [16] works roughly as follows. Let M be the collection559

of maximal matchings, initially empty. Let B be the set of blue edges remaining uncovered in M, initially560

B = Eb. We repeat the following process until B is empty: 1) greedily find M such that it is a maximal561

matching of B and there are no red edges whose endpoints are matched in M , 2) add M to M, 3) remove562

edges in M out of B. We refer readers to the work of Filtser and Le [16] for the analysis of the properties563

M. We call this algorithm red-blue matching.564

3.1 The Static Construction565

Given parameters δ > 0, ϵ < 1
16 , a (δ,ϵ)-net tree T , our construction proceeds as follows. Initially, the566

collection has ϵ−O(λ) trees, each tree has a level 0 such that the set of leaf labels is a bijection with the567

point set S. We construct trees in T by visiting T in bottom-up order.568

[Step 1 - Create matchings] To create pairwise nodes at level i for all trees in the collection, let569

Yi−1 be the set of all points at level i − 1 of the net tree T . We define two important parameters: range570

Ri =
�

(1− 4ϵ) δ
ϵi , (1+ 2ϵ)2δ

ϵi

�

, and threshold si =
10δ
ϵi−1 . Let Gi = (Vi , Eb ∪ Er) be the graph where the571

vertex set is Vi = Yi−1, Eb = {(u, v) ∈ Vi × Vi : dX (u, v) ∈ Ri}, Er = {(u, v) ∈ Vi × Vi : dX (u, v) < si}. This572

graph consists of blue edges (Eb) and red edges (Er), where blue edges contain pairs of points in Yi−1573

whose distances are in Ri , and red edges contain pairs whose distances are less than si . Since ϵ < 1
16 , we574

have 10δ
ϵi−1 < (1− 4ϵ) δ

ϵi , which means an edge could be only red or blue. Applying the red-blue matching575

algorithm in Lemma 1, we obtain a set of matchings Mi . See Figure 4.576

Figure 4: Examples of red-blue graphs created from Step 1. The left figure is the net tree T , and the right
figure includes Gi−1 and Gi . Gi consists of solid edges and nodes; Gi−1 consists of dashed edges, and its
vertex set includes dashed and solid nodes. The only blue edge in Gi is (x , y), while Gi−1 contains (r, z)
and (r, t) as blue edges.

[Step 2 - Create pairwise nodes at level i] For each matching in Mi , we will create pairwise nodes577

at level i for the corresponding PIT in T, then find children for these nodes as described below. Let M i
j578

be the j th matching of Mi , and T ′j be the j th PIT of T. Suppose by induction that we have already added579

pairwise nodes at level i − 1 for all PITs in T from T nodes at level i − 1. At this point, each PIT is a580

forest. We add pairwise nodes at level i to T ′j from M i
j as follows:581

• [Step 2.1 - Matched nodes] For each edge (x , y) ∈ M i
j , we create a node (x , y, i) in T ′j , and582

then assign (x , y, i) as the corresponding pairwise node of (x , i − 1) and of (y, i − 1). If i ≥ 2, for583

u ∈ Yi−2 such that dX (u, x)≤ 3δ
ϵi−1 or dX (u, y)≤ 3δ

ϵi−1 (u might be x or y), let (u1, u2, i − 1) be the584

15

(a)

(b)

Figure 5: Illustration for step 2 - creating pairwise nodes. Depending on matched edges in Gi and
pairwise nodes at level i − 1, we have different structures of PITs, as shown in figures (a) and (b).
Blue lines are matched edges, and bold blue nodes are pairwise nodes created from these edges. The
filled nodes are pairwise nodes of unmatched points, and specifically, (x , y, i) is the pairwise node of
unmatched point (z, i − 1).

corresponding pairwise node at level i − 1 of (u, i − 2). We then set (u1, u2, i − 1) to be a child585

of (x , y, i). In Lemma 3 below, we show that (u1, u2, i − 1) will not be set as a child of another586

pairwise node (x ′, y ′, i) created from another matched edge (x ′, y ′) ∈ M i
j using the fact that no587

red edge has both endpoints matched by M i
j . See Figure 5 for an illustration.588

Now, children of (x , y, i) include the corresponding pairwise nodes of (x , i−1)’s children, (y, i−1)’s589

children since if (v, i−2) is a child of (x , i−1) or (y, i−1) then dX (v, {x , y})≤ δ
ϵi−1 by the covering590

property of T . Children of (x , y, i) might also contain corresponding pairwise nodes of children of591

some unmatched nodes.592

• [Step 2.2 - Unmatched nodes] After going through all edges in M i
j , we consider unmatched net593

point z in Yi−1.594

– [2.2.1] We create the corresponding pairwise node in T ′j for (z, i − 1) by considering the595

corresponding pairwise node of (z, i − 2):596

(a) If i = 1, (z, i − 2) does not exist, then we create (z, z, i) as the pairwise node of (z, i − 1)597

in T ′j .598

16

(b) For i > 1, let (z1, z2, i − 1) be the corresponding pairwise node of (z, i − 2) in T ′j . If599

(z1, z2, i−1) does not have a parent, then we create (z, z, i) as the corresponding pairwise600

node of (z, i − 1) in T ′j .601

(c) If both (a) and (b) do not hold, meaning that i ̸= i and (z1, z2, i − 1) has a parent in T ′j ,602

denoted by (z′1, z′2, i), then we assign (z′1, z′2, i) as the corresponding pairwise node of603

(z, i − 1) in T ′j .604

– [2.2.2] For any child of (t, i − 2) of (z, i − 1) (this case only happens when i > 1), if the605

corresponding pairwise node of (t, i−2) in T ′j , denoted by (t1, t2, i−1), has not been assigned606

a parent, then we make (t1, t2, i − 1) a child of the corresponding pairwise node of (z, i − 1).607

Otherwise, we leave (t1, t2, i − 1) as it is.608

3.2 The Analysis609

In this section, we will analyze the properties of the PITs constructed in the previous section, and610

specifically, the packing and covering properties as defined in Definition 3 and the pairwise covering611

property of the pairwise tree cover as defined in Definition 4. When (p, i−1) is unmatched by a matching612

and its level is clear from context, we will refer to p as an unmatched point. First, we observe that:613

Observation 1. For any pairwise node (u1, u2, i), dX (u1, u2)≤ (1+ 2ϵ)2δ
ϵi .614

Proof: If u1 = u2, then dX (u1, u2) = 0. If u1 ̸= u2, (u1, u2) must be a blue edge in Gi , thus dX (u1, u2)≤615

(1+ 2ϵ)2δ
ϵi . □616

Observation 2. In step 2.2.1 case (c), (z1, z2, i − 1) already has a parent, which is found in step 2.1.617

Proof: We consider all matched nodes first in step 2.1, then unmatched nodes later in step 2.2. In618

each step, we find parents for some pairwise nodes at level i − 1 in T ′j . In case (c) of step 2.2.1, the619

corresponding pairwise node (z1, z2, i−1) of (z, i−2) already has a parent, which must be found by step620

2.1. Thus the observation follows. □621

In the next two lemmas, we will show basic facts about the PITs.622

Lemma 2. For any point p ∈ Yi−1, let (u1, u2, i) be the corresponding pairwise node of p at level i in T ′j ,623

then dX (p, {u1, u2}) =min{dX (p, u1), dX (p, u2)} ≤
6δ
ϵi−1 .624

Proof: If the corresponding pairwise node at level i of (p, i−1) is labeled by p, which means p ∈ {u1, u2},625

then dX (p, {u1, u2}) = 0. We remain to consider the case p ̸∈ {u1, u2}. This occurs in step 2.2.1 case (c),626

when p is unmatched by M i
j and the corresponding pairwise node of (p, i − 2), denoted by (t1, t2, i − 1),627

has a node (u1, u2, i) as the parent for i ≥ 2. Note that t1 and t2 could be the same or different points.628

By Observation 2, (t1, t2, i − 1) become a child of (u1, u2, i) in step 2.1. Thus there exists t ∈ Yi−2 such629

that dX (t, {u1, u2})≤
3δ
ϵi−1 and (t1, t2, i − 1) is the corresponding pairwise node in T ′j of (t, i − 2). Now,630

we prove that dX (p, {u1, u2}) ≤
6δ
ϵi−1 . By induction, dX (p, {t1, t2}) and dX (t, {t1, t2}) are at most 6δ

ϵi−2 ,631

since (t1, t2, i − 1) is the corresponding pairwise node in T ′j of both (p, i − 2) and (t, i − 2). We have632

dX (t1, t2)≤ (1+ 2ϵ) 2δ
ϵi−1 by Observation 1. Thus:633

dX (p, t)≤ dX (p, {t1, t2}) + dX (t1, t2) + dX ({t1, t2}, t)

≤
6δ
ϵi−2

+ (1+ 2ϵ)
2δ
ϵi−1

+
6δ
ϵi−2

=
2δ
ϵi−1

+
16δ
ϵi−2

<
3δ
ϵi−1

(since ϵ <
1

16
)

634

17

Finally, by triangle inequality, we have:635

dX (p, {u1, u2})≤ dX (p, t) + dX (t, {u1, u2})

≤
3δ
ϵi−1

+
3δ
ϵi−1

(dX (t, {u1, u2})≤
3δ
ϵi−1
)

=
6δ
ϵi−1

636

This completes the proof. □637

Lemma 3. Consider step 2.1 of the construction, where we create pairwise nodes at level i for T ′j from638

edges matched in M i
j . Let (u1, u2, i − 1) be a pairwise node at level i − 1 of T ′j . There exists at most one639

matched blue edge (x , y) ∈ M i
j such that (u1, u2, i − 1) can be assigned as a child of the pairwise node640

(x , y, i) created from the blue edge (x , y).641

Proof: For contradiction, suppose there exists an edge (x ′, y ′) ∈ M i
j such that (u1, u2, i − 1) can be642

assigned as a child of both (x , y, i) and (x ′, y ′, i). By step 2.1, (u1, u2, i − 1) can be a child of (x , y, i) if643

there exists u ∈ Yi−2 such that dX (u, {x , y})≤ 3δ
ϵi−1 , and (u1, u2, i − 1) is the corresponding pairwise node644

of (u, i−2) in T ′j . Similarly, there exists u′ ∈ Yi−2 such that dX (u′, {x ′, y ′})≤ 3δ
ϵi−1 , and (u1, u2, i−1) is the645

corresponding pairwise node of (u′, i−2) in T ′j . First, we bound dX (u, u′). By Lemma 2, dX (u, {u1, u2})≤646

6δ
ϵi−2 and dX (u′, {u1, u2})≤

6δ
ϵi−2 . By Observation 1, dX (u1, u2)≤ (1+ 2ϵ) 2δ

ϵi−1 . We obtain:647

dX (u, u′)≤ dX (u, {u1, u2}) + dX (u1, u2) + dX ({u1, u2}, u′)

≤
6δ
ϵi−2

+ (1+ 2ϵ)
2δ
ϵi−1

+
6δ
ϵi−2

=
2δ
ϵi−1

+
16δ
ϵi−2

(1)648

Since dX (u, {x , y})≤ 3δ
ϵi−1 and dX (u′, {x , y})≤ 3δ

ϵi−1 , and by triangle inequality, we have:649

dX ({x , y}, {x ′, y ′})≤ dX ({x , y}, u) + dX (u, u′) + dX (u
′, {x ′, y ′})

≤
3δ
ϵi−1

+
2δ
ϵi−1

+
16δ
ϵi−2

+
3δ
ϵi−1

(By Equation (1))

=
8δ
ϵi−1

+
16δ
ϵi−2

<
10δ
ϵi−1

(since ϵ <
1

16
)

650

It follows that there is a red edge connecting a point in {x , y} and a point in {x ′, y ′}. Since x and y are651

matched, (x ′, y ′) does not exist in M i
j by the red-blue matching algorithm, contradicting the assumption652

that (x ′, y ′) ∈ M i
j . □653

We are now ready to show the packing and covering of a PIT using Lemma 2 and Lemma 3 above.654

Lemma 4. Each tree T ′j in the collection T′ satisfies packing and covering properties of PIT as defined655

in Definition 3: [packing] for any two nodes (x , y, i) and (u, v, i), the distance between any pair of points656

in {x , y, u, v} is Ω(δ
ϵi−1); [covering] (i) label points p in children of (x , y, i) has dX (p, {x , y})≤ 6δ

ϵi−1 , and657

(ii) diameter of the cluster of a node at level i is bounded by 6δ
ϵi−1 .658

Proof: Since x , y, u, v ∈ Yi−1, by the packing property of net tree T , the distance between any pair of659

points in {x , y, u, v} is Ω(δ
ϵi−1). This implies that T ′j has the packing property of PITs.660

18

To prove (i) of the covering, we consider a pairwise node (u1, u2, i − 1) of T ′j for u1, u2 ∈ Yi−2 and its661

parent (x , y, i) for x , y ∈ Yi−1.662

If (u1, u2, i − 1) becomes a child of (x , y, i) in step 2.1, then (x , y) ∈ M i
j and there exists u ∈ Yi−2663

such that (u1, u2, i − 1) is the pairwise node of (u, i − 2), and dX (u, {x , y}) ≤ 3δ
ϵi−1 . Now we bound664

dX (u1, {x , y}) and dX (u2, {x , y}) by dX (u, {u1, u2}). By Lemma 2, dX (u, {u1, u2})≤
6δ
ϵi−2 . By Observation 1,665

dX (u1, u2)≤ (1+ 2ϵ) 2δ
ϵi−1 . Thus:666

dX (u1, {x , y})≤ dX (u1, u) + dX (u, {x , y})
≤ dX (u1, u2) + dX ({u1, u2}, u) + dX (u, {x , y})

≤ (1+ 2ϵ)
2δ
ϵi−1

+
6δ
ϵi−2

+
3δ
ϵi−1

≤
6δ
ϵi−1

(since ϵ <
1

16
)

667

By the same argument, we get dX (u2, {x , y})≤ 6δ
ϵi−1 .668

Now we consider when (u1, u2, i − 1) is assigned as a child of (x , y, i) in step 2.2. Observe that669

(u1, u2, i − 1) must be the corresponding pairwise node of (t, i − 2) where (t, i − 2) is a child of an670

unmatched node (z, i−1). If t = z, we must create (z, z, i) as the corresponding pairwise node of (z, i−1)671

in step 2.2.1, thus x = y = z and dX (t, {x , y}) = 0. If t ̸= z, the corresponding pairwise node of (z, i−1)672

has two cases:673

• If z = x = y, which means we create (z, z, i), then dX (t, {x , y}) = dX (t, z)≤ δ
ϵi−2 by the covering674

property of T .675

• If z ̸= x and z ̸= y, then the corresponding pairwise node of (z, i − 2), say (z1, z2, i − 1), must be676

assigned as a child of (x , y, i) in step 2.1. This means dX (z, {x , y})≤ 3δ
ϵi−1 . We have dX (t, z)≤ δ

ϵi−2677

by the covering property of T . Therefore, dX (t, {x , y})≤ dX (t, z) + dX (z, {x , y})≤ 3δ
ϵi−1 +

δ
ϵi−2 .678

In any case, we obtain dX (t, {x , y})≤ 3δ
ϵi−1+

δ
ϵi−2 . By Lemma 2, dX (t, {u1, u2})≤

6δ
ϵi−2 . By Observation 1,679

dX (u1, u2)≤ (1+ 2ϵ) 2δ
ϵi−1 . Thus:680

dX (u1, {x , y})≤ dX (u1, t) + dX (t, {x , y})
≤ dX (u1, u2) + dX (t, {u1, u2}) + dX (t, {x , y})

≤ (1+ 2ϵ)
2δ
ϵi−1

+
6δ
ϵi−2

+
3δ
ϵi−1

+
δ

ϵi−2

≤
6δ
ϵi−1

(since ϵ <
1

16
)

681

By the same argument, dX (u2, {x , y})≤ 6δ
ϵi−1 , giving item (i) of the covering property.682

Finally, we bound the cluster-diameter. Recall that Ci(x , y) is the set of leaves in the subtree rooted at683

(x , y, i). We denote by diam(Ci(x , y)) the diameter of Ci(x , y). To bound diam(Ci(x , y)), we consider684

dX (x , y), the distance from {x , y} to labels of children of (x , y, i), and the cluster-diameter of children685

nodes. Let (u, v, i − 1) be a child of (x , y, i). We have dX (x , y) ≤ (1 + 2ϵ)2δ
ϵi by Observation 1, and686

dX (u, {x , y}) and dX (v, {x , y}) are at most 6δ
ϵi−1 by item (i) of the covering property of T ′j . By induction,687

suppose that diam(Ci−1(u, v))≤ 6δ
ϵi−1 . By triangle inequality, we obtain:688

diam(Ci(x , y))≤ dX (x , y) + 2 · max
a child (u, v, i − 1) of (x , y, i)

{dX ({u, v}, {x , y}) + diam(Ci−1(u, v))}

≤ (1+ 2ϵ)
2δ
ϵi
+ 2(

6δ
ϵi−1

+
6δ
ϵi−1
)

=
2δ
ϵi
+

28δ
ϵi−1

<
6δ
ϵi

(since ϵ <
1

16
)

689

19

This completes the proof. □690

Now we prove our main theorem of this section.691

Proof (Proof of Theorem 9): Let T be the collection of PITs obtained by running the static construction692

in the previous algorithm to every (δ,ϵ)-net tree T with δ ∈ {1, 21, 22, . . . , 2⌈lg(1/ϵ)⌉}. We have shown in693

Lemma 4 that every PIT in T satisfies the packing and covering property.694

To bound the number of trees in T, recall that for each level i−1 of the net tree T , we create a graph695

Gi and run the matching algorithm. By Lemma 1, the algorithm returns Mi with |Mi| = ϵ−O(λ). We696

create pairwise nodes of T ′j by the mathching j th of Mi , thus T′ has ϵ−O(λ) PITs.697

It remains to show the pairwise covering property of T as defined in Definition 4. Consider two698

points x0, y0 with dX (x0, y0) ∈
�

δ
ϵi ,

2δ
ϵi

�

for an integer i. By the covering property of (δ,ϵ)-net tree, the699

distance of a node at level i − 1 to its children is at most δ
ϵi−1 . This implies the distance of a node at700

level i − 1 in T to its descendants is at most 2δ
ϵi−1 . Therefore, there are two nodes (x , i − 1), (y, i − 1)701

in T such that dX (x , x0) ≤
2δ
ϵi−1 and dX (y, y0) ≤

2δ
ϵi−1 . By triangle inequality, ||dX (x , y)− dX (x0, y0)|| ≤702

dX (x , x0) + dX (y, y0). It follows that dX (x , y) ∈
�

(1− 4ϵ) δ
ϵi , (1+ 2ϵ)2δ

ϵi

�

. By step 1 and step 2, there703

must be a PIT T ′ ∈ T such that T ′ has a node (x , y, i). Furthermore, Ci(x , y) contains B(x , 2δ
ϵi−1) and704

B(y, 2δ
ϵi−1). To see this, for any point t where dX (t, {x , y})≤ 2δ

ϵi−1 , let (u1, u2, i−1) be the pairwise node of705

T ′ at level i−1 such that its cluster, Ci−1(u1, u2), contains t. By Lemma 4, the diameter of Ci−1(u1, u2) is706

at most 6δ
ϵi−2 , we have dX (t, u1) and dX (t, u2) are at most 6δ

ϵi−2 . Therefore, dX (u1, {x , y}) and dX (u2, {x , y})707

are at most 6δ
ϵi−2 +

2δ
ϵi−1 <

3δ
ϵi−1 . By step 2.1, (u1, u2, i − 1) is a child of (x , y, i), thus Ci(x , y) contains708

Ci−1(u1, u2), which contains t whose dX (t, {x , y})≤ 2δ
ϵi−1 .709

We now prove that (x , y, i) is O(ϵ)-close to the pair (x0, y0). Consider a point p ∈ Ci(x , y), we bound710

dX (p, {x0, y0}) by dX (p, {x , y}) as follows. Observe that p is in a subtree rooted at a child (u, v, i − 1) of711

(x , y, i) for some u, v ∈ Yi−2. By Lemma 4, the diameter Ci−1(u, v) is bounded by 6δ
ϵi−1 , thus dX (p, u)≤ 6δ

ϵi−1712

and dX (p, v)≤ 6δ
ϵi−1 . By item (i) in the covering property of T ′ (Lemma 4), we have dX (u, {x , y}) and713

dX (v, {x , y}) are at most 6δ
ϵi−1 . Therefore:714

dX (p, {x , y})≤min{dX (p, u) + dX (u, {x , y}), dX (p, v) + dX (v, {x , y})}

≤
6δ
ϵi−1

+
6δ
ϵi−1

=
12δ
ϵi−1

(2)715

It follows that:716

dX (p, {x0, y0})≤min{dX (p, x) + dX (x , x0), dX (p, y) + dX (y, y0)}

≤ dX (p, {x , y}) +
2δ
ϵi−1

(since dX (x , x0)≤
2δ
ϵi−1

and dX (y, y0)≤
2δ
ϵi−1

)

≤
14δ
ϵi−1

(3)717

Since dX (x0, y0)≥
δ
ϵi , we obtain dX (p, {x0, y0})≤ 14ϵdX (x0, y0) as claimed. □718

Remark 1. The PITs constructed in Section 3.1 may not have the hierarchical property in the sense that719

the points labeling a node u at level i may not be a subset of points labeling the children of u. We can720

enforce this hierarchical property by renaming the labels as follows. First, we claim that given a pairwise721

node (x , y, i) of a PIT T ′, children labels of (x , y, i) can be partitioned into two disjoint sets S1 and S2 of722

diameter Θ(δ
ϵi−1), S1 is close to x and S2 is close to y (if x = y then S2 is empty). Observe that this claim723

follows by two items of the covering property of T ′: for any child (u1, u2, i−1) of (x , y, i), dX (u1, {x , y})724

and dX (u2, {x , y}) are at most 6δ
ϵi−1 , and the diameter of Ci(x , y) is at most 6δ

ϵi . By the packing property725

20

of T , any u, v ∈ Yi has dX (u, v) > δ
ϵi , thus S1 ∩ Yi (and in S2 ∩ Yi) has at most one point. Therefore,726

there are at most two points in Yi that are also in children labels of (x , y, i). Now, whenever we create727

a pairwise node (x , y, i), we find the corresponding pairwise nodes (x1, x2, i − 1) and (y1, y2, i − 1) in728

T ′ of (x , i − 2) and (y, i − 2). If x1 = x2 and x ̸= x1, we rename (x1, x2, i − 1) to (x , x , i − 1). If x ̸= x1729

and x ̸= x2, we rename (x1, x2, i − 1) to (x , x2, i − 1) if dX (x , x1)≤ dX (x , x2), to (x1, x , i − 1) otherwise.730

Similarly, if y1 = y2 and y ̸= y1, we rename (y1, y2, i − 1) to (y, y, i − 1). If y ̸= y1 and y ̸= y2, we731

rename (y1, y2, i − 1) to (y, y2, i − 1) if dX (y, y1)≤ dX (y, y2), to (y1, y, i − 1) otherwise.732

4 Pairwise Tree Cover: Dynamic Construction733

In this section, we construct a data structure for maintaining a dynamic pairwise tree cover for a point734

set under updates as claimed in Theorem 2, which we restate below.735

Theorem 2. Given ϵ > 0, there is a data structure maintaining (τ,ϵ)-pairwise tree cover with τ = ϵ−O(λ)
736

supporting INSERT/DELETE in O
�

ϵ−O(λ) log(n)
�

time per operation, and GETPREDECESSOR/GETSUCCESSOR737

in O(1) time per operation.738

In Section 3, we outlined how a collection of PIT can be statically derived from a net tree. The static739

construction assumes the full net tree T where the net points at every level are given explicitly. However,740

such a full net tree would have size Ω(n log∆). In dynamic construction, we cannot afford to maintain741

every level of T explicitly. Instead, we need to maintain a compressed net tree, for every level i, some742

nodes will be hidden (and hence can only be accessed indirectly) to guarantee that the total size is O(n).743

Dynamic compressed net tree. Nodes at some level i of the (uncompressed) net tree will be hidden744

via jumps: A jump is an edge in T connecting a node (x , h) at level h and a node (x , l) at a lower level l745

where l < h− 1. The jump from (x , h) down to (x , l) effectively hides all level-i nodes (x , i) for every746

l < i < h− 1; we call such a node (x , i) a hidden node. We call (x , h) the top of the jump and (x , l) the747

bottom of the jump. For a technical reason, we will maintain that every jump in T starting from a node748

(x , h) down to (x , l) will be b-isolated: given a jump, for any node (y, k) who is not a descendant of749

(x , h) for k < h, dX (x , y)> b δ
ϵk . Furthermore, in a dynamic net tree, nodes are marked deleted rather750

than explicitly deleted; we will elaborate more details by the end of this section. (Herein, we use the751

term dynamic net tree to refer to the dynamic compressed net tree.) Note that the compressed net tree752

still has a degree bounded by ϵ−O(λ), since the packing and covering properties still hold.753

Definition 7 ((δ,ϵ)-dynamic net tree). (δ,ϵ)-dynamic net tree is a data structure maintaining a (δ,ϵ)-754

net tree T under insertions and deletions. The data structure supports the following operations:755

• INSERT(p, T): Insert (possibly more than one) nodes at different levels associated with a new point756

p to T , and return a list of Oλ(1) new nodes or nodes whose parents in T are updated due to757

inserting p. There are three types of nodes in the list:758

1. new-point node: when a new point p is added to S, up to three new-point nodes associated759

with p might be created: (p, 0), (p, i), and (p, i−1) for some level i > 0. Node (p, i) is created760

as a new child of some node (u, i + 1) in T , and furthermore, it will be the top of the jump761

down to (p, 0), making (p, 0) the only child of (p, i). Once (p, 0) and (p, i) are created, the762

algorithm might additionally create (p, i − 1) as a node between (p, 0) and (p, i) (to split the763

jump from (p, i) down to (p, 0)) for maintaining the jump isolation property.764

2. splitting-jump node: which is new node (q, i) added at the middle of the jump from (q, l)765

down to (q, h) for l < i < h.766

21

3. promoting node: which is a new node (q, i) in T created by applying an operation called767

PROMOTE(q, i − 1, T) to the node (q, i − 1) at level i − 1. As a result of this operation, the768

parent in T of (q, i − 1) was changed from some node (u, i), with u ̸= q, at level i to (q, i).769

Furthermore, another node at level i + 1 will be designated as the parent of (q, i). We call770

(q, i − 1) a promoted node, as the point q was “promoted” to level i from level i − 1.771

• DELETE(p, T): mark the leaf of p as deleted and return the pointer to the leaf.772

In Section 6, we review and slightly simplify the dynamic net tree construction of Cole and Gotlieb [12].773

Readers who are not familiar with the work of Cole and Gotlieb [12] are strongly encouraged to read774

