2504.15293v1 [cs.DC] 12 Apr 2025

arxiv

Revisiting Computational Storage for Data Integrity
and Security

Chao Shif, Anthony Manschula®, Tabassum Mahmud?, Zeren Yang§, Mai ZhengT
Yong Chen?, Jim Wayda*, Matthew Wolff, Byungwoo Bang?

"Tlowa State University

I. INTRODUCTION

The idea of computational storage device (CSD) has come a
long way since at least 1990s [[1], [2]. By embedding comput-
ing resources within storage devices, CSDs could potentially
offload computational tasks from CPUs and enable near-data
processing (NDP), reducing data movements and/or energy
consumption significantly. While the initial hard-disk-based
CSDs suffer from severe limitations in terms of on-drive
resources, programmability, etc., the storage market has wit-
nessed the commercialization of solid-state-drive (SSD) based
CSDs (e.g., Samsung SmartSSD [3], ScaleFlux CSDs [4])
recently, which has enabled CSD-based optimizations for a
variety of application scenarios (e.g., [3l, [6], [Z]]).

Nevertheless, existing CSD research efforts mainly focus
on performance acceleration of regular operations, leaving the
potentials on system reliability/security largely unexplored.
In this work, we attempt to bridge the gap. We revisit the
classic idea of CSDs from a new angle: Can we leverage
CSD to improve data integrity and/or security? To answer
the question, we look into three representative I/O-intensive
reliability/security techniques for data protection, and explore
their similarities and potentials for CSD-based optimizations:

o Fault Injection (FI) is an indispensable method for testing
the failure recovery of various storage systems (e.g.,
(80, (90, (100, [LL], [12], [13], [14], [15]). We observe
that the core operations of FI typically involve inter-
cepting 1I/0 blocks at certain software layer (e.g., kernel
block layer [8], FUSE [12]], drivers [10], [13]], [14]) to
implement the functionality. A CSD-based FI solution
could potentially achieve similar I/O interception and
manipulation at the bottom of the storage stack (i.e.,
device) to enable full-stack testing with high fidelity.

o Erasure Coding (EC) is an essential fault-tolerance mech-
anism for modern distributed storage systems (DSS)
(e.g., Ceph [16], HDFES [17]). We observe that the core
operations of EC involve matrix multiplications for en-
coding/decoding. In particular, locally repairable codes
(LRC) [18]] have been proposed to reduce the network
and/or storage I/O cost by leveraging local parities, which
could potentially benefit from FPGA-based optimization
with a small set of collaborative CSDs.

o Ransomware Detection & Recovery (RDR) is increas-
ingly important for protecting user data as ransomware
has grown to a national security threat recently [19].

$University of Wisconsin-Madison

tSamsung

We observe that one major category of RDR solutions
rely on SSDs [20], [21], [22], [23], [24], [25], [26] or
hypervisor [27] to achieve I/O pattern monitoring for
ransomware detection and intra-device data movement for
data recovery, both of which aligns well with CSD char-
acteristics. A CSD-based RDR could potentially achieve
higher flexibility (compared to regular SSD-based RDR)
and efficiency (compared to hypervisor-based RDR).
Based on the key observations above, we design a generic
SmartSSD CSD library called CSDGuard to serve as a build-
ing block for constructing CSD-optimized reliability/security
solutions. The library follows the Computational Storage Ar-
chitecture Programming Model[28] to cover the core opera-
tions (e.g., host-device buffer management, I/O interception
and monitoring, multi-dimensional array multiplication) of
representative FI, EC, and RDR algorithms. Moreover, it pro-
vides a simple set of APIs to abstract away unnecessary CSD
internals and support controlling data and metadata operations
between host and CSDs with flexible configurability.
To demonstrate the potential of such a solution, we build
a prototype of CSDGuard based on the Samsung SmartSSD
platform [3]]. The prototype leverages the peer-to-peer (P2P)
transfer between NVMe flash storage and on-drive FPGA to
minimize data communication between the host and the CSD,
and applies a set of directive-based optimizations (e.g., HLS
INTERFACE, HLS ARRAY_PARTITION, HLS UNROLL) to
make full use of the massive parallelism of FPGA and thus
achieve efficient near data processing. Our preliminary results
are promising: Measuring the execution time of our library
with directive-based optimizations applied, the overall latency
was successfully reduced up to 70% across several experimen-
tal data sizes (e.g., the tested matrix size ranges from 384x384
to 2048x2048). With regard to P2P data transfer time, we
observed similar performance to the conventional software-
based data transfer approach between the CSD and host device.
We believe we may be incurring some additional overhead
in the system calls, which may lead to the behavior that we
observed. We plan to extend the preliminary prototype to cover
different use cases (e.g., FI, EC, and RDR) and evaluate with
realistic systems (e.g., Ceph/HDFS with EC configuration) and
datasets (e.g., VirusTotal) to fully demonstrate the potentials
of CSD for data protection.
In order to compare the effectiveness of our design to a
traditional CPU-based approach, the team collected informa-
tion on data transfer and multiplication algorithm execution

