
A Generic Approach to Adaptively-Secure

Broadcast Encryption in the Plain Model

Yao-Ching Hsieh∗ Brent Waters† David J. Wu‡

Abstract

Broadcast encryption allows a user to encrypt a message to # recipients with a ciphertext whose size scales sub-

linearly with # . The natural security notion for broadcast encryption is adaptive security which allows an adversary

to choose the set of recipients after seeing the public parameters. Achieving adaptive security in broadcast encryption

is challenging, and in the plain model, the primary technique is the celebrated dual-systems approach, which can

be implemented over groups with bilinear maps. Unfortunately, it has been challenging to replicate the dual-systems

approach in other settings (e.g., with lattices or witness encryption). Moreover, even if we focus on pairing-based con-

structions, the dual-systems framework critically relies on decisional (and source-group) assumptions. We do not have

constructions of adaptively-secure broadcast encryption from search (or target-group) assumptions in the plain model.

Gentry and Waters (EUROCRYPT 2009) described a compiler that takes any semi-statically-secure broadcast

encryption scheme and transforms it into an adaptively-secure scheme in the random oraclemodel. While semi-static

security is easier to achieve and constructions are known fromwitness encryption as well as search (and target-group)

assumptions on pairing groups, the transformed scheme relies on random oracles. In this work, we show that using

publicly-sampleable projective PRGs, we can achieve adaptive security in the plain model. We then show how to build

publicly-sampleable projective PRGs from many standard number-theoretic assumptions (e.g., CDH, LWE, RSA).

Our compiler yields the first adaptively-secure broadcast encryption scheme from search assumptions as well

as the first such scheme from witness encryption in the plain model. We also obtain the first adaptively-secure

pairing-based scheme in the plain model with $_ (#)-size public keys and $_ (1)-size ciphertexts (where $_ (·)
suppresses polynomial factors in the security parameter _). Previous adaptively-secure pairing-based schemes in

the plain model with $_ (1)-size ciphertexts required $_ (# 2)-size public keys.

1 Introduction

Broadcast encryption [FN93] allows a sender to encrypt a message to an arbitrary set of recipients (⊆ [#] with
the property that any recipient 8 ∈ (in the broadcast set can decrypt the encrypted message. On the other hand,
even if all users outside (collude, they should not learn anything about the encrypted message. We say such schemes
are fully collusion resistant. Finally, the size of the encrypted broadcast should be much smaller than the number of
recipients |(|. A broadcast encryption scheme has optimal ciphertext size if the length of an encryption of a message
` is |` | + poly(_, log |(|) bits, where _ is the security parameter.

In the three decades since the work of Fiat and Naor [FN93], there has been a long line of work studying the fea-
sibility of broadcast encryption. Early works [NP00, NNL01, DF02, HS02, GST04] provide combinatoric constructions
where the size of the ciphertext scales linearly with either the number of recipients or the complement of the set (i.e.,
the number of revoked users). The first fully collusion-resistant broadcast encryption scheme with short ciphertexts
for all broadcast sets was the pairing-based scheme by Boneh, Gentry, and Waters [BGW05]. Subsequently, there have
been many constructions from pairing-based assumptions [BW06, GW09, Wat09, GKSW10, CGW15, GKW18, Wee21,
KMW23], new (non-standard) lattice assumptions [BV22, Wee22, Wee24, CW24, CHW25, Wee25], combinations of
pairing-based and lattice-based assumptions [GQWW19, AY20, AWY20], multilinear maps [BS03, BW13, BWZ14],
witness encryption [GVW19, FWW23], and indistinguishability obfuscation [BZ14].

∗University of Washington, ychsieh@cs.washington.edu. Part of this work was done while visiting UT Austin.
†UT Austin and NTT Research, bwaters@cs.utexas.edu.
‡UT Austin, dwu4@cs.utexas.edu

1

Adaptive security. The natural security notion in broadcast encryption is adaptive security, which requires security
to hold against adversaries that can choose the broadcast set (associated with the challenge ciphertext) after seeing the
scheme parameters. Achieving adaptive security is challenging. The first construction of fully collusion-resistant broad-
cast encryption by Boneh, Gentry, and Waters [BGW05] considered a relaxed notion of selective security where the
adversary is required to declare its challenge set (⊆ [#] at the beginning of the game (before seeing the scheme param-
eters). Many subsequent schemes constructing broadcast encryption from multilinear maps [BWZ14], indistinguisha-
bility obfuscation [BZ14], witness encryption [FWW23], or lattice-based assumptions [BV22, Wee22, Wee24, CW24,
Wee25] only achieve selective security (or a slight strengthening called “semi-static security” [GW09] which we discuss
below). Unlike identity-based encryption or attribute-based encryption, neither selective nor semi-static security imply
adaptive security via complexity leveraging. This is because the standard approach of having the reduction algorithm
guess the challenge set incurs a 2# -loss in the reduction advantage. Correspondingly, this would inflate the security pa-
rameter by at least a factor of # , in which case, the size of the ciphertext becomes linear in the total number of users # .

The primary approach for constructing adaptively-secure broadcast encryption scheme is Waters’ dual-system
technique [Wat09], which provides a general template for realizing adaptive security for broadcast encryption (and
other advanced encryption notions such as identity-based encryption and attribute-based encryption). In this setting,
the security proof steps through a sequence of hybrid arguments where the challenge ciphertext and the secret keys
for the broadcast encryption scheme are iteratively replaced by “semi-functional” variants. Once all of the secret
keys and the challenge ciphertext are replaced by semi-functional versions, security holds unconditionally. This type
of approach is taken in [Wat09, CGW15, Wee21, KMW23] to obtain adaptively-secure broadcast encryption from
pairing-based assumptions. An earlier approach for constructing adaptively-secure broadcast encryption scheme
by Boneh and Waters [BW06] showed how to use a traitor tracing scheme to implement a “dual-system-like” proof
structure of switching out decryption keys one-by-one in the security game.

While the dual-system technique has been a successful paradigm for achieving adaptively-secure broadcast
encryption, we have been unable to adapt these techniques to the lattice-based setting (or to constructions using
witness encryption). Even if we consider pairing-based constructions, the schemes that rely on the dual-system
methodology need to make decisional assumptions in the source group. This is needed to replace the ciphertext and
secret keys with their (computationally indistinguishable) semi-functional analogs. In contrast, if we consider earlier
selectively-secure pairing-based broadcast encryption schemes like [BGW05] or semi-statically-secure schemes such
as [GW09], their security can be based on a search assumption1 in the target group. Achieving adaptive security for
broadcast encryption from search or target-group assumptions remains open.

The Genty-Waters approach. The work of Gentry and Waters [GW09] provides an alternative route to adaptive
security. In their work, they first introduce the notion of semi-static security that is an intermediate notion between
selective and adaptive security. In semi-static security, the adversary is required to commit to a superset (∗ ⊆ [#]
at the beginning of the game and it is not allowed to request secret keys for any index 8 ∈ (∗. The adversary can
choose its challenge set (to be any subset (⊆ (∗ of the committed set. While semi-static security is stronger than
selective security, it is still easier to achieve compared to adaptive security. The construction from [GW09] yields
a semi-statically-secure broadcast encryption scheme from a computational target-group assumption. Similarly,
constructions of broadcast encryption from indistinguishability obfuscation [BZ14] and witness encryption [FWW23]
naturally satisfy semi-static security. The recent work of [CHW25] also shows how to construct a semi-statically-
secure broadcast encryption scheme from succinct LWE in the random oracle model. The work of [GW09] then
describes a generic compiler that takes any semi-statically secure broadcast encryption scheme and transforms
it into an adaptively-secure scheme in the random oracle model. Thus, [GW09] provides a template for building
adaptively-secure broadcast encryption from a broader range of cryptographic assumptions (by starting from a
semi-statically-secure scheme), but has the drawback of needing to rely on random oracles.

2

Construction |mpk| |sk| |ct| Assumption

[BW06]
√
#

√
#

√
subgroup decision

[Wat09] # # 1 2-Lin

[GKSW10]
√
#

√
2-Lin

[GKW18] # 2 1 1 :-Lin (: ≥ 1)
[Wee21] # 1/3 # 1/3 # 1/3 bilateral :-Lin (: ≥ 2)
This work + [GW09, §4] # 1 1 decisional @-BDHE-sum
This work + [GW09, §3]∗ # 2 1 1 search @-BDHE

This work + Construction 7.5 # 1+> (1) 1 1 search @-SC-BDHE

This work + [FWW23] # 1 1 witness encryption + LWE

∗ The proof from [GW09] relies on the decisional @-BDHE assumption, but using hard-core predi-
cates [GL89, HLR07], security can also be reduced to the search version of the same assumption.

Table 1: Comparison to adaptively-secure broadcast encryption schemes in the plain model. We measure the size
of the master public key mpk, secret key sk, and ciphertext ct as a function of the number of users # . We suppress
poly(_, log#) factors in all comparisons, where _ is a security parameter. For any constant : ∈ N, the (bilateral)
:-Lin assumption is a static decisional assumption over a prime-order pairing group. The parameter @ indicates
a @-type assumption where @ = poly(_, #). The @-bilinear Diffie-Hellman exponent (@-BDHE) assumption is a
@-type assumption introduced in [BBG05]. The @-BDHE-sum and @-SC-BDHE refer to the sum variant (c.f., [GW09]
and Assumption C.1) and the set-consistent variants of this assumption (c.f., [GLWW24] and Assumption 7.4),
respectively. The constructions obtained in this work are through applying our compiler (Construction 5.1) to the
listed semi-statically-secure broadcast encryption scheme.

