
A Pure Indistinguishability Obfuscation Approach

to Adaptively-Sound SNARGs for NP

Brent Waters
UT Austin and NTT Research
bwaters@cs.utexas.edu

David J. Wu
UT Austin

dwu4@cs.utexas.edu

Abstract

We construct an adaptively-sound succinct non-interactive argument (SNARG) for NP in the CRS
model from sub-exponentially-secure indistinguishability obfuscation (8O) and sub-exponentially-
secure one-way functions. Previously, Waters and Wu (STOC 2024), and subsequently, Waters and
Zhandry (CRYPTO 2024) showed how to construct adaptively-sound SNARGs for NP by relying on
sub-exponentially-secure indistinguishability obfuscation, one-way functions, and an additional alge-
braic assumption (i.e., discrete log, factoring, or learning with errors). In this work, we show that no
additional algebraic assumption is needed and vanilla (sub-exponentially-secure) one-way functions
already suffice in combination with 8O.

1 Introduction

Succinct non-interactive arguments (SNARGs) for NP [Mic94, GW11] allow a prover to convince a verifier

that an NP statement is true with a proof that is much shorter than the length of the NP statement and

witness. Micali [Mic94] (building on the work of Kilian [Kil92]) gave the first SNARG for NP in the random

oracle model. Subsequently, a long sequence of works have constructed SNARGs for NP from various

non-falsifiable assumptions in the common reference string (CRS) model [Gro10, BCCT12, DFH12, BCCT13,

Lip13, GGPR13, BCI+13, BCPR14, BISW17, BCC+17, BISW18, ACL+22, CLM23]. In the CRS model, the prover

and verifier have access to a (trusted) reference string (or random string). Another line of work has shown

how to construct SNARGs for classes such as P [CJJ21b, KVZ21, HJKS22, KLVW23], P/poly [GZ21, WW23c,

WW23b, BCFL23, WW24b, Wee25], batch NP [CJJ21a, CJJ21b, WW22, DGKV22, PP22, CGJ+23, KLVW23],

monotone policy batch NP [BBK+23, NWW24, NWW25], and NP languages with propositional proofs of

non-membership [JKLV24] from standard falsifiable assumptions.

A natural question is whether we can construct SNARGs for general NP from falsifiable assumptions.

The first construction of a SNARG for NP from (sub-exponentially) falsifiable assumptions was due to

Sahai and Waters [SW14], who gave a construction from indistinguishability obfuscation (8O) and one-way

functions. A limitation of the Sahai-Waters scheme was that it was only shown to be non-adaptively sound,

where soundness only holds against an adversary that must declare the false statement it provides a proof

for before seeing the CRS. The natural notion of security is adaptive soundness, where the adversary can

choose which statement it wants to prove after seeing the CRS.

Adaptively-sound SNARGs. Building adaptively-sound SNARGs forNP from falsifiable assumptions is a

challenging problem, and any such result must circumvent known black-box separations [GW11, CGKS23].

Very recently, Waters and Wu showed how to construct an adaptively-sound SNARG for NP from 8O

1

together with a re-randomizable one-way function [WW24a]; they also showed how to construct the

re-randomizable one-way function from the discrete log or factoring assumptions. Subsequently, Waters

and Zhandry [WZ24] showed how to replace the rerandomizable one-way function with a lossy function,

which notably enabled an instantiation from standard lattice assumptions. Both of these works circumvent

the Gentry-Wichs impossibility by relying on security reductions whose running time is exponential in

the length of the NP witness. The challenge addressed in these works is to ensure the overhead of the

complexity leveraging only manifests in the size of the CRS and not the size of the proof.

Both constructions of adaptively-sound SNARGs for NP rely on 8O in conjunction with a number-

theoretic assumption, or analogously, some source of algebraic structure. In the case of [WW24a], the

algebraic assumption is used to construct a re-randomizable one-way function. The security analysis

from [WW24a] critically relied on perfect (or statistical) re-randomizability for the one-way function.

Constructing a one-way function with this property seems challenging from an unstructured assumption.

In fact, it was not even apparent how to use lattice assumptions (e.g., short integer solutions (SIS) [Ajt96] or

learning with errors (LWE) [Reg05]) to construct the necessary re-randomizable one-way function. Indeed,

to obtain an adaptively-sound SNARG forNP from 8O and standard lattice assumptions, the subsequent work

of Waters and Zhandry [WZ24] showed instead how to replace the re-randomizable one-way function in

the original [WW24a] construction with a lossy function, which can in turn be built from LWE. At the same

time, the [WZ24] approach replaced one algebraic primitive with a simpler, but still algebraic, primitive.

Motivating a pure 8O approach for adaptive soundness. A simpler assumption we could use alongside

8O would be (vanilla) one-way functions (i.e., an unstructured source of hardness).1 We refer to such an

approach as a “pure 8O” approach which we motivate below.

First, while our current 8O constructions require algebraic assumptions [JLS21, JLS22], constructing

provably-secure 8O is a continually-evolving field as witnessed by the recent work of Ragavan, Vafa,

and Vaikuntanathan [RVV24]. In the future, we might have new 8O constructions based on general as-

sumptions or possibly algebraic assumptions that do not imply the strong versions of re-randomizable

one-way functions or lossy functions needed by the [WW24a, WZ24] constructions. For example, neither

of these primitives are known to follow from the learning parity with noise (LPN) assumption. A pure

8O approach to building SNARGs (or for that matter, any cryptographic primitive) would not impose any

further assumptions than those already needed to achieve indistinguishability obfuscation.

Second, we believe that achieving or attempting to achieve a pure 8O approach is critical to obtaining

a deep understanding of a primitive. While many primitives can be built from 8O and one-way functions,

there are notable exceptions such as collision-resistant hash functions and homomorphic encryption [AS15].

Finally, achieving a pure 8O solution to adaptively-secure SNARGs matches what is known for SNARGs

in weaker models and shows that we do not need to make any concessions to achieve adaptive soundness.

Specifically, the original non-adaptively-sound SNARG by Sahai and Waters [SW14] was based on a pure

8O approach, and more recently, the work of [MPV24] showed that the Sahai-Waters construction is also

adaptively-secure in the designated-verifier model (i.e., where a secret key is needed to verify proofs). Note

though that the [MPV24] adaptive soundness analysis critically relies on working in the designated-verifier

model, and it is not known how to prove adaptive soundness of the original Sahai-Waters construction.

1Recall that 8O alone cannot imply one-way functions since in a world where P = NP, indistinguishability obfuscation exists

unconditionally while one-way functions do not exist. Thus, to leverage 8O in cryptographic applications, we typically need

to additionally assume a source of cryptographic hardness (e.g., the existence of one-way functions). The extra assumption

can sometimes be replaced by a weaker worst-case assumption [KMN+14].

2

This work. In this work, we give the first pure 8O approach for constructing adaptively-sound SNARGs

for NP. Specifically, we show that (sub-exponentially-secure) 8O and (sub-exponentially-secure) one-way

functions imply a SNARG for NP. As we elaborate in Section 1.1, we put forward a new realization of the

“two-challenge” paradigm from [WW24a] that only relies on 8O in combination with sub-exponentially-

secure one-way functions. We summarize our main result in the following informal theorem:

Theorem 1.1 (Informal). Let _ be a security parameter and R be any NP relation. Assuming the existence

of sub-exponentially-secure indistinguishability obfuscation for Boolean circuits and sub-exponentially-secure

one-way functions, there exists a SNARG for R in the CRS model with the following properties:

• CRS size: The size of the CRS is poly(_, |R |), where |R | is the size of the Boolean circuit computing R.

• Proof size: The size of the proof is poly(_).

Moreover, the SNARG satisfies perfect zero-knowledge.

1.1 Technical Overview

The starting point of this work is the adaptively-sound SNARG for NP by Waters and Wu [WW24a]. In

their construction, the CRS contains two programs: the first is used to generate proofs while the second

is used to generate challenges. At a high-level, [WW24a] takes the following “two-challenge” approach:

• Each NP statement G is associated with two (pseudorandom) challenges IG,0 and IG,1 for a one-way

function 5 . Specifically, for each bit 1 ∈ {0, 1}, IG,1 = 5 (F(:1, G)) where F is a pseudorandom function

(PRF) and 5 is a one-way function. The challenge-generation program takes a statement G and outputs

the two associated challenges (IG,0, IG,1).

• A proof c for a statement G is a preimage to either IG,0 or IG,1. Specifically, we can write c = (1,~)

and c is valid if 5 (~) = IG,1 .

• The prover program takes as input a statement G and a witnessF . If the witness is valid, then the

prover program outputs the preimage ~G,1G = F(:1G , G) of IG,1G , where 1G ∈ {0, 1} is a pseudorandom

bit derived from G . Specifically, the prover program computes 1G = Fsel(:sel, G), where Fsel is a PRF

with 1-bit outputs. Importantly, for every choice of statement G , the prover program never outputs

~G,1̄G where 1̄G = 1 − 1G is the complement of the bit associated with G .

More precisely, the proof-generation program and the challenge-generation program in the CRS are ob-

fuscations of the following programs (where we hard-wire the circuit � for the associated NP relation, the

PRF keys :sel, :0, :1, and the description of the one-way function 5):

GenProof (G,F):

• On input the statement G and the witness F , if
� (G,F) = 1, then compute 1G = Fsel (:sel, G) and
output

(

1G , F(:1G , G)
)

.
• Otherwise, output ⊥.

GenChal(G):

• For 1 ∈ {0, 1}, compute IG,1 = 5 (F(:1, G)).
• Output the pair of challenges (IG,0, IG,1).

The idea in the [WW24a] soundness analysis is that for a false statement G , the value 1G is computationally

unpredictable. Thus, if an adversary outputs a proof c = (1,~) for a false statementG and a bit1 ∈ {0, 1}, with

3

probability close to 1/2, it will be the case that 1 = 1̄G . More precisely, in [WW24a], they first move to an ex-

periment where the adversary wins the (adaptive) soundness game only if it outputs a proof c = (1,~) where

1 ≠ Fsel(:sel, G) and 5 (~) = IG,1 where (IG,0, IG,1) ← GenChal(G) . (1.1)

Since the GenProof program never needs to output a preimage ~G,1̄G for IG,1̄G , the [WW24a] reduction

replaces each challenge IG,1̄G output by the challenge-generation program with a challenge for which

the reduction algorithm (and GenProof program) does not know the associated preimage. In the case of

[WW24a], they consider a re-randomizable one-way function, which is a one-way function equipped with a

statistical re-randomization algorithm. The re-randomization algorithm takes as input any challenge for the

one-way function and outputs a fresh instance; moreover, given the re-randomization randomness together

with a solution to the re-randomized instance, it is possible to recover a solution to the original instance.

The [WW24a] reduction uses an exponential number of hybrids to replace every challenge IG,1̄G with a

re-randomization of a fresh (but fixed) challenge I∗. Any preimage of IG,1̄G immediately yields a preimage

of I∗. This would in turn break one-wayness. To construct a re-randomizable one-way function, the work

of [WW24a] relies on algebraic assumptions: either the hardness of discrete log or the hardness of factoring.

In this work, we introduce a new approach that does not need to rely on additional algebraic structure.

Bundling challenge-generation and proof verification. The first change we make is syntactic, but

essential to realizing our new approach. In [WW24a,WZ24], the verification algorithm (on input a statement

G and purported proof c) proceeds as follows:

• The algorithm first invokes the obfuscated challenge-verification program GenChal on the statement

G to obtain two challenges (0, IG,0) and (1, IG,1).

• Then, it checks whether the provided preimage c = (1,~) satisfies 5 (~) = IG,1 .

While [WW24a, WZ24] decouple the challenge-generation and the proof-verification processes, there is

no need to do this. In this work, and as was done in the original construction of Sahai and Waters of a

non-adaptively-sound SNARG [SW14], we publish a single obfuscated program that combines challenge-

generation and proof verification. The CRS now contains obfuscations of the following programs:

GenProof (G,F):

• On input the statement G and the witness F , if
� (G,F) = 1, then compute 1G := Fsel (:sel, G) and
output

(

1G , F(:1G , G)
)

.
• Otherwise, output ⊥.

VerProof (G, c):

• On input the statement G and the proof c = (1,~),
output 1 if ~ = F(:1, G) and 0 otherwise.

Since the verification logic is now embedded in the verification program VerProof itself, the program only

needs to check whether ~ = F(:1, G). In previous approaches [WW24a, WZ24], the GenChal program

outputted one-way function challenges directly: IG,0 = 5 (F(:0, G)) and IG,1 = 5 (F(:1, G)). In these construc-

tions, it is important that there is an efficient algorithm for sampling a challenge for the one-way function:

namely, the challenge is sampled by first deriving a (pseudorandom) domain element ~G,1 = F(:1, G) and

setting IG,1 = 5 (~G,1). As we show later, it will be important in our construction that the real scheme does

not need to sample a challenge for the one-way function. In fact, neither of the programs in the CRS need

to compute the one-way function 5 . The one-way function 5 will only appear in the security proof itself.

4

Proving adaptive soundness. By the same analysis as in [WW24a], we first move to an experiment

where the adversary wins if the adversary outputs a statement G and a proof c = (1,~) where the following

analog of Eq. (1.1) holds:

1 ≠ Fsel(:sel, G) and ~ = F(:1, G) . (1.2)

Note that the condition ~ = F(:1, G) is the same as the condition VerProof (G, c) = 1. Formally, this relies on

security of the selector PRF Fsel. Specifically, for a false statement G , the value of Fsel(:sel, G) is pseudorandom

(and thus, computationally unpredictable) from the view of the adversary (it is never computed or output by

GenProof). An adversary that outputs a valid proof c = (1,~) for a false statement G where 1 = Fsel(:sel, G)

with probability far from 1/2 would imply an adversary that can predict the value of Fsel(:sel, G).

We now devise a sequence of hybrid experiments to embed a fixed string ~∗ ∈ {0, 1}C (where C is the

output length of F) into the verification check for every statement G . To do so, we start by rewriting the

logic of the verification program in the following more convenient form:

GenProof (G,F):

• On input the statement G and the witness F , if
� (G,F) = 1, then compute 1G := Fsel (:sel, G) and
output

(

1G , F(:1G , G)
)

.
• Otherwise, output ⊥.

VerProof1 (G, c):

• On input the statement G and the proof c = (1,~),
compute 1G = Fsel (:sel, G). Let 1̄G = 1 − 1G .

• If 1 = 1G , output 1 if ~ = F
(

:1G , G
)

.
• If 1 = 1̄G , output 1 if ~ ⊕ F

(

:1̄G , G
)

= 0C .
• Otherwise, output 0.

By inspection, the modified VerProof1 program is functionally equivalent to the real VerProof program, so

we can appeal to security of indistinguishability obfuscation to argue that the new CRS is computationally

indistinguishable from the real CRS.

Planting a challenge. Since the GenProof program never evaluates F
(

:1̄G , G
)

for any input G , we can

appeal to (punctured) pseudorandomness2 of F
(

:1̄G , G
)

to argue that for any fixed string~∗ ∈ {0, 1}C (sampled

independent of :1̄G), the distribution of F
(

:1̄G , G
)

is computationally indistinguishable from the distribution

of F
(

:1̄G , G
)

⊕ ~∗. In particular, for every input G , we can substitute the check ~ ⊕ F
(

1̄G , G
)

= 0C with the

following (computationally indistinguishable) one:

~ ⊕ F
(

:1̄G , G
)

⊕ ~∗ = 0C ⇐⇒ ~ ⊕ F
(

:1̄G , G
)

= ~∗,

so long as :1̄G is sampled independently of ~∗. Thus, using a hybrid argument where we step through

each possible input G , we can show that the obfuscated programs (GenProof,VerProof1) in the CRS are

computationally indistinguishable from the obfuscations of the following programs (GenProof,VerProof2):

GenProof (G,F):

• On input the statement G and the witness F , if
� (G,F) = 1, then compute 1G := Fsel (:sel, G) and
output

(

1G , F(:1G , G)
)

.
• Otherwise, output ⊥.

