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Abstract

We introduce YPIR, a single-server private information retrieval (PIR) protocol that achieves high throughput (up

to 83% of the memory bandwidth of the machine) without any offline communication. For retrieving a 1-bit (or 1-byte)

record from a 32 GB database, YPIR achieves 12.1 GB/s/core server throughput and requires 2.5MB of total communica-

tion. On the same setup, the state-of-the-art SimplePIR protocol achieves a 12.5 GB/s/core server throughput, requires

1.5 MB total communication, but additionally requires downloading a 724 MB hint in an offline phase. YPIR leverages

a new lightweight technique to remove the hint from high-throughput single-server PIR schemes with small overhead.

We also show how to reduce the server preprocessing time in the SimplePIR family of protocols by a factor of 10–15×.
By removing the need for offline communication, YPIR significantly reduces the server-side costs for private audit-

ing of Certificate Transparency logs. Compared to the best previous PIR-based approach, YPIR reduces the server-side

costs by a factor of 8×. Note that to reduce communication costs, the previous approach assumed that updates to the

Certificate Transparency log servers occurred in weekly batches. Since there is no offline communication in YPIR, our

approach allows clients to always audit the most recent Certificate Transparency logs (e.g., updating once a day). Sup-

porting daily updates using the prior scheme would cost 48× more than YPIR (based on current AWS compute costs).

1 Introduction

A private information retrieval (PIR) [CGKS95, KO97] protocol allows a client to privately retrieve a record from
a database without revealing to the database which record was requested. PIR is a useful building block in
systems for metadata-hiding messaging [MOT+11, KLDF16, AS16, ACLS18], private database queries and web
search [WYG+17, HDCZ23a], password breach alerting [LPA+19, TPY+19, ALP+21], Certificate Transparency audit-
ing [HHC+23a], private media consumption [GCM+16], private ad delivery [Jue01, BKMP12, GLM16], and more.

Recently, there has been a flurry of works pushing the limits on the concrete efficiency of single-server PIR. Most
concretely-efficient PIR constructions rely on an initial offline phase where the client either uploads or downloads
some information to or from the server:

• Downloading a hint: The fastest single-server PIR schemes [DPC22, HHC+23a, ZPSZ24, MSR23] rely on the
client first downloading a query-independent “hint” in an offline phase. With a

√
# -size hint (where # is the

size of the database) the SimplePIR scheme [HHC+23a] achieves a throughput (i.e., the ratio of the database
size and the time needed to answer a query) that is comparable to the memory bandwidth of the system (i.e.,
the speed at which the PIR server can read the database from memory; this is 14.6 GB/s on our machine).
Moreover, if the client can stream the entire database in the offline step (and cache $ (

√
# ) bits), then schemes

like [ZPSZ24, MSR23, GZS24] even allow the server to answer queries with sublinear online computation; this
enables protocols that can easily handle databases with hundreds of GB of data (e.g., in an application to private
DNS lookups). Of course, this assumes that clients can perform a streaming download of this size.

• Uploading client-specific state: In an alternative model [ACLS18, AYA+21, MCR21, MW22], clients instead
upload a “public key” to the server in the offline phase. The public key is typically used to “compress” the
query and response. For retrieving large records (e.g., tens of KB long), these protocols currently achieve the
best communication. However, the highest server throughput [MW22] achieved by these approaches is much
smaller (over 10×) than the throughput of their hint-based counterparts.
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Challenges of offline communication. While moving some of the communication to the offline phase has been
critical to the concrete efficiency of PIR, it also imposes challenges for practical deployments. In the hint-based
approach, the offline download is large: for an 8 GB database such as the one used in the application to signed
certificate timestamp (SCT) auditing in Certificate Transparency from [HHC+23a], the size of the hint is over 200 MB
using the SimplePIR scheme and 16 MB using the DoublePIR scheme. This is problematic for dynamic databases,
since each time the database updates, every client must re-download portions of the hint. When using DoublePIR for
private SCT auditing, the protocol of [HHC+23a] compromised by having clients update their hints on a weekly basis,
even though Certificate Transparency log servers typically update their databases daily. Such a scheme sacrifices
real-time monitoring for efficiency. Indeed, if the log database updates daily and the client always audits against
the most recent version of the database, the hint downloads and updates are more than 90% of the total cost (see
Section 4.5). Dynamic databases are common to many other applications of PIR, such as metadata-hiding messaging
or private DNS lookups. Moreover, if a client uses PIR to access multiple databases, it would need to cache hints from
each database, which imposes storage burdens for the client.

The client-specific state used by OnionPIR [MCR21], Spiral [MW22], and similar schemes [ACLS18, AYA+21] intro-
duces its own share of challenges. In these schemes, the server must store a (large) public key for each client, imposing
high storage requirements for the server and also requiring additional infrastructure to support efficient client state
lookups and retrieval. Reuse of client-specific public keys can also enable active attacks on the application [HHC+23a].

Silent preprocessing. High offline communication costs and large client-side or server-side storage requirements
are major bottlenecks in the most concretely-efficient single-server PIR protocols. A natural question is whether we
can achieve good concrete efficiency with preprocessing, but without offline communication (i.e., a protocol with
silent preprocessing). In fact, two recent works have already made great strides in this direction: Tiptoe [HDCZ23a]1

and HintlessPIR [LMRS24a]. Both schemes essentially leverage a form of “bootstrapping” [Gen09] to remove the
hint from the SimplePIR protocol [HHC+23a], where the server homomorphically compresses the SimplePIR hint
using an encoding of the client secret key. We refer to Section 5.1 for a more detailed summary of these two schemes.
While these protocols eliminate the client’s need to download the hint, they incur a computation and communication
penalty. For example, the throughput of the Tiptoe system on a 32 GB database is over 7× slower than SimplePIR,
and the communication cost (for retrieving a 1-bit record) is over 35× greater than the online communication of
SimplePIR. HintlessPIR is more lightweight, but still requires 4× more online communication than SimplePIR and
has a throughput that is at most 62% of the SimplePIR throughput. We provide a more detailed comparison of the
bootstrapping-based approach from Tiptoe and HintlessPIR with our “key-switching-based” approach in Section 4.4,
and an overview of the design of Tiptoe and HintlessPIR in Section 5.1.

1.1 Our Contributions

In this work, we introduce YPIR, a new single-server PIR protocol with silent preprocessing. Like Tiptoe [HDCZ23a]
and HintlessPIR [LMRS24a], we build on SimplePIR and its recursive variant, DoublePIR. However, instead of using
bootstrapping, we take a packing approach (which has a conceptually-similar flavor to the response packing techniques
from [MW22]) and “pack” the DoublePIR response into a more compact representation using polynomial rings.2 We
provide a technical overview of YPIR in Section 1.2 and the full construction in Section 3 (see also Fig. 1 in Section 3
for a visualization).

High throughput with silent preprocessing. The YPIR protocol can be viewed as appending a lightweight
post-processing step to DoublePIR to “compress” the DoublePIR response. When retrieving a single bit from a 32 GB
database, YPIR achieves a throughput of 12.1 GB/s, which is 97% of the throughput of SimplePIR (and 83% of thememory
bandwidth of the machine).3 In contrast, HintlessPIR achieves a maximum throughput that is only 62% of SimplePIR

1Tiptoe is a system for performing private web queries, but as part of their design, they introduce a hintless variant of SimplePIR. In this work,
when we refer to Tiptoe, we refer specifically to their hintless PIR scheme.
2The Y in YPIR is to reflect the fact that the protocol design combines the high-throughput capabilities of PIR based on integer lattices (i.e., the
LWE assumption [Reg05]) with the response compression techniques from PIR based on ideal lattices (i.e., the RLWE assumption [LPR10]).

3Here, we compare against our implementation of SimplePIR which is slightly faster than the reference implementation of SimplePIR [HHC+23b].
The reference implementation of SimplePIR achieves a throughput of 10.4 GB/s on our test system, which is actually slower than YPIR.
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(and concretely, 6.4 GB/s on ourmachine) [LMRS24a]. For database sizes ranging from 1GB to 32 GB, the YPIR response
size is the same as that in DoublePIR, 9–37× shorter than the response size in SimplePIR, and over 100× shorter than that
of HintlessPIR and Tiptoe. On the flip side, YPIR queries are 1.8–3× larger than those in DoublePIR, 3–7× larger than
SimplePIR, and similar to those in HintlessPIR. We refer to Section 4 for a more detailed breakdown and comparison. In
short, for retrieving small records from a large database, YPIR achieves 97% of the throughput of one of the fastest single-
server PIR schemeswhile fully eliminating all offline communication and only incurring amodest increase in query size.

Faster server preprocessing. While YPIR requires no offline communication, it still relies on an offline server
preprocessing step (the same as that in SimplePIR). In Section 4.1, we describe a simple approach to improve the server
preprocessing throughput by a factor of 10–15×. For instance, while preprocessing a 32 GB database in SimplePIR
requires two hours, it just requires 11 minutes with the YPIR approach. Asymptotically, our approach reduces
the offline preprocessing cost by a factor of =/log=, where = is the lattice dimension (in SimplePIR-based systems,
= ≥ 1024). Our technique can be used to reduce the preprocessing costs of any of the protocols in the SimplePIR family.

Cross-client batching. The throughput of protocols like SimplePIR is bounded by the memory bandwidth of the
system. Since the server throughput is memory-bounded rather than CPU-bounded, we can achieve higher effective
throughput by increasing the number of CPU operations per byte of memory read. In Section 4.3, we describe a
simple cross-client batching approach where the PIR server uses a single scan over the database to answer multiple
queries from non-coordinating clients.4 In this work, we show that it is straightforward to tweak SimplePIR (and
generalizations like DoublePIR and YPIR) to allow the server to answer a small batch of : queries using a single linear
scan through memory. While cross-client batching does not reduce the raw number of instructions performed by
the CPU, it achieves better utilization of the CPU. With just 4 clients, cross-client batching improves the effective
server throughput for a protocol like SimplePIR by a factor of 1.4× to 17 GB/s; applied to YPIR, we achieve an
effective throughput of 16 GB/s. In typical applications where servers routinely process queries from multiple clients
simultaneously, cross-client batching provides a way to increase the effective throughput for the server and make
better use of the available computing resources on the server.

Application to Certificate Transparency. In Section 4.5, we compare the server-side costs of using YPIR to
realize an application to private SCT auditing in Certificate Transparency [Lau14, LLK13]. In this setting, a log server
holds a set of SCTs and a client (e.g., a web browser) periodically checks that the SCTs it received from web servers
are contained in the log. In private SCT auditing, the goal is to perform these audits without requiring clients to
reveal their browsing history to the log server. Henzinger et al. [HHC+23a] designed an elegant solution for private
SCT auditing by combining PIR with Bloom filters. In their protocol, an SCT audit translates to a single PIR query
to the log server. A major challenge in this setting is that Certificate Transparency logs update on a daily basis
(with millions of certificates added daily). When built from protocols like DoublePIR, clients will frequently need
to download hint updates when performing an audit. To mitigate these communication costs, the work of [HHC+23a]
compromises by updating the database on a weekly basis. Thus, their approach does not support real-time auditing.

Based on current AWS computation and communication costs, YPIR has 8× lower server costs compared to the
DoublePIR system that could only support weekly updates to the log server (i.e., the cost drops from $1822 per million
clients for DoublePIR to $228 per million clients for YPIR). The cost of YPIR further drops to $183 per million clients
if we leverage cross-client batching with a batch size of 4 (i.e., assume that the server always has a saturated queue
of at least 4 queries). Moreover, with YPIR, the client always audits the latest version of the log server. In fact, the
total communication incurred by YPIR each week is smaller than the total communication of the DoublePIR approach.
In other words, YPIR reduces the total communication even after accounting for the fact that the cost of downloading
the DoublePIR hint can be amortized over the course of a week. Conversely, if we were to use DoublePIR to support
daily log updates, the weekly server cost balloons to over $10,000 per million clients, which is 48× higher than using
YPIR. Compared to other hintless PIR schemes such as Tiptoe and HintlessPIR, we estimate YPIR achieves a cost
savings of 16–84× for private SCT auditing (see Table 6).

4We contrast this with single-client batching [BIM00, IKOS04, GKL10, ACLS18], which seeks to amortize the cost over multiple queries from
a single client. Our cross-client batching applies even if each client makes a single query and is entirely transparent to the client (i.e., requires
no client-side changes). Cross-client batching was also used in [LG15] to improve the effective throughput of PIR in the multi-server setting.
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Application to password breach checking. In Section 4.6, we show how the YPIR techniques can also be used to
support queries to databases with large records (e.g., 32 KB or 64 KB records). Specifically, we consider an application
to password breach checking. In this application, a client wishes to check whether a password (or username-password
pair) has appeared in a publicly-available breach without revealing the password to the server. These protocols are
useful for preventing credential stuffing attacks [LPA+19, TPY+19, ALP+21, KC21]. As in prior work [ALP+21], we
realize this application by constructing a database of (large) records, where each record contains a set of hashed
passwords sharing a common hash prefix. A client can then hash their password locally, use PIR to retrieve the
record associated with their hash prefix, and then search within this record for their target hash to determine whether
the password is in the set of breached credentials. To support the larger records (32–64 KB) typically used in these
settings, we introduce a modified version of YPIR called “YPIR+SP” that builds on SimplePIR instead of DoublePIR.
We then compare the YPIR+SP approach to the previous approach of HintlessPIR.

On 1 GB and 8 GB databases of 32 KB records, YPIR+SP has 6–15× smaller responses, similar query size, and
similar throughput as HintlessPIR. HintlessPIR has large response sizes because its bootstrapping-style approach
requires that the plaintext modulus of the RLWE encoding scheme be at least as large as the LWE encoding modulus
in SimplePIR. In contrast, YPIR+SP packs encodings using standard key-switching, so the input LWE and output
RLWE encodings can share the same modulus. For checking a password against a set of 1 billion compromised
credentials, our approach achieves a 2.2× reduction in total communication (primarily because the responses are
7.4× smaller) with a less than 5% reduction in throughput compared to HintlessPIR.

Limitations. The main limitation of YPIR is the larger query sizes compared to SimplePIR and DoublePIR. Specif-
ically, a YPIR query is 1.8–3× larger than a DoublePIR query (for an 8 GB database, YPIR queries are 1.5 MB while
DoublePIR queries are 724 KB) and 3–7× larger than a SimplePIR query. This is because the post-processing step
in YPIR requires communicating a “packing key” as part of the query. If the application setting has a small, fixed
communication budget, YPIR may not be appropriate; for example, for a 32 GB database, the minimum YPIR query
size is 1.1 MB. We refer to Fig. 3 in Section 4.4 for an illustration of the communication-computation trade-offs in
YPIR, HintlessPIR, SimplePIR, and DoublePIR.

1.2 Overview of YPIR

The starting point for this work is the SimplePIR/DoublePIR schemes from [HHC+23a] based on the learning with
errors (LWE) problem [Reg05]. First, an LWE encryption of ` ∈ Z? is a pair ct = (a, 1) ∈ Z=+1@ where 1 = sTa+4 +Δ · `.
Here, = is the lattice dimension, s ∈ Z=@ is the secret key, 4 ∈ Z is a (small) error term, and Δ is a scaling factor
(typically, ⌊@/?⌋). Given ct and the secret key s, the user can compute 1 − sTa = Δ · ` + 4 mod @. If 4 is small relative
to the scaling factor Δ (i.e., |4 | < Δ/2), the user can recover ` ∈ Z? from ct by rounding.

In SimplePIR and DoublePIR, the database is represented by a matrix D ∈ Zℓ1×ℓ2? and records are indexed by a
row-column pair (8, 9). The query consists of LWE encryptions of the components of the indicator vectors u8 and
u9 (i.e., u8 is the vector that is 0 everywhere and 1 in index 8). In SimplePIR, the response consists of ℓ2 ciphertexts
ct1, . . . , ctℓ2 ∈ Z=+1@ which encrypt the ℓ2 entries of row 8 of the database. In DoublePIR, the response is an LWE
encryption of ct9 , which is itself an encryption of the element in row 8 , column 9 of D.

An LWE encryption of an element of Z? consists of (= + 1) Z@ elements. Since ct9 ∈ Z=+1@ is a vector over Z@ ,

an encryption of ct9 (i.e., the DoublePIR response) contains ^ (= + 1)2 elements over Z@ , where ^ = log@/log? . The
extra factor of ^ comes from the fact that the plaintext space for the LWE encryption scheme is Z? , so to encrypt the
components of ct9 over Z@ , DoublePIR first decomposes each Z@ element into its base-? representation (consisting
of ^ digits in Z? ). For security, the lattice dimension = is around 210 = 1024, so the response is very large. The insight
in [HHC+23a] is that most of the components in the response only depend on the database and not the query. Thus,
these can be prefeteched as a hint in the offline phase. For example, for an 8 GB database with 236 1-bit records, the
query-independent portion of the response is 16 MB while the query-dependent portion is just 32 KB.

Packing the DoublePIR responses. The YPIR protocol eliminates the offline hint from DoublePIR by compressing

the fullDoublePIR response using ring LWE [LPR10]. Specifically, we work over the polynomial ring ' = Z[G]/(G3 +1)
where3 is a power-of-two. RLWE ciphertexts have the advantage of having a much smaller ciphertext expansion factor.
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With vanilla LWE, encoding a single value ` ∈ Z? requires a vector of (=+1) elements over Z@ whereas encoding a ring
element ` ∈ '? only requires two elements in '@ (where '@ := '/@'). If we consider the ciphertext expansion factor
(i.e., the ratio of the ciphertext size to the plaintext size), RLWE decreases the expansion factor from (= + 1) log@/log?
to 2 log@/log? . For concrete values of = ≈ 210, this is a 1000× reduction in ciphertext expansion factor.

