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Abstract. Worked examples have consistently demonstrated their value
in education, serving as the model solutions for solving specific prob-
lem types. Past studies indicate that combining worked examples with
practice problems is more effective than providing either problems or ex-
amples in isolation. Despite these findings, the exploration of the effects
of grouping worked examples and problems for programming practice is
limited, especially in learning environments designed for practice. This
paper compares two approaches to content organization in a practice sys-
tem. The first is to explicitly connect the worked examples and comple-
tion problems, allowing students to access them in smaller bundles. The
other is to deliver the same set of activities separately, but maintain an
implicit connection by grouping them under a topic. We examined the ef-
fects of these two approaches on student engagement and performance in
a semester-long classroom experiment conducted in a CS1 programming
course. The results indicate that explicitly connecting worked examples
and completion problems increased engagement with the code comple-
tion problems and supported problem-solving performance, leading to
higher success rates and persistence.

Keywords: Worked examples - computer science education - CS1 -
Python programming - open learner model - classroom study

1 Introduction

Researchers and practitioners in the field of Computer Science Education (CSEd)
were always among the pioneers of using computers to support learning and
teaching. Over several decades, the CSEd community has developed a broad
range of interactive learning tools, frequently referred to as “smart learning con-
tent" or SLC [2]. Frequently used types of smart learning content include al-
gorithm and program visualization tools [29], worked code examples [5], and
various types of problems with automatic assessment [17]. In the early days,
each research team focused on developing just one type of SLC and made them
available as software to download and install. However, today most types of SLC
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are implemented as interactive Web content and can be accessed online by stu-
dents and instructors all over the world [13]. Moreover, the increased popularity
of learning management systems (LMS), learning content repositories [6], and
integrated practice systems [21,3,12] made it easy to mix multiple types of on-
line SLC under “one roof” by providing access to various types of interactive
examples and problems.

The ability to access different types of SLC from one system, without the
need to hunt for it through multiple Web sites, considerably increased student
engagement with SLC and led to better learning. However, there is still no agree-
ment on how to structure and mix various types of SLC to make learning more
efficient. The currently dominated granularity of content grouping is a large
topic, such as a lecture or a book chapter. Instructors frequently group together
links for various examples, demos, and problems that they recommend exploring
after each lecture of the course. Textbook authors and publishers offer bundles of
learning content associated with each textbook chapter. This topic-level group-
ing is also used in modern practice systems [3]. However, coarser- and finer-grain
grouping is also used frequently. Many instructors post all SLC for their course
in one place in LMS while learning repositories [6] and catalogs [14] list together
all content for a specific domain like Java, Python, or SQL. In contrast, mod-
ern MOOCs piloted small “micro-topics” combining a small video lecture and
associated interactive content [11]. Similarly, modern interactive textbooks [10]
interleave text and different types of SLC within small subsections. The lack of
clear best practice guidelines motivates a research question: “What is the best
granularity level to mix and organize diverse types of learning content?”

As a contribution to answering this research question, we performed a semester-
long classroom study that compared the traditional topic-level grouping of ex-
amples and completion problems in a practice system with an organization that
follows the “micro-topic” approach - a direct-access package of a worked example
and similar completion problems. The study produced interesting and insightful
results including differences in problem-solving performance, persistence, and
engagement. In this paper we present the background of our work, present the
study and its results, attempt a deeper analysis to explain these results, and
draw conclusions for practice and future research.

2 Related Work

Over the last 20 years, the CS education community has developed and tested
a large variety of advanced tools to support teaching and learning programming
frequently referred to as interactive or “smart learning content”(SLC) [2] due to
their ability to interact with students and provide feedback. Existing types of
SLC could roughly be grouped into two large categories: worked examples fo-
cused on communicating programming knowledge to the students and problems
with automatic assessment engaging students in applying and mastering this
knowledge. A large variety of SLC is now available within each category. Among
popular types of worked examples are annotated examples [15], code anima-
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tions [29], and codecasts [27]). Popular types of problems include code tracing
problems [4], Parson’s problems [24], and coding problems [9]. The unusually
large variety of smart content for learning programming could be explained by
the need to communicate and practice different types of knowledge, i.e., code un-
derstandings [29,4] and code construction [15,17] knowledge as well as by unique
features of content types making them valuable in different situations.