Section 6 to have a complete understanding of how a dynamic net tree changes under updates. Our775

intuition for constructing other data structures will be built on top of the dynamic net tree. However,776

our technical proofs presented here will only rely on the facts stated in the following theorem, whose777

proof will be given in Section 6. The key properties are packing and covering; the jump isolation and778

close-containment properties are needed for technical purposes only.779

Theorem 10. Given b ≥ 2 a parameter of the jump isolation, ϵ ≤ 1
4b , there is a data structure maintaining780

a (δ,ϵ)-net tree T such that T has the following properties:781

• [Packing.] Two nodes at the same level (x , i) and (y, i) have dX (x , y)> 1
4
δ
ϵi .782

• [Covering.] If (x , i) is the parent of (y, i′) where i′ < i, then dX (x , y)≤ φ δ
ϵi , where φ = 3

4 .783

• [b-Jump isolation.] Any jump is b-isolated: given a jump starting from a node (x , i), for any node784

(y, k) who is not a descendant of (x , i) for k < i, dX (x , y)> b δ
ϵk .785

• [Close-containment.] For any (y, k) and any ancestor (z, i) of (y, k), dX (y, z) ≤ δ
ϵi − δ

ϵk . This786

implies that every point p in the subtree rooted at (z, i) is contained in B(z, δ
ϵi), i.e., dX (p, z)≤ δ

ϵi .787

Furthermore, given access to a node (x , i) in T at level i, if (x , i) is not the bottom node or a hidden node788

in a jump, then we can find all the nodes (y, i) at level i such that dX (x , y) = g · δ
ϵi for any parameter789

g ≥ 1 in O(g)λ time. The data structure has space O(n) and runs in Oλ(log n) time per update.790

Since not all the nodes are explicitly accessible in a compressed net tree, the construction of a PIT791

from a compressed net tree is somewhat cumbersome. The key observation to keep in mind is the locality792

of our static construction in Section 3; specifically, the neighborhood of a node in a PIT is a subset of the793

neighborhood of the corresponding node in a net tree T . This locality alone allows one to maintain a794

dynamic PIT from a dynamic net tree T .795

The much more difficult task is to maintain a dynamic leaf ordering of PIT due to two key challenges796

(C1) and (C2) outline in Section 1.1. We accomplish this task in several steps; see the block diagram797

in Figure 1 for an overview. The first step we take is to stabilize the net tree using a net tree cover as798

defined in Definition 8 below. (The formal definition is somewhat involved; we will briefly describe the799

idea afterward.) In this definition, to distinguish nodes between different trees, we denote a node (u, i)800

of T by (u, i, T), and a node (u, i) of J by (u, i, J). When the context is clear about which tree is used, we801

simply denote a node by (u, i).802

Definition 8 (Net tree cover). Let T be a (δ,ϵ)-net tree of a point set S in a doubling metric with803

dimension λ, and c ≥ 4 be a constant parameter. Given ϵ ≤ 1
20 , a (δ,ϵ)-net tree cover of T is a collection804

of trees J= {J1, J2, . . .} such that:805

• [Size.] |J|= Oλ(1) trees.806

22

• [Net.] For each tree J ∈ J, points at level i + 1 of J is an O(δ
ϵi)-net of S, where the set of nodes at807

level i + 1 of J is a subset of nodes at level i of T . Specifically, there exists a surjective map ψJ that808

maps a node of T to a node of J , ψJ (x , i) = (w, i+1, J), where w can be x or a different point, and809

for any node (w, i+1, J) in J where i ≥ 0, there exists (w, i, T) in T such thatψJ (w, i) = (w, i+1, J).810

• [Partial isomorphism.] In every J ∈ J, consider a node (x , i + 1, J) where i ≥ 0. If (x , i, T) does811

not have a parent update except by splitting a jump, then (x , i + 1, J) is a child of ψJ (u, i′) where812

(u, i′, T) is the parent of (x , i, T). We say that J is partially isomorphic to T .813

• [Shifting.] For every pair of node (x , i) and (y, i) in T with dX (x , y) < c·δ
ϵi+1 , there exists a tree814

J ∈ J such that ψJ (x , i) = (x , i + 1, J), ψJ (y, i) = (y, i + 1, J) and they have the same parent.815

• [Pairwise covering.] For every pair of points x0, y0 ∈ S such that dX (x0, y0) ∈ [
δ
ϵi ,

2δ
ϵi), there exists816

a tree J such that (x0, 0, J) and (y0, 0, J) have the same ancestor at level i + 1.817

The basic idea of net tree cover is to start from a net tree T , construct a constant number of trees818

in a set J where the net points in level in each tree J ∈ J is a subset of net points in the corresponding819

level of T . Therefore, each tree in J in some sense resembles T ; this is formalized in the net and partial820

isomorphism properties in Definition 8. As a (δ,ϵ)-net tree “takes care” of distances in the ranges [δ
ϵi ,

2δ
ϵi),821

the cover J also has to take care of these distances; this explains the covering property. The shifting822

property, on the other hand, captures the intuition that the cover J was constructed by the shifting823

technique similar to grid shifting in Euclidean spaces [22, 10]. (We can fix the constant c in the shifting824

property to be 4, but this leads to a somewhat artificial-looking bound.) While the definition of tree825

cover is more complicated and somewhat unnatural, we are able to show that updates to T due to an826

insertion of a point to S can be decomposed into two types of very simple updates to a tree in J: leaf827

insertions or edge subdivisions. We say that these updates are stable. For a technical reason, we need828

the dynamic net tree T to have the 3c-jump isolation property by simply setting b = 3c in Theorem 10.829

Theorem 11 (Dynamic Net Tree Cover). Let T be a dynamic (δ,ϵ)-net tree for a dynamic point set S830

such that every jump in T is 3c-isolated where c is the constant in Definition 8. Then we can construct a831

dynamic net tree cover J from T such that the updates T due to the insertion of a point to S induce Oλ(1)832

updates to every tree J ∈ J that are stable: they contain O(1) leaf insertions and O(1) edge subdivisions.833

Furthermore, the updates to J can be identified in Oλ(1) time.834

Next, we will construct a dynamic PIT from a net tre cover J. We call every tree J ∈ J a stable835

(δ,ϵ)-net tree. We basically follow the static construction in Section 3 to construct a collection of PITs836

from each stable tree J . As we noted earlier, the construction is local, and hence, whenever a new node837

(u, i) is inserted into J , we will develop a dynamic pairing algorithm to examine the local neighborhood838

of (u, i) to find nodes that can be paired up with (u, i), and then update the corresponding PIT. As the net839

tree J is stable, we could guarantee that the dynamic PITs constructed from J by our dynamic pairing840

algorithm are also stable.841

Definition 9 (Stable Dynamic PIT). A stable dynamic PIT is a PIT that is under three types of updates:842

adding (a null or non-null) leaf, subdividing an edge, and marking a leaf as deleted.843

In the theorem below, we summarize the guarantees by our dynamic pairing algorithm. The proof844

will be given in Section 4.2.845

Theorem 12 (Dynamic Pairing). Let J be a dynamic stable (δ,ϵ)-net tree cover constructed from a846

(δ,ϵ)-net tree in Theorem 11. Then we can construct from J a collection of stable dynamic PITs T such847

that (i) |T| = ϵ−O(λ) and (ii) for every points x , y ∈ S where dX (x , y) ∈ [δ
ϵi ,

2δ
ϵi), there exists a PIT T ′ ∈ T848

such that a node at level i of T ′ is O(ϵ)-close to (x , y). Furthermore, every update to a tree in J can be849

translated into ϵ−O(λ) updates to T that can be identified in ϵ−O(λ) time.850

23

Once we have a stable dynamic PIT, we could develop a data structure to keep track of the DFS851

ordering of its leaves. Note that the DFS visits nodes in the PIT by order of insertion time: to break ties852

between children of a node, the DFS will first visit those that were inserted earlier. Recall that the major853

issue in maintaining DFS leaf ordering of an unstable PIT is that when a node u changes its parent to a854

new node, the DFS ordering, as well as the subtrees, of all ancestors of u change significantly, and there855

could be up to Ω(n) such ancestors.856

In a stable PIT, the parent of a node could also change but only in edge subdivision. Specifically, a857

node z could be inserted between a node u and its parent v, so that the parent of u now changes from v858

to z. However, the DFS leaf ordering of ancestors of u (except z) does not change due to the subdivision859

by z. (For z, the DFS leaf ordering in its subtree is exactly that of u since u is its only child.)860

On the other hand, inserting a new leaf x to a PIT could still induce changes in the DFS leaf orderings861

of all (and up to Ω(n)) ancestors of x . The key difference to the case of unstable PIT is that only a single862

node is inserted, and hence, the DFS leaf orderings and the subtrees of these ancestors only change by863

one, making it possible to use some lazy data structures. Here, we use a data structure by Kopelowitz864

and Lewenstein [25] to maintain a (dynamic) centroid decomposition on top of our stable PIT. The basic865

idea is that in a centroid decomposition, we could identify O(log n) important ancestors of each node866

(which are the top endpoint of centroid paths) such that it suffices to update these ancestors only.867

A technical difficulty is that a stable PIT could have null leaves or leaves that are marked deleted.868

We say that a leaf is active if it is non-null and not marked deleted; otherwise, the leaf is inactive. We869

say that a node in a PIT is active if it has at least one active leaf in its subtree; otherwise, the node is870

inactive. In a DFS leaf ordering, we only keep track of active leaves. Here, stability also helps us in the871

following way: imagine that we iteratively contract an inactive node to its parent to obtain a tree of872

active nodes and leaves only. The edge subdivision does not really change the contracted tree by much,873

and hence, we could keep track of the DFS leaf ordering of the contracted tree. While the idea is rather874

simple, explicitly contracting nodes is expensive since inserting a new (active) leaf could turn a long875

chain of inactive ancestors to become active. Indeed, we only use contraction as a metaphor to develop876

our data structure; we do not really contract inactive nodes. All of these ideas lead to a leaf tracker data877

structure as defined formally below.878

Definition 10. Leaf tracker is a data structure that maintains a stable dynamic PIT T and a DFS-leaf879

ordering σ of active leaves of T and supports the following operations:880

• INSERTLEAF(u, v, T): insert the node v as a leaf under node u.881

• SUBDIVIDEEDGE(v, e, T): insert the node v such that v breaks an existing edge e = (x , y) into two882

new edges (x , v) and (v, y).883

• DELETELEAF(u, T): mark the leaf u as deleted.884

• TRACKLEFTMOSTLEAF(u, T): return the left-most leaf of a node u.885

• TRACKRIGHTMOSTLEAF(u, T): return the right-most leaf of a node u.886

• GETPREDECESSOR(p, T): return the predecessor of an active leaf p in σ.887

• GETSUCCESSOR(p, T): return the successor of an active leaf q in σ.888

The next theorem shows how to maintain a leaf tracker data structure efficiently; the proof will be889

given in Section 5.890

Theorem 13. We can construct a leaf tracker data structure for maintaining a stable dynamic PIT T with891

O(ϵ−O(λ) + log (n)) time per updating and tracking operation (including INSERTLEAF, SUBDIVIDEEDGE,892

DELETELEAF, TRACKLEFTMOSTLEAF, TRACKRIGHTMOSTLEAF). Furthermore, the DFS leaf ordering of T893

24

will be maintained in a doubly linked list, and hence the data structure could support O(1) time per894

query (including GETPREDECESSOR, GETSUCCESSOR).895

About deletion. As we mentioned at the beginning of this section, deletions are only marked: whenever896

a point p is deleted from S, we mark the leave nodes corresponding to p (in dynamic net tree, net tree897

cover, and PITs) to be deleted. We do not explicitly delete these nodes. The standard idea to handle these898

is that when the number of deletions is above a certain threshold, we will rebuild the data structure. The899

rebuilding leads to a data structure with amortized running time, and one can de-amortize by rebuilding900

in the background. All of these ideas were used by Cole and Gottlieb [12] to handle deletions in their901

dynamic net tree, and we follow exactly the same strategy to handle deletions.902

Given all data structures, including net tree cover, dynamic pairing, and leaf tracker, we are now903

ready to prove Theorem 2.904

Proof (Proof of Theorem 2): First, we apply Theorem 10 to maintain O(log 1
ϵ) dynamic (δ,ϵ)-net trees905

T for every δ ∈ {1,2, . . . , 2⌈lg 1/ϵ⌉}. Second, we maintain a dynamic net tree cover J for each (δ,ϵ)-net906

tree T by applying Theorem 11; we can choose c = 4. Third, we apply the dynamic pairing algorithm in907

Theorem 12 to maintain a collection of PITs T from J. Observe that the total number of PITs constructed908

in this process for O(log 1
ϵ) different net trees is ϵ−O(λ). Finally, we maintain a leaf tracker data structure909

for each tree in T to keep track of the DFS leaf ordering and querying the predecessor/successor of every910

active leaf.911

Now, we analyze the update time and query time. Observe that the query time is O(1) by Theorem 13.912

For the update, we note that the total update time to a net tree is ϵ−O(λ) log n by Theorem 10. This also913

translates to ϵ−O(λ) log n total update time to the net tree cover by Theorem 11; the same update time914

holds for each PIT by Theorem 12. Since the total number of PITs is Oλ,ϵ(1), the total update times to all915

PITS is ϵ−O(λ) log n. By Theorem 13, the update time to the leaf tracker is O(ϵ−O(λ) + log n). Thus, the916

final update time remains ϵ−O(λ) log n. □917

In Section 4.1 we construct a dynamic net tree cover to stabilize the dynamic net tree. In Section 4.2918

we give the details of the dynamic pairing algorithm. The leaf tracker data structure is rather complicated919

and will be given in Section 5.920

4.1 Dynamic Net Tree Cover921

In this section, we describe the ideas for stabilizing a dynamic net tree using a dynamic net tree cover as922

claimed in Theorem 11, which we restate here for convenience.923

Theorem 11 (Dynamic Net Tree Cover). Let T be a dynamic (δ,ϵ)-net tree for a dynamic point set S924

such that every jump in T is 3c-isolated where c is the constant in Definition 8. Then we can construct a925

dynamic net tree cover J from T such that the updates T due to the insertion of a point to S induce Oλ(1)926

updates to every tree J ∈ J that are stable: they contain O(1) leaf insertions and O(1) edge subdivisions.927

Furthermore, the updates to J can be identified in Oλ(1) time.928

Recall that the only non-trivial parent update to a node (p, i) in a tree J in the cover J is the edge929

subdivision: inserting a new node between (p, i) and its parent in J . Indeed, this subdivision is jump930

splitting defined in Definition 6; that is, the parent of (p, i) is (p, j) associated with the same point p at931

some level j > i. On the other hand, the only non-trivial parent update in a dynamic net tree T is due to932

promotion operation. Specifically, PROMOTE(p, i − 1, T) changes the parent of (p, i − 1) from some node933

(u, i), with u ̸= p, at level i to a newly created node (p, i) associated with p.934

25

To stabilize the parent change due to PROMOTE(p, i − 1, T), the key observation is that dX (p, u) is935

small; precisely, dX (p, u) = O(δ
ϵi−1). As a thought experiment, suppose that we have a version of T ,936

denoted by J , where we only keep a subset of Yi, say a 10 δ
ϵi -net4 of Yi, at level i of J , and all other937

nodes in Yi are discarded. (If a node (x , i) is discarded if it is too close to a node (y, i) that is kept in938

J , then children of (x , i) in T will become children of (y, i) in J .) Back to PROMOTE(p, i − 1, T), in an939

ideal situation, if some node (t, i) is kept in a version J of T where t is close enough to both u and p,940

then: (1) node (u, i) will be discarded—we say that (u, i) is merged by distance to (t, i) to emphasize941

that (u, i) is discarded due to (t, i)—(2) there is no need to make a parent (p, i) of (p, i − 1) since (p, i)942

will also be discarded, and (3) node (p, i − 1) is already a child of (t, i) before the promotion due to943

the merge of (u, i) to (t, i), and hence no parent update is needed. Of course, the difficulty here is that944

there is no good way to choose a 10 δ
ϵi -net of Yi so that the ideal situation always happens. Nevertheless,945

this thought experiment leads us to the idea of using more than one tree: we simply partition Yi into (a946

small) number of 10 δ
ϵi -nets, and for each net, construct a version J of T such that the ideal situation will947

happen in at least one of the tree. This is exactly the shifting in Definition 8. However, shifting alone is948

not enough to achieve stability: as points arrive dynamically, some existing nodes could be merged to a949

newly inserted node, leading to parent updates of the children of the existing nodes. We then introduce950

the idea of merging through time to handle this case. To expand on all ideas in this paragraph, we briefly951

describe how to achieve shifting and then stability.952

Shifting. Observe that if two nodes (x , i − 1) and (y, i − 1) are relatively close, dX (x , y) = O(δ
ϵi), then953

their parents (u, i) and (v, i) are also close: dX (u, v) = O(δ
ϵi+1). As we mentioned above, the basic idea is954

to partition Yi into ∆i-net where ∆i = 6c δ
ϵi using a standard coloring trick, see, e.g., [3, 24]. We greedily955

color points in Yi: when considering a new point y, we color y by the smallest available color that is956

different from the colors of the nodes within distance at most ∆i from y . (Our actual coloring procedure957

is slightly different for a technical reason described below, but the idea is largely the same.) By packing958

bound, the number of colors is Oλ,ϵ(1), and each color class will induce a ∆i-net of Yi .959

Points in each color class, called centers, will be at level i + 1 of a tree J in J. The difference in one960

level between T and J is because the level 0 of J must form a bijection into S, but from level 0 of T961

we only have a subset of points. For non-center point (v, i), if the distance from a center (u, i) is small962

enough (at most ∆i/2), then it might be merged to (u, i) in J in the sense that children of (v, i) in T will963

become children of (u, i) in J . More formally, if (v, i) is merged to (u, i) in J , then for any child (t, i − 1)964

of (v, i), ψJ (t, i−1) will be a child of ψJ (u, i). Not every non-center node will be merged to some center965

node; if they are far from any of the centers, then they will be left unmerged and will also appear at966

level j + 1 in J .967

A very subtle technical problem is that when we merge a non-center node (v, i) into a center node968

(u, i), we would want any child (w, i − 1) of (v, i) to become a child of (u, i). However, it is conceivable969

that (w, i − 1) is a non-center node at level i − 1 and hence was merged to some other center node970

(t, i − 1), which is not a child of either (u, i) or (v, i), and hence (w, i − 1) does not become a child of971

(u, i). We fix this problem by using two disjoint sets of colors for any two consecutive levels of T .972

The key guarantee we obtained from shifting is that for any nearby pair of net points, there exists a973

tree J ∈ J where the corresponding nodes in J of the two net points have the same parent.974

Achieving stability. Observe that updates to T could induce three types of parent updates in J :975

1. A new node (u, i) is inserted at level i of T , and it is become a center at level i + 1 of some tree976

4We choose a random number 10 to make our point simpler; in reality, we construct a 6c δ
ϵi -net where c is the constant in

Definition 8.

26

J ∈ J. We then have to consider whether to merge some nodes (v, i) in T , which are currently977

unmerged in J , to (u, i) in J . This induces parent updates of children of ψJ(v, i). (A similar but978

much easier case is when (u, i) is inserted as a non-center node in a tree J , which we will discuss979

more below.)980

2. A new node (x , i) in T is inserted to split a a jump from (x , h) down to (x , l) where l < i < h. In981

this case, we also split the jump from ψJ (x , h) to ψJ (x , l) in T by inserting ψJ (x , i) in J . Now the982

parent of ψJ (x , l) changes from ψJ (x , h) to ψJ (x , i).983

3. If (u, i) is created by promoting (u, i − 1) in T , then (u, i − 1) has to change its parent from an984

existing node (v, i) to (u, i), which induces a parent update of ψJ (u, i − 1).985

The only non-trivial parent update that we allow in a tree J ∈ J is in the edge subdivision. Indeed,986

case 2 above is an edge subdivision in J . A subtle point here is that the new subdividing node (x , i)987

might possibly be merged to some center node at level i of T . Our idea is to show that the jump isolation988

property forbids this case.989

For case 3, the ideal situation described above happens: by the shifting property, there exists a tree990

J such that (v, i) is a center in J and ψJ(u, i − 1) is a child of ψJ(v, i). This means even if we create a991

new node (u, i) in T , then one can show that dX (v, u) is small and hence (u, i) will be merged to (v, i).992

However, as the (only) child (u, i − 1) of (u, i) is already a child of (v, i) in J , we do not have to do993

anything in J . For every other tree J ′ ∈ J, we still need to insert (u, i) as a new leaf node (and then we994

insert a null leaf to be a child of (u, i) in J), but we do not have to move (u, i − 1) to be a child of (u, i).995

As a result, we will lose the hierarchical property in trees of J: a node at level i might not be associated996

with points from its children. Fortunately, this property is not important for our end goal, which is to997

construct an LSO.998

Lastly, to handle case 1, we introduce a new rule called merging through time. Specifically, we allow999

merging (v, i) into (u, i) in J if (v, i) is added to T after (u, i). Then case 1 does not happen as (v, i) was1000

inserted before (u, i). When (u, i) is inserted as a non-center node in a tree J , we have to merge (u, i) to1001

an existing center node, say (x , i), in J . But this is an easy case since we only insert leaves to J , so (u, i)1002

has no children at the time of its insertion, hence inducing no parent updates.1003

4.1.1 Dynamic net tree cover construction1004

First, we color nodes of the dynamic net tree T when nodes are inserted to T . Note that we do not1005

remove nodes out of T ; we only mark leaves as deleted, and the same holds for trees in J. We say that1006

two net points (x , i) and (y, i) at level i are r-close if dX (x , y)< r δ
ϵi . Let∆i =

6cδ
ϵi be the coloring distance1007

at level i. Let k be the maximum number of net points Yi in a ball of diameter ∆i . By packing property1008

of T and packing property of (X , dX), k = Oλ(1). Basically, we will assign a color for (u, i) from [1, 2k]1009

depending on its levels and neighbors; the reason for this was already explained above.1010

COLORINGNODE(u, i, T):

1. If i is odd, assign (u, i) a smallest color in [1, k] such that the color of (u, i) is different from
the colors of all level-i nodes within radius ∆i of u.

2. If i is even, assign (u, i) a smallest color in [k+ 1, 2k] such that the color of (u, i) is different
from the colors of all level-i nodes within radius ∆i of u.

Let κ(u, i) be the color of (u, i). By Theorem 10, all the nodes within distance ∆i of (u, i) can be
found in Oλ(1) time.

27

The color of a node (u, i) at level i of T will tell us which tree in J that (u, i) will be a center (at level1011

j + 1). Therefore, the number of trees in J is the number of colors, which is 2k = Oλ(1), and each tree1012

J ∈ J will have a color κ(J) in [1, 2k].1013

Recall in Definition 6, whenever a point p is inserted to S, the dynamic net tree data structure will1014

return a list Lp of Oλ(1) nodes that are either changed or inserted to T . We will take this list Lp and call1015

INSERT(Lp, J) in Figure 6 to update every tree J ∈ J. By the stability property of J , we are only allowed1016

to use three following operations as a black box:1017

• INSERTLEAF(x , i, J): inserting a leaf associated with point x at level i of J as a leaf. One should1018

think of (x , i) as a node at level i in J without any children. (If x = NULL, then we call the leaf1019

a null leaf.) To keep the pseudocode clean, we do not specify the parent of the new leaf (x , i).1020

The parent will either be clear from the context or if the insertion of (x , i) to J is triggered by the1021

insertion of the corresponding node (x , i − 1) to T whose parent is (u, i), then the parent in J of1022

(x , i) is ψJ (u, i).1023

• SUBDIVIDING(u, v, z, J): subdividing an edge between u (parent) and v (child) in J by creating a1024

new node z and adding z between u and v.1025

We will use notation (x , i, T) and (x , i, J) to distinguish a node (x , i) at level i in T and a node (x , i)1026

at level i in J , respectively.1027

Every step in INSERT(Lp, J) in Figure 6 is self-explained, except step 3(d). Recall that T and J are off1028

by one level. It is possible that for a point x ∈ S, its corresponding node (x , 0) in T is merged to some1029

other node at level 0 in T , and hence in this case, we will have to create a node (x , 0) at level 0 of J to1030

guarantee that level 0 of J contains every (non-deleted) point in S.1031

INSERT(Lp, J):

1. Sort nodes in Lp by descending order of levels. Then we consider every node (x , i, T) ∈ Lp in
the sorted order and apply steps 2 and 3 below.

2. If (x , i, T) splits a jump from (x , h) to (x , l), call SUBDIVIDING(ψJ (x , h),ψJ (x , l), (x , i + 1), J).
Then set ψJ (x , i, T)← (x , i + 1, J).

3. If (x , i, T) is a new-point node or a promoting node:

(a) If κ(x , i) = κ(J), then (x , i) is a center in J . We call INSERTLEAF(x , i + 1, J) and set
ψJ (x , i, T)← (x , i + 1, J).

(b) Otherwise, we find a center (w, i, T) is 3c-close to (x , i, T) in T such that κ(w, i) = κ(J)
and dX (w, x)< 3c δ

ϵi . There is at most once such node (w, i, T), since we assign different
colors to different nodes within the distance ∆i = 6c δ

ϵi .

i. If (w, i, T) exists, set ψJ (x , i, T)←ψJ (w, i, T). ≪ merge (x , i) to (w, i)≫
ii. Otherwise, call INSERTLEAF(x , i + 1, J) and set ψJ (x , i, T)← (x , i + 1, J).

(c) If (x , i, T) is a promoting node in PROMOTE(x , i − 1, T), call INSERTLEAF(NULL, 0, J) to
create a null leaf and assign the null leaf as a child of ψJ (x , i) in J .

(d) If (x , i, T) is a new-point node and i = 0, call INSERTLEAF(x , 0, J) to create (x , 0, J) as a
child of ψJ (x , 0).

Figure 6: Updating J when a new node is inserted to T .

