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Abstract

We construct an adaptively-sound succinct non-interactive argument (SNARG) for NP in the CRS
model from sub-exponentially-secure indistinguishability obfuscation (i0) and sub-exponentially-
secure one-way functions. Previously, Waters and Wu (STOC 2024), and subsequently, Waters and
Zhandry (CRYPTO 2024) showed how to construct adaptively-sound SNARGs for NP by relying on
sub-exponentially-secure indistinguishability obfuscation, one-way functions, and an additional alge-
braic assumption (i.e., discrete log, factoring, or learning with errors). In this work, we show that no
additional algebraic assumption is needed and vanilla (sub-exponentially-secure) one-way functions
already suffice in combination with iO.

1 Introduction

Succinct non-interactive arguments (SNARGs) for NP [Mic94, GW11] allow a prover to convince a verifier
that an NP statement is true with a proof that is much shorter than the length of the NP statement and
witness. Micali [Mic94] (building on the work of Kilian [Kil92]) gave the first SNARG for NP in the random
oracle model. Subsequently, a long sequence of works have constructed SNARGs for NP from various
non-falsifiable assumptions in the common reference string (CRS) model [Gro10, BCCT12, DFH12, BCCT13,
Lip13, GGPR13, BCI*13, BCPR14, BISW17, BCC*17, BISW18, ACL*22, CLM23]. In the CRS model, the prover
and verifier have access to a (trusted) reference string (or random string). Another line of work has shown
how to construct SNARGsS for classes such as P [CJJ21b, KVZ21, HJKS22, KLVW?23], P/poly [GZ21, WW23c,
WW23b, BCFL23, WW24b, Wee25], batch NP [CJJ21a, CJJ21b, WW22, DGKV22, PP22, CGJ*23, KLVW23],
monotone policy batch NP [BBK*23, NWW24, NWW25], and NP languages with propositional proofs of
non-membership [JKLV24] from standard falsifiable assumptions.

A natural question is whether we can construct SNARGs for general NP from falsifiable assumptions.
The first construction of a SNARG for NP from (sub-exponentially) falsifiable assumptions was due to
Sahai and Waters [SW14], who gave a construction from indistinguishability obfuscation (i0) and one-way
functions. A limitation of the Sahai-Waters scheme was that it was only shown to be non-adaptively sound,
where soundness only holds against an adversary that must declare the false statement it provides a proof
for before seeing the CRS. The natural notion of security is adaptive soundness, where the adversary can
choose which statement it wants to prove after seeing the CRS.

Adaptively-sound SNARGs. Building adaptively-sound SNARGs for NP from falsifiable assumptions is a
challenging problem, and any such result must circumvent known black-box separations [GW11, CGKS23].
Very recently, Waters and Wu showed how to construct an adaptively-sound SNARG for NP from iO



together with a re-randomizable one-way function [WW24a]; they also showed how to construct the
re-randomizable one-way function from the discrete log or factoring assumptions. Subsequently, Waters
and Zhandry [WZ24] showed how to replace the rerandomizable one-way function with a lossy function,
which notably enabled an instantiation from standard lattice assumptions. Both of these works circumvent
the Gentry-Wichs impossibility by relying on security reductions whose running time is exponential in
the length of the NP witness. The challenge addressed in these works is to ensure the overhead of the
complexity leveraging only manifests in the size of the CRS and not the size of the proof.

Both constructions of adaptively-sound SNARGs for NP rely on iO in conjunction with a number-
theoretic assumption, or analogously, some source of algebraic structure. In the case of [WW24a], the
algebraic assumption is used to construct a re-randomizable one-way function. The security analysis
from [WW24a] critically relied on perfect (or statistical) re-randomizability for the one-way function.
Constructing a one-way function with this property seems challenging from an unstructured assumption.
In fact, it was not even apparent how to use lattice assumptions (e.g., short integer solutions (SIS) [Ajt96] or
learning with errors (LWE) [Reg05]) to construct the necessary re-randomizable one-way function. Indeed,
to obtain an adaptively-sound SNARG for NP from iO and standard lattice assumptions, the subsequent work
of Waters and Zhandry [WZ24] showed instead how to replace the re-randomizable one-way function in
the original [WW24a] construction with a lossy function, which can in turn be built from LWE. At the same
time, the [WZ24] approach replaced one algebraic primitive with a simpler, but still algebraic, primitive.

Motivating a pure iO approach for adaptive soundness. A simpler assumption we could use alongside
iO would be (vanilla) one-way functions (i.e., an unstructured source of hardness).! We refer to such an
approach as a “pure iO” approach which we motivate below.

First, while our current iO constructions require algebraic assumptions [JLS21, JLS22], constructing
provably-secure iO is a continually-evolving field as witnessed by the recent work of Ragavan, Vafa,
and Vaikuntanathan [RVV24]. In the future, we might have new iO constructions based on general as-
sumptions or possibly algebraic assumptions that do not imply the strong versions of re-randomizable
one-way functions or lossy functions needed by the [WW24a, WZ24] constructions. For example, neither
of these primitives are known to follow from the learning parity with noise (LPN) assumption. A pure
i0 approach to building SNARGs (or for that matter, any cryptographic primitive) would not impose any
further assumptions than those already needed to achieve indistinguishability obfuscation.

Second, we believe that achieving or attempting to achieve a pure iO approach is critical to obtaining
a deep understanding of a primitive. While many primitives can be built from iO and one-way functions,
there are notable exceptions such as collision-resistant hash functions and homomorphic encryption [AS15].

Finally, achieving a pure iO solution to adaptively-secure SNARGs matches what is known for SNARGs
in weaker models and shows that we do not need to make any concessions to achieve adaptive soundness.
Specifically, the original non-adaptively-sound SNARG by Sahai and Waters [SW14] was based on a pure
iO approach, and more recently, the work of [MPV24] showed that the Sahai-Waters construction is also
adaptively-secure in the designated-verifier model (i.e., where a secret key is needed to verify proofs). Note
though that the [MPV24] adaptive soundness analysis critically relies on working in the designated-verifier
model, and it is not known how to prove adaptive soundness of the original Sahai-Waters construction.

IRecall that iO alone cannot imply one-way functions since in a world where P = NP, indistinguishability obfuscation exists
unconditionally while one-way functions do not exist. Thus, to leverage iO in cryptographic applications, we typically need
to additionally assume a source of cryptographic hardness (e.g., the existence of one-way functions). The extra assumption
can sometimes be replaced by a weaker worst-case assumption [KMN™*14].



This work. In this work, we give the first pure iO approach for constructing adaptively-sound SNARGs
for NP. Specifically, we show that (sub-exponentially-secure) iO and (sub-exponentially-secure) one-way
functions imply a SNARG for NP. As we elaborate in Section 1.1, we put forward a new realization of the
“two-challenge” paradigm from [WW24a] that only relies on iO in combination with sub-exponentially-
secure one-way functions. We summarize our main result in the following informal theorem:

Theorem 1.1 (Informal). Let A be a security parameter and R be any NP relation. Assuming the existence
of sub-exponentially-secure indistinguishability obfuscation for Boolean circuits and sub-exponentially-secure
one-way functions, there exists a SNARG for R in the CRS model with the following properties:

« CRS size: The size of the CRS is poly(A, |R|), where |R| is the size of the Boolean circuit computing R.
« Proof size: The size of the proof is poly(1).

Moreover, the SNARG satisfies perfect zero-knowledge.

1.1 Technical Overview

The starting point of this work is the adaptively-sound SNARG for NP by Waters and Wu [WW24a]. In
their construction, the CRS contains two programs: the first is used to generate proofs while the second
is used to generate challenges. At a high-level, [WW24a] takes the following “two-challenge” approach:

« FEach NP statement x is associated with two (pseudorandom) challenges z, ¢ and z,; for a one-way
function f. Specifically, for each bit b € {0, 1}, zx.,, = f(F(kp, x)) where F is a pseudorandom function
(PRF) and f is a one-way function. The challenge-generation program takes a statement x and outputs
the two associated challenges (zy g, zx,1)-

« A proof r for a statement x is a preimage to either z, or z, ;. Specifically, we can write = = (b, y)
and 7 is valid if f(y) = zxp.

» The prover program takes as input a statement x and a witness w. If the witness is valid, then the
prover program outputs the preimage yy = F(kp_, x) of z, 5 _, where by € {0, 1} is a pseudorandom
bit derived from x. Specifically, the prover program computes b, = Fe|(ksel, X), where Fge is a PRF
with 1-bit outputs. Importantly, for every choice of statement x, the prover program never outputs
Y, 5, Where by = 1 — b, is the complement of the bit associated with x.

More precisely, the proof-generation program and the challenge-generation program in the CRS are ob-
fuscations of the following programs (where we hard-wire the circuit C for the associated NP relation, the
PRF keys ksel, ko, k1, and the description of the one-way function f):

GenProof (x, w): GenChal(x):

« On input the statement x and the witness w, if||+ For b € {0, 1}, compute z,; = f(F(kp, x)).
C(x,w) = 1, then compute by = Fse(ksel,x) and ||« Output the pair of challenges (zx 0, Zx.1)-
output (by, F(kp,, x)).

« Otherwise, output L.

The idea in the [WW24a] soundness analysis is that for a false statement x, the value b, is computationally
unpredictable. Thus, if an adversary outputs a proof = = (b, y) for a false statement x and a bit b € {0, 1}, with



probability close to 1/2, it will be the case that b = b,. More precisely, in [WW24a], they first move to an ex-
periment where the adversary wins the (adaptive) soundness game only if it outputs a proof = = (b, y) where

b # Fsel(kset,x) and  f(y) = zyp Where (2x,0, zx,1) < GenChal(x). (1.1)

Since the GenProof program never needs to output a preimage y, ; for z, ; , the [WW24a] reduction
replaces each challenge z, ; output by the challenge-generation program with a challenge for which
the reduction algorithm (and GenProof program) does not know the associated preimage. In the case of
[WW24a], they consider a re-randomizable one-way function, which is a one-way function equipped with a
statistical re-randomization algorithm. The re-randomization algorithm takes as input any challenge for the
one-way function and outputs a fresh instance; moreover, given the re-randomization randomness together
with a solution to the re-randomized instance, it is possible to recover a solution to the original instance.
The [WW24a] reduction uses an exponential number of hybrids to replace every challenge z, ; with a
re-randomization of a fresh (but fixed) challenge z*. Any preimage of z, ; immediately yields a preimage
of z*. This would in turn break one-wayness. To construct a re-randomizable one-way function, the work
of [WW24a] relies on algebraic assumptions: either the hardness of discrete log or the hardness of factoring.
In this work, we introduce a new approach that does not need to rely on additional algebraic structure.

Bundling challenge-generation and proof verification. The first change we make is syntactic, but
essential to realizing our new approach. In [WW24a, WZ24], the verification algorithm (on input a statement
x and purported proof ) proceeds as follows:

+ The algorithm first invokes the obfuscated challenge-verification program GenChal on the statement
x to obtain two challenges (0, zy) and (1, zy.1).

+ Then, it checks whether the provided preimage 7 = (b, y) satisfies f(y) = zx.

While [WW24a, WZ24] decouple the challenge-generation and the proof-verification processes, there is
no need to do this. In this work, and as was done in the original construction of Sahai and Waters of a
non-adaptively-sound SNARG [SW14], we publish a single obfuscated program that combines challenge-
generation and proof verification. The CRS now contains obfuscations of the following programs:

GenProof (x, w): VerProof (x, ):

« On input the statement x and the witness w, if||« On input the statement x and the proof 7 = (b,y),
C(x,w) = 1, then compute by = Fge(ksel, x) and output 1 if y = F(kp, x) and 0 otherwise.
output (bx, F(kbx,x)).
+ Otherwise, output L.

Since the verification logic is now embedded in the verification program VerProof itself, the program only
needs to check whether y = F(kp, x). In previous approaches [WW24a, WZ24], the GenChal program
outputted one-way function challenges directly: z, o = f(F(ko, x)) and z,; = f(F(k1, x)). In these construc-
tions, it is important that there is an efficient algorithm for sampling a challenge for the one-way function:
namely, the challenge is sampled by first deriving a (pseudorandom) domain element y, ; = F(kp, x) and
setting zy p = f(yx.p). As we show later, it will be important in our construction that the real scheme does
not need to sample a challenge for the one-way function. In fact, neither of the programs in the CRS need
to compute the one-way function f. The one-way function f will only appear in the security proof itself.



Proving adaptive soundness. By the same analysis as in [WW24a], we first move to an experiment
where the adversary wins if the adversary outputs a statement x and a proof = = (b, y) where the following
analog of Eq. (1.1) holds:

b # Fsel(ksel;x) and y= F(kb’x)- (1-2)

Note that the condition y = F(kp, x) is the same as the condition VerProof(x, ) = 1. Formally, this relies on
security of the selector PRF Fs|. Specifically, for a false statement x, the value of Fse| (ksel, X) is pseudorandom
(and thus, computationally unpredictable) from the view of the adversary (it is never computed or output by
GenProof). An adversary that outputs a valid proof 7 = (b, y) for a false statement x where b = Fye|(ksel, x)
with probability far from 1/2 would imply an adversary that can predict the value of Fej(ksel, x).

We now devise a sequence of hybrid experiments to embed a fixed string y* € {0, 1}* (where ¢ is the
output length of F) into the verification check for every statement x. To do so, we start by rewriting the
logic of the verification program in the following more convenient form:

GenProof (x, w): VerProofy(x, ):

« On input the statement x and the witness w, if||+ On input the statement x and the proof 7 = (b,y),
C(x,w) = 1, then compute b, = Fge(ksel, x) and compute by, = Foe|(ksel, ). Let by = 1 — by,
output (by, F(kp,, x)). « If b = by, output 1 if y = F(k;_, x).