1.1 Our Results

In this work, we revisit the Gentry-Waters compiler and show how to instantiate it in the plain model. Specifically,
we show that we can replace the random oracle in the [GW09] construction with a (publicly-sampleable) projective
pseudorandom generator (PRG) [ABI+23] and prove adaptive security of the resulting construction in the plain model.
While our construction relies on projective PRGs, our construction has a different syntax (i.e., requires a public-
sampleability property) and relies on a different and incomparable set of security requirements than the application to
computational secret sharing considered in [ABI+23]; we refer to Section 2 for more details. We then show how to adapt
the ideas underlying the projective PRG constructions from [ABI+23] to obtain publicly-sampleable projective PRGs
from a wide array of number-theoretic assumptions: the computational Diffie-Hellman (CDH) assumption (in pairing-
free groups), the computational bilinear Diffie-Hellman (CBDH) assumption, the RSA assumption, as well as the
learning with errors (LWE) assumption. Combining our new compiler with existing constructions of semi-statically-
secure broadcast encryption, we immediately obtain several new adaptively-secure broadcast encryption schemes:

• Security based on search assumptions. Applying our compiler to the scheme from [GW09, §3], we obtain
an adaptively-secure pairing-based broadcast encryption scheme from search assumptions in the plain model.
All previous pairing-based approaches either needed decisional assumptions or random oracles.

• A lattice-based instantiation via witness encryption. Applying our compiler to the scheme from [FWW23,
§4], we obtain an adaptively-secure broadcast encryption scheme from witness encryption together with
the learning with errors (LWE) assumption. Previous schemes only achieved semi-static security. Combined
with the witness encryption schemes from lattices [Tsa22, VWW22], we obtain the first adaptively-secure
broadcast encryption from lattice assumptions in the plain model (specifically, the private-coin evasive LWE
assumption [Wee22, Tsa22]).

1Technically, both [BGW05, GW09] prove security of their scheme using a decisional assumption in the target group, but we can replace these
with the corresponding search assumption using hard-core predicates [GL89, HLR07].

3

|crs| |pk| |sk| |ct| Security Assumption

[WQZD10], [KMW23, §A] # # 2 1 1 selective search @-BDHE∗

[FWW23, §7] + [ZZGQ23] # 2 # 1 1 selective :-Lin (: ≥ 1)†

[CW24] # 2 # 1 1 selective @-succinct LWE

[BZ14] – 1 1 1 semi-static 8O + one-way functions
[FWW23, §4] 1 1 1 1 semi-static witness encryption + LWE
[KMW23, §5] # # 1 1 semi-static search @-BDHE∗

[KMW23, §6] # 2 # 1 1 adaptive :-Lin (: ≥ 1)

This work + [KMW23, §5] # # 1 1 adaptive search @-BDHE
This work + [FWW23] # 1 1 1 adaptive witness encryption + LWE

∗While the analysis in [KMW23, §5, §A] proves security from the decisional @-bilinear Diffie-Hellman exponent (BDHE)
assumption, it is straightforward to modify the scheme to obtain security from the search version of the assumption (via
hard-core predicates [GL89, HLR07]).
† The work of [FWW23] show a generic transformation from any registered attribute-based encryption (ABE)
scheme [HLWW23] to a distributed broadcast encryption scheme. Here, we consider the instantiation using a pairing-based
registered ABE scheme from the :-Lin assumption [ZZGQ23] (or alternatively, [AT24]). With @-type assumptions, we can
reduce the public parameter size to # 1+> (1) by applying the [FWW23] compiler to the registered ABE scheme from [GLWW24].

Table 2: Comparison to distributed broadcast encryption schemes in the plain model. We measure the size of the
common reference string crs, the size of an individual user’s public key pk, and the size of the secret key sk as a function
of the number of users # . We suppress poly(_, log#) factors in all comparisons, where _ is a security parameter.
The parameter @ indicates a @-type assumption where @ = poly(_, #). The constructions obtained in this work are
through applying our compiler (Construction A.2) to the listed semi-statically-secure broadcast encryption scheme.

• Schemes with sub-quadratic public keys. Applying our compiler to the scheme from [GW09, §4], we obtain
a pairing-based broadcast encryption scheme in the plain model for # users where the public key contains
$ (#) group elements, and the secret keys and ciphertext contain $ (1) group elements. Previous schemes with
constant size ciphertexts [GKW18] had a quadratic-size public key (i.e., |mpk| = $ (# 2)). Our construction
with linear-size public keys relies on a decisional assumption. In this work, we also give a new construction of
a semi-statically-secure broadcast encryption scheme with a public key of nearly linear size (i.e., # 1+> (1)) and
constant-size secret keys and ciphertexts where security is based on search assumptions. Coupled with our
compiler, this yields an adaptively-secure broadcast encryption with the same efficiency (and security based on
search assumptions).

We refer to Table 1 for a comparison of our new constructions with existing adaptively-secure broadcast encryption
schemes in the plain model.

Application to distributed broadcast encryption. Distributed broadcast encryption [WQZD10, BZ14] is a trust-
less variant of broadcast encryption where instead of a central authority generating decryption keys for individual
users, users instead sample their own public/secret key. In this model, there is a one-time setup procedure that
outputs a common reference string (CRS) that users reference when generating their keys. Anyone can encrypt to
an arbitrary set of public keys, and the resulting ciphertext must satisfy the usual succinctness requirement. The
work of [KMW23] shows that the Gentry-Waters compiler can also be used to transform a semi-statically-secure
distributed broadcast encryption scheme into an adaptively secure scheme in the random oracle model.

In this work, we show that our approach based on publicly-sampleable projective PRGs can also be used to
upgrade any semi-statically-secure distributed broadcast encryption scheme into an adaptively-secure scheme. If
we apply our construction to the recent pairing-based semi-statically-secure distributed broadcast encryption scheme
from [KMW23], we obtain the first adaptively-secure construction with linear-size public parameters (and also
the first scheme whose security only relies on search assumptions). Previous adaptively-secure schemes (in the

4

plain model) required quadratic-size public parameters. Applying our compiler to [FWW23], we obtain the first
adaptively-secure distributed broadcast encryption scheme from lattice assumptions.2 We provide a comparison to
previous constructions in Table 2.

2 Technical Overview

We first recall the syntax of a broadcast encryption scheme [FN93, BGW05]. Let # be the number of users in the
system. Each user has a distinct index 8 ∈ [#]. Then, a broadcast encryption consists of the following algorithms:

• Setup: The setup algorithm generates the master public key mpk together with a master secret key msk (used
to generate user secret keys).

• Key generation: The key-generation algorithm takes the master secret key msk and an index 8 ∈ [#] and
outputs the secret key sk8 for user 8 .

• Encryption: The encryption algorithm takes the master public keympk, a set of users (⊆ [#], and a message
`, and outputs a ciphertext ct.

• Decryption: The decryption algorithm takes as input a ciphertext ct, the associated broadcast set (⊆ [#],
and a secret key sk8 for some index 8 ∈ (, and outputs a message `.

The correctness requirement says that if ct is an encryption of ` to a set (, then decrypting ct using any key sk8 for
an index 8 ∈ (should recover the message. The succinctness requirement says that the size of the ciphertext ct output
by the encryption algorithm should be sublinear in the size of the broadcast set |(|.

Security for broadcast encryption. The starting point is the Gentry-Waters compiler [GW09] that generically
transforms any semi-statically-secure broadcast encryption scheme into an adaptively-secure scheme in the random
oracle model. We recall the definitions of adaptive security and semi-static security for broadcast encryption. We
define two experiments, parameterized by a bit 1 ∈ {0, 1}.

• Setup phase: The challenger runs the setup algorithm to obtain the master public key mpk and the master
secret key msk for the encryption scheme. The challenger gives mpk to the adversary.

• Query phase: The adversary can now (adaptively) request secret keys for users 8 ∈ [#]. On each query, the
challenger responds with the secret key sk8 for user 8 .

• Challenge phase: Once the adversary is done making key-generation queries, it specifies a challenge set
(⊆ [#] and a pair of challenge messages `0, `1. The requirement is that (does not contain any index 8 ∈ [#]
for which the adversary made a key-generation query. The adversary also specifies a pair of challenge messages
`0, `1. The challenger responds with an encryption of `1 (where 1 ∈ {0, 1}) to the set (.

• Output phase: The adversary then output a guess 1′ ∈ {0, 1}, which is the output of the experiment.

A broadcast encryption scheme is adaptively-secure if the output of the experiment when 1 = 0 is computationally
indistinguishable from the output when 1 = 1. Next, semi-static security corresponds to the following relaxation
on adaptive security:

• Setup phase: At the beginning of the setup phase (before seeingmpk), the adversary commits to a set (∗ ⊆ [#].

• Query phase: The adversary is no longer allowed to issue key-generation queries for any 8 ∈ (∗.

• Challenge phase: The challenge set (must be a subset of the committed set (∗ (i.e., (⊆ (∗).

2A concurrent work [CHW25] shows how to construct a semi-static distributed broadcast encryption scheme from the succinct LWE assumption
in the random oracle model. They then apply the Gentry-Waters compiler [GW09] to obtain an adaptively-secure scheme in the random oracle
model. This work gives a construction in the plain model by applying our compiler to the [FWW23] distributed broadcast encryption scheme
based on witness encryption (and LWE).

5

In other words, in semi-static security, the adversary must commit to a superset of its eventual challenge set and it
is not allowed to query for any keys in the committed set. The difference between semi-static security and selective
security is the adversary does not have to commit to its exact challenge set (during the setup phase.

The Gentry-Waters compiler. We now recall the Gentry-Waters [GW09] compiler that transforms any semi-
statically-secure broadcast encryption scheme into an adaptively-secure scheme in the random oracle model. We
start by describing a simplified version of their approach that does not use random oracles, but has long ciphertexts:

• Setup: To construct an adaptively-secure secure scheme with # users, [GW09] instantiates the semi-statically-
secure scheme with 2# users. We index the 2# users for the semi-statically-secure scheme by a pair (8, 1)
where 8 ∈ [#] and 1 ∈ {0, 1}. The master public key is the master public key for the underlying semi-statically
secure scheme. Let sk′8,1 denote the secret keys for user (8, 1) for the underlying semi-statically-secure scheme.