In YPIR, we use the LWE-to-RLWE packing technique from [CDKS21]. This transformation takes a collection of 3
LWE ciphertexts ct1, . . . , ct3 ∈ Z3+1@ that encode messages `1, . . . , `3 ∈ Z? (under a secret key s) and packs them into

an RLWE ciphertext that encrypts the polynomial 5 (G) := ∑
8∈[3 ] `8G

8−1 ∈ '? (under a key B ∈ '@ derived from s).
Note that we assume the lattice dimension = in LWE coincides with the ring dimension 3 in RLWE. Critically, the
transformation takes 3 (3 +1) elements over Z@ and compresses them into just 23 elements over Z@ . This yields a factor
(3+1)/2 reduction in ciphertext size.5 For an 8GB database, this packing approach compresses the full 16MBDoublePIR
response into a 12 KB response (see Table 2). The cost is that the query must now include a “packing key” for the
transformation from [CDKS21] (which essentially consists of RLWE key-switching matrices). This increases the query
size from 724 KB in DoublePIR by a factor of 2× to 1.5 MB. We additionally note that most of the computational costs of
the [CDKS21] transformation can actually be moved to an offline preprocessing phase (because it is applied to query-

independent components). In our experiments, we observed a 9× reduction in the online computational cost by having
the server perform a modest amount of additional work in the offline phase. We describe this approach in Section 4.2.

Supporting large records. A limitation of DoublePIR is that it only supports retrieving small records (i.e., a single
element of the plaintext space Z? ). This is sufficient for some applications like private SCT auditing (see Section 4.5),
but other PIR applications may require support for large records. In Section 4.6, we show that we can also apply the
same packing approach to SimplePIR to obtain a PIR protocol (YPIR+SP) that supports queries to databases with large
records. This is a similar setting considered inHintlessPIR (i.e., composing SimplePIRwith a LWE-to-RLWE transforma-
tion) [LMRS24a]. As we describe in Section 4.6, our YPIR+SP protocol achieves a 2.2× reduction in total communication
with only a 5% reduction in throughput compared to HintlessPIR when considering databases with 32–64 KB records.

Faster preprocessing. YPIR relies on the same preprocessing as SimplePIR (and DoublePIR). The main cost of
this preprocessing is computing a product of the form AD where A ∈ Z=×ℓ1@ is a (random) matrix and D ∈ Zℓ1×ℓ2? is the
database. While this process only needs to be performed once, it is a very expensive process for large databases: on a
single core, this precomputation has a throughput of under 4 MB/s; for a 32 GB database, the SimplePIR preprocessing
takes over two hours. In this work, we observe that we can replace A with a structured matrix and use number-
theoretic transforms (NTTs) to compute the matrix-vector product. Asymptotically, this yields a =/log= improvement
to preprocessing, and concretely, we observe a 10–15× increase in the throughput. The only cost of this is that security
of the scheme now rests on the ring LWE assumption rather than the LWE assumption. Note that this optimization
only changes the preprocessing and not the online server computation. In particular, the online server computation
is still over Z@ (and not over a polynomial ring). We describe our approach in more detail in Section 4.1. We also
stress that our approach is not just lifting SimplePIR to work over polynomial rings. While this works in theory, the
performance bottleneck in practice is the memory bandwidth of the system. As we discuss in Remark 4.1, a ring-based
SimplePIR has higher memory requirements, which is enough to reduce throughput from 11.5 GB/s to just 3.2 GB/s.

2 Preliminaries

We write _ for the security parameter. For a positive integer = ∈ N, we write [=] for the set {1, . . . , =}. For integers
0, 1 ∈ Z, we write [0, 1] for the set {0, 0 + 1, . . . , 1}. For a positive integer @ ∈ N, we write Z@ to denote the integers
modulo @. We use bold uppercase letters to denote matrices (e.g., A,B) and bold lowercase letters to denote vectors
(e.g., u, v). For a matrix A, we write AT to denote its transpose. When A ∈ Z=×<@ and B ∈ Z<×: , we write AB ∈ Z=×:@

5It is also possible to pack LWE encodings (e.g., using the Spiral approach for response compression [MW22]) into a packed LWE cipher-
text [PVW08], but this requires$ (3 ) key-switching matrices. Since these key-switching matrices must now be communicated with the query,
this does not help reduce communication. The LWE-to-RLWE transformation only requires $ (log3 ) key-switching matrices, which can be
included as part of the query with only modest communication overhead.
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to denote the matrix product over Z@ where B is first lifted into Z<×:@ by associating each of its entries �8, 9 ∈ Z with
its unique mod-@ representative in the range (−@/2, @/2]. We define AB where A ∈ Z=×< and B ∈ Z<×:@ analogously.

We write poly(_) to denote a function that is$ (_2 ) for some 2 ∈ N and negl(_) to denote a function that is > (_−2 )
for all 2 ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial time in its input length. We say
that two families of distributions D1 = {D1,_}_∈N and D2 = {D2,_}_∈N are computationally indistinguishable if no
efficient algorithm can distinguish them except with non-negligible probability.

Rounding. For an input G ∈ R, we write ⌊G⌉ to denote the rounding function; that is ⌊G⌉ outputs the nearest integer
to G (rounding up in case of ties). For integers @ > ? , we write ⌊·⌉@,? : Z@ → Z? to denote the rounding function
that first takes the input G ∈ Z@ , lifts it to an integer in the interval G ′ ∈ (−@/2, @/2], and outputs ⌊?/@ · G ′⌉ as an
element of Z? . Here, the division and the rounding are performed over the rationals. We extend ⌊·⌉@,? to operate
component-wise on vector-valued and matrix-valued inputs.

Discrete Gaussians and tail bounds. We recall some basic facts about the discrete Gaussian distribution, and
refer to [Pei16] for more details and references. The discrete Gaussian distribution �Z,f over Z with mean 0 and
width f is the distribution with probability mass function

Pr[- = G : - ← �Z,f ] =
df (G)∑

~∈Z df (~)
,

where df (G) := exp(−cG2/f2) is the Gaussian function with width f . We say a real-valued random variable - is
subgaussian with parameter f if for every C ≥ 0, Pr[|- | > C] ≤ 2 exp(−cC2/f2). The discrete Gaussian distribution
�Z,f is subgaussian with parameter f . Moreover, the following properties hold for subgaussian random variables:

• If - is subgaussian with parameter f , then for all 2 ∈ R, 2- is subgaussian with parameter |2 | f .

• If -1, . . . , -: are independent subgaussian random variables with parameters f1, . . . , f: , respectively, then their

sum
∑

8∈[: ] -8 is also subgaussian with parameter
( ∑

8∈[: ] f
2
8

)1/2
.

Polynomial rings. Our construction will use the cyclotomic ring ' = Z[G]/(G3 + 1) where 3 is a power of two.
For a positive integer @ ∈ N, we write '@ := '/@'. We now define the Coeffs and NCyclicMat functions over ' (and

by extension, '@). Let 6 =
∑3−1

8=0 U8G
8 ∈ ' be a ring element.

• Let Coeffs : ' → Z3 be the mapping 6 ↦→ [U0, . . . , U3−1]T that outputs the vector of coefficients of 6.

• Let NCyclicMat : ' → Z3×3 be the linear transformation over Z3 associated with multiplication by 6 ∈ '.
Namely, for all 5 ∈ ', it holds that Coeffs(5 )T · NCyclicMat(6) = Coeffs(5 6)T. Specifically,

NCyclicMat(6) :=



U0 U1 U2 · · · U3−1
−U3−1 U0 U1 · · · U3−2
−U3−2 −U3−1 U0 · · · U3−3

...
...

...
. . .

...

−U1 −U2 −U3 · · · U0



∈ Z3×3

We extend NCyclicMat to operate on vectors in a component-wise manner. In particular, this means that for
all 5 ∈ ' and g = (61, . . . , 6<) ∈ '< ,

Coeffs(5 · g)T = [Coeffs(5 61)T | · · · | Coeffs(5 6<)T] = Coeffs(5 )T · NCyclicMat(gT). (2.1)

We define both operators over '@ in the identical manner. When @ = 1 mod 23 , we say that @ is “NTT-friendly;” in
this case, polynomial multiplication in '@ can be implemented using a negacyclic convolution [LMPR08, LN16], which
can in turn be computed using fast radix-2 number-theoretic transforms (NTTs). For 5 ∈ ', we write ‖ 5 ‖∞ to denote
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the ℓ∞ norm of the vector of coefficients Coeffs(5 ). For all polynomials 5 , 6 ∈ ', it holds that ‖ 5 6‖∞ ≤ 3 ‖ 5 ‖∞‖6‖∞.
Finally, we say that 5 ∈ ' is sampled from a subgaussian distribution with parameter f if each coefficient of 5 is
independently distributed according to a subgaussian distribution with parameter f . Our analysis will only rely on the
following basic lemma from [MW22] on bounding the norm of the coefficients of a product of two polynomials over ':

Lemma 2.1 (Polynomials with Subgaussian Coefficients [MW22, Lemma 2.6, adapted]). Let ' = Z[G]/(G3 + 1) and
6 =

∑
8∈[0,3−1] 68G

8 ∈ ' be any polynomial where ‖6‖∞ ≤ �. Let 5 =
∑

8∈[0,3−1] 58G
8 where each 58 is independently

sampled from a subgaussian distribution with parameter f and let ℎ = 5 6 =
∑

8∈[0,3−1] ℎ8G
8 ∈ '. Then, the distribution

of each ℎ8 is subgaussian with parameter
√
3�f .

Gadget matrices. Next, we recall the notion of the gadget matrix from [MP12]. For a modulus @ ∈ N and a
decomposition base I ∈ N, we write gI = [1, I, I2, . . . , IC−1] ∈ ZC@ where C = ⌈log@/log I⌉. For a dimension = ∈ N,
we define G=,I := I= ⊗ gT

I ∈ Z=×=C@ to be the gadget matrix. We write G−1=,I : Z
=
@ → Z=C to denote the base-I digit

decomposition operator that expands each component of the input vector into its base-I representation (where each
output component is an integer between −I/2 and I/2). We write g−1I : Z@ → ZC for the 1-dimensional operator G−11,I .

We extend G−1=,I to operate on matrices M ∈ Z=×:@ by independently applying G−1=,I to each column of M. Both the

gadget matrix G=,I and its digit decomposition G−1=,I are defined identically over the ring '@ .

Ring learning with errors. Like many lattice-based PIR schemes [MBFK16, ACLS18, GH19, MCR21, MW22,
LMRS24a], the security of our protocol relies on the ring learning with errors (RLWE) problem [Reg05, LPR10]. We
state the “normal form” of the assumption where the RLWE secret is sampled from the error distribution; this version
reduces to the one where the secret key is uniform [ACPS09].

Definition 2.2 (Ring Learning with Errors [LPR10]). Let _ be a security parameter, 3 = 3 (_) be a power-of-two,
and ' = Z[G]/(G3 + 1). Let< =<(_) be the number of samples, @ = @(_) be a modulus, and j = j (_) be an error
distribution over '. The ring learning with errors (RLWE) assumption RLWE3,<,@,j in Hermite normal form states
that for a r← '<@ , B ← j , e← j< , and v r← '<@ , the following two distributions are computationally indistinguishable:

(a, Ba + e) and (a, v).

LWE and RLWE encodings. We say that a vector c ∈ Z=+1@ is an “LWE encoding” of a value ` ∈ Z@ with respect

to a secret key s ∈ Z=@ and error 4 ∈ Z if [−sT | 1] · c = ` + 4 . For a ring ' = Z[G]/(G3 + 1), we say that c ∈ '2
@ is an

“RLWE encoding” of a value ` ∈ '@ with respect to a secret key B ∈ '@ and error 4 ∈ ' if [−B | 1] · c = ` + 4 . In our
setting, it will typically be the case that ` = ⌊@/?⌋ E for some E ∈ Z? (or E ∈ '? ). Given ` + 4 for sufficiently small
4 , it is then possible to recover the value of E by rounding. We state this in the following lemma from [MW22]:

Lemma 2.3 (Message Decoding [MW22, Theorem 2.11]). Let ' = Z[G]/(G3 + 1). Suppose I = ⌊@/?⌋ E + 4 ∈ ' where

‖E ‖∞ < ? and ‖4 ‖∞ <
@

2? − (@ mod ?). Then, ⌊I⌉@,? = E .

Independence heuristic. Like many lattice-based PIR constructions [ACLS18, GH19, MCR21, MW22, LMRS24a]
and other systems based on homomorphic encryption [GHS12b, CGGI18, CCR19], we use the independence heuristic
that models the error terms arising in intermediate homomorphic computations to be independent. Specifically,
instead of bounding the worst-case magnitude on the noise, we bound the variance of the noise vector (i.e., f2 where
f is the subgaussian width parameter associated with the noise distribution). Since the variance is additive for
independent subgaussian variables, bounding the variance often yields a square-root improvement in the noise bound
compared to a worst-case bound.

Modulus switching. A standard technique to reduce the size of lattice-based encodings after performing ho-
momorphic operations on them is to use modulus switching [BV11, BGV12]. Modulus switching takes an (R)LWE
encoding mod @ and rescales it to an encoding mod @1 where @1 < @. This reduces the size of the encoding. Here, we
describe a more fine-grained variant from [MW22] where two different moduli are used. We describe the approach
for encodings over any ring ' = Z[G]/(G3 + 1); the case where 3 = 1 corresponds to the case of the integers.
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• ModReduce@1,@2 (c): For integers @ > @1 ≥ @2 and on input an encoding c ∈ '=+1@ where c =
[
c1
22

]
for c1 ∈ '=@

and 21 ∈ '@ , output (⌊c1⌉@,@1 , ⌊22⌉@,@2 ) ∈ '=@1 × '@2 .
When there is a singlemodulus@1, wewriteModReduce@1 (c) to denoteModReduce@1,@1 (c). We extendModReduce@1,@2
to matrices by column-wise evaluation. We now state the main correctness guarantee from [MW22].

Lemma 2.4 (Modulus Switching [MW22, Theorem 3.4, adapted]). Let @ > @1 ≥ @2 > ? and let ' = Z[G]/(G3 + 1)
where 3 is a power of two. Suppose [−sT | 1]c = ⌊@/?⌋ ` + 4 mod @ for some s ∈ '=@ , c ∈ '=+1@ , ‖`‖∞ ≤ ?/2 and 4 ∈ '.
Suppose the components of s are independent subgaussian random variables with parameter fB and 4 is subgaussian

with parameter f4 . Let (c′1, 2′2) = ModReduce@1,@2 (c). Then ⌊−sTc′1⌉@1,@2 + 2′2 = ⌊@2/?⌋ ` + 4′ mod @2 where 4
′
= 4′1 + 4′2,

‖4′1‖∞ ≤
1

2

(
2 + (@2 mod ?) + @2

@
(@ mod ?)

)
,

and the components of 4′2 are subgaussian with parameter f ′ =
√
(@2/@1)2=3f2

B /4 + (@2/@)2f2
4 .

Private information retrieval. We now recall the formal definition of a (two-message) single-server PIR proto-
col [KO97]. We work in the model where there is an initial database-dependent preprocessing algorithm that outputs
a set of public parameters (assumed to be known to the client and to the server) and an internal server state.

Definition 2.5 (Private Information Retrieval [KO97, adapted]). Let # ∈ N be an integer. A (two-message) single-
server private information retrieval (PIR) scheme ΠPIR = (DBSetup,�ery,Answer, Extract) with message space Z#
is a tuple of efficient algorithms with the following properties:

• DBSetup(1_,D) → (pp, dbp): On input the security parameter _ and a database D, the setup algorithm outputs
a set of public parameters pp and database parameters dbp.

• �ery(pp, idx) → (q, qk): On input the public parameters pp and an index idx, the query algorithm outputs
a query q and a query key qk.

• Answer(dbp, q) → resp: On input the database parameters dbp, a query q, the answer algorithm outputs a
response resp.

• Extract(qk, resp) → �8 : On input the client state qk and a response resp, the extract algorithm outputs a
database record �8 ∈ Z# .

The algorithms should satisfy the following properties:

• Correctness: For all _ ∈ N, all databases D, and all indices idx, if we sample (pp, dbp) ← DBSetup(1_,D),
(q, qk) ←�ery(pp, idx), and resp← Answer(dbp, q), then

Pr [Extract(qk, resp) = D[idx]] ≥ 1 − X,
where D[idx] denotes the element of D indexed by idx, and where the probability is taken over the randomness
of DBSetup,�ery, Answer, and Extract. We refer to X as the correctness error. When X = 0, we say the scheme
satisfies perfect correctness.

• Query privacy: For a bit1 ∈ {0, 1}, we define the query privacy game between an adversaryA and a challenger
as follows:

– On input the security parameter 1_ , the adversary outputs a database D.

– The challenger computes (pp, dbp) ← DBSetup(1_,D) and gives pp to A.

– AlgorithmA now outputs a pair of indices idx0, idx1. The challenger computes (q, qk) ←�ery(pp, idx1)
and replies with q.

– Algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPIR satisfies query privacy if for all efficient adversaries A, there exists a negligible function
negl(·) such that for all _ ∈ N,

| Pr[1′ = 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | = negl(_).
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2.1 LWE-to-RLWE Packing

Let ' = Z[G]/(G3 + 1). Observe that RLWE encodings (over '@) have better rate compared to LWE encodings over
Z@ : namely, an encoding of ` ∈ '@ consists of just two elements of '@ , whereas an LWE encoding of ` ∈ Z@ requires
a vector of (= + 1) elements, where = is the lattice dimension (i.e., the security parameter). In this section, we recall
the general transformation introduced by Chen, Dai, Kim, and Song [CDKS21] to “pack” multiple LWE encodings
into a single RLWE encoding. Their transformation relies on homomorphically evaluating automorphisms on RLWE
encodings [GHS12a, BGV12]. We recall this below before describing the full transformation.

Automorphisms over '@ . For a positive integer ℓ ∈ N, we let gℓ : ' → ' denote the ring automorphism that maps
? (G) ↦→ ? (G ℓ ). We define gℓ : '@ → '@ analogously, and for ease of notation, denote both automorphisms by the
mapping gℓ (·). We extend gℓ to vector-valued and matrix-valued inputs via component-wise application of gℓ to the
entries of the vector or matrix.

