Physics-informed data-driven geometric accuracy prediction
for hemisphere structures produced by two-photon lithography
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Abstract

Two-photon lithography (TPL) is an additive manufacturing technique to produce three-dimensional (3D) micro-
and nano-scale structures. Geometric compliance is of vital importance to ensure the quality and functionality of
additively manufactured 3D structures. However, there exists limited research on modeling and predicting the
geometric compliance of TPL. This paper presents a new generalizable physics-informed, data-driven modeling
framework for cross-design and cross-parameter geometric accuracy prediction. A large-scale experimental design
consisting of six hemisphere sizes and six parameter combinations is carried out to thoroughly test the effectiveness
of the proposed method. It is shown that the modeling framework is highly effective in predicting the geometric
accuracy for a previously unseen scenario with knowledge derived from other designs and parameters. The
average prediction errors for radius and height, which are key geometric features of hemispheres, are 5.23% and
4.66%, respectively. To the best of our knowledge, this study is among the first to develop a generalizable method
for cross-design and cross-parameter geometric accuracy modeling in TPL.
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1. Introduction

Two-photon lithography (TPL), also referred to as
direct laser writing, is an additive manufacturing (AM)
technique to fabricate three-dimensional (3D) micro and
nanostructures [1, 2]. In a typical TPL process, a fem-
tosecond laser beam is focused tightly onto a photopoly-
mer resist. The peak intensity at the focal point leads
photoinitiators to reach the excited state by absorption of
two photons simultaneously, causing the depolymeriza-
tion of the resist [3]. TPL process parameters, such as
the average power of the femtosecond laser, exposure
time, and numerical aperture of the objective influence
the resolution of TPL based on the scaling laws [4].

3D micro/nanostructures have numerous promis-
ing applications in the fields of micro-optics, mechani-
cal metamaterials, electronics, and bio-scaffolds [5]. The
miniaturization and integration of structures necessitate
high geometric compliance [6]. While it has been demon-
strated to fabricate various complex 3D structures in pro-
totyping applications, the precision and resolution of TPL
have not been adequately investigated, raising concerns
about its utility in scalable production [7].

Some recent studies have been focused on the ge-
ometric compliance of TPL. Zhou et al. [8] discussed the
factors that may affect the accuracy of TPL such as laser
power, scanning rate, and the choice of photoresist ma-
terial, and suggested methods to improve the processing
accuracy, including radical quencher, multipath scanning
method, and shape precompensation. Yang et al. devel-
oped a modeling and decision—making framework that
uses Gaussian process regression to model the spatial
geometric variability of TPL-fabricated structures [7]. A

data-driven compensation algorithm was developed to
minimize the geometric errors. The same TPL process
parameters and structure designs were used in this work,
but the generalizability to other scenarios is unclear.

This paper develops a physics-informed data-driven
framework to predict the geometric accuracy of TPL-
fabricated 3D structures across different process param-
eters and different structure dimensions, with a focus on
hemisphere structures. The framework is informed by
physics and derived based on the voxel dimension mod-
els. Itis discovered that the parameters of the structure-
level model are strongly linearly related to the design
dimension, which enables predictive and generalizable
modeling across designs and parameters. Experimental
results show that the proposed approach permits high
prediction accuracy—the average prediction errors for
radius and height are 5.23% and 4.66%, respectively.

The remainder of this paper is organized as follows.
The design of experiments is shown in Section 2. Section
3 presents the details of the modeling framework. Sec-
tion 4 discusses the prediction results and demonstrates
the effectiveness the modeling framework. Finally, Sec-
tion 5 concludes the paper.

2. Design of Experiments

To demonstrate the effectiveness of the proposed
modeling method, we designed TPL experiments with
varied process parameters and hemisphere dimensions.
Section 2.1 presents the details of the experimental de-
sign and fabrication. The procedure of geometric mea-
surement is discussed in Section 2.2.



2.1. Design and fabrication

Experiments were conducted by varying (1) the
hemisphere radius and (2) TPL process parameters in-
cluding the laser power (LP) and the scanning rate (SR).
While other process parameters may also influence the
geometric accuracy in TPL, they were kept as constant
in this study and will be investigated in future research.
The design of experiments is illustrated by Fig. 1. The
radius of the hemisphere was varied from 1.6 ym to 2.6
pum with a 0.2-pym increment. Six combinations of LP and
SR, which are referred to as P1-P6, were used to fabri-
cate prescribed hemisphere designs. Table 1 provides
the details of the parameters. Dose, which is approxi-
mately proportional to Ié—}l:, is also calculated for each
parametric combination. It is reported that dose is an
important factor that influences the fabricated structure
quality [1, 9]. Dose can be increased by raising the laser
power or extending the duration that the focal spot re-
mains in a fixed position, accomplished through adjust-
ments in either scan speed or exposure time. For each
parametric combination, a group of 20 samples were fab-
ricated in a 4 by 5 sample array. Each sample consisted
of 25 structures that were evenly placed in a 5 by 5 ar-
ray. Therefore, 3,000 structures were fabricated for each
design. The total number of structures is 18,000.
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Fig. 1. Experiments were repeated for hemisphere ra-
dius design (D1-D6) of 1.6 ym, 1.8 ym, 2.0 ym, 2.2
um, 2.4 ym, and 2.6 ym. Six parametric combinations
(P1-P6) were used for each design. 20 samples were
fabricated for each parametric combination, forming a
“Group.” One sample consists of 25 hemisphere struc-
tures placed in a 5 by 5 array.