VerProof2 (G, c):

• On input the statement G and the proof c = (1,~),
compute 1G = Fsel (:sel, G). Let 1̄G = 1 − 1G .

• If 1 = 1G , output 1 if ~ = F
(

:1G , G
)

.
• If 1 = 1̄G , output 1 if ~ ⊕ F

(

:1̄G , G
)

= ~∗.
• Otherwise, output 0.

2In a puncturable PRF [BW13, KPTZ13, BGI14], the PRF key : can be punctured at a special point G∗ to derive a punctured

key : (G
∗) with the property that for all G ≠ G∗, F(: (G

∗) , G) = F(:, G). The security requirement is that the value of F(:, G∗) is

pseudorandom even given the punctured key : (G
∗) .

5

The programmed value ~∗ can be any value, as long as it is independent of the PRF keys :0 and :1. In this

experiment, the adversary wins only if it outputs a statement G and a proof c = (1,~) where 1 ≠ Fsel(:sel, G)

and VerProof2(G, c) = 1. By construction of VerProof2, this means that

~ ⊕ F
(

:1̄G , G
)

= ~∗ where 1̄G = 1 − Fsel(:sel, G) .

The component ~ output by the adversary can be viewed as an “encryption” of the special string ~∗, and

moreover, given knowledge of :0 and :1, it is possible to recover ~∗ from any valid proof (regardless of the

statement G).

Adaptive soundness via injective one-way functions. To complete the proof, we use the string ~∗

to embed a computational challenge. We begin with an approach using any injective one-way function

5 (with C-bit inputs). Since 5 is injective, it holds that

~ ⊕ F
(

:1̄G , G
)

= ~∗ ⇐⇒ 5
(

~ ⊕ F
(

:1̄G , G
))

= 5
(

~∗
)

. (1.3)

Then, by security of indistinguishability obfuscation, the programs in the CRS are computationally indis-

tinguishable from obfuscations of the following programs:

GenProof (G,F):

• On input the statement G and the witness F , if
� (G,F) = 1, then compute 1G := Fsel (:sel, G) and
output

(

1G , F(:1G , G)
)

.
• Otherwise, output ⊥.

VerProof3 (G, c):

• On input the statement G and the proof c = (1,~),
compute 1G = Fsel (:sel, G). Let 1̄G = 1 − 1G .

• If 1 = 1G , output 1 if ~ = F
(

:1G , G
)

.
• If 1 = 1̄G , output 1 if 5

(

~ ⊕ F
(

:1̄G , G
))

= 5 (~∗).
• Otherwise, output 0.

First, observe that the description of GenProof and VerProof3 can be simulated given only the description

of 5 and a one-way function challenge 5 (~∗); the reduction algorithm would sample the PRF keys :sel, :0, :1
itself. Suppose the adversary outputs a statement G and a proof c = (1,~) where 1 ≠ Fsel(:sel, G) and

VerProof3(G, c) = 1. Then the value ~ it outputs must satisfy

5
(

~ ⊕ F
(

:1̄G , G
))

= 5 (~∗).

Using :1̄G , the reduction algorithm would compute and output ~ ⊕ F
(

:1̄G , G
)

as its solution to the one-way

function challenge. Observe that we have programmed the challenge string 5 (~∗) into every verification

check, so a successful proof of any statement implies a solution to the one-way function challenge. This

gives an adaptively-secure SNARG for NP from a (sub-exponentially-secure) indistinguishability obfusca-

tion scheme, a sub-exponentially-secure one-way function (to construct a puncturable PRF) and an injective

one-way function.

Relaxing injectivity. Our construction above critically relies on injectivity of the one-way function

(so Eq. (1.3) holds). If the one-way function was not injective, then we are not able to argue that the

programs VerProof2 and VerProof3 are computationally indistinguishable by security of indistinguishability

obfuscation. Injective one-way functions are significantly more structured than plain one-way functions,

and standard constructions typically rely on algebraic assumptions such as discrete log or factoring [GLN11].

To obtain a construction from indistinguishability obfuscation and unstructured hardness assumptions (i.e.,

a pure 8O approach), the goal would be to only rely on the existence of plain one-way functions.

6

An immediate solution is to apply the work of Bitansky, Paneth, and Wichs [BPW16] that shows how

to build (keyed) one-way functions that are injective with overwhelming probability (over the choice of

the key) from indistinguishability obfuscation, puncturable PRFs, and two-message statistically-binding

commitments. Since the latter primitives are implied by one-way functions, this yields a pure 8O approach

for constructing adaptively-sound SNARGs for NP.

In this work, however, we also want to explore a more lightweight approach for instantiating the

injective one-way function that does not rely on indistinguishability obfuscation. Our solution for achieving

injectivity is to allow for an inefficient generation of the one-way function challenge. This is viable in

our setting because 8O allows us to introduce the one-way function only in the context of the security

proof, and not in the construction itself. Namely, the real scheme never needs to invoke the inefficient

sampling algorithm. A similar phenomenon where a cryptographic object is only needed or introduced

in the security analysis arises in constructions based on garbled circuits or homomorphic encryption (c.f.,

[CCH+19, WW23a]). Moreover, we show that we can construct such a primitive from any vanilla one-way

function (without any additional assumptions), and as such, our approach could be useful in future scenarios

that do not already rely on indistinguishability obfuscation.

Specifically, in building our solution, we first rely on the fact that neither the prover program GenProof

nor the verification program VerProof in the real scheme depends on the one-way function 5 .3 The one-way

function 5 only shows up in the security proof (specifically in the description of VerProof3), and critically,

the only requirement we needed in the security proof was injectivity and one-wayness. Interestingly, we

do not need the ability to efficiently sample a challenge for the injective one-way function. Observe that

if the Setup algorithm which generates the CRS (or the Prove/Verify algorithms used to generate and verify

proofs) needed to sample from the input space of the one-way function, then to have an efficient SNARG,

we would additionally require the one-way function to support efficient sampling. However, since we only

rely on the injective one-way function in the security proof, a construction with an inefficient sampling

procedure would still suffice for the security reduction. Of course, this means that the intermediate reduction

algorithms have to run in super-polynomial time or take in non-uniform advice (i.e., a sample from the

challenge space of the injective one-way function). For ease of exposition, we take the latter approach

in this work, but using super-polynomial-time reductions also suffices. Note that the cost of complexity

leveraging (due to the use of super-polynomial-time security reductions) would only affect the size of the

CRS and not the proofs. Thus, assuming sub-exponentially-secure 8O, a sub-exponentially secure one-way

function, and an injective one-way function with an inefficient sampler, we obtain an adaptively-sound

SNARG for NP. We give the formal construction and proof of adaptive soundness in Section 4.

Constructing injective one-way functions with an inefficient sampler. While we do not know how

to construct injective one-way functions from any vanilla one-way function, it is straightforward if we

allow the sampling algorithm to run in super-polynomial time. The idea is to compose with a hash function

to reduce the number of preimages. Namely, let 5 : {0, 1}C → {0, 1}< be a one-way function. Suppose that

a value I ∈ {0, 1}< has : preimages under 5 . Let ℎ : {0, 1}C → {0, 1}d be a hash function with output length

d = log: . Consider now the mapping 6(ℎ,~) := (ℎ, 5 (~), ℎ(~)). If ℎ is a universal hash function, then with

constant probability, we would expect that there is exactly one input (ℎ,~) where 6(ℎ,~) = (ℎ, 5 (~), ℎ(~)).

Having multiple such tuples (ℎ,~) would mean there was a collision in the universal hash function ℎ

(when hashing : items to $ (:) buckets). To guarantee injectivity, the sampling procedure GenChal would

3Technically, the size of the obfuscated circuits need to be padded to be the size of the largest circuit used in the proof (which

will ultimately include the circuit that evaluates the one-way function). However, the salient point is that the injective one-way

function is not used in the actual construction itself, which gives us additional flexibility in our design.

7

(repeatedly) sample random challenges (ℎ, 5 (~), ℎ(~)) and only output a challenge when there is exactly

one preimage under 6. Checking that there is at most a single preimage requires super-polynomial time,

which is why the resulting scheme has an inefficient sampler. To argue that this sampling procedure still

produces instances that are hard to invert, we use the fact that each “sampling attempt” made by the

sampling algorithm succeeds with inverse polynomial probability. This way, we can construct a reduction

algorithm that takes a random one-way function challenge for 5 and outputs a sample from the sampling

procedure GenChal with inverse polynomial probability. Since we are reducing to a search assumption

(one-wayness), this suffices to establish the one-wayness of 6. We give the formal definition in Section 3

and the construction as well as analysis in Section 5.

2 Preliminaries

Throughout this work, we write _ ∈ N to denote the security parameter. We write poly(_) to denote a

fixed polynomial in _. We say a function 5 (_) is negligible in _ if 5 (_) = > (_−2) for all constants 2 ∈ N.

We denote this with 5 (_) = negl(_). We say an algorithm is efficient if it runs in probabilistic polynomial

time in the length of its input. For a finite set (, we write G r
← (to denote that G is sampled uniformly

at random from (. When D is a distribution (or a randomized algorithm), we write G ← D to denote that

G is a draw from D (or the output of the randomized algorithm on a fresh choice of randomness). For a

random variable - , we write E[-] to denote the expected value of - . We also recall Markov’s inequality:

if - is a non-negative random variable, then

Pr[- ≥ C] ≤
E[-]

C
.

Non-uniform algorithms. Wemodel an efficient non-uniform algorithmA for inputs of length = = =(_)

as a pair of algorithms A = (A1,A2) where A1 is a (possibly unbounded) algorithm that takes as input

1_ and outputs an advice string stA of length poly(_), and A2 is an efficient algorithm that takes as input

the state stA and the input G . Specifically, for all _ ∈ N and all inputs G ∈ {0, 1}= (_) , we define the output

A(1_, G) to be A(1_, G) := A2(A1(1
_), G). We often refer to A1 as the “preprocessing” algorithm and A2

as the “online” algorithm.

Sub-exponential hardness. Similar to [WW24a], our construction relies on sub-exponential hardness

assumptions. We formulate some of our security definitions using (C, Y)-notation. We say a primitive is

(C, Y)-secure if for all adversaries A running in time at most C (_) · poly(_), there exists _A ∈ N such that

for all _ ≥ _A , the adversary’s advantage is bounded by Y (_). We say a primitive is polynomially-secure

if it is (1, negl(_))-secure for some negligible function negl(·) and that it is sub-exponentially secure with

parameter 2 ∈ (0, 1) if it is
(

1, 2−_
2)

-secure. When extending the notion of (C, Y)-security to non-uniform

algorithms A = (A1,A2), we only require the online algorithm A2 to run in time C (_) · poly(_); the

preprocessing algorithm A1 that computes the advice string can still be unbounded.

Cryptographic primitives. We reuse many of the same primitives and notation from [WW24a]. Much

of the text in this section is taken verbatim from [WW24a, §2].

Definition 2.1 (Indistinguishability Obfuscation [BGI+01]). An indistinguishability obfuscator for Boolean

circuits is an efficient algorithm 8O(·, ·, ·) with the following properties:

8

• Correctness: For all security parameters _ ∈ N, circuit size parameters B ∈ N, all Boolean circuits

� of size at most B , and all inputs G ,

Pr[�′(G) = � (G) : �′ ← 8O(1_, 1B ,�)] = 1.

• Security: For a bit 1 ∈ {0, 1} and a security parameter _, we define the program indistinguishability

game between an adversary A and a challenger as follows:

– On input the security parameter 1_ , the adversary outputs a size parameter 1B and two Boolean

circuits �0,�1 of size at most B .

– If there exists an input G such that �0(G) ≠ �1(G), then the challenger halts with output ⊥.

Otherwise, the challenger replies with 8O(1_, 1B ,�1).

– The adversary A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say that 8O is (C, Y)-secure if for all adversaries A running in time at most C (_) · poly(_), there

exists _A ∈ N such that for all _ ≥ _A , we have that

iOAdvA (_) := |Pr[1
′
= 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | ≤ Y (_)

in the program indistinguishability game defined above.

Definition 2.2 (Puncturable PRF [BW13, KPTZ13, BGI14]). A puncturable pseudorandom function consists

of a tuple of efficient algorithms ΠPPRF = (KeyGen, Eval, Puncture) with the following syntax:

• KeyGen(1_, 1ℓin, 1ℓout) → : : On input the security parameter _, an input length ℓin, and an output

length ℓout, the key-generation algorithm outputs a key : . We assume that the key : contains an

implicit description of ℓin and ℓout.

• Puncture(:, G∗) → : (G
∗) : On input a key : and a point G∗ ∈ {0, 1}ℓin , the puncture algorithm outputs

a punctured key : (G
∗) . We assume the punctured key also contains an implicit description of ℓin and

ℓout (same as the key :).

• Eval(:, G) → ~: On input a key : and an input G ∈ {0, 1}ℓin , the evaluation algorithm outputs a value

~ ∈ {0, 1}ℓout :

In addition, ΠPPRF should satisfy the following properties:

• Functionality-preserving: For all _, ℓin, ℓout ∈ N, every inputG ∈ {0, 1}
ℓin , and everyG ∈ {0, 1}ℓin\ {G∗},

Pr

[

Eval(:, G) = Eval(: (G
∗) , G) :

: ← KeyGen(1_, 1ℓin, 1ℓout)

: (G
∗) ← Puncture(:, G∗)

]

= 1.

• Punctured pseudorandomness: For a bit 1 ∈ {0, 1} and a security parameter _, we define the

(selective) punctured pseudorandomness game between an adversary A and a challenger as follows:

– On input the security parameter 1_ , the adversary A outputs the input length 1ℓin , the output

length 1ℓout , and commits to a challenge point G∗ ∈ {0, 1}ℓin .

– The challenger samples : ← KeyGen(1_, 1ℓin, 1ℓout) and gives : (G
∗) ← Puncture(:, G∗) to A.

– If 1 = 0, the challenger gives ~∗ = Eval(:, G∗) to A. If 1 = 1, then it gives ~∗ r
← {0, 1}ℓout to A.

9

– At the end of the game, the adversary outputs a bit 1′ ∈ {0, 1}, which is the output of the

experiment.

We say that ΠPPRF satisfies (C, Y)-punctured pseudorandomness if for all adversaries A running in

time at most C (_) · poly(_), there exists _A ∈ N such that for all _ ≥ _A , it holds that

PPRFAdvA (_) := |Pr[1
′
= 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | ≤ Y (_)

in the punctured pseudorandomness security game.

Theorem 2.3 (Puncturable PRFs [GGM84, BW13, KPTZ13, BGI14]). Assuming the existence of polynomially-

secure (resp., sub-exponentially-secure) one-way functions, then there exists a selective polynomially-secure

(resp., sub-exponentially-secure) puncturable PRF.

Succinct non-interactive arguments. We now recall the definition of a succinct non-interactive argu-

ment for the language of Boolean circuit satisfiability. We start by defining the language of Boolean circuit

satisfiability:

Definition 2.4 (Boolean Circuit Satisfiability). We define the circuit satisfiability language LSAT as

LSAT =

{

(�, G)
�

�

�

� : {0, 1}= × {0, 1}ℎ → {0, 1}, G ∈ {0, 1}=

∃F ∈ {0, 1}ℎ : � (G,F) = 1

}

.

Definition 2.5 (Succinct Non-Interactive Argument). A succinct non-interactive argument (SNARG) in

the preprocessing model for Boolean circuit satisfiability is a tuple ΠSNARG = (Setup, Prove,Verify) with

the following syntax:

• Setup(1_,�) → crs: On input the security parameter _ and a Boolean circuit � , the setup algorithm

outputs a common reference string crs.

• Prove(crs, G,F) → c : On input a common reference string crs, a statement G , and a witnessF , the

prove algorithm outputs a proof c .

• Verify(crs, G, c) → 1: On input a common reference string crs, a statement G and a proof c , the

verification algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, ΠSNARG should satisfy the following properties:

• Completeness: For all security parameters _ ∈ N, all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1},

all instances (G,F) where � (G,F) = 1,

Pr

[

Verify(crs, G, c) = 1 :
crs← Setup(1_,�)

c ← Prove(crs, G,F)

]

= 1.