« Otherwise, output L. « If b = by, output 1if y ® F(k;_,x) = 0"

+ Otherwise, output 0.

By inspection, the modified VerProof; program is functionally equivalent to the real VerProof program, so
we can appeal to security of indistinguishability obfuscation to argue that the new CRS is computationally
indistinguishable from the real CRS.

Planting a challenge. Since the GenProof program never evaluates F(kas x) for any input x, we can
appeal to (punctured) pseudorandomness” of F(kEx’ x) to argue that for any fixed string y* € {0, 1}’ (sampled
independent of k;_), the distribution of F(k,;x, x) is computationally indistinguishable from the distribution
of F(k5x> x) @ y*. In particular, for every input x, we can substitute the check y & F(b, x) = 0’ with the
following (computationally indistinguishable) one:

y®F(k; . x) @y = 0 = yo F(ks.x) =y

so long as k;_ is sampled independently of y*. Thus, using a hybrid argument where we step through
each possible input x, we can show that the obfuscated programs (GenProof, VerProof;) in the CRS are
computationally indistinguishable from the obfuscations of the following programs (GenProof, VerProof3):

GenProof (x, w): VerProof,(x, ):

« On input the statement x and the witness w, if||+ On input the statement x and the proof 7 = (b,y),
C(x,w) = 1, then compute by = Fg(ksel, x) and compute by = Fyef(ksel, X). Let by = 1 — by.
output (by, F(kp,, x)). o If b = by, output 1 if y = F(kp,, x).

+ Otherwise, output L. . Ifb=0b,, output 1ify ® F(k,;x, x) =y

« Otherwise, output 0.

%In a puncturable PRF [BW13, KPTZ13, BGI14], the PRF key k can be punctured at a special point x* to derive a punctured
key k") with the property that for all x # x*, F_(k(x*),x) = F(k, x). The security requirement is that the value of F(k,x") is
pseudorandom even given the punctured key k),



The programmed value y* can be any value, as long as it is independent of the PRF keys kj and k;. In this
experiment, the adversary wins only if it outputs a statement x and a proof = = (b, y) where b # Fei(ksel, x)
and VerProof,(x, ) = 1. By construction of VerProof,, this means that

Yo F(k,;x,x) = y" where by=1- Fsel (ksel, X).

The component y output by the adversary can be viewed as an “encryption” of the special string y*, and
moreover, given knowledge of kg and ky, it is possible to recover y* from any valid proof (regardless of the
statement x).

Adaptive soundness via injective one-way functions. To complete the proof, we use the string y*
to embed a computational challenge. We begin with an approach using any injective one-way function
f (with t-bit inputs). Since f is injective, it holds that

y@F(k;.x) =y" & fly®F(ks.x)) = f(y"). (1.3)

Then, by security of indistinguishability obfuscation, the programs in the CRS are computationally indis-
tinguishable from obfuscations of the following programs:

GenProof (x, w): VerProof;(x, ):

« On input the statement x and the witness w, if||+ On input the statement x and the proof 7 = (b,y),
C(x,w) = 1, then compute by = Fge(keel, x) and compute by = Fyel(ksel, x). Let by = 1 — by.
output (by, F(kp,, x)). « If b = by, output 1 if y = F(k_, x).

« Otherwise, output L. « If b = by, output 1if f(y & F(k; . x)) = f ().

+ Otherwise, output 0.

First, observe that the description of GenProof and VerProofs; can be simulated given only the description
of f and a one-way function challenge f(y*); the reduction algorithm would sample the PRF keys ke, ko, k1
itself. Suppose the adversary outputs a statement x and a proof 7 = (b,y) where b # Fs(ksel, x) and
VerProofs;(x, 7) = 1. Then the value y it outputs must satisfy

fly®F(ks,.x)) = f(y").

Using k;,_, the reduction algorithm would compute and output y & F(kl;x, x) as its solution to the one-way
function challenge. Observe that we have programmed the challenge string f(y*) into every verification
check, so a successful proof of any statement implies a solution to the one-way function challenge. This
gives an adaptively-secure SNARG for NP from a (sub-exponentially-secure) indistinguishability obfusca-
tion scheme, a sub-exponentially-secure one-way function (to construct a puncturable PRF) and an injective
one-way function.

Relaxing injectivity. Our construction above critically relies on injectivity of the one-way function
(so Eq. (1.3) holds). If the one-way function was not injective, then we are not able to argue that the
programs VerProof; and VerProofs; are computationally indistinguishable by security of indistinguishability
obfuscation. Injective one-way functions are significantly more structured than plain one-way functions,
and standard constructions typically rely on algebraic assumptions such as discrete log or factoring [GLN11].
To obtain a construction from indistinguishability obfuscation and unstructured hardness assumptions (i.e.,
a pure iO approach), the goal would be to only rely on the existence of plain one-way functions.



An immediate solution is to apply the work of Bitansky, Paneth, and Wichs [BPW16] that shows how
to build (keyed) one-way functions that are injective with overwhelming probability (over the choice of
the key) from indistinguishability obfuscation, puncturable PRFs, and two-message statistically-binding
commitments. Since the latter primitives are implied by one-way functions, this yields a pure iO approach
for constructing adaptively-sound SNARGs for NP.

In this work, however, we also want to explore a more lightweight approach for instantiating the
injective one-way function that does not rely on indistinguishability obfuscation. Our solution for achieving
injectivity is to allow for an inefficient generation of the one-way function challenge. This is viable in
our setting because iO allows us to introduce the one-way function only in the context of the security
proof, and not in the construction itself. Namely, the real scheme never needs to invoke the inefficient
sampling algorithm. A similar phenomenon where a cryptographic object is only needed or introduced
in the security analysis arises in constructions based on garbled circuits or homomorphic encryption (c.f,
[CCH"19, WW23a]). Moreover, we show that we can construct such a primitive from any vanilla one-way
function (without any additional assumptions), and as such, our approach could be useful in future scenarios
that do not already rely on indistinguishability obfuscation.

Specifically, in building our solution, we first rely on the fact that neither the prover program GenProof
nor the verification program VerProof in the real scheme depends on the one-way function f.*> The one-way
function f only shows up in the security proof (specifically in the description of VerProofs), and critically,
the only requirement we needed in the security proof was injectivity and one-wayness. Interestingly, we
do not need the ability to efficiently sample a challenge for the injective one-way function. Observe that
if the Setup algorithm which generates the CRS (or the Prove/Verify algorithms used to generate and verify
proofs) needed to sample from the input space of the one-way function, then to have an efficient SNARG,
we would additionally require the one-way function to support efficient sampling. However, since we only
rely on the injective one-way function in the security proof, a construction with an inefficient sampling
procedure would still suffice for the security reduction. Of course, this means that the intermediate reduction
algorithms have to run in super-polynomial time or take in non-uniform advice (i.e., a sample from the
challenge space of the injective one-way function). For ease of exposition, we take the latter approach
in this work, but using super-polynomial-time reductions also suffices. Note that the cost of complexity
leveraging (due to the use of super-polynomial-time security reductions) would only affect the size of the
CRS and not the proofs. Thus, assuming sub-exponentially-secure iO, a sub-exponentially secure one-way
function, and an injective one-way function with an inefficient sampler, we obtain an adaptively-sound
SNARG for NP. We give the formal construction and proof of adaptive soundness in Section 4.

Constructing injective one-way functions with an inefficient sampler. While we do not know how
to construct injective one-way functions from any vanilla one-way function, it is straightforward if we
allow the sampling algorithm to run in super-polynomial time. The idea is to compose with a hash function
to reduce the number of preimages. Namely, let f: {0, 1}’ — {0, 1}" be a one-way function. Suppose that
avalue z € {0, 1}™ has k preimages under f. Let h: {0, 1}’ — {0, 1}” be a hash function with output length
p = log k. Consider now the mapping g(h, y) := (h, f(y), h(y)). If h is a universal hash function, then with
constant probability, we would expect that there is exactly one input (h, y) where g(h, y) = (h, f(y), h(y)).
Having multiple such tuples (h, y) would mean there was a collision in the universal hash function h
(when hashing k items to O(k) buckets). To guarantee injectivity, the sampling procedure GenChal would

3Technically, the size of the obfuscated circuits need to be padded to be the size of the largest circuit used in the proof (which
will ultimately include the circuit that evaluates the one-way function). However, the salient point is that the injective one-way
function is not used in the actual construction itself, which gives us additional flexibility in our design.



(repeatedly) sample random challenges (A, f(y), h(y)) and only output a challenge when there is exactly
one preimage under g. Checking that there is at most a single preimage requires super-polynomial time,
which is why the resulting scheme has an inefficient sampler. To argue that this sampling procedure still
produces instances that are hard to invert, we use the fact that each “sampling attempt” made by the
sampling algorithm succeeds with inverse polynomial probability. This way, we can construct a reduction
algorithm that takes a random one-way function challenge for f and outputs a sample from the sampling
procedure GenChal with inverse polynomial probability. Since we are reducing to a search assumption
(one-wayness), this suffices to establish the one-wayness of g. We give the formal definition in Section 3
and the construction as well as analysis in Section 5.

2 Preliminaries

Throughout this work, we write 1 € N to denote the security parameter. We write poly(A) to denote a
fixed polynomial in A. We say a function f(4) is negligible in A if f(1) = 0(A17¢) for all constants ¢ € N.
We denote this with f(1) = negl(1). We say an algorithm is efficient if it runs in probabilistic polynomial
time in the length of its input. For a finite set S, we write x <~ S to denote that x is sampled uniformly
at random from S. When D is a distribution (or a randomized algorithm), we write x < D to denote that
x is a draw from O (or the output of the randomized algorithm on a fresh choice of randomness). For a
random variable X, we write E[X] to denote the expected value of X. We also recall Markov’s inequality:
if X is a non-negative random variable, then
E[X]

Pr[X >1t] < —

Non-uniform algorithms. We model an efficient non-uniform algorithm A for inputs of length n = n(A)
as a pair of algorithms A = (A, A;) where A is a (possibly unbounded) algorithm that takes as input
1* and outputs an advice string st 4 of length poly(1), and A; is an efficient algorithm that takes as input
the state st 4 and the input x. Specifically, for all A € N and all inputs x € {0, 1}*}), we define the output
A(1%, x) to be A1, x) = Ay (A1 (1), x). We often refer to A; as the “preprocessing” algorithm and A,
as the “online” algorithm.

Sub-exponential hardness. Similar to [WW24a], our construction relies on sub-exponential hardness
assumptions. We formulate some of our security definitions using (, €)-notation. We say a primitive is
(, ¢)-secure if for all adversaries A running in time at most #(A) - poly(A), there exists 1.z € N such that
for all A > A4, the adversary’s advantage is bounded by £(1). We say a primitive is polynomially-secure
if it is (1, negl(1))-secure for some negligible function negl(-) and that it is sub-exponentially secure with
parameter ¢ € (0,1) if it is (1, Z_Ac)—secure. When extending the notion of (¢, €)-security to non-uniform
algorithms A = (A;, Az), we only require the online algorithm A, to run in time ¢(A) - poly(1); the
preprocessing algorithm (A; that computes the advice string can still be unbounded.

Cryptographic primitives. We reuse many of the same primitives and notation from [WW24a]. Much
of the text in this section is taken verbatim from [WW24a, §2].

Definition 2.1 (Indistinguishability Obfuscation [BGI*01]). An indistinguishability obfuscator for Boolean
circuits is an efficient algorithm iO(., -, -) with the following properties:



« Correctness: For all security parameters A € N, circuit size parameters s € N, all Boolean circuits
C of size at most s, and all inputs x,

Pr[C'(x) = C(x) : C" « iO(11,1%,0)] = 1.

« Security: For a bit b € {0, 1} and a security parameter A, we define the program indistinguishability
game between an adversary A and a challenger as follows:

— On input the security parameter 14, the adversary outputs a size parameter 1° and two Boolean
circuits Cy, C; of size at most s.

— If there exists an input x such that Cy(x) # Ci(x), then the challenger halts with output L.
Otherwise, the challenger replies with iO(l’l, 15,Cp).

— The adversary A outputs a bit b* € {0, 1}, which is the output of the experiment.

We say that iO is (t, €)-secure if for all adversaries A running in time at most t(A) - poly(4), there
exists A# € N such that for all A > 14, we have that

iOAdv#(A) ;== [Pr[b' =1:b=0] —-Pr[b' =1:b=1]| < e(A)
in the program indistinguishability game defined above.

Definition 2.2 (Puncturable PRF [BW13, KPTZ13, BGI14]). A puncturable pseudorandom function consists
of a tuple of efficient algorithms Ipprr = (KeyGen, Eval, Puncture) with the following syntax:

. KeyGen(1%, 1fn, 1%ut) — k: On input the security parameter A, an input length £,, and an output
length £,, the key-generation algorithm outputs a key k. We assume that the key k contains an
implicit description of £, and £oyt.

« Puncture(k, x*) — k*): On input a key k and a point x* € {0, 1}%", the puncture algorithm outputs
a punctured key k*"). We assume the punctured key also contains an implicit description of &, and
Lout (same as the key k).

« Eval(k,x) — y: On input a key k and an input x € {0, 1}%, the evaluation algorithm outputs a value
y € {0, 1}fout:

In addition, ITppgr should satisfy the following properties:
« Functionality-preserving: Forall A, &, £y € N, every input x € {0, 1}, and every x € {0, 1}fn\ {x*},

k — KeyGen(l/l, 16n, 1four) B

Pr|Bval(kx) = Bval k™0 - %) D puncture(x) | =

« Punctured pseudorandomness: For a bit b € {0, 1} and a security parameter A, we define the
(selective) punctured pseudorandomness game between an adversary A and a challenger as follows:

— On input the security parameter 14, the adversary A outputs the input length 1%, the output
length 1%, and commits to a challenge point x* € {0, 1}

— The challenger samples k « KeyGen (14, 1fn, 1%u) and gives k*") « Puncture(k, x*) to A.