Poster & Extended Abstract Session, MSST’ 24

times. The test setup for both the CPU and SmartSSD-based
approaches are as follows: For both approaches, two input
square matrices of a user-defined size are randomly generated
on the host device and written to the NVMe flash on the
SmartSSD. Figure 1 shows the flow of data when using the
SmartSSD-based approach.

Data Flow with SmartSSD

SmartSSD N
‘ NVME Flash
Trigger via
read() syscall 1. P2P Read

input matrices

Trigger via

3. P2P write //write() syscall

output matrix

~
l FPGA

Input/Output P2P Buffers on FPGA
DRAM
L} 2. krnl_multiply executes,

reading and writing to
buffers

Trigger via
OpenCL
enqueue()

Fig. 1: Operation of the Samsung SmartSSD-based approach
with P2P.

For the SmartSSD-based approach, performance measure-
ment was done via two methods. As it can be seen in
Figure 2, while data movement is entirely contained on
the SmartSSD, the process still needs to be initiated by a
read or write system call from the host device. In order to
obtain the amount of time required for the data transfers
to complete, the high_resolution_clock () function
within the C++ chrono library was utilized, taking the current
time before the read/write function was called, the current
time after the call returns, and subtracting the two. To obtain
accelerator kernel execution time, OpenCL Events were used.
The getProfilingInfo () function provided by the Event
class allows us the ability to extract performance profiling
information from tasks that are queued, such as a hardware
kernel. In this instance, we utilize the kernel start and end
properties, subtracting in a manner as with the data transfer
times.

The CPU-based approach follows a similar methodology,
with the exception of the processing kernel. For a one-to-one
comparison, the C code used to synthesize the hardware kernel
was directly ported to the host device. The matrix computation
code remained identical, with minor modifications (not impact-
ing functionality) to read/write to the local buffers allocated on
host memory as opposed to the FPGA DRAM. Performance
measurement for the CPU-based solution was performed in
a similar fashion to the SmartSSD-based solution. In this
instance, we exclusively use the C++ chrono library to measure
start and end times of data transfers and matrix processing.
The behavior of the CPU-based system is outlined in Figure
2 below.

Chao Shi, et al.

Data Flow without SmartSSD

Host Device 1. Read SmartSSD
from SSD
A to Host (
Local Buffers for Input and ‘ NVME Flash ‘
Output Arrays) ‘
3. Write -
from Host
2. Software Kernel Executes to SSD
FPGA (Not Used)]

J

Fig. 2: Operation of the system using the CPU-based ap-
proach.

The system was tested with three different data input matrix
sizes - 576KiB, 4MiB, and 9.2MiB. The first of the three sizes
was chosen for a point of comparison with the unoptimized
design, as that was the previous maximum size the kernel
could handle. 4MiB (1024x1024 unsigned integer matrix)
was chosen as an intermediate size during further testing
in anticipation of the next size being a 16MiB (2048x2048
matrix). However, for reasons discussed in section 3.3, this
was not possible, so we landed on a maximum of about
9.2MiB, or a 1536x1536 matrix. To ensure consistency in the
execution time data that was collected for both approaches,
2000 consecutive runs of data reading and writing were made
each test and 50 consecutive kernel runs were performed. The
reasoning behind the lower number of kernel repetitions versus
read/write repetitions is that the processing aspect exhibited
much less run-to-run inconsistency when only one repetition
was performed, allowing us to save time testing while still
giving us confidence that the result was accurate.