While some types of smart content are still used predominantly for assessment
purposes (i.e., labs, exams, and homework assignments), collections of smart
content are often released for students in a free practice mode, i.e., something
they can do in their spare time for self-study and self-assessment. Following
this trend, two most popular types of practice-oriented systems — interactive
programming textbooks [10,26] and practice systems [3,12,21] —typically com-
bine presentation-oriented content (explanations, worked examples) with content
focused on self-assessment and problem-solving (questions and various types of
problems) offering students opportunities to practice with both types of content.
Yet there is still little guidance on how to best organize and structure access to
this content and, most importantly, how closely worked examples should be in-
tegrated with problems.

Cognitive science research presents convincing evidence that worked exam-
ples and problems are equally important for learning each new unit of knowledge;
moreover, worked examples should generally precede problems in learning this
unit. This is known as worked example effect, one of the instructional effects
highlighted by the cognitive load theory [19,30]. Several studies in computer sci-
ence education confirmed this effect and inspired some adaptive systems that
recommend worked examples or problems depending on the student’s level of
knowledge [23,7]. It is not clear, however, how coarse a unit that brings together
examples and problems should be: a course, a lecture, a topic, or something
even smaller. As mentioned above, the current approaches vary considerably,
even within the same group of systems. For example, an online textbook typi-
cally places worked examples in the subsections where new concepts illustrated
by these examples are introduced. Problems, however, could be placed either
right after these worked examples or assembled at the end of each chapter. Does
the level of granularity matter, and if so, what is the best way to combine worked
examples with self-assessment problems? The study presented in this paper con-
trasts two levels of granularity for grouping examples and problems for learning
programming and attempts to explain the observed differences.

3 Program Construction Examples (PCEX)

Program Construction Examples (PCEX) is an interactive tool to support learn-
ing programming construction skills by presenting worked code examples [15].
The tool allows students to explore line-by-line explanations and encourage
problem-solving by introducing closely related completion problems. PCEX is
designed to deliver a worked example and one to three completion problems,
and challenges, as a package with a fixed sequence. We called these completion
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‘ Example: Determining the Sign of an Integer

Challenge
A Construct a program that determines whether an integer is positive, negative, or zero. Me!

B
#Step 1: Read the integer
text = input("Enter an integer: ") ® D
num = int(text) @ Explanations e~ PREVIOUS NEXT
#Step 2: Determine whether the integer is positive, negative, or zero

if um >0 : ()
print("The integer is positive.") @ We need to convert the input text to its
elif num < @ : ® C integer representation. For this purpose, we

" . " . use the conversion function int().
print("The integer is negative.") @ 0

else : @
print("The integer is zero.") @ PREVIOUS ADDITIONAL DETAILS

S ©®NO U A GIN R

-

Fig.1. A worked example in PCEX. The interface includes a goal description (A),
a complete program (B), links to line explanations (C), line explanations (D), and a
button to access the challenge (E)

problems “challenges” because they challenge students by engaging them with
a problem-solving activity after examining a worked example. The learning ac-
tivities delivered by the PCEX are authored by an experienced researcher who
has strong programming skills and a deep understanding of the introductory
programming course curriculum.

As shown in Figure 1, a worked example is designed to address a specific
“goal” that is stated on the top (Fig.1A). The goal indicates the expected func-
tionality of the program code presented (Fig.1B). Each worked example has line
explanations that summarize “why” that particular line is critical to address
the given goal description(Fig.1C). Students could access these explanations by
clicking on to question mark icons next to a line and the tool visualizes the
explanations in a panel next to the program code (Fig.1D). Students can ac-
cess to challenges packaged together with the worked example by clicking on the
“Challenge M¢e” button (Fig.1E).

Challenges provide an immediate self-assessment opportunity for students
to apply the programming construction knowledge studied in the associated
example. A challenge is a completion problem that is closely related to the
associated example based on both the goal description and program structure.
Figure 2 shows a challenge activity that is accessed after viewing the worked
example presented in Figure 1. The goal description of a challenge is presented on
top (Fig.2A), and an incomplete code that has one or more missing lines (Fig.2B).
To complete the program, students need to drag and drop a code line from the
panel on the right (Fig.2C) that includes the correct line and multiple distractors.
After completing the program by filling in the missing lines, students can check
the correctness of the program and receive immediate feedback. Students can
navigate back to the example by clicking on the “Back” button (Fig.2D). If there
are multiple challenges associated with an example, students can also navigate
between these challenges only after solving the current one correctly or after 3
incorrect attempts.
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< L Challenge: Determining Whether an Integer is Even or Odd

Back Construct a program that determines whether an integer is even or odd. o

D

Drag a tile to each missing field to construct this program.

