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Abstract Personalized practice systems focus on supporting self-organized learning in a free practice mode. Adapting to the learners’ 
knowledge and goals, these systems help them navigate the increasing volumes of smart learning content, guide them to practice 
opportunities that are most appropriate to their level of knowledge and increase their motivation to practice. In this paper, we distill 
the experience generated by 20 years of research on personalized practice systems into a set of AI-based technologies that make these 
systems efficient, engaging, and user-friendly. 
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1. Introduction  
With the increasing popularity of Computer Science, the 
size of the introductory programming classes and the di-
versity of students in the classes have increased remark-
ably challenging traditional pedagogies and learning 
tools. Programming skills can’t be mastered by reading 
alone, to gain them students need a considerable amount 
of practice studying worked examples and solving pro-
gramming problems. However, practice opportunities 
offered by traditional classes and modern MOOCs 
through labs and assignments are rarely sufficient for 
less prepared and non-traditional students. To master 
programming skills, this rapidly expanding cohort of 
students need to study programming examples and solve 
problems on their own, beyond the required minimum of 
labs and assignments. This work known as free practice 
enables less prepared students to level the playing field 
practicing as much as necessary to achieve mastery 
while also focusing on the most important or least stud-
ied topics.  

The importance of free practice has been long rec-
ognized by the Computer Science Education commu-
nity, which developed a large variety of advanced tools 
to help students practice on their own. These tools fre-
quently referred to as interactive or “smart” learning 
content [1] include a variety of “worked example” tools 
(annotated examples [2], program visualizations [3], and 
coding tutorials [4]) focused on communicating code un-
derstanding and code construction knowledge to the 

learners and various types of automatically assessed 
problems (code tracing problems [5], Parson’s problems 
[6], coding problems [7]) engaging students in applying 
and mastering this knowledge. 

Unfortunately, the use of these advanced tools to 
support free practice is hampered by two problems. First, 
despite the need to practice and the confirmed effective-
ness of modern tools in supporting it, only a fraction of 
students use these tools for free practice and a smaller 
fraction use them regularly [5; 8; 9]. Second, even for 
well-motivated students who are ready to allocate time 
for free practice, it becomes increasingly harder to effi-
ciently use this time due to rapidly increasing volumes 
of available smart content. Large collections of smart 
content are now frequently provided by publishers as ad-
ditions to traditional or interactive textbooks [10]. De-
velopers of smart content tools increasingly release col-
lections of smart content for free practice [11; 12]. These 
increasing volumes of available practice content make it 
harder to choose the content for practice, which due to 
the known paradox of choice, further decreases their en-
gagement with practice [13].  

We believe that to make free practice efficient, stu-
dents need personalized practice systems, a new type of 
learning tools focused on supporting student work in a 
free practice mode. It should help students navigate the 
increasing volumes of smart learning content, guide 
them to practice opportunities that are most appropriate 
to their level of knowledge, and increase their motivation 
to practice.  

For over 20 years our research team has been ex-
ploring technologies, interfaces, and infrastructures for 
building personalized practice systems. In this paper, we 
share a part of our experience by distilling a set of 

  * School of Computing and Information, University of 
Pittsburgh, USA 

 
 

©Japan Society for Educational Technology & Japanese Society for Information and Systems in Education 20XX.  This is an open access article 
published under a Creative Commons Attribution 4.0 International (CC BY-NC-ND 4.0) license (http://creativecommons.org/license/by/4.0).  

 



 
 
 
 
 
 
 
INTELLIGENT TECHOLOGIES FOR PERSONALIZED PRACTICE SYSTEMS 

2 

 

Artificial Intelligence technologies that make these sys-
tems efficient, engaging, and user-friendly. Following 
this introduction, each section of the paper highlights 
one specific technology that we currently use in our per-
sonalized programming practice systems and which, as 
we believe, one of the components of their success. We 
introduce the features “historically” – focusing on the 
context in which this feature was originally developed, 
the motivation for its development, and the first rounds 
of its evaluation. This approach helps stress the im-
portance and the value of each feature in research on per-
sonalized practice. In cases when a specific feature has 
been developed further in future work, we provide nec-
essary references to more recent designs and results. 