Accelerator Kernel Execution Time (50-Run Average)
3.5

2.5

1.5

0.5 I.
0 ——

576KiB 4MiB 9.2MiB

B SW (sec) mHW (sec)

Fig. 3: Kernel processing time for each data size, measured
in seconds.

We observed that the execution time of both the hardware
and software kernel grew nonlinearly as the input data size
scaled up. The software kernel required from 0.062 seconds

Poster & Extended Abstract Session, MSST’ 24

to complete at the 576KiB input size to as much as 2.876
seconds to complete at the 9.2MiB input size. The hardware
kernel performed much better than the software kernel across
the board, seeing over 3x speedup at the 576KiB level, down
to about a 1.4x speedup at the 9.2MiB level. As a whole,
the design showed significant improvement versus previous
iterations. Compared to the midterm implementation of the
accelerator, which required over 200ms to compute an output
from 576KiB of input data in hardware, the new implemen-
tation completes in just 18ms. It is also worth considering
that the results of the software implementation represent the
performance of high-end server hardware, meaning that the
FPGA implementation would likely pull further ahead when
compared to a system with more pedestrian components.

Data Transfer Times (2000-run Average)
8000

7000
6000

5000

4000
3000
2000

1000
576KiB 4MiB 9.2MiB
B SWRead (us) mP2PRead(us) m SW Write (us) m P2P Write (us)

Fig. 4: Time to complete data transfers of 576KiB, 4MiB, and
9.2MiB, measured in microseconds.

Data transfer times tell a slightly different story. For one,
the scaling as data size increases appears to be mostly linearly
correlated. Furthermore, the transfer times for the CPU-based
approach and the HW-based approach are largely the same
across data sizes. Additionally, the run-to-run variance was
sometimes quite large - taking a 2000-run average smooths the
data for the most part, however some outliers like the 9.2MiB
P2P write still show odd variance. This data will be discussed
in more detail in section 3.3. The plot of end-to-end execution
time of the software and hardware routines shown in Figure 6
has a nearly identical appearance to the kernel execution time
chart. This is because data transfer times account for only a
small portion of the overall latency, being around only a couple
percent on average across all runs of hardware and software
implementations.

An important aspect of the design to consider is the char-
acteristics of the underlying hardware that is synthesized by
Vitis HLS. As mentioned, the more performant version of
our accelerator design utilizes loop unrolling; Loop unrolling
creates many copies of the loop body for different iterations
of the loop, allowing them to execute concurrently and (in
theory) reducing the amount of time spent processing the
loop. However, a critical downside to such an approach is

Chao Shi, et al.

Average End-to-End Execution Time
3.5

2.5

1.5

0.5

4MiB

0 —

576KiB

9.2MiB

B SW (sec) mHW (sec)

Fig. 5: End-to-End program execution time, including kernel
and data transfer times, measured in seconds.

that the complexity and physical size of the synthesized
design increases substantially, which has a negative impact
on maximum clock speed. The team observed this effect
firsthand: Kernels with larger input array sizes (meaning more
loop iterations to fully compute the output matrix) led to
a substantial reduction in final clock speed (see Figure 7).
This reduction in clock speed likely contributes to the HW
solution’s observed decline from a 3x advantage to only 1.4x.

Max Clock (MHz) vs. Max Supported Data Size
250

200
150
100

50

576KiB 4miB 9.2MiB
Fig. 6: Max achievable clock speed compared to maximum

supported input data size, as reported by the synthesis tool.

Acknowledgements: This work was supported in part by Na-
tional Science Foundation (NSF) under grands CNS-1855565
and CNS-1943204, and a Global Research Outreach (GRO)
Award from Samsung (2022).