• Adaptive soundness: For a security parameter _, we define the adaptive soundness game between

an adversary A and a challenger as follows:

– On input the security parameter 1_ , the adversary A starts by outputting a Boolean circuit

� : {0, 1}= × {0, 1}ℎ → {0, 1}.

– The challenger replies with crs← Setup(1_,�).

10

– The adversary outputs a statement G ∈ {0, 1}= and a proof c .

– The output is 1 = 1 if (�, G) ∉ LSAT and Verify(crs, G, c) = 1. The output is 1 = 0 otherwise.

We say that ΠSNARG is adaptively sound if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all _ ∈ N, Pr[1 = 1] = negl(_) in the adaptive soundness game. When

1 = 1, we say that “A wins the adaptive soundness game.”

• Succinctness: There exist a polynomial ? such that for all Boolean circuits � : {0, 1}= × {0, 1}ℎ →

{0, 1}, and all crs in the support of Setup(1_,�), all statements G ∈ {0, 1}= , and all witnesses

F ∈ {0, 1}ℎ , the size of the proof c output by Prove(crs, G,F) satisfies |c | ≤ ? (_ + log |� |).

3 Injective One-Way Functions with an Inefficient Sampler

In this section, we introduce the notion of an injective one-way function with an inefficient sampling

algorithm. We show how to construct such an object from any one-way function in Section 5. This is the

main cryptographic primitive we use to obtain our adaptively-sound SNARG in conjunction with 8O.

Definition 3.1 (One-Way Function). Let C = C (_) and< =<(_) be polynomials. A function 5 : {0, 1}C (_) →

{0, 1}< (_) is one-way if it is efficiently-computable and moreover, for all efficient adversaries A, there

exists a negligible function negl(·) such that for all _ ∈ N,

Pr

[

5 (~) = 5 (~∗) :
~∗

r
← {0, 1}C (_)

~ ← A(1_, 5 (~∗))

]

= negl(_) .

Definition 3.2 (Injective One-Way Function with an Inefficient Sampler). Let C = C (_) and< =<(_) be

polynomials. An injective one-way function with an inefficient sampler with input length C = C (_) and

output length< =<(_) is a pair of algorithms ΠOWF = (GenChal,Verify) with the following properties:

• GenChal(1_) → (I∗, ~∗): On input a security parameter _, the challenge-generation algorithm out-

puts a challenge I∗ ∈ {0, 1}< (_) together with a solution ~∗ ∈ {0, 1}C (_) . The GenChal algorithm is

not required to be efficient.

• Verify(I,~) → 1: On input a challenge I and a solution ~, the verification algorithm outputs a bit

1 ∈ {0, 1}. The verification algorithm must be efficient.

Moreover, the algorithms must satisfy the following properties:

• Correctness: For all security parameters _ ∈ N and all (I∗, ~∗) in the support of GenChal(1_), it

holds that Verify(I∗, ~∗) = 1.

• Injectivity: For all security parameters _ ∈ N, all (I∗, ~∗) in the support of GenChal(1_), and all

~ ≠ ~∗, it holds that Verify(I∗, ~) = 0.

• One-wayness: For all efficient adversaries A, there exists a negligible function negl(·) such that

for all _ ∈ N,

Pr

[

Verify(I∗, ~) = 1 :
(I∗, ~∗) ← GenChal(1_)

~ ← A(1_, I∗)

]

= negl(_) .

11

Remark 3.3 (Explicit Evaluation Algorithm). Strictly speaking, Definition 3.2 does not conform to the

usual syntax of a one-way function in that we do not require an evaluation algorithm that takes an element

G ∈ {0, 1}C in the input space and produces an element ~ ∈ {0, 1}< in the output space. In a standard (injec-

tive) one-way function 5 : {0, 1}C → {0, 1}< , the challenge-generation algorithm GenChal algorithm would

sample a random domain element G r
← {0, 1}C and output (5 (G), G) as the challenge. In our generalized

syntax, we allow for an arbitrary (and inefficient) sampling algorithm, and moreover, omit the explicit

requirement for an evaluation function. In the case of our specific construction (Construction 5.2), we note

that it is straightforward to adapt it to have an explicit evaluation algorithm. Since this is unnecessary for

our main application, we elect to use the simpler syntax in this paper.

4 Adaptively-Sound SNARGs for NP from 8O and One-Way Functions

In this section, we show how to construct an adaptively-sound SNARG from indistinguishability obfuscation

together with an injective one-way function with an inefficient sampler (Definition 3.2). Our construction

closely follows the two-challenge paradigm from [WW24a, WZ24]. A key difference between our construc-

tion and the previous constructions is we move the entirety of the verification logic into the obfuscated

program itself. In the previous constructions, verification consists of first running an obfuscated program to

derive a challenge (for a one-way function) and then checking whether the proof contains a valid preimage

to the challenge. In our construction, the obfuscated program checks the proof. This difference will enable

a different proof strategy for arguing adaptive soundness that allows us to only rely on one-way functions.

Notation. In our construction, we will associate a bit-string G,~ ∈ {0, 1}= of length = with the binary

representation of an integer between 0 and 2= − 1, and we will write “G ≤ ~” to refer to the comparison

of the integer representations of G and ~.

Construction 4.1 (Adaptively-Sound SNARG for NP). Our construction relies on the following primitives:

• Let 8O be an indistinguishability obfuscator for Boolean circuits (Definition 2.1).

• Let ΠPPRF = (F.KeyGen, F.Eval, F.Puncture) be a puncturable PRF (Definition 2.2). For a key : and

an input G , we will write F(:, G) to denote F.Eval(:, G).

• Let ΠOWF = (OWF.GenChal,OWF.Verify) be an injective one-way function with an inefficient sam-

pler (Definition 3.2). Let C = C (_) be the input length of ΠOWF. Note that our construction will not

make use of ΠOWF (it is only used in the proof of Theorem 4.3). However, the scheme will depend on

the input length C of ΠOWF as well as the size of the circuit that computes OWF.Verify. Specifically,

the size of the verification program VerProof in the following construction will be padded to be at

least as large as a program that computes OWF.Verify.

Our construction will leverage sub-exponential hardness of 8O and the puncturable PRF ΠPPRF. In the

following, let _obf = _obf (_, =) and _PRF = _PRF(_, =) be fixed polynomials in the scheme’s security param-

eter _ and the statement length =. We will describe how to define the polynomials _obf and _PRF in the

security analysis. We construct a (preprocessing) succinct non-interactive argument ΠSNARG = (Setup,

Prove,Verify) for Boolean circuit satisfiability as follows:

• Setup(1_,�): On input the security parameter _ and a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1},

the setup algorithm does the following:

12

– Sample a “selector” PRF key :sel ← F.Setup(1_PRF, 1=, 11).

– Let C = C (_) be the input length for ΠOWF and sample PRF keys :0, :1 ← F.Setup(1_PRF, 1=, 1C).

– Define the following programs GenProof and VerProof:

Input: statement G ∈ {0, 1}= and witnessF ∈ {0, 1}ℎ

Hard-coded: Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} and PRF keys :sel, :0, :1

On input a statement G ∈ {0, 1}= and a witnessF ∈ {0, 1}ℎ :

∗ If � (G,F) = 0, output ⊥.

∗ If � (G,F) = 1, compute 1 = F(:sel, G) and output (1, F(:1, G)).

Figure 1: The proof-generation program GenProof [�, :sel, :0, :1].

Input: statement G ∈ {0, 1}= and proof c ∈ {0, 1}C+1

Hard-coded: Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} and PRF keys :0, :1

On input a statement G ∈ {0, 1}= and a proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C ,

∗ Output 1 if F(:1, G) = ~ and 0 otherwise.

Figure 2: The verification program VerProof [�, :0, :1].

Let B = B (_, =, |� |) be the maximum size of the GenProof and VerProof programs as well as

those appearing in the proof of Theorem 4.3 (specifically, the programs in Figs. 3 to 5 and 6).

By construction, we note that B = poly(_, |� |) is polynomially-bounded.

– Construct the obfuscated programs ObfProve ← 8O(1_obf , 1B ,GenProof [�, :sel, :0, :1]) and

ObfVerify ← 8O(1_obf , 1B ,VerProof [�, :0, :1]). Output the common reference string crs =

(ObfProve,ObfVerify) .

• Prove(crs, G,F): On input the common reference string crs = (ObfProve,ObfVerify), the prove

algorithm outputs c = ObfProve(G,F).

• Verify(crs, G, c): On input the common reference string crs = (ObfProve,ObfVerify), the statement

G ∈ {0, 1}= , and the proof c ∈ {0, 1}C+1, the verification algorithm outputs ObfVerify(G, c).

Theorem 4.2 (Completeness). If 8O is correct, then Construction 4.1 is complete.

Proof. Take any security parameter _ ∈ N, any Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, and any

instance-witness pair (G,F) where � (G,F) = 1. Let crs = (ObfProve,ObfVerify) ← Setup(1_,�) and

c = (1,~) ← Prove(crs, G,F). Consider the output of Verify(crs, G, c):

• By construction, ObfProve is an obfuscation of the program GenProof [�, :sel, :0, :1], where :sel ←

F.Setup(1_PRF, 1=, 11), and :0, :1 ← F.Setup(1_PRF, 1=, 1C). In this case c is obtained by evaluating

ObfProve on input (G,F). By correctness of 8O and definition ofGenProof, this means that c = (1,~)

where 1 = F(:sel, G) and ~ = F(:1, G).

• By construction ObfVerify is an obfuscation of the program VerProof [�, :0, :1]. The verification

program computes 1 = F(:sel, G) and checks whether ~ = F(:1, G). Both checks hold by construction,

so by correctness of 8O, the verification algorithm accepts. �

13

Theorem 4.3 (Adaptive Soundness). Suppose the following conditions hold:

1. 8O is correct and satisfies sub-exponential security with parameter 2obf ∈ (0, 1) against non-uniform

adversaries;4

2. ΠPPRF satisfies punctured correctness and selective sub-subexponential punctured security with parameter

2PRF ∈ (0, 1) against non-uniform adversaries;

3. ΠOWF is an injective one-way function with inefficient sampler with polynomial security against non-

uniform adversaries.

Moreover, suppose _obf (_, =) = (_ +=)
1/2obf and _PRF(_, =) = (_ +=)

1/2PRF . Then, Construction 4.1 is adaptively

sound against non-uniform adversaries.

Proof. LetA = (A1,A2) be a non-uniform adversary for the adaptive soundness game for Construction 4.1

that succeeds with (non-negligible) advantage Y = Y (_). Without loss of generality, we assume that for

every security parameter _ ∈ N, algorithmA always outputs a Boolean circuit� with statements of a fixed

length = = =(_); we refer to [WW24a, Theorem 4.3] for a formal argument. We now define a sequence

of hybrid experiments. The initial sequence is nearly identical to those from [WW24a] with the main

distinction being the specification of Hyb3.

• Hyb0: This is the real adaptive soundness experiment. Namely, the adversary starts by outputting

a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}. The challenger then constructs the CRS as follows:

– Sample PRF keys :sel ← F.Setup(1_PRF, 1=, 11) and :0, :1 ← F.Setup(1_PRF, 1=, 1C) .

– The challenger then constructsObfProve← 8O(1_obf , 1B ,GenProof [�, :sel, :0, :1]) andObfVerify←

8O(1_obf , 1B ,VerProof [�, :0, :1]) where GenProof and VerProof on the programs from Figs. 1

and 2, and B is the same size parameter from Construction 4.1.

The challenger gives crs = (ObfProve,ObfVerify) to A. Algorithm A then outputs a statement G

and a proof c . The output is 1 if

(�, G) ∉ LSAT and ObfVerify(G, c) = 1.

• Hyb1: Same as Hyb0 except at the end of the experiment, after the adversary outputs the proof

c = (1,~) ∈ {0, 1}C+1 where 1 ∈ {0, 1} and ~ ∈ {0, 1}C , the output of the experiment is 1 if the

following hold:

(�, G) ∉ LSAT and ObfVerify(G, c) = 1 and 1 ≠ F(:sel, G) .

• Hyb2: Same as Hyb1 except when computing the output, the challenger no longer checks that

(�, G) ∉ LSAT. Namely, the output of the experiment is 1 if

ObfVerify(G, c) = 1 and 1 ≠ F(:sel, G).

4Recall from Section 2 that we say a primitive is sub-exponential secure with parameter 2 ∈ (0, 1) against non-uniform adversaries

if for every non-uniform adversary A = (A1,A2) where A2 run in time at most poly(_), and all sufficiently-large _ ∈ N, the

advantage of A is at most 2−_
2

.

14

• Hyb3: Same as Hyb2, except the challenger changes how it constructs ObfVerify. During setup, the

challenger now does the following:

– At the beginning of the experiment, the challenger samples (I∗, ~∗) ← OWF.GenChal(1_).

Then the challenger defines the following program VerProof1 :

Input: statement G ∈ {0, 1}= and proof c ∈ {0, 1}C+1

Hard-coded: Boolean circuit� : {0, 1}= × {0, 1}ℎ → {0, 1}, puncturable PRF keys :sel, :0, :1,

and instance I∗ ∈ {0, 1}<

On input a statement G ∈ {0, 1}= and a proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C :

∗ If 1 = F(:sel, G), output 1 if F(:1, G) = ~ and 0 otherwise.

∗ If 1 = 1 − F(:sel, G), output OWF.Verify(I∗, ~ ⊕ F(:1, G)).

Figure 3: The verification program VerProof1 [�, :sel, :0, :1, I
∗].

The challenger setsObfVerify← 8O(1_obf , 1B ,VerProof1 [�, :sel, :0, :1, I
∗]) in crs. The rest of the

experiment proceeds exactly as in Hyb2.

We write Hyb8 (A) to denote the output distribution of an execution of Hybrid Hyb8 with the adversary

A. We now analyze each adjacent pair of hybrid distributions.

Lemma 4.4. Suppose 8O is sub-exponentially-secure with parameter 2obf ∈ (0, 1) against non-uniform ad-

versaries. and ΠPPRF satisfies selective sub-exponential punctured security with parameter 2PRF ∈ (0, 1) against

non-uniform adversaries. Suppose _obf (_, =) = (_ + =)
1/2obf and _PRF(_, =) = (_ + =)

1/2PRF . Finally, suppose

ΠPPRF satisfies punctured correctness. Then,

Pr[Hyb0(A) = 1] ≤ 2 · Pr[Hyb1(A) = 1] + 2−Ω (_) .

Proof. The proof is analogous to the proof of Lemma 4.4 in [WW24a]. For completeness, we include the

proof in Appendix A. �

Lemma 4.5. It holds that Pr[Hyb1(A) = 1] ≤ Pr[Hyb2(A) = 1].

Proof. The conditions for outputting 1 inHyb2 are a subset of those inHyb1. Thus, whenever the challenger

outputs 1 in Hyb1, it also does so in Hyb2, and the lemma follows. �

Lemma 4.6. Suppose 8O is sub-exponentially-secure with parameter 2obf ∈ (0, 1) against non-uniform ad-

versaries and ΠPPRF satisfies selective sub-exponential punctured security with parameter 2PRF ∈ (0, 1) against

non-uniform adversaries. Suppose _obf (_, =) = (_ + =)
1/2obf and _PRF(_, =) = (_ + =)

1/2PRF . Finally, suppose

ΠPPRF satisfies punctured correctness and ΠOWF satisfies injectivity. Then,

| Pr[Hyb2(A) = 1] − Pr[Hyb3(A) = 1] | ≤ 2−Ω (_) .

Proof. We define a sequence of intermediate hybrids indexed by 8 ∈ {0, . . . , 2=}:

• Hyb
(0)
2,8 : Same as Hyb2, except the challenger first defines the following program VerProof2:

15

Input: statement G ∈ {0, 1}= and proof c ∈ {0, 1}C+1

Hard-coded: Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, puncturable PRF keys :sel, :0, :1, an

instance I∗ ∈ {0, 1}< , and an index 8 ∈ {0, 1}=

On input a statement G ∈ {0, 1}= and a proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C :

– If 1 = F(:sel, G), output 1 if F(:1, G) = ~ and 0 otherwise.