• Key-generation: To generate a key for user 8 , the key-generation algorithm samples a bit B8
r← {0, 1}. The key

for user 8 is the pair sk8 = (B8 , sk′8,B8).

• Encryption: To encrypt a message ` with respect to a set (⊆ [#], the encryption oracle samples C8
r← {0, 1}

for each 8 ∈ (. The encryption algorithm encrypts ` with respect to the set (′ = {(8, C8) : 8 ∈ (} as well as
(̄ ′ = {(8, 1 − C8) : 8 ∈ (} using the underlying semi-statically-secure scheme and obtains ciphertext ct′0, ct

′
1. The

ciphertext is the triple ct =
(
{(8, C8)}8∈(, ct′0, ct′1

)
.

• Decryption: If 8 ∈ (, then (8, B8) ∈ (or (8, B8) ∈ (′, so user 8 can use sk8 = (B8 , sk′8,B8) to decrypt either ct′0 or ct
′
1

and correctness follows.

To argue security, the work of [GW09] first leverages semi-static security to switch ct′0 from an encryption of `0 to
an encryption of `1. Then, by an analogous argument, they switch ct′1 from an encryption of `0 to an encryption
of `1. This suffices to argue that an encryption of `0 is computationally indistinguishable from an encryption of `1.
Here, we sketch the argument for switching ct′0. Let A be an adversary for the adaptive security game.

• Setup phase: At the start of the game, the reduction algorithm (playing the semi-static security game) samples
B8

r← {0, 1} for all 8 ∈ [#] and commits to the set (∗ = {(8, 1 − B8) : 8 ∈ [#]}. The reduction algorithm forwards
the master public key for the semi-statically-secure scheme to A.

• Key-generation phase: Whenever algorithm A makes a key-generation query for an index 8 ∈ [#], the
reduction algorithm makes a key-generation query (8, B8) to the semi-static challenger and receives a key sk8,B8 .
By construction (8, B8) ∉ (∗, so this is allowed. The reduction algorithm replies to A with sk8 = (B8 , sk8,B8).

• Challenge phase: When algorithm A makes a challenge query for a set (⊆ [#] and messages `0, `1, the
reduction algorithm makes a challenge query on the set (= {(8, 1 − B8) : 8 ∈ (} ⊆ (∗ and messages `0, `1 to its
challenger and receives a ciphertext ct′0. Finally, the reduction defines C8 := 1 − B8 for all 8 ∈ (and constructs ct′1
as in the real scheme (as an encryption of `0 for set {(8, 1 − C8) : 8 ∈ (}). The reduction algorithm replies with
the ciphertext ct =

(
{(8, C8)}8∈(, ct′0, ct′1

)
.

By construction, the reduction algorithm is a valid semi-static adversary. Moreover, since it samples B8
r← {0, 1}, the

secret keys are also perfectly distributed. It suffices to consider the distribution of the random string C . Recall that
in the adaptive security game, the adversary cannot ask for the key for any index 8 ∈ (appearing in the challenge
set. This means the value of C8 = 1 − B8 is perfectly hidden from the view of the adversary, and so the distribution
of C8 is independent and uniform, as required. We now highlight two important properties of this reduction:

• Two-key approach. Every user has two possible secret keys, but the key-generation algorithm only gives out
the secret key for one of them (chosen at random). In the security analysis, the reduction algorithm knows one
of the two keys for each user, which allows it to answer key-generation queries for every user. At the same
time, the challenge ciphertext is encrypted to the set of keys the reduction algorithm does not know, which is
essential for being able to invoke semi-static security.

6

• Challenge ciphertext hides unused bits. In the real scheme, the bit B8 ∈ {0, 1} associated with each secret
key sk8 is uniform and independent. The same is true for the bits C8 ∈ {0, 1} in the challenge ciphertext. In the
security analysis, the reduction algorithm samples a single string B r← {0, 1} and uses B8 for the key-generation
queries and sets C8 = 1−B8 in the challenge ciphertext. At first glance, this may appear to violate the independence
of B8 and C8 . The key is that the reduction only gives out B8 for 8 ∉ (and C8 = 1 − B8 for 8 ∈ ((because the
adversary cannot request keys for users in the challenge set). Since the adversary sees at most one of B8 or
C8 = 1− B8 for each 8 ∈ [#], the view of the adversary is correctly simulated. Thus, the reduction critically relies
on the fact that the simulated challenge ciphertext hides B8 for all 8 ∉ (. This was trivial to argue for the above
construction with long ciphertexts, but will be important in our construction.

As described, the transformation yields a scheme with long ciphertexts (linear in the size of the broadcast set) because
the string C in the ciphertext is |(| bits long. The work of [GW09] leverages the random oracle to compress C . Namely,
the ciphertext contains a (short) seed f r← {0, 1}d , and each bit C8 is obtained by computing C8 ←H(f, 8) whereH
is modeled as a random oracle (i.e., ct = (f, ct′0, ct′1)). In the security analysis, the reduction algorithm “programs”
the random oracle to output C8 = H(f, 8) := 1 − B8 . Importantly, the values ofH(f, 8) for 8 ∉ (are not programmed
(they are uniform and independent of B8). This ensures that the challenge ciphertext hides the value of B8 for 8 ∉ (.
This yields a construction with short ciphertexts.

Replacing the random oracle with a PRG. The Gentry-Waters compiler relies on the random oracle to compress

an |(|-bit random string into a _-bit string. If we want to avoid the random oracle, a natural approach is to replace
it with a pseudorandom generator (PRG). For example, instead of computing C8 ←H(A, 8), the encryption algorithm
could instead sample a seed f ∈ {0, 1}_ for a PRG, compute C = PRG(f) ∈ {0, 1}= , and then encrypt according to
the bits of C (corresponding to indices 8 ∈ (). This approach preserves correctness, so the question is security.

Consider the adaptation of the previous Gentry-Waters argument where the reduction algorithm samples
f

r← {0, 1}_ in the setup phase and then sets B = PRG(f). In the challenge phase, the reduction algorithm sets f to be
the random seed in the challenge ciphertext (i.e., ct = (f, ct′0, ct′1)). Since f is a random seed, the marginal distribution
of the challenge ciphertext is correctly simulated. However, this approach does not satisfy the second requirement
described above; the challenge ciphertext no longer hides the value of B8 for 8 ∉ (. Indeed, the string f in the challenge
ciphertext completely reveals B8 , and as a result, there is a clear correlation between the key-generation queries and
the challenge ciphertext (that would not exist in the real scheme). Thus, the naïve reduction strategy is not sufficient.

Projective PRGs. To implement the Gentry-Waters proof strategy, we need a way to take the PRG seed f (that
determines the string B = PRG(f)) and constrain it to a new seed f(such that PRG(f() agrees with (on all indices
8 ∈ (, and moreover, the bits B8 for 8 ∉ (look random even given f(. This is precisely the property satisfied by
a projective PRG [ABI+23], a notion recently introduced in the study of succinct computational secret sharing.
Importantly for our application to broadcast encryption, the length of the constrained seed f̂ must be sublinear in
the size of (.3 Formally, a projective PRG with output length # consists of three algorithms:

• Setup(1_, 1#) → (pp, f): The setup algorithm takes as input the security parameter _ and the PRG output
length # and outputs the set of public parameters pp along with a PRG seed f .

• Project(pp, f, () → f̂(: The project algorithm takes the public parameters pp, the seed f and a set (⊆ [#]
and outputs a projected seed f̂(. We require that the size of the projected seed f̂(to be sublinear in |(|.

• Eval(pp, f̂(, (, 8) → C8 : The evaluation algorithm takes the public parameters pp, a projected seed f̂(, the
associated set (⊆ [#], and an index 8 ∈ (, and outputs the bit C8 ∈ {0, 1} at index 8 .

For a seed f , we define the PRG output to be the string B = PRG(f) ∈ {0, 1}# where B8 = Eval(pp, f̂[#], [#], 8) and
f̂[#] ← Project(pp, f, [#]) is the seed projected onto the full output space [#]. Then, we require the projective PRG
to satisfy the following properties:

3Constrained pseudorandom functions (PRFs) [BW13] are an analog of projective PRGs for the setting of PRFs. Unlike projective PRGs, these
do not have a succinctness requirement.

7

• Correctness: If we project a seed f onto a set (, the projected seed should evaluate to the same value as
PRG(f) on all inputs 8 ∈ (. Namely, if f̂(← Project(pp, f, (), then Eval(f̂(, (, 8) = Eval(f̂[#], [#], 8) for all
8 ∈ (.

• Adaptive pseudorandomness: Given a projected seed f̂(for some set (, the bits B8 for 8 ∉ (remain
pseudorandom where B = PRG(f). For our application to adaptively-secure broadcast encryption, we require
pseudorandomness to hold against an adaptive adversary that can choose the set (after seeing arbitrary bits of
B (so long as the challenge set (excludes such bits).

Suppose we now substitute a projective PRG for the random oracle in the Gentry-Waters construction. In the proof,
the reduction algorithm would sample a PRG seed f

r← {0, 1}_ and derive the string B ← PRG(f). The challenge
ciphertext would in turn contain a seed f̂(projected to the set (. This ensures that Eval(pp, f̂(, (, 8) agrees with B8
on 8 ∈ (and that B8 is pseudorandom even given f̂(. This satisfies the two key requirements needed to carry out the
Gentry-Waters proof strategy without random oracles.

Publicly-sampleable projective PRGs. Substituting a projective PRG introduces a new wrinkle into our con-
struction. Namely, each ciphertext in the (transformed) broadcast encryption scheme contains a seed for a projective
PRG (constrained to (). In our current abstraction, projective PRGs are defined with respect to a set of (long) public
parameters pp, and the seed f is tied to the choice of public parameters (this is necessary to support projection).
In these constructions, we cannot resample a seed independently of the public parameters, and since the public
parameters are long, we also cannot include a fresh set of public parameters as part of the ciphertext. Of course, we
also cannot give out the seed for the projective PRG as part of the public parameters either. Thus, it is unclear how
to support public encryption (which needs the ability to sample a constrained seed for the projective PRG). To resolve
this problem, we augment the projective PRG with an additional public sampling algorithm:

• Samp(pp, () → f̂(: The sampling algorithm takes as input the public parameters pp and a set (and outputs
a “simulated” seed f̃(.