#Step 1: Read the integer
B ) g‘ Drag a tile from here OIS/ SNO}
text = input("Enter an integer: ")

num = int(text)
#Step 2: Determine whether the integer is even or odd

A WN R

1if num % 3 == 1 :

6 print("The integer is even.")
else :
8 print("The integer is odd.")

{if num % 3 == 0 :

~

iif num / 2 =0 :

s
if num % 2 == 0 :

Fig. 2. A challenge in PCEX that is connected to the example shown in Fig. 1. The
challenge contains a goal description (A), an incomplete program (B), code line options
(C), and a button to access the related worked example (D).

4 Methods

To compare two levels of granularity for organizing worked examples and comple-
tion problems (challenges) for learning Python, we conducted a classroom study.
In this study, two groups of students were able to practice with work examples
and challenges organized in two different ways. One group worked with a tradi-
tional topic-level content organization where all worked examples and challenges
were listed as separate individual practice activities for the topic (i.e., separate
conditions). The other group worked with examples and challenges combined
into small packages (i.e., combined conditions), with several of these packages
available for each topic. To obtain realistic measures of student engagement with
SLC, the study was designed as a semester-long classroom experiment.

4.1 Study Context

The study was conducted in an introductory Python programming course at a
large Australian university. The course does not require any prior programming
knowledge and covers programming fundamentals. In the semester of the study,
the course had 10 sections delivered online by multiple instructors using the
same syllabus, course materials, and grading policy. In total, 338 students were
enrolled in the course. The passing grade was 50%, the components of the grade
included assignments (30%), class participation (30%), and a project (40%).
Students had access to learning activities through an online practice system.
In this study, the practice system had 52 interactive work examples with a to-
tal of 530 code line annotations, 71 challenges, 39 animated code examples, 47
code tracing problems, and 34 Parson’s problems. The learning activities were
organized into 15 topics suggested by the course coordinator to reflect the course
design. Within each topic, the activities were further grouped under the different
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activity types as shown in Figure 3, starting with animated examples, worked ex-
amples, challenges (only in separate conditions), tracing, and Parson’s problems.
Worked examples and challenges were delivered by PCEX. Students could access
the activity by selecting a topic to practice with and later clicking on one of the
available activities in that topic, shown in a grid design (see Fig.3). Each ac-
tivity was presented with its completion information, i.e., students could clearly
see which activity they completed so far (i.e., green colored cells in Fig.3). The
students were also able to observe their topic-by-topic progress in the practice
system as well as the average progress of the class through an open learner model
(OLM) with personal and social progress-tracking capabilities. Students could
get 10% participation credit by solving one tracing and one Parson’s problem for
each of the 15 topics, i.e., 30 problems in total (37% of the available problems
in the system). No credit, however, was given for their work with all kinds of
examples, including animated examples, worked code examples, and challenges.
The system was introduced to the students by the instructors, following the
completion of the first graded assignment.

. Animated Examples ..
—
me— SEEEEER >

Animated Examples

Challenges

Tracing Problems
Tracing Problems

Parsons Problems .. Parsons Problems ..

(a) Combined condition topic view (b) Separate condition topic view

Fig. 3. Topic views in study conditions showing the learning contents available in the
same topic. In (a), students accessed examples and challenges as a package by clicking
a cell in the Examples-Challenges row. In (b), students accessed each example and
challenge directly by clicking a cell in the Examples or Challenges row.

4.2 Study Conditions

As described in Section 3, PCEX was initially designed to deliver worked ex-
amples and challenges as a package. Previously, we evaluated the impact of
practicing with the tool on engagement and learning outcomes [15]. We reported
that students practiced with the worked examples significantly more when ex-
amples were packaged with challenges as compared to a traditional passive style
of example presentation (i.e., with no challenges to practice the newly acquired
knowledge). In this prior work, students accessed the tool through the same prac-
tice system we used for the study presented in this paper which had the same
OLM interface. While the packaging approach brought positive results, we were
concerned with some negative aspects of packaging. First, we wanted a trans-
parent progress visualization through an OLM, i.e., students’ ability to see how
much they work with each example or challenge. With packaging, however, the
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OLM showed the average progress of a student in the whole package instead of
showing their progress in individual activities. Second, due to the encapsulation
of challenges in packages, the challenges were effectively hidden from direct view.
Students could not even see how many activities were available in the package.
With that, we were concerned that they might have overlooked or missed the
opportunity to work with the challenges. To overcome these issues, we decided
to “open the packages”, i.e., provide access to these activities separately making
both of them visible on the topic level. We believed that due to the topic-level
organization of content in the practice system, eliminating such explicit pack-
aging should not affect students’ performance negatively as they would still be
able to practice with the examples and challenges together within a topic.