Automorphisms on RLWE encodings. A number of works have shown how to homomorphically evaluate
automorphisms on RLWE encodings [GHS12a, BGV12]. We recall the main algorithms here. Some of our presentation
is adapted from [MW22]:

Construction 2.6 (Automorphisms on RLWE Encodings [GHS12a, BGV12, adapted]). Let _ be a security parameter
and 3 = 3 (_), @ = @(_) be lattice parameters where 3 = 2ℓ is a power of two. Let ' = Z[G]/(G3 + 1) and j = j (_)
be an error distribution over '.

• AutomorphSetup(1_, B, g, I): On input a secret key B ∈ '@ , an automorphism g : '@ → '@ , and a decomposition
base I ∈ N, let C = ⌊logI @⌋ + 1. Sample a r← 'C@ and 4 ← jC . Output

Wg =

[
aT

BaT + eT − g (B) · gT
I

]
∈ '2×C

@ .

• Automorph(W, c, g, I): On input an automorphism key W ∈ '2×C
@ , an RLWE encoding c = (20, 21) ∈ '2

@ , an
automorphism g : '@ → '@ , and a decomposition base I ∈ N, the automorph algorithm outputs

c′ = W · g−1I (g (20)) +
[

0
g (21)

]
∈ '2

@ . (2.2)

Theorem 2.7 (Homomorphic Evaluation of Automorphisms [GHS12a, BGV12, adapted]). For a positive integer ℓ ∈ N,
let gℓ : '@ → '@ be the automorphism A (G) ↦→ A (G ℓ ) and I ∈ N be a decomposition base. Suppose [−B | 1] · c = ` + 4
for some B ∈ '@ , c ∈ '2

@ , ` ∈ '@ , and 4 ∈ '. Let Wg ← AutomorphSetup(1_, B, gℓ , I) and c′ ← Automorph(Wg , c, gℓ , I).
Suppose 4 is subgaussian with parameter f and the error distribution j in Construction 2.6 is subgaussian with pa-

rameter fj . Then, under the independent heuristic, [−B | 1] · c′ = gℓ (`) + 4′, 4′ is subgaussian with parameter f ′,
(f ′)2 ≤ f2 + C3I2f2

j/4, and C = ⌊logI @⌋ + 1.

The Chen-Dai-Kim-Song transformation. We start by summarizing the key insight of the Chen-Dai-Kim-Song
transformation [CDKS21]. Let 3 = 2ℓ be the lattice dimension for the LWE encoding as well as the degree of the ring
for ring LWE encodings. The packing transformation takes as input3 independent LWE encodings of scalars `1, . . . , `3
and outputs an RLWE encoding of the polynomial

∑
8∈[3 ] `8G

8−1. The key insight underlying the transformation is

that over ' = Z[G]/(G3 + 1),
∑

9∈[ℓ ]
g2ℓ− 9+1+1 (G8 ) =

{
3 8 = 0

0 0 < 8 < 3,
(2.3)

where gℓ : ' → ' is the ring automorphism 5 (G) ↦→ 5 (G ℓ ). Namely, Eq. (2.3) provides an algebraic way to extract the
constant term of an input polynomial. We now describe the full procedure and its correctness and security properties.
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Construction 2.8 (LWE-to-RLWE Packing [CDKS21]). Let _ be a security parameter, 3 = 3 (_) be a power-of-
two (i.e., 3 = 2ℓ ), @ = @(_) be a modulus, and j = j (_) be an error distribution. Let ' = Z[G]/(G3 + 1) and let
(AutomorphSetup,Automorph) be the algorithms from Construction 2.6 instantiated with the parameters (',@, j).

• CDKS.Setup(1_, B, I): On input the security parameter _, a secret key B ∈ '@ , and a decomposition base I ∈ N,
the setup algorithm computes W8 ← AutomorphSetup(1_, B, g28+1, I) for each 8 ∈ [ℓ]. It outputs the packing
key pk = (W1, . . . ,Wℓ ).

• CDKS.PackHelper(pk, (c0, . . . , c2C−1)): On input the packing key pk = (W1, . . . ,Wℓ ) and a collection of 2C

encodings c0, . . . , c2C−1 ∈ '2
@ where C ≤ ℓ , the recursive helper algorithm proceeds as follows:

– If C = 1, return c0.

– If C > 1, then compute

ceven ← CDKS.PackHelper
(
pk, (c0, c2, . . . , c2C−2)

)

codd ← CDKS.PackHelper
(
pk, (c1, c3, . . . , c2C−1)

)
.

Let c1 ← ceven + G3/2
C · codd and c2 ← ceven − G3/2

C · codd. Output c1 + Automorph(WC , c2, g2C+1, I) ∈ '2
@ .

• CDKS.Pack(pk,C): On input the packing key pk = (W1, . . . ,Wℓ ) and a matrix C ∈ Z(3+1)×3@ of 3 LWE
encodings, the packing algorithm first parses the encodings as

C =

[
a0 · · · a3−1
10 · · · 13−1

]
,

where a8 ∈ Z3@ and 18 ∈ Z@ for all 8 ∈ [0, 3 − 1]. Then, for each 8 ∈ [0, 3 − 1], let 0̃8 =
∑

9∈[0,3−1] 08, 9G
− 9 ∈ '@ ,

where a8 = [08,0, . . . , 08,3−1]T. Let c8 = [0̃8 | 18 ]T ∈ '2
@ . Finally, output CDKS.PackHelper(pk, (c0, . . . , c3−1)).

Theorem 2.9 (LWE-to-RLWE Packing [CDKS21, Appendix A.3, adapted]). Let _ be a security parameter and

' = Z[G]/(G3 + 1) where 3 = 3 (_) is a power of two. Let @ = @(_) be an encoding modulus and j = j (_) be a
subgaussian error distribution with parameter fj . Consider an instantiation of Construction 2.8 with parameters (', @, j).
Take any secret key B ∈ '@ , any matrix C = [c1 | · · · | c3 ] ∈ Z(3+1)×3@ where c8 ∈ Z3+1@ , and any decomposition base I ≤ @.

Let s = Coeffs(B). Suppose [−sT | 1] · c8 = a8 ∈ Z@ . Suppose pk← CDKS.Setup(1_, B, I) and c′ ← CDKS.Pack(pk,C).
Then, under the independence heuristic,

[−B | 1] · c′ = 3
∑

8∈[3 ]
a8G

8−1 + 4′ ∈ '@,

where 4′ is subgaussian with parameter f ′ and (f ′)2 ≤ 1
3 (32 − 1)

(
C3I2f2

j/4
)
and C = ⌊logI @⌋ + 1.

Security. The security of our PIR scheme requires that RLWE encodings with respect to a secret B ∈ '@ remain
pseudorandom even given the packing key pk output by CDKS.Setup(1_, B). Essentially, the packing key pk consists
of encryptions of automorphisms of g (B) under B . Pseudorandomness thus relies on a “circular security” assumption.
Such assumptions are commonly used for constructing lattice-based (fully) homomorphic encryption [Gen09, BV11,
BGV12, Bra12] as well as in previous RLWE-based PIR schemes [ACLS18, AYA+21, MCR21, MW22, LMRS24a]. We state
the security requirement below and provide the formal analysis (as well as a precise statement of the key-dependent
pseudorandomness assumption on RLWE encodings we use) in Appendix A.

Definition 2.10 (Pseudorandomness Given the Packing Key). Let _ be a security parameter and ' = Z[G]/(G3 + 1)
where 3 = 3 (_) is a power of two. Let @ = @(_) be an encoding modulus and j = j (_) be a subgaussian error
distribution with parameter fj . Consider an instantiation of Construction 2.8 with parameters (', @, j). Let< =<(_)
be the number of samples. Then, for a bit 1 ∈ {0, 1}, a decomposition base I ∈ N and an adversary A, let

,1 := Pr


A(1_, pk, a, t1) = 1 :

B ← j, a
r← '<@ , e← j<

pk← CDKS.Setup(1_, B)
t0 = Ba + e, t1 r← '<@


.
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We say the construction satisfies pseudorandomness (for< samples) given the packing key if for all I ≤ @ and all
efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N, |,0 −,1 | = negl(_).

3 The YPIR Protocol

In this section, we describe the YPIR protocol (we refer to Fig. 1 for a visual description). As described in Section 1.2,
the YPIR protocol first invokes DoublePIR [HHC+23a] over the database, and then packs the DoublePIR response
(a collection of LWE encodings) into a small number of RLWE encodings.

Construction 3.1 (YPIR Protocol). Let _ be a security parameter. We model the database as a matrix D ∈ Zℓ1×ℓ2
#

.
In the scheme, we associate the records in D with its integer representative in the interval (−# /2, # /2]. We index
records by a row-column pair (81, 82) ∈ [ℓ1] × [ℓ2]. YPIR uses different sets of lattice parameters for the initial pass
(i.e., the linear scan over the database—“SimplePIR”) and for the second pass (i.e., recursing on the output of the first
step—“DoublePIR”). This is because the parameters for the second pass must be compatible with the LWE-to-RLWE
packing transformation. We define the parameters below:

• Let 31 = 31 (_), 32 = 32 (_) be ring dimensions, where each is a power of two. We write '31 := Z[G]/(G31 + 1)
and '32 := Z[G]/(G32 + 1). For 9 ∈ {1, 2} and a modulus @, we write '3 9 ,@ := '3 9

/@'3 9
.

• Let @1 = @1 (_), @2 = @2 (_) be the encoding modulus and @̃1 = @̃1 (_), @̃2,1 = @̃2,1 (_), and @̃2,2 = @̃2,2 (_) be a set
of reduced modulus (for modulus switching). We require that gcd(32, @2) = 1.

• Let j1 = j1 (_), j2 = j2 (_) be error distributions over '31 and '32 , respectively.

• Let I = I (_) be a decomposition parameter (for the LWE-to-RLWE packing).

• Let ? = ? (_) be an intermediate modulus and let ^ = ⌈log @̃1/log?⌉.

• Let (CDKS.Setup,CDKS.Pack) be the LWE-to-RLWE packing algorithms from Construction 2.8 instantiated
with parameters ('32 , @2, j2).

The YPIR = (DBSetup,�ery,Answer, Extract) scheme is defined as follows:

• DBSetup(1_,D): On input the security parameter _ and a database D ∈ Zℓ1×ℓ2
#

, where ℓ1 =<131 and ℓ2 =<232

for integers<1,<2 ∈ N,6 the setup algorithm samples a9
r← '

< 9

3 9 ,@ 9
and sets A9 = NCyclicMat(aT

9 ) ∈ Z
3 9×ℓ9
@ 9

where 9 ∈ {1, 2}. Finally, the setup algorithm computes

H1 = G−131,?
(⌊A1D⌉@1,@̃1 ) ∈ Z^31×ℓ2 and H2 = A2 · HT

1 ∈ Z32×^31@2
. (3.1)

The setup algorithm then outputs the public parameters pp = (1_, ℓ1, ℓ2, # , a1, a2) together with the server state
dbp = (1_,D,H1,H2).

• �ery(pp, idx): On input the public parameters pp = (1_, ℓ1, ℓ2, # , a1, a2) and an index idx = (81, 82) ∈ [ℓ1] × [ℓ2],
the query algorithm proceeds as follows:

1. Key generation: Sample two secret keys B1 ← j1 and B2 ← j2. Compute the packing key pk ←
CDKS.Setup(1_, B2, I).

2. Query encoding: Define the scaling factors Δ1 = ⌊@1/# ⌋ and Δ2 = ⌊@2/?⌋. The query encodings are
then constructed as follows:

(a) For 9 ∈ {1, 2}, let< 9 = ℓ9/3 9 and 8 9 = U 93 9 + V 9 where U 9 ∈ [< 9 ] and V 9 ∈ [3 9 ]. Let µ9 = GV 9uU 9
∈

'
< 9

3 9 ,@ 9
, where u9 denotes the 9 th elementary basis vector (of the appropriate dimension).

6For ease of exposition, we describe our construction for the setting where the database dimensions are a multiple of the ring dimensions 31 and
32. This can be ensured by padding the database with dummy rows and columns. It is straightforward to extend the scheme to support arbitrary
dimensions without padding, but this introduces additional notational burden. We defer the description of the modified scheme to Remark 3.3.
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(b) For 9 ∈ {1, 2}, sample e9 ← j
< 9

9 and construct the encoding c9 = Coeffs(B 9a9 + e9 + Δ 9µ9 ) ∈ Z
ℓ9
@ 9
.

Output the query q = (pk, c1, c2) and the query key qk = (B1, B2).

• Answer(dbp, q): On input the database parameters dbp = (1_,D,H1,H2) and the query q = (pk, c1, c2), where
D ∈ Zℓ1×ℓ2

#
, H1 ∈ Z^31×ℓ2 , H2 ∈ Z32×^31@2 , c1 ∈ Zℓ1@1 , and c2 ∈ Zℓ2@2 , the answer algorithm proceeds as follows:

1. Compute the SimplePIR response: Let T = g−1? (⌊cT1D⌉@1,@̃1 ) ∈ Z^×ℓ2 .
2. Compute the DoublePIR response: Compute

C = (3−12 mod @2) ·
[
H2 A2T

T

cT2H
T

1 cT2T
T

]
∈ Z(32+1)×^ (31+1)@2 . (3.2)

3. Pack encodings: Let d = ⌈^ (31 + 1)/32⌉ and parse [C | 0(32+1)×(32d−^ (31+1) ) ] = [C1 | · · · | Cd ] where
each C8 ∈ Z(32+1)×32@2 . Namely, C1, . . . ,Cd are the blocks of C and Cd is padded to the required dimension
with columns of all-zeroes. Then, for each 8 ∈ [d], compute c̃8 ← CDKS.Pack(pk,C8 ) ∈ '2

32,@2
.

4. Apply (split) modulus switching: For each 8 ∈ [d], let (28,1, 28,2) = ModReduce@̃2,1,@̃2,2 (c̃8 ).

Output resp = ((21,1, 21,2), . . . , (2d,1, 2d,2)).

• Extract(qk, resp): On input the client state qk = (B1, B2) and the response resp = ((21,1, 21,2), . . . , (2d,1, 2d,2))
where 28,1 ∈ '32,@̃2,1 and 28,2 ∈ '32,@̃2,2 , the extract algorithm computes E ′8 = ⌊−B228,1⌉@̃2,1,@̃2,2 + 28,2 ∈ '32,@̃2,2 and
E8 = ⌊E ′8 ⌉@̃2,2,? ∈ '32,? for each 8 ∈ [d]. Let

w̄ =



Coeffs(E1)
...

Coeffs(Ed )



∈ Z32d? .

Parse w̄ = [ ww′ ] where w ∈ Z
^ (31+1)
? and w′ ∈ Z32d−^ (31+1)? . Compute

c′ =

[
G31,? 0

31×^

0
1×^31 gT

?

]
w = G31+1,?w ∈ Z

31+1
@̃1

and the scaled message `′ = [−Coeffs(B1) | 1] · c′ ∈ Z@̃1 . Compute ` = ⌊`′⌉@̃1,# ∈ Z# and output the
representative of ` in Z# .

Remark 3.2 (Silent Preprocessing). As described, the public parameters pp in Construction 3.1 are very long (specif-
ically, the vectors and a1 and a2). However, the vectors a1 and a2 are uniformly random, and could be derived from
a random oracle. This is a standard technique used in lattice-based PIR [MCR21, MW22, HHC+23a, DPC22]. With this
modification, the public parameters in Construction 3.1 only consist of the meta-parameters for the database itself
(i.e., the database dimensions and the record size). Thus, we say YPIR supports silent preprocessing (in the random
oracle model).

Remark 3.3 (Supporting Arbitrary Dimension). To simplify the description, Construction 3.1 assumes that the
database dimensions are multiples of the ring dimensions 31 and 32. While this can be guaranteed by padding
the database with dummy records, it is straightforward to extend the scheme to support databases with arbitrary
dimensions without padding. We describe the modifications to DBSetup and�ery:

• DBSetup(1_,D): Suppose D ∈ Zℓ1×ℓ2
#

. The DBSetup algorithm now sets<1 = ⌈ℓ1/31⌉ and<2 = ⌈ℓ2/32⌉. For
9 ∈ {1, 2}, it samples a9

r← '
< 9

3 9 ,@ 9
and lets Ā9 = NCyclicMat(aT

9 ) ∈ Z
3 9×< 93 9

@ 9
. It parses Ā9 = [A9 | A′9 ] where

A9 ∈ Z
3 9×ℓ9
@ 9

and A′9 ∈ Z
3 9×(< 93 9−ℓ9 )
@ 9

. The computation of H1 and H2 then proceeds as in Eq. (3.1).

• �ery(pp, idx): The query algorithm proceeds exactly as in Construction 3.1 with <1 = ⌈ℓ1/31⌉ and <2 =

⌈ℓ2/32⌉, except it now computes c̄9 = Coeffs(B 9a9 + e9 +Δ 9µ9 ) ∈ Z
< 93 9

@ 9
. It then parses c̄9 =

[
c9
c′
9

]
where c9 ∈ Z

ℓ9
@ 9

and c′9 ∈ Z
< 93 9−ℓ9
@ 9

. The query is still q = (pk, c1, c2).
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1
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1

G−1 (C1D)T
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2

3 3 3

^ + 1 outputs

Database
Query encodings
LWE encodings
Padding
RLWE encodings
Precomputed values

Figure 1: Illustration of the server computation in YPIR (i.e., the Answer algorithm in Construction 3.1). The operator
× denotes matrix multiplication, the parameter 3 is the lattice (and ring) dimension, and ^ is the ratio of the encoding
modulus (i.e., @) to the size of the (intermediate) plaintext modulus (i.e., ?). Each square cell represents a 3 × 3
matrix of Z@ values. The database is represented as an ℓ1-by-ℓ2 matrix, and each database values is an element of

Z# . We let C1 and C2 be the stacked matrices
[
A1

cT1

]
and

[
A2

cT2

]
, respectively. The striped cells represent values that

are precomputed by the server (i.e., these are independent of the query). We omit the modulus switching and the
use of different lattice dimensions for simplicity.