Photonic Professional (Nanoscribe, GT) 3D printer
was used to manufacture the structures. The printer is
equipped with a pulsed femtosecond fiber laser emitting
at a center wavelength of 780 nm. 0.05 ml of photore-
sist (IP-Dip) was applied onto a 1 in x 1 in fused silica
substrate. The numerical aperture of the objective is 1.4
and the magnification is 63%. The default setting for the
power scale is 1.0 and the reference power at our objec-
tive aperture, which is 50 mW.

Table 1
Parametric combinations used in the experiments.

Group LP (%) SR (mm/s) Dose
P1 50 40 62.50
P2 50 60 41.67
P3 55 60 50.42
P4 50 55 45.45
P5 50 50 50.00
P6 50 45 55.56

2.2. Geometric measurement

A 3D laser scanning microscope (KEYENCE, VK-
X1000) was used for structure measurements. The
height measurement for each sample was stored in the
format of a 768 x 1024 matrix. Equivalent radius and av-
erage height are two important geometric features char-
acterizing hemispheres. An image processing algorithm
is created to automatically calculate the geometric fea-
tures from the 3D measurements. The equivalent radius
is calculated from counting the number of pixels within
the surface area. Taking the average of the height values
from the flat surface area generates the average height
of one structure. The ideal average height value of a
hemisphere is equal to % times the designed radius.

3. Geometric Accuracy Modeling

In this section, we first derive models for equiva-
lent radius (R) and average height (H) from the physics-
based voxel dimension models in Section 3.1. Section
3.2 presents the linear relationships between the model
parameters and design dimensions, based on which gen-
eralizable models are derived.

3.1.  Structure-level model
The voxel diameter and voxel length can be calcu-
lated by

2 3
d(LP,SR) = my [m (nd%)] , (1)

LP2 % 2
where my4, ng, m;, and n; are combinations of multiple
physical variables.

The fabrication of the structures is reliant on the
stack of voxels. Therefore, the geometric compliance of
these structures is influenced by the resolution and spa-
tial arrangement of the voxels. Equivalent radius and av-
erage height, which are measured in x and z directions,
respectively, are directly related to voxel diameter and
length.

Based on Egs. (1) and (2), we add a constant num-
ber to each model to improve the flexibility and capability
of modeling. As such, the R model and H model can be
expressed as L
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The parameters acy, by, and c(.) can be estimated
using gradient descent method.This algorithm moves the
parameters in the direction of steepest descent, which
allows it to reach a local minimum or saddle point of the
function. The loss is defined as mean square error for the
gradient descent process. The minimum requirement for
estimating the parameters is using one combination of
LP and SR for one design.

Mean absolute percentage error (MAPE) is used as
an evaluation metric to examine the modeling perfor-
mance. MAPE measures the average magnitude of de-
viations between predictions and actual values, which
can help us understand the percentage offset compared
with the ground truth. In this work, MAPE is more suit-
able than other metrics such as root mean square error
and mean absolute error because we have diverse hemi-
sphere dimensions. We use the cross validation method
to train on data from five parameter groups (folds) and
test on the remaining group (fold) for each design. In
each cross-validation run, the sizes of training and test
sets are 2,500 and 500, respectively. The results are re-
ported in Table 2. The training and test MAPE values are
less than 5% for both R and H models and the models
do not suffer from overfitting issues.

H(LP,SR) = ay 4)

+cH.

Table 2
Modeling performance for R and H models.

Training MAPE (%)

R 3.585
H 3.780

Test MAPE (%)

4.166
4.473

3.2. Generalizable cross-design modeling

Cross-design modeling aims to build a predictive
model for a new design only using measurement data
from other designs. This requires high generalization ca-
pability. We approach this problem by studying the rela-
tionship of the sets of (a,b,c) in Egs. (3) and (4) among
different designs. The parameters (a,b,c) vs. designs for
R and H models are visualized in Fig. 2. All plots exhibit
approximately linear trends and the coefficient of deter-
mination R? between designed radius D and parameter
value nearly equals 1 for all parameters. Itis also noticed
that all the parameters linearly increase as D increases.

The strong linear correlations between the param-
eters (a, b,c) and D shown in Fig. 2 allow us to derive
linear predictive models as

ag. =ﬁa(.)0 x D +ﬁa(.>1s (5)

by =Bbry XD +Bp),s (6)

€y =Beryo XD+ Beryys (7)

where 3.)o and g.y; are the slope and the intercept of

the linear models, respectively; and (-)can be R or H.

