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Abstract Personalized practice systems focus on supporting self-organized learning in a free practice mode. Adapting to the learners’
knowledge and goals, these systems help them navigate the increasing volumes of smart learning content, guide them to practice
opportunities that are most appropriate to their level of knowledge and increase their motivation to practice. In this paper, we distill
the experience generated by 20 years of research on personalized practice systems into a set of Al-based technologies that make these

systems efficient, engaging, and user-friendly.
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1. Introduction

With the increasing popularity of Computer Science, the
size of the introductory programming classes and the di-
versity of students in the classes have increased remark-
ably challenging traditional pedagogies and learning
tools. Programming skills can’t be mastered by reading
alone, to gain them students need a considerable amount
of practice studying worked examples and solving pro-
gramming problems. However, practice opportunities
offered by traditional classes and modern MOOCs
through labs and assignments are rarely sufficient for
less prepared and non-traditional students. To master
programming skills, this rapidly expanding cohort of
students need to study programming examples and solve
problems on their own, beyond the required minimum of
labs and assignments. This work known as free practice
enables less prepared students to level the playing field
practicing as much as necessary to achieve mastery
while also focusing on the most important or least stud-
ied topics.

The importance of free practice has been long rec-
ognized by the Computer Science Education commu-
nity, which developed a large variety of advanced tools
to help students practice on their own. These tools fre-
quently referred to as interactive or “smart” learning
content [1] include a variety of “worked example” tools
(annotated examples [2], program visualizations [3], and
coding tutorials [4]) focused on communicating code un-
derstanding and code construction knowledge to the
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learners and various types of automatically assessed
problems (code tracing problems [5], Parson’s problems
[6], coding problems [7]) engaging students in applying
and mastering this knowledge.

Unfortunately, the use of these advanced tools to
support free practice is hampered by two problems. First,
despite the need to practice and the confirmed effective-
ness of modern tools in supporting it, only a fraction of
students use these tools for free practice and a smaller
fraction use them regularly [5; 8; 9]. Second, even for
well-motivated students who are ready to allocate time
for free practice, it becomes increasingly harder to effi-
ciently use this time due to rapidly increasing volumes
of available smart content. Large collections of smart
content are now frequently provided by publishers as ad-
ditions to traditional or interactive textbooks [10]. De-
velopers of smart content tools increasingly release col-
lections of smart content for free practice [11; 12]. These
increasing volumes of available practice content make it
harder to choose the content for practice, which due to
the known paradox of choice, further decreases their en-
gagement with practice [13].

We believe that to make free practice efficient, stu-
dents need personalized practice systems, a new type of
learning tools focused on supporting student work in a
free practice mode. It should help students navigate the
increasing volumes of smart learning content, guide
them to practice opportunities that are most appropriate
to their level of knowledge, and increase their motivation
to practice.

For over 20 years our research team has been ex-
ploring technologies, interfaces, and infrastructures for
building personalized practice systems. In this paper, we
share a part of our experience by distilling a set of
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INTELLIGENT TECHOLOGIES FOR PERSONALIZED PRACTICE SYSTEMS

Artificial Intelligence technologies that make these sys-
tems efficient, engaging, and user-friendly. Following
this introduction, each section of the paper highlights
one specific technology that we currently use in our per-
sonalized programming practice systems and which, as
we believe, one of the components of their success. We
introduce the features “historically” — focusing on the
context in which this feature was originally developed,
the motivation for its development, and the first rounds
of its evaluation. This approach helps stress the im-
portance and the value of each feature in research on per-
sonalized practice. In cases when a specific feature has
been developed further in future work, we provide nec-
essary references to more recent designs and results.

2. Adaptive Navigation Support

The first technology that could be used for turning a col-
lection of practice-oriented smart learning content into a
personalized practice system is adaptive navigation sup-
port[14], a personalized guidance technology developed
in the field of adaptive hypermedia. Adaptive navigation
support could be helpful to adapt to the students’ varying
levels of knowledge at the start of the course as well as
to support more flexible free practice. Indeed, some stu-
dents start the course with partial knowledge of the sub-
ject, while others are complete beginners. Some try to
practice every week while others might skip a week or
two or delay all practice until exam preparation. When
entering a practice system after each lecture, different
students might need to work with different problems and
examples prepared by the instructor for this lecture.
Moreover, the most relevant practice for a specific stu-
dent could be only found in earlier lectures since the stu-
dent lacks prerequisite knowledge or failed to practice in
time.

A useful technology that can help students navigate
in a maze of complex learning content with multiple pre-
requisites is prerequisite-based navigation support [14],
which was developed in early adaptive hypermedia sys-
tems ELM-ART [15] and InterBook [16]. This technol-
ogy traces the changing level of student knowledge for
multiple concepts of the course, decides whether the tar-
get student is ready to attempt a specific item of learning
content or lacks prerequisite knowledge, and makes this
judgment visible to the student through adaptive link an-
notation.