Correctness and security. We state our correctness and security theorems below, and defer their formal proofs
to Appendix C.

Theorem 3.4 (Correctness). Let # ∈ N be the record size and ℓ1, ℓ2 ∈ N be the database dimensions. Let 31, 32, @1,

@2, @̃1, @̃2,1, @̃2,2, j1, j2, I, ? be the scheme parameters from Construction 3.1. Suppose j1 and j2 are subgaussian with

parameters f1 and f2, respectively. Let ^ = ⌈log @̃1/log?⌉, d = ⌈^ (31 + 1)/32⌉, and C = ⌊logI @2⌋ + 1. Then, under the
independence heuristic, Construction 3.1 has correctness error

X ≤ 232d exp(−cg2double/f
2
double) + 2 exp(−cg

2
simple/f

2
simple),
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SimplePIR 31 f1 # @1 @̃1

210 11
√
2c 28 232 228

DoublePIR 32 f2 ? @2 @̃2,1 @̃2,2 I

211 6.4
√
2c 215 ≈ 256 228 220 219

Table 1: YPIR parameters chosen to provide correctness error X ≤ 2−40 and 128-bits of security. These parameters
support databases up to 64 GB (and dimensions ℓ1, ℓ2 ≤ 218). The parameters are partitioned into those used in the
“SimplePIR” step (Step 1) and those used in the “DoublePIR” step (Step 2).

where

gdouble =
@̃2,2

2?
− (@̃2,2 mod ?) − 1

2

(
2 + (@̃2,2 mod ?) + (@̃2,2/@2) (@2 mod ?)

)

f2
double ≤ (@̃2,2/@̃2,1)

232f
2
2/4 + (@̃2,2/@2)2 (f2

2/4) (ℓ2?2 + (322 − 1) (C32I2)/3)

gsimple =
@̃1

2#
− (@̃1 mod # ) − 1

2
(2 + @̃1 mod # + (@̃1/@1) (@1 mod # )) /2

f2
simple ≤ 31f

2
1/4 + (@̃1/@1)2ℓ1# 2f2

1/4.

Theorem 3.5 (Security). Under the RLWE31,<1,@1,j1 assumption and assuming the LWE-to-RLWE packing scheme

(CDKS.Setup,CDKS.Pack) satisfies pseudorandomness given the packing key (Definition 2.10), then Construction 3.1

satisfies query privacy.

Security assumptions. As we show in Appendix A, the security of the LWE-to-RLWE packing scheme relies on
hardness of RLWE32,<′2,@2,j2 where<

′
2 =<2 + (⌊logI @2⌋ + 1) · log32 along with a “circular security” assumption on

RLWE encodings (Definition A.1). The latter assumption is a standard assumption when working with lattice-based
homomorphic encryption schemes [Gen09, BV11, BGV12, Bra12] and used in many previous RLWE-based PIR
schemes [ACLS18, AYA+21, MCR21, MW22, LMRS24a].

4 Implementation and Evaluation

In this section, we describe our implementation and experimental evaluation of the YPIR protocol (Construction 3.1).

Parameter selection. Theorem 3.4 bounds the correctness error X of YPIR as function of the scheme parameters.
We now describe how we instantiate the different parameters to achieve a correctness error X ≤ 2−40 and 128-bits
of security (as estimated by the Lattice Estimator [APS15]7). We select a single parameter set for YPIR using the
following procedure:

• Like SimplePIR [HHC+23a], we set 31 = 210 = 1024 and @1 = 232. We set j1 to be a discrete Gaussian distribution
with parameter B1 = 11

√
2c (to achieve 128-bits of security for this choice of ring dimension and modulus).

• For the DoublePIR and LWE-to-RLWE packing steps, we work over a larger ring, to allow for the extra noise
added by the LWE-to-RLWE transformation. Here, we choose 32 = 211 = 2048 and @2 to be a 56-bit modulus that
splits into a product of two (28-bit) NTT-friendly modulus (specifically, @2 = (228 − 216 + 1) · (228 − 224 − 221 + 1)).
Using two 28-bit NTT-friendly modulus allows us to use native 64-bit integer arithmetic to implement arithmetic
operations modulo each of the prime factors of @2.

8 We choose j2 to be a discrete Gaussian distribution with
parameter B2 = 6.4

√
2c (to achieve 128-bits of security for this choice of ring dimension and modulus).

7We use commit 4195c66 (2024/02/06) from https://github.com/malb/lattice-estimator for our security estimates.
8Since we use 64-bit integer arithmetic to implement arithmetic operations with respect to a 28-bit modulus, we do not need to perform a modulus
reduction after every arithmetic operation. For instance, in our experiments, the computation of Eq. (3.2) is 60× slower if we perform a modulus
reduction after every arithmetic operation. In our implementation, we reduce only when the computation might “overflow” the 64-bit integer.
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• We choose parameters to support any choice of ℓ1, ℓ2 ≤ 218 (recall that the database in YPIR is represented as
an ℓ1-by-ℓ2 matrix). This is sufficient to support databases with up to 236 records (and for our choice of # , up
to 64 GB in size).

• We choose the largest value for the gadget decomposition base I ∈ N that achieves correctness error at most
X ≤ 2−40. This allows for faster computation (smaller gadget decompositions).

• We choose the largest value of # and the largest intermediate decomposition base ? that achieves correctness
error at most X when @̃1 = @1 and @̃2,1 = @̃2,2 = @2. This minimizes the communication overhead of the scheme.
We constrain # and ? to be powers-of-two so elements can be represented by a single machine word.

• After fixing # and ? , we choose the smallest modulus switching parameters @̃1, @̃2,1, @̃2,2 that achieve correctness
error at most X . This minimizes the size of the responses.

We summarize the lattice parameters we select in Table 1. When the database consists of ℓ one-bit records, we let
ℓ ′ = ⌈ℓ/log# ⌉, and set ℓ1 = 2⌈log ℓ

′/2⌉ and ℓ2 = 2⌊log ℓ
′/2⌋ .

4.1 NTT-Based Hint Computation

We now describe our approach to efficiently compute the hints H1 and H2 in Eq. (3.1) of YPIR. By using structured
matrices, the YPIR approach is asymptotically faster (by a factor 3/log3 , where 3 is the lattice dimension) and
concretely faster (10–15×) compared to the preprocessing approaches of protocols like SimplePIR [HHC+23a] or
FrodoPIR [DPC22]. Our approach directly applies to reduce the preprocessing cost in any system that builds on
SimplePIR/FrodoPIR (e.g., [CNC+23, HDCZ23a, LMRS24a, dCL24]) with zero impact to the online costs of the protocol
(the online server processing is unchanged). The only difference is security relies on RLWE rather than LWE.

SimplePIR and FrodoPIR preprocessing. SimplePIR [HHC+23a] and FrodoPIR [DPC22] achieve high throughput
by moving the majority of the server processing cost to a query-independent offline phase. There, the offline precompu-

tation consists of computing a matrix-vector productA ·D ∈ Z3×ℓ2@ , whereA ∈ Z3×ℓ1@ is a randommatrix andD ∈ Zℓ1×ℓ2
#

is the database. Here, 3 is the lattice dimension. The query in their protocols consist of LWE encodings of the index
with respect to thematrixA. With a naïvematrix-matrix multiplication algorithm, computing the productA·D requires
$ (ℓ1ℓ23) arithmetic operations. Concretely, in these schemes, 3 ≥ 210, so the offline precomputation is very expensive.

Our approach. InYPIR, we achieve faster preprocessing by using a structured negacyclicmatrixA = NCyclicMat(aT),
where a ∈ '<@ . When A is negacyclic and the modulus @ is NTT-friendly, we can use the NTT to compute the product
A · D using $ (ℓ1ℓ2 log3) arithmetic operations. This yields a 3/log3 speed-up over previous approaches. On the flip
side, security of the scheme now relies on the ring LWE assumption (as opposed to plain LWE), since the queries
are now encodings of the index with respect to the structured matrix A. We provide more details in Appendix B.

Modulus selection. SimplePIR/FrodoPIR use a power-of-two modulus @ so arithmetic operations can make use of
native machine-word arithmetic and avoid expensive modular reductions. Unfortunately, such @ is not NTT-friendly
(since @ ≠ 1 mod 23). In YPIR, we retain the same power-of-two modulus @ as in prior work. However, to compute
the hint A · D using NTTs, we work over Z" where" > 3#@ is an NTT-friendly modulus. Noting that the entries in
A are bounded by @ and those in D are bounded by # , computing A · D mod " is equivalent to computing A · D over

the integers. This is sufficient for computing A ·D ∈ Z3×ℓ2@ . Even though this approach requires working over a larger
modulus" , the ability to use NTTs to speed up the matrix-matrix multiplication outweighs the costs (see Section 4.4).

Remark 4.1 (SimplePIR with RLWE). Given that the use of structured matrices (and ring LWE) allows faster prepro-
cessing, a natural question is why we do not just apply SimplePIR over polynomial rings. In this setting, we represent
the database as D ∈ Zℓ1×ℓ2

#
by packing each block of 3 entries into the coefficients of a polynomial; the resulting

database is D̂ ∈ 'ℓ1/3×ℓ2
#

. The public matrix A ∈ Z3×ℓ2@ is replaced by a vector â ∈ 'ℓ2
@ and the query vector q ∈ Zℓ1@

becomes q̂ ∈ 'ℓ1/3
@ . Like in SimplePIR, the online computation is a matrix-vector product of ring elements q̂TD̂. If
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q̂ and D̂ are in NTT representation, then computing q̂TD̂ requires the same number of arithmetic operations modulo
@ as computing qTD in SimplePIR. While this seems like a reasonable approach, there are two significant limitations:

• Choice of modulus @: For fast processing, the query vector q̂ and the database D̂ need to be in NTT repre-
sentation. This means we either need to choose an NTT-friendly modulus @ or we need to run FFT over the
complex numbers. Both are more costly compared to using a power-of-two modulus (where mod @ operations
can be implemented with native integer arithmetic).

• Size of in-memory representation: A bigger limitation in practice is the fact that to leverage NTTs, the server
needs to store the database D in NTT representation (over the encoding ring Z@). This increases the size of the
in-memory representation of the database. For instance, if the database elements are Z# -elements and the query
encodings are Z@-elements, there is a log@/log# overhead in storage. As we discuss in Sections 4.3 and 4.4,
the throughput of the SimplePIR-family of approaches is bottlenecked by memory bandwidth. This means a
log@/log# increase in representation size translates to an equal reduction in throughput. Experimentally, we
compared a basic implementation of SimplePIR with RLWE encodings to standard SimplePIR and observed
that the use of RLWE incurs a 3.6× reduction in throughput (from 11.5 GB/s to 3.2 GB/s). For this parameter
setting, log@/log# = 56/16 = 3.5.

The approach we take in YPIR allows us to get the best of both worlds. We keep the SimplePIR structure of working
over the integers, but replace A with a negacyclic matrix. This allows us to use NTTs for fast preprocessing, but does
not introduce additional storage overhead for the server processing (since the online computation is still performed
over the integers Z@ rather than the polynomial ring '@).

4.2 Preprocessing for the LWE-to-RLWE Packing Transformation

In this section, we show how to speed up the [CDKS21] LWE-to-RLWE packing transformation (Construction 2.8)
by moving a large portion of the online packing computation to the offline preprocessing stage (i.e., from Answer to
Setup). Specifically, our approach reduces the number of NTTs that must be performed in Answer from$ (^31+ log32)
to $ (^ + log32). Concretely, this reduces the online cost of the packing transformation by 9× (see Table 5). Our
approach relies on the observation that many of the operations in the CDKS.Pack algorithm used by YPIR (Construc-
tion 3.1) operate on quantities that are actually known at Setup, and thus, can be precomputed in an offline phase.
Our approach follows a similar methodology taken in HintlessPIR [LMRS24a] of moving these operations to the
offline phase. The specific approach we take relies on the following observations about the CDKS.Pack algorithm
and its use in the Answer algorithm of YPIR:

• Let pk← CDKS.Setup(1_, B, I) and parse pk = (W1, . . . ,Wℓ ). From Construction 2.6, we can write

W8 =

[
aT

8

bT

8

]
∈ '2×C

@ ,

where a8 , b8 ∈ 'C@ . Let c1, . . . , c3 ∈ Z3+1@ be LWE encodings where each cT8 = [cT8,0 | 28,1], and c8,0 ∈ Z3@ and

28,1 ∈ Z@ . Let c′ ← CDKS.Pack(pk, c1, . . . , c3 ) and parse c′ = (2′0, 2′1) ∈ '2
@ . In the following, we will refer to the

components a8 , c8,0, 2
′
0 as the “random” component of the packing key or the ciphertext. From Constructions 2.6

and 2.8, we observe that the random component 2′0 of the response only depends on the random components
a1, . . . , aℓ of the packing key and the corresponding components c8,0, . . . , c3,0 of the ciphertext.

• Normally, the CDKS.Setup algorithm would sample a1, . . . , aℓ uniformly at random from 'C@ , but similar to
Remark 3.2, we can instead derive these components from a short seed instead (and appeal to the random
oracle heuristic). This way, the random components a1, . . . , aℓ in the packing key are fixed at Setup time (and
can be preprocessed in Setup).

• The Answer algorithm in YPIR invokes CDKS.Pack on ^ (31 + 1) input LWE encodings to produce a total of
d = ⌈^ (31 + 1)/32⌉ output RLWE encodings. It does so by processing a block of 32 LWE encodings at a time.
From Eq. (3.2), we observe that the random component of the first ^31 LWE encodings is precisely the matrix H2

(i.e., the precomputed hint). Using the above observations, the server can precompute the random component
of the output RLWE encodings for the first ⌊^31/32⌋ blocks.
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Using the above approach, the server can precompute most of the random components in the CDKS.Pack output.
Namely, during Setup, after the server computes the hint H2, it then precomputes the random component of the
first ⌊^31/32⌋ RLWE encodings that would be output by CDKS.Pack. In the Answer algorithm, the server only needs
to apply the packing procedure to the remaining ^ query-dependent LWE encodings. Normally, packing ^31 LWE
encodings using CDKS.Pack would require computing $ (^31) automorphisms, which in turn requires $ (^31) NTTs
to implement the multiplication with the key-switching matrix. Thus, by precomputing the random components
for most of the CDKS.Pack outputs, we reduce the number of NTTs the Answer algorithm has to compute from
$ (^31 + log32) to $ (^ + log32). The extra $ (log32) factor is from the padding (with the all-zeroes matrix) added
to Cd in Step 3 of the Answer algorithm.

The server still needs to calculate the non-random component (i.e., the “message-embedding component”) of
each of the RLWE encodings output by CDKS.Pack. These components depend on the non-random portions of the
key-switching matrices as well as the query LWE encodings, so they can only be computed during the online phase.
However, these can be computed without any additional NTTs:

• From Eq. (2.2), when computing an automorphism (the main operation in CDKS.Pack), the server needs to
compute Wg−1I (g (20)), where W is the key-switching matrix and 20 is the random component of the input
encoding. Now, in order to compute the random component of the output, the server must have already
computed g−1I (g (20)), either during Setup or during Answer. In both cases, we assume the server caches the
value of g−1I (g (20)) in NTT representation.

• The client sends the key-switching matrixW to the server (during�ery) in NTT representation. This does not
affect the size of the query and saves the need for a separate NTT computation on the server side. We similarly
assume that the client sends the query encodings in NTT representation. Since generating the key-switching
matrices and the query encodings already requires performing polynomial multiplication, the client has already
performed the necessary NTTs, so this step does not introduce any additional client computation.

• After computing W · g−1I (g (20)), the server needs to apply the automorphism g to the message-embedding
component of the ciphertext (i.e., compute g (21)). If 21 is in NTT representation, then the NTT representation
of g (21) is simply a permutation on the NTT representation of 21. In our implementation, the server simply
pre-computes and caches the log32 permutations used by CDKS.Pack. This way, the server does not need to
perform additional NTTs when computing CDKS.Pack.

Our overall packing approach implements the exact same procedure as CDKS.Pack. The only difference is that most
of the computation (that depend on components known at Setup time) is precomputed in Setup rather than during
the online Answer algorithm. With preprocessing, the server only needs to compute $ (^ + log32) NTTs during the
online phase. Concretely, this yields a 9× in the online costs of Answer. This improvement is critical to achieving
high throughput. For instance, as we discuss in Section 4.4, when retrieving a bit (or a byte) from a 4 GB database,
the running time of the packing procedure constituted 51% of the total running time of the Answer algorithm. With
preprocessing, the cost of packing is just 10% of the total cost of the Answer algorithm. In terms of overall throughput,
for this particular database configuration, preprocessing increases the server throughput from 6 GB/s to 11 GB/s (see
Table 3 and Table 5). Our approach incurs a modest amount of additional precomputation time (under 500 ms) and
server storage (under 10 MB). Moreover, this precomputation cost is independent of the database size.

4.3 Cross-Client Batching and the Memory Bandwidth Barrier

SimplePIR [HHC+23a] achieves the highest concrete server throughput among all single-server protocols (that do
not require streaming the full database in an offline phase). The bottleneck in SimplePIR is the memory band-

width of the machine and not the cost of performing the underlying arithmetic operations during query pro-
cessing. One way to increase the effective throughput of the protocol then is to perform additional computation
for each byte of memory accessed. A natural approach would be to process multiple queries with a single scan
through memory. The notion of batch PIR is well-studied in the case where a single client seeks to make multiple
queries [BIM00, IKOS04, GKL10, ACLS18, MR23], and indeed batch PIR enables significant improvements to server
throughput both concretely and asymptotically.
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Here, we show that concrete reductions in computation time are possible even if multiple independent clients are
making queries. We refer to this approach as cross-client batching. As we show in Section 4.4, cross-client batching
can increase the effective server throughput of many PIR schemes by 1.5–1.7×. A benefit of our approach is that
it is entirely transparent to the client (i.e., requires no changes client-side) and applies even if the clients are each
making a single query.