28

Remark 2. If we update J following the algorithm in Figure 6, the top of a jump in J can have two or1032

more children, this occurs when we merge (x , i, T) to (w, i, T), and any of them is the top of a jump in1033

T . In the dynamic pairing algorithm in Section 4.2, it would be much easier if the top of a jump has1034

only one child. To guarantee this, whenever we have a jump from (x , i, T) down to (x , j, T) (at step 2,1035

3(c) or 3(d) of INSERT), we create (x , i, J) as a child of ψJ (x , i) and make a jump from (x , i, J) down to1036

ψJ (x , j) = (x , j+1, J). Since the jump starting at (x , i, T) is 3c-isolated, (x , i−1, T) is not 3c-close with1037

any node at the same level. Thus, (x , i, J) has only one child ψJ (x , j) = (x , j+1, J). Now, the top of any1038

jump in J has only one child, and for any node (u, i, J) has two or more children, (u, i, J) and all of its1039

children are non-hidden nodes.1040

4.1.2 Analysis1041

In this section, we show all the properties of the dynamic net tree cover stated in Definition 8. We start1042

with the partial isomorphism property.1043

Lemma 5. Every J ∈ J is a tree and satisfies partial isomorphism property: for any node (x , i + 1, J) in1044

J where i ≥ 0, if (x , i, T) does not have parent update except by edge subdividing, then (x , i + 1, J) is a1045

child of ψJ(u, i′) where (u, i′, T) is the parent of (x , i, T) in T . Furthermore, if (x , i, T) is a promoted1046

node whose parent before the promotion is (v, i + 1, T), then (x , i + 1, J) is a child of ψJ (v, i + 1).1047

Proof: Observe that we only modify J by creating leaves or subdividing edges, and hence J is a tree.1048

Inductively, assume that J satisfies the partial isomorphism property before an update, and we have to1049

show that it holds after an update, and specifically, if (x , i, T) has no parent update, then the partial1050

isomorphism holds for (x , i, T).1051

Suppose that (x , i, T) has a parent update by splitting a jump from (x , j, T) to (x , i, T) for i < j, and1052

in this case, a node (x , k, T) is inserted between them where i < k < j. Now the parent of (x , i, T) is1053

(x , k, T). By induction, in J , there is a corresponding jump from ψJ(x , j) down to ψJ(x , i). Then in1054

step 2 of the insert algorithm, we add ψJ(x , k) to split this jump, and hence the parent of (x , k, T) is1055

ψJ (x , k), giving the partial isomorphism property.1056

The lass claim that (x , i + 1, J) is a child of ψJ (v, i + 1) follows from step 3(a). □1057

Next, we show the packing and covering properties.1058

Lemma 6. For any J ∈ J, points at level i + 1 is an O(δ
ϵi)-net of S:1059

• [Packing.] For any pair of nodes (u, i + 1, J) and (v, i + 1, J), dX (u, v)> 1
4
δ
ϵi .1060

• [Covering.] For any child (x , i, J) of (v, i + 1, J), dX (x , v)< 4c δ
ϵi . This means, for any descendant1061

(y, j + 1, J) of (v, i + 1, J) for j ≤ i, dX (v, y)< 5c δ
ϵi .1062

Proof: Since nodes at level i+1 in J is a subset of nodes at level i in T , for any (u, i+1, J) and (v, i+1, J),1063

the packing property of J follows from that of T (see also Theorem 10).1064

For covering property of J , first we observe that there exist (x , i−1, T) and (v, i, T) in T corresponding1065

to (x , i, J) and (v, i + 1, J), respectively. If (v, i, T) is the parent of (x , i − 1, T), then by Theorem 10,1066

dX (x , v)≤ φ δ
ϵi ≤ 4c δ

ϵi as c ≥ 1. However, it is possible that (v, i, T) is not the parent of (x , i−1, T) since1067

the parent of (x , i − 1, T), denoted by (u, i, T), is merged to (v, i, T). In this case, by the construction in1068

step 3b(i) of INSERT(Lp, J), dX (u, v)< 3c δ
ϵi . Since (u, i) is the parent of (x , i − 1) in T , by the covering1069

property of T , dX (x , u)≤ φ δ
ϵi . By triangle inequality:1070

dX (x , v)≤ dX (x , u) + dX (u, v)

< (φ + 3c)
δ

ϵi
≤ 4c

δ

ϵi
(since φ < 1 and c ≥ 4)

1071

29

Finally, we bound the distance from (v, i + 1, J) to its descendants. By induction, the distance from1072

any child (x , i, J) of (v, i + 1, J) to one its descendants, say (y, j + 1, J) is at most 5c δ
ϵi−1 . By the covering1073

of J , dX (v, x)< 4c δ
ϵi . By triangle inequality:1074

dX (v, y)≤ dX (v, x) + dX (y, v)

< (4c + 5cϵ)
δ

ϵi
≤ 5c

δ

ϵi
(since ϵ ≤ 1/20 in Definition 8)

1075

as desired. □1076

Next, we show the shifting property of J. Recall that we set the isolation parameter b = 3c for the1077

dynamic net tree T so that every jump is 3c-isolated. We will use the jump isolation property extensively1078

to show the shifting property. First, we claim that:1079

Claim 1. If (u, i) and (v, i) are 3c-close, there exists a tree J ∈ J such that ψJ (u, i) =ψJ (v, i). Further-1080

more, if we add (u, i, T) to T before (v, i, T) then J and (u, i, T) have the same color.1081

Proof: W.l.o.g, assume that we add (u, i, T) to T , either explicitly as a node at level i or as a hidden1082

node in a jump, before (v, i, T). If (u, i, T) is a hidden node in a jump, since every jump is 3c-isolated,1083

dX (u, y) ≥ 3c δ
ϵi for any node (y, i) at level i; this contradicts that (u, i) and (v, i) are 3c-close. Thus,1084

(u, i, T) is not a hidden node, and therefore, there exists a tree J ∈ J where κ(J) = κ(u, i).1085

When (u, i, T) is added to T , the insert procedure will add (u, i + 1, J) as a node in J and assign1086

ψJ (u, i) = (u, i+1, J). Since dX (u, v)< 3c δ
ϵi <∆i , we have κ(v, i) ̸= κ(u, i). It follows that κ(v, i) ̸= κ(J).1087

Thus, when (v, i) was inserted to T , (v, i, T) and (u, i, T) satisfy the step 3(b) of INSERT(Lp, J) with w = u1088

and x = v, and therefore, step i in 3(b) will set ψJ (v, i)←ψJ (u, i). □1089

Lemma 7. J satisfies the shifting property: For every pair of nodes (x , i) and (y, i) with dX (x , y)< c δ
ϵi+1 ,1090

there exists a tree J ∈ J, such that ψJ (x , i) = (x , i + 1, J), ψJ (y, i) = (y, i + 1, J) and they have the same1091

parent in J . Furthermore, let (u, i + 1) and (v, i + 1) be the parent of (x , i) and (y, i) in T . If we add1092

(u, i + 1) before (v, i + 1) to T , then κ(J) = κ(u, i + 1), and ψJ(u, i + 1) is the parent of both ψJ(x , i)1093

and ψJ (y, i).1094

Proof: We consider a pair of net points x , y ∈ Yi whose dX (x , y)< c δ
ϵi+1 . If (x , i + 1) (or (y, i + 1)) is a1095

hidden node, then the 3c-jump isolation property is violated at (x , i+1) (or (y, i+1) respectively). Thus,1096

the parents of (x , i) and (y, i) must be non-hidden nodes at level i + 1 in T . We consider two cases:1097

If (x , i, T) and (y, i, T) have the same parent in T , denoted by (u, i+1, T). Let J be a tree in J whose1098

color κ(J) = κ(u, i + 1). Since the sets of colors used for any two consecutive levels of J are disjoint, no1099

node (w, i) at level i of T has κ(w, i) = κ(J). Therefore, when (x , i) and (y, i) were inserted to J , step1100

3(b-ii) will be executed: two nodes (x , i+1, J) and (y, i+1, J) will be created as children of ψJ (u, i+1),1101

and we set ψJ (x , i)← (x , i+1, J) and ψJ (y, i)← (y, i+1, J). Thus ψJ (x , i) and ψJ (y, i) have the same1102

parent.1103

Otherwise, (x , i, T) and (y, i, T) have different parents in T , denoted by (u, i + 1, T) and (v, i + 1, T)1104

respectively. By covering property of T ,dX (u, x) and dX (v, y) are both at most φ δ
ϵi+1 . Since dX (x , y)<1105

c δ
ϵi+1 , and by triangle inequality, we obtain:1106

dX (u, v)≤ dX (u, x) + dX (x , y) + dX (y, v)

< φ
δ

ϵi+1
+ c

δ

ϵi+1
+φ

δ

ϵi+1

< 3c
δ

ϵi+1
(since φ < 1≤ c)

(4)1107

30

Suppose w.l.o.g that we add (u, i + 1, T) to T before (v, i + 1, T). Let J be the tree in J such that1108

κ(J) = κ(u, i + 1). By Claim 1, ψJ (u, i + 1) =ψJ (v, i + 1). By the same argument in the first case, since1109

the sets of colors between two consecutive levels are disjoint, two nodes (x , i + 1, J) and (y, i + 1, J) will1110

be created as children of ψJ (u, i + 1) and ψJ (v, i + 1), respectively. Since ψJ (u, i + 1) =ψJ (v, i + 1), we1111

conclude that ψJ (x , i) and ψJ (y, i) have the same parent. □1112

Finally, we show the pairwise covering property of J.1113

Lemma 8. J satisfies pairwise covering: For every two points x0, y0 ∈ S such that dX (x0, y0) ∈ (
δ
ϵi ,

2δ
ϵi],1114

there exists a tree J such that (x0, 0, J) and (y0, 0, J) have the same ancestor at level i + 1 of J .1115

Proof: Recall that we color nodes in T by the parity of levels. Let J0 ⊆H be the subset of trees whose1116

centers are colored at level i; these colored nodes will appear in level i + 1 of trees in J0. Since all nodes1117

at level i − 1 in T have different colors with κ(Jt), Step 3(b-i) in INSERT(Lp, J) will not be applicable to1118

trees in J0 when considering nodes at level i − 1 in Lp. Therefore, step 3(b-ii) will be executed, which1119

means, for every J ∈ J0 and every (p, i − 1, T), step 3(b-ii) ψJ (p, i − 1)← (p, i, J).1120

Observe that in different trees J ∈ J0, we may have different ancestors at level i of the leaf node1121

(x0, 0, J). For each Jt ∈ J0, let (x t , i−1, T) and (yt , i−1, T) be nodes in T such that (x t , i, Jt) and (yt , i, Jt)1122

are respectively the ancestor at level i of (x0, 0, Jt) and (y0, 0, Jt). Let R =
�

x1, x2, . . . x|J0|, y1, y2, . . . y|J0|
	

;1123

R contains net points at level i − 1 of T . Now, we show that every two points in R have distance at most1124

c δ
ϵi . By triangle inequality, for any t, t ′ ∈ {1, . . . |J0|}, we have:1125

dX (x t , yt ′)≤ dX (x t , x0) + dX (x0, y0) + dX (y0, yt ′)

dX (x t , x t ′)≤ dX (x t , x0) + dX (x0, x t ′)

dX (yt , yt ′)≤ dX (yt , y0) + dX (y0, yt ′)
(5)1126

Since (x0, 0, Jt), (y0, 0, Jt) are descendants of (x t , i, Jt) and (yt ′ , i, Jt ′), by Lemma 6, dX (x t , x0) and1127

dX (yt ′ , y0) are bounded by 5c δ
ϵi−1 . By the assumption of the lemma, dX (x0, y0) <

2δ
ϵi . Plugging these1128

bounds to Equation (5), we have:1129

dX (x t , yt ′)< 5c
δ

ϵi−1
+

2δ
ϵi
+ 5c

δ

ϵi−1

= (2+ 10cϵ)
δ

ϵi

≤ c
δ

ϵi
(since ϵ ≤

1
20

and c ≥ 4 by Definition 8)

1130

Since a jump is 3c-isolated, every node (x , i − 1, T) corresponding to a point x ∈ R has the (non-1131

hidden) parent at level i.1132

Let (s, i, T) be the parent of a node in R that is added first to T among all the parents of all the1133

nodes in R. Let J ∈ J0 be the tree such that κ(J) = κ(s, i). By Lemma 7, ψJ(s, i) is the parent of1134

ψJ(x , i − 1) = (x , i, J) for every x ∈ R. Since J ∈ J0, there exist (x ′, i − 1, T) and (y ′, i − 1, T) where1135

x ′, y ′ ∈ R that are ancestors of (x0, 0, J) and (y0, 0, J), respectively, such that ψJ(x ′, i − 1) = (x ′, i, J)1136

andψJ (y ′, i−1) = (y ′, i, J). SinceψJ (x ′, i−1) andψJ (y ′, i−1) have the same parent, which isψJ (s, i),1137

the lemma holds. □1138

Proof (Proof of Theorem 11): By Lemma 5 and Lemma 6, we show that every J ∈ J satisfies packing1139

property, covering property, and is partial isomorphic with T . By Lemma 7, J satisfies shifting property,1140

and by Lemma 8, J satisfies the covering property. Since J has 2k trees where k = Oλ(1), |J| ∈ Oλ(1).1141

31

Observe that in INSERT(Lp, J), we only call edge subdivisions and insert leaves to J and hence every1142

tree in J is stable. Furthermore, as |Lp|= Oλ(1), we only call Oλ(1) update operations to J . Coloring1143

a node in T takes O(1) time as noted in the procedure. The most expensive step (per node in Lp) in1144

INSERT(Lp, J) is to find 3c-close nodes for (x , i, T) in step 3(b), which can also be done in Oλ(1) time by1145

Theorem 10. Therefore, the total running time overhead is Oλ(1) as claimed. □1146

4.2 Dynamic Pairing1147

In Section 3, we showed the static construction for pairwise tree cover from a net tree. Here we adapt the1148

static construction to construct a dynamic pairwise tree cover from a dynamic net tree cover as claimed1149

in Theorem 12, which we restate below.1150

Theorem 12 (Dynamic Pairing). Let J be a dynamic stable (δ,ϵ)-net tree cover constructed from a1151

(δ,ϵ)-net tree in Theorem 11. Then we can construct from J a collection of stable dynamic PITs T such1152

that (i) |T| = ϵ−O(λ) and (ii) for every points x , y ∈ S where dX (x , y) ∈ [δ
ϵi ,

2δ
ϵi), there exists a PIT T ′ ∈ T1153

such that a node at level i of T ′ is O(ϵ)-close to (x , y). Furthermore, every update to a tree in J can be1154

translated into ϵ−O(λ) updates to T that can be identified in ϵ−O(λ) time.1155

For each stable (δ,ϵ)-net tree Jg ∈ J, we will construct a collection of PITs Tg ; the final set of PITs1156

contains all PITs T = T1 ∪ . . .∪ T|J|. We guarantee that there exists a PIT T ∈ Tg such that T contains1157

(x , y, i)5 pairing up (x , i) and (y, i) if two following conditions hold:1158

(a) dX (x , y) ∈ Ri where Ri =
�

(1− 5cϵ) δ
ϵi , (2+ 5cϵ) δ

ϵi

�

, where c is the same constant that we use in1159

net tree cover.1160

(b) (x , i) and (y, i) have the same parent in Jg .1161

Note that in the static construction, for net points x , y at level i − 1 of the (static) net tree, we say1162

(x , y) is a blue edge if dX (x , y) ∈ Ri, a red edge if dX (x , y) ≤ si. Here, we do not use red edges, and1163

instead use pairs (x , y) if (x , i) and (y, i) have the same parent in one of the stable net trees. Recall that1164

in the static construction, children of a pairwise node (x , y, i) include the corresponding pairwise nodes1165

of (x , i − 1)’s children, (y, i − 1)’s children, and children of some unmatched node (z, i − 1). Here, if1166

(z, i) is added to Jg before (x , i) and (y, i), then we have to change the parent for the corresponding1167

pairwise node of (z, i)’s children, from (z, z, i) to (x , y, i). As parent updates make PITs unstable, we1168

have to avoid this case. Specifically, in the dynamic pairing algorithm, we relax the static algorithm1169

in that the children of (x , y, i) include the corresponding pairwise node of (x , i)’s children and (y, i)’s1170

children only. Intuitively, (x , y, i) is created as merging two subtrees of Jg rooted at (x , i) and (y, i),1171

and (x , y, i) becomes an O(ϵ)-node for any pair (x0, y0) where x0 and y0 are respectively a point in1172

descendants of (x , i) and (y, i) in Jg .1173

In more detail, for some Jg ∈ J where (x , i) and (y, i) have the same parent, suppose that (y, i)1174

is added to Jg after (x , i). We visit all PITs in Tg to find a tree T containing (x , x , i); we will show1175

that such tree T exists as long as Tg has sufficiently (but still ϵ−O(λ)) many trees. Then we rename the1176

corresponding pairwise node in T of (x , i) from (x , x , i) to (x , y, i). By applying the pairwise covering1177

property of J, we guarantee that every pair of points in S with a certain range of distance has an1178

O(ϵ)-close node. We will show that PITs in Tg have the same types of updates as Jg , and since Jg is1179

stable, every PIT is stable.1180

Note that we do not use jump terminology in dynamic PITs. PITs still have a “long” edge between a1181

node at level j and a node at level k where j > k+ 1; this long edge corresponds to some jump in the1182

5In the static construction, the level of a PIT and the level of a net tree differ by 1; here the levels of a stable net tree and
PITs derived from it are the same.

32

corresponding stable net tree. Therefore, splitting a jump in a net tree will correspond to subdividing a1183

(long) edge in a PIT.1184

Now, we describe our dynamic pairing algorithm.1185

Dynamic pairing algorithm. If a leaf (q, 0) is marked as deleted in Jg , in every PIT of Tg , we mark its1186

corresponding pairwise nodes (q, q, 0) as deleted. When Jg has a new node (p, i), we create pairwise1187

nodes for (p, i) in PITs of Tg depending on the type of (p, i):1188

(1) If (p, i) splits a jump from (p, j) down to (p, k) in Jg where j > i > k: since (p, j) has only one child,1189

(p, i) is not paired up with any node at the same level. Thus, for every PIT T ∈ Tg , let (p1, p2, j)1190

and (p, p, k) be the corresponding pairwise node in T of (p, j) and (p, k), respectively—note that1191

(p, k) is the only child of (p, j) before adding (p, i), thus its corresponding pairwise node is single1192

label. We create (p, p, i) by subdividing the edge from (p1, p2, j) down to (p, p, k).1193

(2) If i > 0 and (p, i) is a child of (q, i + 1): if there is some node (x , i) where dX (p, x) ∈ Ri and (x , i)1194

is also a child of (q, i + 1), we will call the dynamic matching algorithm described below. This1195

algorithm will create a new pairwise node (x , p, i) in a PIT T of Tg (as well as several single-label1196

nodes in some other trees in Tg).1197

(3) If i = 0, we create a leaf (p, p, 0) in every PIT T ∈ Tg , note that p can be a null point. To find parent1198

for (p, p, 0) in a PIT T , let (p′, i′) be the parent of (p, 0) in Jg , and (p1, p2, i′) be the corresponding1199

pairwise node in T of (p′, i′). We make (p, p, 0) a child of (p1, p2, i′).1200

Dynamic matching algorithm. This algorithm applies to the case where a new node (p, i) of a stable1201

net tree Jg has (at least one) sibling (x , i) such that dX (x , p) ∈ Ri. Let (q, i + 1) be the parent of (p, i)1202

(and also (x , i)). Let I be the set of PITs in Tg that do not have a pairwise node of p; initially, I = Tg .1203

For every child (x , i) of (q, i + 1) in Jg , if dX (x , p) ∈ Ri, let T be a PIT in I where the corresponding1204

pairwise node of (x , i) is (x , x , i); in the analysis below, we will show that T exists. Then, we create the1205

corresponding pairwise node of (p, i) in T by simply renaming the corresponding pairwise node of (x , i)1206

from (x , x , i) to (x , p, i). Finally, for every remaining tree T ′ in I, as T ′ does not have a corresponding1207

pairwise node of (p, i), we create (p, p, i) as a child of the corresponding pairwise node of (q, i+1) in T ′.1208

Analysis. We now analyze the dynamic pairing algorithm. First, we show a bound on |Jg | for nice1209

properties assumed in the dynamic pairing algorithm to exist.1210

Lemma 9. It suffices to maintain Tg that has |Tg |= ϵ−O(λ) trees. Furthermore, given a new node (p, i)1211

in Jg , the dynamic matching algorithm runs in ϵ−O(λ) time to update Tg , and guarantees that: for any1212

node (x , i) in Jg where (x , i) and (p, i) have the same parent and dX (p, x) ∈ Ri , there exists a PIT T in1213

Tg that contains (x , p, i).1214

Proof: For every child (x , i) of (q, i + 1) where dX (x , p) ∈ Ri, the algorithm finds a PIT T containing1215

(x , x , i) to create (x , p, i). Here we show that by constructing a sufficiently large (but still ϵ−O(λ)) number1216

of PITs in Tg , such a tree T is guaranteed to exist.1217

Let X i be the set of points labeling nodes at level i of Jg . For x ∈ X i, we define Nb(x) = {y ∈ X i :1218

dX (x , y) ∈ Ri}. Let δb be the maximum size of Nb(x) for every x ∈ X i. By packing property of Jg , it1219

holds that δb = ϵ−O(λ), since the minimum distance of points in X i is Θ(δ
ϵi−1), while Ri ∈ Θ(

δ
ϵi). Consider1220

a point x ∈ Nb(p), observe that at most δb−1 points in Nb(x)\{p} that can be paired with x . Therefore,1221

there are at most δb − 1 PITs in Tg where (x , i) has a double-label pairwise node. If we maintain δb1222

trees in Tg , there always exists a PIT T to pair up x and p.1223

33

We now analyze the running time per update. By the packing and covering properties of Jg , (q, i + 1)1224

has ϵ−O(λ) children, and we can check the pairwise node of a (q, i + 1)’s child in a PIT with O(1) time.1225

For a PIT, we create a pairwise node (p, p, i) or rename (x , x , i) to (x , p, i) in O(1) time. Since there are1226

ϵ−O(λ) trees, the dynamic matching algorithm totally runs in ϵ−O(λ) time. □1227

Lemma 10. For every two points x , y ∈ S where dX (x , y) ∈ (δ
ϵi ,

2δ
ϵi], there exists a PIT T ∈ T such that1228

a node at level i is O(ϵ)-close to (x , y).1229

Proof: For every two points x , y ∈ S where dX (x , y) ∈ (δ
ϵi ,

2δ
ϵi], we prove that there exists a PIT that has1230

a pairwise node containing both x and y as its descendant leaves. By the pairwise covering property of1231

the net tree cover J, there exists a tree Jg such that (x , 0) and (y, 0) have the same ancestor at level i+ 11232

in Jg . Let (x ′, i) and (y ′, i) be the ancestor at level i in Jg of (x , 0) and (y, 0) respectively, we know that1233

(x ′, i) and (y ′, i) have the same parent (u, i + 1). By the covering property of Jg (Lemma 6), dX (x , x ′)1234

and dX (y, y ′) are at most 5c δ
ϵi−1 . Thus, dX (x ′, y ′) ∈

�

δ
ϵi − 5c δ

ϵi−1 , 2δ
ϵi + 5c δ

ϵi−1

�

= Ri. Since dX (x , y)> 0,1235

we have x ̸= y . By Remark 2, since (u, i + 1) has at least two children, (x ′, i) and (y ′, i) are non-hidden1236

nodes in Jg . W.l.o.g, suppose that (x ′, i) is added before (y ′, i) to Jg . Since (x ′, i) and (y ′, i) have the1237

same parent in Jg and dX (x ′, y ′) ∈ Ri , when (y ′, i) is added to Jg , by Lemma 9, there exists T ∈ Tg that1238

contains (x ′, y ′, i). Observe that we pair up two nodes in Jg only if they have the same parent, thus the1239

ancestor at level j in T of (x , x , 0) is the corresponding pairwise node of the ancestor at level j in Jg of1240

(x , 0). Therefore, (x , y, i) contains x , and similarly contains y in its descendants.1241

Now we show that (x ′, y ′, i) is O(ϵ)-close to the pair (x , y). Observe that points in descendants of1242

(x ′, y ′, i) in T is the union of points in descendants of (x ′, i) and (y ′, i) in Jg . Thus, for every point t in1243

descendants of (x ′, y ′, i) in T , (t, 0) must be a descendants of (x ′, i) or (y ′, i) in Jg . By the covering of1244

Jg (Lemma 6), dX (t, {x ′, y ′}), dX (x , x ′) and dX (y, y ′) are at most 5c δ
ϵi−1 . Therefore dX (t, {x , y}) is at1245

most 10c δ
ϵi−1 ≤ 10cϵdX (x , y). □1246

Proof (Proof of Theorem 12): By Lemma 9, we know that |Tg | = ϵ−O(λ), and since |J| = Oλ(1), T =1247

T1∪ . . .∪T|J| has totally ϵ−O(λ) PITs, which proves item (i) of the theorem. By Lemma 10, item (ii) holds.1248

Since |Tg | = ϵ−O(λ), each update of Jg is translated into ϵ−O(λ) updates of Tg . For every PIT in Tg ,1249

the dynamic pairing algorithm marks a leaf as deleted with O(1) time, creates (p, p, i) for a new node1250

(p, i) in Jg with O(1) time in step 1 and step 3. In step 2, the dynamic matching algorithm updates all1251

PITs in Tg and runs in ϵ−O(λ) time by Lemma 9. Therefore, the total running time is ϵ−O(λ).1252

Now we show that PITs in Tg are stable. Parent updates occur only in step 1 of the dynamic pairing1253

algorithm, where we subdivide an edge. In step 2, the dynamic matching algorithm creates single-label1254

pairwise nodes, or renames nodes to create double-label pairwise nodes in PITs. These single-label1255

pairwise nodes do not have any child and thus are leaves. In step 3 of the dynamic pairing algorithm,1256

we create a leaf in every PIT. Therefore, we update PITs with three types of operations: adding a leaf,1257

subdividing an edge, and marking a leaf as deleted; which means PITs are stable. □1258

Remark 3. In the construction of the leaf tracker data structure in Section 5, it would be conceptually1259

simpler (though technically not needed) if we re-arrange the order of nodes being inserted into PITs and1260

guarantee that adding a new leaf always occurs at level 0. Recall that in a tree Jg of net tree cover J and1261

PITs in Tg , we insert nodes by:1262

1. In Jg , (p, i) splits a jump from (p, j) down to (p, k). In every PIT of Tg , we add (p, p, i) by1263

subdividing the edge from (p1, p2, j) down to (p, p, k). In this case, we do not add a new leaf in1264

any PIT.1265

2. In Jg , we insert a leaf (p, i) at level i > 0, after that, we insert a leaf (p′, 0), where p′ = p or1266

p′ = NULL.1267

34

(a) If the corresponding pairwise node in a PIT T of (p, i) is (x , p, i) for x ≠ q, we add (p′, p′, 0)1268

as a leaf under (x , p, i).1269

(b) If the corresponding pairwise node of (p, i) in a PIT T is (p, p, i), it is a new leaf at level i > 01270

in T . We need to arrange new nodes of T in this case.1271

3. In Jg , we only insert a leaf (p′, 0) to the tree, where p′ is a new point or p′ = NULL (without adding1272

a leaf at level i > 0). This case already satisfies that adding a leaf occurs at level 0.1273

Now we show how to arrange new nodes of PITs in case 2(b). First, we run the dynamic matching1274

algorithm in Tg , then: If the corresponding pairwise node in a PIT T of (p, i) is (p, p, i), let (q, i + 1)1275

be the parent of (p, i) in Jg , and (q1, q2, i + 1) be the corresponding pairwise node in T of (q, i + 1). In1276

T , we add (p′, p′, 0) as a leaf under (q1, q2, i + 1), then add (p, p, i) by subdividing the edge between1277

(q1, q2, i + 1) and (p′, p′, 0).1278

5 Leaf Tracker1279

In this section, we design the leaf tracker data structure for a dynamic PIT as claimed in Theorem 13 in1280

Section 4, which we restate below for convenience.1281

Theorem 13. We can construct a leaf tracker data structure for maintaining a stable dynamic PIT T with1282

O(ϵ−O(λ) + log (n)) time per updating and tracking operation (including INSERTLEAF, SUBDIVIDEEDGE,1283

DELETELEAF, TRACKLEFTMOSTLEAF, TRACKRIGHTMOSTLEAF). Furthermore, the DFS leaf ordering of T1284

will be maintained in a doubly linked list, and hence the data structure could support O(1) time per1285

query (including GETPREDECESSOR, GETSUCCESSOR).1286

In this section, all dynamic trees are stable: every update is either inserting a (null or non-null) leaf,1287

marking a leaf deleted, or subdivision an edge. Thus, for simplicity, we use the word dynamic tree to1288

refer to a stable dynamic tree.1289

By definition (Definition 10), a leaf tracker has to maintain a DFS ordering of only active leaves.1290

Furthermore, GETPREDECESSOR and GETSUCCESSOR operate on σ and have to return active leaves as1291

results. Therefore, in maintaining the DFS ordering of the leaves T , we have to skip over inactive leaves1292

(which include null and mark-deleted leaves). And this is the key difficult challenge in the design of a1293

leaf tracker data structure.1294

Recall that the DFS leaf ordering σ of T is obtained by visiting the tree and writing down the leaves1295

in the DFS order, breaking ties by insertion time. Specifically, children of every node in T are ordered1296

linearly by their insertion time. In the DFS order, we prioritize visiting the nodes in T by their insertion1297

time: from a node, we visit the older children first. We will use a doubly-linked list to store σ, and hence,1298

getting the predecessor and the successor of a point in σ can be done in O(1) time by simply following1299

the pointers to the next and previous nodes in the list σ. (Herein, we will slightly abuse the notion by1300

using σ to refer to the doubly-linked list representing the DFS ordering σ.)1301

First, we will handle a simpler case where a dynamic tree (not necessarily a PIT) T only has (non-null)1302

leaf insertions and edge subdivisions; there are no marking leaves as deleted or inserting null leaves. We1303

will also store the DFS ordering of leaves of T in a doubly-linked list LT . Our key idea is to construct a1304

data structure that could support querying the leftmost and rightmost 6 leaves of a given node u ∈ T in1305

O(log (n)) time. When we add a leaf (q, q, k) as a new child of a node u at a level k > 0, we query D to1306

get the get the rightmost leaf (x , x , 0) of u in O(log(n)) time. Assume that we are in the ideal case where1307

6The left-right order of nodes in T is determined by the insertion time; specifically, earlier inserted nodes are on the left and
vice versa.