An example of using this personalized guidance ap-
proach for personalized practice is NavEx system, which
added adaptive navigation support to a collection of
worked examples delivered by WebEx system [17].
NavEx provided links to all worked examples in the
course on the left side of its interface adding a

personalized icon (known as adaptive link annotation) to
each example link (Figure 1 left). A click on an example
link opens an example in the right frame (Figure 1 right).
The personalized icon estimates whether the example is
ready to be explored by the target student at the given
time. A red cross sign indicates that example is not yet
ready to be explored since the student likely misses the
prerequisite knowledge that is necessary to understand
it. A green bullet indicates that an example is ready to be
studied. Moreover, the filling of the bullet indicated how
many lines of a specific example had been explored by
the student in the past. A filled bullet indicates a fully
explored example with all explanations being examined
by the student.
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Figure 1. Access to WebEx examples through NavEx
interface. A list of all course examples augmented by
adaptive link annotations is shown on the left.

Table 1. Student engagement with NavEx and WebEx

WebEx NavEx+ p-
WebEx value
Lines 34.76+6.66 | 171.90+65.56 | <.001
Examples | 5.66+0.871 18.10+4.32 | <.001
Lectures 3.52+0.42 8.20+1.23 | <.001

We explored NavEx in several classroom studies com-
paring it to the baseline condition (WebEx examples
were used without adaptive navigation support) [2]. De-
spite its simplicity, the effect of adaptive navigation sup-
port was remarkable (Table 1). With personalized guid-
ance, the number of explored examples increased 3
times, the number of explored lines 5 times (i.e., exam-
ples were explored deeper) and the lecture coverage of
explored examples more than doubled.

3. Open Learner Modeling

Open learner modeling [18] is a technology that makes
the learner model, the heart of every personalized learn-
ing system, visible to the learners. Open Learner Models
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(OLM) show how much knowledge students gain for
different topics or concepts of the course. With OLM,
students are constantly aware of their performance and
can better decide what to focus on. In our early work, we
focused on a coarse-grain OLM known as a topic-level
OLM. An example of a system with a topic-level OLM
is QuizGuide [19], an adaptive hypermedia service for
personalized access to code-tracing problems, generated
by the previously developed system, QuizPACK [5].

QuizGuide groups practice problems into coarse-
grained course topics (Figure 2 left). The link to each
topic is annotated with an icon showing a target with (or
without) arrows. The number of arrows (from 0 to 3) re-
flects the student’s performance on the quizzes of that
annotated topic (from no arrows representing very little
or no progress to three arrows representing good com-
prehension). With this approach, the topic targets serve
as a topic-level OLM. QuizGuide combines this OLM
with additional navigation support. The topic targets also
serve as links to tracing problems for the topic assembled
into 5-problem quizzes. A click on a topic link un-
folds/folds links to the quizzes available for this topic.
The color of a target encodes the relevance of a topic to
the current learning goal of the class. The topics form a
prerequisite-outcome structure. Every time new topics
are introduced in a lecture, they are annotated with a
bright-blue target. Topics that serve as prerequisites for
any of the current topics have a pale-blue target. Com-
pleted topics are assigned grey targets. Finally, topics
that belong to learning goals not yet covered in class are
annotated with crossed targets.
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Figure 2. QuizGuide: Access to QuizPACK code trac-
ing problems using OLM and Navigation support.

One of the goals of combining OLM with navigation

support used in QuizGuide was to help a student choose
which topic is most appropriate to work bringing them
to the right topic at the right time and preventing them
from leaving insufficiently studied topics behind, which
could hinder their problem-solving performance. The re-
sult of system evaluation in several classroom studies
demonstrated that QuizGuide affected student learning
in several positive ways [19]. Similar to the NavEx case,
adaptive navigation support significantly increased stu-
dent engagement with learning content, the number of
quizzes used for practice doubled. OLM helped students
increase topic coverage and pay significantly more at-
tention to practices with insufficiently explored topics
from past lectures. In turn, it significantly increased the
learning gain.

Following the success of topic-level OLM in
QuizGuide [19] we used topic-level OLM as a key com-
ponent for all of our personalized practice systems in-
cluding JavaGuide [20] and SQL-Guide [21], which
used a QuizGuide interface to guide learners to Java and
Database practice problems, and several other designs
[22; 23]. Our most recent work on personalized practice
systems for Java, Python, and SQL uses a topic-level
open-source OLM interface Mastery Grids [24]. This in-
terface was designed to accommodate a varying number
of course topics and multiple kinds of smart content. We
used this design to develop personalized practice sys-
tems for Java, Python, and SQL courses taught in many
universities across several countries.
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Figure 3. Mastery Grids interface for personalized
SQL practice system.

Figure 3 shows a Mastery Grids interface for a per-
sonalized SQL practice system. A progression of 18
SQL topics here is presented horizontally as a row of
green cells. The learner’s current knowledge of the
course topics is shown as a row of square cells using
green colors of different intensities. The darker the topic
cell color is, the more knowledge progress was achieved
by the learner in the topic. Clicking on a topic cell opens
a table of practice content for this topic organized by
type. Here the color intensity indicates the amount of
work already done by the learner with this content. In
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Figure 3, the learner noticed that their knowledge gained
on the Pattern Matching topic is very low and opens
available content to practice. The content table shows
five types of content to practice with only one example
explored so far.