Cross-client batching. The idea in cross-client batching is to use a single scan through the database to simulta-
neously answer multiple queries from non-coordinating clients. The structure of many recent PIR protocols is directly
amenable to cross-client batching. As a concrete example, in SimplePIR, the query computation corresponds to
computing a matrix-vector product qTD where q is the query vector and D is the database. Suppose : different clients
each issue a SimplePIR query qT

1, . . . , q
T

:
. Let Q be the matrix formed by stacking the vectors qT

1, . . . , q
T

:
. To answer

the : queries, the server now computes the matrix-matrix product Q · D. While this would require the same number
of elementary multiplications as computing qT

1D, . . . , q
T

:
D individually, the server can now compute Q · D with only

a single pass over the database. Put another way, for every entry of D that the CPU accesses, it now performs :
arithmetic operations rather than 1. Since memory bandwidth is the bottleneck of the basic protocol, computing
Q · D is overall faster than separately computing qT

1D, . . . , q
T

:
D. If it takes time ) to process : queries on a database of

size ℓ , we define the effective throughput of the protocol to be :ℓ/) . Similar batching techniques have been used to
improve the throughput of database systems in settings where the storage bandwidth is saturated [CMS16, CGB+14].

Previously, Lueks and Goldberg [LG15] showed how to leverage cross-client batching to improve the effective
server throughput of multi-server PIR protocols where the server computation consists of computing a matrix-vector
product (much like in our setting). When processing multiple queries, the matrix-vector product becomes a matrix-
matrix product. In [LG15], the authors use fast matrix multiplication algorithms to achieve asymptotic and concrete
speed-ups. In our setting, we leverage batching as a means to improve CPU utilization and as such, our approach only
provides a concrete (and not asymptotic) improvement to server throughput. It is interesting to see whether faster
matrix multiplication algorithms can be used to further improve concrete efficiency in SimplePIR-based protocols.

Practical considerations. Cross-client batching only makes sense in a setting where the server often has a queue
that is at least : deep. In our experiments, a small batch size of : = 4 is sufficient to get most of the advantages
of cross-client batching. In many of the applications of PIR (e.g., private DNS or private Certificate Transparency
auditing), assuming a queue of size : = 4 is a mild assumption. The non-private versions of each of these services
employ large server fleets that regularly process requests from more than 4 clients simultaneously. Moreover, there
is no requirement that the server must wait until the queue is full before processing the query.

Memory bandwidth in RLWE-based PIR. PIR schemes based on RLWE [ACLS18, MCR21, MW22] require less
communication than SimplePIR and DoublePIR, but have much smaller throughput. Even though the overall through-
put of these schemes is much smaller than the system’s memory bandwidth, we observe that memory bandwidth
is also a constraint in these schemes (for reasons similar to those outlined in Remark 4.1).

In a typical RLWE-based PIR scheme, the database records are represented by polynomials in '# , where # is
the plaintext modulus. To process the query, the server performs multiplications over the ring '@ (i.e., the encoding
space), where the encoding modulus @ is much greater than # . To efficiently implement the polynomial arithmetic
over '@ , the plaintext polynomials need to be stored in their NTT representation (over '@). This incurs a log@/log#
blowup in the size of the in-memory representation of the database (or the protocol incurs a significant degradation
in throughput). Because RLWE-based schemes must pay for this log@/log# factor in representation size, even when
they saturate memory bandwidth, they can only achieve a throughput of " log# /log@, where " is the memory
bandwidth. For example, the memory blowup factor is 8 for the Spiral system [MW22] (log# = 8 and log@ ≈ 64).
A standard per-core memory bandwidth is 14.6 GB/s, which leads to a throughput upper bound of roughly 1.8 GB/s
(roughly the throughput reported for the fastest version of Spiral [MW22]). We refer to Remark 4.1 for a similar
analysis in the setting of SimplePIR instantiated with RLWE.

Our cross-client batching approach can be applied to RLWE schemes like Spiral to improve the effective through-
put. However, the benefit there is smaller since cross-client batching only helps improve the initial linear scan over
the database (and does not help with the subsequent folding steps). The Spiral scheme sets the parameters to balances
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the cost of the initial linear scan with the folding steps; as such, cross-client batching would only be beneficial to
the first half of the protocol processing as opposed to the full processing.

4.4 Experimental Evaluation

In this section, we describe our experimental evaluation of the YPIR protocol and compare it against other PIR
protocols. We compare against the state-of-the-art high-throughput single-server PIR schemes: SimplePIR/Dou-
blePIR [HHC+23a] as well as the hintless schemes proposed in Tiptoe [HDCZ23a] and HintlessPIR [LMRS24a]. We
refer to Section 5.1 for a more detailed summary of the design of the PIR scheme from Tiptoe as well as the HintlessPIR
scheme. We do not benchmark schemes in alternative models such as the sublinear schemes that require streaming
the database in the offline phase [ZPSZ24, MSR23, GZS24] or the RLWE-based schemes that require maintaining
client-specific keys [ACLS18, AYA+21, ALP+21, MCR21, MW22].

Experimental setup. We implement YPIR in 3000 lines of Rust, with a 1000 line C++ kernel for fast 32-bit matrix-
multiplication adapted from the public SimplePIR implementation [HHC+23a].9 We use the approach from Section 4.1
to implement the server hint precomputation, and use the approach from Section 4.2 to speed up the LWE-to-RLWE
packing transformation. As discussed in Remarks 3.2 and A.4, we compress the vectors a1 and a2 in the public parame-
ters pp as well as the pseudorandom components of the packing key pk using the output of a stream cipher (ChaCha20
in counter mode). We benchmark YPIR against the public implementations of SimplePIR, DoublePIR [HHC+23a]
(commit e9020b0), the PIR scheme from Tiptoe [HDCZ23a] (commit f053a81), and HintlessPIR [LMRS24a] (commit
4be2ae8). When relevant, we compile each scheme with support for the Intel HEXL [BKS+21] acceleration library. We
use an Amazon EC2 r6i.16xlarge instance running Ubuntu 22.04, with 64 vCPUs (Intel Xeon Platinum 8375C CPU
@ 2.9 GHz) and 512 GB of RAM. We use the same (single-threaded)10 benchmarking environment for all experiments,
and compile all of the implementations using GCC 11. The processor supports the AVX2 and AVX-512 instruction
sets, and we enable SIMD instruction set support for all schemes. We write KB, MB, and GB to denote 210, 220, and
230 bytes, respectively. All of our runtime measurements are averaged from a minimum of 5 sample runs and have
a standard deviation of at most 5%.

Server throughput. In Table 2, we report the different computational and communication costs for retrieving a
1-bit record from databases of varying sizes. We focus on single-bit retrieval since this is the setting of interest in
private SCT auditing and provides a common baseline for comparing different schemes. Each YPIR response actually
encodes an element of Z# (for our parameters, each record is 8 bits long).

For small databases (e.g., 1 GB), the throughput of YPIR is 43% slower than SimplePIR and 26% slower than
DoublePIR. This is because a significant portion of the query-processing time is spent on the LWE-to-RLWE trans-
formation (30%; see Table 3). However, since the cost of this transformation is essentially independent of the size
of the database, the throughput of YPIR quickly approaches that of DoublePIR as the size of database increases. With
an 8 GB database, the throughput is 3–18% faster than the reference implementations of SimplePIR and DoublePIR
and 79% of the memory bandwidth of the system. The efficiency gain over SimplePIR and DoublePIR is due both to a
different choice of parameters in YPIR compared to the reference implementation [HHC+23b] and to a more optimized
implementation. To compare the schemes on an even footing, we include measurements against our implementation
of these protocols (denoted SimplePIR∗ and DoublePIR∗) with our lattice parameters from Table 1 in Appendix D
(Table 8). Compared to our SimplePIR∗ and DoublePIR∗ implementations, the throughput of YPIR on a 8 GB database
is only 10% slower, and for a 32 GB database, only 1% slower. Thus, for moderate-size databases, YPIR achieves similar
throughput to SimplePIR/DoublePIR without any offline hints. We also show the throughput of the different schemes
as a function of the database size in Fig. 2.

Compared to the Tiptoe approach [HDCZ23a], YPIR achieves 8–19× higher throughput. This is because over 85%
of the server processing time in Tiptoe is spent on the LWE-to-RLWE conversion algorithm (based on homomorphic

9Our code is available at https://github.com/menonsamir/ypir.
10The primary computational cost in the SimplePIR-family of protocols (including YPIR and HintlessPIR) is computing a matrix-vector product.
This is a highly parallelizable operation. However, for ease of comparison, we focus on a single-threaded execution in our evaluation.
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Database Metric SimplePIR DoublePIR Tiptoe HintlessPIR YPIR

Prep. Throughput 3.7 MB/s 3.4 MB/s 1.6 MB/s 4.8 MB/s 39 MB/s

Off. Download 121 MB 16 MB — — —

1 GB Upload 120 KB 312 KB 33 MB 488 KB 846 KB
Download 120 KB 32 KB 2.1 MB 1.7 MB 12 KB
Server Time 74 ms 94 ms 2.47 s 743 ms 129 ms
Throughput 13.6 GB/s 10.6 GB/s 415 MB/s 1.3 GB/s 7.8 GB/s

Prep. Throughput 3.1 MB/s 2.9 MB/s 1.6 MB/s 5.2 MB/s 46 MB/s
Off. Download 362 MB 16 MB — — —

8 GB Upload 362 KB 724 KB 33 MB 1.4 MB 1.5 MB
Download 362 KB 32 KB 8.6 MB 1.7 MB 12 KB
Server Time 708 ms 845 ms 9.75 s 1.62 s 687 ms
Throughput 11.3 GB/s 9.5 GB/s 840 MB/s 4.9 GB/s 11.6 GB/s

Prep. Throughput 3.3 MB/s 3.3 MB/s 1.4 MB/s 5.7 MB/s 48 MB/s
Off. Download 724 MB 16 MB — — —

32 GB Upload 724 KB 1.4 MB 34 MB 2.4 MB 2.5 MB
Download 724 KB 32 KB 17 MB 3.2 MB 12 KB
Server Time 3.08 s 3.22 s 21.00 s 5.00 s 2.64 s
Throughput 10.4 GB/s 9.9 GB/s 1.5 GB/s 6.4 GB/s 12.1 GB/s

Table 2: Communication and computation needed to retrieve a single bit for databases of varying sizes. For each scheme,
we also measure the speed of the preprocessing algorithm (“Prep. Throughput”) that the server must run upon each
database update, and if applicable, the size of the hint that the client must download in the offline phase (“Off. Down-
load”). The measurements for SimplePIR, DoublePIR, [HHC+23a], Tiptoe [HDCZ23a], and HintlessPIR [LMRS24a] are
all obtained by running their official reference implementations on our test system [HHC+23b, HDCZ23b, LMRS24b].
We refer to Table 8 for a direct comparison with our implementations of SimplePIR and DoublePIR (derived from
the subprotocols of YPIR), which achieve higher throughput than the provided reference implementation.

decryption). In YPIR, for large databases, the LWE-to-RLWE packing is only 1–10% of the total server processing time
(see Table 3). For the private web search application that Tiptoe was designed for, this packing step does not impact
client query latency, but the server incurs the full computational costs of the packing process. Tiptoe’s throughput
increases with database size, because larger databases help amortize the cost of LWE-to-RLWE packing (which scales
with the square root of the database size).

Compared to HintlessPIR, YPIR achieves 2–6× higher server throughput. Notably, the HintlessPIR reference
implementation peaks at 6.4 GB/s while YPIR peaks at 12.1 GB/s. One reason underlying this performance gap is
because HintlessPIR applies the LWE-to-RLWE transformation to pack $ (

√
# ) encodings, where # is the number of

records in the database. In contrast, YPIR only needs to pack a fixed number of LWE encodings (independent of the
number of records). For a 32 GB database, HintlessPIR spends roughly 50% of its time performing packing (because
it packs $ (

√
# ) encodings), whereas YPIR spends only 1% of its time packing.

Communication. Comparing the communication requirements of YPIR to hint-based schemes, the queries in
YPIR are about 1.8–2.7× larger than DoublePIR and 3.5–7× larger than SimplePIR (with smaller overheads for larger
databases). The larger queries are due to the key-switching matrices needed for the LWE-to-RLWE packing. On
the flip side, the response size for YPIR is 2.7× smaller than DoublePIR and 10–60× smaller than SimplePIR. This
is due to the better rate of RLWE encodings compared to LWE encodings, as well as the use of modulus switching
in our implementation. The response size of YPIR and DoublePIR depend only on the lattice parameters and not the
database size; in SimplePIR, the response scales with the square root of the database size. If we look at total online
communication (both upload and download), the cost of YPIR is only 1.8–3.6× larger compared to SimplePIR and
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Figure 2: Server throughput for retrieving a single bit from different databases. For SimplePIR and DoublePIR, we
report throughput using our reference implementation and parameter choices (denoted SimplePIR∗ and DoublePIR∗),
since these were faster than those of the reference implementation [HHC+23b] in our test setup. For Hint-
lessPIR [LMRS24a], we report the bandwidth measured on our system with the reference implementation [LMRS24b].
We measure the memory bandwidth of the system using STREAM [McC95].

1.8–2.5× larger compared to DoublePIR. The key advantage, of course, is that YPIR does not require the client to
download a hint. In the case of a 32 GB database, the size of the hint is 724 MB for SimplePIR and 16 MB for DoublePIR.
A client would have to make 681 queries to SimplePIR or 15 queries to DoublePIR before the total communication
of YPIR is worse. Thus, for dynamic settings where the database is frequently changing and the client makes a small
number of queries at a time, YPIR gives a net reduction in communication with only a small hit to throughput.

Compared to HintlessPIR, YPIR queries are 1.7–3× larger and responses are 125× smaller. The YPIR response
size is significantly smaller because the HintlessPIR response size scales with the square root of the database size
(like SimplePIR). On the other hand, YPIR queries are larger than in HintlessPIR due to needing more key-switching
matrices for the LWE-to-RLWE packing. Compared to Tiptoe, YPIR has 13–39× smaller queries and 175–1417×
smaller responses. The total communication cost for a issuing a single query for an 8 GB database is 1.5 MB for YPIR,
2 MB for HintlessPIR, and 42 MB for Tiptoe.

Preprocessing cost. Our NTT-based precomputation (Section 4.1) is about 10–15× faster than that of SimplePIR or
DoublePIR and 8× faster than HintlessPIR. For a 32 GB database, the offline precomputation of YPIR would take about
11 CPU-minutes, whereas for SimplePIR/DoublePIR, it would take roughly 144 CPU-minutes, and for HintlessPIR,
it would take 95 CPU-minutes. As described in Section 4.1, our precomputation method can be used directly in
SimplePIR/DoublePIR/HintlessPIR without affecting the online performance of the protocol.

Server microbenchmarks. Table 3 provides a fine-grained breakdown of the server computation costs of YPIR
(i.e., the Answer algorithm in Construction 3.1). We separately measure the costs of the SimplePIR step (Step 1), the
DoublePIR step (Step 2), and the LWE-to-RLWE packing step (Step 3). The modulus switching cost is insignificant
compared to the other three components so we do not include it in the breakdown. First, we observe that the packing
transformation essentially incurs a fixed cost to the server processing time. This is because the LWE-to-RLWE packing
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Size SimplePIR DoublePIR Packing Total

1 GB 0.07 s (59%) 14 ms (11%) 39 ms (30%) 0.13 s

4 GB 0.30 s (82%) 27 ms (7%) 38 ms (10%) 0.37 s

16 GB 1.21 s (93%) 57 ms (4%) 39 ms (3%) 1.31 s

32 GB 2.56 s (96%) 58 ms (2%) 39 ms (1%) 2.66 s

Table 3: Breakdown of YPIR server computation time for retrieving a single bit from databases of varying sizes.
For each database size, we report the time spent in the SimplePIR step (Step 1), the DoublePIR step (Step 2), and
the LWE-to-RLWE packing step (Step 3) for the Answer algorithm in Construction 3.1. In parentheses, we report
the percentage of the total time spent on the associated step.

Database Size |c1 | |c2 | |pk| Total Size

1 GB 128 KB (15%) 256 KB (30%) 462 KB (55%) 846 KB
4 GB 256 KB (21%) 512 KB (42%) 462 KB (38%) 1.2 MB
16 GB 512 KB (26%) 1.0 MB (51%) 462 KB (23%) 2.0 MB

Table 4: Breakdown of YPIR query size for retrieving a single bit from databases of varying sizes. Recall from
Construction 3.1 that the query consists of three components: (1) the LWE encoding c1 of the row of interest
(processed in the initial SimplePIR step), (2) the LWE encoding c2 of the column of interest (processed in the
DoublePIR step), and (3) the key-switching parameters pk for the LWE-to-RLWE packing. We report the size of each
of these components. In parenthesis, we report the percentage of the total query size associated with each component.

transformation in YPIR is applied to the DoublePIR responses, which does not scale with the size of the database.
For small databases (e.g., 1 GB), the packing transformation represents 30% of the server processing time, but as the
size of the database grows, the cost of the linear scan over the database (i.e., the SimplePIR step) dominates. With
a 32 GB database, the packing transformation is only 1% of the overall cost of the server processing. In this case, the
throughput of YPIR quickly approaches that of DoublePIR.

Query size breakdown. In Table 4, we provide a breakdown of the different components of the YPIR query. From
Construction 3.1, the YPIR query consists of two sets of LWE encodings c1, c2 (that encode indicator vectors of the
row and column of the desired database record) as well as the packing parameters pk (i.e., the key-switching matrices)
for the LWE-to-RLWE packing transformation (Construction 2.8). The size of the packing parameters matrices are
fixed (concretely, these are 462 KB), while the encodings of the indicator vectors for the row and the column scale with
the number of rows and columns, respectively. In our experiments, the database is arranged as a square with an equal
number of rows and columns. As such, the number of LWE encodings needed to encode the indicator vectors for
the row (c1) and for the column (c2) are the same. However, we use larger parameters for the second set of encodings
c2 (to support the LWE-to-RLWE packing transformation). As such, the encoding c2 is roughly (log@2/log@1) ≈ 2×
larger than the encoding c1.