35

(x , x , 0) is active. Then we follow the pointer stored at (x , x , 0) to access its position in LT , and insert q1308

after (x , x , 0) in LT in O(1) time. The time to locate the rightmost leaf, which is O(log n), dominates the1309

total running time to update σ.1310

To search for a leftmost or rightmost leaf of a node u, the observation is that all the leaves in the1311

subtree rooted at a node u form a contiguous subsequence of LT , where the leftmost (rightmost) leaf is1312

the leftmost (rightmost) element of the subsequence. Then, to search for these extreme points of the1313

subsequence, we will build a skip list on top of LT to perform some kind of binary search. However,1314

there seems to be no obvious way to assign keys to elements in LT to construct the skip list. Nodes in1315

LT are not sorted in increasing orders of insertion time, and there is no natural linear order between1316

the names of the nodes to use as keys. To solve this problem, we introduce ancestral arrays and a data1317

structure for maintaining them. Roughly speaking, an ancestral array of a node u ∈ T is an array O(log n)1318

“important” ancestors stemming from a centroid decomposition of T (see Definition 11). We will use1319

ancestral arrays as “keys” to the skip list. Though there is no linear order between the ancestral arrays to1320

use them as keys in the traditional sense, we could use them to determine if a leaf x is a descendant of1321

a query node u or not by Lemma 14, which turns out to be sufficient for binary search using skip lists.1322

There are several subtleties in the implementation, which we will discuss in detail later in Section 5.1.1323

Our ultimate result is the following data structure.1324

Lemma 11. Let T be a dynamic rooted tree of n nodes under updates by adding new leaves and1325

subdividing edges. Then, we can construct a data structure with O(n) space that maintains the DFS leaf1326

ordering of T in a doubly-linked list with O(log (n)) time per update and tracking operation (including1327

INSERTLEAF, SUBDIVIDEEDGE, TRACKLEFTMOSTLEAF, TRACKRIGHTMOSTLEAF).1328

Next, we design a data structure for a PIT which could contain inactive nodes. There are two key1329

challenges: (a) a node u might be inactive before the insertion of a new active leaf (q, q, 0) and hence,1330

no descendant leaves of u will appear in the DFS leaf ordering σ since they are also inactive; (b) if u is1331

active, it is possible that most of its descendant leaves are inactive, including its leftmost and rightmost1332

descendant leaves. (Recall that a node in T is active if it has at least one active descendant leaf, and1333

inactive otherwise.) To resolve these issues, our basic idea is that, given a PIT T , if we iteratively contract1334

every inactive node to its parent until there is no more inactive node, then the resulting tree only has1335

active nodes and hence we could apply the data structure, denoted by D, for trees without inactive1336

nodes. Of course, we will not explicitly contract inactive nodes, as if we do so, when a new active leaf is1337

inserted as a child of an inactive node, it could trigger a large number of nodes to change their status1338

from inactive to active, resulting in a large amount of time to undo the contractions. Instead, we design1339

a new data structure called active tracker (see Section 5.2.2) that supports two important operations: (i)1340

given a node u in a PIT, returns an active descendant leaf of u, if any, and (ii) given an inactive node u,1341

returns the lowest active ancestor of u. Operation (i) allows us to access an active leaf of a node to start1342

the binary search on σ using skip lists stored in D. Operation (ii) provides a kind of implicit contraction:1343

if a new active leaf (q, q, 0) is inserted as a child of an inactive leaf u, we could conceptually think of1344

(q, q, 0) as a new child of the lowest active ancestor v of u in the contracted tree, and hence we could1345

call an update to D to insert a new child to v. A subtle point is that the new leaf (q, q, 0) might not be1346

the rightmost leaf in the DFS ordering of descendant leaves of v, since the (inactive) child of v that is an1347

ancestor of u, denoted by x , might have insertion time smaller than other children of v. In this case, we1348

insert (q, q, 0) next to the rightmost leaf of an active child y of v whose insertion time is largest among1349

all children of v with insertion time smaller than x . All these ideas lead to the following lemma, whose1350

proof will be given in Section 5.2.1351

36

Lemma 12. Suppose that we are given a data structure in Lemma 11, then we can construct a data1352

structure for maintaining the DFS leaf ordering of any given PIT in a doubly-linked list with O(ϵ−O(λ) +1353

log (n)) time per update and tracking operation.1354

Observe that Lemma 11 and Lemma 12 together imply Theorem 13. The rest of this section is1355

organized as follows. Section 5.1 construct a data structure for a simpler case as claimed in Lemma 11.1356

Section 5.2 shows how to maintain σ and proves Lemma 12.1357

5.1 Special Case: Trees without Inactive Nodes1358

In this section, we construct a data structure for querying the leftmost and rightmost leaves of a node in1359

a dynamic tree T without inactive nodes as claimed in Lemma 11. Note that nodes in T are ordered1360

by their insertion times. (Our data structure works for any tree with a linear order between children1361

of every node in a tree, not just the linear order by insertion times.) Let LT be the list of leaves in T1362

obtained by visiting T in the DFS order, where children of a node are visited according to their insertion1363

times. We observe that:1364

Observation 3. The descendant leaves of any node u ∈ T form a contiguous subsequence of LT .1365

As discussed above, the key idea is to construct a data structure for querying the leftmost and1366

rightmost descendant leaves of a node in T . To this end, we need a data structure to maintain an1367

ancestral array of every node, each array holds O(log n) ancestors from a centroid decomposition. We1368

say that a path P in T is monotone if it is a subpath from a leaf to the root of T .1369

Definition 11 (Centroid Decomposition [23] and Ancestral Array). Given a rooted tree T , a centroid1370

path π of T is a maximal monotone path such that there exists an integer i satisfying 2i ≤ |T (u)|< 2i+1
1371

for all node u ∈ π, where |T (u)| is the total number of nodes (size) of the subtree rooted at u. We say1372

the node at the highest level of π is the head of π. A centroid decomposition of T is a decomposition into1373

a set P of centroid paths such that every node u ∈ T has at most O(log n) centroid paths, each contains1374

an ancestor of u, and every ancestor of u (including u) is contained in one of these centroid paths.1375

An ancestral array of a node u is an array containing the heads of the centroid paths of u.1376

By the definition of centroid decomposition, the ancestral array of a node has O(log n) elements, and1377

furthermore, the first node of the array is the root of T . We observe that one can extract a data structure1378

for maintaining an ancestral array from the data structure for maintaining dynamic weighted ancestors1379

in a rooted tree by Kopelowitz and Lewenstein [25]. For completeness, we will review their construction1380

and adapt it to our notation by the end of this section.1381

Lemma 13 (Kopelowitz and Lewenstein [25], implicit). Given a rooted tree T of n nodes under up-1382

dates by adding new leaves and subdividing edges, there is a data structure that maintains an ancestral1383

array for every node in the tree and runs in O(log (n)) time per update.1384

Let Av be the ancestral array of a node v ∈ T ; note that Av[1] is the root of T . We now show that1385

using ancestral arrays, one can infer if a node x is a leaf descendant of a node u. (We assume that every1386

node has a level such that the level of a node is smaller than the level of its parent.)1387

Lemma 14. Let u and x be two nodes in T where x is a leaf. Let hu be the last element of Au, and j be1388

the index of hu in Ax . Then x is a descendant leaf of u if and only if either (a) hu is the last element of1389

Ax , or (b) both following conditions hold: (b.1) Au is a prefix of Ax and (b.2) the parent of Ax[j + 1] has1390

a level at most the level of u.1391

37

Proof: Let π be the centroid path containing u. Observe that hu is the head of π. If x ∈ π, then (a)1392

holds and x is a descendant leaf of u. On the other hand, if (a) holds, then x ∈ π, which means it is a1393

descendant leaf of u. It remains to consider the case where x ̸∈ π. We will show that x is a descendant1394

leaf of u if and only if both (b.1) and (b.2) hold.1395

If u is an ancestor of x , then by definition of ancestral arrays, Au must be a prefix of Ax ; (b.1) holds.1396

Since x ̸∈ π, j is not the last element of Ax , which means Ax[j+1] exists. Let p be the parent of Ax[j+1],1397

observe that p ∈ π and p is the lowest ancestor of x in π. Thus, the level of u must be at least the level1398

of p; (b.2) holds.1399

On the other hand, assuming that (b.1) and (b.2) hold. By (b.1), we know that π is a centroid path1400

of x . As x ̸∈ π, Ax[j+1] must exist. Let p be the parent of Ax[j+1]. By Definition 11, both u, p are in π.1401

Since the level of p is at most the level of u by (b.2), u must be an ancestor of p, and therefore, of x . □1402

We will construct a skip list structure on top of LT ; nodes in LT will be referred to as leaves to be1403

distinguished from nodes in the skip list. The skip list has O(log n) levels to “navigate” LT ; LT will be1404

at level 0 of the skip list. As we discussed above, the “key” of every element in LT in the skip list is its1405

ancestral array. Though there is no linear order between the ancestral arrays, we could use them to1406

determine if a leaf x is a descendant of a query node u or not by Lemma 14. A node in the skip, say1407

x̃ i , at a level i now holds (a) the name of some leaf, say x , in σ as data and (b) three pointers: a right1408

pointer which points to a node ỹ i at the same level i where its corresponding leaf y is to the right of x in1409

σ, and the down pointer which points to x̃ i−1 (if any), the node at level i − 1 holding the same leaf x as1410

the data, and the up pointer that points to x̃ i+1 (if any). Note that each leaf x appears as data in at most1411

O(log n) nodes of the skip list (at different levels)1412

Figure 7: Illustrate the skip list that we build on top of LT and the process of searching the right-most
leaf r of a node u in the tree T . Four circles l, x , y, r are leaves in LT . A solid arrow is a direct pointer
between two nodes. A dashed arrow shows that there is a path between two nodes of different leaves at
the same level. We demonstrate direct pointers of nodes x̃ i for one leaf x , other leaves have the same
structure. We start searching at a leaf l of u, then follow pointers (red arrows) of yellow nodes to find r.
The going up stage is from l to x and then going down stage is from x to r.

When searching for the rightmost of a node u ∈ T , we take an arbitrary leaf ℓ of u and start the1413

search from node ℓ̃0 corresponding to ℓ at level 0 of the skip list, which is LT ; see the pseudocode in1414

Figure 8. There are two stages in the search:1415

1. Going up stage. This stage starts from ℓ̃0, and at an intermediate step, we have a node x̃ i at level1416

i, where its corresponding leaf x is always a descendant of u. We then follow the up pointers to get1417

to the node x̃ i∗ corresponding to the same leaf x where i∗ is the highest level. Then we following1418

the right pointer of x̃ i∗ to the next node ỹ i∗ , corresponding to a leaf y. If y is a descendant of u,1419

then we will continue this stage by jumping to ỹ i . Otherwise, we follow the down pointer to x̃ i∗−11420

and start the second stage.1421

38

2. Going down stage. At an intermediate step, the search is at some node x̃ i at level i, where its1422

corresponding leaf x is always a descendant of u as the first stage. We then follow the right pointer1423

to the next node ỹ i−1, corresponding to a leaf y . If y is still a descendant of u, then we jump to ỹ i .1424

Otherwise, we go down one step to x̃ i−1 and continue this stage. This stage, and also the search,1425

terminates when we reach level 0.1426

There are two subtle points in implementing the rightmost/leftmost leaf tracker algorithm. The1427

minor point is that we will not store the ancestral arrays explicitly in the skip list since their sizes are1428

non-constant; instead, we only store pointers to these arrays. The major point is that we have to check1429

whether Au is a prefix of Ax in O(1) time; note that their lengths are O(log n). We do so by exploiting1430

the fact that Au and Ax are stored as arrays: simply look at the last element, say hu, of Au and check if1431

Au[j] = Ax[j] where j is the length of Au, which is also the index of hu is Au.1432

ISDESCENDANT(u, x , T): check if a leaf x is a descendant of u

1. Let j be the last index of Au, and hu← Au[j].

2. x is a leaf of u if either one of following conditions holds:

(a) The last element of Ax is hu.
(b) If the last element of Ax is not hu, then both (b.1) and (b.2) hold, where:

(b.1) Ax[j] = hu.
(b.2) The parent of Ax[j + 1] is at a level at most the level of u.

TRACKRIGHTMOSTLEAF(u,σ, T): return the rightmost leaf in σ of a given node u

1. Let ℓ be an arbitrary leaf under the subtree rooted at u.

2. stage← UP, i← 0 and x̃ i = ℓ̃0.

3. while stage = UP ≪ up stage≫

• x̃ i∗ ← the node at highest level corresponding to x .
• ỹ i∗ ← RIGHTPOINTER(x̃ i∗).
• if ISDESCENDANT(u, y, T) = TRUE, i← i∗ and x̃ i ← ỹ i∗ .
• otherwise, stage← DOWN, i← i∗ − 1.

4. while i ≥ 0 ≪ down stage≫

• ỹ i ← RIGHTPOINTER(x̃ i).
• if ISDESCENDANT(u, y, T) = TRUE, x̃ i ← ỹ i .
• otherwise, i← i − 1.

5. Return x .

Figure 8: TRACKRIGHTMOSTLEAF searches the rightmost leaf of u by searching on a skip list.

Proof (Proof of Lemma 11): Since all descendant leaves of u form a continuous subsequence of LT ,1433

we can follow pointers of LT to find the rightmost leaf of u from an arbitrary leaf ℓ. Therefore, the1434

correctness of TRACKRIGHTMOSTLEAF follows Lemma 14.1435

39

For running time, observe that ISDESCENDANT(u, x , T) has O(1) running time. Therefore, every1436

iteration in the while loops in steps 3 and 4 of TRACKRIGHTMOSTLEAF run in O(1) time. As the height1437

of a skip list is O(log n), the number of steps going up in the first stage is O(log n). However, we also1438

have to bound the number of steps the search jumps to the right following the right pointers. The1439

observation is that, in the first stage, every time we follow the right pointer in the skip list, the distance1440

from the starting point of the search to the current node increases exponentially. Thus, the number1441

of jumping-to-the-right steps is also O(log n), implying that the total running time of the first stage is1442

O(log n). The total running time of the second stage is also O(log n) for the same reason.1443

Lastly, we need to keep track of LT once a new leaf is inserted into T . As we do not delete leaves from1444

T , when a new leaf x is inserted as children of a node u, it will be the new rightmost descendant leaf of u,1445

and we have to insert x next to its old rightmost descendant leaf, say y . We invoke TRACKRIGHTMOSTLEAF1446

to find y and its position in LT . Since LT is a doubly linked list, inserting x next to y takes only O(1)1447

time, making the total time to update LT O(log n) per insertion.1448

As LT changes, the skip list also has to change. For this purpose, we could use the data structure1449

of Munro, Papadakis, and Sedgewick [30] that has only O(n) space. Thus, the total space of our data1450

structure is O(n). □1451

Maintaining ancestral arrays Kopelowitz and Lewenstein [25] studied the dynamic weighted ancestor1452

problem, where there is a dynamic weighted tree and the goal is to answer weighted ancestor queries:1453

given a node v and a value i, return the first node in the path from v to the root whose value is less than1454

i. Note that the weight of a node is higher than that of its parent, and the tree is updated dynamically by1455

inserting a leaf or subdividing an edge; there are no deletions. They developed two data structures:1456

1. Ancestral representative data structure built on top of the centroid path decomposition (Defini-1457

tion 11) of T . This data structure also maintains for every node v a list of heads of the centroid1458

paths of v, called the head record of v.1459

2. Dynamic predecessor data structure that maintains all the centroid paths in the centroid path1460

decomposition and supports predecessor search7 on each path.1461

To query a weighted ancestor, their basic idea was to search the two data structures. First, from the1462

head record of v, they determined the (head of the) centroid path π of v that contains the weighted1463

ancestor. Then, they executed a predecessor search supported by the dynamic predecessor data structure1464

to search for the result8 on π.1465

Remark 4. In the work of Kopelowitz and Lewenstein [25], each insertion to the tree induces a constant1466

number of what they called predecessor updates. Each predecessor update could be (a) creating at most1467

log (n) nodes in the head record for a new node, (b) adding a new element at the end of the head record,1468

(c) changing the value of an element in the head record of a node, and (d) adding a new node into a1469

centroid path. The running time of a predecessor update depends on the choice of the data structures1470

for the head records and centroid paths. (For our purpose, we simply use an array to store each head1471

record and a skip list to store each central path to achieve O(log n) time per predecessor update.)1472

The running time per weighted ancestor query was bounded by the number of predecessor searches.1473

One predecessor search is executed on the head record of v, which has size O(log n), while another1474

predecessor search is on a centroid path of size at most n. Thus, the running time of querying a weighted1475

ancestor is at most max{T1(log (n)), T2(n)}, where T1 and T2 depend on the choices of data structures1476

for implementing predecessor search on the head records and centroid paths.1477

7In the predecessor search problem, one has to design a data structure for a set of integer keys such that given an integer x ,
it has to quickly return the largest (smallest) key at most (at least, resp.) x , called the predecessor (successor, resp.) of x .

8To be more precise, they either searched on π or the centroid path of v following π.

40

The result of Kopelowitz and Lewenstein [25] is summarized in the following lemma.1478

Lemma 15 (Kopelowitz and Lewenstein [25], Theorem 7.1). Given a weighted tree of n nodes that1479

can be updated by adding a new leaf or subdividing an edge, each insertion costs a constant number of1480

predecessor updates, and each weighted ancestor query can be answered by calling a constant number1481

of predecessor searches.1482

Here, we do not need to support a weighted ancestor query. Furthermore, we only look for an1483

O(log n) search time instead of O(log∗(n)) or faster as in the work of Kopelowitz and Lewenstein [25]).1484

As a result, we could use much simpler data structures than theirs. Specifically, we will use an array to1485

store the head record of every vertex; this is our ancestral array. We also use a skip list to store each1486

centroid path. (Therefore, we can discard most of their dynamic predecessor data structure.) When a1487

node v is added to the tree, we update its ancestral array in O(log n) time by looking at the ancestral array1488

of its parent and add v to an appropriate centroid path also in O(log (n)) time. As noted in Remark 4,1489

the insertion time is O(log (n)).1490

For completeness, we now briefly zoom in on the technical ideas of Kopelowitz and Lewenstein [25].1491

This overview is not necessary to understand our work, and hence, readers could skip this part if needed.1492

First, as centroid paths are determined based on their sizes, the authors [25] needed to maintain1493

the sizes of the subtrees rooted at the heads of centroid paths. When a new node is added, a centroid1494

path π could have a new head: the current head u leaves π and joins to the end of the preceding1495

centroid path, while the child v of u in π becomes the new head of π. And we have to maintain the1496

size of the subtree, denoted by |T(v)|, rooted at v. If v is the only child of u, then |T(v)|= |T(u)| − 1.1497

Otherwise, other child of u are also heads and hence |T(v)| = |T(u)| −
∑︁

v′∈{children of u}\{v} |T(v
′)| − 1.1498

The sum
∑︁

v′∈{children of u}\{v} |T (v
′)| can be maintained directly at u. Therefore, we can compute |T (v)|1499

in constant time. As inserting a node into T could lead to changing at most log (n) heads, the running1500

time to maintain the subtree sizes at these heads is O(log (n)).1501

Maintaining the sizes of the heads is only the first step; the main challenge is to maintain the head1502

records in an efficient time per insertion. Adding a new node could lead to changing multiple heads1503

of the centroid paths, which induces updating the head records of many nodes. To solve this problem,1504

instead of updating the head records of nodes immediately, they waited for more insertions. In the1505

meantime, a centroid path could be “oversized”, as more nodes are inserted into it but its head is not1506

updated. They observed that using an “outdated” version of head records still guarantees the correctness1507

of ancestor queries. Furthermore, this observation allows updating the data structure in the background,1508

then they could deamortize their construction by recursively splitting the tree into subtrees of O(log(n))1509

nodes. Ultimately, they achieved a worst-case constant bound on the number of predecessor updates1510

(and predecessor searches) per insertion (weighted ancestor query, resp.).1511

5.2 General Case: Maintaining DFS Ordering of a PIT1512

In this section, we show how to maintain the DFS leaf ordering σ of T as claimed in Lemma 12. We will1513

store σ as a doubly linked list that only contains active leaves. Our goal is to transform a structure D for1514

trees without inactive leaves, such as the data structure constructed in the previous section, to a data1515

structure that works for PIT with inactive leaves. We refer readers to the beginning of Section 5 for an1516

overview of our ideas. A key data structure is an active tracker formally defined below.1517

Definition 12 (Active Tracker). A data structure that maintains a dynamic rooted tree under updates1518

by inserting a leaf, subdividing an edge, and marking a leaf as deleted. It supports three following1519

queries:1520

• ISACTIVE(u, T): check if u is an active node.1521

41

• GETACTIVELEAF(u, T): given a node u, return lu, where lu is an active leaf under the subtree rooted1522

at u.1523

• GETLOWESTACTIVEANCESTOR(u, T): return the lowest ancestor v of u such that v is an active node.1524

By the end of this section, we will design an active tracker data structure with linear space that1525

supports fast query time, as claimed in the following lemma. Note that we only apply procedure1526

GETACTIVELEAF(u, T) on an active node u.1527

Lemma 16. There is an active tracker data structure with O(n) space that has O(ϵ−O(λ) + log (n)) time1528

per update and supports ISACTIVE in O(1) time, and GETACTIVELEAF and GETLOWESTACTIVEANCESTOR1529

in O(log n) time.1530

Given the active tracker data structure by Lemma 16, we now show how to update the doubly-linked1531

list σ under updates. Conceptually, we could think of σ as a DFS leaf ordering of the tree T̂ obtained by1532

iteratively contracting inactive nodes to their parents, and therefore, we could use the data structure1533

in the previous section for maintaining σ. Specifically, a skip list is maintained on top of σ for binary1534

search, as we did with LT , with ancestral arrays to be keys. However, ancestral arrays of a node in T1535

here could contain inactive nodes. The observation is that in the search of the leftmost/rightmost leaf,1536

we only compare ancestral arrays of active nodes, and by definition, every ancestor of an active node is1537

active. Thus, the ancestral arrays of nodes that we compare during the search only contain active nodes.1538

5.2.1 Updating σ1539

When an active leaf (q, q, 0) corresponding to a point q ∈ S is removed from T , we then follow the1540

pointer at (q, q, 0) to find its corresponding node q in σ. Then, we simply remove q from σ, which can1541

be done in O(1) time since σ is a doubly-linked list. It remains to consider insertions. If a null leaf is1542

inserted to T , we do nothing, so the difficult case is inserting an active leaf.1543

Suppose that an active leaf (q, q, 0) is inserted to T . Let u be its parent in T . We consider two cases:1544

1. u is active. We query the active tracker data structure: lu← GETACTIVELEAF(u, T). This means u1545

is an active node, and (q, q, 0) will become the rightmost leaf of u. Thus, we simply insert (q, q, 0)1546

by finding the current rightmost leaf, say x , of u by calling TRACKRIGHTMOSTLEAF(u, LF) (in1547

Figure 8) and insert q right after x in σ. By Lemma 11, the running time of this step is O(log n).1548

2. otherwise, u is inactive. Let v← GETLOWESTACTIVEANCESTOR(u, T). We then examine every1549

child of v to find the active child vx that the DFS visits before u and after other active children of v;1550

we can afford to do so since v only has ϵ−O(λ) children. If vx exists, then we find the rightmost leaf,1551

say x , of vx by calling TRACKRIGHTMOSTLEAF(vx ,σ) and insert q after x in σ. Note that in the DFS1552

order, x is followed by the active descendant leaves of u in σ. Since (q, q, 0) is the only active leaf1553

in descendants of u, q must be the new successor of x in σ. Otherwise, vx does not exist. Since v1554

is active, there exists an active child vy of v such that vy is visited after u and before other active1555

children of v. We then find the leftmost leaf, say y , of vy by calling TRACKLEFTMOSTLEAF(vy , LF)1556

and insert q before y in σ.1557

Since checking if a child of v is active can be done in O(1) time, the total time to find vx and vy1558

is ϵ−O(λ). By Lemma 11, finding the leftmost or the rightmost leaf can be done in O(log n) time.1559

Thus, the total running time of this step is O(ϵ−O(λ) + log n).1560

By considering all the cases, updating σ can be done in O(ϵ−O(λ) + log n).1561

42

5.2.2 Active tracker data structure1562

Now, we provide details of active data structures as claimed in Lemma 16. For each centroid path π in1563

the centroid decomposition of T , we keep track of the lowest active node of π, denoted by LOWEST(π).1564

Specifically, the head of π will store a pointer that points to LOWEST(π), so that it takes only O(1) time1565

to find LOWEST(π). Initially, LOWEST(π) is NULL, then it will be updated while nodes of T are inserted1566

or deleted. For now, we assume that LOWEST(π) is given, and we will use it to implement all other1567

operations of the active tracker data structure; the pseudocodes are given in Figure 9. We will come1568

back to the issue of maintaining LOWEST(π) for every path π later.1569

FINDCENTROIDPATH(u, T): find the centroid path containing u

Let v be the last element of the ancestral array Au of u, and πu be the centroid path whose
head is v. Then return πu.