A known problem of otherwise efficient topic-level
OLM is its low granularity level for reflecting learners’
knowledge. For example, our Java ontology developed
for practice content indexing and knowledge modeling
includes over 200 concepts for which learner knowledge
could be individually tracked [25]. However, topic-level
OLMs for Java in JavaGuide [20] and Mastery Grids use
less than 20 topics to visualize learner knowledge on the
topic level. Since many topics include multiple concepts,
reflecting learner knowledge on such a coarse level
could lead to neglecting important concepts and gaining
unbalanced knowledge of course topics. In our recent
work, we frequently complement a topic-level OLM
with a much finer-grained OLM representing learner
knowledge on the concept level.

To determine the best approach to visualize a con-
cept-level OLM, we performed a comparative study
[26]. Based on this study, we selected a bar chart OLM
representation (Figure 4 top), which we now use in our
recent personalized practice systems in addition to the
topic-level model (Figure 3). To support the parallel use
of topic-level and concept-level models, the order of
concepts in the concept-level OLM follows the order of
their introduction in topic-level models, and a synchro-
nized visualization shows which concepts are associated
with each course topic (Figure 4 bottom).
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Figure 4. Concept-Level OLM for Java. Top: Current
level of learner knowledge of Java concepts. Bottom:
Connecting topic-level and concept-level OLM.

4. Open Social Learner Modeling

The growing popularity of online learning with multiple
students interacting directly or indirectly in the learning
process motivated a large stream of research on social

learning technologies that leverage the power of the
learner community [27]. Among other technologies,
social comparison [28] emerged as an efficient approach
to increase user engagement and participation [29]. In
our work on personalized practice systems, we used
social comparison aas a component of the Open Social
Learner Model (OSLM). With OSLM, students can
compare the current state of their knowledge of the
domain shown by an OLM with the models of other
learners or the whole class visualized in a similar way.

Figure 5. OSLM in Progressor: Peers’ progress is dis-
played as thumbnails next to the user’s OLM.

We explored several approaches to design OSLM
and achieved considerable success with the design
known as Progressor [23]. Progressor visualized the
state of the learner’s topic-level progress as uneven seg-
ments of a circle where the color of each segment (red to
green) indicated the amount of knowledge for the topic
accumulated through practice (Figure 5). This design
was different from the OLMs in our earlier personalized
practice systems such as QuizGuide (Figure 2) and was
specifically focused on comparing two OLMs side by
side. When checking their OLMs, the learners could see
thumbnails of OLMs of other learners in their class
(peers) and can select any of these models for a side-by-
side comparison of peer’s knowledge with their own.

Progressor was used to provide access to parame-
terized tracing questions for Java programming language
delivered by QuizJET [30], a Java version of Quiz-
PACK. To examine the value of OSLM we compared
the effectiveness of personalized practice with Progres-
sor interface to non-personalized practice with QuizJET
system in several classroom studies [23]. As the data
shows (Table 2), the use of OSLM lead to a remarkable
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increase of engagement with practice questions. The
number of sessions with the system and the number of
question attempts more than doubled, the coverage of
course topics increased considerably, and the success
rates in solving tracing problems increased from frustrat-
ing 42.63% to 68.39%. A follow-up study with Progres-
sor+, an extension of Progressor, confirmed that OSLM
could significantly increase learner engagement with
several types of practice content used in parallel [31].

Table 2. Practicing with QuizJET vs Progressor

QuizJET Progressor
Attempts 80.81£22.06 205.73+40.46
Success Rate (%) 42.63+1.99 68.39+4.32
Distinct Topics 7.81+1.64 11.47+1.34
Distinct Questions | 33.37+6.50 52.746.92
Sessions 3.75+0.53 8.4+1.39
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Figure 6. A Mastery Grids interface with multiple
kinds of Python practice content and enabled OSLM

Recognizing the importance of Open Social Learner
Modeling, an OSLM component was integrated into our
Mastery Grids interface for personalized practice [24] at
the design time. Figure 6 shows Mastery Grids installa-
tion for a personalized Python practice system with the
OSLM component enabled [32]. Here Mastery Grids
provides personalized access to four types of practice
content (two types of problems and two types of worked
examples) organized into 14 topics. The learner’s
knowledge of course topics is shown on the top row of
the grid using green colors of different intensities, as ex-
plained in the previous section. The bottom row displays
the average knowledge of the class using blue colors of
different intensities. The middle row provides an easy
way to compare learners’ knowledge progress with the
progress of the class — the green color indicates that the
learner is ahead of the class in this topic while the blue
color indicates that the learner is lagging behind the
class. A click on a topic cell opens a panel that provides

access to four kinds of smart learning content items for
this topic. With this design, the learners can easily locate
course topics that need more work while the ability to
compare their progress with the class increases their mo-
tivation to practice.

Mastery Grids OSLM interface has been explored
in several studies, which confirmed the remarkable en-
gaging power of OSLM technology [33; 34; 35]. The
studies also demonstrated that OSLM enabled learners
to work more efficiently and increased their knowledge
monitoring ability, which is an important skill in the con-
text of self-regulated learning.

5. Learning Content Recommendation

Despite of demonstrated effectiveness of navigation sup-
port provided by prerequisite-based link annotation,
OLM, and OSLM reviewed above, these technologies
don’t offer the learner a direct answer which learning
content item is the best to practice at the given moment.
The personalized guidance provided by these technolo-
gies is indirect — it offers several kinds of information
that help select the next item but leaves the choice to the
learner. From our past research on personalized guid-
ance [15], we know that this indirect guidance works
well for better-prepared learners with starting
knowledge of the domain. In contrast, learners with little
to no knowledge of the domain work best with a more
direct form of guidance such as content sequencing [36]
or learning content recommendation [37].