Communication-computation tradeoffs. Fig. 3 shows the highest server throughput that each scheme can
achieve on a 32 GB database for a given budget on the total online communication. When the communication limit
does not allow us to use the base configuration of a scheme, we consider running multiple instances of a smaller
configuration. For example, the vanilla version of YPIR over a 32 GB database requires 2.5 MB of total communication
to process a query. If we require the total communication to be at most 2 MB, then it would no longer be feasible
to run the base version of YPIR. In this case, we we would consider running 2 instances of YPIR, each on a 16 GB
database, or 4 instances, each on an 8 GB database. If there are : instances, the client would issue a single query that
is used across all : instances, and the response would consist of : responses. This reduces the size of the query while
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Figure 3: Maximum throughput as a function of the maximum total online communication (i.e., the sum of the query
size and the response size) for retrieving a single bit from a 32 GB database. As in Fig. 2, we use our implementation
of SimplePIR and DoublePIR (i.e., SimplePIR∗ and DoublePIR∗) for the comparisons. For each scheme, the rightmost
point for each line indicates the minimum total communication necessary to retrieve a bit from the database. The
offline communication is 400MB–3.5 GB for SimplePIR, 14 MB for DoublePIR, and zero for YPIR and HintlessPIR.

increasing the size of the response. Note that this rebalancing is only applicable in the case of DoublePIR and YPIR

where the response size is much smaller than the query size (the query size scales with the size of the database but
the response size does not). Thus, rebalancing allows us to reduce the size of the DoublePIR and YPIR queries at the
expense of longer responses and a reduction in server throughput.

Fig. 3 shows that YPIR can achieve 95% of the throughput of DoublePIR with a total communication budget of
1.5 MB (and no offline communication). When the communication budget drops below 1.5 MB, YPIR’s throughput
decreases rapidly, as the LWE-to-RLWE packing transformation becomes a larger fraction of online processing time (if
we run : instances of YPIR, then we need to run the packing procedure : times). Currently, YPIR cannot achieve total
communication of less than 1 MB when retrieving a record from a 32 GB database. With DoublePIR, the minimum
communication for retrieving a bit from a 32 GB database hovers around 0.6 MB; however, this additionally requires
the client to pre-fetch a 14 MB hint. An important open question is to design PIR schemes that require significantly
smaller communication while retaining comparable server throughput (and silent preprocessing).

Cross-client batching. We modify SimplePIR, DoublePIR, and YPIR to support cross-client batching as described
in Section 4.3. For a database of size ℓ , we define the effective (per-query) server throughput to process a batch of
: queries to be :ℓ/) , where ) is the time it takes to answer all : queries. We consider batch sizes ranging from : = 1

to : = 8 and measure the effective throughput of the scheme for retrieving a single bit from a 32 GB database in Fig. 4.
In all cases, using cross-client batching increases the effective throughput by a factor of up to 1.4×. In the case of
SimplePIR and DoublePIR, processing a batch of 4 queries yields a 1.4× improvement (an effective throughput of
over 17 GB/s). This is higher than the memory throughput of the machine. With YPIR, the effective throughput for a
batch size of 4 is over 16 GB/s, which is 1.3× larger than the single-query throughput. The gap in effective throughput
between YPIR and SimplePIR widens as we increase : , since the fixed cost of the LWE-to-RLWE packing (see Table 3)
does not benefit from cross-client batching. These results show that for setting where a server needs to process
concurrent queries from different clients, it is advantageous to process them in a batch rather than sequentially, even
though there is no reduction in the total number of arithmetic operations the server performs.
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Figure 4: Effective per-query server throughput for retrieving a single bit from a 32 GB database with cross-client
batching. For a batch of : client queries and a database of size ℓ , the effective per-query server throughput is :ℓ/) ,
where ) is the time to process all : queries. As in Fig. 2, we use our implementation of SimplePIR and DoublePIR
(i.e., SimplePIR∗ and DoublePIR∗) for the comparisons. We measure the memory bandwidth of the system using
STREAM [McC95]. We compute the conjectured maximum possible throughput for these schemes based on the
assumption that processing each database byte requires a minimum of two 32-bit arithmetic operations and using
the clocks-per-instruction values provided by the CPU vendor [Int23].

LWE-to-RLWE translation. Tiptoe [HDCZ23a], HintlessPIR [LMRS24a], and YPIR all apply some form of LWE-
to-RLWE translation to compress the SimplePIR/DoublePIR hints and eliminate the need for an offline hint download.
Tiptoe and HintlessPIR rely on a bootstrapping-like approach where the client provides an RLWE encoding of the
secret key in its query. The server then treats the LWE encodings in the SimplePIR hint as a vector of plaintexts.
Then, using the RLWE encoding of the LWE secret key, it homomorphically evaluates the inner product between
the encodings in the SimplePIR hint and the secret key. This yields an RLWE encoding of the desired database record.
Since both of these approaches essentially implement homomorphic decryption, they set the plaintext modulus of the
RLWE encoding scheme to be at least as large as the LWE encoding modulus. This results in needing to use a much
larger RLWE encoding modulus to achieve correctness. For example, HintlessPIR uses a 90-bit RLWE modulus to
implement this step (whereas the LWE encoding modulus in the SimplePIR hint is just 32 bits). We refer to Section 5.1
for a more detailed description of the different approaches.

In contrast to the previous approaches, YPIR applies the Chen-Dai-Kim-Song packing transformation [CDKS21].
While this could also be viewed as a type of “bootstrapping” (since the transformation relies on key-switching, which
is in some sense a homomorphic decryption operation), it does not require us to “re-encode” the LWE encodings under
RLWE. Like most key-switching transformations, the Chen et al. transformation allows us to use the same modulus for
the LWE encoding and for the RLWE encodings. Moreover, the noise introduced by key-switching is additive and is
not scaled up by the magnitude of the LWE encoding modulus. A downside of this approach is that the LWE and RLWE
encodings share a common modulus, so we cannot use a power-of-two modulus, as such moduli are not NTT-friendly.

In Table 5, we provide microbenchmarks for packing 4096 LWE encodings (of dimension =) into RLWE encodings
(of dimension 3 ≥ =) using the different approaches. HintlessPIR has the smallest public parameters because it only
requires a single key-switching matrix. The Chen et al. approach uses log3 key-switching matrices. Tiptoe uses a
separate RLWE encoding for each component of the LWE secret, so its parameters have size$ (=3) and are concretely
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Tiptoe HintlessPIR
Chen et al. Chen et al.

Without preprocessing With preprocessing

log (n, q, p) (10, 32, 8) (10, 32, 8) (11, 56, 15) (11, 56, 15)
Parameter Size 32 MB 360 KB 528 KB 528 KB

Output Size 514 KB 180 KB 24 KB 24 KB

Output Rate 0.01 0.02 0.31 0.31

Offline Compute — 2012 ms — 1029 ms
Online Compute 594 ms 141 ms 340 ms 52 ms

Table 5: Concrete costs of packing 212 input LWE encodings into RLWE encodings using the Tiptoe [HDCZ23a],
HintlessPIR [LMRS24a], and the Chen et al. [CDKS21] approach (Construction 2.8) used in YPIR. We report the
lattice parameters for the input LWE encodings considered in each construction: = is the lattice dimension, @ is the
encoding modulus, and ? is the plaintext modulus. We also report the size of the parameters the client must upload
to the server, and the size of the output RLWE encodings. To normalize for the differences in the lattice parameters,
we also report the rate (the ratio of the plaintext size in the packed encoding to the size of the encoding). Finally,
we measure the offline and online server computation times. We report the Chen et al. packing approach with and
without the preprocessing technique described in Section 4.2. For approaches with preprocessing, we assume that
the pseudorandom components of the input encodings and public parameters are known to the server ahead of time.

larger than both approaches. The size of the packed encodings is 7.5× smaller using our approach than HintlessPIR
(and 21× smaller than Tiptoe). The reduction in size is because the Chen et al. approach can use a smaller RLWE
modulus and ring dimension (concretely, a 56-bit modulus and 3 = 2048, compared to a 90-bit modulus and 3 = 4096

in HintlessPIR). We can also apply modulus reduction to further reduce the size of the encodings. If we factor in the
different lattice parameters considered in each construction and focus on the rate (i.e., the ratio of the size of the
plaintext in the packed encoding to the size of the packed encoding), the Chen et al. approach is over 15× higher
than the approach from HintlessPIR.

We also measure the concrete offline and online costs of each packing procedure. Because the Tiptoe approach does
not require NTTs, it is 1.1× faster than the basic implementation of the Chen et al. approach without preprocessing. By
relying on preprocessing andmoving the bulk of the computation to the offline phase (see Section 4.2), both HintlessPIR
and the Chen et al. approaches are 4–12× faster than Tiptoe. Specifically, the online phase in these two approaches
only need to perform $ (3) operations (as opposed to $ (=3) in Tiptoe). Moreover, the offline preprocessing costs
for both schemes are negligible compared to the cost of computing the SimplePIR and DoublePIR hints. Overall, our
microbenchmarks indicate that the Chen et al. procedurewith preprocessing is roughly 2.7× faster than theHintlessPIR
approach. Thus, our approach simultaneously improves on the size of the packed RLWE encoding (by a factor of
7.5×) and computation time (by a factor of 2.7×) relative to HintlessPIR, but requires 1.5× larger parameters to do so.

4.5 Application to Private SCT Auditing

Certificate Transparency (CT) [Lau14, LLK13] is a standard for monitoring and auditing the issuance of digital
certificates by maintaining a public append-only log of every certificate issued by every certificate authority. In this
model, whenever a certificate authority (CA) issues a certificate, it also deposits the certificate into one or more CT
logs. The log operator responds with a signed certificate timestamp (SCT). The SCT is embedded within the certificate
and represents a commitment from the log operator to include the certificate in its log within a certain timeframe
(e.g., typically 24 hours). Whenever a client receives a certificate with an embedded SCT, the client can verify the SCT
with the log server to confirm that the server has indeed received the associated certificate. The client may choose
to reject certificates that do not contain a valid SCT. In turn, domain owners can check with log servers to obtain
the certificates that have been issued for their domain, and identify any fraudulent certificates.

To defend against log operators falsifying SCTs (i.e., issuing an SCT but not depositing the certificate into the log),
clients must regularly verify that (a subset of) the SCTs they receive from web servers are actually contained in the CT
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DoublePIR DoublePIR Tiptoe HintlessPIR YPIR

Update Frequency Weekly Daily — — —

Offline Download 16 MB 112 MB — — —
Upload 14 MB 14 MB 659 MB 27 MB 29 MB
Download 640 KB 640 KB 172 MB 34 MB 240 KB
Computation 16.90 s 16.90 s 194.96 s 32.40 s 13.74 s

Communication Cost $0.001569 $0.010610 $0.016215 $0.003222 $0.000022
Computation Cost $0.000253 $0.000253 $0.002924 $0.000486 $0.000206

Total Cost $0.001822 $0.010863 $0.019139 $0.003708 $0.000228

Table 6: Weekly server costs per client needed to support private SCT auditing using the PIR-based approach
of Henzinger et al. [HHC+23a]. Following [HHC+23a, DeB24], we assume the client performs 20 SCT audits
each week, where each audit corresponds to retrieving a single bit using a PIR query over an 8 GB database. For
DoublePIR [HHC+23a], the client needs to download a hint associated with the current state of the SCT database.
We consider the setting where the client downloads the hint once each week and the case where the client downloads
the hint (or a hint update) each day. The other schemes (Tiptoe [HDCZ23a], HintlessPIR [LMRS24a] and YPIR) do
not require hints. We disregard the cost of the server preprocessing in these measurements (since this is a one-time
cost that can be amortized across all clients). We measure the cost of running such a service based on current AWS
costs: ($0.09 per outbound GB and $1.5 · 10−5/core-second; inbound communication is free) [HHC+23a].

log. A naïve implementation of this would have the client simply reveal the SCTs they are auditing to the log operator,
which in turn, reveals the client’s browsing habits to the log operator. Several methods for privacy-preserving SCT
auditing are based on matching hash prefixes [DeB24] or accessing the log server via an anonymizing proxy [DPRS21],
but these approaches do not provide formal cryptographic guarantees to privacy.

Private SCT auditing. Several works have proposed to use PIR for private SCT auditing [LG15, KOR19, HHC+23a].
In this work, we focus on the recent approach of Henzinger et al. [HHC+23a] that leverages single-server PIR to
construct a private SCT auditing protocol. In their approach, each log operator prepares a data structure (based on
Bloom filters) representing the set of active SCTs in the log. To test whether a particular SCT is contained in the
log, the client privately reads a single bit from this data structure using PIR.

To represent the set of 5 billion currently-active SCTs, the Henzinger et al. approach encodes the SCTs as a database
of size 236 bits (8 GB). Each SCT audit in turn corresponds to a single PIR query to this database. In [HHC+23a], the
underlying PIR protocol is instantiated using DoublePIR.

Cost of private SCT auditing. A limitation of using DoublePIR for private SCT auditing is the need to download
(and store) the large hint. SCT databases are constantly updated, with roughly 10 million certificates issued each
day [Mer24]. To audit against the latest version of the log, the clients must first download the hint for the current
log state.11 To mitigate this, the approach in [HHC+23a] is to have clients download the hints on a weekly basis and
wait to test an SCT if its validity falls outside the time window associated with the current hint. While this reduces
the protocol’s communication costs, it also introduces delays in detecting malicious log behavior. The log server must
also maintain multiple copies of the SCT database to support PIR queries for hints issued at different times.

A PIR scheme with silent preprocessing avoids these deployment issues. Following [HHC+23a], we assume a
client makes 104 TLS connections each week and performs two audits for a 1/1000-fraction of connections (this is also
the setting Chrome uses [DeB24]). This corresponds to a client making 20 audits (i.e., PIR queries) over the course of

11Instead of downloading the full hint each time, the client could download an update instead. The size of the update scales roughly with the
number of rows in the database that has changed. Since the bits of the database correspond to the bits of a Bloom filter, updates will typically
occur in random positions. Since the number of insertions each day is significantly larger than the number of rows, the size of a daily hint
update is comparable to the size of the entire hint.
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a week. In Table 6, we report the monetary costs of the outbound communication12 and the server computation based
on current AWS pricing when instantiating the [HHC+23a] approach with DoublePIR, Tiptoe, HintlessPIR, and YPIR.

When the client downloads weekly hints, the DoublePIR approach [HHC+23a] has a weekly server cost of $1822
per 1 million clients. Over 80% of this cost is from clients downloading the 16 MB hint. If we consider daily updates,13

and have clients audit the most recent version of the log, the weekly cost of DoublePIR balloons to $10,863 per
1 million clients.

A system based on YPIR would have a weekly cost of $228 per 1 million clients. This is 8× cheaper than using
DoublePIR with weekly updates and over 48× cheaper than using DoublePIR with daily updates. Most of YPIR’s costs
are from server computation, not communication. If we apply cross-client batching with a queue of size 4, YPIR’s
estimated weekly server cost drops to just $183 per 1 million clients.

Scheme likes HintlessPIR, Tiptoe, and YPIR that do not require hints are unaffected by update frequency and
can be better-suited for SCT auditing. The upload in YPIR is just 1.07× larger than HintlessPIR, and 23× smaller than
Tiptoe. Since AWS only charges for outgoing communication, and Tiptoe and HintlessPIR have larger responses than
YPIR, they have substantially higher AWS costs (84× and 16×, respectively). Overall, the total communication required
by YPIR is 2× lower than HintlessPIR, 28× lower than Tiptoe, and 4.3× lower than DoublePIR with daily updates.
In fact, YPIR’s total communication with daily updates is smaller even compared to DoublePIR’s total communication
with weekly updates. So even if the client amortizes the DoublePIR hint across multiple queries over the course of
the week, YPIR still achieves smaller end-to-end communication costs. Compared to the communication needed by
Chrome’s :-anonymity-based approach for private SCT auditing [DeB24], (which does not provide cryptographic
privacy), the communication requirement using YPIR is only 12.6× higher. Concretely, the weekly communication
costs are 2.3 MB for the :-anonymity approach, and 29 MB for YPIR.

4.6 Application to Private Password Breach Checking

Another application of PIR is to password breach checking. In this setting, a client wants to detect whether a password
has been detected in a publicly-available breach, but without revealing the password to the server. These protocols
are useful for preventing credential stuffing attacks [LPA+19, TPY+19, ALP+21, KC21]. There are several ways to use
PIR to perform this kind of check:

• Bloom filter: One approach for password breach checking is for the server to construct a Bloom filter for all
of the compromised passwords. Similar to the approach for private SCT auditing considered in Section 4.5, the
client runs PIR to retrieve individual bits of the Bloom filter to determine whether a particular password is
present. False positives where the client incorrectly believes their password is present in the Bloom filter will
occur with some low probability, and can be adjusted by having the client read multiple bits of the Bloom filter.

• Keyword PIR: In keyword PIR [CGN98], clients retrieves records from the database via a keyword lookup
rather than by specifying an index. In this setting, the client either learns the record of interest if a record
with the queried keyword exists in the database; otherwise, the client learns that no such record exists. This
immediately implies a protocol for password breach checking as the client can simply query for the password
(or alternatively, a collision-resistant hash of the password) and learn whether it is contained in the database.
Keyword PIR can be reduced to index-based PIR with low overhead [CGN98, PSY23, CD24].

• Bucket retrieval: A third approach is for clients to use a traditional index-based PIR to retrieve a bucket of
password hashes that share a common prefix, and then locally check whether their desired item is in this
smaller set [ALP+21]. For example, to check a password against a set of 230 compromised entries, clients could
hash their target item, and retrieve the bucket corresponding to the first 15 bits of this hash. On average, each
bucket will contain ≈ 215 hashes that each begin with the chosen 15-bit prefix. When the number of items in
the set is large relative to the number of buckets, the buckets will be filled evenly with high probability.