We hypothesized that the separation of worked examples and challenges
would lead to higher engagement with challenges (H1a) while keeping students’
practice with the worked examples at a comparable level (H1b) without affecting
their problem-solving performance (H2) given the OLM design of the practice
portal. To test our hypotheses, we designed a classroom study in which students
were using the practice systems in one of the following two conditions:

1- Combined Condition: PCEX delivers the learning activities as a package
in which a worked example is followed by one to three similar challenges.

2- Separate Condition: PCEX delivers the learning activities as separate ac-
tivities that allow students to access the worked examples and challenges directly
through the topic view provided by the practice system.

In this study, multiple instructors were involved in teaching the course. To
ensure consistency, we assigned the same study condition to all sections taught
by an instructor. The assignment process involved sorting the 10 sections by
enrollment count. The top four sections with the largest enrollments were each
assigned to one instructor. Conditions were then assigned based on enrollment,
with the largest section receiving the first condition, the second largest receiving
the second condition, and so forth. Ultimately, 6 sections were designated for the
combined condition, while 4 sections were assigned to the separate condition.

4.3 Data Collection

The practice portal saved all student interaction logs with the learning activities.
For problem-type content (challenges, tracing problems, and Parson’s problems)
the log includes the problem attempt with its result (i.e., correct/incorrect).
For example-type content, the log included data on two levels, access to worked
example and annotated line views, access to code animation, and animation step
views. We analyzed the logs of 190 students who consented to participate in the
research study, had interacted with at least one worked example and challenge,
and received a final course grade. In addition to the interaction logs, we had
access to course grades including individual assignment grades.
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5 Results

We reported statistical test results on collected interaction logs after carefully
checking the assumptions related to each test. The current study has a hierar-
chical study design due to how study conditions were assigned to the instructors
and sections. Where it was necessary, we conducted linear mixed effects analysis
using ImerTest packages in R [1,20] and included instructor and section identi-
fiers as random effects. To analyze students’ problem attempt logs, in which each
student had multiple attempts to problems in 15 topics, we also included student,
problem, and topic identifiers as random effects to resolve the non-independence
of data points in the dataset and control for variance in problem difficulty. We
reported LMM results together with the estimated marginal means, not with
the observed means. As indicated above, the practice system was introduced
after the first assignment. Following this, we included first assignment grades in
our regression models for controlling for the prior performance differences. We
performed process mining on interaction logs using the bupaR framework [18].

We present the study results following our hypotheses listed in Section 4.2;
the effect of the new design on students’ practice levels and the changes in
problem-solving performance. We also presented a deeper analysis that attempts
to uncover the reasons behind the results reported.

5.1 Practice with Worked Examples and Challenges

We began our analysis by examining hypothesis H1, which focuses on how
separating challenges from worked examples affects engagement with practice.
We first compared worked example coverage ratio between conditions, assessing
the ratio of explored worked examples to the total available examples. A lin-
ear mixed effects model (LMM) revealed that both conditions had comparable
worked example coverage (8 = —0.17,t = —1.15,p = .35), after controlling for
prior performance (i.e., first assignment grades) (8 = 0.19,¢ = 2.28,p = .02),
even though the example coverage was around 17% higher on average for the
combined condition. Second, we checked the differences in annotated line views
in worked examples and found that students in the separate condition viewed
significantly more lines in (M = 294) than combined condition (M = 143)
(8 = 150.9t = 3.13,p = .03). However, despite twice as many example lines
views, the students in the separate conditions did not spend more time study-
ing worked examples. Vice versa, the students in the combined condition spent
marginally more time on worked examples (M = 10mins) than on separate
condition (M = 6.7mins) despite the significantly lower number of line views
(8 = —0.41,t = —1.76,p = .08). In other words, example exploration was con-
siderably more shallow in the separate condition. Table 1 presents the overall
practice statistics for both conditions.