Next, we require the projective PRG to satisfy a sampling indistinguishability property:

• Sampling indistinguishability: For all sets (⊆ [#], the simulated seed output by the public sampling
algorithm Samp(pp, () be computationally indistinguishable from the projected seed output by Project(pp, f, ().
In the formal distinguishing experiment, the adversary sees the public parameters pp and either a simulated
seed or a projected seed. Notably, it does not observe any output bits of the PRG.

In the construction, the (honest) encryption algorithm samples a seed using Samp(pp, () while the reduction con-
structs it using the projection algorithm. This allows us to implement the Gentry-Waters proof strategy without
random oracles. We provide the formal definition of publicly-sampleable projective PRGs in Section 4 and our
adaptation of the Gentry-Waters compiler in Section 5. An analogous compiler can also be used to upgrade any
semi-statically-secure distributed broadcast encryption scheme [WQZD10, BZ14] into an adaptively secure distributed
broadcast encryption scheme. We describe this compiler in Appendix A.

2.1 Constructing Publicly-Sampleable Projective PRGs.

The work of [ABI+23] shows how to construct projective PRGs with different efficiency properties from the deci-
sional Diffie-Hellman (DDH), decisional bilinear Diffie-Hellman (DBDH), RSA, and the learning with errors (LWE)
assumptions. The existing constructions do not provide an explicit public sampling algorithm nor do they satisfy
the new security notions we consider in this work (adaptive pseudorandomness and sampling indistinguishability).
However, it is possible to extend the existing constructions to satisfy our functionality and security requirements.
We start with a quick summary of our main constructions:

• Computational Diffie-Hellman: We start by showing how to construct a publicly-sampleable projective
PRG from the computational Diffie-Hellman assumption in a pairing-free group. The scheme has quadratic-size
public parameters (measured as a function of the output length). Our construction is a direct adaptation of the

8

DDH-based construction from [ABI+23, §3.4.1], except we introduce a secret shift to support public sampling
and also show that using hard-core predicates, we can base security on a search assumption rather than a
decisional assumption. The latter distinction is important for achieving the first adaptively-secure broadcast
encryption schemes from search assumptions.

• Computational bilinear Diffie-Hellman: Next, we show how a technique by Boyen and Waters [BW10] can
be used to reduce the public parameter size of the CDH construction from quadratic to linear when working
over a pairing group. This yields the first projective PRG from bilinear maps with linear-size public parameters;
the pairing-based construction from [ABI+23, §3.4.2] still requires quadratic-size public parameters.

• Learning with errors: We show how to adapt the LWE-based projective PRG from [ABI+23, Appendix A]
to obtain a publicly-sampleable projective PRG with linear-size public parameters. The main difference is
again introducing a secret shift to achieve the public sampling property. This scheme has linear-size public
parameters.

• RSA: Finally, we show that the RSA-based projective PRG from [ABI+23, §3.2] is also publicly-sampleable and
yields a publicly-sampleable projective PRG with linear-size public parameters (and can plausibly be made
constant-size; see Remark B.9).

To summarize, publicly-sampleable projective PRGs can be realized frommost standard number-theoretic assumptions.
Combined with our new compiler, this means building a semi-statically-secure broadcast encryption from any of
these assumptions immediately implies an adaptively-secure broadcast encryption scheme. We now provide a more
detailed overview of our constructions.

A construction from CDH. Our first construction is from the computational Diffie-Hellman problem where the
public parameters are quadratic in the output length of the PRG. Our construction is an adaptation of the projective
PRG scheme based on DDH from [ABI+23, §3.4.1]. One of the objectives in this work is to realize adaptive broadcast
encryption from search assumptions, which is the reason we focus on CDH rather than DDH. Note that the [ABI+23]
construction from DDH can easily be adapted to a construction from CDH (but the scheme does not support public
sampling). We work over a group G of prime order ? . Throughout, we use implicit notation to represent group
elements [EHK+13]: namely, for G ∈ Z? , we write [G]G := 6G .

• Setup: The setup algorithm first samples random exponents 08 , B8
r← Z? for all 8 ∈ [#] along with a blinding

factor U r← Z? . The public parameters consist of the group elements [08]G, [B8]G for all 8 ∈ [#] along with the
cross-terms [08B 9]G for all 9 ≠ 8 . The seed consists of the exponents f = (U, B1, . . . , B#).

• Evaluation: For each 8 ∈ [#], we define the 8th bit C8 of the PRG output to be a hard-core predicate hc applied
to a shifted diagonal term [08 (U + B8)]G: namely, C8 = hc([08 (U + B8)]G).

• Projection: The projected seed f̂(for a set (is f̂(:= U +∑
8∈(B8 ∈ Z? . In combination with the terms [08]G

and [08B 9]G for 9 ≠ 8 in the public parameters, this suffices to compute the output bit C8 = hc([08 (U + B8)]G):

f̂(· [08]G −
∑

9∈(\{8 }
[08B 9]G = [U08]G + [B808]G +

∑
9∈(\{8 }

[08B 9]G −
∑

9∈(\{8 }
[08B 9]G = [08 (U + B8)]G.

• Public sampling: The simulated key for any set (is a uniform random field element f̃(
r← Z? .

We now check that this satisfies our security requirements:

• Adaptive pseudorandomness: Under CDH, it is easy to show that [08B8]G is computationally unpredictable
given the public parameters [08]G, [B8]G, and [08B 9]G for 8 ≠ 9 and the projected seed f̂8 = U + ∑

9∈(B 9 . In
particular, the reduction algorithm gets [08]G and [B8]G from the CDH challenge and picks all other exponents
itself. Importantly, we only require unpredictability when 8 ∉ (, which allows the reduction to simulate f̂ . Since
[08B8]G is computationally unpredictable, the same holds for [08 (U + B8)]G. Finally, pseudorandomness follows
from the security of the hard-core predicate [GL89, HLR07] (see Theorem 3.2).

9

• Sampling indistinguishability: Observe that the public parameters pp are independent of U . Thus, over the
randomness of U r← Z? , for any set (, the distribution of a projected seed f̂(is a uniform random field element.
This is the same distribution as the f̃(output by the public sampling procedure.

The difference between our construction from the DDH-based construction from [ABI+23, §3.4.1] is the extra offset
U we introduce to support public sampling (and sampling indistinguishability) as well as the use of the hard-core
predicate to base security on CDH rather than DDH. Without the blinding factor U , one can use the public parameters
to test whether a projected seed is consistent with the public parameters or not. Namely, to check if a projected seed
f(for a set (is a valid projected seed, one simply takes an index 9 ∉ (and checks whether [0 9]G · f(=

∑
8∈([0 9B8]G,

which holds whenever f(=
∑

8∈(B8 is a valid projected seed. We provide the full details in Section 6.1.

Reducing the public parameter size using pairings. A disadvantage of the above CDH construction is the size of
the public parameters is quadratic in the output length. In the context of broadcast encryption, the PRG output length
corresponds to the number of users in the system, so using our CDH-based projective PRG to boost a semi-statically-
secure scheme to an adaptively-secure scheme would lead to a scheme with quadratic-size public parameters. A natural
question then is whether we can reduce this overhead. Here, we show that the approach of Boyen and Waters [BW10]
can be directly applied to obtain a publicly-sampleable projective PRG with a linear-size public parameters. This gives
the first projective PRG with linear-size public parameters from standard pairing assumptions. Previously, the work
of [ABI+23] showed how to use pairings to obtain a “reusable” projective PRG, but still with quadratic-size public
parameters. Our application does not rely on reusability, and thus, we are able to achieve significant compression.

Let 4 : G × G→ G) be an efficiently-computable, non-degenerate (symmetric) bilinear map, where G and G) are
groups of prime order ? . We represent elements ofG andG) implicitly as [G]G and [G]G) , respectively. Boyen andWa-
ters [BW10] show how to use a bilinear map to compress [08B 9]G) for all 8 ≠ 9 with$ (#) elements inG, while simulta-
neously ensuring that the non-cross-terms [08B8]G) are hidden.4 Very briefly, the Boyen-Waters approach is as follows:

• The public parameters contain encodings [08]G, [B8]G, [08 (W8 + X)]G, [B8 (W8 + X)]G for all 8 ∈ [#], where W, X r←
Z? are random blinding factors.

• Observe now that the public parameters allow one to compute [W08B 9]G) for all 8 ≠ 9 , but not terms of the form
[W08B8]G) . To see this, first observe

[08]G · [B 9 (W 9 + X)]G − [B 9]G · [08 (W8 + X)]G = [W08B 9 (9 − 8)]G) .

When 8 ≠ 9 , the user can recover [W08B 9]G) = [W08B 9 (9 − 8)]G) · (9 − 8)−1. However, when 8 = 9 , then the above
expression yields the identity element, and the user is unable to compute [W08B8]G) .

We obtain a publicly-sampleable projective PRG with linear-size public parameters by using the above technique
to compress the public parameters from our basic CDH construction described above (where the evaluations now
happen in the target group G)). Hardness in turn relies on the computational bilinear Diffie-Hellman assumption (i.e.,
given random elements [D]G, [E]G, [F]G, it is hard to compute [DEF]G)). We provide the full details in Section 6.2.
As noted above, our construction gives a pairing-based projective PRG with linear-size public parameters, which
improves upon the construction from [ABI+23] which needed quadratic-size public parameters. Note though that
the construction from [ABI+23] satisfies an additional reusability property that is important for their applications,
which our construction does not satisfy; our application to broadcast encryption does not need reusability.