In this work, we show how to use YPIR to implement the bucket-retrieval approach [ALP+21]. We opt for this one
because it avoids false positives, and moreover, can be directly supported by a standard index PIR scheme. To realize

12AWS only charges for outbound communication.
13Since SCTs are promises to include certificates in logs within a 24-hour period, the maximum useful frequency of database updates is daily.
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Database Metric SimplePIR HintlessPIR YPIR+SP
Prep. Throughput 3.7 MB/s 4.8 MB/s 63 MB/s

Off. Download 121 MB — —

215 × 32 KB Upload 120 KB 488 KB 686 KB
(1 GB) Download 120 KB 1.7 MB 120 KB

Server Time 74 ms 743 ms 415 ms
Throughput 13.6 GB/s 1.3 GB/s 2.4 GB/s

Prep. Throughput 3.1 MB/s 5.2 MB/s 101 MB/s
Off. Download 362 MB — —

218 × 32 KB Upload 362 KB 1.4 MB 1.3 MB
(8 GB) Download 362 KB 1.7 MB 228 KB

Server Time 708 ms 1.62 s 1.56 s
Throughput 11.3 GB/s 4.9 GB/s 5.1 GB/s

Prep. Throughput 3.3 MB/s 5.7 MB/s 115 MB/s
Off. Download 724 MB — —

219 × 64 KB Upload 724 KB 2.4 MB 2.2 MB
(32 GB) Download 724 KB 3.2 MB 444 KB

Server Time 3.08 s 5.00 s 5.24 s
Throughput 10.4 GB/s 6.4 GB/s 6.1 GB/s

Table 7: Communication and computation needed to retrieve larger records from databases of varying configurations.

this application, however, we need a PIR scheme that supports large records. The default version of YPIR is tailored
for single-bit (or byte) retrieval, which is suitable for settings like private SCT auditing (Section 4.5). For retrieving
a bucket of hashes, we need something better suited for large records.

YPIR with SimplePIR. To support larger database records, we consider a variant of YPIR where we apply the
LWE-to-RLWE packing procedure to the SimplePIR output rather than the DoublePIR output. Recall that the Sim-
plePIR output encodes an entire column of the database (as opposed to just a single record). Thus, the SimplePIR
output is already naturally encoding a “large record.” Note that this version of YPIR is similar to the approach taken
in HintlessPIR, where they apply bootstrapping to pack the SimplePIR hint into a small number of RLWE encodings.

In Table 7, we compare the performance of our YPIR with SimplePIR (denoted YPIR+SP) approach with SimplePIR
and HintlessPIR for retrieving large records from various databases. For sake of comparison, we consider the database
configurations from [LMRS24a]. Overall, YPIR with SimplePIR has a similar query size to HintlessPIR, but 7–14×
smaller responses. As discussed in Section 4.4, HintlessPIR has larger responses because the bootstrapping approach
requires it to embed the SimplePIR encoding modulus (32 bits) within the plaintext space of the output RLWE
encodings. This leads to a much larger RLWE encoding modulus (and thus, response size). In contrast, the approach
used by YPIR applies packing directly to the input LWE encodings, rather than treating them as plaintexts; this allows
the RLWE ciphertext modulus to be the same as the LWE ciphertext modulus.

The throughput of YPIR+SP is similar to that of HintlessPIR, ranging from 1.8× faster for small databases, to 5%

slower for large databases. YPIR is faster for small databases because it uses a lighterweight LWE-to-RLWE packing
procedure (see Section 4.4 and Table 5). However, the conversion step is only applied to an input of size$ (

√
# ) whereas

the SimplePIR step is applied to an input of size$ (# ), where # is the size of the database. This makes the difference in
overall throughput less substantial when# is large but noticeable when# is small. Because YPIR+SP performs packing
directly on the result of the SimplePIR step, it uses anNTT-friendlymodulus that is not a power-of-two in the SimplePIR
step. This makes the SimplePIR step of YPIR+SP about 1.4× slower than the SimplePIR reference implementation.
Since HintlessPIR can be directly applied to SimplePIR, it is able to achieve higher throughput than YPIR+SP when the
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database is large (e.g., HintlessPIR is 5% faster for a 32 GB database). Thus, for large databases with big records, YPIR+SP
has substantially smaller total communication, but comes at a small reduction in throughput relative to HintlessPIR.

Application to password breach checking. Returning to the application to password breach checking, wemeasure
performance on a 32 GB database containing 1 billion SHA-256 hashes. This is roughly twice the size of the 2022 “Have
I Been Pwned?” public dataset of leaked passwords hashes [HIB22]. To balance query and response sizes, we view
this as a database with 219 records, each of size 64 KB. Using YPIR+SP, performing a single password breach check
against 1 billion compromised passwords requires just 2.6 MB of total communication and 5.2 seconds of computation.
This is 2.2× less communication than HintlessPIR (mostly due to a 7.4× smaller response), but 5%more computation.

5 Related Work

Private information retrieval was first introduced in [CGKS95]. The original construction considered the multi-
server model where the database is replicated across multiple (non-colluding) servers. The reliance on non-
colluding servers enables lightweight constructions (based on symmetric cryptography or even no cryptography
at all) [Yek07, Efr09, BIKO12, GI14, BGI16, HH19].

Kushilevitz and Ostrovsky [KO97] gave the first single-server PIR scheme based on additively homomorphic
encryption. Subsequently, single-server PIR has been constructed from many number-theoretic assumptions [CMS99,
GR05, DGI+19, CGH+21, BCM22]. Of particular note are the lattice-based constructions, which yield the most
(concretely)-efficient constructions of single-server PIR [MBFK16, AS16, ACLS18, GH19, PT20, ALP+21, AYA+21,
MCR21, MR23, MW22, DPC22, HHC+23a, HDCZ23a, LMRS24a].

Reducing the computational cost of PIR. There are many techniques to reduce the computational burden
of PIR. Batch PIR [BIM00, IKOS04, GKL10, ACLS18, MR23] allows a client to retrieve many elements from the
database with low overhead relative to the cost of a single query. In stateful PIR [PPY18, KC21, MCR21, MZRA22],
the client retrieves private state from the server in an offline phase in order to reduce the cost of the online phase.
Recently, several works have also shown how to construct single-server PIR protocols with amortized sublinear
online computation [LP23, MSR23, WZLY23, ZPSZ24]. Notably, several of these constructions only rely on symmetric
cryptography [MSR23, WZLY23, ZPSZ24] and can plausibly handle queries to extremely large databases (on the order
of hundreds of GB). However, these systems have the limitation that the client has to stream the entire database in
the offline phase, which may be infeasible for large databases.

In doubly-efficient PIR [CHR17, BIPW17], the server locally preprocesses the database in a way that allows it
to answer queries in sublinear time. Notably, no communication is needed in the offline phase. A recent break-
through [LMW23] gives a construction of doubly-efficient PIR from the RLWE assumption; however, the concrete
costs of this protocol still seem too high to be practically viable for realistic database sizes [OPPW23].

PIR variations. A number of recent works have also sought to strengthen PIR to provide security in the presence
of malicious servers [WZ18, BKP22, CNC+23, DT24, dCL24]. Other extensions of PIR include retrieving records by
keyword instead of index [CGN98]; this case can be reduced to standard PIR [CGN98, ALP+21, MK22, PSY23].

5.1 Comparison with Tiptoe and HintlessPIR

In this section, we provide a more detailed overview of the PIR scheme implicit in Tiptoe [HDCZ23a] and the
HintlessPIR scheme [LMRS24a]. Both of these schemes build on top of SimplePIR [HHC+23a]. At a high level, the
database in SimplePIR is represented as a matrix D ∈ Zℓ×ℓ@ . In Tiptoe and HintlessPIR, the client’s query is a SimplePIR

query vector q ∈ Zℓ@ for their desired index. The server then computes the SimplePIR answer t = qTD ∈ Zℓ@ . In an

offline phase, the server also computes a hint H = AD ∈ Z=×ℓ@ , where A ∈ Z=×ℓ@ . Given the hint H and the server’s
answer t, the client can recover the desired record by computing the linear function t − sTH and rounding the result,
where s ∈ Z=@ is the LWE secret key the client used to generate the query. The basic SimplePIR protocol requires the

client download the hint H ∈ Z=×ℓ@ in the preprocessing phase. Both Tiptoe and HintlessPIR leverage bootstrapping

29



techniques to remove the need for the client to download the hint. In both systems, instead of having the client
download H, they instead have the client upload an encryption of the secret key sT (under a new RLWE encryption
scheme) and have the server homomorphically compute the function sTH ∈ Zℓ@ . Since the server knows H, this only
requires linear homomorphisms. The result is an RLWE encryption of sTH ∈ Zℓ@ . This is much smaller than the hint
matrix which has dimensions =-by-ℓ . The two schemes differ in how they implement this decryption strategy.

Tiptoe. The Tiptoe [HDCZ23a] query consists of a standard SimplePIR query, and an additional vector of = RLWE
ciphertexts encrypting the components of the the LWE secret key s ∈ Z=@ . The server then evaluates the matrix-vector

product sTH ∈ Zℓ@ . This yields a collection of ℓ RLWE ciphertexts, which is then sent back to the client.

HintlessPIR. The HintlessPIR [LMRS24a] approach is similar to Tiptoe: the query consists of a SimplePIR query
and an additional RLWE encryption of the LWE secret key s ∈ Z=@ . Instead of encrypting each of the = components
of s individually, the client packs all of the components of s into a single RLWE ciphertext (using the fact that RLWE
ciphertexts support multiple plaintext “slots” [BGV12, GHS12a]). In order to operate on the packed representation,
the client also provides a key-switching matrix for evaluating automorphisms on RLWE ciphertexts. The server
can use these query encodings to efficiently compute the same matrix-vector product as in Tiptoe, and produces an
RLWE encryption of the matrix-vector product sTH. Since performing rotations and key-switching normally requires
expensive NTTs, the HintlessPIR work also shows how to move the bulk of the work to the offline phase.

Comparison with YPIR. In both Tiptoe and HintlessPIR, the client sends over an RLWE encryption of the LWE
secret s and the server homomorphically computes the product sTH. As noted in Section 4, this approach requires the
RLWE encryption scheme to support homomorphic operations over Z@ (i.e., the ciphertext ring for the LWE instances).
This leads to concretely-larger parameters compared to the YPIR approach which relies on key-switching rather than
bootstrapping. Moreover, applying the approach to the SimplePIR response requires operating on $ (ℓ) values and
yields a response of size $ (ℓ). In contrast, if we apply packing to the DoublePIR response, then the packing cost and
the response size only depends polylogarithmically on the database size.
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A Analysis of the Chen-Dai-Kim-Song Packing Transformation

In this section, we show that the pseudorandomness security property fromDefinition 2.10 holds for the Chen-Dai-Kim-
Song packing transformation [CDKS21] (Construction 2.8). This follows assuming a key-dependent pseudorandomness
property on RLWE encodings (namely, that (0, B0 + 4) even given fresh RLWE encodings of functions of the secret
key B). This can also be stated as a “circular security” property on RLWE encodings. We state the specific assumption
we use below:

Definition A.1 (Key-Dependent Pseudorandomness for RLWE Encodings). Let _ be a security parameter, 3 = 3 (_)
be a power-of-two,< =<(_) be the number of samples, @ = @(_) be an encoding modulus, and j = j (_) be an error
distribution over the ring ' = Z[G]/(G3 + 1). Let F be an efficiently-computable set of functions from '@ to '@ . For
a bit 1 ∈ {0, 1} and an adversary A, let

,1 := Pr

[
AO(·) (1_, a, t1) :

B ← j, a
r← '<@ , e← j<

t0 = Ba + e, t1 r← '<@

]
,

where the oracle O takes as input a function 5 ∈ F , and outputs (0, B0 + 4 + 5 (B)), where 0 r← '@ and 4 ← j . We
say that the key-dependent pseudorandomness assumption for RLWE encodings with parameters (3,<,@, j) holds
if for all efficient adversariesA, there exists a negligible function negl(·) such that for all _ ∈ N, |,0 −,1 | = negl(_).

To show that Construction 2.8 satisfies the pseudorandomness property in Definition 2.10, we require key-
dependent pseudorandomness with respect to the set of (scaled) automorphisms Fauto:

Fauto = {A ↦→ : · gℓ (A ) : : ∈ Z@, ℓ ∈ N}, (A.1)

where gℓ : ' → ' is the automorphism A (G) ↦→ A (G ℓ ). We give the formal statement and analysis below:
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Lemma A.2 (Security of Construction 2.8). Let _ be a security parameter, 3 = 3 (_) be a power-of-two, @ = @(_) be an
encoding modulus, and j = j (_) be an error distribution over the ring ' = Z[G]/(G3 +1). Let Fauto be the family of scaled

automorphisms on '@ defined in Eq. (A.1). If RLWE encodings satisfy key-dependent pseudorandomness with parameters

(3,<,@, j) with respect to Fauto, then Construction 2.8 is pseudorandom given the packing key (also for< samples).

Proof. Take any decomposition base I ≤ @ and write 3 = 2ℓ . Suppose there exists an efficient adversary A that
can break pseudorandomness of Construction 2.8. We use A to construct an efficient adversary B that breaks
key-dependent pseudorandomness of RLWE encodings with respect to Fauto. Algorithm B operates as follows:

1. At the beginning of the game, algorithm B receives the challenge a, t ∈ '<@ .

2. Let C =
⌊
logI @

⌋
+ 1. Algorithm B constructs the packing key pk as follows. For each 8 ∈ [ℓ] and each 9 ∈ [C],

algorithm B queries the oracle on the function 58, 9 (A ) := −I 9−1 · g28+1 (A ). It obtains an encoding (08, 9 , 18, 9 ) ∈ '2
@ .

Algorithm B now sets

W8 =

[
08,1 08,2 · · · 08,C
18,1 18,2 · · · 18,C

]
∈ '2×C

@ .

Finally, it sets pk = (W1, . . . ,Wℓ ) and gives pk to algorithm A.

3. Algorithm B gives (1_, pk, a, t) to A. Algorithm A outputs a bit 1′ ∈ {0, 1}, which algorithm B also outputs.

Let B ∈ '@ be the secret key the challenger samples in the key-dependent pseudorandomness game. By construction,
the challenger samples a r← '<@ and either sets t = Ba + e where B ← j and e← j< or samples t r← '<@ . The former
corresponds to the pseudorandom distribution forA while the latter corresponds to the truly random distribution for
A. Thus, it suffices to argue that algorithm B correctly constructs the packing key pk. By definition, for all 8 ∈ [ℓ]
and 9 ∈ [C], we have that 08, 9 r← '@ and 18, 9 = B08, 9 + 48, 9 − I 9−1 · g28+1 (B), where 08, 9 r← '@ and 48, 9 ← j . If we define
aT

8 = [08,1 | · · · | 08,C ], eT8 = [48,1 | · · · | 48,C ], then

W8 =

[
aT

8

BaT

8 + eT8 − g28+1 (B) · gT
I

]
,

which exactly coincides with the output distribution of CDKS.Pack(1_, B, I). Hence, algorithm B perfectly simulates
the packing key for A, and we can conclude that the advantage of B in the key-dependent pseudorandomness
security game is precisely the advantage of A in the pseudorandom game. The claim follows. �

Remark A.3 (Number of Samples). In the proof of Lemma A.2, algorithm B makes ℓC queries to its oracle
and learns ℓC additional RLWE encodings (on top of the < encodings in the challenge). Thus, if we require
(CDKS.Setup,CDKS.Pack) satisfy pseudorandomness for < samples, then the reduction algorithm in B obtains
< + ℓC RLWE encodings. For this reason, we only consider parameter instantiations for Construction 2.8 where the
RLWE3,<+ℓC,@,j plausibly holds.

Remark A.4 (Shorter Query Keys). The public parameters in Construction 2.8 consist of ℓ = log3 key-switching
matrices W1, . . . ,Wℓ . Each key-switching matrix (Construction 2.6) is a 2-by-C matrix of ring elements (where
C =

⌊
logI @

⌋
+1 and I is the decomposition base). Moreover, the first row of eachW8 is a uniform random element over

'C@ . Thus, similar to Remark 3.2, we can “compress” these random elements using a short seed for a pseudorandom
generator, and appeal to the random oracle heuristic (our implementation uses ChaCha20 in counter mode). This
reduces the size of the packing parameters in Construction 2.8 by a factor of 2.

B Hint Computation in YPIR

For a polynomial 6 =
∑3−1

8=0 U8G
8 , we define NCoeffs(6) = [U3−1, . . . , U0]T to denote the coefficients of 6 in reverse

order. By inspection, over ' = Z[G]/(G3 + 1), we have for all 5 ∈ ',

NCyclicMat(6) · NCoeffs(5 ) = NCoeffs(5 6). (B.1)
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Let a1 = [01,1, . . . , 01,<1 ]T be the vector in Construction 3.1. By definition, Construction 3.1 sets A1 = NCyclicMat(aT

1).
For a vector d, this means

A1d = [NCyclicMat(01,1) | · · · | NCyclicMat(01,<1 )] · d.

If we parse

d =



d1
...

d<1



∈ Z<131
@1

where d8 ∈ Z31@1 ,

then
A1d =

∑

8∈[<1 ]
NCyclicMat(01,8 ) · d8 . (B.2)

By appealing to Eq. (B.1), we can compute the term NCyclicMat(01,8 ) · d8 in $ (31 log31) time using the NTT (and
inverse NTT). Specifically, let 38 ∈ ' be the polynomial where NCoeffs(38 ) = d8 . Then,

NCyclicMat(01,8 ) · d8 = NCyclicMat(01,8 ) · NCoeffs(38 ) = NCoeffs(01,838 ).

Thus, each term in Eq. (B.2) can be computed as follows:

1. Apply the NTT to the polynomials 01,8 and 38 and compute the product 01,838 .

2. Apply the inverse NTT to the product 01,838 ∈ '@ to obtain NCoeffs(01,838 ).

Overall, computing A1d requires<1 ·$ (31 log31) time. In contrast, when A1
r← Z31×ℓ1@1 , computing A1d would naïvely

require $ (ℓ131) = <1 · $ (321) time. Thus, by taking A1 to be a structured (negacyclic) matrix, we can reduce the
preprocessing cost by a factor of 31/log31. For typical parameters, 31 ≈ 210, so using a structured A1 translates to
a substantial reduction in the concrete preprocessing costs.