2. Adaptive Navigation Support 
The first technology that could be used for turning a col-
lection of practice-oriented smart learning content into a 
personalized practice system is adaptive navigation sup-
port [14], a personalized guidance technology developed 
in the field of adaptive hypermedia. Adaptive navigation 
support could be helpful to adapt to the students’ varying 
levels of knowledge at the start of the course as well as 
to support more flexible free practice. Indeed, some stu-
dents start the course with partial knowledge of the sub-
ject, while others are complete beginners. Some try to 
practice every week while others might skip a week or 
two or delay all practice until exam preparation. When 
entering a practice system after each lecture, different 
students might need to work with different problems and 
examples prepared by the instructor for this lecture. 
Moreover, the most relevant practice for a specific stu-
dent could be only found in earlier lectures since the stu-
dent lacks prerequisite knowledge or failed to practice in 
time. 

A useful technology that can help students navigate 
in a maze of complex learning content with multiple pre-
requisites is prerequisite-based navigation support [14], 
which was developed in early adaptive hypermedia sys-
tems ELM-ART [15] and InterBook [16]. This technol-
ogy traces the changing level of student knowledge for 
multiple concepts of the course, decides whether the tar-
get student is ready to attempt a specific item of learning 
content or lacks prerequisite knowledge, and makes this 
judgment visible to the student through adaptive link an-
notation. 

An example of using this personalized guidance ap-
proach for personalized practice is NavEx system, which 
added adaptive navigation support to a collection of 
worked examples delivered by WebEx system [17]. 
NavEx provided links to all worked examples in the 
course on the left side of its interface adding a 

personalized icon (known as adaptive link annotation) to 
each example link (Figure 1 left). A click on an example 
link opens an example in the right frame (Figure 1 right). 
The personalized icon estimates whether the example is 
ready to be explored by the target student at the given 
time. A red cross sign indicates that example is not yet 
ready to be explored since the student likely misses the 
prerequisite knowledge that is necessary to understand 
it. A green bullet indicates that an example is ready to be 
studied. Moreover, the filling of the bullet indicated how 
many lines of a specific example had been explored by 
the student in the past. A filled bullet indicates a fully 
explored example with all explanations being examined 
by the student. 

 

 

Figure 1. Access to WebEx examples through NavEx 
interface. A list of all course examples augmented by 
adaptive link annotations is shown on the left.  

Table 1. Student engagement with NavEx and WebEx 

 WebEx NavEx+  
WebEx 

p-
value 

Lines 34.76±6.66 171.90±65.56 <.001 
Examples 5.66±0.871 18.10±4.32 <.001 
Lectures 3.52±0.42 8.20±1.23 <.001 
 
We explored NavEx in several classroom studies com-
paring it to the baseline condition (WebEx examples 
were used without adaptive navigation support) [2]. De-
spite its simplicity, the effect of adaptive navigation sup-
port was remarkable (Table 1). With personalized guid-
ance, the number of explored examples increased 3 
times, the number of explored lines 5 times (i.e., exam-
ples were explored deeper) and the lecture coverage of 
explored examples more than doubled.  

3. Open Learner Modeling 
Open learner modeling [18] is a technology that makes 
the learner model, the heart of every personalized learn-
ing system, visible to the learners. Open Learner Models 
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(OLM) show how much knowledge students gain for 
different topics or concepts of the course. With OLM, 
students are constantly aware of their performance and 
can better decide what to focus on. In our early work, we 
focused on a coarse-grain OLM known as a topic-level 
OLM. An example of a system with a topic-level OLM 
is QuizGuide [19], an adaptive hypermedia service for 
personalized access to code-tracing problems, generated 
by the previously developed system, QuizPACK [5].  

QuizGuide groups practice problems into coarse-
grained course topics (Figure 2 left). The link to each 
topic is annotated with an icon showing a target with (or 
without) arrows. The number of arrows (from 0 to 3) re-
flects the student’s performance on the quizzes of that 
annotated topic (from no arrows representing very little 
or no progress to three arrows representing good com-
prehension). With this approach, the topic targets serve 
as a topic-level OLM. QuizGuide combines this OLM 
with additional navigation support. The topic targets also 
serve as links to tracing problems for the topic assembled 
into 5-problem quizzes. A click on a topic link un-
folds/folds links to the quizzes available for this topic. 
The color of a target encodes the relevance of a topic to 
the current learning goal of the class. The topics form a 
prerequisite-outcome structure. Every time new topics 
are introduced in a lecture, they are annotated with a 
bright-blue target. Topics that serve as prerequisites for 
any of the current topics have a pale-blue target. Com-
pleted topics are assigned grey targets. Finally, topics 
that belong to learning goals not yet covered in class are 
annotated with crossed targets.  
 