ISACTIVE(u, T):

1. Let πu← FINDCENTROIDPATH(u, T).

2. Let t ← LOWEST(πu).

3. If t is NULL or the level of t is higher than u, then u is an inactive node, and we return FALSE.
Otherwise, we return TRUE.

GETACTIVELEAF(u, T):
≪ u is guaranteed to be active≫

1. Let πu← FINDCENTROIDPATH(u, T).

2. Let t ← LOWEST(πu).

(a) if t is a leaf, we return t.
(b) Otherwise, we pick an active child t ′ of t (by maintaining a pointer to an arbitrary active

child at t) and return GETACTIVELEAF(t ′, T).

GETLOWESTACTIVEANCESTOR(u, T): ≪ see Figure 10≫

1. Let v ∈ Au be the lowest head such that its corresponding centroid path π has LOWEST(π) ̸=
NULL. (We find v by considering every element of Au.)

2. [Case 1: u ∈ π.] If the level of LOWEST(π) is higher than u, we return LOWEST(π). Otherwise,
we return u.

3. [Case 2: u ̸∈ π.] Let j be the index of v in Au. Let v′ be the parent of Au[j + 1]. If v′ is active,
return v′. Otherwise, return LOWEST(π).

Figure 9: Operations supported by the active tracker data structure.

Correctness. Since the ancestral array Au of a node u contains the heads of all centroid paths of u1570

sorted by decreasing level, and u belongs to some centroid path, FINDCENTROIDPATH(u, T) in Figure 91571

correctly returns the centroid path containing u and its head. Clearly, if u is active, then by definition of1572

LOWEST, the lowest active node in πu in line 2 of ISACTIVE(u, T) has a level at most that of u, and hence1573

43

Figure 10: Illustrate GETLOWESTACTIVEANCESTOR operation. Let π be the lowest centroid path of u
whose head is active, and j be the index of π’s head in Au. Rectangular white nodes are active, round
black nodes are inactive. The lowest active ancestor of u is the red node. To find the lowest active
ancestor, when u ∈ π, we consider the levels of u and LOWEST(π), when u ̸∈ π, we consider the levels of
Au[j + 1]’s parent and LOWEST(π).

ISACTIVE(u, T) correctly decides if u is active or not.1574

For GETACTIVELEAF(u, T), the input node u is always an active node. Since u is active, the node t in1575

line 2 exists and has a level at most u. If t is a leaf, then it will be an active leaf of u, so the algorithm1576

is correct. Otherwise, it recursively finds an active leaf from an active child t ′ of t. By definition of an1577

active node, t ′ has an active leaf in its subtree, and hence the algorithm is correct.1578

For GETLOWESTACTIVEANCESTOR(u, T), case 1 is self-explained. For case 2, by definition of Au and v,1579

Au[j + 1] is the head of a centroid path, say π′, of u such that every node π′ is inactive, and therefore,1580

the lowest active ancestor of u must be an ancestor of Au[j+1]. Since v′ is the parent of Au[j+1], if it is1581

active, then it is the lowest active ancestor of u, and hence the algorithm is correct. Otherwise, observe1582

that v′ is in π by the definition of centroid path decomposition. Since v′ is in active, every active node1583

in π is an ancestor of v′, and hence LOWEST(π) is the lowest active ancestor of v′, which is also of u.1584

Therefore, the algorithm is correct.1585

To show Lemma 16, it remains to bound the running time of each operation.1586

Proof (Proof of Lemma 16): Observe that FINDCENTROIDPATH runs in O(1) time and hence ISACTIVE1587

also runs in O(1) time.1588

In GETACTIVELEAF, observe that the algorithm recursively invokes LOWEST on centroid paths of the1589

final active leaf, and there are only O(log n) such paths by definition of the centroid path decomposition.1590

As we maintain an active child for every lowest active node of a path, t ′ in step 2(b) can be found in1591

O(1) time, giving O(log n) total running time to find an active leaf.1592

In GETLOWESTACTIVEANCESTOR, we can find v in step 1 in O(log n) time since |Au| = O(log n). Other1593

steps can be implemented in O(1) time, and hence, the total running time is O(log n). □1594

Maintaining LOWEST(π) pointers. Cole and Gottlieb [12] described major ideas for maintaining1595

LOWEST(π) pointers. Here, we review their ideas. We also fill in the missing detail of handling the1596

changes to the dynamic centroid path decomposition. Recall that there are three types of simple updates1597

to the PIT T : adding a leaf, marking a leaf as deleted, and subdividing an edge. Observe that subdividing1598

an edge does not change the active/inactive status of the endpoints of the subdivided edge. Marking a1599

44

leaf as deleted could turn some ancestors of the leaf from active to inactive, while adding a leaf could,1600

on the other hand, turn its ancestors from inactive to active.1601

One subtlety here is that subdividing an edge and adding a leaf could change the size of the tree T1602

and trigger updates to the centroid decomposition of T . These updates are handled by the underlying1603

dynamic data structure for the centroid decomposition. While subdividing an edge does not change the1604

status of all other nodes, adding a new leaf could cause massive changes. Therefore, when adding a new1605

leaf, we will consider it as inactive so that the status of all other nodes is unchanged, and hence, the1606

underlying dynamic data structure for the centroid decomposition could proceed as usual. Note that the1607

underlying dynamic data structure for the centroid decomposition now has to maintain an additional1608

pointer LOWEST(π) for centroid path π, and with the assumption that the status of all the nodes is1609

unchanged, this can be done by slightly augmenting the data structure by Kopelowitz and Lewenstein in1610

the previous section. Once the dynamic updates to the structure of the centroid decomposition are done,1611

we change the status of the newly inserted node to active and update the status of other nodes. This is1612

exactly the same problem with marking a leaf as deleted since we simply change the status of this leaf1613

from active to inactive. (We note that the newly inserted leaf could be null, and in this case, there is no1614

need to turn it to active; hence, we only need to consider inserting a non-null leaf.)1615

Now, we will handle a leaf status change from active to inactive or vice versa. Let π be a centroid1616

path, and t is the current lowest active node of π. Let i be the level of t. If the only active leaf of t1617

changes to inactive, then t becomes inactive. Then we need to find another lowest active node to update1618

LOWEST(π). Observe that the head of π is active if π contains an active leaf or a node with an active1619

child not on π, called an off-path child. The idea of Cole and Gottlieb [12] is to keep track of nodes that1620

have an active off-path child, and this task can be efficiently done by using a balanced binary tree. Here,1621

we use a skip list instead of a balanced binary tree for two following reasons: (1) it was not clear how1622

Cole and Gottlieb [12] updated binary trees when their centroid paths change, (2) a list of nodes in π1623

with an active off-path child is a subpath of π, thus we can track these nodes in a skip list by the same1624

way we maintain π, and therefore, we can resolve (1) effectively.1625

Now consider a centroid path π and a node t of π. If t is an active leaf or t has an active off-path1626

child, then we say t is a low candidate of π. Let B(π) be the skip list that contains all the low candidates1627

of π, and the keys to B(π) are the levels of the candidates. We claim that the lowest node of B(π) is1628

LOWEST(π). To see this, let z be the lowest active node of π. If z is a leaf, since z is active, z is a low1629

candidate of π. If z is not a leaf, since the child of z in π is either inactive or null (in the case where z is1630

the low endpoint of π), z must have an active off-path child. Thus, z is also a low candidate of π. In1631

both cases, z is maintained in B(π). Therefore, we can update LOWEST(π) by simply taking the lowest1632

node in B(π).1633

Let l be the leaf whose status changes. Since only ancestors of l change status, we only need to1634

update all the centroid paths of l in bottom-up order, and there are only O(log n) such paths. However,1635

we note that, since a single centroid path could have up to Ω(n) nodes, a balanced binary tree could1636

incur O(log (n)) time per update, potentially bringing the total update time up to Θ(log2(n)). Cole and1637

Gottlieb [12] resolved this issue by observing that if a centroid path π has at least one low candidate,1638

then changing a leaf under π from inactive to active does not change the status of the head v of π.1639

Similarly, if π has more than one low candidate, then changing a leaf under π from active to inactive1640

does not change the status of the head. In both cases, the parent of v is still a low candidate of the parent1641

path of π, which is the path containing the parent of π’s head, and therefore, we could terminate the1642

status update at π. For all centroid paths that are descendants of π (which are paths whose heads are1643

descendants of π’s head), we update their skip lists in O(1) since they have at most one low candidate.1644

Thus, in the entire process, π is the one path that could incur in O(log (n)) time to update B(π), and1645

therefore the total running time is O(log (n)).1646

In addition, recall that we maintain a pointer to an arbitrary active off-path child for every low1647

45

candidate (see GETACTIVELEAF). Let ACTIVECHILD(t) be an active off-path child of a low candidate t;1648

ACTIVECHILD(t) is NULL if t does not have any. We also count the number of active off-path children1649

for each low candidate by ACTIVECOUNT(t). Now we can check in O(1) when t in π is no longer a low1650

candidate to remove t out of B(π).1651

In Figure 11, we show the pseudocode of how to change the status of a leaf from active to inactive,1652

following the discussion above. The code for changing from inactive to active is very similar. At step 2, we1653

add l to B(π), assign l to LOWEST(π), and terminate if |B(π)|> 1. We decrease ACTIVECOUNT(t) by 1 at1654

3(b). We do not find an active off-path child to replace v in step 3(c). We terminate if ACTIVECOUNT(t)> 11655

at 3(d). At 3(e), we add t to B(π′) and assign ACTIVECHILD(t) = v, ACTIVECOUNT(t) = 1. At 3(f), we1656

terminate if |B(π′)| ≥ 2.1657

DEACTIVATE(l, T): change the status of a leaf l from active to inactive

1. Let π← FINDCENTROIDPATH(l, T), and v be the head of π.

2. Remove l out of B(π) and update LOWEST(π) by getting the lowest node in B(π). If |B(π)> 0|,
v is still active after deleting l, we terminate.

3. Repeat the following steps as long as the head of π is not the root of T :

(a) Let π′ be the parent centroid path of π, and t be the parent of v in π′.
(b) Decrease ACTIVECOUNT(t) by 1.
(c) If ACTIVECHILD(t) = v, we find another active off-path child to replace v, or assign NULL

to this pointer if t does not have any.
(d) If ACTIVECOUNT(t)> 0, t is still a low candidate of π, we terminate.
(e) Otherwise, t is no longer a low candidate of π′ after deleting l.

• [Update B(π′).] Remove t out of B(π′), the skip list maintaining low candidates of
π′.

• [Update LOWEST(π′).] Find LOWEST(π′) by getting the lowest node in B(π′).
• [Update t.] ACTIVECHILD(t)← NULL and ACTIVECOUNT(t)← 0

(f) If |B(π′)| ≥ 1, terminate. In this case, the head of π′ remains active after deleting l, and
deleting l does not change the low candidates of ancestor paths of π′.

(g) Update π← π′.

Figure 11: Changing status of a leaf l from active to inactive.

Observation 4. ACTIVATE runs in O(log (n)) time, DEACTIVATE runs in O(ϵ−O(λ) + log (n)) time.1658

Proof: Updating t to B(π′) in step 3 costs the most running time, which is O(log (n)) time if B(π′)1659

has at least one low candidate, and O(1) time if it has one candidate. There are at most O(log(n))1660

centroid paths, and once the algorithm considers a path π′ that has more than one low candidate, it1661

terminates. Thus, the cost of adding a node to a skip list is O(1) for each descendant centroid path of π′,1662

and O(log (n)) only for π′. Therefore, ACTIVATE runs in O(log (n)) time.1663

For DEACTIVATE, it may have to update ACTIVECHILD at step 3(c). Observe that there is at most one1664

centroid path π′ such that ACTIVECOUNT(t)> 0 occurs, thus the running time of step 3(c) is O(ϵ−O(λ))1665

when the algorithm considers π′, and O(1) when the algorithm considers descendant centroid paths of1666

π′. Therefore, DEACTIVATE runs in O(ϵ−O(λ) + log (n)) time. □1667

46

6 Dynamic Net Tree1668

In this section, we show how to maintain a net tree for a dynamic point set S as described in Theorem 10,1669

which we restate below:1670

Theorem 10. Given b ≥ 2 a parameter of the jump isolation, ϵ ≤ 1
4b , there is a data structure maintaining1671

a (δ,ϵ)-net tree T such that T has the following properties:1672

• [Packing.] Two nodes at the same level (x , i) and (y, i) have dX (x , y)> 1
4
δ
ϵi .1673

• [Covering.] If (x , i) is the parent of (y, i′) where i′ < i, then dX (x , y)≤ φ δ
ϵi , where φ = 3

4 .1674

• [b-Jump isolation.] Any jump is b-isolated: given a jump starting from a node (x , i), for any node1675

(y, k) who is not a descendant of (x , i) for k < i, dX (x , y)> b δ
ϵk .1676

• [Close-containment.] For any (y, k) and any ancestor (z, i) of (y, k), dX (y, z) ≤ δ
ϵi − δ

ϵk . This1677

implies that every point p in the subtree rooted at (z, i) is contained in B(z, δ
ϵi), i.e., dX (p, z)≤ δ

ϵi .1678

Furthermore, given access to a node (x , i) in T at level i, if (x , i) is not the bottom node or a hidden node1679

in a jump, then we can find all the nodes (y, i) at level i such that dX (x , y) = g · δ
ϵi for any parameter1680

g ≥ 1 in O(g)λ time. The data structure has space O(n) and runs in Oλ(log n) time per update.1681

Recall that a jump from (x , i) down to (x , j) for i > j + 1 intuitively hides nodes (x , j + c) for1682

j < j + c < i, and we call the nodes (x , j + c) hidden nodes. In a net tree cover, sometimes we merge two1683

nodes at level i if their distance is at most 3c · δ
ϵi (they are 3c-close) for some parameter c. Therefore,1684

we need to guarantee that a hidden node is not 3c-close to any existing node at the same level, which1685

inspires the jump isolation property.1686

Previously, Cole and Gottlieb [12] constructed a net tree for a dynamic point set with Oλ(log n) time1687

per update and O(n) space. Specifically, they maintained the covering and jump isolation properties1688

for the net tree by modifying only Oλ(1) nodes per update. To this end, they introduced the concept1689

of rings and used 5 rings in their construction. Here, we simplify their construction and the analysis.1690

We observe that Cole and Gottlieb [12] used one ring among the five for the search operation and four1691

rings to consider the distance of a node to its descendants. We simplify their insert operation, which1692

is the bulk of the technical details, and our simplified operation only requires four rings. Furthermore,1693

we associate each ring in our construction with specific functionality, making our overall construction1694

simpler and more intuitive.1695

We remark that our close-containment property in Theorem 10 is more relaxed (which makes it1696

easier to guarantee) than that of Cole and Gottlieb [12]. Specifically, in their work, for any node (y, k)1697

and any ancestor (z, i) of (y, k) has dX (z, y)< 4
5
δ
ϵi − δ

ϵk , which is smaller than the upper bound in our1698

close-containment property. Our relaxation is due to the difference in the way we set up the parameters1699

of packing and covering properties.1700

Overview of the dynamic net tree. We now sketch the structure of the dynamic net tree with the1701

covering, jump isolation, and close-containment properties. This structure was largely developed by1702

Cole and Gottlieb [12]; we simplify some parts that we will detail along the way. It is useful to think of1703

each node (x , i) in the net tree as associated with a ball B(x , δ
ϵi); all points under the subtree rooted at1704

(x , i) must be contained in this ball by the close-containment property. (Sometimes, we use the node and1705

ball terminologies in the net tree interchangeably.) In addition, the close-containment property implies1706

that if (x , i) is an ancestor of (y, j) for j < i, then B(y, δ
ϵ j) ⊆ B(x , δ

ϵi). We note that it is not so hard to1707

show that the covering property implies the close-containment property when ϵ is sufficiently small (see1708

Lemma 19).1709

47

For the jump isolation property, recall that a jump from (x , i) down to (x , j) for i > j + 1 is a long1710

edge connecting two nodes of the same point x at level i and j. Look at two corresponding balls centered1711

at x: B(x , δ
ϵi) and B(x , δ

ϵ j). The jump isolation means that any point at level k < i outside the smaller1712

ball, which is B(x , δ
ϵ j), must be at a distance more than b δ

ϵk from x . Note that the dynamic net tree of1713

Cole and Gottlieb [12] also has a similar structure but with a slightly different covering property and the1714

jump isolation property.1715

Whenever a new point q is inserted, we first need to find the parent node (t, i) for q at some level i.1716

Once (t, i) is found, we create a new node (q, i − 1) as a child of (t, i), and finally create a jump from1717

(q, i − 1) down to (q, 0). Sometimes, we have to break a jump, which means adding (t, i) in the middle1718

of the edge between (t, j) and (t, k) for j < i < k. For a node (t, i) to be the parent of q, it has to satisfy1719

the covering property. We could find (t, i) by visiting the dynamic net tree level-by-level, but doing so1720

would result in a running time to the height of the tree, which can be up to Ω(n). Instead, we find (t, i)1721

in two steps: (i) we first find a node (t ′, i′) which is closer to the true parent (t, i) of q, and (ii) then1722

we find (t, i) “around the neighborhood” of (t ′, i′). The node (t ′, i′) we found in the first step has i′ to1723

be the lowest level such that dX (q, t ′)≤ δ

ϵi′ . This means (t ′, i′) and (q, 0) satisfy the close-containment1724

property, which is a relaxation of the covering property. Therefore, we could apply a binary search to1725

find (t ′, i′) via the so-called containment search introduced by Cole and Gottlieb [12]. Here, we slightly1726

modify the search condition in the containment search to fit our purpose. For step (ii), we show that1727

(t ′, i′) is very close to the parent node (t, i) that we are searching for, and hence we only need to spend1728

Oλ(1) additional time to locate (t, i). We also simplify several steps to find (t, i) from (t ′, i′).1729

A very important subtlety in the search for the parent node (t, i) of a newly inserted point q is that1730

when (t, i) is found, dX (t, q)might be more than φ ·δ/ϵi so that the covering property would be violated1731

at level i if we made (q, i − 1) a child of (t, i). The idea to resolve this issue is to promote (t, i) to the1732

next level (the pseudocode in Figure 13), to become (t, i + 1) so that at level i + 1, dX (t, q)≤ φ ·δ/ϵi+1
1733

and hence we can make a child node (q, i) of (t, i + 1) without violating the packing property. However,1734

promoting (t, i) to (t, i + 1) might lead to another violation of the covering property between (t, i + 1)1735

and its parent at level i + 2, which requires another promotion to resolve and consequently triggers a1736

chain many promotions. Cole and Gottlieb [12] resolved this issue with rings and used five rings in their1737

construction. Here, we only use four rings, from innermost to outermost, and consider which ring the1738

distance between a node and its parent falls into to determine whether a node should be promoted. If1739

the distance is in ring 4 (the outermost ring), then we will promote the node so that it belongs to the first1740

three (inner) rings, and hence no further promotion is needed for maintaining the covering property.1741

We now describe the details of the dynamic net tree, which are organized as follows. In Section 6.1,1742

we describe the idea of rings. Then in Section 6.2, we show the containment search and operations1743

designed by Cole and Gottlieb [12] that support the dynamic net tree construction. The full construction1744

with our modifications for search and insertion is shown in Section 6.3. Finally, in Section 6.4, we1745

prove Theorem 10.1746

6.1 Rings1747

To define rings, we will use the following constants:1748

α=
1
4

,β =
2
4

,φ =
3
4

,γ= 1,ψ=
5
4

, and ϵ ≤
α

b
(6)1749

where α is the constant in packing distance, φ is the constant in the covering distance, γ is the constant1750

in containment distance, b is the parameter for jump isolation, and ψ is a constant in a search operation1751

(we will see later in Section 6.3). Given b ≥ 2, we have ϵ ≤ 1
8 .1752

The values of constants in Equation (6) satisfy the following inequalities:1753

48

1. ψϵ + β ≤ φ, ϵψ+α≤ β and ψϵ ≤ β . These conditions are to maintain the covering property.1754

2. φ ≤ γ(1− ϵ). This condition is to maintain the close-containment property.1755

3. ψϵ ≤ α, α+ γ≤ψ≤ b, ϵ ≤ α
b . These conditions are to maintain the jump isolation.1756

Note that Cole and Gottlieb [12] did not parameterize the jump isolation property; their construction1757

only gives b = 2. Their values of the five other constants respectively were α= 1
5 ,β = 2

5 ,φ = 3
5 ,γ= 4

5 ,1758

ψ = 1, and ϵ ≤ 1
5 . The inequalities above also hold with their values. They used 5 rings defined by 51759

constants above, while we have 4 rings with 4 parameters α,β ,φ,γ.1760

x

α δ
ϵi

β δ
ϵi

φ δ
ϵi

γ δ
ϵi

Figure 12: Rings of B(x , δ
ϵi)

Our rings are formally defined as follows:1761

• Ring9 α of a ball B(x , δ
ϵi) is B(x ,α δ

ϵi). If p ∈ B(x ,α δ
ϵi),1762

we say p is in ring α of (x , i).1763

• Ring β of a ball B(x , δ
ϵi) is B(x ,β δ

ϵi) \ B(x ,α δ
ϵi). If1764

p ∈ B(x ,β δ
ϵi)\B(x ,α δ

ϵi), we say p is in ring β of (x , i).1765

• Ring φ of a ball B(x , δ
ϵi) is B(x ,φ δ

ϵi) \ B(x ,β δ
ϵi). If1766

p ∈ B(x ,φ δ
ϵi) \ B(x ,β δ

ϵi), we say p is in ring φ of1767

(x , i).1768

• Ring γ of a ball B(x , δ
ϵi) is B(x ,γ δ

ϵi) \ B(x ,φ δ
ϵi). If1769

p ∈ B(x ,γ δ
ϵi)\B(x ,φ δ

ϵi), we say p is in ring γ of (x , i).1770

Given s in the set {α,β ,φ,γ}, we say a point p is com-1771

pletely out of ring s of B(x , δ
ϵi) if p ̸∈ B(x , s δ

ϵi). Note that the1772

notion of completely out of ring s only applies to a point1773

p where dX (p, x) > s δ
ϵi , not to a point q where it is inside1774

B(x , s δ
ϵi) and does not belong to ring s. As the rings can be1775

linearly ordered by increasing radii, if a point is completely1776

out of ring φ, say, then it is also completely out of rings α1777

and β .1778

We classify nodes based on their distances to parents. Given a node (t, j), we say that (t, j) is a ring-s1779

node if t is in ring s of its parent. The following observations follow from the definition of a jump and1780

the covering property.1781

Observation 5. (a) A node is either a ring-α, ring-β , or ring-φ node.1782

(b) A node at the bottom of a jump or created in the middle of a jump is a ring-α node.1783

(c) A ring-β or ring-φ node at level i has a parent at level i + 1.1784

6.2 Containment Search and Internal Operations1785

In this section, for completeness, we briefly describe the dynamic net tree of Cole and Gottlieb [12].1786

We also provide the details of operations and data structures that we reuse or modify to construct our1787

dynamic net tree. The main goal of Cole and Gottlieb in [12] is to develop a dynamic data structure for1788

solving the approximate nearest neighbor search problem with Oλ(log (n)) time per update and query. To1789

this end, they developed two data structures: (i) a graph (might not be a tree) to maintain (a hierarchy1790

of) nets with the packing, covering, and jump isolation properties and, (ii) a spanning of the graph and a1791

9More precisely, ring α is a ball, but we use ring terminology to be consistent with other rings.

49

central path decomposition on top of the spanning to quickly implement a procedure called containment1792

search (which we will give more details below).1793

One can extract from their data structures a dynamic net tree supporting containment search as1794

stated below. Each node at level i of the net tree is associated with a ball of radius δ/ϵi centered at the1795

point in the node.1796

Definition 13 (Containment search data structure of Cole and Gottlieb [12]). There is a data struc-1797

ture that maintains a net tree T and supports the following operations:1798

• CONTAINMENTSEARCH(q, T): If q is an existing point, return the leaf (q, 0). If q is a new point,1799

return the lowest ball containing q. That is, it returns the node (t, i) such that dX (t, q)≤ δ
ϵi and1800

for all j < i, there is no (z, j) with dX (z, q)≤ δ
ϵ j . This operation runs in Oλ(log n) time.1801

• INSERT(q, T): create (several) nodes associated with q in T . This operation invokes SEARCH(q, T)1802

and executes Oλ(1) additional basic operations; thus it runs in Oλ(log n).1803

• DELETE(q, T): mark (q, 0) as deleted in Oλ(log n) time.1804

One key technical idea in the work of Cole and Gottlieb [12] was to search the parent for a new1805

point in roughly O(log n) time using containment search, as described in details below. When a new1806

point q is added to S, the insert operation will invoke the search containment to find a node that is1807

close to the parent node. From there, in O(1) additional steps, they can find the exact parent (and then1808

modify the tree). When a point is removed from S, they mark the corresponding leaf as deleted. After a1809

predefined number of deletions, they rebuilt the data structure in the background to remove the nodes1810

associated with deleted points completely (and also to de-amortize). A subtle issue is that the dynamic1811

net tree might contain deleted points since deletions are only marked, while the containment search has1812

to return non-deleted points. Cole and Gottlieb[12] resolved this issue by spending an extra O(log (n))1813

time per deletion.1814

In addition to containment search, the insert operation invokes several other operations, called1815

internal operations, to modify the net tree. These include creating a new node, promoting a node to1816

maintain the covering property, creating or splitting a jump, and fixing a jump to maintain the jump1817

isolation property. We remark that the jump isolation property is important to the correctness of the1818

containment search operation in Definition 13.1819

Our simplified insert operation given in the next section reuses most of the internal operations stated1820

in this section and only modifies the PROMOTE operation. Therefore, we can still apply the containment1821

search of Cole and Gottlieb [12] to construct our dynamic net tree.1822

Now, we describe the containment search and the internal operations by Cole and Gottlieb [12]1823

Containment search. Recall that to maintain the covering property, whenever a point q is added,1824

we need to find a node (t, i) such that (t, i) and (q, i − 1) satisfy dX (q, t)≤ φ δ
ϵi so that we could make1825

(q, i−1) as a child of (t, i) without violating the covering property. Finding (t, i) directly is difficult since1826

the distance upper bound φ δ
ϵi is very tight. Instead, Cole and Gottlieb [12] relaxed this upper bound1827

to δ
ϵi , which is exactly the close-containment property. The relaxed upper allows them to apply binary1828

search on (the centroid-path decomposition of) the net tree. This is because by the close-containment1829

property, any ancestor (z, k) of (t, i) has dX (z, q)≤ δ
ϵk and hence every node on the path from (t, i) to1830

the root satisfies the close-containment property with respect to (q, 0), which is ideal for binary search.1831

The binary search returns either (t, i), which is the node that they are looking for, or a node at a level1832

lower than i. In the latter case, they will spend O(1) extra steps to find (t, i). In both cases, they could1833

find the parent for q in total Oλ(log (n)) time.1834

50

Next, we describe the details of the binary search inside containment search. Recall that the goal is,1835

given a point q, to return the lowest ball containing q, i.e., the node (t, i) such that dX (t, q) ≤ δ
ϵi and1836

for all j < i, there is no (z, j) with dX (z, q)≤ δ
ϵ j , in Oλ(log n) time. Cole and Gottlieb [12] maintained1837

a centroid-path decomposition of the net tree, which partitions the tree into a set of paths; each path1838

is stored as a skip list. Then, binary search is applied to each centroid path, starting from the path π1839

containing the root of the tree. It returns the lowest node (s, j) on π such that B(s, δ
ϵ j) contains q. The1840

algorithm then examines (s, j) and its nearby nodes: either some of them is the lowest ball containing1841

q, or there is a child (r, j − 1) of a node among them such that B(r, δ
ϵ j−1) contains q. In the former1842

case, we are done, and the containment search terminates. In the latter case, they switched to the path1843

(in the centroid-path decomposition) containing (r, j − 1) to continue the search. The centroid-path1844

decomposition guarantees that switching to a new path reduces half of the nodes in consideration, and1845

therefore, the running time of the containment search is Oλ(log(n)) in total.1846

Remark 5. Recall that containment search for a point q returns the lowest node (t, i) such that dX (t, q)≤1847

δ
ϵ j . The same idea could be applied to find the lowest (t, i) such that dX (t, q) ≤ c · δ

ϵ j as long as c ≥ 1.1848

Indeed, we will apply this variant of containment search in our dynamic insertion.1849

ADD(u, q, T): add q as a child of u
Given a node u= (t, i), we create (q, i − 1) as a child of (t, i) then return (q, i − 1).