- If b = 0, the challenger gives y* = Eval(k, x*) to A. If b = 1, then it gives y* < {0, 1}%u to A.



— At the end of the game, the adversary outputs a bit b’ € {0, 1}, which is the output of the
experiment.

We say that IIppgr satisfies (t, €)-punctured pseudorandomness if for all adversaries A running in
time at most t(A4) - poly(1), there exists A4 € N such that for all A > A4, it holds that

PPRFAdv#(A) := |Pr[b’ =1:b=0] —=Pr[b’' =1:b=1]] < &(A)
in the punctured pseudorandomness security game.

Theorem 2.3 (Puncturable PRFs [GGM84, BW13, KPTZ13, BGI14]). Assuming the existence of polynomially-
secure (resp., sub-exponentially-secure) one-way functions, then there exists a selective polynomially-secure
(resp., sub-exponentially-secure) puncturable PRF.

Succinct non-interactive arguments. We now recall the definition of a succinct non-interactive argu-
ment for the language of Boolean circuit satisfiability. We start by defining the language of Boolean circuit
satisfiability:

Definition 2.4 (Boolean Circuit Satisfiability). We define the circuit satisfiability language Lsar as

. n h _ n
LSAT:{(C,X)| C: {0, 1) x {0, 1} — {0,1},x € {0,1} }

Jw e {0,1}": C(x,w) =1

Definition 2.5 (Succinct Non-Interactive Argument). A succinct non-interactive argument (SNARG) in
the preprocessing model for Boolean circuit satisfiability is a tuple IIsnarc = (Setup, Prove, Verify) with
the following syntax:

« Setup(1*,C) — crs: On input the security parameter A and a Boolean circuit C, the setup algorithm
outputs a common reference string crs.

« Prove(crs, x, w) — m: On input a common reference string crs, a statement x, and a witness w, the
prove algorithm outputs a proof 7.

« Verify(crs,x,7) — b: On input a common reference string crs, a statement x and a proof 7z, the
verification algorithm outputs a bit b € {0, 1}.

Moreover, ITsnarc should satisfy the following properties:

. Completeness: For all security parameters A € N, all Boolean circuits C: {0,1}" x {0,1}* — {0,1},
all instances (x, w) where C(x,w) =1,

crs « Setup(1%,C)

=1.
7 < Prove(crs, x, w)

Pr | Verify(crs,x, m) = 1:
« Adaptive soundness: For a security parameter A, we define the adaptive soundness game between
an adversary A and a challenger as follows:

- On input the security parameter 1%, the adversary A starts by outputting a Boolean circuit
C: {0,1}" x {0,1}" — {0, 1}.

— The challenger replies with crs « Setup (1%, C).
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— The adversary outputs a statement x € {0, 1}" and a proof 7.

— The output is b = 1if (C,x) ¢ Lsar and Verify(crs, x, ) = 1. The output is b = 0 otherwise.

We say that IIsnarc is adaptively sound if for all efficient adversaries A, there exists a negligible
function negl(-) such that for all A € N, Pr[b = 1] = negl(A) in the adaptive soundness game. When
b = 1, we say that “A wins the adaptive soundness game”

« Succinctness: There exist a polynomial p such that for all Boolean circuits C: {0,1}" x {0,1} —
{0,1}, and all crs in the support of Setup(14,C), all statements x € {0,1}", and all witnesses
w € {0,1}", the size of the proof 7 output by Prove(crs, x, w) satisfies || < p(A +log|C|).

3 Injective One-Way Functions with an Inefficient Sampler

In this section, we introduce the notion of an injective one-way function with an inefficient sampling
algorithm. We show how to construct such an object from any one-way function in Section 5. This is the
main cryptographic primitive we use to obtain our adaptively-sound SNARG in conjunction with iO.

Definition 3.1 (One-Way Function). Let t = t(1) and m = m(2) be polynomials. A function f: {0,1}}}) —
{0,1}™@ is one-way if it is efficiently-computable and moreover, for all efficient adversaries A, there
exists a negligible function negl(-) such that for all A € N,

g & {0, 11

Pr f(y) :f(y*) : y — ﬂ(l/l,f(y*))

= negl(4).

Definition 3.2 (Injective One-Way Function with an Inefficient Sampler). Let ¢t = t(1) and m = m(A) be
polynomials. An injective one-way function with an inefficient sampler with input length ¢ = ¢(1) and
output length m = m(A) is a pair of algorithms Iowr = (GenChal, Verify) with the following properties:

. GenChal(1%) — (z*,y*): On input a security parameter A, the challenge-generation algorithm out-
puts a challenge z* € {0,1}"") together with a solution y* € {0, 1}, The GenChal algorithm is
not required to be efficient.

« Verify(z,y) — b: On input a challenge z and a solution y, the verification algorithm outputs a bit
b € {0, 1}. The verification algorithm must be efficient.

Moreover, the algorithms must satisfy the following properties:

. Correctness: For all security parameters A € N and all (z*, y*) in the support of GenChal(1%), it
holds that Verify(z*, y*) = 1.

« Injectivity: For all security parameters A € N, all (z* y*) in the support of GenChal(1%), and all
y # y*, it holds that Verify(z*,y) = 0.

« One-wayness: For all efficient adversaries (A, there exists a negligible function negl(-) such that
forall A e N,
(z*,y*) « GenChal(1%)

= negl(4).
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Remark 3.3 (Explicit Evaluation Algorithm). Strictly speaking, Definition 3.2 does not conform to the
usual syntax of a one-way function in that we do not require an evaluation algorithm that takes an element
x € {0,1} in the input space and produces an element y € {0, 1} in the output space. In a standard (injec-
tive) one-way function f: {0, 1} — {0, 1}, the challenge-generation algorithm GenChal algorithm would
sample a random domain element x <~ {0, 1}’ and output (f(x), x) as the challenge. In our generalized
syntax, we allow for an arbitrary (and inefficient) sampling algorithm, and moreover, omit the explicit
requirement for an evaluation function. In the case of our specific construction (Construction 5.2), we note
that it is straightforward to adapt it to have an explicit evaluation algorithm. Since this is unnecessary for
our main application, we elect to use the simpler syntax in this paper.

4 Adaptively-Sound SNARGs for NP from iO and One-Way Functions

In this section, we show how to construct an adaptively-sound SNARG from indistinguishability obfuscation
together with an injective one-way function with an inefficient sampler (Definition 3.2). Our construction
closely follows the two-challenge paradigm from [WW24a, WZ24]. A key difference between our construc-
tion and the previous constructions is we move the entirety of the verification logic into the obfuscated
program itself. In the previous constructions, verification consists of first running an obfuscated program to
derive a challenge (for a one-way function) and then checking whether the proof contains a valid preimage
to the challenge. In our construction, the obfuscated program checks the proof. This difference will enable
a different proof strategy for arguing adaptive soundness that allows us to only rely on one-way functions.

Notation. In our construction, we will associate a bit-string x,y € {0, 1}" of length n with the binary
representation of an integer between 0 and 2" — 1, and we will write “x < y” to refer to the comparison
of the integer representations of x and y.

Construction 4.1 (Adaptively-Sound SNARG for NP). Our construction relies on the following primitives:
« Let iO be an indistinguishability obfuscator for Boolean circuits (Definition 2.1).

« Let IIpprr = (F.KeyGen, F.Eval, F.Puncture) be a puncturable PRF (Definition 2.2). For a key k and
an input x, we will write F(k, x) to denote F.Eval(k, x).

+ Let IIowr = (OWF.GenChal, OWF.Verify) be an injective one-way function with an inefficient sam-
pler (Definition 3.2). Let t = t(A) be the input length of IIowr. Note that our construction will not
make use of ITowr (it is only used in the proof of Theorem 4.3). However, the scheme will depend on
the input length ¢ of [Iowr as well as the size of the circuit that computes OWF .Verify. Specifically,
the size of the verification program VerProof in the following construction will be padded to be at
least as large as a program that computes OWF .Verify.

Our construction will leverage sub-exponential hardness of iO and the puncturable PRF IIppgr. In the
following, let Aobs = Aobf(A, 1) and Aprr = Aprr(A, n) be fixed polynomials in the scheme’s security param-
eter A and the statement length n. We will describe how to define the polynomials A,p¢ and Apgr in the
security analysis. We construct a (preprocessing) succinct non-interactive argument Isnarc = (Setup,
Prove, Verify) for Boolean circuit satisfiability as follows:

« Setup(1%,C): On input the security parameter A and a Boolean circuit C: {0,1}" x {0,1}"* — {0, 1},
the setup algorithm does the following:
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— Sample a “selector” PRF key kg < F.Setup(1777F 17 11).
— Let t = t(A) be the input length for IIowr and sample PRF keys ko, k; «— F.Setup(l’lPRF, 17, 1%).

— Define the following programs GenProof and VerProof:

Input: statement x € {0,1}" and witness w € {0, 1}"
Hard-coded: Boolean circuit C: {0,1}" x {0,1}* — {0, 1} and PRF keys kse|, ko, k1

On input a statement x € {0,1}" and a witness w € {0, 1}":
« If C(x,w) = 0, output L.

« If C(x,w) = 1, compute b = F(ksel, x) and output (b, F(kp, x)).

Figure 1: The proof-generation program GenProof[C, ksel, ko, k1].

Input: statement x € {0, 1}" and proof 7 € {0, 1}'*!
Hard-coded: Boolean circuit C: {0,1}" x {0,1}"* — {0, 1} and PRF keys ko, k;

On input a statement x € {0, 1}" and a proof = = (b,y) where b € {0,1} and y € {0, 1}/,

« Output 1 if F(kp, x) = y and 0 otherwise.

Figure 2: The verification program VerProof [C, k, k1 ].

Let s = s(A,n,|C|) be the maximum size of the GenProof and VerProof programs as well as
those appearing in the proof of Theorem 4.3 (specifically, the programs in Figs. 3 to 5 and 6).
By construction, we note that s = poly(4, |C]) is polynomially-bounded.

- Construct the obfuscated programs ObfProve « iO(1%, 1%, GenProof[C, ksel, ko, k1]) and
ObfVerify « iO(lAObf, 1%, VerProof [C, k¢, k1]). Output the common reference string crs =
(ObfProve, Obf Verify).

« Prove(crs,x,w): On input the common reference string crs = (ObfProve, ObfVerify), the prove
algorithm outputs 7 = ObfProve(x, w).

« Verify(crs, x, 7): On input the common reference string crs = (ObfProve, ObfVerify), the statement
x € {0,1}", and the proof 7 € {0, 1}*!, the verification algorithm outputs Obf Verify(x, 7).

Theorem 4.2 (Completeness). IfiO is correct, then Construction 4.1 is complete.

Proof. Take any security parameter A € N, any Boolean circuit C: {0,1}" x {0,1}* — {0,1}, and any
instance-witness pair (x, w) where C(x,w) = 1. Let crs = (ObfProve, ObfVerify) « Setup(1%, C) and
7 = (b,y) « Prove(crs, x, w). Consider the output of Verify(crs, x, 7):

« By construction, ObfProve is an obfuscation of the program GenProof [C, ksel, ko, k1], where kse
F.Setup(l’lPRF, 1",11), and ko, k; « F.Setup(l’lPRF, 1",1%). In this case 7 is obtained by evaluating
ObfProve on input (x, w). By correctness of iO and definition of GenProof, this means that 7 = (b, y)
where b = F(ksel, x) and y = F(kp, x).

« By construction ObfVerify is an obfuscation of the program VerProof[C, k¢, k1]. The verification
program computes b = F(ks, x) and checks whether y = F(kj, x). Both checks hold by construction,
so by correctness of iO, the verification algorithm accepts. O
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Theorem 4.3 (Adaptive Soundness). Suppose the following conditions hold:

1. iO is correct and satisfies sub-exponential security with parameter cops € (0, 1) against non-uniform
adversaries;*

2. IlppRrr satisfies punctured correctness and selective sub-subexponential punctured security with parameter
cprr € (0, 1) against non-uniform adversaries;

3. Howr is an injective one-way function with inefficient sampler with polynomial security against non-
uniform adversaries.

Moreover, suppose Aope (A, 1) = (A +n)/° and Apgp (A, n) = (A + n)Y/ P Then, Construction 4.1 is adaptively
sound against non-uniform adversaries.

Proof. Let A = (A, Az) be a non-uniform adversary for the adaptive soundness game for Construction 4.1
that succeeds with (non-negligible) advantage ¢ = ¢(1). Without loss of generality, we assume that for
every security parameter A € N, algorithm A always outputs a Boolean circuit C with statements of a fixed
length n = n(1); we refer to [WW24a, Theorem 4.3] for a formal argument. We now define a sequence
of hybrid experiments. The initial sequence is nearly identical to those from [WW24a] with the main
distinction being the specification of Hyb,.

+ Hyb,: This is the real adaptive soundness experiment. Namely, the adversary starts by outputting
a Boolean circuit C: {0,1}" x {0,1}"* — {0, 1}. The challenger then constructs the CRS as follows:

— Sample PRF keys kge| < F.Setup(lAPRF, 1",1') and ko, k; «— F.Setup(l’lPRF, 17,1%).

— The challenger then constructs ObfProve « iO(lAObf, 1%, GenProof [ C, ksel, ko, k1]) and Obf Verify «
iO(l’lf’bf, 1%, VerProof [C, k¢, k1]) where GenProof and VerProof on the programs from Figs. 1
and 2, and s is the same size parameter from Construction 4.1.