Due to the complementary nature of adaptive navi-
gation support and learning content recommendations,
for the last 10 years we frequently used these two tech-
nologies in our personalized practice systems side-by
side by integrating recommendations into Mastery Grids
interface. In our first attempt to combine recommenda-
tions and adaptive navigation support, we decided to
avoid the traditional ranked list, the dominant approach
to present recommendations. Instead, we used stars icons
to mark topics where recommended content is located
and, once the topic is opened, to mark the recommended
content itself (Figure 7).

We evaluated this design in a classroom study [38]
combining it with a “knowledge maximizer” approach
for learning content recommendation that we developed
carlier [39]. With this approach, a concept-based recom-
mender algorithm prefers learning content that maxim-
izes the knowledge gained by practicing with this con-
tent without breaking prerequisites. The results of the
study demonstrated that adding direct recommendations
to the indirect guidance provided by the navigation sup-
port helped to break suboptimal sequential navigation
pattern and encouraged non-sequential work with
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learning content. However, we also discovered that
“maximizer” focused on a rapid advance through course
concepts was mostly beneficial for stronger students
helping them significantly shorten their learning paths.
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Figure 7. Recommending learning content using
“Knowledge Maximizer” approach in Mastery Grids.
Star icons are used to mark recommended content.
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Figure 8. Content recommendation for a selected topic
based on balanced knowledge expansion using a com-
bination of a ranked list and stars icons.

In our follow-up work on content recommendation, we
replaced the “maximizer” approach with a balanced
knowledge expansion approach [40; 41]. This approach
attempted to select learning content with an optimal bal-
ance of for prerequisite and target concepts. It assures
that prerequisite concepts for a practice content item are
sufficiently learned and prevents the learner from prac-
ticing too many new concepts at the same time. Follow-
ing student feedback, we also started present recom-
mended items for each topic as a ranked list in addition
to marking them with stars (Figure 8). We also devel-
oped a remedial recommendation approach focused on
error remediation [42]. The idea of the remedial recom-
mendation was to isolate concepts associated with prob-
lems that the learner failed to solve correctly. Assuming
that these concepts might be the source of troubles, the
remedial recommendation approach focused on exam-
ples and problems that offer the best opportunity to prac-
tice the troublesome concepts. The studies of both ap-
proaches demonstrated that direct recommendation has
a strong impact on student work, encouraging them to
practice with recommended content. In contrast to the
“maximizer” approach, the balanced recommendation

approach has not left weaker students behind. We ob-
served that low-pretest students preferred to practice
with recommended items and achieved significantly
higher success rates by following recommendations
[40].

6. Transparency and Explanations

Transparency and explanations are considered important
features of modern Al [43]. To make human decision-
making assisted by Al, the behavior and recommenda-
tions of the Al system need to be understandable to the
human using the system. In the context of personalized
information access (i.e., adaptive navigation support and
recommendation) transparency is frequently achieved
by making the decision steps of the personalized guid-
ance algorithm visible or on-demand scrutable by the
end users. Multiple studies demonstrated that visual
transparency and scrutability increase user confidence
and trust in the provided recommendation [44; 45; 46].

The original design of the Mastery Grids interface
for personalized access to practice content included sev-
eral transparency features. For example, the amount of
knowledge gained by the learner on a specific topic
could be scrutinized by examining the amount of pro-
gress over practice content offered for this topic shown
by the intensity of the green color (Figure 6). The aver-
age knowledge of the whole class for a specific topic
could be scrutinized by opening a panel showing topic-
level performance of every student in the class (Figure
9). These details help students understand how the esti-
mation of average class knowledge works and build trust
in the data shown by the OSLM.

Me and group (Students in the class)

Figure 9. Scrutinizing average knowledge progress of
the class by viewing the progress of individual peers.

In our most recent work, we attempted to add another
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layer or transparency to support the main goal of a per-
sonalized practice system, i.e., helping learners to iden-
tify the most relevant learning content to practice. The
first step in making the content recommendation more
transparent is the concept-level model of learner
knowledge visualized as OLM (Figure 4) since this
model is the main source of information for personalized
content selection approaches [47]. However, this model
is not sufficient to provide content selection transpar-
ency because it doesn’t explain how a specific recom-
mendation approach works and how it uses the current
state of the model to identify the most relevant content.
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Figure 10. Transparent content selection for the bal-
anced knowledge expansion approach.