0 (-) is used to represent the parameter set (a(.y, b.),
c(y)and B(-) denotes (B(.y9, B(.)1)-

Egs. (5)-(7) enable cross-design and cross-

parameter predictive modeling in a highly generalizable
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Fig. 2. The relationship between the parameters of ge-
ometric features and designed radius value: (a) agy, (b)

bR, (C) ¢r, (d) an, (e) by, (f) ch.

way. In each equation, the parameters to be estimated
are slope and intercept, i.e., p(-). Therefore, the mini-
mum requirement for estimating all parameters in these
equations is that measurements of two designs with one
parameter group are available. Once Egs. (5)—(7) are
available, one can obtain 0. for a previously unseen de-
sign D., which are subsequently used to obtain models
Egs. (3) and (4). Using Egs. (3)—(7), we can accurately
predict the expected values for geometric features given
an arbitrary design using the modeling framework that is
illustrated by Fig. 3.
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Fig. 3. Overview of the generalizable modeling frame-
work.

The expected geometric features are determined by
the parameter set (LP, SR; D). Further, the relationship
between (LP, SR) and R or H is determined by D. There-
fore, p serves as hyperparameters from the perspective
of statistical learning or machine learning. Knowledge
transfer or generalizability is supported by the fact that



one can obtain the relationship between (LP, SR) and R
or H using knowledge from other designs.

4. Results

In this section, we design a two-way cross-validation
(2CV) method to test the performance and generalizabil-
ity of the model developed in Section 3.2. The full dataset
is split into training and test sets. In the training phase,
the model has no access to data with the same process
parameters or designs that exist in the test dataset, high-
lighting a challenging, generalizable learning scenario.
The full data is split into 6 x 6 folds. Each fold includes
500 data points. In each of the 36 2CV runs, the combi-
nation of D;P; (i = 1,...,6, j = 1,...,6) is selected as
the test set and the training set consists of 25 folds with-
out D; or P;. The sizes of training and test datasets are
12,500 and 500, respectively.

We apply the 2CV method to all 36 folds of data to
evaluate the R and H models. The average test MAPE
values for R model and H model are 5.23% and 4.66%,
respectively. The test MAPE values are reported in Fig.
4 and Fig. 5, grouped by design and parameter group,
respectively. It is seen that the test MAPEs stay at a low
level across designs and parameters, indicating robust
performance and good generalizability.
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Fig. 4. Test MAPEs for each design: (a) R model and (b)
H model. Error bars represent one standard deviation.

The extrapolation performance of the R and H mod-
els can be revealed by analyzing the MAPE values for
D1 and D6 in Fig. 4. The test MAPE value of D1 for
the R model is slightly larger compared with other hemi-
sphere dimensions, indicating a potential limitation in the
model’s extrapolation ability at D1. On the other hand,
the test MAPE value of D6 is comparable to D2-D5,
suggesting an excellent extrapolation performance. The
H model demonstrates outstanding extrapolation perfor-
mance, which is evidenced by the fact that the MAPE
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Fig. 5. Test MAPEs for each parameter group: (a) R
model and (b) H model. Error bars represent one stan-
dard deviation.

values of D1 and D6 are comparable to other designs. It
is worth noting that in both Fig. 4 and Fig. 5, each MAPE
value and the associated error bar are calculated from
six values. Differences in MAPEs are observed, which
may suggest that the proposed models do not fully cap-
ture the variations caused by unknown physics. Another
possible explanation is that the TPL machine suffers from
some instability that causes natural variations [7].

5. Conclusion

In this paper, a physics-informed, data-driven mod-
eling framework is developed for predicting the geomet-
ric compliance in TPL in a generalizable fashion. Build-
ing from physics-based modeling of voxel dimensions,
the model is constructed as a function of LP and SR.
The model parameters depict a strongly linear relation-
ship across different hemisphere dimensions, which en-
ables generalizable predictive modeling. The framework
is shown to be highly effective in geometric accuracy
prediction—the prediction error is less than 5% for both
average height and equivalent radius features. To the
best of our knowledge, this paper is among the first to
develop an effective method for generalizable modeling
of TPL geometric compliance cross process parameters
and designs.

The results of this paper suggest three future re-
search directions. First, it is interesting and important
to investigate the uncaptured variations as indicated in
Fig. 4 and Fig. 5. The proposed modeling framework
can be extended to characterize such variations, e.g., by
adding more modeling terms. Second, we plan to fur-
ther demonstrate the generalizability of the framework
by studying structures at different scales. This research
demonstrates good generalizability over a range of 1 ym,



i.e., 1.6—2.6 um. Future efforts can be devoted to investi-
gating whether similar cross-design relationships exist at
smaller and larger scales. Third, we will extend the pro-
posed approach for predicting different and more compli-
cated shape designs. Since TPL fabricates structures by
stacking voxels, geometric features in x and z directions
should follow similar patterns. Transfer learning tech-
niques [10] may be required to capture both the similari-
ties and differences between shape designs.
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