The challenger gives crs = (ObfProve, ObfVerify) to A. Algorithm A then outputs a statement x
and a proof 7. The output is 1 if

(C,x) ¢ Lsar and  ObfVerify(x, ) = 1.

+ Hyb,: Same as Hyb, except at the end of the experiment, after the adversary outputs the proof
7 = (b,y) € {0,1}'*! where b € {0,1} and y € {0, 1}, the output of the experiment is 1 if the
following hold:

(C,x) ¢ Lsar and ObfVerify(x,7) =1 and b # F(kse, x).

« Hyb,: Same as Hyb, except when computing the output, the challenger no longer checks that
(C,x) ¢ Lsar. Namely, the output of the experiment is 1 if

ObfVerify(x,7) =1 and b # F(kse, x).

4Recall from Section 2 that we say a primitive is sub-exponential secure with parameter ¢ € (0, 1) against non-uniform adversaries
if for every non-uniform adversary A = (A, Az) where Ay run in time at most poly(4), and all sufficiently-large A € N, the
advantage of A is at most 274",
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+ Hyb,: Same as Hyb,, except the challenger changes how it constructs Obf Verify. During setup, the
challenger now does the following:

- At the beginning of the experiment, the challenger samples (z*,y") « OWF.GenChal(1%).
Then the challenger defines the following program VerProof :

Input: statement x € {0, 1}" and proof 7 € {0, 1}'*!
Hard-coded: Boolean circuit C: {0, 1}" x {0, 1}h — {0, 1}, puncturable PRF keys ks, ko, k1,
and instance z* € {0, 1}"

On input a statement x € {0, 1}" and a proof 7 = (b,y) where b € {0,1} and y € {0, 1}":
« If b = F(ksel, x), output 1 if F(kp, x) = y and 0 otherwise.

« If b =1 — F(ksel, x), output OWF Verify(z*,y & F(kp, x)).

Figure 3: The verification program VerProof[C, ksel, ko, k1, 2"].

The challenger sets Obf Verify « iO(lAO'Jf, 1%, VerProof [ C, kse|, ko, k1, 2"]) in crs. The rest of the
experiment proceeds exactly as in Hyb,.

We write Hyb, (A) to denote the output distribution of an execution of Hybrid Hyb; with the adversary
A. We now analyze each adjacent pair of hybrid distributions.

Lemma 4.4. Suppose iO is sub-exponentially-secure with parameter cops € (0, 1) against non-uniform ad-
versaries. and Ilppgr satisfies selective sub-exponential punctured security with parameter cpr € (0, 1) against
non-uniform adversaries. Suppose Agpr(A,n) = (A +n)Y/d and Apge(A, n) = (A + )Y/ Finally, suppose
Ipprr satisfies punctured correctness. Then,

Pr[Hyb,(A) = 1] < 2- Pr[Hyb, (A) = 1] +27°?),

Proof. The proof is analogous to the proof of Lemma 4.4 in [WW24a]. For completeness, we include the
proof in Appendix A. O

Lemma 4.5. It holds that Pr[Hyb,(A) = 1] < Pr[Hyb,(A) =1].

Proof. The conditions for outputting 1 in Hyb, are a subset of those in Hyb,. Thus, whenever the challenger
outputs 1 in Hyb,, it also does so in Hyb,, and the lemma follows. i

Lemma 4.6. Suppose iO is sub-exponentially-secure with parameter cops € (0, 1) against non-uniform ad-
versaries and Ipprr satisfies selective sub-exponential punctured security with parameter cprr € (0, 1) against
non-uniform adversaries. Suppose Aope(A, n) = (A + n)/% and Apre(A, n) = (A + n) V% Finally, suppose
Ipprr satisfies punctured correctness and Ilowr satisfies injectivity. Then,

| Pr[Hyb,(A) = 1] — Pr[Hyb,(A) = 1]| < 27%W,
Proof. We define a sequence of intermediate hybrids indexed by i € {0, ...,2"}:

. Hybg)i): Same as Hyb,, except the challenger first defines the following program VerProof:
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Input: statement x € {0,1}" and proof = € {0, 1}/*!

Hard-coded: Boolean circuit C: {0, 1}" x {0, 1}h — {0, 1}, puncturable PRF keys ks, ko, k1, an
instance z* € {0,1}™, and an index i € {0, 1}"

On input a statement x € {0, 1}" and a proof = = (b,y) where b € {0,1} and y € {0, 1}*:
— If b = F(ksel, x), output 1 if F(kp, x) = y and 0 otherwise.
— If b = 1 — F(ksel, x), then proceed as follows:

« If x < i, output OWF.Verify(z*,y & F(kp, x)).
« If x > i, output 1 if F(kp, x) = y and 0 otherwise.

Figure 4: The verification program VerProof,[C, ksel, ko, k1, 2%, i].

Then, the challenger proceeds as follows:

— Sample PRF keys kse| — F.Setup(lAPRF, 1",1') and ko, k; «— F.Setup(l’lPRF, 17,1%).
- Sample (z*,y*) < OWF.GenChal(1%).
— Construct the programs ObfProve «— iO(l’lobf, 1%, GenProof [C, ksel, ko, k1]) and ObfVerify «

iO(lAObf, 1%, VerProof; [C, keel, ko, k1, 2%, i]) where GenProof and VerProof; are the programs
from Figs. 1 and 4 and s is the bound on the program size from Construction 4.1.

The challenger gives crs = (ObfProve, ObfVerify) to A. After A outputs the statement x and the
proof 7 = (b,y) where b € {0,1} and y € {0, 1}/, the challenger outputs 1 if Obf Verify(x, 7) = 1 and
b # F(ksel, x).

. Hybé’li) : Same as Hyb(i.), except the challenger defines the following program VerProofs:

Input: statement x € {0, 1}" and proof 7 € {0, 1}'*!
Hard-coded: Boolean circuit C: {0,1}" x {0,1}" — {0, 1}, puncturable PRF keys ke, ko, k1,
values r*,y* € {0,1}!, z* € {0,1}", and an index i € {0,1}"

On input a statement x € {0, 1}" and a proof 7 = (b,y) where b € {0,1} and y € {0, 1}":
— If b = F(ksel, x), output 1 if F(kp, x) = y and 0 otherwise.
— If b = 1 — F(ksel, x), then proceed as follows:

« If x < i, output OWF.Verify(z*,y @ F(kp, x)).
» If x = i, output 1 if y & r* = y*.

« If x > i, output 1 if F(kp, x) = y and 0 otherwise.

Figure 5: The verification program VerProofs[C, ksel, ko, k1, 7%, y*, 2%, i].

The challenger now computes b* = 1 — F(kge, i) and r* = y* & F(kp+, 1). It constructs the verifica-
tion program as ObfVerify « iO(lebf, 1%, VerProofs [ C, ksel, ko, k1, 7%, y*, 2%, i]). The remainder of the
experiment proceeds as in Hybéol.).
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. Hybg?: Same as Hybg)ll.) except the challenger punctures kp+ at index i. Specifically, the challenger
computes k;') «— F.Puncture(kp-, i). It still sets r* = y* @ F(kp-, i). Then, it uses the punctured key

klgi) in place of kp- in ObfProve and ObfVerify. Specifically, ObfProve and Obf Verify are now defined
as follows:

— If b* = 0, then the challenger sets ObfProve « iO(l’L’bf, 1%, GenProof[C, kse|,kéi),k1]) and
Obf Verify « iO(lADbf, 1%, VerProof3[C, ksel,kéi),kl, ri,yt, 2%, i)).

— If b* = 1, then the challenger sets ObfProve « iO(lAObf, 1%, GenProof [C, ksel, ko, k{‘“]) and
Obf Verify « iO (1%, 1%, VerProofs[C, keei, ko, k", r*, 4", 2%, i]).

. Hybg?: Same as Hybézi), except the challenger samples r* < {0, 1},

. Hybéi.): Same as Hyb(i.), except the challenger sets r* = F(kp-, i).
We now show that each pair of hybrids are indistinguishable.

Claim 4.7. Suppose iO is sub-exponentially-secure with parameter cops € (0, 1) against non-uniform adver-
saries and Aope (A, n) = (A + n) /e, Then, there exists Az € N such that for all X > A4,

| Pr[Hyb, (A) = 1] - Pr[Hyb) (A) = 1]| < 1/2™".

Proof. We start by showing that for any choice of z*, the verification program VerProof [C, ko, k1] in Hyb,

and the verification program VerProof,[C, ke, ko, k1, 2", 0] in Hybé’%) compute identical functionalities. Take

any input x € {0, 1}" and proof & = (b,y) where b € {0,1} and y € {0, 1}’. Consider the behavior of the

program VerProof; [C, ksel, ko, k1, 2", 0] in Hybéf)o):

« Suppose b = F(kse, x). Then VerProof, [C, ksel, ko, k1, 2%, 0] outputs 1 if F(kp, x) = y and 0 otherwise.
This is the same logic as VerProof[C, ko, k1].

« Suppose b = 1 — F(ksel, x). Since x € {0, 1}", the integer value of x is between 0 and 2" — 1. Thus,
x = 0, so VerProof, [C, ksel, ko, k1, 2%, 0] outputs 1 if F(kp, x) = y and 0 otherwise. This is the same
logic as VerProof[C, ko, k1].

We conclude that on all inputs x € {0,1}" and = € {0,1}*!, the verification programs VerProof and
VerProof; in Hyb, and Hybg’%) have identical input/output behavior. The claim now follows by security
of i0. Formally, suppose there exists an infinite set Az C N such that for all 1 € A4,

| Pr[Hyb, (A) = 1] = Pr[Hyb{y (A) = 1]| > 1/2M"%).

Let Ag = {(/1 +n(A))er ;) e qu}. Since n(A) is non-negative and A # is infinite, the set Ag is also
infinite. We use A = (Ay, Ay) to construct a non-uniform adversary 8 = (81, B,) such that for all
Aobf € Ag, iIOAdvg(Agps) > 1/ 2ot We define the (inefficient) preprocessing algorithm $; as follows:

1. On input 1% algorithm B first checks if there exists A € A 5 such that Agpr = (A + n(1))/b . If no
such A exists, algorithm $B; outputs L. Otherwise, it sets A to be the smallest such value that satisfies
the condition.

2. Algorithm B, runs st 4 < A;(1%). It then samples (z*, y*) < OWF.GenChal(1%). Finally, it outputs
the state stg = (st4, 2%, y").
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The online algorithm B, now proceeds as follows:

1. On input the state stg, algorithm 8B, outputs L if stg = L. Otherwise, it parses stg = (st, z*, y*)
and starts running A on input st 4. Algorithm A; outputs a circuit C: {0,1}" x {0,1}* — {0,1}.

2. Algorithm B, sets Aprr = Aprr(4, n) and samples PRF keys kse| «— F.Setup(l’lPRF, 17,1Y), ko, ky
F.Setup(17°%F, 17 17),

3. Algorithm B, computes the parameter s as in Construction 4.1 and gives 1°, VerProof[C, ko, k1], and
VerProof; [C, keel, ko, k1, 2%, 0] to the challenger. The challenger replies with an obfuscated program
Obf Verify.

4. Algorithm B, computes ObfProve « iO (1%, 15, GenProof[C, keel, ko, k1]) and gives the common
reference string crs = (ObfProve, ObfVerify) to As.

5. After A, outputs the statement x and the proof = = (b, y) where b € {0,1} and y € {0, 1}, algorithm
B, outputs 1 if ObfVerify(x, 1) = 1 and b # F(ksel, x).

We now argue that 8 is efficient and compute its advantage:

- Efficiency: First, we argue that the state stg output by B; has polynomial size. Since copr € (0, 1)
and n(A) > 1, we have that A < Aqp¢. By construction, [st#], |z*], |y*| = poly(4), so we conclude that
|stg| = poly(A) = poly(Aopf). Next, A is efficient so algorithm B, is also efficient by construction.

+ Advantage: It suffices to analyze the advantage of 8. In this case, the challenger obfuscates the
program VerProof[C, ko, k1], then algorithm 8 perfectly simulates Hyb,. If the challenger obfuscates
the program VerProof,[C, ks, ko, k1, 2", 0], then algorithm 8B perfectly simulates Hyb;f)(]). Finally,
algorithm B computes the output using the same procedure as in Hyb, and Hybg?o) . By assumption,
for all Agpr € A g,

—A Cobf

i0Adv (Aobf) = | Pr[Hyb,(A) = 1] = Pr[Hyb) (A) = 1]| > 27 nA) = 374",

Cobf . .
Thus, algorithm B succeeds with advantage greater than 2~%b¢ for infinitely-many security param-
eters Aobf € Ag. This breaks sub-exponential-security of iO (with parameter copf). O

Claim 4.8. Suppose iO is sub-exponentially-secure with parameter cops € (0, 1) against non-uniform adver-
saries and Aopi(A, n) = (A + n)V/ . Then, for alli € {0,...,2" — 1}, there exists Az € N such that for all
/1 > Aﬂ:

| Pr[Hyb” (A) = 1] - Pr[Hyb{") (A) = 1]| < 1/2**".

Proof. Take any i € {0,...,2" —1}. In both Hybg’ol.) and Hybé}i), the challenger samples (z*,y*) «
OWF.GenChal(1%) and the PRF keys ks < F.Setup(177% 1" 1') and ko, k; < F.Setup(1%7%, 17, 1¢). In

b(l) the challenger also sets r* = y* @ F(kp+, i) where b* = 1 — F(ksel, ). We start by showing that the
programs VerProof; [C, keel, ko, k1, 27, i] in Hyb(o) and VerProofs[C, ksel, ko, k1, ¥, y*, 2%, i] in Hyb( )compute
identical functionalities. Take any input x € {0 1} and proof & = (b, y) where b € {0 1} and y € {0,1}.
Consider the behavior of the program VerProofs|[C, ksel, ko, k1, 7", y*, 2%, i] in Hybz’i :

« Suppose b = F(ksel,x). Then VerProofs[C, ksel, ko, k1, 7", y*, 2%, i] outputs 1 if F(kp,x) = y and 0
otherwise. This is the same logic as VerProof;[C, ksel, ko, k1, 2*, i].
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« Suppose b = 1 — F(ksel, x) and x # i. By inspection, the programs VerProofs[C, ksel, ko, k1, r*, y*, 2%, i]
and VerProof,[C, ksel, ko, k1, 2", i] implement identical logic in this case.