 

Figure 2. QuizGuide: Access to QuizPACK code trac-
ing problems using OLM and Navigation support. 

One of the goals of combining OLM with navigation 

support used in QuizGuide was to help a student choose 
which topic is most appropriate to work bringing them 
to the right topic at the right time and preventing them 
from leaving insufficiently studied topics behind, which 
could hinder their problem-solving performance. The re-
sult of system evaluation in several classroom studies 
demonstrated that QuizGuide affected student learning 
in several positive ways [19]. Similar to the NavEx case, 
adaptive navigation support significantly increased stu-
dent engagement with learning content, the number of 
quizzes used for practice doubled. OLM helped students 
increase topic coverage and pay significantly more at-
tention to practices with insufficiently explored topics 
from past lectures. In turn, it significantly increased the 
learning gain.  

Following the success of topic-level OLM in 
QuizGuide [19] we used topic-level OLM as a key com-
ponent for all of our personalized practice systems in-
cluding JavaGuide [20] and SQL-Guide [21], which 
used a QuizGuide interface to guide learners to Java and 
Database practice problems, and several other designs 
[22; 23]. Our most recent work on personalized practice 
systems for Java, Python, and SQL uses a topic-level 
open-source OLM interface Mastery Grids [24]. This in-
terface was designed to accommodate a varying number 
of course topics and multiple kinds of smart content. We 
used this design to develop personalized practice sys-
tems for Java, Python, and SQL courses taught in many 
universities across several countries. 

 

Figure 3. Mastery Grids interface for personalized 
SQL practice system. 

Figure 3 shows a Mastery Grids interface for a per-
sonalized SQL practice system. A progression of 18 
SQL topics here is presented horizontally as a row of 
green cells. The learner’s current knowledge of the 
course topics is shown as a row of square cells using 
green colors of different intensities. The darker the topic 
cell color is, the more knowledge progress was achieved 
by the learner in the topic. Clicking on a topic cell opens 
a table of practice content for this topic organized by 
type. Here the color intensity indicates the amount of 
work already done by the learner with this content. In 
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Figure 3, the learner noticed that their knowledge gained 
on the Pattern Matching topic is very low and opens 
available content to practice. The content table shows 
five types of content to practice with only one example 
explored so far. 

A known problem of otherwise efficient topic-level 
OLM is its low granularity level for reflecting learners’ 
knowledge. For example, our Java ontology developed 
for practice content indexing and knowledge modeling 
includes over 200 concepts for which learner knowledge 
could be individually tracked [25]. However, topic-level 
OLMs for Java in JavaGuide [20] and Mastery Grids use 
less than 20 topics to visualize learner knowledge on the 
topic level. Since many topics include multiple concepts, 
reflecting learner knowledge on such a coarse level 
could lead to neglecting important concepts and gaining 
unbalanced knowledge of course topics. In our recent 
work, we frequently complement a topic-level OLM 
with a much finer-grained OLM representing learner 
knowledge on the concept level.  

To determine the best approach to visualize a con-
cept-level OLM, we performed a comparative study 
[26]. Based on this study, we selected a bar chart OLM 
representation (Figure 4 top), which we now use in our 
recent personalized practice systems in addition to the 
topic-level model (Figure 3). To support the parallel use 
of topic-level and concept-level models, the order of 
concepts in the concept-level OLM follows the order of 
their introduction in topic-level models, and a synchro-
nized visualization shows which concepts are associated 
with each course topic (Figure 4 bottom). 

 

 

 

Figure 4. Concept-Level OLM for Java. Top: Current 
level of learner knowledge of Java concepts. Bottom: 
Connecting topic-level and concept-level OLM. 

4. Open Social Learner Modeling 
The growing popularity of online learning with multiple 
students interacting directly or indirectly in the learning 
process motivated a large stream of research on social 

learning technologies that leverage the power of the 
learner community [27]. Among other technologies, 
social comparison [28] emerged as an efficient approach 
to increase user engagement and participation [29]. In 
our work on personalized practice systems, we used 
social comparison aas a component of the Open Social 
Learner Model (OSLM). With OSLM, students can 
compare the current state of their knowledge of the 
domain shown by an OLM with the models of other 
learners or the whole class visualized in a similar way.  

 

 

Figure 5. OSLM in Progressor: Peers’ progress is dis-
played as thumbnails next to the user’s OLM. 