– If 1 = 1 − F(:sel, G), then proceed as follows:

∗ If G < 8 , output OWF.Verify(I∗, ~ ⊕ F(:1, G)).

∗ If G ≥ 8 , output 1 if F(:1, G) = ~ and 0 otherwise.

Figure 4: The verification program VerProof2 [�, :sel, :0, :1, I
∗, 8].

Then, the challenger proceeds as follows:

– Sample PRF keys :sel ← F.Setup(1_PRF, 1=, 11) and :0, :1 ← F.Setup(1_PRF, 1=, 1C) .

– Sample (I∗, ~∗) ← OWF.GenChal(1_).

– Construct the programs ObfProve ← 8O(1_obf , 1B ,GenProof [�, :sel, :0, :1]) and ObfVerify ←

8O(1_obf , 1B ,VerProof2 [�, :sel, :0, :1, I
∗, 8]) where GenProof and VerProof2 are the programs

from Figs. 1 and 4 and B is the bound on the program size from Construction 4.1.

The challenger gives crs = (ObfProve,ObfVerify) to A. After A outputs the statement G and the

proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C , the challenger outputs 1 if ObfVerify(G, c) = 1 and

1 ≠ F(:sel, G).

• Hyb
(1)
2,8 : Same as Hyb

(0)
2,8 , except the challenger defines the following program VerProof3:

Input: statement G ∈ {0, 1}= and proof c ∈ {0, 1}C+1

Hard-coded: Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, puncturable PRF keys :sel, :0, :1,

values A ∗, ~∗ ∈ {0, 1}C , I∗ ∈ {0, 1}< , and an index 8 ∈ {0, 1}=

On input a statement G ∈ {0, 1}= and a proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C :

– If 1 = F(:sel, G), output 1 if F(:1, G) = ~ and 0 otherwise.

– If 1 = 1 − F(:sel, G), then proceed as follows:

∗ If G < 8 , output OWF.Verify(I∗, ~ ⊕ F(:1, G)).

∗ If G = 8 , output 1 if ~ ⊕ A ∗ = ~∗.

∗ If G > 8 , output 1 if F(:1, G) = ~ and 0 otherwise.

Figure 5: The verification program VerProof3 [�, :sel, :0, :1, A
∗, ~∗, I∗, 8].

The challenger now computes 1∗ = 1 − F(:sel, 8) and A ∗ = ~∗ ⊕ F(:1∗, 8). It constructs the verifica-

tion program as ObfVerify← 8O(1_obf , 1B ,VerProof3 [�, :sel, :0, :1, A
∗, ~∗, I∗, 8]) . The remainder of the

experiment proceeds as in Hyb
(0)
2,8 .

16

• Hyb
(2)
2,8 : Same as Hyb

(1)
2,8 except the challenger punctures :1∗ at index 8 . Specifically, the challenger

computes :
(8)

1∗
← F.Puncture(:1∗, 8). It still sets A

∗
= ~∗ ⊕ F(:1∗, 8). Then, it uses the punctured key

:
(8)

1∗
in place of :1∗ in ObfProve and ObfVerify. Specifically, ObfProve and ObfVerify are now defined

as follows:

– If 1∗ = 0, then the challenger sets ObfProve ← 8O(1_obf , 1B ,GenProof [�, :sel, :
(8)
0 , :1]) and

ObfVerify← 8O(1_obf , 1B ,VerProof3 [�, :sel, :
(8)
0 , :1, A

∗, ~∗, I∗, 8]).

– If 1∗ = 1, then the challenger sets ObfProve ← 8O(1_obf , 1B ,GenProof [�, :sel, :0, :
(8)
1]) and

ObfVerify← 8O(1_obf , 1B ,VerProof3 [�, :sel, :0, :
(8)
1 , A ∗, ~∗, I∗, 8]).

• Hyb
(3)
2,8 : Same as Hyb

(2)
2,8 , except the challenger samples A ∗ r

← {0, 1}C .

• Hyb
(4)
2,8 : Same as Hyb

(3)
2,8 , except the challenger sets A

∗
= F(:1∗, 8).

We now show that each pair of hybrids are indistinguishable.

Claim 4.7. Suppose 8O is sub-exponentially-secure with parameter 2obf ∈ (0, 1) against non-uniform adver-

saries and _obf (_, =) = (_ + =)
1/2obf . Then, there exists _A ∈ N such that for all _ ≥ _A ,

| Pr[Hyb2(A) = 1] − Pr[Hyb
(0)
2,0 (A) = 1] | ≤ 1/2_+= .

Proof. We start by showing that for any choice of I∗, the verification program VerProof [�, :0, :1] in Hyb2
and the verification program VerProof2 [�, :sel, :0, :1, I

∗, 0] inHyb
(0)
2,0 compute identical functionalities. Take

any input G ∈ {0, 1}= and proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C . Consider the behavior of the

program VerProof2 [�, :sel, :0, :1, I
∗, 0] in Hyb

(0)
2,0 :

• Suppose 1 = F(:sel, G). Then VerProof2 [�, :sel, :0, :1, I
∗, 0] outputs 1 if F(:1, G) = ~ and 0 otherwise.

This is the same logic as VerProof [�, :0, :1].

• Suppose 1 = 1 − F(:sel, G). Since G ∈ {0, 1}
= , the integer value of G is between 0 and 2= − 1. Thus,

G ≥ 0, so VerProof2 [�, :sel, :0, :1, I
∗, 0] outputs 1 if F(:1, G) = ~ and 0 otherwise. This is the same

logic as VerProof [�, :0, :1].

We conclude that on all inputs G ∈ {0, 1}= and c ∈ {0, 1}C+1, the verification programs VerProof and

VerProof2 in Hyb2 and Hyb
(0)
2,0 have identical input/output behavior. The claim now follows by security

of 8O. Formally, suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ ΛA ,

| Pr[Hyb2(A) = 1] − Pr[Hyb
(0)
2,0 (A) = 1] | > 1/2_+= (_) .

Let ΛB =
{

(_ + =(_))1/2obf : _ ∈ ΛA
}

. Since =(_) is non-negative and ΛA is infinite, the set ΛB is also

infinite. We use A = (A1,A2) to construct a non-uniform adversary B = (B1,B2) such that for all

_obf ∈ ΛB , iOAdvB (_obf) > 1/2_
2obf
obf . We define the (inefficient) preprocessing algorithm B1 as follows:

1. On input 1_obf , algorithm B1 first checks if there exists _ ∈ ΛA such that _obf = (_ + =(_))
1/2obf . If no

such _ exists, algorithm B1 outputs ⊥. Otherwise, it sets _ to be the smallest such value that satisfies

the condition.

2. Algorithm B1 runs stA ← A1(1
). It then samples (I∗, ~∗) ← OWF.GenChal(1). Finally, it outputs

the state stB = (stA, I
∗, ~∗).

17

The online algorithm B2 now proceeds as follows:

1. On input the state stB , algorithm B2 outputs ⊥ if stB = ⊥. Otherwise, it parses stB = (stA, I
∗, ~∗)

and starts running A2 on input stA . Algorithm A2 outputs a circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}.

2. Algorithm B2 sets _PRF = _PRF(_, =) and samples PRF keys :sel ← F.Setup(1_PRF, 1=, 11), :0, :1 ←

F.Setup(1_PRF, 1=, 1C).

3. Algorithm B2 computes the parameter B as in Construction 4.1 and gives 1B , VerProof [�, :0, :1], and

VerProof2 [�, :sel, :0, :1, I
∗, 0] to the challenger. The challenger replies with an obfuscated program

ObfVerify.

4. Algorithm B2 computes ObfProve ← 8O(1_obf , 1B ,GenProof [�, :sel, :0, :1]) and gives the common

reference string crs = (ObfProve,ObfVerify) to A2.

5. AfterA2 outputs the statement G and the proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C , algorithm

B2 outputs 1 if ObfVerify(G, c) = 1 and 1 ≠ F(:sel, G).

We now argue that B is efficient and compute its advantage:

• Efficiency: First, we argue that the state stB output by B1 has polynomial size. Since 2obf ∈ (0, 1)

and =(_) ≥ 1, we have that _ ≤ _obf . By construction, |stA |, |I
∗ |, |~∗ | = poly(_), so we conclude that

|stB | = poly(_) = poly(_obf). Next, A2 is efficient so algorithm B2 is also efficient by construction.

• Advantage: It suffices to analyze the advantage of B. In this case, the challenger obfuscates the

program VerProof [�, :0, :1], then algorithm B perfectly simulates Hyb2. If the challenger obfuscates

the program VerProof2 [�, :sel, :0, :1, I
∗, 0], then algorithm B perfectly simulates Hyb

(0)
2,0 . Finally,

algorithm B computes the output using the same procedure as in Hyb2 and Hyb
(0)
2,0 . By assumption,

for all _obf ∈ ΛB ,

iOAdvB (_obf) = | Pr[Hyb2(A) = 1] − Pr[Hyb
(0)
2,0 (A) = 1] | > 2−(_+= (_)) = 2−_

2obf
obf .

Thus, algorithm B succeeds with advantage greater than 2−_
2obf
obf for infinitely-many security param-

eters _obf ∈ ΛB . This breaks sub-exponential-security of 8O (with parameter 2obf). �

Claim 4.8. Suppose 8O is sub-exponentially-secure with parameter 2obf ∈ (0, 1) against non-uniform adver-

saries and _obf (_, =) = (_ + =)
1/2obf . Then, for all 8 ∈ {0, . . . , 2= − 1}, there exists _A ∈ N such that for all

_ ≥ _A ,

| Pr[Hyb
(0)
2,8 (A) = 1] − Pr[Hyb

(1)
2,8 (A) = 1] | ≤ 1/2_+= .

Proof. Take any 8 ∈ {0, . . . , 2= − 1}. In both Hyb
(0)
2,8 and Hyb

(1)
2,8 , the challenger samples (I∗, ~∗) ←

OWF.GenChal(1_) and the PRF keys :sel ← F.Setup(1_PRF, 1=, 11) and :0, :1 ← F.Setup(1_PRF, 1=, 1C). In

Hyb
(1)
2,8 , the challenger also sets A

∗
= ~∗ ⊕ F(:1∗, 8) where 1

∗
= 1 − F(:sel, 8). We start by showing that the

programsVerProof2 [�, :sel, :0, :1, I
∗, 8] inHyb

(0)
2,8 andVerProof3 [�, :sel, :0, :1, A

∗, ~∗, I∗, 8] inHyb
(1)
2,8 compute

identical functionalities. Take any input G ∈ {0, 1}= and proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C .

Consider the behavior of the program VerProof3 [�, :sel, :0, :1, A
∗, ~∗, I∗, 8] in Hyb

(1)
2,8 :

• Suppose 1 = F(:sel, G). Then VerProof3 [�, :sel, :0, :1, A
∗, ~∗, I∗, 8] outputs 1 if F(:1, G) = ~ and 0

otherwise. This is the same logic as VerProof2 [�, :sel, :0, :1, I
∗, 8] .

18

• Suppose 1 = 1 − F(:sel, G) and G ≠ 8 . By inspection, the programs VerProof3 [�, :sel, :0, :1, A
∗, ~∗, I∗, 8]

and VerProof2 [�, :sel, :0, :1, I
∗, 8] implement identical logic in this case.

• Suppose 1 = 1 − F(:sel, G) and G = 8 . Then the program VerProof3 [�, :sel, :0, :1, A
∗, ~∗, I∗, 8] in Hyb

(1)
2,8

outputs 1 if ~ ⊕ A ∗ = ~∗. In this experiment, the challenger sets A ∗ = ~∗ ⊕ F(:1∗, 8), so the program

outputs 1 if ~ ⊕ ~∗ ⊕ F(:1∗, 8) = ~∗, or equivalently, if ~ = F(:1∗, 8). Moreover, 1∗ = 1 − F(:sel, 8) = 1,

so the program VerProof3 in this case outputs 1 if ~ = F(:1, G) and 0 otherwise. This is exactly the

same check performed in VerProof2 [�, :sel, :0, :1, I
∗, 8].

Thus, we conclude that on all inputs G ∈ {0, 1}= and c ∈ {0, 1}C+1, the verification programs VerProof2 and

VerProof3 in Hyb
(0)
2,8 and Hyb

(1)
2,8 , respectively, have identical input/output behavior. The claim now follows

by sub-exponential security of 8O via a similar reduction as in the proof of Claim 4.7. �

Claim 4.9. Suppose 8O is sub-exponentially-secure with parameter 2obf ∈ (0, 1) against non-uniform

adversaries and _obf (_, =) = (_ + =)1/2obf . Suppose ΠPPRF satisfies punctured correctness. Then, for all

8 ∈ {0, . . . , 2= − 1}, there exists _A ∈ N such that for all _ ≥ _A ,

| Pr[Hyb
(1)
2,8 (A) = 1] − Pr[Hyb

(2)
2,8 (A) = 1] | ≤ 1/2_+= .

Proof. Take any 8 ∈ {0, . . . , 2= − 1}. In both Hyb
(1)
2,8 and Hyb

(2)
2,8 , the challenger first samples (I∗, ~∗) ←

OWF.GenChal(1_) and the PRF keys :sel ← F.Setup(1_PRF, 1=, 11) and :0, :1 ← F.Setup(1_PRF, 1=, 1C). In

addition, the challenger in both experiments computes 1∗ = 1 − F(:sel, 8) and A
∗
= ~∗ ⊕ F(:1∗, 8). Finally, in

Hyb
(2)
2,8 , the challenger additionally computes :

(8)

1∗
← F.Puncture(:1∗, 8). We first show that if 1∗ = 0, then

the proof-generation programs GenProof [�, :sel, :0, :1] in Hyb
(1)
2,8 and GenProof [�, :sel, :

(8)
0 , :1] in Hyb

(2)
2,8

have identical input/output behavior. Take any input G ∈ {0, 1}= andF ∈ {0, 1}ℎ :

• If � (G,F) = 0, then both programs output ⊥.

• If � (G,F) = 1 and 1 = F(:sel, G) = 1, then both programs output (1, F(:1, G)).

• If � (G,F) = 1 and 1 = F(:sel, G) = 0, then GenProof [�, :sel, :0, :1] outputs (0, F(:0, G)) while

GenProof [�, :sel, :
(8)
0 , :1] outputs (0, F(:

(8)
0 , G)). In this case, it holds that G ≠ 8 because F(:sel, 8) =

1 − 1∗ = 1 when 1∗ = 0. Since G ≠ 8 , by punctured correctness, F(:0, G) = F(:
(8)
0 , G) and the program

outputs are identical.

Thus, we conclude that the programs GenProof [�, :sel, :0, :1] in Hyb
(1)
2,8 and GenProof [�, :sel, :

(8)
0 , :1] in

Hyb
(2)
2,8 have identical input/output behavior. Next, we show that the same holds for the verification programs

VerProof3 [�, :sel, :0, :1, A
∗, ~∗, I∗, 8] in Hyb

(1)
2,8 and VerProof3 [�, :sel, :

(8)
0 , :1, A

∗, ~∗, I∗, 8] in Hyb
(2)
2,8 . Again we

first do so for the case of 1∗ = 0. Take any input G ∈ {0, 1}= and c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C :

• Suppose 1 = 1. Then, the output only depends on the values of ~, I∗, and F(:1, G), which is the same

in both experiments.

• Suppose 1 = 0. Then we have the following two possibilities:

– Suppose G ≠ 8 . By punctured correctness, we have that F(:0, G) = F(:
(8)
0 , G). The outputs in this

case only depends on the value of ~, I∗, and F(:0, G) = F(:
(8)
0 , G).

19

– Suppose G = 8 . Since 1∗ = 0 = 1 − F(:sel, G), we have that F(:sel, G) = 1 in this case. Since 1 = 0,

this means that 1 = 1 − F(:sel, 8), and so both programs output 1 if ~ ⊕ A ∗ = ~∗ and 0 otherwise.