« Suppose b = 1 — F(ksel, x) and x = i. Then the program VerProofs[C, ks, ko, k1, 7", y*, 2%, i] in Hybé}i)
outputs 1 if y & r* = y*. In this experiment, the challenger sets r* = y* & F(kp+, i), so the program
outputs 1 if y ® y* @ F(kp+, i) = y*, or equivalently, if y = F(kp-, i). Moreover, b* = 1 — F(ksel, i) = b,
so the program VerProofs in this case outputs 1 if y = F(kp, x) and 0 otherwise. This is exactly the
same check performed in VerProof;[C, ksel, ko, k1, 2%, i].

Thus, we conclude that on all inputs x € {0,1}" and 7 € {0, 1}'*!, the verification programs VerProof, and
VerProof; in Hybgol.) and Hybéll.), respectively, have identical input/output behavior. The claim now follows
by sub-exponential security of iO via a similar reduction as in the proof of Claim 4.7. O

Claim 4.9. Suppose iO is sub-exponentially-secure with parameter cobs € (0,1) against non-uniform
adversaries and Aop(A,n) = (A + n)l/cobr, Suppose Ipprr satisfies punctured correctness. Then, for all
i€{0,...,2" — 1}, there exists Az € N such that for allA > A4,

| Pr[Hyb!) (A) = 1] - Pr[Hyb{? (A) = 1]| < 1/2**".

Proof. Take any i € {0,...,2" — 1}. In both Hybé’ll.) and Hybé’zi), the challenger first samples (z*,y*) «
OWF.GenChal(1%) and the PRF keys ks < F.Setup(177%, 1" 1') and ko, k; < F.Setup(1%%F, 17, 1¢). In
addition, the challenger in both experiments computes b* = 1 — F(ks, i) and r* = y* @ F(kp-, i). Finally, in

Hybgi), the challenger additionally computes klgi) « F.Puncture(kp~, i). We first show that if b* = 0, then

2)
i

the proof-generation programs GenProof [C, ke[, ko, k1] in Hybé}i) and GenProof [C, k|, kéi), ki] in Hybg
have identical input/output behavior. Take any input x € {0,1}" and w € {0, 1}":

« If C(x,w) = 0, then both programs output L.
« If C(x,w) =1and b = F(kse|, x) = 1, then both programs output (1, F(kq, x)).

e If C(x,w) =1 and b = F(kse,x) = 0, .then GenProof [C, ksel, ko, k1] outputs (0, F(kg, x)) while
GenProof [C, ksel, kél), k1] outputs (0, F(ké’),x)). In this case, it holds that x # i because F(kse|, i) =

1—b" =1 when b* = 0. Since x # i, by punctured correctness, F(ko, x) = F(k(i), x) and the program
outputs are identical.

Thus, we conclude that the programs GenProof [C, ksel, ko, k1] in Hybg,li) and GenProof [C, ks, kéi), k] in
Hybgi) have identical input/output behavior. Next, we show that the same holds for the verification programs

VerProofs[C, ksel, ko, k1, ¥, y*, 2%, 1] in Hybé}i) and VerProof;|[C, kel kéi), ki, r*,y*, 2%, i] in Hybgi.). Again we
first do so for the case of b* = 0. Take any input x € {0,1}" and = = (b,y) where b € {0,1} and y € {0, 1}':

« Suppose b = 1. Then, the output only depends on the values of y, z*, and F(ky, x), which is the same
in both experiments.

« Suppose b = 0. Then we have the following two possibilities:

— Suppose x # i. By punctured correctness, we have that F(ko, x) = F(kéi), x). The outputs in this
case only depends on the value of y, z*, and F(ko, x) = F(k(i), x).
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— Suppose x = i. Since b* = 0 = 1 — F(ksel, x), we have that F(kse, x) = 1 in this case. Since b = 0,
this means that b = 1 — F(ks|, ), and so both programs output 1 if y & r* = y* and 0 otherwise.

Once more, we conclude that the verification programs VerProof; in Hybéli) and Hybézi) have identical
input/output behavior. An analogous argument shows that the GenProof and VerProof programs in the
two experiments have identical input/output behavior when b* = 1 — F(kse|, i) = 1. To complete the proof
we introduce an intermediate hybrid:

+ iHyb;: Same as Hyb;i.) except the challenger computes Obf Verify as in Hyb;}i). Namely, it computes
Obf Verify « iO(l’lobf, 1%, VerProofs [C, ksel, ko, k1, 7", y*, 2, i]).

Suppose there exists an infinite set Az C N such that for all 1 € A 4,
| Pr[Hyb{!) (A) = 1] - Pr[iHyb,(A) = 1]| > 1/2*). (4.1)

Let Ag = {(/1 +n(1)) Ve ;) e Ay[}. We use A = (A, Ay) to construct a non-uniform algorithm

B = (B, B>) such that for all Ao € Ag, IOAdvg(Agpr) > 1/ ZAgg?f. We define the (inefficient) preprocessing
algorithm B, as follows:

1. On input 1%, algorithm B first checks if there exists A € A 5 such that Agpr = (A + n(1))/b . If no
such A exists, algorithm $B; outputs L. Otherwise, it sets A to be the smallest such value that satisfies
the condition.

2. Algorithm By runs st 4 < A;(1%). It then samples (z*, y*) < OWF.GenChal(1*) and outputs the
state stg = (sta, 2%, y").

The online algorithm B, now proceeds as follows:

1. On input the state stg, algorithm B, outputs L if stg = L. Otherwise, it parses stg = (stg,z", y")
and starts running A, on input st 4. Algorithm A, outputs a circuit C: {0,1}" x {0, 1} — {0,1}.

2. Algorithm B, sets Aprr = Aprr(A, n) and samples PRF keys kge| «— F.Setup(l’lPRF, 1",1') and ko, k; «
F.Setup(147/F 17, 1%). It computes b* = 1 — F(kgel, 1), k;}i) « F.Puncture(kp+, i), and r* = y* @ F(kp-, ).

3. Algorithm B, computes the parameter s as in Construction 4.1. It constructs the challenge as follows:

« Ifb* =0, it gives 1°, GenProof [C, ksel, ko, k1], and GenProof [C, ksel, kéi), k1] to the challenger.
« Ifb* =1, it gives 1°, GenProof [C, ksel, ko, k1], and GenProof[C, ke, ko, kl(i)] to the challenger.

The challenger replies with an obfuscated program ObfProve.

4. Algorithm 8B; computes ObfVerify «— i0(1%, 15, VerProofs [ C, ksel, ko, k1, 7%, y*, 2%, i]) and gives the
common reference string crs = (ObfProve, ObfVerify) to A,.

5. After A, outputs the statement x and the proof = = (b, y) where b € {0,1} and y € {0, 1}/, algorithm
B, outputs 1 if ObfVerify(x, 1) = 1 and b # F(ksel, x).

We now argue that 8 is efficient and compute its advantage:
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« Efficiency: First, we argue that the state stg output by B; has polynomial size. Since cops € (0, 1)
and n(A) > 1, we have that A < A.¢. By construction, st 4], |z*], |y*| = poly(4), so we conclude that
Istg| = poly(A) = poly(Aebs). Next, Aj is efficient so algorithm B, is also efficient by construction.

« Advantage: If the challenger obfuscates the program GenProof[C, ke, ko, k1], then algorithm B
perfectly simulates Hybg,li). If the challenger obfuscates the program GenProof[C, ke, kél), k{] (when

b* = 0) or the program GenProof[C, keel, ko, kl(i)] (when b* = 1), then algorithm 8 perfectly simulates

iHyb;. Finally, algorithm 8B, computes the output using the same procedure as in Hybé,li) and iHyb,.
By assumption then, for all Aopr € Ag,

Cobf

iOAdv g (Aobf) = |Pr[Hybgff(ﬂ) = 1] = Pr[iHyb,(A) = 1]| > 27 #1W) = 2745
Thus, algorithm B succeeds with advantage greater than 2—12,‘;? " for infinitely-many Aops € Ag. This
breaks sub-exponential-security of iO (with parameter cqpf).

By an analogous argument (where the reduction algorithm obtains ObfVerify from the challenger), we can
show that for all sufficiently-large A € N, it holds that

| Pr[iHyb,(A) = 1] - Pr[Hyb{®) (A) = 1]| < 1/2*"®. (4.2)
Combining Eqs. (4.1) and (4.2), we conclude that for all sufficiently-large A € N,
| Pr[Hyb}) (A) = 1] - Pr[Hyb{? (A) = 1]| < 2/2M"P), O

Claim 4.10. Suppose Ippgr satisfies selective sub-exponential puncturing security with parameter cprg € (0, 1)
against non-uniform adversaries and Aprg (A, n) = (A + n)Y/*%¢ Then, for alli € {0,...,2" — 1}, there exists
Az € N such that forall A > A4,

| Pr[Hyb{? (A) = 1] - Pr[Hyb{? (A) = 1]| < 1/2**".
Proof. Takeanyi € {0,...,2" — 1} and suppose there exists an infinite set Az € N such that forall A € A #,
| Pr[Hyb(®) (A) = 1] - Pr[Hyb{) (A) = 1]| > 1/2M"P).

Let Ag = {(/1 +n())Verrr ;) e Aﬂ}. We use A = (Ay, Az) to construct a non-uniform algorithm

B = (B, B;) such that for all Aprr € Ag, PPRFAdvg (Aprg) > 1/21}35,;'?_ We define the (inefficient) prepro-
cessing algorithm $; as follows:

1. On input 17°% algorithm B, first checks if there exists A € A4 such that Apgr = (A + n(1))/errr,
If no such A exists, algorithm B; outputs L. Otherwise, it sets A to be the smallest such value that
satisfies the condition.

2. Algorithm B, runs st « A;(1%). It then samples (z*, y*) < OWF.GenChal(1%) and outputs the
state stg = (stg, 2%, y").

The online algorithm B, now proceeds as follows:
1. On input the state stg, algorithm B, outputs L if stg = L. Otherwise, it parses stg = (stg,z", y")

and starts running Ay on input st 4. Algorithm A; outputs a circuit C: {0,1}" x {0,1}* — {0,1}.
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2. Algorithm B, samples kse| F.Setup(17°*, 1", 1') and computes b* = 1 — F(ks, ). It samples
ki—p « F.Setup(lAPRF, 17,1%).

3. Algorithm B, submits the input length 17, the output length 17, and the point i € {0, 1}" to the punc-

tured PRF challenger. It receives a punctured key k[()l) and a challenge value r’ € {0,1}. Algorithm
Bysetsr' =y @r'.

4. Algorithm B; sets Aopr = Aobf (A, 1) and constructs the programs ObfProve and Obf Verify as follows:

« Ifb* = 0, then it computes ObfProve « i()(l’lObf, 1%, GenProof [C, k|, kl(,l) ki_p+]) and Obf Verify
i0(1’1°bf, 1%, VerProof3[C, ksel, k;{), ki_p, 1%, Y%, 2%, 0]).

« Ifb* = 1, then it computes ObfProve « iO(l/L’bf, 1%, GenProof [C, ksel, k1_p, k[()l)]) and Obf Verify
i0 (1%, 1%, VerProof [C, ksel, k1-p, k,(,f), r oyt 2t i]).

Algorithm B, gives the common reference string crs = (ObfProve, Obf Verify) to As,.

5. After algorithm A, outputs the statement x and the proof = = (b,y) where b € {0,1} and y € {0, 1}/,
algorithm B, outputs 1 if ObfVerify(x, 7) = 1 and b # F(ksel, x).

We now argue that 8 is efficient and compute its advantage:

« Efficiency: First, we argue that the state stg output by 8B; has polynomial size. Since cpgrr € (0, 1)
and n(A) > 1, we have that 1 < Aprr. By construction, |st 4], |z*|, |y*| = poly(4), so we conclude that
|stg| = poly(A) = poly(Aprr). Next, A; is efficient so algorithm B, is also efficient by construction.

« Advantage: By definition, the punctured PRF challenger constructs key kéi) by first sampling
ky- < F.Setup(17%% 17 1%) and setting k;? « F.Puncture(kp-, ). This matches the specification in
Hybg’zi) and Hybéi.). Consider now the distribution of the challenge value r*:

— Suppose r’ = F(kp+,i). In this case, algorithm B, sets r* = y* & r’ = y* & F(kp+,i). This
corresponds to the distribution of Hybé,zi). Moreover algorithm 8B, computes the outputs using
the same procedure as in Hybé’zi) and Hybgi.) . Thus, in this case, algorithm 8, outputs 1 with
probability Pr[Hyb}” (A) = 1].

- Suppose 1’ < {0,1}!. In this case, algorithm B, sets r* = y* @ r’. Since r’ is sampled inde-
pendently of all other quantities, the distribution of r* in this case is also uniform over {0, 1}’.
Thus, algorithm B, perfectly simulates an execution of Hybgi) and outputs 1 with probability
Pr[Hyby” (A) = 1].