We explored several approaches to design OSLM 
and achieved considerable success with the design 
known as Progressor [23]. Progressor visualized the 
state of the learner’s topic-level progress as uneven seg-
ments of a circle where the color of each segment (red to 
green) indicated the amount of knowledge for the topic 
accumulated through practice (Figure 5). This design 
was different from the OLMs in our earlier personalized 
practice systems such as QuizGuide (Figure 2) and was 
specifically focused on comparing two OLMs side by 
side. When checking their OLMs, the learners could see 
thumbnails of OLMs of other learners in their class 
(peers) and can select any of these models for a side-by-
side comparison of peer’s knowledge with their own.  

Progressor was used to provide access to parame-
terized tracing questions for Java programming language 
delivered by QuizJET [30], a Java version of Quiz-
PACK. To examine the value of OSLM we compared 
the effectiveness of personalized practice with Progres-
sor interface to non-personalized practice with QuizJET 
system in several classroom studies [23]. As the data 
shows (Table 2), the use of OSLM lead to a remarkable 
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increase of engagement with practice questions. The 
number of sessions with the system and the number of 
question attempts more than doubled, the coverage of 
course topics increased considerably, and the success 
rates in solving tracing problems increased from frustrat-
ing 42.63% to 68.39%. A follow-up study with Progres-
sor+, an extension of Progressor, confirmed that OSLM 
could significantly increase learner engagement with 
several types of practice content used in parallel [31]. 

Table 2. Practicing with QuizJET vs Progressor 

 QuizJET Progressor 
Attempts 80.81±22.06 205.73±40.46 
Success Rate (%) 42.63±1.99 68.39±4.32 
Distinct Topics 7.81±1.64 11.47±1.34 
Distinct Questions 33.37±6.50 52.7±6.92 
Sessions 3.75±0.53 8.4±1.39 
 

 

Figure 6. A Mastery Grids interface with multiple 
kinds of Python practice content and enabled OSLM 

Recognizing the importance of Open Social Learner 
Modeling, an OSLM component was integrated into our 
Mastery Grids interface for personalized practice [24] at 
the design time. Figure 6 shows Mastery Grids installa-
tion for a personalized Python practice system with the 
OSLM component enabled [32]. Here Mastery Grids 
provides personalized access to four types of practice 
content (two types of problems and two types of worked 
examples) organized into 14 topics. The learner’s 
knowledge of course topics is shown on the top row of 
the grid using green colors of different intensities, as ex-
plained in the previous section. The bottom row displays 
the average knowledge of the class using blue colors of 
different intensities. The middle row provides an easy 
way to compare learners’ knowledge progress with the 
progress of the class – the green color indicates that the 
learner is ahead of the class in this topic while the blue 
color indicates that the learner is lagging behind the 
class. A click on a topic cell opens a panel that provides 

access to four kinds of smart learning content items for 
this topic. With this design, the learners can easily locate 
course topics that need more work while the ability to 
compare their progress with the class increases their mo-
tivation to practice. 

Mastery Grids OSLM interface has been explored 
in several studies, which confirmed the remarkable en-
gaging power of OSLM technology [33; 34; 35]. The 
studies also demonstrated that OSLM enabled learners 
to work more efficiently and increased their knowledge 
monitoring ability, which is an important skill in the con-
text of self-regulated learning. 

5. Learning Content Recommendation 
Despite of demonstrated effectiveness of navigation sup-
port provided by prerequisite-based link annotation, 
OLM, and OSLM reviewed above, these technologies 
don’t offer the learner a direct answer which learning 
content item is the best to practice at the given moment. 
The personalized guidance provided by these technolo-
gies is indirect – it offers several kinds of information 
that help select the next item but leaves the choice to the 
learner. From our past research on personalized guid-
ance [15], we know that this indirect guidance works 
well for better-prepared learners with starting 
knowledge of the domain. In contrast, learners with little 
to no knowledge of the domain work best with a more 
direct form of guidance such as content sequencing [36] 
or learning content recommendation [37]. 

Due to the complementary nature of adaptive navi-
gation support and learning content recommendations, 
for the last 10 years we frequently used these two tech-
nologies in our personalized practice systems side-by 
side by integrating recommendations into Mastery Grids 
interface. In our first attempt to combine recommenda-
tions and adaptive navigation support, we decided to 
avoid the traditional ranked list, the dominant approach 
to present recommendations. Instead, we used stars icons 
to mark topics where recommended content is located 
and, once the topic is opened, to mark the recommended 
content itself (Figure 7).  