REFERENCES

[11 A. Acharya, M. Uysal, and J. Saltz, “Active disks: programming model,
algorithms and evaluation,” SIGOPS Oper. Syst. Rev., vol. 32, p. 81-91,
oct 1998.

[2] E.Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for large-scale
data mining and multimedia,” in Proceedings of the 24rd International
Conference on Very Large Data Bases, VLDB ’98, (San Francisco, CA,
USA), p. 62-73, Morgan Kaufmann Publishers Inc., 1998.

Poster & Extended Abstract Session, MSST’ 24

[3]
[4]

[5]

[6]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

AMD Xilinx, “Samsung smartssd.” https://www.xilinx.com/applications/
data-center/computational-storage/smartssd.html,

L. Liu, H. Xu, Z. Niu, J. Li, W. Zhang, P. Wang, J. Li, J. C. Xue, and
C. Wang, “Scaleflux: Efficient stateful scaling in nfv,” IEEE Transactions
on Parallel and Distributed Systems, vol. 33, no. 12, pp. 4801-4817,
2022.

W. Cao, Y. Zhang, X. Yang, F. Li, S. Wang, Q. Hu, X. Cheng, Z. Chen,
Z. Liu, J. Fang, B. Wang, Y. Wang, H. Sun, Z. Yang, Z. Cheng, S. Chen,
J. Wu, W. Hu, J. Zhao, Y. Gao, S. Cai, Y. Zhang, and J. Tong, ‘“Polardb
serverless: A cloud native database for disaggregated data centers,” in
Proceedings of the 2021 International Conference on Management of
Data, SIGMOD ’21, (New York, NY, USA), p. 2477-2489, Association
for Computing Machinery, 2021.

Y. Qiao, X. Chen, N. Zheng, J. Li, Y. Liu, and T. Zhang, “Closing the b+-
tree vs.{LSM-tree} write amplification gap on modern storage hardware
with built-in transparent compression,” in 20th USENIX Conference on
File and Storage Technologies (FAST 22), pp. 69-82, 2022.

H. Kim, H. Y. Yeom, and H. Sung, “Understanding the performance
characteristics of computational storage drives: A case study with
smartssd,” Electronics, vol. 10, no. 21, p. 2617, 2021.

V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Iron file systems,”
in Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles, SOSP °05, (New York, NY, USA), p. 206220, Association
for Computing Machinery, 2005.

O. R. Gatla, M. Hameed, M. Zheng, V. Dubeyko, A. Manzanares,
F. Blagojevi¢, C. Guyot, and R. Mateescu, “Towards robust file system
checkers,” in Proceedings of the 16th USENIX Conference on File and
Storage Technologies (FAST), 2018.

O. R. Gatla, M. Zheng, M. Hameed, V. Dubeyko, A. Manzanares,
F. Blagojevic, C. Guyot, and R. Mateescu, “Towards robust file system
checkers,” ACM Trans. Storage, vol. 14, dec 2018.

M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S. Yang, B. W.
Zhao, and S. Singh, “Torturing Databases for Fun and Profit,” in //th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pp. 449-464, 2014.

A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Redundancy does not imply fault tolerance: analysis of dis-
tributed storage reactions to single errors and corruptions,” in Proceed-
ings of the 15th Usenix Conference on File and Storage Technologies,
FAST’17, (USA), p. 149-165, USENIX Association, 2017.

J. Cao, O. R. Gatla, M. Zheng, D. Dai, V. Eswarappa, Y. Mu, and
Y. Chen, “Pfault: A general framework for analyzing the reliability
of high-performance parallel file systems,” in Proceedings of the 2018
International Conference on Supercomputing, ICS *18, (New York, NY,
USA), p. 1-11, Association for Computing Machinery, 2018.

R. Han, O. R. Gatla, M. Zheng, J. Cao, D. Zhang, D. Dai, Y. Chen, and
J. Cook, “A study of failure recovery and logging of high-performance
parallel file systems,” ACM Trans. Storage, vol. 18, apr 2022.