A construction from LWE. We can also build a publicly-sampleable projective PRG from the learning with errors
(LWE) assumption [Reg05]. This construction can be viewed as a direct translation of the construction from CDH,
and follows the analogous lattice-based instantiation proposed in [ABI+23]. Essentially, we replace the exponents
[08]G and [B8]G in the public parameters with random vector a8 , s8

r← Z=@ . The cross terms [08B 9]G then consist of
LWE samples sT9a8 + 48, 9 , where 48, 9 is a small noise term. Under the plain LWE assumption, given a1, . . . , a# and
s9a

T

8 + 48, 9 , the value of the (noise-free) non-cross-terms s8a8 are hidden. To support public sampling and sampling

4If we did not require the non-cross-terms to be hidden, then we could simply publish encodings of [08]G and [B8]G for all 8 ∈ [#], and use
the pairing to compute [08B 9]G) := [08]G · [B 9]G. The challenge is to reveal the cross-terms while hiding the non-cross-terms.

10

indistinguishability, we again introduce a random shift to the projected key: f̂(:= r+∑8∈(s8 , and define the evaluation
at 8 to be ⌊(r + s8)Ta8⌉, where ⌊·⌉ denotes the rounding operation (i.e., ⌊G⌉ outputs 0 if |G | < @/4 and 1 otherwise).
This yields a construction with quadratic-size public parameters.

To obtain a scheme with linear-size public parameters, we can rely on the same technique from [ABI+23] based
on key-homomorphic puncturable PRFs. Namely, instead of giving our sT9a8 + 48, 9 for all 9 ≠ 8 , the [ABI+23] shows
that we can instead give out a “punctured key” s̃9 which can be used to compute sT9a8 + 48, 9 on all 8 ≠ 9 . This approach
can be concretely instantiated using the Brakerski-Vaikuntanathan [BV15] key-homomorphic constrained PRF. We
provide the formal details in Section 6.3.

A construction from RSA. Finally, in Appendix B, we also show that the projective PRG scheme based on
RSA from [ABI+23] satisfies our public-sampleability properties essentially with only a few syntactic modifications.
However, because the security properties we need in our work do not follow as a black-box from existing definitions,
we include a formal proof of our security requirements in Appendix B.

2.2 Semi-Statically-Secure Broadcast Encryption with Short Public Parameters

As a final contribution of this work, we also show how to construct a semi-statically-secure broadcast encryption
with nearly-linear-size public parameters (i.e., public parameters of size # 1+> (1)) and constant-size secret keys and
ciphertext from search assumptions. Previous pairing-based constructions of semi-statically-secure broadcast encryp-
tion with constant-size secret keys either needed quadratic-size public parameters [GW09, §3] or relied on decisional
assumptions [GW09, §4].5 The starting point of our construction is the construction from [GW09, Section 3], which
has an $ (# 2)-sized public key. Our construction proceeds as follows:

• Security from search assumption: The original construction [GW09, §3] relies on the decisional @-bilinear
Diffie-Hellman exponent (@-BDHE) assumption. This is a target group assumption that essentially asserts
the pseudorandomness of an element / ∈ G) in the target group. In the construction, / is used to blind the
message. Instead of relying on the pseudorandomness of / , we could alternatively rely on the unpredictability
of / and blind the message using a hard-core predicate on / (e.g., apply the Goldreich-Levin extractor to / to
derive a pseudorandom pad [GL89, HLR07]). This in turn allows us to base security on a search assumption
rather than a decisional assumption. Note that a similar approach of replacing a decisional assumption with
a search assumption does not seem applicable to adaptively-secure constructions based on the dual-systems
methodology [Wat09, CGW15, Wee21, KMW23]. A dual-systems proof operates by changing the distribution
of the challenge ciphertext and the secret keys in the security proof, and these changes rely on decisional
assumptions in a more fundamental manner.

• Reducing the CRS size: The quadratic-size public key in [GW09, §3] is due to the fact that the master public
key contains cross terms ℎ

A 9
8 for all 8 ≠ 9 ∈ [#]. These cross terms are needed to ensure decryption. In this

setting, we are not able to rely on the earlier cross-term compression approach of [BW10], because correctness
requires that the cross terms be given out in the base group rather than the target group. However, we are
able to apply the combinatoric approaches based on progression-free sets [ET36] from [Lip12, GLWW24].
This allows us to reduce the CRS size from quadratic to nearly linear (# 1+> (1)). Specifically, the key insight in
the [GLWW24] approach (in the context of reducing the CRS size in registered ABE schemes) is to choose the
values ℎ8 and A 9 in a correlated manner such there are many pairs of indices (8, 9) ≠ (:, ℓ) that share a common
cross-term (i.e., ℎ

A 9
8 = ℎ

Aℓ
:
). We show in Section 7 that a similar technique can be applied to the Gentry-Waters

broadcast encryption scheme to obtain a scheme with a nearly-linear-size public key.

Combining this semi-statically-secure broadcast encryption scheme with our publicly-sampleable projective PRG from
the computational bilinear Diffie-Hellman assumption, we obtain the first adaptively-secure broadcast encryption

5Technically, [GW09, §4] constructs an adaptively-secure identity-based broadcast encryption scheme in the random oracle model, but they note
that a variant of their construction gives a semi-statically-secure broadcast encryption scheme with linear-size public keys in the plain model.
For completeness, we provide an explicit description of this scheme in Appendix C. If we apply our compiler to this construction, we obtain
an adaptively-secure broadcast encryption with linear-size public keys in the plain model; see Table 1.

11

with a nearly-linear-size public key and constant-size secret keys and ciphertexts from a search @-type assumption
on bilinear groups.

3 Preliminaries

Throughout this work, we write _ to denote the security parameter. For a positive integer = ∈ N, we write
[=] := {1, . . . , =}. For positive integers 0, 1 ∈ N we write [0, 1] := {0, 0 + 1, . . . , 1}. For a positive integer ? ∈ N,
we write Z? to denote the ring of integers modulo ? . We write poly(_) to denote a fixed polynomial in _. We
write negl(_) to denote a function that is negligible in _ (i.e., a function that is > (_−2) for all 2 ∈ N). We say an
event occurs with overwhelming probability if the probability of its complement occurring is negligible. We say
an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. For two ensembles of
distributions D1 = {D1,_}_∈N and D2 = {D2,_}_∈N indexed by a security parameter, we say they are computationally
indistinguishable if for all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,�� Pr[A(1_, G) = 1 : G ← D1,_] − Pr[A(1_, G) = 1 : G ← D2,_]

�� = negl(_).

We say they are statistically indistinguishable if there exists a negligible function negl(·) such that for all _ ∈ N, the
statistical distance between them is negl(_).

Goldreich-Levin hardcore bit. In this work, we rely on the classic Goldreich-Levin hardcore bit [GL89] to achieve
security under search assumptions. Here, we state a formulation from [HLR07] that applies to any computationally
unpredictable random variable.

Definition 3.1 (Computational Unpredictablility). Let (-,.) = {(-_, ._)}_∈N be an ensemble of joint distribu-
tions over pairs of values. We say that - is computationally unpredictable given . if for all efficient (and possibly
non-uniform) adversaries A, there exist a negligible function negl(·) such that for all _ ∈ N,

Pr[A(1_, ~) = G : (G,~) ← (-_, ._)] = negl(_).

Theorem 3.2 (Goldreich-Levin [GL89, HLR07], adapted). Let (-,.) = {(-_, ._)}_∈N be an ensemble of joint distri-

butions over pairs of values, where the support of -_ is {0, 1}d (_) . Let hc(G, A) := 〈G, A 〉 be the Goldreich-Levin extractor.

Suppose that - is computationally unpredictable given . . Then, for all efficient (and possibly non-uniform) adversaries

A, there exists a negligible function negl(·) such that for all _ ∈ N,����Pr
[
A(1_, A , ~, hc(G, A)) = 1 :

(G,~) ← (-_, ._)
A

r← {0, 1}d (_)
]
− Pr

[
A(1_, A , ~, 1) = 1 :

(G,~) ← (-_, ._)
A

r← {0, 1}d (_) , 1 r← {0, 1}

] ���� = negl(_).

3.1 Broadcast Encryption

We now recall the formal definition of a broadcast encryption scheme [FN93].

Definition 3.3 (Broadcast Encryption). A broadcast encryption scheme is a tuple of efficient algorithmsΠBE = (Setup,
KeyGen, Enc,Dec) with the following syntax:

• Setup(1_, 1#) → (mpk,msk): On input the security parameter _ and the number of users# , the setup algorithm
outputs a master public key mpk and a master secret key msk.

• KeyGen(msk, 8) → sk8 : On input the master secret keymsk and an index 8 ∈ [#], the key-generation algorithm
outputs a secret key sk8 .

• Enc(mpk, (, `) → ct: On input the master public key mpk, a set (⊆ [#], and a message ` ∈ {0, 1}, the
encryption algorithm outputs a ciphertext ct.

• Dec(mpk, (, sk8 , ct) → `: On input the master public key mpk, a set of recipients (⊆ [#], a secret key sk8 ,
and a ciphertext ct, the decryption algorithm outputs a message ` ∈ {0, 1}.

12

We require that ΠBE satisfy the following properties:

• Correctness: For all _, # ∈ N, all sets (⊆ [#], all indices 8 ∈ (, all messages ` ∈ {0, 1}, all (mpk,msk) in the
support of Setup(1_, 1#), and all secret keys sk8 in the support of KeyGen(msk, 8), we have

Pr[Dec(mpk, (, sk8 , Enc(mpk, (, `)) = `] = 1.

• Adaptive security: For a security parameter _, an adversary A, and a bit V ∈ {0, 1}, we define the adaptive-
security experiment EXP(V)BE (1_,A):

– Setup: On input the security parameter 1_ , the adversary A outputs the number of users 1# . The
challenger computes (mpk,msk) ← Setup(1_, 1#) and gives mpk to A.