Combining the above analysis, we have for all Apgr € Ag,

_ACPRF

PPRFAdvg (Aprr) = | Pr[Hyb{) (A) = 1] = Pr[Hyb}) (A) = 1] > 27 H"D) = 27|

We conclude that algorithm 8 succeeds with advantage greater than 27t for infinitely-many Aprr € Ag.
This breaks selective sub-exponential puncturing security of Ilppgr (with parameter cpgrp). O
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Claim 4.11. Suppose Ilpprr satisfies selective sub-exponential puncturing security with parameter cprr € (0, 1)
against non-uniform adversaries and Aprg(A, n) = (A + n)Y/*%  Then, for alli € {0,...,2" — 1}, there exists
Aa € N such that forall A > A4,

| Pr[Hyb{?) (A) = 1] - Pr[Hyb{! (A) = 1]| < 1/2™".
Proof. Follow by an analogous argument as the proof of Claim 4.10. O

Claim 4.12. Suppose iO is sub-exponentially-secure with parameter cops € (0, 1) against non-uniform ad-
versaries and Aopf(A, n) = (A + n)l/cﬂbf. Suppose Ipprr satisfies punctured correctness and owr is correct and
injective. Then, for alli € {0,...,2" — 1}, there exists A € N such that for all A > A 4,
0
| Pr[Hyb{" (A) = 1] - Pr[Hyb{") (A) = 1]| < 2/2**".

2,i+1

Proof. This follow by a similar argument as in the proof of Claim 4.9. To argue this, we start by showing
that the programs associated with ObfProve and ObfVerify have identical behavior in the two experiments.
The claim then follows by sub-exponential security of iO (as in the proof of Claim 4.9). We emphasize here
that our analysis here critically relies on injectivity of Ilowr. Indeed, the crux of this argument is changing
the verification check for x = i as follows:

output 1if y & F(kp,i) =y* = output 1 if OWF.Verify(z*,y @& F(kp-, 1)) = 1,

where (z*,y*) < OWF.GenChal(1%). These two checks are identical only in the case where owr is
injective. If IIowr is not injective, there can be multiple inputs y where OWF .Verify(z*,y & F(kp+, 1)) = 1,
but only a single input where y ® F(kp-, i) = y*.

We now give the formal argument. Take any index i € {0,...,2" — 1} and consider an execution of
Hybgli) and Hybéoizrl. In both experiments, the challenger samples PRF keys ke < F.Setup(14#%F 17 1)

and ko, k; < F.Setup(177/¢ 17 1%)_ It also samples (z*, y*) « OWF.GenChal(1%). In Hybéi.), the challenger

additionally computes b* = 1 — F(kse, i), klgi) «— F.Puncture(kp-, i), and r* = F(kp+,i). We analyze the
proof-generation and the proof-verification programs in the two experiments. We start by analyzing the
case where b* = 0; the case where b* = 1 follows similarly:

The GenProof programs. We start by considering the proof-generation programs. In Hybg’?, the chal-
lenger obfuscates the program GenProof [C, ke, kéi), k1] whereas in Hybégll, the challenger obfuscates the
program GenProof [C, ksel, ko, k1 ]. By the same argument as in the proof of Claim 4.9, these two programs
compute identical functionality. In particular, by punctured correctness, F(kg, x) = F(kél), x) for all x # i,

and neither program needs to evaluate the PRF with k¢ (or kéi)) at i since F(kse, 1) =1 # b*.

5’41.), the challenger obfus-

The VerProof programs. Next, we consider the verification programs. In Hyb
cates the program VerProofs[C, ks, kéi), ki, r*,y*, 2%, i] whereas in Hybgf’ill, the challenger obfuscates the
program VerProof; [C, keel, ko, k1, 2%, i+1]. We show that these two programs compute identical functionality.

Take any input x € {0,1}" and & = (b,y) where b € {0,1} and y € {0, 1}*:

« Suppose b = 1. Recall that when 0 = b* = 1 — F(kse, i), it holds that F(kge|, i) = 1 = b. Thus, there are
two possibilities: either (1) b = F(kgel, X); or (2) b = 1 — F(ksel, x) and x # i (recall that when b* = 0,
we have that F(ksel, i) = 1). We consider each one individually:
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— Suppose b = F(ksel, x). Then, both programs output 1 if F(k, x) = y and 0 otherwise.

— Suppose b = 1—F(kse, x) and x # i. If x < i, both programs output OWF .Verify(z*, y ® F(ky, x))
and if x > i, both programs output 1 if F(k;, x) = y and 0 otherwise.

« Suppose b = 0. Since F(ksel, i) = 1, there are two possibilities: either (1) b = 1 — F(kgel, x); or (2)
b = F(ksel, x) and x # i. We consider these possibilities:

— Suppose b = F(kgel, x) and x # i. In this case, the program VerProofs[C, ks, kéi), ki, r*,y*, 2%, ]
in Hybéi.) outputs 1 if F(k(i),x) = y, whereas the program VerProof;[C, ke, ko, k1, 2", i + 1] in
Hybégll outputs 1 if F(ko, x) = y. Since x # i, punctured correctness of ITpprr implies that
F(ko,x) = F(k(i), x), and the outputs of the two programs are identical.

— Suppose b = 1—F(ksel, x) and x # i. If x < i, the program in Hyb;jli) outputs OWF.Verify(z*, y ®

bé,oill outputs OWF . Verify(z*,y & F(ko,x)). By punc-

tured correctness, the outputs are equivalent. If x > i, the program in Hybg? outputs 1 if

F (kéi>, x)) whereas the program in Hy

F(k(i),x) = y while the program in Hybg,oil1 outputs 1 if F(kg, x) = y. These are the same by
punctured correctness.

— Suppose b = 1-F(ksel, x) and x = i. In this case, the program VerProof3[C, ks, kéi), ki, r*,y*, 2%, ]
in Hybgt.) outputs 1if y @ r* = y*. In this case (with b* = 0), r* = F(ko, i). Since the challenger
in Hybgi) sampled (z*,y*) < OWF.GenChal(1%), correctness and injectivity of Iowr states
that OWF.Verify(z*,y*) = 1 and for all y # y*, OWF.Verify(z*,y) = 0. Equivalently,

y @ F(ko,i) =y* ifand only if OWF.Verify(z*,y @ F(ko,i)) = 1.
In other words, the output of the verification program in Hybgi.) is 1if

OWEF.Verify(z*,y @ F(ko,i)) = 1
(0)

nitl’ Observe

and is 0 otherwise. This is the same condition checked by the program in Hyb
that this is the case that critically relies on injectivity of Ilowr.

We conclude that on all inputs x € {0,1}" and 7 € {0, 1}/, the behavior of the GenProof and VerProof
programs in Hybgi) and Hybg’ol.)+1 is identical when b* = 0. A similar analysis applies when b* = 1. The
claim now follows by sub-exponential security of iO (as in the proof of Claim 4.9). m|

Claim 4.13. Suppose iO is sub-exponentially-secure with parameter cope € (0,1) against non-uniform
adversaries and Aopi (A, n) = (A + n)'/ . Then, there exists Az € N such that for all A > A,

| Pr[Hyb{ ), (A) = 1] = Pr[Hyb,(A) = 1]| < 1/2*".

Proof. This follows by a similar argument as the proof of Claim 4.7. We first show that the program

VerProof; [C, ksel, ko, k1, 2, 2™] in Hybrid Hybg,oz)n and the program VerProof [C, ksel, ko, k1, 2"] in Hyb; com-

pute identical functionalities. Take any input x € {0,1}" and = = (b,y) where b € {0,1} and y € {0, 1}.
o If b = F(ksel, x), then both programs output 1 if F(kp, x) = y and 0 otherwise.
« If b =1 — F(ksel, x), then both programs output OWF.Verify(z*, y & F(kp, x)). Note that this follows
because for all i € {0,...,2" — 1}, it holds that x < 2".
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Both experiments sample kse|, ko, k1, and z* using identical procedures. We conclude that the two programs
compute identical functionality. The claim now follows by sub-exponential security of iO (as in the proof
of Claim 4.7). O

We now return to the proof of Lemma 4.6. By Claims 4.8 to 4.12, for all i € {0,...,2" — 1}, and all
sufficiently-large A € N, it follows that

| Pr[Hyb ") (A) = 1] - Pr[Hyb(’), (A) = 1]| < O(1)/2M*" D).

By the triangle inequality,

n o1 _ .-
| Pr[Hyb{}) (A) = 1] - Pr[Hyb{}), (A) = 1]| < 2" . oy = 2 Q1)
Combined with Claims 4.7 and 4.13, we conclude that
| Pr[Hyb,(A) = 1] = Pr[Hyb,(A) = 1]| < 9=Q) a

Lemma 4.14. Suppose Ilowr is one-way against non-uniform adversaries. Then, there exists a negligible
function negl(-) such that for all A € N, Pr[Hyb,;(A) = 1] < negl(A).

Proof. Suppose Pr[Hyb,(A) = 1] > ¢(A) for some non-negligible function e. We use A = (A, Ay) to
construct a non-uniform adversary 8 = (8, B;) that breaks one-wayness of Ilowr. First the preprocessing
algorithm B, takes the security parameter 1* as input, runs st 4 < A;(1*), and outputs stg = st4. The
online algorithm 8, then works as follows:

1. On input the state stg = st #, algorithm B, runs algorithm A; on the state st #. Algorithm A, starts
by outputting a circuit C: {0,1}" x {0,1}" — {0,1}.

2. Algorithm B, computes Aprr = Aprr(4, n) and samples PRF keys kse| F.Setup(lAPRF, 1",1!) and
ko, ki « F.Setup(177r¢ 17 1),

3. Algorithm B, sets Aohf = Aobf(A, n) and constructs the obfuscated programs

ObfProve « iO(lA"bf, 1°, GenProof [C, ksel, ko, k1])
Obf Verify « iO(1% 1%, VerProof; [C, kser, ko, k1, 2°]).

It gives crs = (ObfProve, Obf Verify) to A.

4. After A, outputs a statement x € {0,1}" and a proof = = (b,y) where b € {0,1} and y € {0, 1}/,
algorithm B, outputs y & F(kp, x).

By definition, the one-wayness challenger samples (z*, y*) « OWF.GenChal(1*), which matches the distri-
bution in Hyb,. Thus, with probability e, algorithm A outputs x and 7 = (b, y) where Obf Verify(x, 1) =1
and b # F(kse, x). By correctness of iO and construction of VerProofy, if b = 1 — F(ksel, x), then
ObfVerify(x, w) = 1 if and only if OWF.Verify(z*, y @ F(kp, x)). This means that y @ F(kp, x) is a preimage
of z* and algorithm B successfully produces a preimage of z*. O
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Combining Lemmas 4.4 to 4.6, we have for all sufficiently-large A € N,
Pr[Hyby(A) = 1] < 2 Pr[Hyb,(A) = 1] + 272D,
By Lemma 4.14, Pr[Hyb; (A) = 1] = negl(1). We conclude that
Pr[Hyb,(A) = 1] < negl(4).
Since Hyb,, corresponds to the real adaptive soundness security game, Theorem 4.3 follows. ]
Theorem 4.15 (Succinctness). Construction 4.1 is succinct.

Proof. A proof 7 in Construction 4.1 consists of a bit b € {0, 1} and an element of {0, 1}’ where ¢ = t(1)
is the length of the input to the injective one-way function with inefficient sampler (Definition 3.2). Since
t = t(A) is polynomially-bounded in the security parameter, || = poly(1) and succinctness holds. m]

Remark 4.16 (Perfect Zero-Knowledge). Similar to previous iO-based SNARGs [SW14, WW24a, WZ24],
Construction 4.1 satisfies perfect zero-knowledge (the proof is just the output of a PRF on the statement,
which can be perfectly simulated). We refer to the previous works for a formal proof of this.

5 Constructing Injective One-Way Functions with an Inefficient Sampler

In this section, we show how to construct an injective one-way function with an inefficient sampler from
any one-way function (and a universal hash function). We start by recalling the definition of a universal
hash function and then give our construction.

Definition 5.1 (Universal Hash Function). Let H be a family of hash functions h: Y — Z with domain
Y and range Z. We say that H is universal if for all y;, y, € Y where y; # yo,

1
Prih(y;) = h(yz) : h & H] < —.
1Z|
We say that H is efficiently-sampleable if there exists an explicit algorithm that outputs a sample h <~ H
in time poly(log |Y| + log | Z|).

Construction overview. As noted in Section 1.1, we construct our injective one-way function with an
inefficient sampler by composing a vanilla one-way function with a universal hash function. Specifically,
suppose f: {0,1} — {0,1}™ is a one-way function. Each element v € {0, 1}"" in the image of f can have
between 1 and 2 possible preimages. Thus, we need a way to associate a “unique” solution to a challenge
element v. To do so, we additionally include a hash value ¢ with v, and we say that a candidate preimage
y € {0, 1} of v is valid only if h(y) = o. In this case, the adversary’s goal is not to find any preimage of v, but
rather, to find a preimage that also has the correct hash value: that is, a value y where (f(y), h(y)) = (v, 0).

The remaining question is how to pick the output length for the hash function h. If the output length is
too short and a candidate value v € {0, 1} has many preimages, then there can still be multiple preimages
of v that share a hash value o. Conversely, if the output length of the hash function is too long, then giving
out the hash of a preimage o = h(y) might leak too many bits of information about the preimage y and
compromise one-wayness of the function. In particular, the output length of the hash function should be
dynamically adjusted based on the number of preimages the value v has (e.g., the output length of the hash
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function should scale with the number of preimages the element v has). In our construction, we handle
this by having the challenge-generation algorithm “guess” the number of preimages v has, and we show
that whenever it guesses correctly (up to a factor of 2), then the resulting challenge is hard to invert with
noticeable probability. In more detail, our approach operates as follows:

+ Challenge structure: The challenge is a tuple z = (p, h, v, o), where p € [t + 1] is the output length
of the hash function, h: {0,1}’ — {0, 1}” is a hash function sampled from a universal hash family,
v € {0,1}™ is an element in the image of f, and o € {0, 1} is the target hash value.