An example of making the content selection process
transparent for the case of balanced knowledge expan-
sion approach (Figure 8) is shown in Figure 10. Here the
interface uses concept-level OLM on the bottom to high-
light concepts associated with a smart content item that
the learner considers practicing with. In the figure, the
learner considers working with a code tracing quiz for
the topic “Strings” (second item from the left in the top
content row). Once the mouse is placed over the content
cell (the currently examined content cell turns 45 de-
grees and looks like a diamond), the interface highlights
all concepts associated with the content items in the
OLM. The idea of the balanced approach is to consider
separately prerequisite and target concepts that are as-
sociated with the selected item and recommend content
with optimal balance. To make the process more clear
the visualization also separates target concepts showing
them within “current topic” box. In Figure 10, we see
that these concepts are equallgnoreCase (current
knowledge 38%), equal (current knowledge 81%), and
charAt (current knowledge 75%). Six prerequisite con-
cepts, which are expected to be learned earlier, are high-
lighted on the left. Five of these concepts are already
well known, but implicit conversion is new with 0%

knowledge. The gauge on the right assesses the balance
of these concepts and with 7 known, 1 familiar (equallg-
noreCase) and one new concept (implicit conversion) as-
sesses the selected quiz as an easy one for the current
knowledge of the learner. More details about this trans-
parency-oriented visualization for the balanced recom-
mendation approach can be found in [40; 48] while a dif-
ferent transparency visualization for remedial recom-
mendation approach is presented in [42].

With this level of transparency, the learner can
scrutinize any recommended content item to confirm
that it features an optimal balance of target and prereq-
uisite concepts. Alternatively, this visualization could be
used as an advanced adaptive navigation support ap-
proach helping the learners select the best practice items
themselves [41]. Our studies of this transparency ap-
proach [48] indicated that the visualization shown in
Figure 10 was positively assessed by the learners helping
them find new concepts to practice while avoiding items
that are too easy or unnecessarily hard. However, it also
indicated that the designers of transparency-oriented vis-
ualization need to balance the complexity of visualiza-
tion with the support provided by it to the user needs. In
our case, an attempt to add concept-level OSLM to Fig-
ure 10 was judged negatively since it made the visuali-
zation considerably more complex without adding useful
additional support. At the same time, the addition of the
gauge, which efficiently summarized the information
presented by the OLM was assessed very positively —
adding little complexity it provided efficient support in
locating content to practice.
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Figure 11. Explaining recommendations using trans-
parency visualization and text explanations

A positive effect of the gauge also indicated that even a
well-designed transparency visualization could be hard
to understand so it has to be complemented by a more
clear message stressing how a recommended item
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matches the learner’s needs. In recommender systems,
this message is typically provided by explaining recom-
mendations [49]. In our most recent work [40; 41], we
compared transparency visualization with text-based ex-
planations of recommended items applying these ap-
proaches separately and in combination (Figure 11).
Here the interface does both — explains why the balanced
approach considers the recommended problem good for
the learner (yellow note) and highlights the current level
of learner knowledge for the target and prerequisite con-
cepts associated with this problem (bottom part).

A classroom study of transparency visualization
and explanations [41] demonstrated that both function-
alities were extensively used by the learners to select
practice content. We also found adding text-based expla-
nations increases user engagement with learning content
and helps low-pretest students understand what the sys-
tem recommends them to practice and how that relates
to their current state of learning.

8. Summary and Conclusion

In this paper, we attempted to summarize over 20 years
of experience in developing and evaluating personalized
practice systems for computer science education. We
distilled several Al technologies, which make personal-
ized practice systems more efficient and engaging for
learners, and presented these technologies in the order
they were developed and explored by our team. As we
noted, once a successful approach has been discovered
and its effectiveness has been confirmed in several con-
texts, we usually include these top-performing technolo-
gies in each of our personalized practice systems. In par-
ticular, our oldest well-explored technologies such as
adaptive navigation support, OLM, and OSLM are used
in most of our recent systems and form the basis of our
open-source platform Mastery Grids, which has been ex-
tensively used over the last 10 years. Our recently devel-
oped technologies including specific content recommen-
dation approaches, transparency interfaces, and explana-
tions require further research to distill the most efficient
approaches for different contexts and audiences.

Our current work on personalized practice focuses on
improving support for self-regulated learning, learner
control, and human-AlI collaboration [50], which offer
opportunities for learners to exercise their agency in the
Al-assisted learning process. In this context, we plan to
continue research on transparency and explainable rec-
ommendations.

9. Contact Address

Peter Brusilovsky, University of Pittsburgh, School of
Computing and Information, 135 North Bellefield Ave.,

Pittsburgh, PA 15260, USA
E-mail: peterb@pitt.edu

Acknowledgements

The work presented in this paper is a results of research
efforts of many students in Personalized and Adaptive
Systems Lab at the University of Pittsburgh. The author
especially wants to acknowledge important contribu-
tions of Sergey Sosnovsky, Michael Yudelson, I-Han
Hsiao, Tomasz Loboda, Roya Hosseini, Jordan Barria-
Pineda, and Kamil Akhuseyinoglu. This work has also
been partially supported by NSF awards 0310576,
0447083, 0633494, 1740775, and 2213789.

References

[1] P. Brusilovsky et al., “Increasing Adoption of Smart
Learning Content for Computer Science Education,” in:
Proc. Working Group Reports of the 2014 on Innovation
and Technology in Computer Science Education
Conference, Uppsala, Sweden, pp. 31-57, doi:
10.1145/2713609.2713611.

[2] P. Brusilovsky, and M. Yudelson, “From WebEx to
NavEx: Interactive Access to Annotated Program
Examples,” Proceedings of the IEEE, Vol. 96, No. 6, pp.
990-999, 2008, doi: 10.1109/JPROC.2008.921611.