Once more, we conclude that the verification programs VerProof3 in Hyb
(1)
2,8 and Hyb

(2)
2,8 have identical

input/output behavior. An analogous argument shows that the GenProof and VerProof programs in the

two experiments have identical input/output behavior when 1∗ = 1 − F(:sel, 8) = 1. To complete the proof

we introduce an intermediate hybrid:

• iHyb8 : Same as Hyb
(2)
2,8 except the challenger computes ObfVerify as in Hyb

(1)
2,8 . Namely, it computes

ObfVerify← 8O(1_obf , 1B ,VerProof3 [�, :sel, :0, :1, A
∗, ~∗, I∗, 8]) .

Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ ΛA ,

| Pr[Hyb
(1)
2,8 (A) = 1] − Pr[iHyb8 (A) = 1] | > 1/2_+= (_) . (4.1)

Let ΛB =
{

(_ + =(_))1/2obf : _ ∈ ΛA
}

. We use A = (A1,A2) to construct a non-uniform algorithm

B = (B1,B2) such that for all _obf ∈ ΛB , iOAdvB (_obf) > 1/2_
2obf
obf . We define the (inefficient) preprocessing

algorithm B1 as follows:

1. On input 1_obf , algorithm B1 first checks if there exists _ ∈ ΛA such that _obf = (_ + =(_))
1/2obf . If no

such _ exists, algorithm B1 outputs ⊥. Otherwise, it sets _ to be the smallest such value that satisfies

the condition.

2. Algorithm B1 runs stA ← A1(1
). It then samples (I∗, ~∗) ← OWF.GenChal(1) and outputs the

state stB = (stA, I
∗, ~∗).

The online algorithm B2 now proceeds as follows:

1. On input the state stB , algorithm B2 outputs ⊥ if stB = ⊥. Otherwise, it parses stB = (stA, I
∗, ~∗)

and starts running A2 on input stA . Algorithm A2 outputs a circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}.

2. Algorithm B2 sets _PRF = _PRF(_, =) and samples PRF keys :sel ← F.Setup(1_PRF, 1=, 11) and :0, :1 ←

F.Setup(1_PRF, 1=, 1C). It computes 1∗ = 1− F(:sel, 8), :
(8)

1∗
← F.Puncture(:1∗, 8), and A

∗
= ~∗ ⊕ F(:1∗, 8).

3. Algorithm B2 computes the parameter B as in Construction 4.1. It constructs the challenge as follows:

• If 1∗ = 0, it gives 1B , GenProof [�, :sel, :0, :1], and GenProof [�, :sel, :
(8)
0 , :1] to the challenger.

• If 1∗ = 1, it gives 1B , GenProof [�, :sel, :0, :1], and GenProof [�, :sel, :0, :
(8)
1] to the challenger.

The challenger replies with an obfuscated program ObfProve.

4. Algorithm B2 computes ObfVerify← 8O(1_obf , 1B ,VerProof3 [�, :sel, :0, :1, A
∗, ~∗, I∗, 8]) and gives the

common reference string crs = (ObfProve,ObfVerify) to A2.

5. AfterA2 outputs the statement G and the proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C , algorithm

B2 outputs 1 if ObfVerify(G, c) = 1 and 1 ≠ F(:sel, G).

We now argue that B is efficient and compute its advantage:

20

• Efficiency: First, we argue that the state stB output by B1 has polynomial size. Since 2obf ∈ (0, 1)

and =(_) ≥ 1, we have that _ ≤ _obf . By construction, |stA |, |I
∗ |, |~∗ | = poly(_), so we conclude that

|stB | = poly(_) = poly(_obf). Next, A2 is efficient so algorithm B2 is also efficient by construction.

• Advantage: If the challenger obfuscates the program GenProof [�, :sel, :0, :1], then algorithm B

perfectly simulates Hyb
(1)
2,8 . If the challenger obfuscates the program GenProof [�, :sel, :

(8)
0 , :1] (when

1∗ = 0) or the program GenProof [�, :sel, :0, :
(8)
1] (when 1

∗
= 1), then algorithm B perfectly simulates

iHyb8 . Finally, algorithm B2 computes the output using the same procedure as in Hyb
(1)
2,8 and iHyb8 .

By assumption then, for all _obf ∈ ΛB ,

iOAdvB (_obf) = | Pr[Hyb
(8)
2,1 (A) = 1] − Pr[iHyb8 (A) = 1] | > 2−(_+= (_)) = 2−_

2obf
obf .

Thus, algorithm B succeeds with advantage greater than 2−_
2obf
obf for infinitely-many _obf ∈ ΛB . This

breaks sub-exponential-security of 8O (with parameter 2obf).

By an analogous argument (where the reduction algorithm obtains ObfVerify from the challenger), we can

show that for all sufficiently-large _ ∈ N, it holds that

| Pr[iHyb8 (A) = 1] − Pr[Hyb
(2)
2,8 (A) = 1] | ≤ 1/2_+= (_) . (4.2)

Combining Eqs. (4.1) and (4.2), we conclude that for all sufficiently-large _ ∈ N,

| Pr[Hyb
(1)
2,8 (A) = 1] − Pr[Hyb

(2)
2,8 (A) = 1] | ≤ 2/2_+= (_) . �

Claim 4.10. Suppose ΠPPRF satisfies selective sub-exponential puncturing security with parameter 2PRF ∈ (0, 1)

against non-uniform adversaries and _PRF(_, =) = (_ + =)
1/2PRF . Then, for all 8 ∈ {0, . . . , 2= − 1}, there exists

_A ∈ N such that for all _ ≥ _A ,

| Pr[Hyb
(2)
2,8 (A) = 1] − Pr[Hyb

(3)
2,8 (A) = 1] | ≤ 1/2_+= .

Proof. Take any 8 ∈ {0, . . . , 2= − 1} and suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ ΛA ,

| Pr[Hyb
(2)
2,8 (A) = 1] − Pr[Hyb

(3)
2,8 (A) = 1] | > 1/2_+= (_) .

Let ΛB =
{

(_ + =(_))1/2PRF : _ ∈ ΛA
}

. We use A = (A1,A2) to construct a non-uniform algorithm

B = (B1,B2) such that for all _PRF ∈ ΛB , PPRFAdvB (_PRF) > 1/2_
2PRF
PRF . We define the (inefficient) prepro-

cessing algorithm B1 as follows:

1. On input 1_PRF , algorithm B1 first checks if there exists _ ∈ ΛA such that _PRF = (_ + =(_))1/2PRF .

If no such _ exists, algorithm B1 outputs ⊥. Otherwise, it sets _ to be the smallest such value that

satisfies the condition.

2. Algorithm B1 runs stA ← A1(1
). It then samples (I∗, ~∗) ← OWF.GenChal(1) and outputs the

state stB = (stA, I
∗, ~∗).

The online algorithm B2 now proceeds as follows:

1. On input the state stB , algorithm B2 outputs ⊥ if stB = ⊥. Otherwise, it parses stB = (stA, I
∗, ~∗)

and starts running A2 on input stA . Algorithm A2 outputs a circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}.

21

2. Algorithm B2 samples :sel ← F.Setup(1_PRF, 1=, 11) and computes 1∗ = 1 − F(:sel, 8). It samples

:1−1∗ ← F.Setup(1_PRF, 1=, 1C).

3. Algorithm B2 submits the input length 1= , the output length 1C , and the point 8 ∈ {0, 1}= to the punc-

tured PRF challenger. It receives a punctured key :
(8)

1∗
and a challenge value A ′ ∈ {0, 1}C . Algorithm

B2 sets A
∗
= ~∗ ⊕ A ′.

4. Algorithm B2 sets _obf = _obf (_, =) and constructs the programs ObfProve and ObfVerify as follows:

• If1∗ = 0, then it computesObfProve← 8O(1_obf , 1B ,GenProof [�, :sel, :
(8)

1∗
, :1−1∗]) andObfVerify←

8O(1_obf , 1B ,VerProof3 [�, :sel, :
(8)

1∗
, :1−1∗, A

∗, ~∗, I∗, 8]).

• If1∗ = 1, then it computesObfProve← 8O(1_obf , 1B ,GenProof [�, :sel, :1−1∗, :
(8)

1∗
]) andObfVerify←

8O(1_obf , 1B ,VerProof3 [�, :sel, :1−1∗, :
(8)

1∗
, A ∗, ~∗, I∗, 8]).

Algorithm B2 gives the common reference string crs = (ObfProve,ObfVerify) to A2.

5. After algorithmA2 outputs the statement G and the proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C ,

algorithm B2 outputs 1 if ObfVerify(G, c) = 1 and 1 ≠ F(:sel, G).

We now argue that B is efficient and compute its advantage:

• Efficiency: First, we argue that the state stB output by B1 has polynomial size. Since 2PRF ∈ (0, 1)

and =(_) ≥ 1, we have that _ ≤ _PRF. By construction, |stA |, |I
∗ |, |~∗ | = poly(_), so we conclude that

|stB | = poly(_) = poly(_PRF). Next, A2 is efficient so algorithm B2 is also efficient by construction.

• Advantage: By definition, the punctured PRF challenger constructs key :
(8)

1∗
by first sampling

:1∗ ← F.Setup(1_PRF, 1=, 1C) and setting :
(8)

1∗
← F.Puncture(:1∗, 8) . This matches the specification in

Hyb
(2)
2,8 and Hyb

(3)
2,8 . Consider now the distribution of the challenge value A ∗:

– Suppose A ′ = F(:1∗, 8). In this case, algorithm B2 sets A
∗
= ~∗ ⊕ A ′ = ~∗ ⊕ F(:1∗, 8). This

corresponds to the distribution of Hyb
(2)
2,8 . Moreover algorithm B2 computes the outputs using

the same procedure as in Hyb
(2)
2,8 and Hyb

(3)
2,8 . Thus, in this case, algorithm B2 outputs 1 with

probability Pr[Hyb
(2)
2,8 (A) = 1].

– Suppose A ′ r
← {0, 1}C . In this case, algorithm B2 sets A

∗
= ~∗ ⊕ A ′. Since A ′ is sampled inde-

pendently of all other quantities, the distribution of A ∗ in this case is also uniform over {0, 1}C .

Thus, algorithm B2 perfectly simulates an execution of Hyb
(3)
2,8 and outputs 1 with probability

Pr[Hyb
(3)
2,8 (A) = 1].

Combining the above analysis, we have for all _PRF ∈ ΛB ,

PPRFAdvB (_PRF) = | Pr[Hyb
(8)
2,2 (A) = 1] − Pr[Hyb

(8)
2,3 (A) = 1] | > 2−(_+= (_)) = 2−_

2PRF
PRF .

We conclude that algorithm B succeeds with advantage greater than 2−_
2PRF
PRF for infinitely-many _PRF ∈ ΛB .

This breaks selective sub-exponential puncturing security of ΠPPRF (with parameter 2PRF). �

22

Claim 4.11. Suppose ΠPPRF satisfies selective sub-exponential puncturing security with parameter 2PRF ∈ (0, 1)

against non-uniform adversaries and _PRF(_, =) = (_ + =)
1/2PRF . Then, for all 8 ∈ {0, . . . , 2= − 1}, there exists

_A ∈ N such that for all _ ≥ _A ,

| Pr[Hyb
(3)
2,8 (A) = 1] − Pr[Hyb

(4)
2,8 (A) = 1] | ≤ 1/2_+= .

Proof. Follow by an analogous argument as the proof of Claim 4.10. �

Claim 4.12. Suppose 8O is sub-exponentially-secure with parameter 2obf ∈ (0, 1) against non-uniform ad-

versaries and _obf (_, =) = (_ + =)
1/2obf . Suppose ΠPPRF satisfies punctured correctness and ΠOWF is correct and

injective. Then, for all 8 ∈ {0, . . . , 2= − 1}, there exists _A ∈ N such that for all _ ≥ _A ,

| Pr[Hyb
(4)
2,8 (A) = 1] − Pr[Hyb

(0)
2,8+1(A) = 1] | ≤ 2/2_+= .

Proof. This follow by a similar argument as in the proof of Claim 4.9. To argue this, we start by showing

that the programs associated with ObfProve and ObfVerify have identical behavior in the two experiments.

The claim then follows by sub-exponential security of 8O (as in the proof of Claim 4.9). We emphasize here

that our analysis here critically relies on injectivity of ΠOWF. Indeed, the crux of this argument is changing

the verification check for G = 8 as follows:

output 1 if ~ ⊕ F(:1∗, 8) = ~∗ =⇒ output 1 if OWF.Verify(I∗, ~ ⊕ F(:1∗, 8)) = 1,

where (I∗, ~∗) ← OWF.GenChal(1_). These two checks are identical only in the case where ΠOWF is

injective. If ΠOWF is not injective, there can be multiple inputs ~ where OWF.Verify(I∗, ~ ⊕ F(:1∗, 8)) = 1,

but only a single input where ~ ⊕ F(:1∗, 8) = ~∗.

We now give the formal argument. Take any index 8 ∈ {0, . . . , 2= − 1} and consider an execution of

Hyb
(4)
2,8 and Hyb

(0)
2,8+1. In both experiments, the challenger samples PRF keys :sel ← F.Setup(1_PRF, 1=, 11)

and :0, :1 ← F.Setup(1_PRF, 1=, 1C). It also samples (I∗, ~∗) ← OWF.GenChal(1_). In Hyb
(4)
2,8 , the challenger

additionally computes 1∗ = 1 − F(:sel, 8), :
(8)

1∗
← F.Puncture(:1∗, 8), and A ∗ = F(:1∗, 8). We analyze the

proof-generation and the proof-verification programs in the two experiments. We start by analyzing the

case where 1∗ = 0; the case where 1∗ = 1 follows similarly:

The GenProof programs. We start by considering the proof-generation programs. In Hyb
(4)
2,8 , the chal-

lenger obfuscates the program GenProof [�, :sel, :
(8)
0 , :1] whereas in Hyb

(0)
2,8+1, the challenger obfuscates the

program GenProof [�, :sel, :0, :1]. By the same argument as in the proof of Claim 4.9, these two programs

compute identical functionality. In particular, by punctured correctness, F(:0, G) = F(:
(8)
0 , G) for all G ≠ 8 ,

and neither program needs to evaluate the PRF with :0 (or :
(8)
0) at 8 since F(:sel, 8) = 1 ≠ 1∗.

The VerProof programs. Next, we consider the verification programs. In Hyb
(4)
2,8 , the challenger obfus-

cates the program VerProof3 [�, :sel, :
(8)
0 , :1, A

∗, ~∗, I∗, 8] whereas in Hyb
(0)
2,8+1, the challenger obfuscates the

program VerProof2 [�, :sel, :0, :1, I
∗, 8+1]. We show that these two programs compute identical functionality.

Take any input G ∈ {0, 1}= and c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C :

• Suppose 1 = 1. Recall that when 0 = 1∗ = 1 − F(:sel, 8), it holds that F(:sel, 8) = 1 = 1. Thus, there are

two possibilities: either (1) 1 = F(:sel, G); or (2) 1 = 1 − F(:sel, G) and G ≠ 8 (recall that when 1∗ = 0,

we have that F(:sel, 8) = 1). We consider each one individually:

23

– Suppose 1 = F(:sel, G). Then, both programs output 1 if F(:1, G) = ~ and 0 otherwise.

– Suppose 1 = 1−F(:sel, G) and G ≠ 8 . If G < 8 , both programs outputOWF.Verify(I∗, ~ ⊕ F(:1, G))

and if G > 8 , both programs output 1 if F(:1, G) = ~ and 0 otherwise.