Next, we checked the content engagement differences for challenges. An LMM
showed no significant difference in challenge coverage ratio between conditions
(8 =-0.20,t = —1.70,p = .21), despite around 15% (10 problems) less coverage
by students in the separate condition. However, the total practice time with
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Table 1. Summary of practice details in the practice portal per study condition.

Combined (n=131)| Separate (n=59)

Measure Mean Median SD [Mean Median SD
Example coverage ratio |0.65 0.35 0.77|0.53 0.40 0.48
Line views 134.7 220.5 30.0311.3 267.1 203.0

Time on examples(mins) | 22.0 474 10.5|16.6 25.1 7.7
Challenge coverage ratio | 0.52 0.35 0.47]0.38 0.37 0.21
Time on challenges(mins)| 93.9 84.1 74.1|46.4 52.9 31.7
Session Count 134 11.0 85 |12.1 9.0 9.3
Total coverage ratio 0.63 061 0.29]051 044 0.30
Total practice time(mins)|432.0 392.2 274.0{334.8 262.0 232.0

challenges was significantly longer in the combined condition (M = 53mins)
than in the separate condition (M = 21mins) (8 = —0.95,t = —3.12,p = .045),
i.e., the students spent twice as much time on average working on challenges
combined with worked examples.

To have a more robust view of differences between the two conditions, we
performed additional tests to see whether students had different levels of engage-
ment (i.e., coverage ratios) with other activity types, such as Parson’s problems,
tracing problems, and animated examples. An LMM revealed no significant dif-
ferences between conditions indicating that students had comparable levels of
activity in other learning items. This suggests that the groups were otherwise
comparable in their engagement with practice content and that the observed in-
crease in student engagement with challenges and deeper exploration of examples
in the combined condition could be attributed to the package-level organization
of this content.

5.2 Problem Solving Performance

We continue our analyses to check the problem-solving performance of students
in both conditions, mainly focusing on challenges (H2). We evaluated perfor-
mance differences by comparing the success rates of students on challenges, i.e.,
the ratio of correct attempts to total attempts. Thus, we calculated a success
rate for every student and the challenge that they attempted. An LMM revealed
that students in the combined condition had significantly higher success rates
on challenges (M = 0.32) than students in the separate condition (M = 0.25)
(8 =—-0.07,t = —2.32,p = .022) while the first assignment grade (a measure of
the prior performance) was not a significant factor (5 = 0.04,¢t = 1.21,p = .23).
We also checked students’ first-attempt success rates and found that students
in the combined condition had solved the challenges more successfully in their
first attempts (M = 0.17) compared to the separate condition (M = 0.12)
(8 = 0.05,t = —1.99,p = .048), after controlling for their prior performance
(8=0.04,t = 1.03,p = .30). A similar effect was not observed for other types of
problems, an LMM indicated that students under both conditions had similar
success rates (8 = —0.01,t = —0.15,p = .88).

Another important measure of the problem-solving process is the persistence
of the students. Persistent students might eventually solve a problem despite
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initial failed attempts (productive persistence). We labelled each problem as
eventually solved or left unsolved, and an LMM showed that the combined de-
livery of worked examples and challenges led to fewer problems left unsolved
than the separate delivery (8 = 0.11,¢ = 2.24,p = .027) with no significant
effect of past performance(8 = —0.09,t = —1.49, p = .14). The students in the
combined condition were more persistent, leaving 11% fewer problems unsolved.

5.3 How Examples and Challenges Reinforce Each Other?

In previous sections, we showed that students in the combined condition studied
worked examples and practiced with challenges much more extensively than the
students in the separate condition. Moreover, the packaging of examples and
challenges led to higher success rates in challenges on average and on the first
attempt, as well as higher persistence that left fewer unsolved challenges. These
results suggest that examples and challenges surprisingly reinforced each other
when combined into a package. In this section, we performed a deeper analysis
to uncover the possible mechanism of this reinforcement.

We performed process mining on student interaction logs focusing on the
transitions between worked examples and challenges. We examined the process
maps generated for both study conditions and compared the percentage of tran-
sitions between specific practice events. Table 2 summarizes the transitional
patterns observed in the process maps that we think played a critical role in the
observed results.