– Key-generation queries: AlgorithmA can now make (adaptive) key-generation queries. On each query,
algorithm A specifies an index 8 ∈ [#] and the challenger responds with sk8 ← KeyGen(msk, 8).

– Challenge query: After A finishes making evaluation queries, it outputs a set (⊆ [#] \ � , where
� ⊆ [#] is the set of indices on which algorithm A made a key-generation query. The challenger
computes ctV ← Enc(mpk, (, V) and replies to algorithm A with ctV .

– Output: At the end of the game, algorithmA outputs a bit1 ∈ {0, 1}, which is the output of the experiment.

We say that ΠBE satisfies adaptive security if for all efficient adversaries A, there exists a negligible function
negl(·) such that for all _ ∈ N,���Pr[EXP(0)BE (1_,A) = 1] − Pr[EXP(1)BE (1_,A) = 1]

��� = negl(_).

• Succinctness: For all _, # ∈ N, all key pairs (mpk,msk) in the support of Setup(1_, 1#), all sets (⊆ [#], all
bits ` ∈ {0, 1}, and all ciphertexts ct in the support of Enc(pp, ct, `), it holds that |ct| ≤ > (|(|) · poly(_, log#).

Semi-static security. Next, we recall the notion of semi-static security for broadcast encryption introduced by
Gentry and Waters [GW09]. At a high-level, in the semi-static security game, the adversary has to pre-commit to
a set (∗ ⊆ [#] of users. During the security game, the adversary is not allowed to make key-generation queries on
any index 8 ∈ (∗. When the adversary makes its challenge query, it can specify any set (⊆ (∗. The main difference
between semi-static and selective security is that in selective security, the challenge query is on the committed set
(∗ whereas in semi-static security, the challenge ciphertext can be encrypted to any subset of the committed set (∗.
Gentry and Waters showed how to generically compile any semi-statically-secure broadcast encryption scheme into
an adaptively secure scheme in the random oracle model. On the contrary, we do not know of any generic compiler
from a selectively-secure broadcast encryption scheme into an adaptively-secure one. We recall the definition below:

Definition 3.4 (Semi-Static Security for Broadcast Encryption [GW09]). Let ΠBE = (Setup,KeyGen, Enc,Dec) be
a broadcast encryption scheme. For a security parameter _, an adversary A, and a bit V ∈ {0, 1}, we define the
semi-static security experiment EXP(V)SSBE (1_,A) as follows:

• Setup: On input the security parameter 1_ , the adversary A outputs the number of users 1# together with
a set (∗ ⊆ [#]. The challenger computes (mpk,msk) ← Setup(1_, 1#) and gives mpk to A.

• Key-generation queries: Algorithm A can now make (adaptive) key-generation queries. On each query,
algorithm A specifies an index 8 ∈ [#] \ (∗ and the challenger responds with sk8 ← KeyGen(msk, 8).

• Challenge query: AfterA finishes making evaluation queries, it outputs a set (⊆ (∗. The challenger computes
ctV ← Enc(mpk, (, V) and replies to algorithm A with ctV .

• Output: At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1}, which is the output of the experiment.

We say that ΠBE satisfies semi-static security if for all efficient adversariesA, there exists a negligible function negl(·)
such that for all _ ∈ N, ���Pr[EXP(0)SSBE (1_,A) = 1] − Pr[EXP(1)SSBE (1_,A) = 1]

��� = negl(_).

13

4 Publicly-Sampleable Projective PRGs

In this section, we introduce the notion of a publicly-sampleable projective pseudorandom generator. While our notion
shares a similar syntax as the notion of a projective PRG from [ABI+23], we require a different and incomparable
set of security requirements. A projective PRG provides a way to take a PRG seed f and project it to a new seed f(
such that the output PRG(f) and PRG(f() agree on all indices 8 ∈ (while ensuring pseudorandomness for the bits
of PRG(f) at indices 8 ∉ (. Moreover, the projected seed f(should be succinct (i.e., have size poly(_, log ℓ), where
ℓ is the output length of the PRG). Importantly, for our applications, we require the projective seed to be publicly
sampleable. Namely, there is an efficient sampler Samp that does not take in the original seed while still outputting a
simulated projective seed that is indistinguishable to the honest projective seed. We give the formal definition below,
and provide a more detailed comparison with the notion from [ABI+23] in Remark 4.2.

Definition 4.1 (Publicly-Sampleable Projective PRG). A publicly-sampleable projective PRG is a tuple of efficient
algorithms ΠpPRG = (Setup, Samp, Project, Eval) with the following syntax:

• Setup(1_, 1ℓ) → (pp, f): On input the security parameter _ and the output length ℓ ∈ N, the setup algorithm
outputs the public parameters pp and a seed f .

• Samp(pp, () → f(: On input the public parameters pp and a set (⊆ [ℓ], the public sampling algorithm outputs
a (simulated) projected seed f(.

• Project(pp, f, () → f(: On input the public parameters pp, the seed f , and a set (⊆ [ℓ], the projection
algorithm outputs a projected seed f(.

• Eval(pp, f(, (, 8) → ~8 : On input the public parameters pp, a projected seed f(, a set (⊆ [ℓ], and an index 8 ∈ (,
the evaluation algorithm outputs a bit ~8 ∈ {0, 1}. This algorithm is deterministic.

The publicly-sampleable projective PRG should satisfy the following properties:

• Correctness: For all _, ℓ ∈ N, all non-empty sets (⊆ [ℓ], and all indices 8 ∈ (,

Pr


Eval(pp, f[ℓ], [ℓ], 8) = Eval(pp, f(, (, 8) :

(pp, f) ← Setup(1_, 1ℓ)
f[ℓ] ← Project(pp, f, [ℓ])
f(← Project(pp, f, ()


= 1.

• Succinctness: There exists a polynomial poly(·) such that for all _, ℓ ∈ N, all (pp, f) in the support of
Setup(1_, 1ℓ), all sets (⊆ [ℓ], and all f(in the support of Samp(pp, (), it holds that |f(| ≤ poly(_, log ℓ).

• Sampling indistinguishability. For a security parameter _, an adversary A, and a bit V ∈ {0, 1}, we define
the sampling-indistinguishability experiment EXP(V)samp (1_,A):

– Setup: On input the security parameter 1_ , the adversary A outputs the length parameter 1ℓ . The
challenger computes (pp, f) r← Setup(1_, 1ℓ) and gives pp to A.

– Challenge query: Algorithm A specifies a set (⊆ [ℓ]. The challenger constructs the projected key f(
as follows:

∗ If V = 0, the challenger computes f(← Samp(pp, ().
∗ If V = 1, the challenger computes f(← Project(pp, f, ().

The challenger gives f(to A.

– Output: At the end of the game, algorithmA outputs a bit1 ∈ {0, 1}, which is the output of the experiment.

We say thatΠpPRG satisfies sampling indistinguishability if for all efficient adversariesA, there exists a negligible
function negl(·) such that for all _ ∈ N,

| Pr[EXP(0)samp (1_,A) = 1] − Pr[EXP(1)samp (1_,A) = 1] | = negl(_). (4.1)

We say that ΠpPRG satisfies statistical sampling indistinguishability if Eq. (4.1) holds for all adversaries A, and
that it satisfies perfect sampling indistinguishability if the negligible function in Eq. (4.1) is the identically-zero
function.

14

• Adaptive pseudorandomness: For a security parameter _, an adversary A, and a bit V ∈ {0, 1}, we define
the pseudorandomness experiment EXP(V)prg (1_,A):

– Setup: On input the security parameter 1_ , the adversary A outputs the length parameter 1ℓ . The chal-
lenger runs (pp, f) ← Setup(1_, 1ℓ), f[ℓ] ← Project(pp, f, [ℓ]), and samples u r← {0, 1}ℓ . The challenger
gives pp to A.

– Evaluation queries: Algorithm A can now make (adaptive) evaluation queries to the challenger. On
each evaluation query, algorithm A specifies an index 8 ∈ [ℓ]. The challenger responds as follows:

∗ If V = 0, the challenger responds with ~8 = Eval(pp, f[ℓ], [ℓ], 8).
∗ If V = 1, the challenger responds with ~8 = D8 .

– Challenge query: After A finishes making evaluation queries, the challenger computes the projected
seed f(← Project(pp, f, [ℓ] \ �), where � ⊆ [ℓ] is the set of indices on which algorithm A made an
evaluation query. The challenger then gives f(to A.

– Output: Algorithm A outputs a bit 1 ∈ {0, 1} which is the output of the experiment.

The publicly-sampleable projective PRG satisfies adaptive pseudorandomness if for all efficient adversaries
A, there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr[EXP(0)prg (1_,A) = 1] − Pr[EXP(1)prg (1_,A) = 1] | = negl(_) .

Remark 4.2 (Comparison with [ABI+23]). The basic syntax of Definition 4.1 as well as the correctness and succinct-
ness properties are the same as those from [ABI+23, Definition 3.1]. The key differences between our notion and
the previous ones are the following:

• Public sampleability: In a projective PRG, the public parameters pp and the seed f are sampled jointly. For our
applications, we also require a public way to sample a projected seed (i.e., the Samp algorithm), and moreover,
that the publicly-sampled seed be computationally indistinguishable from the actual projected seed (even given
the public parameters). In our application to the Gentry-Waters compiler, the encryption algorithm uses the
public sampling algorithm to sample a seed when encrypting. Conversely, the reduction algorithm will prepare
the challenge ciphertext using a projected seed, and as such, it is important that the publicly-sampled seed
appears indistinguishable from a projected seed. This is a new property to this work and with the exception
of the construction from RSA, the projective PRGs in [ABI+23] from number-theoretic assumptions do not

support this property. Namely, in the number-theoretic constructions (i.e., based on groups, pairings, or LWE)
from [ABI+23], there is an efficient way to check consistency between a projected seed and the public parameters.