• Suppose 1 = 0. Since F(:sel, 8) = 1, there are two possibilities: either (1) 1 = 1 − F(:sel, G); or (2)

1 = F(:sel, G) and G ≠ 8 . We consider these possibilities:

– Suppose 1 = F(:sel, G) and G ≠ 8 . In this case, the program VerProof3 [�, :sel, :
(8)
0 , :1, A

∗, ~∗, I∗, 8]

in Hyb
(4)
2,8 outputs 1 if F(:

(8)
0 , G) = ~, whereas the program VerProof2 [�, :sel, :0, :1, I

∗, 8 + 1] in

Hyb
(0)
2,8+1 outputs 1 if F(:0, G) = ~. Since G ≠ 8 , punctured correctness of ΠPPRF implies that

F(:0, G) = F(:
(8)
0 , G), and the outputs of the two programs are identical.

– Suppose 1 = 1−F(:sel, G) and G ≠ 8 . If G < 8 , the program in Hyb
(4)
2,8 outputsOWF.Verify(I∗, ~ ⊕

� (:
(8)
0 , G)) whereas the program in Hyb

(0)
2,8+1 outputs OWF.Verify(I∗, ~ ⊕ � (:0, G)). By punc-

tured correctness, the outputs are equivalent. If G > 8 , the program in Hyb
(4)
2,8 outputs 1 if

F(:
(8)
0 , G) = ~ while the program in Hyb

(0)
2,8+1 outputs 1 if F(:0, G) = ~. These are the same by

punctured correctness.

– Suppose1 = 1−F(:sel, G) andG = 8 . In this case, the programVerProof3 [�, :sel, :
(8)
0 , :1, A

∗, ~∗, I∗, 8]

in Hyb
(4)
2,8 outputs 1 if ~ ⊕ A ∗ = ~∗. In this case (with 1∗ = 0), A ∗ = F(:0, 8). Since the challenger

in Hyb
(4)
2,8 sampled (I∗, ~∗) ← OWF.GenChal(1_), correctness and injectivity of ΠOWF states

that OWF.Verify(I∗, ~∗) = 1 and for all ~ ≠ ~∗, OWF.Verify(I∗, ~) = 0. Equivalently,

~ ⊕ F(:0, 8) = ~∗ if and only if OWF.Verify(I∗, ~ ⊕ F(:0, 8)) = 1.

In other words, the output of the verification program in Hyb
(4)
2,8 is 1 if

OWF.Verify(I∗, ~ ⊕ F(:0, 8)) = 1

and is 0 otherwise. This is the same condition checked by the program in Hyb
(0)
2,8+1. Observe

that this is the case that critically relies on injectivity of ΠOWF.

We conclude that on all inputs G ∈ {0, 1}= and c ∈ {0, 1}C , the behavior of the GenProof and VerProof

programs in Hyb
(4)
2,8 and Hyb

(0)
2,8+1 is identical when 1∗ = 0. A similar analysis applies when 1∗ = 1. The

claim now follows by sub-exponential security of 8O (as in the proof of Claim 4.9). �

Claim 4.13. Suppose 8O is sub-exponentially-secure with parameter 2obf ∈ (0, 1) against non-uniform

adversaries and _obf (_, =) = (_ + =)
1/2obf . Then, there exists _A ∈ N such that for all _ ≥ _A ,

| Pr[Hyb
(0)
2,2= (A) = 1] − Pr[Hyb3(A) = 1] | ≤ 1/2_+= .

Proof. This follows by a similar argument as the proof of Claim 4.7. We first show that the program

VerProof2 [�, :sel, :0, :1, I
∗, 2=] in Hybrid Hyb

(0)
2,2= and the program VerProof1 [�, :sel, :0, :1, I

∗] in Hyb3 com-

pute identical functionalities. Take any input G ∈ {0, 1}= and c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C .

• If 1 = F(:sel, G), then both programs output 1 if F(:1, G) = ~ and 0 otherwise.

• If 1 = 1 − F(:sel, G), then both programs output OWF.Verify(I∗, ~ ⊕ F(:1, G)). Note that this follows

because for all 8 ∈ {0, . . . , 2= − 1}, it holds that G < 2= .

24

Both experiments sample :sel, :0, :1, and I
∗ using identical procedures. We conclude that the two programs

compute identical functionality. The claim now follows by sub-exponential security of 8O (as in the proof

of Claim 4.7). �

We now return to the proof of Lemma 4.6. By Claims 4.8 to 4.12, for all 8 ∈ {0, . . . , 2= − 1}, and all

sufficiently-large _ ∈ N, it follows that

| Pr[Hyb
(0)
2,8 (A) = 1] − Pr[Hyb

(0)
2,8+1(A) = 1] | ≤ $ (1)/2_+= (_) .

By the triangle inequality,

| Pr[Hyb
(0)
2,0 (A) = 1] − Pr[Hyb

(0)
2,2= (A) = 1] | ≤ 2= (_) ·

$ (1)

2_+= (_)
= 2−Ω (_) .

Combined with Claims 4.7 and 4.13, we conclude that

| Pr[Hyb2(A) = 1] − Pr[Hyb3(A) = 1] | ≤ 2−Ω (_) . �

Lemma 4.14. Suppose ΠOWF is one-way against non-uniform adversaries. Then, there exists a negligible

function negl(·) such that for all _ ∈ N, Pr[Hyb3(A) = 1] ≤ negl(_).

Proof. Suppose Pr[Hyb3(A) = 1] > Y (_) for some non-negligible function Y. We use A = (A1,A2) to

construct a non-uniform adversary B = (B1,B2) that breaks one-wayness of ΠOWF. First the preprocessing

algorithm B1 takes the security parameter 1_ as input, runs stA ← A1(1
_), and outputs stB = stA . The

online algorithm B2 then works as follows:

1. On input the state stB = stA , algorithm B2 runs algorithmA2 on the state stA . AlgorithmA2 starts

by outputting a circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}.

2. Algorithm B2 computes _PRF = _PRF(_, =) and samples PRF keys :sel ← F.Setup(1_PRF, 1=, 11) and

:0, :1 ← F.Setup(1_PRF, 1=, 1C).

3. Algorithm B2 sets _obf = _obf (_, =) and constructs the obfuscated programs

ObfProve← 8O(1_obf , 1B ,GenProof [�, :sel, :0, :1])

ObfVerify← 8O(1_obf , 1B ,VerProof1 [�, :sel, :0, :1, I
∗]) .

It gives crs = (ObfProve,ObfVerify) to A.

4. After A2 outputs a statement G ∈ {0, 1}= and a proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C ,

algorithm B2 outputs ~ ⊕ F(:1, G).

By definition, the one-wayness challenger samples (I∗, ~∗) ← OWF.GenChal(1_), which matches the distri-

bution in Hyb3. Thus, with probability Y, algorithm A outputs G and c = (1,~) where ObfVerify(G, c) = 1

and 1 ≠ F(:sel, G). By correctness of 8O and construction of VerProof1, if 1 = 1 − F(:sel, G), then

ObfVerify(G, c) = 1 if and only if OWF.Verify(I∗, ~ ⊕ F(:1, G)). This means that ~ ⊕ F(:1, G) is a preimage

of I∗ and algorithm B successfully produces a preimage of I∗. �

25

Combining Lemmas 4.4 to 4.6, we have for all sufficiently-large _ ∈ N,

Pr[Hyb0(A) = 1] ≤ 2 · Pr[Hyb3(A) = 1] + 2−Ω (_) .

By Lemma 4.14, Pr[Hyb3(A) = 1] = negl(_). We conclude that

Pr[Hyb0(A) = 1] ≤ negl(_) .

Since Hyb0 corresponds to the real adaptive soundness security game, Theorem 4.3 follows. �

Theorem 4.15 (Succinctness). Construction 4.1 is succinct.

Proof. A proof c in Construction 4.1 consists of a bit 1 ∈ {0, 1} and an element of {0, 1}C where C = C (_)

is the length of the input to the injective one-way function with inefficient sampler (Definition 3.2). Since

C = C (_) is polynomially-bounded in the security parameter, |c | = poly(_) and succinctness holds. �

Remark 4.16 (Perfect Zero-Knowledge). Similar to previous 8O-based SNARGs [SW14, WW24a, WZ24],

Construction 4.1 satisfies perfect zero-knowledge (the proof is just the output of a PRF on the statement,

which can be perfectly simulated). We refer to the previous works for a formal proof of this.

5 Constructing Injective One-Way Functions with an Inefficient Sampler

In this section, we show how to construct an injective one-way function with an inefficient sampler from

any one-way function (and a universal hash function). We start by recalling the definition of a universal

hash function and then give our construction.

Definition 5.1 (Universal Hash Function). LetH be a family of hash functions ℎ : Y → Z with domain

Y and rangeZ. We say thatH is universal if for all ~1, ~2 ∈ Y where ~1 ≠ ~2,

Pr[ℎ(~1) = ℎ(~2) : ℎ
r
←H] ≤

1

|Z|
.

We say thatH is efficiently-sampleable if there exists an explicit algorithm that outputs a sample ℎ r
←H

in time poly(log |Y| + log |Z|).

Construction overview. As noted in Section 1.1, we construct our injective one-way function with an

inefficient sampler by composing a vanilla one-way function with a universal hash function. Specifically,

suppose 5 : {0, 1}C → {0, 1}< is a one-way function. Each element E ∈ {0, 1}< in the image of 5 can have

between 1 and 2C possible preimages. Thus, we need a way to associate a “unique” solution to a challenge

element E . To do so, we additionally include a hash value f with E , and we say that a candidate preimage

~ ∈ {0, 1}C of E is valid only if ℎ(~) = f . In this case, the adversary’s goal is not to find any preimage of E , but

rather, to find a preimage that also has the correct hash value: that is, a value ~ where (5 (~), ℎ(~)) = (E, f).

The remaining question is how to pick the output length for the hash function ℎ. If the output length is

too short and a candidate value E ∈ {0, 1}< has many preimages, then there can still be multiple preimages

of E that share a hash value f . Conversely, if the output length of the hash function is too long, then giving

out the hash of a preimage f = ℎ(~) might leak too many bits of information about the preimage ~ and

compromise one-wayness of the function. In particular, the output length of the hash function should be

dynamically adjusted based on the number of preimages the value E has (e.g., the output length of the hash

26

function should scale with the number of preimages the element E has). In our construction, we handle

this by having the challenge-generation algorithm “guess” the number of preimages E has, and we show

that whenever it guesses correctly (up to a factor of 2), then the resulting challenge is hard to invert with

noticeable probability. In more detail, our approach operates as follows:

• Challenge structure: The challenge is a tuple I = (d, ℎ, E, f), where d ∈ [C + 1] is the output length

of the hash function, ℎ : {0, 1}C → {0, 1}d is a hash function sampled from a universal hash family,

E ∈ {0, 1}< is an element in the image of 5 , and f ∈ {0, 1}d is the target hash value.

• Challenge sampling and injectivity: The challenge-generation algorithm first samples the hash

length d
r
← [C + 1]. Then, it samples the hash function ℎ from a universal hash family (with C-bit

inputs and d-bit outputs). Finally, it samples a random E ∈ {0, 1}< in the image of 5 (i.e., by sampling

D
r
← {0, 1}C and setting E = 5 (D)) and a random tag f

r
← {0, 1}d . Now, the challenge-generation

algorithm checks to see if there exists exactly one preimage ~ where (5 (~), ℎ(~)) = (E, f). If so, it

outputs the challenge I = (d, ℎ, E, f), and otherwise, it repeats this process. By construction, any

challenge I output by this sampling procedure has exactly one preimage, so injectivity follows by

construction. Note also that this sampling procedure is not efficiently-computable since it needs to

count the number of preimages of E .

• One-wayness: To argue that it remains hard to invert the challenges I output by this procedure,

we first show that with inverse polynomial probability X , the GenChal algorithm will successfully

sample a valid challenge I = (d, ℎ, E, f) on the first attempt. In this case, we can set up a reduction to

the one-wayness of 5 . Suppose there exists an efficient algorithm A that can solve the challenges

output by GenChal with probability Y. Such an algorithm can be used to break one-wayness of

5 as follows. Given a (random) challenge E ∈ {0, 1}< for 5 , the reduction algorithm samples the

values of d , ℎ, and f itself (according to the same distribution as GenChal), and gives the challenge

I = (d, ℎ, E, f) to the adversary A. With probability X , this challenge is distributed according to the

output of GenChal, so if A succeeds with probability Y, then our reduction algorithm succeeds in

inverting 5 with probability XY and the claim follows.

We now give the formal construction and analysis:

Construction 5.2 (Injective One-Way Function with an Inefficient Sampler). Let C = C (_) be a polynomially-

bounded function and let 5 : {0, 1}C (_) → {0, 1}< (_) be a one-way function. For each d ∈ [C + 1], let Hd

be an efficiently-sampleable family of (efficiently-computable) universal hash functions with domain

{0, 1}C and range {0, 1}d . We use 5 to construct an injective one-way function with an inefficient sampler

ΠOWF = (GenChal,Verify) with input length C (_) + 1 as follows:

• GenChal(1_): On input the security parameter _, set C = C (_). Then repeat the following procedure

(up to) _ · (C + 1) times:

– Sample d r
← [C + 1] and ℎ r

←Hd . Sample D r
← {0, 1}C and let E = 5 (D) ∈ {0, 1}< .

– Sample f r
← {0, 1}d . If there exists ~̂∗ ∈ {0, 1}C such that 5 (~̂∗) = E andℎ(~̂∗) = f , and moreover,

for all ~̂ ≠ ~̂∗ ∈ {0, 1}C , it holds that (5 (~̂), ℎ(~̂)) ≠ (5 (~̂∗), ℎ(~̂∗)), then output the challenge

I∗ = (d, ℎ, 5 (~̂∗), ℎ(~̂∗)) together with the solution ~∗ = 0‖~̂∗ ∈ {0, 1}C+1.

If after _ · (C + 1) attempts, the above algorithm has not produced any output, then output I∗ = ⊥

and the associated solution ~∗ = 1C+1.

27

• Verify(I,~): On input the challenge I and a solution ~, the verification algorithm proceeds as follows:

– If I = ⊥, then output 1 if ~ = 1C+1 and 0 otherwise.

– If I = (d, ℎ, E, f) for some d ∈ [C], ℎ ∈ Hd , E ∈ {0, 1}
< , and f ∈ {0, 1}d , then parse ~ = 1‖~̂

where 1 ∈ {0, 1} and ~̂ ∈ {0, 1}C . Output 1 if 1 = 0 and (5 (~̂), ℎ(~̂)) = (E, f) and 0 otherwise.

In all other cases, output 0.

Theorem 5.3 (Correctness and Injectivity). Construction 5.2 is correct and injective.

Proof. Take any security parameter _ ∈ N and any (I∗, ~∗) in the support of GenChal(1_). We consider

two possibilities:

• Suppose I∗ = ⊥. In this case, ~∗ = 1C+1. By construction, Verify(I∗, ~∗) = 1, and moreover,

Verify(I∗, ~) = 0 for all ~ ≠ 1C+1.

• Suppose I∗ = (d, ℎ, E, f) and ~∗ ∈ {0, 1}C+1. By construction of GenChal, it must then be the case that

~∗ = 0‖~̂∗ for some ~̂∗ ∈ {0, 1}C and (E, f) = (5 (~̂∗), ℎ(~̂∗)). As such, Verify(I∗, ~∗) = 1. Moreover, the

GenChal algorithm outputs (I∗, ~∗) only if for all ~̂ ≠ ~̂∗, it holds that (5 (~̂), ℎ(~̂)) ≠ (5 (~̂∗), ℎ(~̂∗)) =

(E, f). Correspondingly, for all ~ ≠ 0‖~̂∗, this means that Verify(I∗, ~) = 0. �

Theorem 5.4 (One-Wayness). If for all d ∈ [C],Hd is universal and if 5 is one-way, then Construction 5.2

is also one-way.