Table 2. Percentage of transitions observed in the process maps per study condition.
Top part of the table shows transitions after a challenge view while the bottom part
shows transitions following an incorrect challenge attempt.

Activity Transition Combined |Separate
Challenge View — Challenge Attempt 68.2 67.0
Challenge View — Example View 25.1 2.3
Challenge View — Challenge View 3.0 24.4
Challenge View — Other 3.7 6.3
Incorrect Challenge — Correct Challenge 15.0 20.0
Incorrect Challenge — Incorrect Challenge 73.3 77.0
Incorrect Challenge — Example View 9.8 0.6
Incorrect Challenge — Other 1.9 2.4

We first checked what students decided to perform right after opening a
challenge activity. There were four main actions that a student could perform. (1)
Make an attempt to solve the challenge (Challenge View — Challenge Attempt),
(2) Close the current challenge and open another (or, rarely, the same) challenge
(Challenge View — Challenge View), (3) View a worked example (Challenge
View — Example View), and (4) close the current challenge and open/attempt
another type of activity other than challenge or example (Challenge View —
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Other). As highlighted in the first row of Table 2, students in the combined
condition decided to go back to the starting example right after seeing a challenge
in 256% of the time, while the students in the separate condition performed a
transition to an example only in 2.3% of the time.

Similarly, we examined what strategies the student used after an incorrect
attempt on a challenge. The bottom part of Table 2 summarizes the transi-
tion percentages related to incorrect attempts. Again, students had four options
after an incorrect attempt. (1) Make another attempt and solve the challenge
(Incorrect Challenge — Correct Challenge), or (2) Make another attempt and
fail again (Incorrect Challenge — Incorrect Challenge), (3) viewing a worked
example (Incorrect Challenge — Example View), or (4) move to a different type
of content to practice (Incorrect Challenge — Other). As summarized in Table
2, in the combined condition students viewed a worked example after failing to
solve a challenge in around 10% of all possible transitions. However, students
in the separate condition did not (or could not) use this strategy and viewed
a worked example only in 0.6% of the cases, 15 times more rarely compared to
the combined condition. Instead of finding a helpful example, they tried to solve
the challenge again (given a small number of fill-in options to try, it could be a
trial-and-error strategy).

5.4 Conceptual Similarity between Examples and Challenges

We further explored the underlying reasons behind the effects of packaged de-
livery of examples and challenges. Why was providing the same set of activities
separately within a topic not as effective as using a combined approach? To ex-
plore this issue, we concentrated on the conceptual representation of examples
and challenges. We parsed each worked example and challenge to extract a vector
of programming concepts used in its code using a Python concept parser tool?.
The parser tool represents each Python program as a unique set of concepts
using an ontology constructed from the Python abstract syntax tree (ABT).
Using these conceptual representations, we could measure how similar a specific
challenge is to a specific worked example on the concept level by computing
the cosine similarity between concept representations. We utilized cosine sim-
ilarity for its simplicity and we wanted to demonstrate the situation without
introducing more complex similarity techniques and measures.

First, we calculated the concept similarity of a challenge to its associated
worked example, i.e., the example that was packaged together with that chal-
lenge. This similarity represents the situation in the combined condition. Second,
we calculated the concept similarity between a challenge and all worked examples
available within the same topic. This way we checked how similar a challenge is,
on average, to the whole set of examples provided in the same topic, reflecting
the case in the separate condition in which students practiced with examples
and challenges without an explicit connection. Then, we calculated the average
concept similarity per topic following the first, i.e., package-based, and second,

3 https://acos.cs.hut.fi/python-parser
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i.e., separate-based, approach. Finally, we checked statistically significant differ-
ences in average similarities between package- and separate-based approaches.
A paired Wilcoxon signed rank test revealed that challenges were significantly
more similar on concept level to the worked examples in the same package
(M = 0.91) than to the worked examples within the same topic (M = 0.79)
(V =66,p < .001,r = 0.86). This provides an evidence that examples and chal-
lenges within the same package are more likely to focus on the same program-
ming concepts and thus reinforce each other, than arbitrary pairs of examples
and challenges within a topic.