• Adaptive pseudorandomness: For our applications to adaptively-secure broadcast encryption, we require
our projective PRGs to satisfy an adaptive pseudorandomness notion. Namely, the adversary in the pseudoran-
domness game is allowed to make evaluation queries before it sees the projected key. In [ABI+23], the adversary
simply declares a challenge set (and is then given the projected seed f(onto (together and its goal is to
distinguish the PRG values at indices 8 ∉ (from random. The ability to adaptively choose the set (after making
evaluation queries is essential when using projective PRGs to realize adaptive security for broadcast encryption.

At the same time, the work of [ABI+23] consider additional properties such as robustness, reusability, and sublinear-
size public parameters. These security notions are useful for their application to succinct computational secret sharing,
but are not relevant in our applications to broadcast encryption.

5 Semi-Static Security to Adaptive Security via Projective PRGs

In this section, we show how to use projective PRGs to generically upgrade any semi-statically-secure broadcast
encryption scheme into an adaptively-secure scheme. Our compiler follows the Gentry-Waters [GW09] strategy,
except we show that the random oracle can be instantiated with a publicly-sampleable projective PRG (Definition 4.1).
In Appendix A, we show how the same techniques can also be used to lift a semi-statically-secure distributed broadcast
encryption scheme into an adaptively-secure scheme.

15

Construction 5.1 (Adaptively-Secure Broadcast Encryption). Let ΠSS = (SS.Setup, SS.KeyGen, SS.Enc, SS.Dec) be a
semi-statically-secure broadcast encryption scheme, ΠpPRG = (pPRG.Setup, pPRG.Samp, pPRG.Project, pPRG.Eval)
be a publicly-sampleable projective PRG. We construct an adaptively-secure broadcast encryption ΠBE = (Setup,
KeyGen, Enc,Dec) as follows:

• Setup(1_, 1#): On input the security parameter _ and the number of users # , the setup algorithm proceeds
as follows:

1. Sample a random string s r← {0, 1}# and (pp, f) ← pPRG.Setup(1_, 1#).
2. Sample (SS.mpk, SS.msk) ← SS.Setup(1_, 12#). For ease of exposition, we index the set [2#] using a

pair (8, 1) ∈ [#] × {0, 1}.
3. Output mpk = (SS.mpk, pp) and msk = (SS.msk, s).

• KeyGen(msk, 8): On input the master secret key msk = (SS.msk, s), the key-generation algorithm samples
SS.sk8,B8 ← SS.KeyGen(SS.msk, (8, B8)). It outputs the secret key sk8 = (8, B8 , SS.sk8,B8).

• Enc(mpk, (, `): On input the master public key mpk = (SS.mpk, pp), a set of users (⊆ [#], and a message
` ∈ {0, 1}, the encryption algorithm proceeds as follows:

1. Sample f(← pPRG.Samp(pp, ().
2. For each 8 ∈ (, compute C8 = pPRG.Eval(pp, f(, (, 8). Let (0 = {(8, C8)}8∈(and (1 = {(8, 1 − C8)}8∈(.
3. Compute ciphertexts SS.ct0 ← SS.Enc(SS.mpk, (0, `) and SS.ct1 ← SS.Enc(SS.mpk, (1, `). Output the

ciphertext ct = (SS.ct0, SS.ct1, f().

• Dec(mpk, sk, (, ct): On input the master public key mpk = (SS.mpk, pp), the secret key sk = (9, 1, SS.sk), a set
(⊆ [#], and a ciphertext ct = (SS.ct0, SS.ct1, f), the decryption algorithm proceeds as follows:

1. If 9 ∉ (, then output 0.

2. For each 8 ∈ (, compute C8 = pPRG.Eval(pp, f, (, 8). Let (0 = {(8, C8)}8∈(and (1 = {(8, 1 − C8)}8∈(.
3. Finally, compute and output SS.Dec(SS.mpk, SS.sk, (1⊕C 9 , SS.ct1⊕C 9).

Theorem 5.2 (Correctness). If ΠSS is correct, then Construction 5.1 is correct.

Proof. Take any _, # ∈ N. Take any set (⊆ [#] and index 8 ∈ (, any message ` ∈ {0, 1}. Let (mpk,msk) ←
Setup(1_, 1#), sk8 ← KeyGen(msk, 8), and ct← Enc(mpk, (, `). By construction, the following hold:

• First, mpk = (SS.mpk, pp) and msk = (SS.msk, s) where (SS.mpk, SS.msk) ← SS.Setup(1_, 12#), (pp, f) ←
pPRG.Setup(1_, 1#) and s

r← {0, 1}# .

• Next sk8 = (8, B8 , SS.sk8,B8) where SS.sk8,B8 ← SS.KeyGen(SS.msk, (8, B8)).

• Finally, ct = (SS.ct0, SS.ct1, f() where SS.ct0 ← SS.Enc(SS.mpk, (0, `), SS.ct1 ← SS.Enc(SS.mpk, (1, `),
f(← pPRG.Samp(pp, (), (0 = {(8, C8)}8∈(, (1 = {(8, 1 − C8)}8∈(, and C8 = pPRG.Eval(pp, f(, (, 8) for all 8 ∈ (.

Consider now the value of Dec(mpk, sk, (, ct). By construction, if B8 = C8 , then (8, B8) ∈ (0. Conversely, if B8 = 1 − C8 ,
then (8, B8) ∈ (1. This means (8, B8) ∈ (B8⊕C8 . By correctness of ΠSS, this means that

SS.Dec
(
SS.mpk, SS.sk8,B8 , (B8⊕C8 , SS.ctB8⊕C8

)
= `,

and correctness follows. �

Theorem 5.3 (Adaptive Security). Suppose ΠSS satisfies semi-static security and ΠpPRG satisfies correctness, sampling

indistinguishability, and adaptive pseudorandomness. Then Construction 5.1 is adaptively secure.

Proof. Let A be an efficient adversary for the adaptive broadcast security game. We begin by defining a sequence
of hybrid experiments:

16

• Hyb0: This is experiment EXP(0)BE from Definition 3.3:

– Setup: On input the security parameter 1_ , A outputs 1# . The challenger responds by computing
(mpk,msk) ← Setup(1_, 1#) and gives mpk = (SS.mpk, pp) to A. Specifically, the challenger samples
s

r← {0, 1}# , (pp, f) ← pPRG.Setup(1_, 1#), (SS.mpk, SS.msk) ← SS.Setup(1_, 12#).
– Key-generation queries: On each key-generation query 8 ∈ [#], the challenger responds with

sk8 ← KeyGen(msk, 8). In particular, sk8 = (8, B8 , SS.sk8,B8) where SS.sk8,B8 ← SS.KeyGen(SS.msk, (8, B8)).
– Challenge query: After A outputs a set (⊆ [#] \ � where � ⊆ [#] is the set of indices on which
A made a key-generation query. The challenger responds with ct ← Enc(mpk, (, 0). Specifically,
ct = (SS.ct0, SS.ct1, f() where SS.ct0 ← SS.Enc(SS.mpk, (0, 0), SS.ct1 ← SS.Enc(SS.mpk, (1, 0), f(←
pPRG.Samp(pp, (), (0 = {(8, C8)}8∈(, (1 = {(8, 1 − C8)}8∈(, and C8 = pPRG.Eval(pp, f(, (, 8) for all 8 ∈ (.

– Output: At the end of the game, algorithmA outputs a bit1 ∈ {0, 1}, which is the output of the experiment.

• Hyb1: Same as Hyb0 except when constructing the challenge ciphertext, the challenger now computes
f(← pPRG.Project(pp, f, ().

• Hyb2: Same as Hyb1, except during setup, the challenger computes f[#] ← pPRG.Project(pp, f, [#]). Then,
it sets B8 = pPRG.Eval(pp, f[#], [#], 8) for all 8 ∈ [#].

• Hyb3: Same as Hyb2 except the challenger switches SS.ct1 to be an encryption of 1. Namely, the challenger
now computes SS.ct1 ← SS.Enc(SS.mpk, (1, 1).

• Hyb4: Same as Hyb3, except the challenger now samples s r← {0, 1}# during setup.

• Hyb5: Same as Hyb4, except during setup, the challenger first computes f[#] ← pPRG.Project(pp, f, [#]).
Then, it sets B8 = 1 − pPRG.Eval(pp, f[#], [#], 8) for all 8 ∈ [#].

• Hyb6: Same as Hyb5, except the challenger switches SS.ct0 to be an encryption of 1. Namely, the challenger
now computes SS.ct0 ← SS.Enc(SS.mpk, (0, 1).

• Hyb7: Same as Hyb6 except the challenger now samples s r← {0, 1}# during setup.

• Hyb8: Same as Hyb7 except when constructing the challenge ciphertext, the challenger samples f(←
pPRG.Samp(pp, (). This is experiment EXP(1)BE from Definition 3.3.

We write Hyb8 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb8 with
adversary A (and an implicit security parameter _). We now show that the output distributions of each adjacent
pair of hybrid experiments is computationally indistinguishable.

Lemma 5.4. Suppose ΠpPRG satisfies sampling indistinguishability. Then, there exists a negligible function negl(·) such
that for all _ ∈ N, | Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1] | = negl(_).

Proof. Suppose | Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1] | ≥ Y (_) for some non-negligible Y. We use A to construct
an efficient adversary B for the sampling indistinguishability game:

1. On input the security parameter 1_ , algorithm B starts running algorithmA(1_). AlgorithmA outputs a length
parameter 1# which algorithm B forwards to its challenger. The sampling indistinguishability challenger
replies with pp.

2. AlgorithmB now samples s r← {0, 1}# and (SS.mpk, SS.msk) ← SS.Setup(1_, 12#). It givesmpk = (SS.mpk, pp)
to A.

3. When algorithm A makes a key-generation query on an index 8 ∈ [#], algorithm B computes SS.sk8,B8 ←
SS.KeyGen(SS.msk, (8, B8)) and replies with sk8 = (8, B8 , SS.sk8,B8).