Proof. Let A be an efficient adversary for the one-wayness game. We now define a sequence of hybrid

experiments between the adversary A and the challenger:

• Hyb0: This is the real one-wayness game. Namely, the challenger starts by sampling the challenge

I∗ according to the specification of GenChal(1_):

– The challenger repeats the following sampling procedure until it either successfully samples

a challenge-solution pair (I∗, ~∗) or it fails a total of _(C + 1) times: sample d
r
← [C + 1],

ℎ
r
← Hd , D

r
← {0, 1}C , f r

← {0, 1}d , and set E = 5 (D). If there exists ~̂∗ ∈ {0, 1}C such that

5 (~̂∗) = E and ℎ(~̂∗) = f and for all ~̂ ≠ ~̂∗, it holds that (5 (~̂), ℎ(~̂)) ≠ (5 (~̂∗), ℎ(~̂∗)), then set

I∗ = (d, ℎ, 5 (~̂∗), ℎ(~̂∗)) = (d, ℎ, 5 (D), f).

– If the sampling procedure does not terminate after _(C + 1) attempts, the challenger sets I∗ = ⊥.

The challenger gives the challenge I∗ to the adversary A. Algorithm A replies with ~. The output

of the experiment is Verify(I∗, ~).

• Hyb1: Same as Hyb0, except the challenger first defines the following sets:

– For each d ∈ [C + 1], define the set (d to be

(d =
{

(ℎ,D, f) : ℎ ∈ Hd , D ∈ {0, 1}
C , f ∈ {0, 1}d

}

.

– For each d ∈ [C + 1], define the set)d ⊆ (d to be the subset of tuples (ℎ,D, f) where there

exists ~̂∗ ∈ {0, 1}C such that 5 (~̂∗) = 5 (D) and ℎ(~̂∗) = f and for all ~̂ ≠ ~̂∗, it holds that

(5 (~̂), ℎ(~̂)) ≠ (5 (~̂∗), ℎ(~̂∗)).

28

Then, the challenger repeats the following sampling procedure until it successfully samples a chal-

lenge I∗ or it fails a total of _(C + 1) times: sample d r
← [C + 1] and (ℎ,D, f) r

← (d . If (ℎ,D, f) ∈)d , set

I∗ = (d, ℎ, 5 (D), f). If the sampling procedure does not succeed after _(C + 1) attempts, the challenger

sets I∗ = ⊥. The challenger gives I∗ to A. Algorithm A outputs ~ and the output of the experiment

is Verify(I∗, ~).

• Hyb2: Same as Hyb1, except the challenger continues to sample d r
← [C + 1] and (ℎ,D, f) r

← (d until

(ℎ,D, f) ∈)d (in which case it sets I∗ = (d, ℎ, 5 (D), f) as in Hyb1). If it is the case that)d = ∅ for all

d ∈ [C + 1], then the experiment always outputs 0.

• Hyb3: Same as Hyb2, except the challenger now samples d r
← [C + 1], (ℎ,D, f) r

← (d , and sets

I∗ = (d, ℎ, 5 (D), f). In particular, the challenger no longer checks for membership in)d .

We write Hyb8 (A) to denote the output distribution of an execution of Hyb8 with adversary A. We now

show that each pair of adjacent hybrid experiments are indistinguishable. We start by proving the following

claim about the sets (d and)d defined in Hyb1, which will be useful for analyzing the output distributions

of the hybrid experiments.

Claim 5.5. Let (d ,)d be the sets defined in the specification of Hyb1, where d ∈ [C + 1]. IfHd is universal

for all d ∈ [C + 1], then

Pr[(ℎ,D, f) ∈)d : d r
← [C + 1], (ℎ,D, f) r

← (d] ≥
1

224(C + 1)
.

Proof. Let D be the distribution over tuples (d, ℎ,D, f) where d r
← [C + 1] and (ℎ,D, f) r

← (d . Equivalently,

D samples d r
← [C + 1], ℎ r

←Hd , D
r
← {0, 1}C , and f r

← {0, 1}d . For a particular tuple (d, ℎ,D, f), we now

define the following events:

• Let :D be the number of pre-images of 5 (D), and label these preimages D1, . . . , D:D ∈ {0, 1}
C . Namely,

for all 8 ∈ [:D], 5 (D8) = 5 (D). Let E1 be the event that 2
d−1 ≤ 2:D ≤ 2d .

• For each 8 ∈ [:D], let #8 be the number of indices 9 ∈ [:D] where ℎ(D 9) = ℎ(D8). We will say that

D8 is “good” if #8 = 1 and that it is “bad” otherwise. Let E2 be the event that there are at least :D/8

indices 8 ∈ [:D] where D8 is good.

Now we can write

Pr[(ℎ,D, f) ∈)d] ≥ Pr[(ℎ,D, f) ∈)d ∧ E1 ∧ E2]

= Pr[(ℎ,D, f) ∈)d | E1 ∧ E2] · Pr[E2 | E1] · Pr[E1],
(5.1)

where all probabilities are taken over the choice of (d, ℎ,D, f) ← D. We now analyze each of the proba-

bilities:

• Consider event E1. Take any D ∈ {0, 1}
C and let :D be the number of preimages of 5 (D). By definition,

1 ≤ :D ≤ 2C . Thus, there exists some ℓD ∈ [C + 1] such that 2ℓD−1 ≤ 2:D ≤ 2ℓD . Correspondingly,

Pr
(d,ℎ,D,f)←D

[E1] = Pr[d = ℓD : d r
← [C + 1], D r

← {0, 1}C] =
1

C + 1
. (5.2)

29

• Suppose E1 occurs. Consider now the conditional probability that E2 occurs. For a tuple (d, ℎ,D, f),

let D1, . . . , D:D ∈ {0, 1}
C be the preimages of 5 (D). Then, for all 8, 9 ∈ [:D], define the indicator random

variable 18, 9 for the event ℎ(D 9) = ℎ(D8). SinceHd is universal,

Pr
(d,ℎ,D,f)←D

[18, 9 = 1 | E1] = Pr
ℎ

r
←Hd

[ℎ(D8) = ℎ(D 9)] ≤

{

1 8 = 9

1/2d 8 ≠ 9
.

This means that

E
(d,ℎ,D,f)←D

[18, 9 | E1] ≤

{

1 8 = 9

1/2d 8 ≠ 9
.

By definition, #8 =
∑

9∈[:D] 18, 9 , so we conclude that for all 8 ∈ [:D],

E
(d,ℎ,D,f)←D

[#8 | E1] = 1 +
:D − 1

2d
.

By Markov’s inequality,

Pr
(d,ℎ,D,f)←D

[#8 ≥ 2 | E1] ≤
1

2
+
:D − 1

2d+1
.

Finally, if E1 occurs, :D ≤ 2d−1 so :D/2
d+1 ≤ 1/4. We conclude that for each 8 ∈ [:D],

Pr
(d,ℎ,D,f)←D

[#8 ≥ 2 | E1] ≤
3

4
. (5.3)

Let" be the number of indices 8 ∈ [:D] where D8 is bad (i.e., where #8 ≥ 2). Let 1′8 be the indicator

random variable for the event that D8 is bad. From Eq. (5.3), we have that E(d,ℎ,D,f)←D [1
′
8 | E1] ≤ 3/4.

Since " =
∑

8∈[:D] 1
′
8 , we correspondingly have that E(d,ℎ,D,f)←D [" | E1] ≤ 3:D/4. Again by

Markov’s inequality,

Pr
(d,ℎ,D,f)←D

[

" ≥
7:D
8

�

�

� E1

]

≤
3:D/4

7:D/8
=
6

7
.

Event E2 corresponds to the case where" < 7:D/8.

Pr
(d,ℎ,D,f)←D

[E2 | E1] = 1 − Pr
(d,ℎ,D,f)←D

[

" ≥
7:D
8

�

�

� E1

]

≥
1

7
. (5.4)

• Suppose events E1 and E2 occur. We now consider the probability that (ℎ,D, f) ∈)d . Since E2 occurs,

at least :D/8 of the indices 8 ∈ [:D] are good. This means there exists a set ΣD ⊆ {0, 1}
d of size at

least |ΣD | ≥ :D/8 such that for all f ∈ ΣD , there exists 8 ∈ [:D] such that ℎ(D8) = f and for all 9 ≠ 8 ,

ℎ(D 9) ≠ f . Notably, this means that for all D̂ ≠ D8 , either 5 (D̂) ≠ 5 (D8) or ℎ(D̂) ≠ ℎ(D8). Equivalently,

(ℎ,D8 , f) ∈)d for all f ∈ ΣD . Thus, we can now write

Pr
(d,ℎ,D,f)←D

[(ℎ,D, f) ∈)d | E2 ∧ E1] = Pr
f

r
←{0,1}d

[f ∈ ΣD] =
|ΣD |

2d
≥

:D/8

2d
.

Conditioned on E1, we have that 2
d−1 ≤ 2:D so 2d ≤ 4:D , so we conclude that

Pr
(d,ℎ,D,f)←D

[(ℎ,D, f) ∈)d | E2 ∧ E1] ≥
:D/8

2d
≥

1

32
. (5.5)

30

Combining Eqs. (5.2), (5.4) and (5.5) with Eq. (5.1), we conclude that

Pr
(d,ℎ,D,f)←D

[(ℎ,D, f) ∈)d] ≥
1

7 · 32 · (C + 1)
=

1

224(C + 1)
. �

Lemma 5.6. It holds that Pr[Hyb0(A) = 1] = Pr[Hyb1(A) = 1].

Proof. The only difference between these two experiments is syntactic. Namely, in both cases, the challenger

samples d r
← [C + 1], ℎ r

← Hd , D
r
← {0, 1}C , and f

r
← {0, 1}d . Checking that (ℎ,D, f) ∈)d in Hyb1 is

identical to the check the challenger performs in Hyb0. �

Lemma 5.7. If Hd is universal for all d ∈ [C + 1], then there exists a negligible function negl(·) such that

for all _ ∈ N, Pr[Hyb1(A) = 1] ≤ Pr[Hyb2(A) = 1] + negl(_).

Proof. The only difference between Hyb1 and Hyb2 is the challenger sets I
∗
= ⊥ if the sampling procedure

fails after _(C + 1) attempts whereas the challenger in Hyb2 tries indefinitely until it is successful. Thus,

the adversary’s view in these two experiments is identical unless the challenger in Hyb1 is unsuccessful

in sampling a challenge I∗ after _(C + 1) iterations. By Claim 5.5, each sampling attempt is successful with

probability at least 1/(224(C + 1)). Since the samples are drawn independently, the challenger in Hyb1 sets

I∗ = ⊥ with probability at most

Pr[I∗ = ⊥ in Hyb1] ≤

(

1 −
1

224(C + 1)

)_ (C+1)

≤ exp

(

−
_(C + 1)

224(C + 1)

)

= 4−Ω (_) = negl(_),

where we are using the fact that for all real-valued G , it holds that 1 + G ≤ 4G . Thus, with probability

1 − negl(_), the challenger in Hyb1 will successfully sample a challenge I∗ in the first _(C + 1) iterations.

In this case, the adversary’s view is identical in the two experiments. �

Lemma 5.8. IfHd is universal for all d ∈ [C + 1], then Pr[Hyb2(A) = 1] ≤ 224(C + 1) · Pr[Hyb3(A) = 1].

Proof. Let d r
← [C + 1] and (ℎ,D, f) r

← (d . Let event E be the event that (ℎ,D, f) ∈)d . Then,

Pr[Hyb3(A) = 1] ≥ Pr[Hyb3(A) = 1 ∧ E] = Pr[Hyb3(A) = 1 | E] · Pr[E] . (5.6)

From Claim 5.5, we have that Pr[E] ≥ 1
224(C+1) . Moreover, conditioned on (ℎ,D, f) ∈)d , the challenge I

∗
=

(d, ℎ, 5 (D), f) in Hyb3 is distributed exactly according to the distribution in Hyb2. Thus, we conclude that

Pr[Hyb3(A) = 1 | E] ≥ Pr[Hyb2(A) = 1] .

The claim now follows from Eq. (5.6). �

Lemma 5.9. If 5 is one-way, then there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[Hyb3(A) = 1] = negl(_).

Proof. Suppose there exists an efficient adversaryA such that Pr[Hyb3(A) = 1] ≥ Y for some non-negligible

Y. We use A to construct an efficient adversary B that breaks one-wayness of 5 :

1. At the beginning of the game, algorithm B receives a challenge E ∈ {0, 1}< .

2. Algorithm B samples d r
← [C + 1], ℎ r

←Hd , and f
r
← {0, 1}d . It gives I∗ = (d, ℎ, E, f) to A.

31

3. If algorithm A outputs a preimage ~ ∈ {0, 1}C , then B also outputs ~.

By definition, the one-wayness challenger samples D r
← {0, 1}C and sets E = 5 (D). Thus, algorithm B

perfectly simulates an execution of Hyb3 for A. Thus, with probability Y, algorithm A outputs ~ such that

Verify(I∗, ~) = 1. This means that 5 (~) = E , in which case, algorithm B successfully recovers a preimage

of E for 5 . Thus, algorithm B succeeds with the same advantage Y. �

By Lemmas 5.6 to 5.8, we have that

Pr[Hyb0(A) = 1] ≤ 224(C + 1) Pr[Hyb3(A) = 1] + negl(_) .

By Lemma 5.9, Pr[Hyb3(A) = 1] = negl(_). Since C = C (_) is polynomially-bounded, the theorem

follows. �

Acknowledgments

We thank Nir Bitansky for pointing us to the work of [BPW16] as a way to build injective one-way functions

from any one-way function and indistinguishability obfuscation. Brent Waters is supported by NSF CNS-

1908611, CNS-2318701, and a Simons Investigator award. David J. Wu is supported by NSF CNS-2140975,

CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References

[ACL+22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krishnan

Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively

composable - (extended abstract). In CRYPTO, 2022.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC, 1996.

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation and

functional encryption. In FOCS, 2015.

[BBK+23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer Paneth.

SNARGs for monotone policy batch NP. In CRYPTO, 2023.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,

and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4), 2017.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision

resistance to succinct non-interactive arguments of knowledge, and back again. In ITCS, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and

bootstrapping for SNARKS and proof-carrying data. In STOC, 2013.

[BCFL23] David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Chainable functional

commitments for unbounded-depth circuits. In TCC, 2023.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct

non-interactive arguments via linear interactive proofs. In TCC, 2013.

32

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable

one-way functions. In STOC, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,

and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom

functions. In PKC, 2014.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their

application to more efficient obfuscation. In EUROCRYPT, 2017.

[BISW18] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs via linear

multi-prover interactive proofs. In EUROCRYPT, 2018.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos - trapdoor

permutations from indistinguishability obfuscation. In TCC, 2016.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.

In ASIACRYPT, 2013.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum,

and Daniel Wichs. Fiat-shamir: from practice to theory. In STOC, 2019.

[CGJ+23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang.

Correlation intractability and snargs from sub-exponential DDH. In CRYPTO, 2023.

[CGKS23] Matteo Campanelli, Chaya Ganesh, Hamidreza Khoshakhlagh, and Janno Siim. Impossibilities

in succinct arguments: Black-box extraction and more. In AFRICACRYPT, 2023.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments

for NP from standard assumptions. In CRYPTO, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS,

2021.

[CLM23] Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. Lattice-based succinct arguments from

vanishing polynomials - (extended abstract). In CRYPTO, 2023.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low

communication. In TCC, 2012.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive

arguments for batch-NP and applications. In FOCS, 2022.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of

random functions. In CRYPTO, 1984.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs

and succinct nizks without pcps. In EUROCRYPT, 2013.

33

[GLN11] Oded Goldreich, Leonid A. Levin, and Noam Nisan. On constructing 1-1 one-way functions.

In Studies in Complexity and Cryptography, volume 6650. Springer, 2011.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT,

2010.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all

falsifiable assumptions. In STOC, 2011.

[GZ21] Alonso González and Alexandros Zacharakis. Fully-succinct publicly verifiable delegation from

constant-size assumptions. In TCC, 2021.

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. SNARGs for P

from sub-exponential DDH and QR. In EUROCRYPT, 2022.

[JKLV24] Zhengzhong Jin, Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. SNARGs

under LWE via propositional proofs. In STOC, 2024.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded

assumptions. In STOC, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over F? ,

DLIN, and PRGs in NC0. In EUROCRYPT, 2022.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In

STOC, 1992.