[31 J. Sorva, V. Karavirta, and L. Malmi, “A Review of
Generic Program Visualization Systems for Introductory
Programming Education,” ACM Transactions on
Computing Education, Vol. 13, No. 4, 2013, doi:
10.1145/2490822.

[4] K. Khandwala, and P. J. Guo, “Codemotion: Expanding
the Design Space of Learner Interactions with Computer
Programming Tutorial Videos,” in: Proc. Fifth Annual
ACM Conference on Learning at Scale, New York, NY,
USA, pp. 57:1--57:10, doi: 10.1145/3231644.3231652.

[5] P. Brusilovsky, and S. Sosnovsky, “Individualized
Exercises for Self-Assessment of Programming
Knowledge: An Evaluation of QuizPACK,” ACM Journal
on Educational Resources in Computing, Vol. 5, No. 3,
pp. Article No. 6, 2005, doi: 10.1145/1163405.1163411.

[6] D. Parsons, and P. Haden, “Parson's programming
puzzles: a fun and effective learning tool for first
programming courses,” in: Proc. the 8th Australasian
Conference on Computing Education, pp. 157-163.

[71 P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppila,
“Review of recent systems for automatic assessment of
programming assignments,” in: Proc. 10th Koli Calling
International Conference on Computing Education
Research, pp. 86-93, doi: 10.1145/1930464.1930480.

[8] T. Naps et al., “Evaluating the educational impact of
visualization,” ACM SIGCSE bulletin, Vol. 35, No. 4, pp.
124-136, 2003.

[9] R.Hosseini, K. Akhuseyinoglu, P. Brusilovsky, L. Malmi,
K. Pollari-Malmi, C. Schunn, and T. Sirkid, “Improving
Engagement in Program Construction Examples for
Learning Python Programming,” International Journal of
Artificial Intelligence in Education, Vol. 30, No. 2, pp.
299-336, 2020, doi: 10.1007/s40593-020-00197-0.



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

INFORMATION AND TECHNOLOGY IN EDUCATION AND LEARNING, VOL. XX, NO. X 20XX

B. Ericson, M. Guzdial, B. Morrison, M. Parker, M.
Moldavan, and L. Surasani, “An eBook for Teachers
Learning CS Principles,” ACM Inroads, Vol. 6, No. 4, pp.
84--86, 2015, doi: 10.1145/2829976.

V. Barr, and D. Trytten, “Using turing's craft codelab to
support CS1 students as they learn to program,” ACM
Inroads, Vol. 7, No. 2, pp. 67-75, 2016, doi:
10.1145/2903724.

T. Sirkid, and L. Haaranen, “Improving online learning
activity interoperability with Acos server,” Software:
Practice and Experience, Vol. 47, No. 11, pp. 1657-1676,
2017, doi: 10.1002/spe.2492.

A. Hicks, K. Akhuseyinoglu, C. Shaffer, and P.
Brusilovsky, “Live Catalog of Smart Learning Objects for
Computer Science Education,” in: Proc. Sixth SPLICE
Workshop "Building an Infrastructure for Computer
Science Education Research and Practice at Scale” at
ACM Learning at Scale 2020, Virtual, August 12, 2020.
P. Brusilovsky, “Adaptive navigation support,” in: The
Adaptive Web: Methods and Strategies of Web
Personalization, P. Brusilovsky, A. Kobsa and W. Neidl,
Eds., Lecture Notes in Computer Science, 4321, Berlin
Heidelberg New York: Springer-Verlag, 2007, pp. 263-
290.

G. Weber, and P. Brusilovsky, “ELM-ART: An adaptive
versatile  system  for  Web-based instruction,”
International Journal of Artificial Intelligence in
Education, Vol. 12, No. 4, pp. 351-384, 2001.

P. Brusilovsky, J. Eklund, and E. Schwarz, “Web-based
education for all: A tool for developing adaptive
courseware,” in: Proc. Seventh International World Wide
Web Conference, H. Ashman and P. Thistewaite, Eds.,
Brisbane, Australia, 14-18 April 1998, pp. 291-300.

M. Yudelson, and P. Brusilovsky, “NavEx: Providing
Navigation Support for Adaptive Browsing of Annotated
Code Examples,” in: Proc. 12th International Conference
on Artificial Intelligence in Education, AI-Ed'2005, C.-K.
Looi, G. McCalla, B. Bredeweg and J. Breuker, Eds.,
Amsterdam, the Netherlands, July 18-22, 2005, pp. 710-
717.

S. Bull, “There are open learner models about!,” /EEE
Transactions on Learning Technologies, Vol. 13, No. 2,
pp. 425 - 448, 2020, doi: 10.1109/TLT.2020.2978473.

S. Sosnovsky, and P. Brusilovsky, “Evaluation of Topic-
based Adaptation and Student Modeling in QuizGuide,”
User Modeling and User-Adapted Interaction, Vol. 25,
No. 4, pp. 371-424, 2015, doi: 10.1007/s11257-015-9164-
4

1.-H. Hsiao, S. Sosnovsky, and P. Brusilovsky, “Guiding
students to the right questions: adaptive navigation
support in an E-Learning system for Java programming,”
Journal of Computer Assisted Learning, Vol. 26, No. 4,
pp. 270-283, 2010, doi: 10.1111/5.1365-
2729.2010.00365.x.