PROMOTE(t, i, T): promote (t, i), possibly add (t, i + 1)
≪PROMOTE is invoked only when (t, i) is a ring-φ node.≫
Given a node (t, i), let (u, i + 1) be the current parent of (t, i); (u, i + 1) exists by Observation 5(c).

1. [Check the packing property.] We check the points in Yi+1 that are at a distance within
2 · δ

ϵi+1 to u and find u′ closest to t. If d(t, u′) ≤ α δ
ϵi+1 , we change the parent of (t, i) from

(u, i + 1) to (u′, i + 1) and terminate.

2. [Promote.]: If d(t, u′) > α δ
ϵi+1 (the packing property holds), we create (t, i + 1) as a new

parent of (t, i). Next, we find a node at level (i + 2) to be the parent of (t, i + 1).

3. [Find parent for (t, i+1).]: let (v, i+2) be the parent of (u, i+1), then consider nodes within
2 δ
ϵi+2 to find (v′, i + 2) closest to t. By Observation 6, (v′, i + 2) is closest to t among nodes at

level i + 2.

(a) If t is in ring α or ring β of (v′, i + 2), we choose (v′, i + 2) to be the parent of (t, i + 1).
(b) Otherwise, we choose (v, i + 2) to be the parent of (t, i + 1).

A corner case is when (u, i+1) is the bottom of a jump starting at (u, l), then (v, i+2) = (u, i+2)
is a hidden node. In this case, we create (u, i + 2) by invoking JUMPSPLIT(u, l, i + 1, i + 2, T),
and then proceed as above.

Figure 13: ADD and PROMOTE.

Internal operations. These are operations that modify the current net tree to create a new node or1850

to maintain the covering and jump isolation properties. In Figure 13, we describe ADD and PROMOTE.1851

ADD(u, q, T) simply adds a new node (q, i − 1) as a child of a node u= (t, i) at level i. PROMOTE(t, i, T)1852

promotes a node (t, i) at level i to (t, i + 1) at the next level; see Figure 14. Note that we only invoke1853

PROMOTE(t, i, T) when (t, i) is a ring-φ node.1854

51

STEP 1

STEP 2
STEP 3

Case 3(a)

Case 3(b)

≤ α δ

ϵi+1

> α δ

ϵi+1

≤ β δ

ϵi+1

> β δ

ϵi+1

Figure 14: Illustrating PROMOTE operation.

In Step 3 of PROMOTE, given (v, i + 2), we determine (v′, i + 2) closest to t among nearby nodes of1855

(v, i+2), where (y, i+2) is a nearby node of (v, i+2) if dX (v, y)≤ 2 · δ
ϵi+2 . This can be done in Oλ(1) time1856

by maintaining pointers of nearby nodes for every node in the tree as done in Cole and Gottlieb [12]; by1857

the packing bound, there are only Oλ(1) nearby nodes. (Every time we add a new node, we will also1858

add pointers to nearby nodes following Cole and Gottlieb [12], and hence, in the pseudocodes below,1859

we do not include this detail for a cleaner presentation.) We observe that:1860

Observation 6. (v′, i + 2) is closest to t among all nodes at level i + 2.1861

Proof: Before PROMOTE(t, i, T), (v, i + 2) is the ancestor at level i + 2 of (t, i). By the close-containment1862

property, dX (t, v)≤ δ
ϵi+2 . If (v′, i+2) is closest to t among nodes at level i+2, then dX (t, v′)≤ dX (t, v)≤1863

δ
ϵi+2 , which implies dX (v, v′)≤ 2 δ

ϵi+2 by the triangle inequality. □1864

The idea of using PROMOTE(t, i, T) is to turn a ring-φ node to a ring-α node as in the following1865

observation.1866

Observation 7. If (t, i) is a ring-φ node, then after PROMOTE(t, i, T), (t, i) becomes a ring-α node.1867

Proof: In step 1, we check if (t, i) is in ring-α of u′ and in this case, it becomes a child of u′ an hence a1868

ring-α node. In step 2, (t, i) becomes a child of (t, i + 1) and hence is also a ring-α node. □1869

We remark that in the work of Cole and Gottlieb [12], the definition of PROMOTE was not precisely1870

given; they just considered whether we could promote (t, i) without violating the packing property and1871

assigned the closest node at level i + 2 to be the parent of (t, i + 1) if (t, i) was promoted. Here, we1872

consider more cases to find an appropriate parent for (t, i + 1); this is necessary to simplify the insertion1873

operation.1874

Figure 15 describes the operations to create a jump or maintain jump isolation. The operation1875

MAINTAINJUMPISOLATION checks if a jump is isolated based on the definition of jump isolation below.1876

52

JUMPCREATE(u, T): create a leaf and a jump u to the leaf
Given a node u= (q, i), we create a node (q, 0) as a child of (q, i).

JUMPSPLIT(t, i, j, k, T): split the jump from (t, i) to (t, j) by inserting (t, k) and possibly (t, k− 1)
Given a jump starting from (t, i) down to (t, j), a level k where j < k < i, we create a node (t, k) as
a child of (t, i), create (t, k− 1) as a child of (t, k) if (t, k− 1) does not exist, and change the parent
of (t, j) to (t, k− 1).

JUMPFIX(t, i, T): fixing jump isolation property at (t, i)
Given a jump starting from (t, i) down to (t, j), if the jump isolation at (t, i) is violated, we create
(t, i − 1) as the only child of (t, i) and make it the parent of (t, j).

MAINTAINJUMPISOLATION(t, i, T): check and fix jump isolation property of jumps nearby (t, i)
Given a node (t, i), we find (v, i) where dX (v, t)≤ (α+ γ) δ

ϵi . If (v, i) exists, then:

1. If (v, i) is the top of a jump, which means the jump isolation at (v, i) is violated, we invoke
JUMPFIX(v, i, T) to create (v, i − 1).

2. If (t, i) is the top of a jump, which means the jump isolation at (t, i) is violated, we invoke
JUMPFIX(t, i, T) to create (t, i − 1).

Figure 15: Operations to create jumps and maintain jump isolation.

Definition 14 (Jump isolation [12], invariant 1). A jump from (x , i) down to (x , j) is isolated if for1877

any (y, k) where k ≤ i and (y, k) is not a descendant of (x , i), dX (x , y)> α δ
ϵi + γ

δ
ϵk .1878

If jump isolation is violated, it will call JUMPFIX to fix the jump isolation property. Basically, JUMP-1879

FIX(t, i, T) will create a new child (t, i − 1) of the node (t, i), which is the top a jump from (t, i) to1880

(t, j). By adding (t, i − 1), (t, i) is no longer the top of a jump—instead, (t, i − 1) now becomes the top—1881

and hence the jump isolation property does not apply (t, i) by definition. We will show in Lemma 211882

that jump isolation in Definition 14 implies our b-jump isolation property in Theorem 10 when ϵ is1883

sufficiently small, and therefore, we could reuse all operations in Figure 15 to maintain our b-jump1884

isolation property.1885

Operations ADD, PROMOTE, JUMPSPLIT, JUMPFIX run in Oλ(1) time; each of them will add nodes1886

associated with a new point and modify the current net tree. Accordingly, we will have different types1887

of nodes created or modified by one insertion. These are the types of nodes mentioned in Definition 71888

given in Section 4.1.1889

Find nearby nodes. Given a node (x , i) that is not the bottom or hidden node of a jump, we want1890

to find nodes (y, i) such that dX (x , y) ≤ g δ
ϵi for a constant g. First, we apply the same idea of Cole1891

and Gottlieb [12]: maintain pointers for every (q, i) to nodes (p, i) if dX (p, q)≤ 2δ
ϵi , and (q, i) is not the1892

bottom or hidden node of a jump. After that, we follow pointers of (x , i) to visit nodes (y0, i) within1893

distance 2 δ
ϵi from (x , i), then follow pointers of (y0, i) to visit nodes (y1, i) within distance 4 δ

ϵi from1894

(x , i), and so on. After O(g) steps, we reach nodes (y, i) whose dX (x , y)≤ g δ
ϵi .1895

To maintain pointers for every node (q, i) to any (p, i) where dX (q, p) ≤ 2δ
ϵi , we find (p, i) when1896

(q, i) is added to the tree. Specifically, after INSERT, (q, i) is added to the tree as a child of (t, i′) for1897

i′ > i. If i′ > i + 1, we do nothing. If i′ = i + 1, we follow pointers of (t, i + 1) to find (v′, i + 1) whose1898

53

dX (t, v′) ≤ 2 δ
ϵi+1 . Then for every child (p′, i) of (v′, i + 1), if dX (q, p′) ≤ 2δ

ϵi , we create pointers from1899

(p′, i) to (q, i) and (q, i) to (p′, i).1900

To see the correctness of this idea, we consider the parents of (q, i) and (p, i). If i′ > i+1, then (t, i′) is1901

the top of a jump, and (q, i) is the bottom node or in the middle of that jump (in this case, (q, i) is created1902

by splitting a jump). By the b-jump isolation property, any node (y, i) has dX (q, y)> b δ
ϵi ≥ 2 δ

ϵi , thus (q, i)1903

has no pointers to nearby nodes. When i′ = i+1, observe that (p, i) is also not the bottom node or in the1904

middle of a jump. Consider the parent (v, i+1) of (p, i), we have dX (t, v)≤ dX (q, p)+dX (q, t)+dX (v, p).1905

By the covering property, dX (q, t) and dX (v, p) are at most φ δ
ϵi+1 , thus dX (t, v) ≤ 2 δ

ϵi + 2φ δ
ϵi+1 ≤ 2 δ

ϵi+11906

since φ = 3
4 and ϵ ≤ 1

8 . Therefore, from the parent (t, i + 1) of (q, i), it suffices to consider children of1907

(v, i + 1) whose dX (v, t)≤ 2 δ
ϵi to find (p, i) nearby (q, i).1908

Back to finding nodes (y, i) whose dX (x , y) ≤ g δ
ϵi , the process runs in O(g) steps. By the packing1909

property, each node has Oλ(1) pointers. Therefore:1910

Claim 2. Given (x , i) that is not the bottom or a hidden node of a jump, we can find (y, i) where1911

dX (x , y)≤ g δ
ϵi from (x , i) with O(g)λ time.1912

6.3 Dynamic Net Tree Operations1913

We are now ready to construct our dynamic net tree. We use the same containment search of Cole and1914

Gottlieb [12] to search for a slightly different variant of the lowest ball containing q:1915

CONTAINMENTSEARCH(q, T)
Given a new point q, we apply the containment search of Cole and Gotlieb [12], to find the

lowest node (t, i) in T such that:

dX (q, t)≤ψ
δ

ϵi
(7)

whereψ = 5
4 (in Equation (6)); see Remark 5. If more than one node at the same level satisfies Equa-

tion (7), we return the node closest to p.

Note that the containment search might return a node (t, i) such that (t, i) and (q, i − 1) do not1916

satisfy the covering property. We will handle this case later in the insert operation described below.1917

Insertion. Given a new point q, our goal is to find a parent for q. First, we will invoke CONTAIN-1918

MENTSEARCH(q, T) to find the lowest node (t, i) satisfying Equation (7). If dX (q, t)≤ φ δ
ϵi , we can make1919

(q, i − 1) a child of (t, i). In the complementary case, making (q, i − 1) a child of (t, i) will violate the1920

covering property, and hence we have to find another node to be the parent of q. To quickly find the1921

parent for q, we use the idea of chains and obligations introduced by Cole and Gottlieb [12]. Chains1922

and obligations also have another very important role, specifically in avoiding a cascading sequence of1923

promotions described in the overview.1924

Definition 15 (Chain). Given a node (t, i), let (u, j) be the lowest ring-α node that is an ancestor of1925

(t, i); it is possible that (u, j) = (t, i). We define the chain of (t, i) to be the sequence of nodes that starts1926

at (u, j) and ends at (t, i).1927

Observe by Definition 15, if (t, i) is a ring-α node, then the chain of (t, i) has only one node, which1928

is (t, i). A chain of a ring-β or ring-φ node contains the chain of its parent as a subsequence. We say a1929

chain is safe if it has at most one ring-φ node. We will maintain the safe invariant for the net tree.1930

Invariant 1 (Safe invariant). The chain of every node in the net tree is safe.1931

54

If a chain of (t, i) is safe and contains (exactly one) ring-φ node, we will keep track of this node at1932

(t, i) as its obligation.1933

Definition 16 (Obligation). Given a node (t, i), the obligation of (t, i), denoted by OBLIGATE(t, i), is the1934

lowest ring-φ node in its (safe) chain. If there is no ring-φ node in the chain, then OBLIGATE(t, i) = null.1935

INSERT(q, T):

1. Let u← CONTAINMENTSEARCH(q, T) ≪ u is a candidate parent of q≫

2. Node u could be the parent of q, unless in the following two cases:

(a) If u is the top of a jump and q is in ring α,β , or φ of u, then the parent of q is a (possibly
hidden) node in the jump starting at u. We invoke u← FINDPARENTINJUMP(q, u, T) to
find q’s parent.

(b) If q is completely out of ring φ of u (and u does not have to be the top of a jump), then
we need to find another node to be the parent of p, by invoking u← FINDPARENT(u, T).

3. Let u = (t ′, i′). We create a node (q, i′− 1) as a child of (t ′, i′) by invoking ADD(u, q, T). Then
we invoke JUMPCREATE to create a jump from (q, i′ − 1) down to (q, 0).

4. If q is in ring φ of u and OBLIGATE(u) ̸= null, we invoke CHAINFIX(u, T). This step modifies
the tree to guarantee that all chains are safe after we add (q, i′ − 1) as a child of u in Step 3.

5. For every new node (x , j) that we create from Step 1 to Step 4, we check (and fix) the jump
isolation of jumps nearby (x , j) by invoking MAINTAINJUMPISOLATION(x , j, T). (There are
only O(1) such nodes.)

Figure 16: The insert procedure.

Figure 16 describes the pseudo-code of the insertion operation. It might call two helper procedures1936

FINDPARENTINJUMP(q, u, T) and FINDPARENT(q, u, T) described in Figure 17. The former finds a parent1937

for q in the jump starting at a node u, while the latter finds a parent for q by checking nearby nodes of u.1938

The following observation is immediate from the construction.1939

Observation 8. Given a new point q, let u= (t, i) be the result of CONTAINMENTSEARCH(q, T). In the1940

end of INSERT(q, T), we create (q, i′− 1) as a child of an existing node (t ′, i′) in the tree where i′ ≤ i + 1.1941

Claim 3. In step 1 of FINDPARENT(q, u, T), we consider nodes within 2 δ
ϵi+1 to the parent of u = (t, i) and1942

choose (v, i + 1) closest to q. Then (v, i + 1) is closest to q among nodes at level i + 1.1943

Proof: Let (t ′, i+1) be the parent of (t, i); if (t, i) is the bottom of a jump, then (t ′, i+1) = (t, i+1). By1944

the covering property, dX (t, t ′)≤ φ δ
ϵi+1 . Recall that u = (t, i) is the result of CONTAINMENTSEARCH(q, T),1945

thus dX (q, t)≤ψ δ
ϵi . By triangle inequality, we have:1946

dX (t
′, q)≤ dX (t

′, t) + dX (q, t)≤ φ
δ

ϵi+1
+ψ

δ

ϵi

= (φ + ϵψ)
δ

ϵi+1
≤

δ

ϵi+1
(since ψ=

5
4

,φ =
3
4

and ϵ ≤
1
8

)
1947

55

FINDPARENTINJUMP(q, u, T):
Let u= (t, i). We only invoke this procedure when u is the top of a jump, and q is in ring α,β or φ
of u. Let (t, j) be the bottom of the jump at u.

1. Let k ∈ (j, i] be such that α δ
ϵk−1 < dX (t, q)≤ α δ

ϵk .

2. Invoke JUMPSPLIT(t, i, j, k, T) to create (t, k) and (possibly) (t, k − 1) in the middle of the
jump.

3. Return (t, k).

FINDPARENT(q, u, T): find a node at level i + 1 to be the parent of q
Let u= (t, i). We only invoke this procedure when q is completely out of ring φ of u. To maintain
the covering property, we guarantee that t is not completely out of ring φ of its parent.

1. Consider the nodes within the distance 2 δ
ϵi+1 to the parent of (t, i); the parent has pointers

to all these nodes, and there are only Oλ(1) of them. Let (v, i + 1) be the node closest to q
among them. By Claim 3, (v, i + 1) is closest to t among nodes at level i + 1.

A corner case is when (t, i) is the bottom of a jump, and hence, (t, i + 1) is a hidden node.
Any node (y, i + 1) has dX (y, t)> 2 δ

ϵi+1 . Thus, (t, i + 1) is closest to q, we create (t, i + 1) by
using JUMPSPLIT.

2. Now we consider q and rings of (v, i + 1):

(a) If q is in ring α, β or φ of (v, i + 1): return (v, i + 1).
(b) If q is comletely out of ring φ of (v, i + 1): We call PROMOTE(t, i, T) to promote (t, i)

and return the parent of (t, i). We will show in Claim 4 that (t, i) is a ring-φ node.

CHAINFIX(u, T)
Let u= (t, i), if q satisfies dX (t, q) ∈ (β δ

ϵi ,φ
δ
ϵi], we promote OBLIGATE(u) if it is not null.

Figure 17: Find parent for a new point q given access to a node u, and fix a chain at a node u.

If (v, i + 1) is closest to q among nodes at level i + 1, then dX (v, q) ≤ dX (t ′, q) = δ
ϵi+1 . This implies1948

dX (v, t ′) ≤ dX (v, q) + dX (q, t ′) ≤ 2 δ
ϵi+1 . Thus considering nodes within a distance 2 δ

ϵi+1 to (t ′, i + 1)1949

suffices to find (v, i + 1). □1950

In step 2(b) of FINDPARENT(q, u, T), we promote (t, i, T) when q is completely of ring φ of (v, i + 1).1951

As promote could only be applied to ring-φ node, we show below that (t, i) is a ring-φ node.1952

Claim 4. Node (t, i) in step 2(b) of FINDPARENT(q, u, T) is a ring-φ node.1953

Proof: For contradiction, suppose that (t, i) is not a ring-φ node. By the covering property, it must be1954

either a ring-α or ring-β node. Let (t ′, i+1) be the parent of (t, i); if (t, i) is the bottom of a jump, then let1955

(t ′, i+1) = (t, i+1). We have dX (t, t ′)≤ β δ
ϵi+1 . Since u = (t, i) is the result of CONTAINMENTSEARCH(q, T),1956

by Equation (7), we have dX (t, q)≤ψ δ
ϵi . Recall that in step 2 of FINDPARENT, (v, i + 1) is closest to q1957

among nodes at level i + 1 and hence, dX (v, q)≤ dX (t ′, q). We have:1958

dX (v, q)≤ dX (t
′, q)≤ dX (t, q) + dX (t, t ′)

≤ψ
δ

ϵi
+ β

δ

ϵi+1
≤ φ

δ

ϵi+1
(since ϵψ+ β ≤ φ in Equation (6)),

1959

56

implying that q is in ringα, β orφ of (v, i+1), and hence step 2(b) will not be invoked, a contradiction. □1960

We remarked earlier that chains and obligations help avoid a cascading sequence of promotions. This1961

is because when we promote a ring-φ node (t, i), it becomes a ring-α node (Observation 7). However,1962

its parent, which is (t, i + 1), might still be ring-φ. By the chain safe invariant (Invariant 1), the parent1963

of (t, i + 1) is not a ring-φ node, and hence further promotion is needed (to guarantee the covering1964

property).1965

About maintaining obligations. For simplicity of the presentation, we do not explicitly include1966

obligation maintenance in the above pseudocodes. We use the (simple yet clever) idea of Cole and1967

Gottlieb [12], which we now briefly describe. Every node has a pointer to its obligation: a ring-α points1968

to null, a ring-φ node points to itself, and a ring-β node points to the same value to which its parent1969

points. (Specifically, if the parent of a ring-β node is another ring-β node, then they point to the same1970

obligation, which could be a ring-φ node or null.) So, the focus is on maintaining the obligation of a1971

ring-β node.1972

Think about a ring-β node (t, i) that points to an ancestor ring-φ node (x , j) for some level j > i.1973

Then all the nodes between (t, i) and (x , j)—except (x , j)—are ring-β nodes. The key observation is1974

that when a new point q is inserted, it will never be inserted as an intermediate node between (t, i) and1975

(x , j), so the pointers of these nodes do not change. But it is possible that (x , j) will be promoted due to1976

CHAINFIX and hence (x , j) is no longer a ring-φ node. However, by Observation 7, after the promotion,1977

(x , j) becomes a ring-α node, and hence its obligation is null. By setting OBLIGATE(x , j) to null, the1978

obligation pointers of all the nodes from (x , j) down to (t, i) are also automatically set to null since they1979

all point to OBLIGATE(x , j). Therefore, maintaining obligations only adds O(1) overhead.1980

6.4 Analysis1981

Space and time. We use the containment search data structure of Cole and Gottlieb [12] and modify1982

INSERT with O(1) steps, thus our data structure takes O(n) space and the running time is Oλ(log(n)) for1983

each search, insertion, deletion, as claimed in Theorem 10.1984

By Claim 2, given (x , i) is not a bottom or a hidden node of a jump, we can find (y, i) where1985

dX (x , y)≤ g · δ
ϵi in O(g)λ time.1986

Next, we focus on showing packing, covering, close-containment, and b-jump isolation properties1987

by induction. Specifically, we assume that these properties hold before an update to the net tree, and1988

we will show them after the update. Deleting a point is simply marking the corresponding leaf of that1989

point as deleted, and hence, none of the properties will be violated after a deletion. The difficult case1990

is insertions, which involve creating new nodes and updating the parents of existing nodes in the tree,1991

potentially violating the net tree properties.1992

Packing property. Before showing the packing property, we give some simple observations.1993

Observation 9. Given a jump from (t, i) down to (t, j), if (t, k) is a hidden node or (t, k) is created by1994

operations JUMPSPLIT or JUMPFIX for some level k ∈ (i, j), then dX (t, v)> b δ
ϵk for every node (v, k) at1995

the same level k.1996

Proof: By the definition of a jump, any node (v, k) for v ̸= t and k ∈ (j, i) is not a descendant of (t, i).1997

By b-jump isolation property, dX (t, v)> b δ
ϵk . □1998

Observation 10. PROMOTE maintains the packing property.1999

57

Proof: PROMOTE creates at most one new node, and it checks the packing property in Step 1: before2000

create (t, i + 1) as a new parent of (t, i), if there exists a node (v, i + 1) such that dX (v, t)≤ α δ
ϵi , then it2001

changes the parent of (t, i) to (v, i + 1) and terminates. Thus, the packing property is maintained. □2002

Lemma 17 (Packing property). For any pair of nodes (x , i) and (y, i) at level i, dX (x , y) > α δ
ϵi for2003

α= 1/4.2004

Proof: It suffices to show that when a new point is added, creating new nodes does not violate the2005

packing property. There are three cases where new nodes are created by an insertion: (i) nodes created2006

by PROMOTE (called in Step 2 case (b) and Step 4 of INSERT), (ii) nodes created by JUMPSPLIT (called2007

in Step 2 cases (a) and (b) of INSERT), or JUMPFIX (possibly invoked in Step 5 of INSERT), (iii) node2008

(q, i′ − 1) for a new point q created by Step 3 of INSERT for i′ > 0.2009

Observation 10 takes care of case (i). For (ii), by Observation 9, a node at level k created by JUMPFIX2010

or JUMPSPLIT is at distance b δ
ϵk to any existing node at level k, which implies the packing property since2011

b > α (b ≥ 5
4 ,α = 1

4). Both cases (i) and (ii) imply that Steps 2, 4, and 5 of INSERT maintain the packing2012

property.2013

It remains to consider case (iii). Suppose that there exists a node (x , i′ − 1) at the same level with2014

(q, i′ − 1) such that dX (x , q)≤ α δ

ϵi′−1 . Let u be the result of CONTAINMENTSEARCH(q, T). We claim that:2015

u= (t, i) has the same level as (q, i′ − 1); that is, i = i′ − 1. (8)2016

To see (8), recall that the containment search finds the lowest node u= (t, i) where dX (t, q)≤ψ δ
ϵi ,2017

for ψ= 5
4 . Since α= 1

4 <ψ, dX (x , q)<ψ δ

ϵi′−1 , implying that i ≤ i′ − 1. By Observation 8, the parent of2018

q is a node at a level at most i + 1, giving i′ ≤ i + 1 and hence i ≥ i′ − 1. We conclude that i′ = i + 1 as2019

claimed in (8).2020

Since u has the same level as (q, i′− 1), it cannot be q’s parent or ancestor. Observe that only in Step2021