We evaluated this design in a classroom study [38] 
combining it with a “knowledge maximizer” approach 
for learning content recommendation that we developed 
earlier [39]. With this approach, a concept-based recom-
mender algorithm prefers learning content that maxim-
izes the knowledge gained by practicing with this con-
tent without breaking prerequisites. The results of the 
study demonstrated that adding direct recommendations 
to the indirect guidance provided by the navigation sup-
port helped to break suboptimal sequential navigation 
pattern and encouraged non-sequential work with 
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learning content. However, we also discovered that 
“maximizer” focused on a rapid advance through course 
concepts was mostly beneficial for stronger students 
helping them significantly shorten their learning paths.  

 

Figure 7. Recommending learning content using 
“Knowledge Maximizer” approach in Mastery Grids. 
Star icons are used to mark recommended content. 

 

Figure 8. Content recommendation for a selected topic 
based on balanced knowledge expansion using a com-
bination of a ranked list and stars icons. 

In our follow-up work on content recommendation, we 
replaced the “maximizer” approach with a balanced 
knowledge expansion approach [40; 41]. This approach 
attempted to select learning content with an optimal bal-
ance of for prerequisite and target concepts. It assures 
that prerequisite concepts for a practice content item are 
sufficiently learned and prevents the learner from prac-
ticing too many new concepts at the same time. Follow-
ing student feedback, we also started present recom-
mended items for each topic as a ranked list in addition 
to marking them with stars (Figure 8). We also devel-
oped a remedial recommendation approach focused on 
error remediation [42]. The idea of the remedial recom-
mendation was to isolate concepts associated with prob-
lems that the learner failed to solve correctly. Assuming 
that these concepts might be the source of troubles, the 
remedial recommendation approach focused on exam-
ples and problems that offer the best opportunity to prac-
tice the troublesome concepts. The studies of both ap-
proaches demonstrated that direct recommendation has 
a strong impact on student work, encouraging them to 
practice with recommended content. In contrast to the 
“maximizer” approach, the balanced recommendation 

approach has not left weaker students behind. We ob-
served that low-pretest students preferred to practice 
with recommended items and achieved significantly 
higher success rates by following recommendations 
[40]. 

6. Transparency and Explanations 
Transparency and explanations are considered important 
features of modern AI [43]. To make human decision-
making assisted by AI, the behavior and recommenda-
tions of the AI system need to be understandable to the 
human using the system. In the context of personalized 
information access (i.e., adaptive navigation support and 
recommendation) transparency is frequently achieved 
by making the decision steps of the personalized guid-
ance algorithm visible or on-demand scrutable by the 
end users. Multiple studies demonstrated that visual 
transparency and scrutability increase user confidence 
and trust in the provided recommendation [44; 45; 46].  

The original design of the Mastery Grids interface 
for personalized access to practice content included sev-
eral transparency features. For example, the amount of 
knowledge gained by the learner on a specific topic 
could be scrutinized by examining the amount of pro-
gress over practice content offered for this topic shown 
by the intensity of the green color (Figure 6). The aver-
age knowledge of the whole class for a specific topic 
could be scrutinized by opening a panel showing topic-
level performance of every student in the class (Figure 
9). These details help students understand how the esti-
mation of average class knowledge works and build trust 
in the data shown by the OSLM. 
 

 

Figure 9. Scrutinizing average knowledge progress of 
the class by viewing the progress of individual peers. 

In our most recent work, we attempted to add another 
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layer or transparency to support the main goal of a per-
sonalized practice system, i.e., helping learners to iden-
tify the most relevant learning content to practice. The 
first step in making the content recommendation more 
transparent is the concept-level model of learner 
knowledge visualized as OLM (Figure 4) since this 
model is the main source of information for personalized 
content selection approaches [47]. However, this model 
is not sufficient to provide content selection transpar-
ency because it doesn’t explain how a specific recom-
mendation approach works and how it uses the current 
state of the model to identify the most relevant content. 

 

Figure 10. Transparent content selection for the bal-
anced knowledge expansion approach.  