P. Brusilovsky, S. Sosnovsky, D. Lee, M. Yudelson, V.
Zadorozhny, and X. Zhou, “Learning SQL programming

with interactive tools: from integration to personalization,”

ACM Transactions on Computing Education, Vol. 9, No.
4, pp. Article No. 19, pp. 1-15, 2010, doi:
10.1145/1656255.1656257.

1.-H. Hsiao, F. Bakalov, P. Brusilovsky, and B. Konig-
Ries, “Open Social Student Modeling: Visualizing
Student Models with Parallel Introspective Views,” in:
Proc. 19th International Conference on User Modeling,

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Adaptation, and Personalization, UMAP 2011, J. Konstan,
R. Conejo, J. Marzo and N. Oliver, Eds., Girona, Spain,
July 11-15, 2011, pp. 171-182.

1.-H. Hsiao, F. Bakalov, P. Brusilovsky, and B. Konig-
Ries, “Progressor: social navigation support through open
social student modeling,” New Review of Hypermedia and
Multimedia, Vol. 19, No. 2, pp. 112-131, 2013, doi:
10.1080/13614568.2013.806960.

T. Loboda, J. Guerra, R. Hosseini, and P. Brusilovsky,
“Mastery Grids: An Open Source Social Educational
Progress Visualization,” in: Proc. 9th European
Conference on Technology Enhanced Learning (EC-TEL
2014), S. de Freitas, C. Rensing, P. J. Mufioz Merino and
T. Ley, Eds., Graz, Austria, September 16-19, 2014, pp.
235-248.

S. Sosnovsky, P. Brusilovsky, I.-H. Hsiao, and M.
Yudelson, “Java Ontology,” PAWS Lab, 2010,
https:/sites.pitt.edu/~paws//ont/java.owl.

J. Guerra Hollstein, J. Barria Pineda, C. Schunn, S. Bull,
and P. Brusilovsky, “Fine-Grained Open Learner Models:
Complexity Versus Support,” in: Proc. 25th Conference
on User Modeling, Adaptation and Personalization,
Bratislava, Slovakia, pp- 41-49, doi:
10.1145/3079628.3079682.

J. Vassileva, “Toward Social Learning Enviroments,”
IEEE Transaction on Learning Technologies, Vol. 1, No.
4, pp. 199-214, 2008.

P. Dijkstra, H. Kuyper, G. van der Werf, A. Buunk, and
Y. van der Zee, “Social Comparison in the Classroom: A
Review,” Review of Educational Research, Vol. 78, No.
4, pp. 828-879, 2008, doi: 10.3102/0034654308321210.
J. Vassileva, “Motivating participation in social
computing applications: a user modeling perspective,”
User Modeling and User-Adapted Interaction, Vol. 22,
No. 1-2, pp. 177-201, 2012.

I.-H. Hsiao, P. Brusilovsky, and S. Sosnovsky, “Web-
based Parameterized Questions for Object-Oriented
Programming,” in: Proc. World Conference on E-
Learning, E-Learn 2008, Las Vegas, USA, November 17-
21,2008, pp. 3728-3735.

1.-H. Hsiao, and P. Brusilovsky, “Guiding and Motivating
Students Through Open Social Student Modeling:
Lessons Learned,” Teachers College Record, Vol. 119,
No. 3,2017, doi: 10.1177/016146811711900302.

[32] P. Brusilovsky, L. Malmi, R. Hosseini, J. Guerra, T. Sirkia,

[33]

[34]

[35]

and K. Pollari-Malmi, “An integrated practice system for
learning programming in Python: design and evaluation,”
Research and Practice in Technology Enhanced Learning,
Vol. 13, No. 18, pp. 18.1-18.40, 2018, doi:
10.1186/s41039-018-0085-9.

S. Somyurek, and P. Brusilovsky, “Impact of Open Social
Student Modeling on Self-Assessment of Performance,”
in: Proc. E-Learn: World Conference on E-Learning in
Corporate, Government, Healthcare, and Higher
Education, Kona, HI, USA, October 19-22, 2015, pp.
1181-1188.

P. Brusilovsky, S. Somyurek, J. Guerra, R. Hosseini, V.
Zadorozhny, and P. Durlach, “Open Social Student
Modeling for Personalized Learning,” I[EEE Transactions
on Emerging Topics in Computing, Vol. 4, No. 3, pp. 450-
461, 2016, doi: 10.1109/TETC.2015.2501243.

S. Somyiirek, P. Brusilovsky, and J. Guerra, “Supporting
knowledge monitoring ability: open learner modeling vs.
open social learner modeling,” Research and Practice in



INTELLIGENT TECHOLOGIES FOR PERSONALIZED PRACTICE SYSTEMS

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Technology Enhanced Learning, Vol. 15, No., pp. Article
number 17, 2020, doi: 10.1186/s41039-020-00137-5.

D. McArthur, C. Stasz, J. Hotta, O. Peter, and C. Burdorf,
“Skill-oriented task sequencing in an intelligent tutor for
basic algebra,” Instructional Science, Vol. 17, No. 4, pp.
281-307, 1988.