2 of INSERT(q, T) we might find a parent for q different from u. We consider two cases:2022

• Step 2(a): In this case, u is the top of a jump and q is in ring α,β or φ of u. Then, the parent of q2023

is a descendant of u, contradicting (8).2024

• Step 2(b): In this case, q is completely out of ring φ of u and hence dX (t, q) > φ δ

ϵi′−1 . By the2025

definition of containment search, u is the node closest to q at level i′ − 1. Thus, dX (x ′, q) ≥2026

dX (t, q)> φ δ

ϵi′−1 , contradicting the assumption that dX (x , q)≤ α δ

ϵi′−1 .2027

Both cases above imply the packing property. □2028

Covering property. The proof is similar to the packing property. We observe that:2029

Observation 11. Given a node ring-φ node (t, i), if the safe invariant (Invariant 1) and the covering2030

property are maintained, then the parent of (t, i) is either a ring-α or ring-β node.2031

Proof: By Observation 5 item (c), the parent of (t, i) is a node at level i + 1, denoted by (u, i + 1).2032

Consider the safe chain of (t, i), starting from the lowest ring-α ancestor of (t, i) and ending at (t, i).2033

Since the chain is safe, it has at most one ring-φ node, and in this case, must be (t, i). Therefore, no2034

other node in the chain, which includes (u, i + 1), is a ring-φ node. By the covering property, (u, i + 1)2035

must either be a ring-α or ring-β node. □2036

Claim 5. PROMOTE maintains the covering property.2037

58

Proof: Recall that PROMOTE(t, i) updates the parent of (t, i) and possibly creates one new node (t, i+1)2038

as the parent of (t, i). By Observation 7, after PROMOTE(t, i, T), (t, i) becomes a ring-α node, which2039

implies the covering property for (t, i).2040

It remains to consider the case where PROMOTE creates (t, i + 1), and we have to show the covering2041

property for (t, i + 1). Let (u, i + 1) be the parent of (t, i) before PROMOTE(t, i, T), (v, i + 2) be the2042

parent of (u, i + 1), and (v′, i + 2) be the node at level i + 2 that is closest to t. By definition of2043

(v′, i + 2), dX (t, v′)≤ dX (t, v). In step 3 of PROMOTE, we choose either (v, i + 2) or (v′, i + 2) to be the2044

parent of (t, i + 1). Recall that (t, i) must be a ring-φ node as this is the condition to invoke PROMOTE,2045

giving dX (t, u) ≤ φ δ
ϵi+1 . In addition, by Observation 11, (u, i + 1) is a ring-α or ring-β node, giving2046

dX (u, v)≤ β δ
ϵi+2 . By triangle inequality, we obtain:2047

dX (t, v′)≤ dX (t, v)≤ dX (t, u) + dX (u, v)≤ φ
δ

ϵi+1
+ β

δ

ϵi+2

≤ φ
δ

ϵi+2
(since β =

2
4

,φ =
3
4

,ϵ ≤
1
8

)
2048

Therefore, the covering property holds for (t, i + 1). □2049

Now, we are ready to show the covering property for all nodes in the tree.2050

Lemma 18 (Covering property). If (y, i) has a child (x , i′) for i′ < i then dX (x , y)≤ φ δ
ϵi with φ = 3

4 .2051

Proof: It suffices to focus on the edges of the net tree, which are changed or added by INSERT since2052

deletions are only marked. Two types of update: (i) modifying existing points in the tree, involving2053

changing parents, or creating new nodes and edges for existing points., (ii) finding the parent for a2054

newly inserted point.2055

In case (i), the tree is modified by one of the following internal operations: (1) PROMOTE, or (2)2056

JUMPFIX or JUMPSPLIT. Claim 5 takes care of (1). For (2), by the definition of a jump, the new node in2057

the middle of a jump is a ring-α node, thus the covering property is maintained.2058

For case (ii), let u = (t, i) be the result of CONTAINMENTSEARCH(q, T). If step 2 of INSERT is not2059

applied, then q is in ring α,β or φ of u and u is not the top of a jump. The covering property follows2060

from the fact that (q, i − 1) as a child of u= (t, i). Thus, it remains to consider step 2.2061

In step 2(a), u= (t, i) is the top of a jump and q is in ring α,β or φ of u. The parent of q is a node2062

(t, k) in the jump from (t, i) down to (t, j) for some k ∈ (j, i]. If k = i, since q is in ring α,β or φ of2063

u = (t, i), the covering property holds. Otherwise, k < i. By the definition of k, dX (t, q)≤ α δ
ϵk and since2064

α < φ (α= 1
4 ,φ = 3

4), the covering property holds.2065

In step 2(b), we invoke FINDPARENT to find a node at level i + 1 to be the parent of q. In step 2(a)2066

of FINDPARENT, the parent (v, i + 1) of q has the property that q is in its ring α, β or φ, and hence the2067

covering property holds. In step 2(b) of FINDPARENT, q is completely out of ring φ of (v, i + 1), we2068

promote (t, i) and choose the parent of (t, i) to be the parent of q. By Claim 4, (t, i) is a ring-φ node. Let2069

(t ′′, i+1) be the new parent of (t, i) after PROMOTE(t, i); (t ′′, i+1) is also the parent of q by construction2070

in step 2(b). By Observation 7, (t, i) becomes a ring-α node, which means dX (t, t ′′)≤ α δ
ϵi+1 . We have:2071

dX (t
′′, q)≤ dX (t

′′, t) + dX (t, q)≤ α
δ

ϵi+1
+ψ

δ

ϵi

≤ β
δ

ϵi+1
(since α+ ϵψ≤ β in Equation (6))

< φ
δ

ϵi+1
,

2072

the covering property holds. □2073

59

Close-containment property. Close-containment property follows directly from the covering property.2074

Lemma 19 (Close-containment). If (x , i) has a descendant (y, k) then dX (x , y)≤ γ δ
ϵi − γ δϵk .2075

Proof: Let (y, k) be a descendant of (x , i) for k < i. By Lemma 18, we have dX (x , y) ≤ φ δ
ϵi +φ

δ
ϵi−1 +2076

. . .+φ δ
ϵk+1 . If k = i − 1, then:2077

dX (x , y)≤ φ
δ

ϵi
≤ γ

δ

ϵi
− γ

δ

ϵi−1
.2078

The last inequality holds since φ ≤ γ(1− ϵ) for φ = 3
4 ,γ= 1,ϵ ≤ 1

8 . By induction:2079

dX (x , y)≤ φ
δ

ϵi
+ . . .+φ

δ

ϵk+1
+φ

δ

ϵk+1

≤
�

γ
δ

ϵi
− γ

δ

ϵi−1

�

+
�

γ
δ

ϵi−1
− γ

δ

ϵi−2

�

. . .
�

γ
δ

ϵk+1
− γ

δ

ϵk

�

= γ
δ

ϵi
− γ

δ

ϵk
,

2080

as desired. □2081

Safe chain invariant. Recall that the chain of a node (t, i) is the sequence of nodes starting from the2082

lowest ring-α ancestor of (t, i), denoted by (t∗, i∗), to (t, i). It is safe if it contains at most one ring-φ2083

node. Recall that the obligation of (t, i) is the ring-φ node in its (safe) chain. Directly from the definition:2084

Observation 12. (a) The chain of a ring-α node is safe.2085

(b) The chain of a ring-β node is safe if the chain of its parent is safe. The obligation of a ring-β node2086

is the obligation of its parent.2087

(c) The chain of a ring-φ node is safe if its parent has a null obligation.2088

We now show the safe invariant.2089

Lemma 20 (Safe invariant). The chain of every node is always safe.2090

Proof: Assume that all chains are safe before an update to the net tree; we show that they remain safe2091

after an update. After step 2 of INSERT, we found a node u= (t, i) to be a parent of q such that q is not2092

completely out of ring φ of u. (We use the notation (t, i) for u instead of (t ′, i′) as in step 2 to avoid2093

clutter.) If (a) q is in ring α or β of (t, i) or (b) q is in ring φ of (t, i) and the chain of (t, i) has no2094

obligation, then adding (q, i − 1) as a child of (t, i) does not violate the safe invariant. The remaining2095

case is when q is in ring φ of (t, i) and the chain of (t, i) has a ring-φ node. In this case, step 4 of INSERT2096

promotes the obligation of (t, i). Let (t j , j) = OBLIGATE(t, i). We have to show two things:2097

(i) after promoting (t j , j), we have to show that the chain of (t, i) has no ring-φ node, thus we can2098

add (q, i − 1) as a ring-φ child of (t, i).2099

(ii) Since promoting (t j , j) changes the parent of (t j , j) and possibly creates a new node (t j , j + 1), we2100

also have to show that the chains of (t j , j) and (t j , j + 1) are safe.2101

We first focus on (i). Before PROMOTE(t j , j, T), the chain of (t, i) starts from the lowest ring-α ancestor2102

of (t, i), say (t∗, i∗). At this point, the sequence of nodes from (t∗, i∗) to (t, i) has only one ring-α node,2103

which is (t∗, i∗), and only one ring-φ node, which is (t j , j). After PROMOTE(t j , j, T), (t j , j) becomes a2104

60

ring-α node by Observation 7 and therefore, the lowest ring-α ancestor of (t, i). Thus, the chain of (t, i)2105

starts from (t j , j), and this chain has no ring-φ node, as desired.2106

For (ii), as (t j , j) becomes a ring-α node after after PROMOTE(t j , j, T), its chain is safe by Observa-2107

tion 12. We now focus on the chain of (t j , j + 1). If (t j , j + 1) is a ring-α or ring-β node, then its chain is2108

safe by induction. The remaining case is when (t j , j + 1) is a ring-φ node. We first claim that:2109

Claim 6. Before PROMOTE(t j , j, T), let (t∗, i∗) be the lowest ring-α ancestor of (t, i). After PROMOTE(t j , j, T),2110

if (t j , j + 1) is a ring-φ node, then the chain of (t j , j + 1) starts at (t∗, i∗).2111

To see the claim, let (x , j+1) be the parent of (t j , j) before PROMOTE(t j , j, T). Since (t j , j+1) is created,2112

step 3 of PROMOTE will find a parent for (t j , j+1). Since (t j , j+1) is a ring-φ, by the construction of step2113

3, the parent of (x , j + 1), denoted by (v, j + 2), will be chosen as the parent of (t j , j + 1). Furthermore,2114

(x , j + 1) cannot be a ring-α node since otherwise, by triangle inequality:2115

dX (v, t j)≤ dX (v, x) + dX (x , t j)

≤ α
δ

ϵ j+2
+φ

δ

ϵ j+1
(since (x , j + 1) is a ring-α node)

≤ β
δ

ϵ j+2
(since α+φϵ ≤ β by Equation (6)) ,

2116

contradicting that (t j , j + 1) is a ring-φ node. As (x , j + 1) and (t j , j) are not ring-α node, (t∗, i∗) is also2117

the lowest ring-α ancestor of (v, j+2); it could be that (t∗, i∗) = (v, j+2). Since (t j , j+1) is not a ring-α2118

node and has (v, j + 2) as the parent, (t∗, i∗) is also the lowest ring-α ancestor of (t j , j + 1), implying2119

Claim 6.2120

Observe that before the promotion of (t j , j), the path from (t∗, i∗) to (t j , j) has only one ring-φ node,2121

which is (t j , j). As (t∗, i∗) is an ancestor of (t j , j + 1) after the promotion of (t j , j) by Claim 6, there is2122

no ring-φ node from (t∗, i∗) to the parent of (t j , j + 1). Thus, even if (t j , j + 1) becomes a ring-φ node,2123

the chain of (t j , j + 1) is still safe. □2124

Jump isolation property. This is the last property that we have to show to complete the proof of2125

Theorem 10. In INSERT, after we add O(1) new nodes and modify existing nodes from step 1 to step 4,2126

we check and fix the jump isolation property in step 5 by invoking MAINTAINJUMPISOLATION(y, i, T) for2127

every new node (y, i). While the jump isolation property for a jump from (x , i) down to (x , j) is defined2128

w.r.t every node at level k ≤ i, the checking procedure MAINTAINJUMPISOLATION only looks at top of the2129

jump (and hence the checking and fixing can be done in Oλ(1) time), which is justified by the following2130

lemma.2131

Lemma 21. Given ϵ ≤ α
b and a jump (x0, i0) down to (x0, j0), if dX (x0, v0)> α

δ
ϵi0
+ γ δ

ϵi0
for every other2132

node (v0, i0) at level i0, then the jump starting at (x0, i0) is b-isolated: any non-descendant node (z, m)2133

of (x0, i0) for m< i0 has dX (x0, z)> b δ
ϵm . (This includes the case where (z, m) is a newly created node.)2134

Proof: First, we consider when (z, m) does not have an ancestor at level i0. In this case, there must be a2135

jump Jt from a node (t, i′) to (t, j′) where j′ < i0 < i′ such that (t, j′) is an ancestor of (z, m). Observe2136

that (x0, i0) is not a descendant of (t, i′). By induction, Jt is b-isolated, implying that dX (x0, t)> b δ
ϵi0

.2137

Since (z, m) is a descendant of (t, j′), by the close-containment property, we have dX (z, t)≤ γ δ
ϵ j′ −γ

δ
ϵm ≤2138

γ δ
ϵi0−1 − γ δϵm . By triangle inequality:2139

dX (x0, z)≥ dX (x0, t)− dX (t, z)

> b
δ

ϵi0
− (γ

δ

ϵi0−1
− γ

δ

ϵm
)

≥ (b− γϵ)
δ

ϵi0
=
(b− γϵ)
ϵ

δ

ϵi0−1
≥ b

δ

ϵm

2140

61

where the last inequality holds since m≤ i0 − 1, α= 1
4 ,γ= 1, b ≥ 5

4 , and ϵ ≤ α
b ≤

b
b+γ .2141

Now, we consider the case where (z, m) has an ancestor at level i0, let this node be (v0, i0). For contra-2142

diction, suppose that dX (z, m)≤ b δ
ϵm . By the close-containment property, we have dX (z, v0) ≤ γ

δ
ϵi0
− γ δϵm .2143

Thus:2144

dX (x0, v0)≤ dX (x0, z) + dX (z, v0)

≤ b
δ

ϵm
+ (γ

δ

ϵi0
− γ

δ

ϵm
)≤ α

δ

ϵi0
+ γ

δ

ϵi0

2145

where b δ
ϵm ≤ α δ

ϵi0
holds since m ≤ i0 − 1 and ϵ ≤ α

b . Thus if dX (x0, v0) > α
δ
ϵi0
+ γ δ

ϵi0
, then dX (x0, z) >2146

b δ
ϵm . □2147

We are now ready to show the b-jump isolation property.2148

Lemma 22 (b-Jump Isolation). Every jump is b-isolated.2149

Proof: Recall that in Step 5 of INSERT, we invoke MAINTAINJUMPISOLATION(y, i, T) for any new node2150

(y, i). In this operation, we find (x , i) where dX (x , y)≤ (α+ γ) δ
ϵi .2151

If (x , i) does not exist, MAINTAINJUMPISOLATION does nothing. If (y, i) is the top of a jump Jy , then2152

Jy is b-isolated by Lemma 21. On the other hand, the b-jump isolation property is maintained for2153

every existing jump Ju starting at (u, i′). Specifically, if i′ > i, adding a node at level i does not violate2154

the b-isolation property of Ju by applying Lemma 21 with i0 = i′ (and (z, m) = (y, i)). If i′ = i, by2155

inductionJu is b-isolated with respect to existing nodes before adding (y, i). When adding (y, i), since2156

dX (u, y) > (α+ γ) δ
ϵi , by Lemma 21, the b-jump isolation property at Ju is maintained. When i′ < i,2157

adding a node at level i does not change anything at level i′, and hence Lemma 21 also applies here. In2158

all cases, the construction maintains the b-jump isolation property.2159

We now consider the complementary case where there exists a node (x , i) such that dX (x , y) ≤2160

(α+ γ) δ
ϵi−1 . If (x , i) (or (y, i)) is the top of a jump Jx (or Jy), in MAINTAINJUMPISOLATION(y, i, T), we2161

invoke JUMPFIX to create (x , i − 1) (or (y, i − 1)). Node (x , i) and (y, i) are no longer the top of their2162

jumps, and hence Jx and Jy are effectively replaced by two new jumps, denoted by J ′x and J ′y , starting at2163

(x , i − 1) and (y, i − 1), respectively. And we need to argue that after adding these new jumps, the jump2164

isolation property is fixed.2165

Let us consider J ′y first. We claim that:2166

for J ′y to exist, y must be a newly inserted point. (9)2167

For contradiction, suppose that y is an existing point. Then (y, i) is a new node created by PROMOTE2168

or JUMPSPLIT in step 2 or step 4 of INSERT(q, t) for some point q ≠ y. If (y, i) is created by promoting2169

(y, i − 1), then (y, i − 1) exists and there is no jump starting from (y, i) to fix. In the other case, (y, i) is2170

created by splitting a jump from (y, i′′) down to (y, j′′) at level i where i′′ > i. Since the jump starting2171

at (y, i′′) is b-isolated, by definition, dX (y, t) > b δ
ϵk for any node (t, k) where j′′ < k < i′′. It follows2172

that the jump starting at (y, i), which is Jy , is also b-isolated, and hence JUMPFIX is not called on (y, i).2173

Therefore, (9) holds.2174

Since y is a newly inserted point, observe that any existing node (v, i−1)must satisfy dX (v, y)>ψ δ
ϵi−12175

since otherwise, CONTAINMENTSEARCH(y, T) will return a node at a level at most i − 1, and hence after2176

INSERT, the parent of y is a node at a level at most i by Observation 8. Furthermore, since ψ≥ α+ γ2177

by Equation (6), we have dX (v, y)> (α+ γ) δ
ϵi−1 , implying the b-jump isolation of J ′y by Lemma 21.2178

Finally, we consider the jump J ′x . Before adding (y, i), Jx satisfies the b-jump isolation. Adding a2179

new node (y, i) does not change the distance from x to other nodes, and hence, the only possible jump2180

violation to J ′x is due to (y, i − 1). Since (x , i) and (y, i) are two nodes at level i, by packing property,2181

dX (x , y)> α δ
ϵi , giving dX (x , y)>ψ δ

ϵi−1 ≥ (α+ γ) δϵi−1 since α≥ψϵ ≥ (α+ γ)ϵ is given by Equation (6).2182

By Lemma 21, J ′x is b-isolated with respected to new node (y, i−1), and hence J ′x is b-isolated overall. □2183

62

7 Applications of LSO2184

Here we give the details of the applications of LSO mentioned in Section 1.2.2185

7.1 Dynamic VFT Spanners2186

Theorem 4. Given ϵ ∈ (0, 1), k ∈ [1, n− 2] and a dynamic point set S in doubling metrics of dimension2187

λ, there is a data structure D such that D (implicitly) maintains a (k, 1+ ϵ)-VFTS H of degree k · ϵ−O(λ)
2188

for S in O(log nϵ−O(λ)) time per update, and D returns all neighbours of a given vertex of H in kϵ−O(λ)
2189

time. The update time and query time are optimal for fixed ϵ,λ.2190

Proof: Our algorithm follows that of Chan, Har-Peled and Jones [10]. Statically, given a (τ,ϵ)-LSO Σ,2191

we construct a k-VFTS H as follows:2192

Initially, H = (S,∅). For each ordering σ ∈ Σ and each point q ∈ σ, we add 2(k+ 1) edges2193

incident to q to H where k+ 1 edges are from q to its k+ 1 nearest predecessors in σ and2194

the other k+ 1 edges are from q to its nearest successors in σ. (If q is close to the endpoints2195

of σ, then we might add less than 2(k+ 1) edges.)2196

The claim (which we will prove later) is that:2197

Claim 7. H is a k-VFTS where every vertex has degree at most τ · 2(k+ 1) = O(τk).2198

To maintain H dynamically, whenever a point q is added to S, we invoke INSERT(q,Σ). Then, given2199

σ is the ordering i th of Σ, we iteratively find k + 1 nearest predecessors p1 ≺σ p2 ≺σ . . . ≺σ pk+1 by2200

p j = GETPREDECESSOR(p j+1, i,Σ) where pk+2 = q. Similarly, using GETSUCCESSOR, we find k+1 nearest2201

successors of q: s1 ≺σ s2 ≺σ . . . sk+1. For every j ∈ [1, k+ 1], we add to H edges (p j , q) and (q, s j), then2202

remove from H the edge (p j , s j).2203

When a point q is deleted from S, first we reconnect neighbors of q in H as follows. For each ordering2204

σ ∈ Σ, get k + 1 nearest predecessors and k + 1 nearest successors of q in σ as described above. Let2205

p1 ≺σ . . .≺σ pk+1 be k+ 1 those predecessors, and s1 ≺σ . . .≺σ sk+1 be k+ 1 those successors. Add the2206

edge (p j , s j) to H for all j ∈ [1, k+ 1]. Finally, remove all edges of q out of H and invoke DELETE(q,Σ).2207

By Theorem 1, INSERT and DELETE ofΣ take O(log(1/ϵ)(log n+ϵ−O(λ))) time, while GETPREDECESSOR2208

and GETSUCCESSOR run in O(1) per operation. Hence, the total time to add and remove edges regarding2209

an insertion or deletion is O(τk) = kϵ−O(λ). In summary, the insertion and deletion time is in (log n+2210

k)ϵ−O(λ) as claimed in the theorem.2211

To complete the proof of Theorem 4, we prove Claim 7. By Theorem 1, Σ is stable, thus it suffices to2212

get predecessors and successors at the point that is updated (inserted or deleted); all other edges remain2213

in H. By the construction, every vertex has a degree at most τ · 2(k+ 1). Now we show H is a k-VFTS of2214

S. Let F be the subset of S with size at most k. Consider two points s, t, there is an ordering σ ∈ Σ such2215

that all points p between s, t have dX (p, s) ≤ ϵdX (s, t) or dX (p, t) ≤ ϵdX (s, t). Let σ′ be the ordering2216

obtained from σ by removing points in F . Observe that among adjacent pairs in σ′, there are s′, t ′ such2217

that (i) s ⪯σ′ s′ ≺σ′ t and s ≺σ′ t ′ ⪯σ′ t, (ii) dX (s, s′)≤ ϵdX (s, t) and dX (t, t ′)≤ ϵdX (s, t). Since we add2218

edges of a point with its k+1 predecessors and k+1 successors to H, if u and v are adjacent in σ′, there2219

is an edge (u, v) in H \ F and dH\F (u, v) = dX (u, v). It follows that dH\F (s′, t ′) = dX (s′, t ′). Now we prove2220

the claim by induction, and suppose that dH\F (s, s′)≤ (1+ cϵ)dX (s, s′) and dH\F (t, t ′)≤ (1+ cϵ)dX (t, t ′).2221

63

By triangle inequality, we have:2222

dH\F (s, t)≤ dH\F (s, s′) + dH\F (s
′, t ′) + dH\F (t

′, t)

≤ (1+ cϵ)dX (s, s′) + dX (s
′, t ′) + (1+ cϵ)dX (t, t ′)

≤ (1+ cϵ)(dX (s, s′) + dX (t, t ′)) + (dX (s
′, s) + dX (s, t) + dX (t, t ′))

≤ (1+ cϵ)2ϵdX (s, t) + (dX (s, t) + 2ϵdX (s, t))

= (1+ 4ϵ + 2cϵ2)dX (s, t)

≤ (1+ cϵ)dX (s, t)

2223

Setting c = 8, the inequality holds when ϵ ≤ 1
4 . By scaling ϵ with the constant factor c = 8, Claim 72224

holds. □2225

7.2 Dynamic Tree Cover2226

Theorem 5. Given a dynamic point set S in doubling metrics of dimension λ and any ϵ ∈ (0, 1), there is2227

a data structure DJ explicitly maintaining a tree cover J for S such that J has stretch of 1+ ϵ and size of2228

ϵ−O(λ), and the running time per update is O(ϵ−O(λ) log(n)).2229

We can construct a tree cover J from a pairwise tree cover T by adding weights to edges:2230

• [Step 1.] For every PIT T ∈ T, we create a tree J ∈ J such that J and T has the same set of nodes2231

and edges.2232

• [Step 2.] For every edge connecting two nodes a = (x , y, i) and b = (u, v, j) in J , we assign a weight2233

to the edge (a, b) of J as wJ (a, b) = dX ({x , y}, {u, v}). (We use dX (A, B) =minx∈A,y∈B dX (a, b) to2234

denote the distance between two sets of points A and B.)2235

• [Step 3.] We now update the weights of the edges from a node a = (x , y, i) to its children. (Note2236

that not all edges from a to its children get their weights updated.) Let c = (s, t, i′) be the parent2237

of a.2238

– If dX (x , {s, t})≤ dX (y, {s, t}), for every child b = (u, v, j) of (x , y, i) such that dX (y, {u, v})≤2239

dX (x , {u, v}) we add dX (x , y) to w(a, b).2240

– If dX (x , {s, t})> dX (y, {s, t}), for every child b = (u, v, j) of (x , y, i) such that dX (x , {u, v})<2241

dX (y, {u, v}), we add dX (x , y) to w(a, b).2242

The intuition of the Step 3 is as follows. Suppose that b = (u, v, j) is a child of a node a = (x , y, i),2243

we temporarily assign the weight of edge (a, b) to be the closest distance, namely dX ({x , y}, {u, v}),2244

between its labeled points in Step 2. One can think of this as using the closest pair to “represent” the2245

edge (a, b). Next, consider the parent c = (s, t, i′) of a; in the same way, Step 2 also uses the closest2246

pair in the labels of c and a to represent (a, c). But this means the path from b to c (passing through a)2247

might “miss” the edge (x , y), and therefore, if {u, v} is closer to x and {s, t} is closer to y, we need to2248

add dX (x , y) to the weight of edge (a, b), as in Step 3.2249

For a dynamic point set S, whenever we update T, J have the same updates as T, and we assign2250

weights to edges of trees in J as Step 2 and Step 3 above. Note that J and T share many properties: the2251

number of trees, update time, and the covering property. Since T has ϵ−O(λ) PITs, the tree cover J also2252

has ϵ−O(λ) trees. The running time per update to S of T is O(ϵ−O(λ) log n), thus J has the same update2253

time.2254

It remains to show the stretch of J. We rely on the pairwise covering property of T for this: for any2255

pair of points x0, y0 ∈ S whose distance in [δ
ϵi ,

2δ
ϵi) for some δ ∈ {1, 21, 22, . . . , 2⌈log(1/ϵ)⌉}, there exists a2256

64

(δ,ϵ)-PIT T ∈ T such that a node (x , y, i) at level i of T is O(ϵ)-close to pair (x0, y0). Recall that (x , y, i)2257

is O(ϵ)-close to (x0, y0) means x0, y0 ∈ Ci(x , y), and for any point t ∈ Ci(x , y), dX (t, x) or dX (t, y) are2258

at most O(ϵ)dX (x0, y0).2259

Also recall from Definition 3 that T satisfies the covering property:2260

• [Children covering.] If (u, v, j) is a child of (x , y, i) for j < i, then dX (u, {x , y}) and dX (v, {x , y})2261

are O(δ
ϵi−1).2262

• [Bounded diameter.] The cluster Ci(x , y) of (x , y, i) is the union of all leaf labels in the subtree2263

rooted as (x , y, i), and furthermore, the diameter of Ci(x , y) is O(δ
ϵi).2264

Lemma 23 below concludes the stretch analysis, implying Theorem 5.2265

Lemma 23. For every pair (x0, y0) whose distance dX (x0, y0) ∈ [
δ
ϵi ,

2δ
ϵ), there exists a tree J ∈ J2266

containing a path π from the leaf of x0 to the leaf of y0 such that the total weight of the edges along π2267

is at most (1+O(ϵ))dX (x0, y0).2268

Proof: For any pair x0, y0 ∈ S whose dX (x0, y0) ∈ [
δ
ϵi ,

2δ
ϵi), by the pairwise covering property of T, there2269

exists a tree J ∈ J that covers (x0, y0). That is, J has a node a = (x , y, i) where (x , y, i) is O(ϵ)-close to2270