6 Summary and Discussion

We investigated the effects of learning content organization at different levels
of granularity by conducting a semester-long classroom study. In one condition,
students accessed worked examples and challenges within a coarse-grain topic.
In the other condition, the students worked with examples and challenges com-
bined into finer-granularity packages. The results showed that allowing students
to access challenges as separate practice items on the topic level did not increase
their engagement with the challenges (failed to support Hla). Furthermore, de-
spite extensive study of line explanations under the separate condition, students
in the combined condition had a deeper exploration of worked examples (failed
to support H1b). The packaging of examples and challenges on a finer-grained
level supported student problem-solving performance and led to higher success
rates and persistence in challenges (failed to support H2).

Bringing together the results of the study, we could hypothesize that pack-
aging similar examples and challenges together affected student practice with
examples and challenges in two different ways. The process mining analysis ex-
plained one possible way for the examples and challenges to reinforce each other.
In the combined condition, the starting example, i.e., the source of knowledge
for solving a specific type of completion problem, was easily accessible by nav-
igating back with a simple click to study it again. We observed that students
frequently used this feature and followed a “return to example” strategy when
they felt not ready to solve the challenge or failed to solve it. In contrast, al-
though in the separate condition, the same example was also available in the
topic, it was hard to locate it among others, so the students almost never tried
to do it. Instead, they closed the challenge without an attempt to solve it and
opened another challenge, probably, in the hope that it would be easier to solve.
The increased persistence rates in the combined condition indicated that going
back to the example was, indeed, helpful in gaining the necessary knowledge to
solve the challenge.

The second way that likely affected the work with examples and challenges is
that closely packaging these types of content decreased student chances to ignore
one of these types offering a better opportunity to benefit from their comple-
mentary nature. On the one hand, students were forced to encounter an example
before trying a group of similar challenges, which gave them the opportunity to
be better prepared to solve the problems. In the separate condition, with more
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freedom of navigation, students could jump to challenges unprepared, without
studying an example. On the other hand, separating worked examples from self-
assessment problems could cause students to form an “illusion of understanding”,
i.e., believing they have understood the material upon seeing worked examples
and lead to bias in their meta-cognitive judgements. The illusion of understand-
ing is a known issue in learning from worked examples and was observed in
several studies [8,25]. In this case, the completion problems placed right after
the worked examples could offer an effective and effortless way to engage students
in self-assessing their knowledge to check whether the example was really un-
derstood [22]. We believe that easy cross-navigation and mutual re-enforcement
provided by the packaging of examples and challenges contributed to the differ-
ences observed in the study: significantly increased success, persistent rates, and
a deeper study of examples.

The remaining question to answer is why the packaged delivery of examples
and challenges was helpful for learning while the availability of the same ex-
amples and challenges within the topic failed to produce the same effect when
they were delivered separately. A possible reason for this difference is that the
topic is a relatively large unit of programming knowledge. Each topic usually
introduces new programming constructs (i.e., while-loop) and the SLC assem-
bled under the topic typically explains how this construct works and how it
could be used to solve typical programming problems. Yet, due to the nature
of programming problems, the new constructs could be used in combination
with previously learned constructs for solving considerably different program-
ming problems. Based on the previous research it could be argued that typical
programming problems introduced through worked examples and challenges rep-
resent different programming patterns [28,31], i.e., use programming constructs
in different ways and combinations. These patterns represent important sub-
components of programming knowledge to be learned. In this situation, coupling
examples and challenges to focus on learning these smaller knowledge compo-
nents could help in mastering programming knowledge while spreading examples
and challenges related to different patterns over the large topic could hinder this
process. The conceptual similarity analysis demonstrated that the examples and
challenges in small packages concentrates on more closely related programming
constructs and reinforce one another, compared to random pairs of examples
and challenges within a topic.

To mitigate the adverse effects identified in this study resulting from unpack-
ing examples and challenges, a potential solution is to provide explicit guidance
to students similar to the one provided by the packaging, such as reliable content
item recommendations. For example, recommending a conceptually similar ex-
ample after failing to solve a problem or a challenge [16]. Such recommendation
techniques should be based on a deeper understanding of programming patterns
and the similarity between programming exercises.

Our study is subject to the self-selection bias since the use of examples and
challenges was non-mandatory. While we diligently verified our statistical analy-
sis, the study context (i.e., having multiple instructors) led to unbalanced study
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conditions. We plan to conduct a semester-long, randomized controlled experi-
ment at a different institution to verify our findings. Future work will examine
the effects of bundling on additional performance metrics within and outside the
practice system. Additionally, future studies might explore another version of
PCEX requiring students to write the entire lines of code instead of choosing
from multiple options.
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