An example of making the content selection process 
transparent for the case of balanced knowledge expan-
sion approach (Figure 8) is shown in Figure 10. Here the 
interface uses concept-level OLM on the bottom to high-
light concepts associated with a smart content item that 
the learner considers practicing with. In the figure, the 
learner considers working with a code tracing quiz for 
the topic “Strings” (second item from the left in the top 
content row). Once the mouse is placed over the content 
cell (the currently examined content cell turns 45 de-
grees and looks like a diamond), the interface highlights 
all concepts associated with the content items in the 
OLM. The idea of the balanced approach is to consider 
separately prerequisite and target concepts that are as-
sociated with the selected item and recommend content 
with optimal balance. To make the process more clear 
the visualization also separates target concepts showing 
them within “current topic” box. In Figure 10, we see 
that these concepts are equalIgnoreCase (current 
knowledge 38%), equal (current knowledge 81%), and 
charAt (current knowledge 75%). Six prerequisite con-
cepts, which are expected to be learned earlier, are high-
lighted on the left. Five of these concepts are already 
well known, but implicit conversion is new with 0% 

knowledge. The gauge on the right assesses the balance 
of these concepts and with 7 known, 1 familiar (equalIg-
noreCase) and one new concept (implicit conversion) as-
sesses the selected quiz as an easy one for the current 
knowledge of the learner. More details about this trans-
parency-oriented visualization for the balanced recom-
mendation approach can be found in [40; 48] while a dif-
ferent transparency visualization for remedial recom-
mendation approach is presented in [42].  

With this level of transparency, the learner can 
scrutinize any recommended content item to confirm 
that it features an optimal balance of target and prereq-
uisite concepts. Alternatively, this visualization could be 
used as an advanced adaptive navigation support ap-
proach helping the learners select the best practice items 
themselves [41]. Our studies of this transparency ap-
proach [48] indicated that the visualization shown in 
Figure 10 was positively assessed by the learners helping 
them find new concepts to practice while avoiding items 
that are too easy or unnecessarily hard. However, it also 
indicated that the designers of transparency-oriented vis-
ualization need to balance the complexity of visualiza-
tion with the support provided by it to the user needs. In 
our case, an attempt to add concept-level OSLM to Fig-
ure 10 was judged negatively since it made the visuali-
zation considerably more complex without adding useful 
additional support. At the same time, the addition of the 
gauge, which efficiently summarized the information 
presented by the OLM was assessed very positively – 
adding little complexity it provided efficient support in 
locating content to practice. 

 

Figure 11. Explaining recommendations using trans-
parency visualization and text explanations 

A positive effect of the gauge also indicated that even a 
well-designed transparency visualization could be hard 
to understand so it has to be complemented by a more 
clear message stressing how a recommended item 
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matches the learner’s needs. In recommender systems, 
this message is typically provided by explaining recom-
mendations [49]. In our most recent work [40; 41], we 
compared transparency visualization with text-based ex-
planations of recommended items applying these ap-
proaches separately and in combination (Figure 11). 
Here the interface does both – explains why the balanced 
approach considers the recommended problem good for 
the learner (yellow note) and highlights the current level 
of learner knowledge for the target and prerequisite con-
cepts associated with this problem (bottom part). 

A classroom study of transparency visualization 
and explanations [41] demonstrated that both function-
alities were extensively used by the learners to select 
practice content. We also found adding text-based expla-
nations increases user engagement with learning content 
and helps low-pretest students understand what the sys-
tem recommends them to practice and how that relates 
to their current state of learning. 

8. Summary and Conclusion 
In this paper, we attempted to summarize over 20 years 
of experience in developing and evaluating personalized 
practice systems for computer science education. We 
distilled several AI technologies, which make personal-
ized practice systems more efficient and engaging for 
learners, and presented these technologies in the order 
they were developed and explored by our team. As we 
noted, once a successful approach has been discovered 
and its effectiveness has been confirmed in several con-
texts, we usually include these top-performing technolo-
gies in each of our personalized practice systems. In par-
ticular, our oldest well-explored technologies such as 
adaptive navigation support, OLM, and OSLM are used 
in most of our recent systems and form the basis of our 
open-source platform Mastery Grids, which has been ex-
tensively used over the last 10 years. Our recently devel-
oped technologies including specific content recommen-
dation approaches, transparency interfaces, and explana-
tions require further research to distill the most efficient 
approaches for different contexts and audiences.  
Our current work on personalized practice focuses on 
improving support for self-regulated learning, learner 
control, and human-AI collaboration [50], which offer 
opportunities for learners to exercise their agency in the 
AI-assisted learning process. In this context, we plan to 
continue research on transparency and explainable rec-
ommendations.  
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