(x0, y0).2271

Suppose that dX (x0, {x , y}) and dX (y0, {x , y}) are at most cϵdX (x0, y0) for some constant c. First,2272

we argue that dX (x , y) = Θ(δ
ϵi). By triangle inequality, we obtain:2273

dX (x0, y0)− 2cϵdX (x0, y0)≤ dX (x , y)≤ dX (x0, y0) + 2cϵdX (x0, y0)

⇔ (1− 2cϵ)
δ

ϵi
≤ dX (x , y)≤ (2+ 2cϵ)

δ

ϵi

(10)2274

The path π from x0 to y0 in J travels from the leaf of x0 to (x , y, i), then from (x , y, i) down to2275

the leaf of y0. Let lJ(x0), lJ(y0) be the leaf of x0, y0 in J . Since dX (x , y) ≤ (1+ O(ϵ))dX (x0, y0), if2276

w(lJ (x0), lJ (y0))≤ O(ϵ)dX (x , y) + dX (x , y), the stretch follows.2277

To compute w(lJ(x0), lJ(y0)), we bound the total weight of edges in J from a leaf to a child of2278

a = (x , y, i). Consider a child b = (u, v, j) of a = (x , y, i) where j < i, and a point t ∈ C j(u, v).2279

Claim 8. If b is the ancestor at level j of lJ (t), then w(lJ (t), b) = O(δ
ϵ j)2280

Proof: Consider the base case where b is the parent of lJ (t). By the construction of J , we have two cases2281

of w(lJ (t), b) when dX (u, t)≤ dX (v, t):2282

• If dX (u, {x , y})≤ dX (v, {x , y}), then w(lJ (t), b) = dX (t, u).2283

• If dX (u, {x , y})> dX (v, {x , y}), then w(lJ (t), b) = dX (t, u) + dX (u, v).2284

By the children covering of J , dX (t, u) = O(δ
ϵ j−1), and by the bounded diameter property, dX (t, v) = O(δ

ϵ j)2285

and dX (u, v) = O(δ
ϵ j). Thus w(lJ (t), b) = O(δ

ϵ j).2286

Similarly, if b is the parent of lJ(t) and dX (u, t) > dX (v, t), by the construction of J , we have two2287

cases:2288

• If dX (u, {x , y})≤ dX (v, {x , y}), then w(lJ (t), b) = dX (t, v) + dX (u, v).2289

• If dX (u, {x , y})> dX (v, {x , y}), then w(lJ (t), b) = dX (t, v).2290

65

By the children covering and the bounded diameter properties, we again obtain w(lJ (t), b) = O(δ
ϵ j).2291

Now, for the inductive case where b is an ancestor at level j of lJ (t). By induction, let b′ = (u′, v′, j′)2292

be a child of b that is the ancestor at level j′ < j of lJ(t), and that w(lJ(t), b′) = O(δ
ϵ j′). By the2293

weight update in Step 3, w(b, b′)≤ dX ({u, v}, {u′, v′}) + dX (u, v). By the children covering property of J ,2294

dX ({u, v}, {u′, v′}) = O(δ
ϵ j−1), and by the bounded diameter property, dX (u, v) = O(δ

ϵ j). We obtain:2295

w(lJ (t), b) = w(lJ (t), b′) +w(b′, b)

≤ O(
δ

ϵ j′
) + dX ({u, v}, {u′, v′}) + dX (u, v)

= O(
δ

ϵ j−1
) +O(

δ

ϵ j−1
) +O(

δ

ϵ j
)

= O(
δ

ϵ j
)

(11)2296

as desired. □2297

2298

Back to proving the stretch, observe that x0 (or y0) can not be within the distance O(δ
ϵi−1) to both x and2299

y , since dX (x0, y0) and dX (x , y) are Θ(δ
ϵi). Without loss of generality, suppose that dX (x , x0) = O(δ

ϵi−1)2300

and dX (y, y0) = O(δ
ϵi−1). Let bx = (ux , vx , jx) be a child of a = (x , y, i) and the ancestor of lJ(x0). By2301

the bounded diameter property, dX (x0, ux) and dX (x0, vx) are O(δ
ϵ jx) = O(δ

ϵi−1) since jx < i. By triangle2302

inequality, dX (ux , x) and dX (vx , x) are at most O(δ
ϵi−1). Similarly, let by = (uy , vy , jy) be a child of2303

a = (x , y, i) and the ancestor of lJ (y0), we have dX (uy , y) and dX (vy , y) are at most O(δ
ϵi−1). We obtain2304

that labeled points of bx are close to x , and labeled points of by are close to y . Thus, there is only one2305

node between bx and by such that we add dX (x , y) to w(bx , a) or w(by , a) in Step 3. We obtain:2306

w(bx , a) +w(a, by) = dX ({ux , vx}, {x , y}) + dX ({x , y}, {uy , vy}) + dX (x , y) (12)2307

By the children covering property of J , dX ({x , y}, {ux , vx}) = O(δ
ϵi−1) and dX ({x , y}, {uy , vy}) =2308

O(δ
ϵi−1). Thus, w(bx , a)+w(a, by) = O(δ

ϵi−1)+dX (x , y). Besides that, by Claim 8, w(lJ (x0), bx) = O(δ
ϵi−1)2309

and w(lJ (y0), by) = O(δ
ϵi−1), since jx , jy ≤ i − 1. The total weight of edges in π is bounded as follows:2310

w(lJ (x0), lJ (y0)) = w(lJ (x0), bx) +
�

w(bx , a) +w(a, by)
�

+w(by , lJ (y0))

= O(
δ

ϵi−1
) +
�

O(
δ

ϵi−1
) + dX (x , y)
�

+O(
δ

ϵi−1
)

≤ (1+O(ϵ))dX (x0, y0)

(13)2311

where the last inequality holds since dX (x , y)≤ (1+O(ϵ))dX (x0, y0) by Equation (10) and dX (x0, y0) =2312

Θ(δ
ϵi).2313

7.3 Dynamic Closest Pair2314

Theorem 14. Given a dynamic point set S in a doubling metric of dimension λ, there is a data structure2315

that maintains the closest pair for S in Oλ(log(n)) time per update.2316

Proof: The data structure consists of a (ϵ−O(λ),ϵ)-LSO Σ for ϵ = 1/2, and a min-heap H, where H2317

maintains all pairs (u, v) such that u and v are adjacent in an ordering of Σ, and is keyed by the distances2318

between the pair. The closest pair is determined by the pair with the minimum distance in H.2319

If q is inserted into S, we invoke INSERT(q,Σ), then for every ordering σi ∈ Σ, we find the successor2320

si and the predecessor pi of q in σi by calling GETSUCCESSOR(q, i,Σ) and GETPREDECESSOR(q, i,Σ).2321

Next, we insert two pairs (pi , q) and (q, si) to H, and remove the pair (pi , si) from H.2322

66

If q is deleted from S, for every ordering σi ∈ Σ, we find the successor si and the predecessor pi of q2323

in σi . We remove (pi , q) and (q, si) from H, and add (pi , si) to H.2324

First, we analyze the running time. By Theorem 1, the (ϵ−O(λ),ϵ)-LSO Σ runs in O(ϵ−O(λ) log n) per2325

update. Getting the successor and the predecessor of a point in an ordering takes O(1), in all orderings2326

takes O(|Σ|) = ϵ−O(λ). When we insert or delete a point in Σ, there are O(|Σ|) = ϵ−O(λ) pairs updated2327

(inserted or deleted) in H. H maintains O(n|Σ|) pairs, thus its running time is O(log |Σ|+ log n) per2328

insertion or deletion of a pair. Since ϵ = 1/2, the total running time per update of the data structure2329

maintaining the closest pair for S is 2O(λ)(log n), as claimed.2330

Next, we show the correctness. It suffices to get the predecessor and the successor of q only2331

since Σ is stable by Theorem 1. Observe that if (a, b) is the closest pair, then by the definition of2332

LSO, there exists an ordering in Σ where a and b are adjacent, which means (a, b) is maintained2333

in H. Suppose otherwise, there exists an ordering σ ∈ Σ and a point u where a ≺σ u ≺σ b where2334

min{dX (a, u), dX (b, u)} ≤ ϵ · dX (a, b) < dX (a, b) as ϵ = 1/2. Then either u is closer to a than b or u is2335

closer to b than a; both cases contradict the fact that (a, b) is the closest pair. □2336

7.4 Approximate Bichromatic Closest Pair2337

Theorem 7. Given a parameter ϵ ∈ (0,1) and two dynamic point sets R, B in doubling metric of2338

dimension λ, there is a data structure such that it maintains (1+ ϵ)-closest pair (r, b) where r ∈ R, b ∈ B,2339

and runs in O(ϵ−O(λ) log(n)) per update of R or B, where n= |R|+ |B|.2340

Proof: We can find (1+ ϵ)-approximation for the bichromatic closest pair under insertions and deletions2341

of B and R by using a min-heap H, and a (ϵ−O(λ),ϵ)-LSO Σ. The key idea is we apply the LSO to find2342

adjacent pairs (r, b) where r ∈ R, b ∈ B in every ordering σ ∈ Σ, and then use H to maintain these pairs2343

sorted by descending order of dX (r, b).2344

To find the adjacent pair from a new point, suppose that r is newly added to R. First, we in-2345

voke INSERT(r,Σ). After that, we invoke GETSUCCESSOR(r, i,Σ) to find the successor s of r, and2346

GETPREDECESSOR(r, i,Σ) to find the predecessor p of r in σ. Now we obtain p ≺σ r ≺σ s. If s ∈ B, we2347

add (r, s) to H. If p ∈ R and s ∈ B, we remove the pair (p, s) from H. For a new point b ∈ B, we invoke2348

INSERT(b,Σ), then we follow a similar way to find p ≺σ b ≺σ s. If p ∈ R, we update (p, b) to H. If p ∈ R2349

and s ∈ B, we remove (p, s) from H.2350

With deletion, when a point r ∈ R is deleted, we retrieve from r the predecessor p and the successor2351

s in σ to obtain p ≺σ r ≺σ s. If s ∈ B, then we remove (r, s) out of H. If p ∈ R and s ∈ B, we add (p, s)2352

to H. After that, we invoke DELETE(r,Σ) to remove r out of all orderings in Σ. Similarly when a point2353

b ∈ B is deleted, we retrieve its predecessor p and successor s in σ: p ≺σ b ≺σ s. If p ∈ R, we remove2354

(p, b) out of H. If p ∈ R and s ∈ B, we add back to H the pair (p, s). Finally, we invoke DELETE(b,Σ).2355

Since each point is adjacent to at most 2 other points with different colors, and we have τ= ϵ−O(λ)
2356

orderings, H maintains at most ϵ−O(λ)O(n) pairs. Thus, operations of insertion and deletion in H run2357

in O(λ log 1
ϵ + log n) time per update. By Theorem 1, (ϵ−O(λ),ϵ)-LSO Σ runs in O(ϵ−O(λ) log n) time per2358

update and O(1) per predecessor/successor query. Therefore, the running time totally is O(ϵ−O(λ) log n)2359

per update as claimed.2360

To prove the correctness, we consider the closest pair (r, b). By Theorem 1, Σ is stable, thus it suffices2361

to query the predecessor and the successor of a new point or deleted point only. By the definition of2362

LSO, there is an ordering σ such that: for every point t where r ≺σ t ≺σ b, dX (r, t) ≤ ϵdX (r, b) or2363

dX (t, b)≤ ϵdX (r, b). Observe that if dX (r, t)≤ ϵdX (r, b), t must be a point in R, otherwise (r, b) is not2364

the closest bichromatic pair. Similarly, if dX (t, b)≤ ϵdX (r, b), t must be a point in B. Thus in σ from r2365

to b, there is an adjacent pair (r ′, b′) such that r ′ ∈ R, b′ ∈ B, and both dX (r, r ′), dX (b′, b) are at most2366

ϵdX (r, b). By triangle inequality, we have:2367

67

dX (r
′, b′)≤ dX (r, b) + dX (r, r ′) + dX (b

′, b)

≤ dX (r, b) + ϵdX (r, b) + ϵdX (r, b)

= (1+ 2ϵ)dX (r, b).
(14)2368

Since (r ′, b′) is maintained in H, we correctly find a pair with distance at most (1+2ϵ)dX (r, b). Adjusting2369

ϵ by a constant factor, the theorem follows. □2370

7.5 Dynamic Approximate Nearest Neighbors2371

Theorem 8. Given a dynamic point set S in doubling metrics of dimension λ, we can construct a (1+ϵ)-2372

nearest neighbor data structure for supporting point deletions/insertions in O(ϵ−O(λ) log(n)) time per2373

update, and ϵ−O(λ) log(n) query time.2374

Proof: We can directly use an (ϵ−O(λ),ϵ)-LSO Σ to find approximate nearest neighbours. When we add2375

a new point q to S, we invoke INSERT(q,Σ); when we delete an existing point q, we invoke DELETE(q,Σ).2376

To find an approximate nearest neighbour of x , we follow 3 steps: (1) insert x to Σ by INSERT(x ,Σ), (2)2377

for each ordering σi ∈ Σ, find the predecessor pi and the successor si of x , then return the point who is2378

closest to x among {p1, s1, . . . p|Σ|, s|Σ|}, (3) remove x out of Σ by DELETE(x ,Σ). Note that if x is a point2379

that we already add into S, we run only step (2).2380

By Theorem 1, Σ has O(ϵ−O(λ) log (n)) time per update, and we invoke 2ϵ−O(λ) predecessor and2381

successor queries, each takes O(1) time. Thus we obtain the running time per update and per query as2382

claimed.2383

Now to show the correctness. Given a query point x , consider the closest point y of x . By the2384

definition of LSO, there is an ordering σ such that any point t between x and y has dX (t, x)≤ ϵdX (x , y)2385

or dX (t, y) ≤ ϵdX (x , y). Without loss of generality, suppose that x ≺σ y. Since y is the point closest2386

to x , thus (i) x and y must be adjacent in σ, (ii) or any point t between x and y in σ must have2387

dX (t, x)≥ dX (x , y) and dX (t, y)≤ ϵdX (x , y). For (i), we are done. For (ii), consider the successor s of2388

x in σ. By triangle inequality, we obtain:2389

dX (x , s)≤ dX (x , y) + dX (y, s)

≤ dX (x , y) + ϵdX (x , y)

= (1+ ϵ)dX (x , y)
(15)2390

Similarly, when y ≺σ x , we consider the predecessor p of x in σ and obtain:2391

dX (x , p)≤ (1+ ϵ)dX (x , y) (16)2392

We return a point x ′ adjacent with x in an ordering ofΣ such that dX (x , x ′)≤ dX (x , s) and dX (x , x ′)≤2393

dX (x , p). Thus x ′ is (1+ ϵ)-approximate nearest neighbour of x . □2394

Acknowledgements. This work was supported by the NSF CAREER Award No. CCF-223728, an NSF2395

Grant No. CCF-2121952, and a Google Research Scholar Award. Thank Aditya Kumar Roy Chowdhury2396

for joining the early states of this work.2397

References2398

[1] Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and Michiel Smid. Euclidean spanners.2399

In Proceedings of the 27th Annual ACM symposium on Theory of Computing, STOC ’95, 1995.2400

doi:10.1145/225058.225191.2401

68

https://doi.org/10.1145/225058.225191

[2] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu. An optimal2402

algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM,2403

45(6):891–923, 1998. doi:10.1145/293347.293348.2404

[3] Yair Bartal, Ora Nova Fandina, and Ofer Neiman. Covering metric spaces by few trees. Journal of2405

Computer and System Sciences, 130:26–42, 2022. doi:10.1016/j.jcss.2022.06.001.2406

[4] S. N. Bespamyatnikh. An optimal algorithm for closest-pair maintenance. Discrete& Computational2407

Geometry, 19(2):175–195, 1998. doi:10.1007/pl00009340.2408

[5] Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. A Spanner for the Day After. In 35th International2409

Symposium on Computational Geometry (SoCG 2019), pages 19:1–19:15, 2019. doi:10.4230/2410

LIPIcs.SoCG.2019.19.2411

[6] Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. Sometimes Reliable Spanners of Almost Linear2412

Size. In 28th Annual European Symposium on Algorithms (ESA 2020), pages 27:1–27:15, 2020.2413

doi:10.4230/LIPIcs.ESA.2020.27.2414

[7] T.-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On hierarchical routing2415

in doubling metrics. ACM Transactions on Algorithms, 12(4):1–22, 2016. doi:10.1145/2915183.2416

[8] T.-H. Hubert Chan, Mingfei Li, and Li Ning. Sparse fault-tolerant spanners for doubling metrics2417

with bounded hop-diameter or degree. In ICALP (1), pages 182–193, 2012. Full version in2418

Algorithmica’15.2419

[9] T.-H. Hubert Chan, Mingfei Li, Li Ning, and Shay Solomon. New doubling spanners: Better and2420

simpler. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Proc.2421

40th ICALP, pages 315–327, 2013. Full version in SICOMP’15. doi:10.1007/978-3-642-39206-1\2422

_27.2423

[10] Timothy M. Chan, Sariel Har-Peled, and Mitchell Jones. On locality-sensitive orderings and their2424

applications. SIAM Journal on Computing, 49(3):583–600, 2020. doi:10.1137/19M1246493.2425

[11] Hsien-Chih Chang, Jonathan Conroy, Hung Le, Lazar Milenkovic, Shay Solomon, and Cuong Than.2426

Covering planar metrics (and beyond): O(1) trees suffice, 2023. doi:10.48550/ARXIV.2306.2427

06215.2428

[12] Richard Cole and Lee-Ad Gottlieb. Searching dynamic point sets in spaces with bounded doubling2429

dimension. In Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing,2430

STOC ’06, page 574–583, New York, NY, USA, 2006. Association for Computing Machinery. doi:2431

10.1145/1132516.1132599.2432

[13] Artur Czumaj and Hairong Zhao. Fault-tolerant geometric spanners. Discrete & Computational2433

Geometry, 32(2), 2004. doi:10.1007/s00454-004-1121-7.2434

[14] D. Eppstein. Dynamic euclidean minimum spanning trees and extrema of binary functions. Discrete2435

& Computational Geometry, 13(1):111–122, 1995. doi:10.1007/bf02574030.2436

[15] Arnold Filtser. Labeled Nearest Neighbor Search and Metric Spanners via Locality Sensitive2437

Orderings. In 39th International Symposium on Computational Geometry (SoCG 2023), pages2438

33:1–33:18, 2023. doi:10.4230/LIPIcs.SoCG.2023.33.2439

69

https://doi.org/10.1145/293347.293348
https://doi.org/10.1016/j.jcss.2022.06.001
https://doi.org/10.1007/pl00009340
https://doi.org/10.4230/LIPIcs.SoCG.2019.19
https://doi.org/10.4230/LIPIcs.SoCG.2019.19
https://doi.org/10.4230/LIPIcs.SoCG.2019.19
https://doi.org/10.4230/LIPIcs.ESA.2020.27
https://doi.org/10.1145/2915183
https://doi.org/10.1007/978-3-642-39206-1_27
https://doi.org/10.1007/978-3-642-39206-1_27
https://doi.org/10.1007/978-3-642-39206-1_27
https://doi.org/10.1137/19M1246493
https://doi.org/10.48550/ARXIV.2306.06215
https://doi.org/10.48550/ARXIV.2306.06215
https://doi.org/10.48550/ARXIV.2306.06215
https://doi.org/10.1145/1132516.1132599
https://doi.org/10.1145/1132516.1132599
https://doi.org/10.1145/1132516.1132599
https://doi.org/10.1007/s00454-004-1121-7
https://doi.org/10.1007/bf02574030
https://doi.org/10.4230/LIPIcs.SoCG.2023.33

[16] Arnold Filtser and Hung Le. Locality-sensitive orderings and applications to reliable spanners.2440

In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022,2441

page 1066–1079, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/2442

3519935.3520042.2443

[17] Mordecai Golin, Rajeev Raman, Christian Schwarz, and Michiel Smid. Randomized data structures2444

for the dynamic closest-pair problem. SIAM Journal on Computing, 27(4):1036–1072, 1998.2445

doi:10.1137/s0097539794277718.2446

[18] Lee-Ad Gottlieb and Liam Roditty. Improved algorithms for fully dynamic geometric spanners and2447

geometric routing. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms,2448

SODA ’08, page 591–600. Society for Industrial and Applied Mathematics, 2008.2449

[19] Lee-Ad Gottlieb and Liam Roditty. An optimal dynamic spanner for doubling metric spaces. In2450

Proceedings of the 16th European Symposium on Algorithms, ESA ’08, pages 478–489, 2008.2451

[20] Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics and their2452

applications. SIAM J. Comput, 35(5):1148–1184, 2006.2453

[21] Monika R. Henzinger and Valerie King. Randomized fully dynamic graph algorithms with poly-2454

logarithmic time per operation. Journal of the ACM, 46(4):502–516, 1999. doi:10.1145/320211.2455

320215.2456

[22] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing2457

problems in image processing and vlsi. Journal of the ACM, 32(1):130–136, 1985. doi:10.1145/2458

2455.214106.2459

[23] Camille Jordan. Sur les assemblages de lignes. 1869.2460

[24] Omri Kahalon, Hung Le, Lazar Milenković, and Shay Solomon. Can’t see the forest for the trees:2461

Navigating metric spaces by bounded hop-diameter spanners. In Proceedings of the 41st ACM2462

Symposium on Principles of Distributed Computing, PODC ’22. ACM, 2022. doi:10.1145/3519270.2463

3538414.2464

[25] Tsvi Kopelowitz and Moshe Lewenstein. Dynamic weighted ancestors. In Proceedings of the2465

Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, page 565–574. Society2466

for Industrial and Applied Mathematics, 2007.2467

[26] Robert Krauthgamer and James R. Lee. Navigating nets: Simple algorithms for proximity search.2468

In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’04, page2469

798–807, 2004.2470

[27] Hung Le, Shay Solomon, and Cuong Than. Optimal fault-tolerant spanners in euclidean and2471

doubling metrics: Breaking theω(log n) lightness barrier. In Proceedings of the 64th IEEE Symposium2472

on the Foundations of Computer Science, 2023. To appear in FOCS’23.2473

[28] Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. Efficient algorithms for constructing2474

fault-tolerant geometric spanners. In Proceedings of the 30th Annual ACM Symposium on Theory of2475

Computing, STOC’98, pages 186–195, 1998.2476

[29] T. Lukovszki. New results on fault tolerant geometric spanners. In The 6th International Workshop on2477

Algorithms and Data Structures, WADS ’99, pages 193–204, 1999. doi:10.1007/3-540-48447-7_2478

20.2479

70

https://doi.org/10.1145/3519935.3520042
https://doi.org/10.1145/3519935.3520042
https://doi.org/10.1145/3519935.3520042
https://doi.org/10.1137/s0097539794277718
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/2455.214106
https://doi.org/10.1145/2455.214106
https://doi.org/10.1145/2455.214106
https://doi.org/10.1145/3519270.3538414
https://doi.org/10.1145/3519270.3538414
https://doi.org/10.1145/3519270.3538414
https://doi.org/10.1007/3-540-48447-7_20
https://doi.org/10.1007/3-540-48447-7_20
https://doi.org/10.1007/3-540-48447-7_20

[30] J. Ian Munro, Thomas Papadakis, and Robert Sedgewick. Deterministic skip lists. In Proceedings of2480

the third annual ACM-SIAM symposium on Discrete algorithms, pages 367–375, 1992.2481

[31] Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University Press,2482

2007. doi:10.1017/cbo9780511546884.2483

[32] L. Roditty. Fully dynamic geometric spanners. Algorithmica, 62(3-4):1073–1087, 2011. doi:2484

10.1007/s00453-011-9504-7.2485

[33] Michiel Smid, Anil Maheshwari, and Wolfgang Mulzer. A simple randomized o(n log n)–time2486

closest-pair algorithm in doubling metrics. Journal of Computational Geometry, page Vol. 11 No. 12487

(2020), 2020. doi:10.20382/JOCG.V11I1A20.2488

[34] Shay Solomon. From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners2489

for doubling metrics. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,2490

STOC’14, pages 363–372, 2014.2491

[35] R.E. Tarjan and U. Vishkin. Finding biconnected componemts and computing tree functions in2492

logarithmic parallel time. In Proceedings of the 25th Annual Symposium onFoundations of Computer2493

Science., FOCS ’84. IEEE, 1984. doi:10.1109/sfcs.1984.715896.2494

[36] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,2495

2005. doi:10.1145/1044731.1044732.2496

71

https://doi.org/10.1017/cbo9780511546884
https://doi.org/10.1007/s00453-011-9504-7
https://doi.org/10.1007/s00453-011-9504-7
https://doi.org/10.1007/s00453-011-9504-7
https://doi.org/10.20382/JOCG.V11I1A20
https://doi.org/10.1109/sfcs.1984.715896
https://doi.org/10.1145/1044731.1044732

	Introduction
	Key Technical Ideas
	Applications

	Preliminaries
	Basic Notation
	Dynamic LSO from Dynamic Pairwise Tree Cover

	Pairwise Tree Cover: Static Construction
	The Static Construction
	The Analysis

	Pairwise Tree Cover: Dynamic Construction
	Dynamic Net Tree Cover
	Dynamic net tree cover construction
	Analysis

	Dynamic Pairing

	Leaf Tracker
	Special Case: Trees without Inactive Nodes
	General Case: Maintaining DFS Ordering of a PIT
	Updating σ
	Active tracker data structure

	Dynamic Net Tree
	Rings
	Containment Search and Internal Operations
	Dynamic Net Tree Operations
	Analysis

	Applications of LSO
	Dynamic VFT Spanners
	Dynamic Tree Cover
	Dynamic Closest Pair
	Approximate Bichromatic Closest Pair
	Dynamic Approximate Nearest Neighbors