R. Han, C. Shi, T. Mahmud, Z. Yang, V. Esaulov, L. Wan, Y. Chen,
J. Wayda, M. Wolf, and M. Zheng, “Revisiting erasure codes: A
configuration perspective,” in Proceedings of the 16th ACM Workshop
on Hot Topics in Storage and File Systems, HotStorage *24, (New York,
NY, USA), p. 93-100, Association for Computing Machinery, 2024.
Ceph, “(accessed april 3, 2024),” https://ceph.com/en/.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1-10, 2010.

S. Kadekodi, S. Silas, D. Clausen, and A. Merchant, “Practical design
considerations for wide locally recoverable codes (Ircs),” ACM Trans.
Storage, vol. 19, nov 2023.

B. Ma, Y. Yang, J. Li, F. Zhang, W. Shen, Y. Zhou, and J. Ma, “Travelling
the hypervisor and ssd: A tag-based approach against crypto ransomware
with fine-grained data recovery,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’23, (New York, NY, USA), p. 341-355, Association for Computing
Machinery, 2023.

S. Baek, Y. Jung, D. Mohaisen, S. Lee, and D. Nyang, “Ssd-assisted
ransomware detection and data recovery techniques,” IEEE Transactions
on Computers, vol. 70, no. 10, pp. 1762-1776, 2021.

S. Baek, Y. Jung, A. Mohaisen, S. Lee, and D. Nyang, “Ssd-insider:
Internal defense of solid-state drive against ransomware with perfect data
recovery,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pp. 875-884, 2018.

(22]

(23]

[24]

[25]

[26]

[27]

[28]

Chao Shi, et al.

J. Huang, J. Xu, X. Xing, P. Liu, and M. K. Qureshi, “Flashguard:
Leveraging intrinsic flash properties to defend against encryption ran-
somware,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 17, (New York, NY,
USA), p. 2231-2244, Association for Computing Machinery, 2017.

D. Min, Y. Ko, R. Walker, J. Lee, and Y. Kim, “A content-based
ransomware detection and backup solid-state drive for ransomware
defense,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 7, pp. 2038-2051, 2022.

J. Park, Y. Jung, J. Won, M. Kang, S. Lee, and J. Kim, “Ransomblocker:
a low-overhead ransomware-proof ssd,” in 2019 56th ACM/IEEE Design
Automation Conference (DAC), pp. 1-6, 2019.

B. Reidys, P. Liu, and J. Huang, “Rssd: defend against ransomware with
hardware-isolated network-storage codesign and post-attack analysis,” in
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
22, (New York, NY, USA), p. 726-739, Association for Computing
Machinery, 2022.

P. Wang, S. Jia, B. Chen, L. Xia, and P. Liu, “Mimosaftl: Adding
secure and practical ransomware defense strategy to flash translation
layer,” in Proceedings of the Ninth ACM Conference on Data and
Application Security and Privacy, CODASPY ’19, (New York, NY,
USA), p. 327-338, Association for Computing Machinery, 2019.

F. Tang, B. Ma, J. Li, F. Zhang, J. Su, and J. Ma, “Ransomspector: An
introspection-based approach to detect crypto ransomware,” Computers
& Security, vol. 97, p. 101997, 2020.

SNIA, “Computational Storage Architecture and Programming
Model v1.0.” https://www.snia.org/sites/default/files/technical-
work/computational/release/SNIA-Computational-Storage-
Architecture-and-Programming-Model- 1.0.pdf. Accessed: 2022-08-30.

https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.snia.org/sites/default/files/technical-work/computational/release/SNIA-Computational-Storage-Architecture-and-Programming-Model-1.0.pdf
https://www.snia.org/sites/default/files/technical-work/computational/release/SNIA-Computational-Storage-Architecture-and-Programming-Model-1.0.pdf
https://www.snia.org/sites/default/files/technical-work/computational/release/SNIA-Computational-Storage-Architecture-and-Programming-Model-1.0.pdf

	Introduction
	References