C Correctness and Security of YPIR

In this section, we provide the correctness and security analysis for the YPIR protocol (Construction 3.1).

C.1 Correctness (Proof of Theorem 3.4)

Take any security parameter _, any database D ∈ Zℓ1×ℓ2
#

(with records �81,82 ∈ Z# where 81 ∈ [ℓ1] and 82 ∈ [ℓ2]),
and any index idx = (81, 82) ∈ [ℓ1] × [ℓ2]. Let (pp, dbp) ← DBSetup(1_,D), (q, qk) ← �ery(pp, idx), and
resp← Answer(dbp, q). These components are constructed as follows:

• By construction of DBSetup, this means pp = (1_, ℓ1, ℓ2, # , a1, a2), where a1 ∈ '<1

31,@1
and a2 ∈ '<2

32,@2
, and

dbp = (1_,D,H1,H2), where H1 = G−1
31,?
(A1D), H2 = A2 · HT

1, A1 = NCyclicMat(aT

1), and A2 = NCyclicMat(aT

2).

• The query-generation algorithm samples B 9 ← j 9 , e9 ← j
< 9

9 , and sets c9 = Coeffs(B 9a9+e9+Δ 9µ9 ) ∈ Z
ℓ9
@ 9
, where

µ9 = GV 9uU 9
, 8 9 = U 93 9 + V 9 , U 9 ∈ [< 9 ] and V 9 ∈ [3 9 ] for 9 ∈ {1, 2}. It also samples pk← CDKS.Setup(1_, B2, I)

and sets q = (pk, c1, c2) and qk = (B1, B2).

• The answer algorithm first computes the encoding C ∈ Z(32+1)×^ (31+1)@2 according to Eq. (3.2). It then packs the
encodings together c̃8 ← CDKS.Pack(pk,C8 ) ∈ '2

32,@2
where C1, . . . ,Cd are the (padded) blocks of the matrix C.

Finally, the response resp = ((21,1, 21,2), . . . , (2d,1, 2d,2)) is obtained by applying modulus switching to c1, . . . , cd .
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We now consider the output of Extract(qk, resp). Using Eq. (2.1), we write the query encodings c9 for 9 ∈ {1, 2} as

cT9 = Coeffs(B 9a9 + e9 + Δ 9µ9 )T = Coeffs(B 9a9 )T + Coeffs(e9 )T + Coeffs(Δ 9µ9 )T

= s̃T9 · NCyclicMat(aT

9 ) + ẽT9 + Δ 9u
T

U 93 9+V 9

= s̃T9A9 + ẽT9 + Δ 9u
T

8 9
∈ Zℓ9@ 9

where s̃9 = Coeffs(B 9 ) ∈ Z
3 9

@ 9
and ẽ9 = Coeffs(e9 ) ∈ Z

ℓ9
@ 9
. Let X = 3−12 mod @2. Since H2 = A2 ·HT

1, we can write Eq. (3.2)
as

C = X

[
H2 A2T

T

cT2H
T

1 cT2T
T

]
= X

[
A2

cT2

]
·
[
HT

1 | TT
]
= X

[
A2

s̃T2A2 + ẽT2 + Δ2u
T

82

]
·
[
HT

1 | TT
]
.

This means that
[−s̃T2 | 1] · C = X (ẽT2 + Δ2u

T

82
) [HT

1 | TT] ∈ Z^ (31+1)@2 .

Define α1, . . . ,αd ∈ Z32@2 where

[αT

1 | · · · | αT

d ] = [−s̃T2 | 1] · [C1 | · · · | Cd ] ∈ Z32d@ . (C.1)

Since Δ2 = ⌊@2/?⌋, this in particular means that



α1

...

αd



=



H1

T

0
32d−^ (31+1)


· X (ẽ2 + ⌊@2/?⌋ u82 ) = X ⌊@2/?⌋



α1,1

...

αd,1



+ X


α1,2

...

αd,2



,

where α8,1,α8,2 ∈ Z32@2 and



α1,1

...

αd,1



=



H1

T

0
32d−^ (31+1)


u82 and



α1,2

...

αd,2



=



H1

T

0
32d−^ (31+1)


ẽ2.

Since ‖H1‖∞, ‖T‖∞ ≤ ?/2 and u82 is a unit vector, it holds that ‖α8,1‖∞ ≤ ?/2 for all 8 ∈ [d]. Since ẽ2 is subgaussian
with parameter f2, it follows that each 58,2 is subgaussian with parameter fscan ≤

√
ℓ2 (?/2)f2. Now, for each 8 ∈ [d],

let 58,1, 58,2 ∈ '32,@2 where Coeffs(58,1) = α8,1 and Coeffs(58,2) = α8,2. Let 58 = X (⌊@2/?⌋ 58,1 + 58,2) ∈ '32,@2 . By construc-
tion, observe that Coeffs(58 ) = α8 . Since c̃8 = CDKS.Pack(pk,C8 ), s̃2 = Coeffs(B2) and Eq. (C.1) holds, we appeal to
Theorem 2.9 and the fact that X32 = 1 mod @2 to conclude that

[−B2 | 1] · c̃8 = 32 58 + 4pack,8 = 32X (⌊@2/?⌋ 58,1 + 58,2) + 4pack,8 = ⌊@2/?⌋ 58,1 + 58,2 + 4pack,8 ∈ '32,@2 ,

where each 4pack,8 ∈ '32 is subgaussian with parameter fpack and f
2
pack
≤ 1

3 (322 − 1) (C32I2f2
2/4) and C =

⌊
logI @2

⌋
+ 1 ∈

'32,@2 . Since (28,1, 28,2) = ModReduce@̃2,1,@̃2,2 (c̃8 ), we appeal to Lemma 2.4 to conclude that

E ′8 = ⌊−B228,1⌉@̃2,1,@̃2,2 + 28,2 =
⌊
@̃2,2/?

⌋
58,1 + 4double,8 ∈ '32,@̃2,2 ,

where 4double,8 = 4double,8,1 +4double,8,2 and ‖4double,1‖∞ ≤ 1
2

(
2+ (@̃2,2 mod ?) + (@̃2,2/@2) (@2 mod ?)

)
and the components

of 4double,8,2 are subgaussian with parameter fdouble where (assuming the independence heuristic),

f2
double ≤ (@̃2,2/@̃2,1)

232f
2
2/4 + (@̃2,2/@2)2 (f2

scan + f2
pack)

≤ (@̃2,2/@̃2,1)232f2
2/4 + (@̃2,2/@2)2 (f2

2/4) (ℓ2?2 + (322 − 1) (C32I2)/3).

By Lemma 2.3, if |4double,8 | ≤ @̃2,2
2? − (@̃2,2 mod ?), then E8 = ⌊E ′8 ⌉@̃2,2,? = 58,1. Let

gdouble =
@̃2,2

2?
− (@̃2,2 mod ?) − 1

2

(
2 + (@̃2,2 mod ?) + (@̃2,2/@2) (@2 mod ?)

)
.
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Then, by a subgaussian tail bound and a union bound,

Pr[∀8 ∈ [d] : E8 = 58,1] ≥ 1 − 232d exp(−cg2double/f
2
double). (C.2)

Suppose for all 8 ∈ [d], E8 = 58,1. Then,

w̄ =



Coeffs(E1)
...

Coeffs(Ed )



=



α1,1

...

α1,d



=



H1

T

0
32d−^ (31+1)


u82 ∈ Z

32d
? .

In particular, this means that

w =

[
H1

T

]
u82 ∈ Z

^ (31+1)
? . (C.3)

Suppose Eq. (C.3) holds. Since H1 = G−1
31,?
(⌊A1D⌉@1,@̃1 ), T = G−11,? (⌊cT1D⌉@1,@̃1 ), and cT1 = s̃T1A1 + ẽT1 + Δ1u

T

81
, this means

G31+1,?w =

[
G31,? 0

31×^

0
1×^31 gT

?

] [
H1

T

]
u82 =

[
⌊A1D⌉@1,@̃1
⌊cT1D⌉@1,@̃1

]
u82

= ModReduce@̃1

( [
A1D

s̃T1A1D+ẽT1D+Δ1u
T
81
D

] )
· u82 ∈ Z

31+1
@̃1

.

Since Δ1 = ⌊@1/# ⌋, we have

[−s̃T1 | 1]
[

A1D

s̃T1A1D + ẽT1D + Δ1u
T

81
D

]
= ⌊@1/# ⌋ uT

81
D + ẽT1D ∈ Zℓ2@1 .

Since the components of ẽ1 are subgaussian with parameter f1 and ‖D‖∞ ≤ # /2, the components of ẽT1D are
subgaussian with parameter

√
ℓ1 (# /2)f1. By Lemma 2.4, this means

[−s̃T1 | 1] ·ModReduce@̃1

( [
A1D

s̃T1A1D+ẽT1D+Δ1u
T
81
D

] )
= ⌊@̃1/# ⌉ · uT

81
D + eTsimple .

where eT
simple

= eT
simple,1

+ eT
simple,2

and ‖esimple,1‖∞ ≤ 1
2

(
2 + @̃1 mod # + (@̃1/@1) (@1 mod # )

)
and the components of

esimple,2 are subgaussian with parameter fsimple and

f2
simple ≤ 31f

2
1/4 + (@̃1/@1)2ℓ1# 2f2

1/4.

Putting the above pieces together,

`′ = [−s̃T1 | 1] · c′ = [−s̃T1 | 1] · G31+1,?w = ⌊@̃1/# ⌋ · uT

81
Du82 + eTsimpleu82 .

Let 4simple = eT
simple

u82 . Since u82 is a unit vector, |4simple | ≤ ‖esimple‖∞. By Lemma 2.3, ` = ⌊`′⌉@̃1,# = uT

81
Du82 = �81,82

as long as |4simple | ≤ @̃1
2# − (@̃1 mod # ). Let

gsimple =
@̃1

2#
− (@̃1 mod # ) − 1

2

(
2 + @̃1 mod # + @̃1

@1
(@1 mod # )

)
.

Then, by a subgaussian tail bound

Pr[` = �81,82 ] ≥ 1 − 2 exp
(
− cg2simple/f

2
simple

)
.

The claim now follows by combining Eq. (C.2) and applying the union bound. �
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C.2 Security (Proof of Theorem 3.5)

We proceed with a hybrid argument:

• Hyb
(1 )
0 : This is the real query privacy experiment with bit 1 ∈ {0, 1}. Specifically, the game proceeds as follows:

1. At the beginning of the game, the adversary chooses a database D ∈ Zℓ
#
. The challenger computes the

parameters (pp, dbp) ← DBSetup(1_,D) and gives pp to A. In this case, pp = (1_, ℓ1, ℓ2, # , a1, a2) where
a1

r← '<1

31,@1
and a2

r← '<2

32,@2
.

2. Algorithm A outputs a pair of indices idx0 =
(
8
(0)
1 , 8

(0)
2

)
and idx1 =

(
8
(1)
1 , 8

(1)
2

)
. The challenger computes

(q, qk) ←�ery
(
pp,

(
8
(1 )
0 , 8

(1 )
1

) )
and gives q to A. Concretely, let µ

(1 )
1 ∈ '<1

31,@1
and µ

(1 )
2 ∈ '<2

32,@2
be the

messages derived from idx1 according to the specification of the�ery algorithm. Then, for each 9 ∈ {1, 2},
the challenger samples B 9 ← j 9 , e9 ← j

< 9

9 and computes c9 = Coeffs
(
B 9a9 + e9 + Δ 9µ

(1 )
9

)
, where Δ 9 is

the scaling factor defined in Construction 3.1. The challenger also computes pk← CDKS.Setup(1_, B2, I)
and sets q = (pk, c0, c1).

3. At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

• Hyb
(1 )
1 : Same as Hyb

(1 )
0 except when responding to the query, the challenger now samples r1

r← '<1

31,@1
and

sets c1 = Coeffs(r1).

• Hyb
(1 )
2 : Same as Hyb

(1 )
1 except when responding to the query, the challenger now samples r2

r← '<2

32,@2
and

sets c2 = Coeffs(r2).

We now argue that each adjacent pair of hybrids are computationally indistinguishable.

• First, Hyb
(1 )
0 and Hyb

(1 )
1 are computationally indistinguishable under the RLWE31,<1,@1,j1 assumption. Namely,

given an RLWE challenge (u1, v1) where u1, v1 ∈ '<1

31,@1
, the reduction algorithm sets a1 = u1 and samples

a2
r← '<2

32,@2
. It gives pp = (1_, ℓ1, ℓ2, # , a1, a2) to the adversary. After the adversary outputs indices idx0, idx1, the

reduction algorithm computesµ
(1 )
1 andµ

(1 )
2 from idx0 and idx1. It then sets c1 = Coeffs

(
v1+Δ1µ

(1 )
1

)
. It samples

B2 ← j2, e2 ← j<2 , and sets c2 = Coeffs
(
B2a2 + e2 + Δ2µ

(1 )
2

)
. Finally, it computes pk← CDKS.Setup(1_, B2, I)

and gives q = (pk, c1, c2) to the adversary. The reduction algorithm outputs whatever the adversary outputs.
If the RLWE challenger sampled u1

r← '<1

31,@1
and set v1 = B1u1 + e1, where B1 ← j1 and e1 ← j<1

1 , then the

reduction perfectly simulates Hyb
(1 )
0 . Conversely, if the reduction algorithm sampled u1, v1

r← '<1

31,@1
, then it

perfectly simulates Hyb
(1 )
1 .

• Next, Hyb
(1 )
1 and Hyb

(1 )
2 are computationally indistinguishable if (CDKS.Setup,CDKS.Pack) satisfies pseudo-

randomness given the packing key (with<2 samples). Namely, given the challenge (1_, pk, u2, v2), the reduction
algorithm sets a2 = u2. It samples a1

r← '<1

31,@1
and gives pp = (1_, ℓ1, ℓ2, # , a1, a2) to the adversary. After the

adversary outputs indices idx0, idx1, the reduction algorithm computes µ
(1 )
1 and µ

(1 )
2 from idx0 and idx1. It then

samples r1
r← '<1

31,@1
and sets c1 = Coeffs(r1). It sets c2 = Coeffs

(
v2 + Δ2µ

(1 )
2

)
. Finally, it gives q = (pk, c1, c2)

to the adversary. The reduction algorithm outputs whatever the adversary outputs. If the challenger sampled

u2
r← '<2

32,@2
and set v2 = B2u2 + e2, where B2 ← j2 and e2 ← j<2

2 , then the reduction perfectly simulates Hyb
(1 )
1 .

Conversely, if the reduction algorithm sampled u2, v2
r← '<2

32,@2
, then it perfectly simulates Hyb

(1 )
2 .

• Finally, Hyb
(0)
2 and Hyb

(1)
2 are identical experiments (the distribution of the query q in the two experiments

is independent of idx0, idx1).

Since each pair of adjacent hybrid experiments are computationally indistinguishable, query privacy now follows
by a hybrid argument. �
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Database Metric SimplePIR SimplePIR* DoublePIR DoublePIR* HintlessPIR YPIR

Prep. Speed 3.7 MB/s 48 MB/s 3.4 MB/s 39 MB/s 4.8 MB/s 39 MB/s

Off. Comm. 121 MB 112 MB 16 MB 14 MB — —
1 GB Upload 120 KB 128 KB 312 KB 352 KB 488 KB 846 KB

Download 120 KB 112 KB 32 KB 12 KB 1.7 MB 12 KB
Server Time 74 ms 75 ms 94 ms 89 ms 743 ms 129 ms
Throughput 13.6 GB/s 13.3 GB/s 10.6 GB/s 11.2 GB/s 1.3 GB/s 7.8 GB/s

Prep. Speed 3.1 MB/s 48 MB/s 2.9 MB/s 46 MB/s 5.2 MB/s 46 MB/s
Off. Comm. 362 MB 224 MB 16 MB 14 MB — —

8 GB Upload 362 KB 512 KB 724 KB 960 KB 1.4 MB 1.5 MB
Download 362 KB 224 KB 32 KB 12 KB 1.7 MB 12 KB
Server Time 708 ms 614 ms 845 ms 642 ms 1.62 s 687 ms
Throughput 11.3 GB/s 13.0 GB/s 9.5 GB/s 12.5 GB/s 4.9 GB/s 11.6 GB/s

Prep. Speed 3.3 MB/s 49 MB/s 3.3 MB/s 48 MB/s 5.7 MB/s 48 MB/s
Off. Comm. 724 MB 448 MB 16 MB 14 MB — —

32 GB Upload 724 KB 1.0 MB 1.4 MB 1.9 MB 2.4 MB 2.5 MB
Download 724 KB 448 KB 32 KB 12 KB 3.2 MB 12 KB
Server Time 3.08 s 2.56 s 3.22 s 2.62 s 5.00 s 2.64 s
Throughput 10.4 GB/s 12.5 GB/s 9.9 GB/s 12.2 GB/s 6.4 GB/s 12.1 GB/s

Table 8: Costs of retrieving a single bit using YPIR compared to other PIR schemes. This is the same breakdown as
in Table 2, except we include additional columns for our implementation of SimplePIR (SimplePIR∗) and DoublePIR
(DoublePIR∗) using the parameters from Table 1, modulus switching, and our faster preprocessing algorithm from
Section 4.1.

D Additional Evaluation

Table 8 provides the full breakdown of the computation and communication costs of YPIR compared to SimplePIR,
DoublePIR, HintlessPIR, and Tiptoe. In particular, we include comparisons with the reference implementation of
SimplePIR/DoublePIR [HHC+23b] as well as an implementation using our parameters from Table 1 (labeled SimplePIR∗

and DoublePIR∗). The latter comparisons provide a more direct illustration of the extra overhead incurred by YPIR

over SimplePIR and DoublePIR. We refer to Section 4 for further discussion.
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