« Challenge sampling and injectivity: The challenge-generation algorithm first samples the hash
length p < [t + 1]. Then, it samples the hash function h from a universal hash family (with ¢-bit
inputs and p-bit outputs). Finally, it samples a random v € {0, 1}" in the image of f (i.e., by sampling
u < {0,1}! and setting v = f(u)) and a random tag o <~ {0, 1}*. Now, the challenge-generation
algorithm checks to see if there exists exactly one preimage y where (f(y), h(y)) = (v, 0). If so, it
outputs the challenge z = (p, h, v, ), and otherwise, it repeats this process. By construction, any
challenge z output by this sampling procedure has exactly one preimage, so injectivity follows by
construction. Note also that this sampling procedure is not efficiently-computable since it needs to
count the number of preimages of v.

« One-wayness: To argue that it remains hard to invert the challenges z output by this procedure,
we first show that with inverse polynomial probability §, the GenChal algorithm will successfully
sample a valid challenge z = (p, h, v, o) on the first attempt. In this case, we can set up a reduction to
the one-wayness of f. Suppose there exists an efficient algorithm A that can solve the challenges
output by GenChal with probability ¢. Such an algorithm can be used to break one-wayness of
f as follows. Given a (random) challenge v € {0,1}™ for f, the reduction algorithm samples the
values of p, h, and o itself (according to the same distribution as GenChal), and gives the challenge
z = (p, h,v, 0) to the adversary A. With probability J, this challenge is distributed according to the
output of GenChal, so if A succeeds with probability ¢, then our reduction algorithm succeeds in
inverting f with probability §¢ and the claim follows.

We now give the formal construction and analysis:

Construction 5.2 (Injective One-Way Function with an Inefficient Sampler). Let t = t(A) be a polynomially-
bounded function and let f: {0,1}!® — {0,1}™ be a one-way function. For each p € [t + 1], let H,
be an efficiently-sampleable family of (efficiently-computable) universal hash functions with domain
{0, 1} and range {0, 1}”. We use f to construct an injective one-way function with an inefficient sampler
IMowr = (GenChal, Verify) with input length ¢(1) + 1 as follows:

« GenChal(1%): On input the security parameter A, set t = £(1). Then repeat the following procedure
(up to) A - (t + 1) times:
- Sample p ¢ [t + 1] and h & H,,. Sample u < {0, 1}" and let v = f(u) € {0, 1}™.

- Sample o < {0, 1}”. If there exists §* € {0, 1} such that f(J*) = v and h(§*) = o, and moreover,
for all § # §* € {0,1}¢, it holds that (f(9), h(9)) # (f(§*), h(§*)), then output the challenge
z* = (p, h, (), h(7*)) together with the solution y* = 0||7* € {0, 1}*1.

If after A - (¢ + 1) attempts, the above algorithm has not produced any output, then output z* = L
and the associated solution y* = 1°*1.
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« Verify(z, y): On input the challenge z and a solution y, the verification algorithm proceeds as follows:

- Ifz = 1, then output 1 if y = 1’*! and 0 otherwise.
- Ifz = (p,h,0,0) for some p € [t],h € H,, v € {0,1}", and o € {0,1}”, then parse y = b||§
where b € {0,1} and § € {0, 1}'. Output 1 if b = 0 and (f(7)), h(§)) = (v, o) and 0 otherwise.
In all other cases, output 0.
Theorem 5.3 (Correctness and Injectivity). Construction 5.2 is correct and injective.
Proof. Take any security parameter A € N and any (z*, y*) in the support of GenChal(1%). We consider
two possibilities:
— 1l’+1

« Suppose z* = L. In this case, y*
Verify(z*,y) = 0 for all y # 1'*1.

. By construction, Verify(z*,y*) = 1, and moreover,

« Suppose z* = (p, h,v, o) and y* € {0, 1}**!. By construction of GenChal, it must then be the case that
y* = 0||7* for some §* € {0, 1} and (v, o) = (f(§*), h(§*)). As such, Verify(z*,y*) = 1. Moreover, the
GenChal algorithm outputs (z*, y*) only if for all § # §*, it holds that (f(§), h(9)) # (f(§*), h(7")) =
(v, 0). Correspondingly, for all y # 0||7*, this means that Verify(z*,y) = 0. O

Theorem 5.4 (One-Wayness). If for all p € [t], H,, is universal and if f is one-way, then Construction 5.2
is also one-way.

Proof. Let A be an efficient adversary for the one-wayness game. We now define a sequence of hybrid
experiments between the adversary A and the challenger:

+ Hyb,: This is the real one-wayness game. Namely, the challenger starts by sampling the challenge
z* according to the specification of GenChal(1%):

— The challenger repeats the following sampling procedure until it either successfully samples
a challenge-solution pair (z*,y*) or it fails a total of A(t + 1) times: sample p < [t + 1],
h & Hy u & {0,1}, 0 & {0,1}*, and set v = f(u). If there exists §* € {0,1}’ such that
f(7*) =vand h(§*) = o and for all § # §*, it holds that (£ (), h(9)) # (f(§*), h(§")), then set
2= (p.h f(§°), h(§")) = (p, b, f (u), 0).

— If the sampling procedure does not terminate after A(t + 1) attempts, the challenger sets z* = L.

The challenger gives the challenge z* to the adversary A. Algorithm A replies with y. The output
of the experiment is Verify(z*, y).

+ Hyb,: Same as Hyb,, except the challenger first defines the following sets:
- For each p € [t + 1], define the set S, to be

S, = {(h,u,o) theHyue{0,1},0¢€ {0,1}‘0}.

— For each p € [t + 1], define the set T, C S, to be the subset of tuples (h,u, o) where there
exists §* € {0, 1} such that f(§*) = f(u) and h(§*) = o and for all § # §*, it holds that
(f (@), k(@) # (f ("), h(F")).
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Then, the challenger repeats the following sampling procedure until it successfully samples a chal-
lenge z* or it fails a total of A(¢ + 1) times: sample p <~ [t +1] and (h,u,0) <~ S,. If (h,u,0) € T, set
z* = (p, h, f(u), o). If the sampling procedure does not succeed after A(t + 1) attempts, the challenger
sets z* = L. The challenger gives z* to A. Algorithm A outputs y and the output of the experiment
is Verify(z*, y).

« Hyb,: Same as Hyb,, except the challenger continues to sample p ¢ [t + 1] and (h,u, o) < S, until
(h,u,0) € T, (in which case it sets z* = (p, h, f(u), o) as in Hyb,). If it is the case that T, = @ for all
p € [t + 1], then the experiment always outputs 0.

« Hyb,: Same as Hyb,, except the challenger now samples p < [t + 1], (h,u,0) < S,, and sets
z* = (p, h, f(u), 0). In particular, the challenger no longer checks for membership in T},.

We write Hyb,(A) to denote the output distribution of an execution of Hyb,; with adversary A. We now
show that each pair of adjacent hybrid experiments are indistinguishable. We start by proving the following
claim about the sets S, and T, defined in Hyb,, which will be useful for analyzing the output distributions
of the hybrid experiments.

Claim 5.5. Let S,, T, be the sets defined in the specification of Hyb,, where p € [t + 1]. If H,, is universal
forallp € [t +1], then

1
Pr[(huo) €T, :p < [t+1],(huo) & S,] > 207D
Proof. Let D be the distribution over tuples (p, h, u, 6) where p & [t + 1] and (h,u, 6) < S,. Equivalently,
D samples p < [t+1], h & H,, u & {0,1}!, and o < {0, 1}*. For a particular tuple (p, h, u, o), we now
define the following events:

« Let k, be the number of pre-images of f(u), and label these preimages u, ..., ux, € {0,1}*. Namely,
forall i € [ky], f(u;) = f(u). Let E; be the event that 2°~1 < 2k, < 2°.

« For eachi € [k,], let N; be the number of indices j € [k,] where h(u;) = h(u;). We will say that
u; is “good” if N; = 1 and that it is “bad” otherwise. Let E; be the event that there are at least k;, /8
indices i € [k,] where u; is good.

Now we can write

Pr[(h,u,0) € T,] > Pr[(h,u,0) € T, AE; AEy]

(5.1)
=Pr[(h,u,0) € T, | E; AEy] - Pr[E; | E1] - Pr[E4],

where all probabilities are taken over the choice of (p, h,u, o) «— D. We now analyze each of the proba-
bilities:

« Consider event E;. Take any u € {0, 1} and let k, be the number of preimages of f(u). By definition,
1 < k, < 2. Thus, there exists some £, € [t + 1] such that 2%~! < 2k, < 2%. Correspondingly,

[E;]=Pr[p=¢,:p & [t+1],u & {0,1}] = (5.2)

1
Pr —_—.
(p,hu,0)—D t+1
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Suppose E; occurs. Consider now the conditional probability that E; occurs. For a tuple (p, b, u, o),
letuy, ..., ux, € {0, 1} be the preimages of f(u). Then, for all i, j € [k,], define the indicator random
variable b; ; for the event h(u;) = h(u;). Since H,, is universal,

1 i=j
Pr bii=1|E/]= Pr [h(w)=h(u;)] < .
(p,h,u,cr)<—1)[ i,j | 1] h(L‘Hp[ ( l) ( ])] {1/2" l'ij

This means that

1 i=j
E bii | E1] < .
(p,h,u,cr)<—Z)[ " | Bl {1/2‘0 i£]

By definition, N; = ) jc [k, bi.j» S0 we conclude that for all i € [k, ],

k,—1
E [Ni|E]=1+———.
(p;hu,0)—D 2P
By Markov’s inequality,
1 k, -1
Pr [N1'22|E1]S—+ .
(phuo) =D 2 2et

Finally, if E; occurs, k, < 2°7! so k, /2P*! < 1/4. We conclude that for each i € [k,],

Pr [N; 22| E] <

53
(p,hu,0)—D ( )

=W

Let M be the number of indices i € [k,] where u; is bad (i.e., where N; > 2). Let b; be the indicator
random variable for the event that u; is bad. From Eq. (5.3), we have that E(, hu0)—o[b] | E1] < 3/4.
Since M = X;c(,] bi» we correspondingly have that E(,huc)p[M | E1] < 3k,/4. Again by
Markov’s inequality,

Mzh
8

= 7ky/8 T

3k,/4 6
Pr El] < S/t
(p,hu,0)—D

Event E, corresponds to the case where M < 7k, /8.

as T

Pr [Ez | El] =1- Pr 3

Ei| > (5.4)
(p,hu,0)—D (p,hu,0)—D

1
7

Suppose events E; and E; occur. We now consider the probability that (h,u, o) € T,,. Since E; occurs,
at least k,, /8 of the indices i € [k,] are good. This means there exists a set X, C {0, 1}” of size at
least |2,| > k,/8 such that for all o € X, there exists i € [k,] such that h(u;) = o and for all j # i,
h(uj) # o. Notably, this means that for all @ # u;, either f (i) # f(u;) or h(&i) # h(u;). Equivalently,
(h,u;,0) € T, for all o € %,,. Thus, we can now write

ka/8
(p,hu,0)—D 0'&{0,1}/’ p 2p'

>
Pr  [(huo)eT, |E;AE] = Pr [eru]:Iz—u|>

Conditioned on E;, we have that 2°~! < 2k, so 2° < 4k, so we conclude that

ke/8 1
P huo)eT, | Ey AE] > S 5.5
(pﬁﬂhgy_ZJX u,0) €T, | E2 ANE4] w2 3 (5.5)
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Combining Egs. (5.2), (5.4) and (5.5) with Eq. (5.1), we conclude that

P [(h YeT,] = ! ! O
r LU, O > = .
(p.ha,c) D PI=7.32.(t+1)  224(t+1)

Lemma 5.6. It holds that Pr[Hyb,(A) = 1] = Pr[Hyb,(A) =1].

Proof. The only difference between these two experiments is syntactic. Namely, in both cases, the challenger
samples p ¢ [t +1], h & H,, u & {0,1}/, and o < {0,1}”. Checking that (h,u,0) € T, in Hyb, is
identical to the check the challenger performs in Hyb,. O

Lemma 5.7. If H,, is universal for all p € [t + 1], then there exists a negligible function negl(-) such that
forall A € N, Pr[Hyb, (A) = 1] < Pr[Hyb,(A) = 1] + negl(A).

Proof. The only difference between Hyb, and Hyb, is the challenger sets z* = L if the sampling procedure
fails after A(t + 1) attempts whereas the challenger in Hyb, tries indefinitely until it is successful. Thus,
the adversary’s view in these two experiments is identical unless the challenger in Hyb, is unsuccessful
in sampling a challenge z* after A(t + 1) iterations. By Claim 5.5, each sampling attempt is successful with
probability at least 1/(224(t + 1)). Since the samples are drawn independently, the challenger in Hyb, sets
z* = L with probability at most

1 )””1) (_ Mt +1)

Pr[z* = LinHyb ] < [1 - ——
rlz - Y1]_( 224(t + 1) 224(t + 1)

) = 90 = negl(2),

where we are using the fact that for all real-valued x, it holds that 1 + x < e*. Thus, with probability
1 —negl(4), the challenger in Hyb, will successfully sample a challenge z* in the first A(¢ + 1) iterations.
In this case, the adversary’s view is identical in the two experiments. O

Lemma 5.8. If H,, is universal for all p € [t + 1], then Pr[Hyb,(A) = 1] < 224(t + 1) - Pr[Hyb;(A) = 1].
Proof. Let p < [t + 1] and (h,u, ) < S,. Let event E be the event that (h,u, o) € T,. Then,
Pr[Hyb,(A) = 1] = Pr[Hyb,(A) =1 A E] = Pr[Hyb,(A) = 1| E] - Pr[E]. (5.6)

From Claim 5.5, we have that Pr[E] > m. Moreover, conditioned on (h, u, o) € T, the challenge z* =

(p, h, f(u), o) in Hyb, is distributed exactly according to the distribution in Hyb,. Thus, we conclude that
Pr[Hyb,;(A) = 1| E] > Pr[Hyb,(A) =1].
The claim now follows from Eq. (5.6). O

Lemma 5.9. If f is one-way, then there exists a negligible function negl(-) such that for all A € N,
Pr[Hyb,(A) = 1] = negl(1).