H. Drachsler, K. Verbert, O. Santos, and N. Manouselis,
“Panorama of Recommender Systems to Support
Learning,” in: Recommender Systems Handbook, F. Ricci,
L. Rokach and B. Shapira, Eds., Boston, MA: Springer,
2015 pp. 421-451.

R. Hosseini, I.-H. Hsiao, J. Guerra, and P. Brusilovsky,
“What Should I Do Next? Adaptive Sequencing in the
Context of Open Social Student Modeling,” in: Proc. 10th
European Conference on Technology Enhanced Learning
(EC-TEL 2015), G. Conole, T. Klobucar, C. Rensing, J.
Konert and E. Lavoué, Eds., Toledo, Spain, September
15-18, 2015, pp. 155-168, doi: 10.1007/978-3-319-
24258-3_12.

R. Hosseini, P. Brusilovsky, and J. Guerra, “Knowledge
Maximizer: Concept-based  Adaptive Problem
Sequencing for Exam Preparation,” in: Proc. the 16th
International Conference on Artificial Intelligence in
Education (AIED 2013), Memphis, USA, pp. 848-851.

J. Barria-Pineda, K. Akhuseyinoglu, S. Zelem-Celap, P.
Brusilovsky, A. Klasnja Milicevic, and M. Ivanovic,
“Explainable Recommendations in a Personalized
Programming Practice System,” in: Proc. 22nd
International Conference on Artificial Intelligence in
Education, AIED 2021, 1. Roll, D. McNamara, S.
Sosnovsky, R. Luckin and V. Dimitrova, Eds., Utrecht,
The Netherlands, June 14-18, 2021, pp. 64-76.

J. Barria-Pineda, K. Akhuseyinoglu, and P. Brusilovsky,
“Adaptive Navigational Support and Explainable
Recommendations in a Personalized Programming
Practice System,” in: Proc. 34th ACM Conference on
Hypertext and Social Media, Rome, Italy September 4 - §,
2023, pp. 1-9, doi: 10.1145/3603163.3609054.

J. Barria-Pineda, K. Akhuseyinoglu, P. Brusilovsky, K.
Pollari-Malmi, T. Sirkid, and L. Malmi, “Personalized
Remedial Recommendations for SQL Programming
Practice System,” in: Proc. Workshop on Adaptation and
Personalization in Computer Science Education at the
28th ACM Conference on User Modeling, Adaptation and
Personalization, ACM UMAP 2020, Genoa, Italy, Jul. 18,
2020, pp. 135-142, doi: 10.1145/3386392.3399312.
National Academies of Sciences Engineering and
Medicine, “Human-Al Teaming: State-of-the-Art and
Research Needs,” Washington, DC: The National
Academies Press, 2022.

S. Bostandjiev, J. O'Donovan, and T. Hdllerer,
“TasteWeights: A Visual Interactive  Hybrid
Recommender System,” in: Proc. 6th ACM Conference
on Recommender System, Dublin, Ireland, September 9,
2012, pp. 35-42.

K. Verbert, D. Parra-Santander, P. Brusilovsky, and E.
Duval, “Visualizing Recommendations to Support
Exploration, Transparency and Controllability,” in: Proc.
the 2013 International Conference on Intelligent User
Interfaces, IUI 2013, Santa Monica, USA, March 19-22,
2013, pp. 351-362, doi: 10.1145/2449396.2449442.

H. Cramer et al., “The effects of transparency on trust in
and acceptance of a content-based art recommender,”

10

[47]

(48]

[49]

[50]

User Modeling and User-Adapted Interaction, Vol. 18,
No. 5, pp. 455-496, 2008.

J. Barria Pineda, and P. Brusilovsky, “Making
Educational Recommendations Transparent through a
Fine-Grained Open Learner Model,” in: Proc. Workshop
on Intelligent User Interfaces for Algorithmic
Transparency in Emerging Technologies at the 24th ACM
Conference on Intelligent User Interfaces, IUI 2019, Los
Angeles, USA, March 20, 2019.

J. Guerra, C. Schunn, S. Bull, J. Barria-Pineda, and P.
Brusilovsky, ‘“Navigation support in complex open
learner models: assessing visual design alternatives,” New
Review of Hypermedia and Multimedia, Vol. 24, No. 3,
pp. 160-192,2018, doi: 10.1080/13614568.2018.1482375.
N. Tintarev, and J. Masthoff, “A Survey of Explanations
in Recommender Systems,” in: Proc. 3rd International
Workshop on Web Personalisation, Recommender
Systems and Intelligent User Interfaces at IEEE 23rd
International Conference on Data Engineering (ICDE
2007) Istanbul, Turkey, pp. 801-810.

P. Brusilovsky, “Al in education, learner control, and
human-Al collaboration,” International Journal of
Artificial Intelligence in Education, Vol. 34, No. 1, pp.
122-135, 2024.

Authorl Photograph

Peter Brusilovsky is a Professor
of at the School of Computing
and Information, University of
Pittsburgh where he also directs
Personalized Adaptive Web Sys-
tems lab. Peter has been working
in the field of personalized learn-
ing, student and user modeling,
recommender systems, and intel-
ligent user interfaces for over 30

(2.7cm *3.3cm)

years. He is a board member of

several journals including the International Journal of Al in Ed-

ucation and User Modeling and User-Adapted Interaction.