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch

arguments and RAM delegation. In STOC, 2023.

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev. One-way

functions and (im)perfect obfuscation. In FOCS, 2014.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.

Delegatable pseudorandom functions and applications. In ACM CCS, 2013.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical

soundness, post-quantum security, and SNARGs. In TCC, 2021.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and

linear error-correcting codes. In ASIACRYPT, 2013.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In FOCS, 1994.

[MPV24] Surya Mathialagan, Spencer Peters, and Vinod Vaikuntanathan. Adaptively sound

zero-knowledge SNARKs for UP. In CRYPTO, 2024.

[NWW24] Shafik Nassar, Brent Waters, and David J. Wu. Monotone policy BARGs from BARGs and

additively homomorphic encryption. In TCC, 2024.

[NWW25] Shafik Nassar, Brent Waters, and David J. Wu. Monotone-policy BARGs and more from BARGs

and quadratic residuosity. In PKC, pages 283–313, 2025.

34

[PP22] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch arguments.

In FOCS, 2022.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In

STOC, 2005.

[RVV24] Seyoon Ragavan, Neekon Vafa, and Vinod Vaikuntanathan. Indistinguishability obfuscation

from bilinear maps and LPN variants. In TCC, 2024.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,

and more. In STOC, 2014.

[Wee25] Hoeteck Wee. Almost optimal KP and CP-ABE for circuits from succinct LWE. In EUROCRYPT,

2025.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group

assumptions. In CRYPTO, 2022.

[WW23a] Brent Waters and Daniel Wichs. Universal amplification of KDM security: From 1-key circular

to multi-key KDM. In CRYPTO, 2023.

[WW23b] Hoeteck Wee and David J. Wu. Lattice-based functional commitments: Fast verification and

cryptanalysis. In ASIACRYPT, 2023.

[WW23c] Hoeteck Wee and David J. Wu. Succinct vector, polynomial, and functional commitments from

lattices. In EUROCRYPT, 2023.

[WW24a] Brent Waters and David J. Wu. Adaptively-sound succinct arguments for NP from

indistinguishability obfuscation. In STOC, 2024.

[WW24b] Hoeteck Wee and David J. Wu. Succinct functional commitments for circuits from :-Lin. In

EUROCRYPT, 2024.

[WZ24] Brent Waters and Mark Zhandry. Adaptive security in SNARGs via iO and lossy functions.

In CRYPTO, 2024.

A Proof of Lemma 4.4

The proof of Lemma 4.4 follows by a similar argument as the proof of Lemma 4.4 in [WW24a]. We recall

the full argument here. We follow the style and conventions of [WW24a, Lemma 4.4], so some of the text is

taken verbatim from the previous work. Consider an execution ofHyb0 orHyb1. For an index 8 ∈ {0, 1}= , let

E8 be the event that adversary A outputs 8 as its statement in an execution of Hyb0 or Hyb1. By definition,

we can write
Pr[Hyb0(A) = 1] =

∑

8∈{0,1}=

Pr[Hyb0(A) = 1 ∧ E8]

Pr[Hyb1(A) = 1] =
∑

8∈{0,1}=

Pr[Hyb1(A) = 1 ∧ E8] .
(A.1)

35

We show that for all 8 ∈ {0, 1}= ,

Pr[Hyb1(A) = 1 ∧ E8] ≥
1

2
Pr[Hyb0(A) = 1 ∧ E8] −

1

2=
·
$ (1)

2_
. (A.2)

To show this, we consider two cases.

Case 1. Suppose (�, 8) ∈ LSAT. If the adversary outputs 8 as its statement (i.e., if E8 occurs), then the

output in both Hyb0 and Hyb1 is 0. In this case,

Pr[Hyb0(A) = 1 ∧ E8] = 0 = Pr[Hyb1(A) = 1 ∧ E8] .

Correspondingly, Eq. (A.2) holds.

Case 2. Suppose (�, 8) ∉ LSAT. In this case, we proceed by defining a sequence of hybrids:

• Hyb
(0)
0,8 : Same as Hyb0 except the challenger outputs 1 only if

(�, G) ∉ LSAT and ObfVerify(G, c) = 1 and G = 8 .

• Hyb
(1)
0,8 : Same as Hyb

(0)
0,8 except when setting up the CRS, the challenger defines the modified proof-

generation program GenProof1 as follows:

Input: statement G ∈ {0, 1}= and witnessF ∈ {0, 1}ℎ

Hard-coded: Boolean circuit� : {0, 1}=×{0, 1}ℎ → {0, 1}, PRF keys :sel, :0, :1, and the statement

8 ∈ {0, 1}=

On input a statement G ∈ {0, 1}= and a witnessF ∈ {0, 1}ℎ :

– If G = 8 , output ⊥.

– If � (G,F) = 0, output ⊥.

– If � (G,F) = 1, compute 1 = F(:sel, G) and output (1, F(:1, G)).

Figure 6: The proof-generation program GenProof1 [�, :sel, :0, :1, 8].

Next, after sampling :sel ← F.Setup(1_PRF, 1=, 11), the challenger computes :
(8)

sel
← F.Puncture(:sel, 8).

It then constructs the prover program ObfProve← 8O
(

1_obf , 1B ,GenProof1 [�, :
(8)

sel
, :0, :1, 8]

)

, where

the size parameter B is as defined in Construction 4.1. The rest of the experiment proceeds as inHyb
(0)
0,8 .

• Hyb
(2)
0,8 : Same as Hyb

(1)
0,8 , except after the adversary outputs its statement G and the proof c = (1,~) ∈

{0, 1}C+1 where 1 ∈ {0, 1} and ~ ∈ {0, 1}C , the challenger samples a random bit 1′ r
← {0, 1} and

outputs 1 if

(�, G) ∉ LSAT and ObfVerify(G, c) = 1 and G = 8 and 1 ≠ 1′.

• Hyb
(3)
0,8 : Same as Hyb

(2)
0,8 , except after the adversary outputs its statement G and the proof c = (1,~) ∈

{0, 1}C+1 where 1 ∈ {0, 1} and ~ ∈ {0, 1}C , the challenger outputs 1 if

(�, G) ∉ LSAT and ObfVerify(G, c) = 1 and G = 8 and 1 ≠ F(:sel, 8) .

36

• Hyb
(4)
0,8 : Same as Hyb

(3)
0,8 , except when setting up the CRS, the challenger reverts to computing

ObfProve← 8O(1_obf , 1B ,GenProof [�, :sel, :0, :1]).

By definition,

Pr[Hyb
(0)
0,8 (A) = 1] = Pr[Hyb0(A) = 1 ∧ E8] and Pr[Hyb

(4)
0,8 (A) = 1] = Pr[Hyb1(A) = 1 ∧ E8] .

We now consider each pair of adjacent distributions.

Claim A.1. Suppose 8O is sub-exponentially-secure with parameter 2obf ∈ (0, 1) against non-uniform adver-

saries and _obf (_, =) = (_ + =)
1/2obf . Suppose ΠPPRF satisfies punctured correctness. Then, there exists _A ∈ N

such that for all _ ≥ _A ,

| Pr[Hyb
(0)
0,8 (A) = 1] − Pr[Hyb

(1)
0,8 (A) = 1] | ≤ 1/2_+= .

Proof. We start by showing that GenProof [�, :sel, :0, :1] in Hyb0 and GenProof1 [�, :
(8)

sel
, :0, :1, 8] in Hyb1

compute identical functionalities. Take any input (G,F) to the two programs. We consider the different

possibilities:

• Suppose G = 8 . We are analyzing the case (�, 8) ∉ LSAT, so � (8,F) = 0. In this case, both programs

output ⊥.

• Suppose � (G,F) = 0. Then both programs output ⊥.

• Suppose G ≠ 8 and � (G,F) = 1. Then GenProof computes 1 = F(:sel, G) and outputs (1, F(:1, G))

while GenProof1 computes 1 = F
(

:
(8)

sel
, G
)

and outputs (1, F(:1, G)). Since G ≠ 8 and the key :
(8)

sel

is punctured at input 8 , it follows that F(:sel, G) = F
(

:
(8)

sel
, G
)

. Once again, the behavior of the two

programs is identical.

We conclude that the two programs behave identically on all inputs. The claim now follows by 8O security.

Formally, suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ ΛA ,

| Pr[Hyb
(0)
0,8 (A) = 1] − Pr[Hyb

(1)
0,8 (A) = 1] | > 1/2_+= (_) . (A.3)

Let ΛB =
{

(_ + =(_))1/2obf : _ ∈ ΛA
}

. We use A = (A1,A2) to construct a non-uniform algorithm

B = (B1,B2) such that for all _obf ∈ ΛB , iOAdvB (_obf) > 1/2_
2obf
obf . We define the (inefficient) preprocessing

algorithm B1 as follows:

1. On input 1_obf , algorithm B1 first checks if there exists _ ∈ ΛA such that _obf = (_ + =(_))
1/2obf . If no

such _ exists, algorithm B1 outputs ⊥. Otherwise, it sets _ to be the smallest such value that satisfies

the condition.

2. Algorithm B1 runs stA ← A1(1
_) and outputs the state stB = stA .

The online algorithm B2 now proceeds as follows:

1. On input the state stB , algorithm B2 outputs ⊥ if stB = ⊥. Otherwise, it parses stB = stA and runs

A2 on input stA . Algorithm A2 outputs a circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}.

2. Algorithm B2 sets _PRF = _PRF(_, =) and samples PRF keys :sel ← F.Setup(1_PRF, 1=, 11), :0, :1 ←

F.Setup(1_PRF, 1=, 1C). It computes :
(8)

sel
← F.Puncture(:sel, 8).

37

3. Algorithm B2 computes B as in Construction 4.1 and gives the size parameter 1B and the programs

GenProof [�, :sel, :0, :1] and GenProof1 [�, :
(8)

sel
, :0, :1, 8] to the challenger. It receive the obfuscated

program ObfProve.

4. AlgorithmB2 then computesObfVerify← 8O(1_obf , 1B ,VerProof [�, :0, :1]) and givesA2 the common

reference string crs = (ObfProve,ObfVerify).

5. After algorithm A2 outputs a statement G and a proof c , algorithm B2 outputs 1 if G = 8 and

ObfVerify(G, c) = 1.

Since 2obf ∈ (0, 1) and =(_) is non-negative, it follows that the value of _ (if one exists) computed by B1 satis-

fies _ < _obf . As such, |stA | = poly(_) = poly(_obf), soB satisfies the efficiency requirements. Now consider

its advantage. If the challenger obfuscates the program GenProof [�, :sel, :0, :1], then algorithm B perfectly

simulates Hyb
(0)
0,8 . In this case, algorithm B outputs 1 with probability Pr[Hyb

(0)
0,8 (A) = 1]. Alternatively,

if the challenger obfuscates the program GenProof1 [�, :
(8)

sel
, :0, :1, 8], then algorithm B perfectly simulates

Hyb
(1)
0,8 and outputs 1 with probability Pr[Hyb

(1)
0,8 (A) = 1]. By Eq. (A.3), for all _obf ∈ ΛB , it holds that

iOAdvB (_obf) > 2−(_+= (_)) = 2−_
2obf
obf . �

Claim A.2. It holds that Pr[Hyb
(1)
0,8 (A) = 1] = 2 · Pr[Hyb

(2)
0,8 (A) = 1].

Proof. The only difference between Hyb
(1)
0,8 and Hyb

(2)
0,8 is the extra condition 1 ≠ 1′ in Hyb

(2)
0,8 . Since the

challenger samples 1′ r
← {0, 1} after the adversary outputs 1, we have that 1′ = 1 with probability 1/2. �

Claim A.3. Suppose ΠPPRF satisfies selective sub-exponential punctured security with parameter 2PRF ∈ (0, 1)

against non-uniform adversaries and _PRF(_, =) = (_ + =)
1/2PRF . Then, there exists _A ∈ N such that for all

_ ≥ _A , it holds that

| Pr[Hyb
(2)
0,8 (A) = 1] − Pr[Hyb

(3)
0,8 (A) = 1] | ≤ 1/2_+= .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ ΛA ,

| Pr[Hyb
(2)
0,8 (A) = 1] − Pr[Hyb

(3)
0,8 (A) = 1] | > 1/2_+= (_) .

Let ΛB =
{

(_ + =(_))1/2PRF : _ ∈ ΛB
}

. We use A = (A1,A2) to construct a non-uniform algorithm

B = (B1,B2) such that for all _PRF ∈ ΛB , PPRFAdvB (_PRF) > 1/2_
2PRF
PRF . We define the (inefficient) prepro-

cessing algorithm B1 as follows:

1. On input 1_PRF , algorithm B1 first checks if there exists _ ∈ ΛA such that _PRF = (_ + =(_))1/2PRF .

If no such _ exists, algorithm B1 outputs ⊥. Otherwise, it sets _ to be the smallest such value that

satisfies the condition.

2. Algorithm B1 runs stA ← A1(1
_) and outputs stB = stA .

The online algorithm B2 now proceeds as follows:

1. On input the state stB , algorithm B2 outputs ⊥ if stB = ⊥. Otherwise, it parses stB = stA and starts

running A2 on input stA . Algorithm A2 outputs a circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}.

38

2. Algorithm B2 samples :0, :1 ← F.Setup(1_PRF, 1=, 1C). It gives the input length 1= , the output length

11, and the point 8 ∈ {0, 1}= to the punctured PRF challenger. The challenger replies with a punctured

key :
(8)

sel
and a challenge bit 1′ ∈ {0, 1}.

3. Algorithm B2 sets _obf = _obf (_, =), and computes

ObfProve← 8O
(

1_obf , 1B ,GenProof1 [�, :
(8)

sel
, :0, :1, 8]

)

ObfVerify← 8O(1_obf , 1B ,VerProof [�, :0, :1]) .

It gives crs = (ObfProve,ObfVerify) to A2.

4. After algorithm A2 outputs a statement G and a proof c = (1,~) where 1 ∈ {0, 1} and ~ ∈ {0, 1}C ,

algorithm B2 outputs 1 if G = 8 , ObfVerify(G, c) = 1, and 1 ≠ 1′.

Since 2PRF ∈ (0, 1) and =(_) is non-negative, it follows that the value of _ (if one exists) computed by

B1 satisfies _ < _PRF. As such, |stA | = poly(_) = poly(_PRF), so B satisfies the efficiency requirements.

Now consider its advantage. By construction, algorithm B perfectly simulates an execution of Hyb
(2)
0,8 and

Hyb
(3)
0,8 for A. If the challenger samples 1′ r

← {0, 1}, then algorithm B computes its output according to

the specification of Hyb
(2)
0,8 . If the challenger computes 1′ = F(:sel, 8), then algorithm B computes its output

according to the specification of Hyb
(3)
0,8 . Correspondingly, for all _PRF ∈ ΛB ,

PPRFAdvB (_PRF) > 2−(_+= (_)) = 2−_
2PRF
PRF . �

Claim A.4. Suppose 8O is sub-exponentially-secure with parameter 2obf ∈ (0, 1) against non-uniform adver-

saries and _obf (_, =) = (_ + =)
1/2obf . Suppose also that ΠPPRF satisfies punctured correctness. Then, there exists

_A ∈ N such that for all _ ≥ _A ,

| Pr[Hyb
(3)
0,8 (A) = 1] − Pr[Hyb

(4)
0,8 (A) = 1] | ≤ 1/2_+= .

Proof. This follows by an analogous argument as the proof of Claim A.1. �

Combining Claims A.1 to A.4, we conclude that for all 8 ∈ {0, 1}= where (�, 8) ∉ LSAT, Eq. (A.2) holds.

Combined with Eq. (A.1), we can now write

Pr[Hyb1(A) = 1] =
∑

8∈{0,1}=

Pr[Hyb1(A) = 1 ∧ E8] ≥
1

2

∑

8∈{0,1}=

Pr[Hyb0(A) = 1 ∧ E8] −
2=

2=
·
$ (1)

2_

=
1

2
Pr[Hyb0(A) = 1] − 2−Ω (_) .

Lemma 4.4 follows. �

39