Proof. Suppose there exists an efficient adversary A such that Pr[Hyb, (A) = 1] > & for some non-negligible
¢. We use A to construct an efficient adversary 8 that breaks one-wayness of f:

1. At the beginning of the game, algorithm B receives a challenge v € {0, 1}™.

2. Algorithm B samples p < [t + 1], h & H,, and o < {0,1}*. It gives z* = (p, h, 0, 0) to A.
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3. If algorithm A outputs a preimage y € {0, 1}, then B also outputs y.

By definition, the one-wayness challenger samples u <~ {0,1} and sets v = f(u). Thus, algorithm B
perfectly simulates an execution of Hyb, for A. Thus, with probability ¢, algorithm A outputs y such that
Verify(z*,y) = 1. This means that f(y) = v, in which case, algorithm B successfully recovers a preimage
of v for f. Thus, algorithm B succeeds with the same advantage «. o

By Lemmas 5.6 to 5.8, we have that
Pr[Hyb,(A) = 1] < 224(t + 1) Pr[Hyb,(A) = 1] + negl(1).

By Lemma 5.9, Pr[Hyb,(A) = 1] = negl(4). Since t = t(A) is polynomially-bounded, the theorem
follows. o
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A Proof of Lemma 4.4

The proof of Lemma 4.4 follows by a similar argument as the proof of Lemma 4.4 in [WW24a]. We recall
the full argument here. We follow the style and conventions of [WW24a, Lemma 4.4], so some of the text is
taken verbatim from the previous work. Consider an execution of Hyb, or Hyb,. For an index i € {0, 1}", let
E; be the event that adversary A outputs i as its statement in an execution of Hyb, or Hyb,. By definition,

we can write

Pr[Hyby(A) = 1] = Z Pr[Hyby(A) = 1 A E;]
ie{0,1}"
Pr[Hyb,(A) =1] = > Pr[Hyb, (A) =1 AE].

ie{0,1}n

(A.1)
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We show that for all i € {0, 1}",

Pr[Hyb, (A) = 1A E;] > %Pr[HybO(ﬂ) _iaE -~ 9O

2” ZT . (A.Z)

To show this, we consider two cases.

Case 1. Suppose (C,i) € Lsar. If the adversary outputs i as its statement (i.e., if E; occurs), then the
output in both Hyb, and Hyb, is 0. In this case,

Pr[Hyb,(A) =1 A E;] =0 =Pr[Hyb,(A) =1 AE;].
Correspondingly, Eq. (A.2) holds.

Case 2. Suppose (C,i) ¢ Lsar. In this case, we proceed by defining a sequence of hybrids:

. Hyb(()f)l.): Same as Hyb, except the challenger outputs 1 only if

(C,x) ¢ Lsar and ObfVerify(x,7) =1 and x =1.

. Hyb(()’ll.) : Same as Hyb(()f)i) except when setting up the CRS, the challenger defines the modified proof-
generation program GenProof; as follows:

Input: statement x € {0,1}" and witness w € {0, 1}"

Hard-coded: Boolean circuit C: {0,1}"x{0,1}* — {0, 1}, PRF keys keI, ko, k1, and the statement
ie{0,1}"

On input a statement x € {0,1}" and a witness w € {0, 1}":
- If x =i, output L.

- If C(x,w) =0, output L.

- If C(x,w) =1, compute b = F(ks|, x) and output (b, F(kp, x)).

Figure 6: The proof-generation program GenProof [C, ksel, ko, k1, 1].

Next, after sampling kge| «— F.Setup(l’lPRF, 17, 11), the challenger computes kiél) < F.Puncture(ksey, i).
It then constructs the prover program ObfProve « iO(l’IObf, 1%, GenProof [C, ks(él), ko, k1, i]), where

the size parameter s is as defined in Construction 4.1. The rest of the experiment proceeds as in Hyb(o.).

. Hyb(2> Same as Hyb( .), except after the adversary outputs its statement x and the proof m=(by) e

{0, 1}“rl where b € {0 1} and y € {0,1}, the challenger samples a random bit b’ <~ {0, 1} and
outputs 1 if

(C,x) ¢ Lsar and ObfVerify(x,7) =1 and x=i and b #Db".

. Hyb( ): Same as Hyb( ,), except after the adversary outputs its statement x and the proof 7 = (b,y) €
{0, 1}1‘+1 where b € {0,1} and y € {0, 1}', the challenger outputs 1 if

(C,x) ¢ Lsar and ObfVerify(x,7) =1 and x=i and b # F(ks,i).
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. Hyb(()i.): Same as Hyb(i.), except when setting up the CRS, the challenger reverts to computing

ObfProve «— iO(l/IObf, 15, GenProof [C, ksel, ko, k1]).
By definition,
Pr[Hyb{") (A) = 1] = Pr[Hyby(A) = 1 AE;] and Pr[Hyb{"(A) = 1] = Pr[Hyb, (A) = 1 A E,].
We now consider each pair of adjacent distributions.

Claim A.1. Suppose iO is sub-exponentially-secure with parameter cops € (0, 1) against non-uniform adver-
saries and Aops (A, n) = (A + n)l/ Cobf . Suppose Ipprr satisfies punctured correctness. Then, there exists Ag € N
such that forall A > A #,

| Pr[Hyb” (A) = 1] - Pr[Hyb") (A) = 1]| < 1/2*".

Proof. We start by showing that GenProof [C, ke, ko, k1] in Hyb, and GenProof;[C, k) ko, k1, 1] in Hyb,

sel’
compute identical functionalities. Take any input (x, w) to the two programs. We consider the different

possibilities:

« Suppose x = i. We are analyzing the case (C, i) ¢ Lsar, so C(i, w) = 0. In this case, both programs
output L.

« Suppose C(x,w) = 0. Then both programs output L.

« Suppose x # i and C(x,w) = 1. Then GenProof computes b = F(ks, x) and outputs (b, F(kp, x))
while GenProof; computes b = F(k(l) x) and outputs (b, F(kp,x)). Since x # i and the key kD

sel? sel
is punctured at input i, it follows that F(ksej, x) = F(ks(;) ,x). Once again, the behavior of the two
programs is identical.

We conclude that the two programs behave identically on all inputs. The claim now follows by iO security.
Formally, suppose there exists an infinite set Az € N such that for all A € A4,

| Pr[Hyb(") (A) = 1] - Pr[Hyb(}) (A) = 1]| > 1/2M"D). (A.3)

Let Ag = {(/1 +n(1)) e ;) e qu}. We use A = (A, A;) to construct a non-uniform algorithm

B = (B1, B,) such that for all Aops € Ag, IOAdvg(Agpf) > 1/ 2. We define the (inefficient) preprocessing
algorithm B as follows:

1. On input 1%, algorithm B first checks if there exists A € A 5 such that Agpr = (A + n(1))/ . If no
such A exists, algorithm $B; outputs L. Otherwise, it sets A to be the smallest such value that satisfies
the condition.

2. Algorithm B, runs sty < A;(1*) and outputs the state stg = st 4.
The online algorithm 8B, now proceeds as follows:

1. On input the state stg, algorithm B, outputs L if stg = L. Otherwise, it parses stg = st # and runs
A, on input st.g. Algorithm A, outputs a circuit C: {0, 1}" x {0, 1} — {o0,1}.

2. Algorithm B, sets Aprr = Apgrr(4, n) and samples PRF keys kge| «— F.Setup(l’lPRF, 1",1Y), ko, ky
F.Setup(177%F, 17 1%). It computes ks(ell) «— F.Puncture(ksel, i).
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3. Algorithm 8B, computes s as in Construction 4.1 and gives the size parameter 1° and the programs
GenProof[C, keel, ko, k1] and GenProof;[C, ks(ell)’ ko, k1, i] to the challenger. It receive the obfuscated
program ObfProve.

4. Algorithm B, then computes Obf Verify « iO(1%, 1%, VerProof [C, ko, k; ] ) and gives A, the common
reference string crs = (ObfProve, Obf Verify).

5. After algorithm A, outputs a statement x and a proof 7z, algorithm B, outputs 1 if x = i and
ObfVerify(x, ) = 1.

Since cobf € (0, 1) and n(A) is non-negative, it follows that the value of A (if one exists) computed by 8; satis-
fies A < Aops. As such, [stg| = poly(4) = poly(Aobf), so B satisfies the efficiency requirements. Now consider
its advantage. If the challenger obfuscates the program GenProof[C, ksel, ko, k1], then algorithm B perfectly
simulates Hybé’ol.). In this case, algorithm B outputs 1 with probability Pr[Hyb((]’Ol.) (A) = 1]. Alternatively,

sfel]) , ko, k1, i], then algorithm B perfectly simulates

Hyb(()}i) and outputs 1 with probability Pr[Hyb((),li) (A) =1]. By Eq. (A.3), for all Adops € Ag, it holds that

if the challenger obfuscates the program GenProof[C, k
i0Advg (Aopr) > 2~ A1) = 92" O
Claim A.2. It holds that Pr[Hyb{) (A) = 1] = 2 Pr[Hyb(®) (#) = 1].

Proof. The only difference between Hyb(()’li) and Hybéi) is the extra condition b # b’ in Hyb(()i). Since the
challenger samples b’ <~ {0, 1} after the adversary outputs b, we have that b’ = b with probability 1/2. O

Claim A.3. Suppose Ilpprr satisfies selective sub-exponential punctured security with parameter cpgr € (0, 1)
against non-uniform adversaries and Aprg(A, n) = (A + n)'/*% Then, there exists Az € N such that for all
A > A4, it holds that

| Pr[Hyb{? (A) = 1] - Pr[Hybl) (A) = 1]| < 1/2*".

Proof. Suppose there exists an infinite set Az C N such that for all 1 € A4,
| Pr[Hyb?) (A) = 1] = Pr[Hyb®) (A) = 1]| > 1/27"P.

Let Ag = {(/1 +n())Verrr ;) e AB}. We use A = (A, A,) to construct a non-uniform algorithm

B = (B, B>) such that for all Aprr € Ag, PPRFAdvg (Aprg) > 1/2)“0’&?. We define the (inefficient) prepro-
cessing algorithm B; as follows:

1. On input 1%/, algorithm B, first checks if there exists A € Ag such that Aprr = (4 + n(1))Y/ePrF,
If no such A exists, algorithm B; outputs L. Otherwise, it sets A to be the smallest such value that
satisfies the condition.

2. Algorithm B, runs st g «— Ay (1%) and outputs stg = st 4.
The online algorithm B, now proceeds as follows:

1. On input the state stg, algorithm B, outputs L if stg = L. Otherwise, it parses stg = stz and starts
running A, on input st 4. Algorithm A, outputs a circuit C: {0,1}" x {0,1}" — {0,1}.

38



2. Algorithm B, samples ko, k; < F.Setup(17%, 17, 1%). Tt gives the input length 17, the output length
1!, and the point i € {0, 1}" to the punctured PRF challenger. The challenger replies with a punctured

key ks(;[) and a challenge bit b” € {0, 1}.
3. Algorithm B, sets Aobf = Aobf(A, 1), and computes

ObfProve «— i0(1/1°bf, 1%, GenProof; [C, k;l) ko, k1,1])
Obf Verify « i()(1’1°bf, 1°, VerProof [C, ko, k1]).

It gives crs = (ObfProve, ObfVerify) to A,.

4. After algorithm A, outputs a statement x and a proof 7 = (b,y) where b € {0,1} and y € {0, 1},
algorithm B, outputs 1 if x = i, ObfVerify(x,7) = 1,and b # b'.

Since cprr € (0,1) and n(A) is non-negative, it follows that the value of A (if one exists) computed by
B satisfies A < Aprr. As such, [st#| = poly(A) = poly(Apgrr), so B satisfies the efficiency requirements.
Now consider its advantage. By construction, algorithm 8 perfectly simulates an execution of Hyb(()i.) and

Hyb(()i.) for A. If the challenger samples b’ <~ {0, 1}, then algorithm B computes its output according to
the specification of Hyb(gi.). If the challenger computes b’ = F(kse|, i), then algorithm B computes its output
according to the specification of Hyb(()i.). Correspondingly, for all Aprr € Ag,

CPRF

PPRFAdvg(Aprr) > 274D = o=Aps O

Claim A.4. Suppose iO is sub-exponentially-secure with parameter cops € (0, 1) against non-uniform adver-
saries and Aops(A, n) = (A + n)1/Cobf, Suppose also that Ippgr satisfies punctured correctness. Then, there exists
Aa € N such that forall A > A4,

| Pr[Hyb{” (A) = 1] - Pr[Hyb{Y (A) = 1]| < 1/2**".
Proof. This follows by an analogous argument as the proof of Claim A.1. O

Combining Claims A.1 to A.4, we conclude that for all i € {0,1}" where (C,i) ¢ Lsar, Eq. (A.2) holds.
Combined with Eq. (A.1), we can now write

1 2" 0O(1
Pr[Hyb,(A) =1] = > Pr[Hyb (A)=1AE] 2= > Pr[Hyby(A)=1AE] - oW
_ 2 2n 24
ie{0,1}" ie{0,1}"
1
= 5Pr[Hybo(ﬂ) =1] - 2790,
Lemma 4.4 follows. m]
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