4. When algorithm A makes a challenge query for the set (⊆ [#] \ � , algorithm B forwards (to its challenger
and receives f(.

17

5. For each 8 ∈ (, algorithm B computes C8 = pPRG.Eval(pp, f(, (, 8). It then defines (0 = {(8, C8)}8∈(, (1 =

{(8, 1− C8)}8∈(, SS.ct0 ← SS.Enc(SS.mpk, (0, 0), SS.ct1 ← SS.Enc(SS.mpk, (1, 0). The challenger responds with
ct = (SS.ct0, SS.ct1, f().

6. At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1} which algorithm B also outputs.

We now analyze the distribution of EXP(0)samp (1_,B) for V ∈ {0, 1}:

• Suppose V = 0. This means (pp, f) ← pPRG.Setup(1_, 1#) and f(← pPRG.Samp(pp, (). This is the distribu-
tion in Hyb0, so algorithm B outputs 1 with probability Pr[Hyb0 (A) = 1].

• Suppose V = 1. This means (pp, f) ← pPRG.Setup(1_, 1#) and f(← pPRG.Project(pp, f, (). This is the
distribution in Hyb1, so algorithm B outputs 1 with probability Pr[Hyb1 (A) = 1].

We conclude that algorithm B breaks mode indistinguishability with non-negligible advantage Y. �

Lemma 5.5. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all _ ∈ N, | Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1] | = negl(_).

Proof. Suppose | Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1] | ≥ Y (_) for some non-negligible Y. We use A to construct
an efficient adversary B for the adaptive pseudorandomness game:

1. On input the security parameter 1_ , algorithm B starts running algorithmA(1_). AlgorithmA outputs a length
parameter 1# which algorithm B forwards to its challenger. The sampling indistinguishability challenger
replies with pp.

2. Algorithm B samples (SS.mpk, SS.msk) ← SS.Setup(1_, 12#) and gives mpk = (SS.mpk, pp) to A.

3. When algorithm A makes a key-generation query on an index 8 ∈ [#], algorithm B makes an evaluation
query to its challenger on 8 and receives B8 . It then computes SS.sk8,B8 ← SS.KeyGen(SS.msk, (8, B8)) and replies
with sk8 = (8, B8 , SS.sk8,B8).

4. When algorithm A makes a challenge query for the set (⊆ [#] \ � , algorithm B makes an evaluation query
on all indices [#] \ (. It then makes a challenge query and receives f(.

5. For each 8 ∈ (, algorithm B computes C8 = pPRG.Eval(pp, f(, (, 8). It defines (0 = {(8, C8)}8∈(, (1 = {(8, 1 −
C8)}8∈(, SS.ct0 ← SS.Enc(SS.mpk, (0, 0), SS.ct1 ← SS.Enc(SS.mpk, (1, 0). The challenger responds with
ct = (SS.ct0, SS.ct1, f().

6. At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1} which algorithm B also outputs.

We now analyze the distribution EXP(V)prg (1_,B). First, let � ⊆ [#] be the indices algorithm A makes to the key-
generation oracle, and let �B be the indices algorithm B makes to its evaluation oracle. From the requirements of
the broadcast security definition, we have that (⊆ [#] \ � , or equivalently, that � ⊆ [#] \ (. By construction of B,
we have that �B = � ∪ ([#] \ () = [#] \ (. Correspondingly, [#] \ �B = (. We now consider the distribution of of
EXP(V)prg (1_,B) for each V ∈ {0, 1}:

• Suppose V = 0. In this case, the challenger samples (pp, f) ← pPRG.Setup(1_, 1#) and computes f[#] ←
pPRG.Project(pp, f, [#]). It responds to each evaluation query on 8 ∈ [#] with B8 = pPRG.Eval(pp, f, [#], 8).
Since [#] \ �B = (, the challenger responds with f(← pPRG.Project(pp, f, () in the challenge phase. This is
precisely the behavior in Hyb2 (A), so in this case, algorithm B outputs 1 with probability Pr[Hyb2 (A) = 1].

• Suppose V = 0. In this case, the challenger samples (pp, f) ← pPRG.Setup(1_, 1#) and u r← {0, 1}# . It responds
to each evaluation query on 8 ∈ [#] with B8 = D8 . In the challenge phase, the challenger again responds with
f(← pPRG.Project(pp, f, (). This is precisely the behavior in Hyb1 (A), so in this case, algorithm B outputs
1 with probability Pr[Hyb1 (A) = 1].

We conclude that algorithm B breaks adaptive pseudorandomness with non-negligible advantage Y. �

18

Lemma 5.6. Suppose ΠSS satisfies semi-static security and ΠpPRG is correct. Then, there exists a negligible function

negl(·) such that for all _ ∈ N, | Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1] | = negl(_).

Proof. Suppose | Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1] | ≥ Y (_) for some non-negligible Y. We use A to construct
an efficient adversary B for the semi-static security game:

1. On input the security parameter 1_ , algorithm B starts running algorithm A(1_). Algorithm A outputs a
length parameter 1# .

2. Algorithm B samples (pp, f) ← pPRG.Setup(1_, 1#) and computes f[#] ← pPRG.Project(pp, f, [#]). Then,
for each 8 ∈ [#], it computes B8 = pPRG.Eval(pp, f[#], [#], 8).

3. Algorithm B constructs the set (∗ = {(8, 1− B8)}8∈[#] . It forwards 12# together with the set (∗ to the semi-static
security challenger. The challenger replies with SS.mpk. Algorithm B gives mpk = (SS.mpk, pp) to A.

4. When algorithm A makes a key-generation query on an index 8 ∈ [#], algorithm B makes a key-generation
query to its challenger on (8, B8) ∈ [2#] \ (∗ to get a key SS.sk8,B8 . It replies to A with sk8 = (8, B8 , SS.sk8,B8).

5. When algorithm A makes a challenge query for a set (⊆ [#], algorithm B starts by computing a pro-
jected seed f(← pPRG.Project(pp, f, (). Then it sets (0 = {(8, B8)}8∈(and (1 = {(8, 1 − B8)}8∈(. It computes
SS.ct0 ← SS.Enc(SS.mpk, (0, 0) and forwards (1 to the semi-static security challenger. The challenger replies
with a ciphertext SS.ct1. Algorithm B replies to A with ct = (SS.ct0, SS.ct1, f().

6. At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1} which algorithm B also outputs.

By construction, algorithm B is a valid adversary for the semi-static security game. Namely, algorithm B only makes
key-generation queries on indices (8, B8) ∈ [2#] \ (∗ and moreover, the challenge set (1 ⊆ (∗. We now analyze the
distributions of EXP(V)SSBE (1_,B). We consider each component separately.

• The semi-static security challenger samples (SS.mpk, SS.msk) ← SS.Setup(1_, 12#), which coincides with the
distribution of SS.mpk in Hyb2 and Hyb3.

• Next, the semi-static security challenger responds to key-generation queries by computing SS.sk8,B8 ←
SS.KeyGen(SS.msk, (8, B8)), which again coincides with the distribution in Hyb2 and Hyb3.

• Next, consider the sets (0 and (1. In the reduction, algorithm B sets (0 = {(8, B8)}8∈(and (1 = {(8, 1 − B8)}8∈(,
where B8 = pPRG.Eval(pp, f[#], [#], 8). Since f(← pPRG.Project(pp, f, (), correctness of ΠpPRG means that
B8 = pPRG.Eval(pp, f(, (, 8) for all 8 ∈ (. Thus, the sets (0 and (1 are constructed exactly as in Hyb2 and Hyb3.
Thus, SS.ct0 is distributed exactly according to the distribution in Hyb2 and Hyb3.

• It suffices to consider the distribution of SS.ct1. When V = 0, SS.ct1 ← SS.Enc(SS.mpk, (1, 0) and when
V = 1, SS.ct1 ← SS.Enc(SS.mpk, (1, 1). The former corresponds to the distribution in Hyb2 while the latter
corresponds to the distribution in Hyb3.

We conclude that algorithm B breaks semi-static security with non-negligible advantage Y. �

Lemma 5.7. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all _ ∈ N, | Pr[Hyb3 (A) = 1] − Pr[Hyb4 (A) = 1] | = negl(_).

Proof. Follows by an analogous argument as the proof of Lemma 5.5. �

Lemma 5.8. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all _ ∈ N, | Pr[Hyb4 (A) = 1] − Pr[Hyb5 (A) = 1] | = negl(_).

Proof. Follows by an analogous argument as the proof of Lemma 5.5. �

Lemma 5.9. Suppose ΠSS satisfies semi-static security and ΠpPRG is correct. Then, there exists a negligible function

negl(·) such that for all _ ∈ N, | Pr[Hyb5 (A) = 1] − Pr[Hyb6 (A) = 1] | = negl(_).

19

Proof. Follows by an analogous argument as the proof of Lemma 5.6. �

Lemma 5.10. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all _ ∈ N, | Pr[Hyb6 (A) = 1] − Pr[Hyb7 (A) = 1] | = negl(_).

Proof. Follows by an analogous argument as the proof of Lemma 5.5. �

Lemma 5.11. Suppose ΠpPRG satisfies sampling indistinguishability. Then, there exists a negligible function negl(·)
such that for all _ ∈ N, | Pr[Hyb7 (A) = 1] − Pr[Hyb8 (A) = 1] | = negl(_).

Proof. Follows by an analogous argument as the proof of Lemma 5.4. �

Adaptive security now follows by combining Lemmas 5.4 to 5.11. �

Theorem 5.12 (Succinctness). Suppose ΠSS and ΠpPRG are succinct. Then Construction 5.1 is succinct.

Proof. In Construction 5.1, a ciphertext for a set (⊆ [#] consists of two ciphertexts for the semi-static broadcast
encryption scheme ΠSS as well as a projected seed f(for ΠpPRG. By succinctness of the underlying primitives, the size
of the ciphertext is 2 · > (|(|) · poly(_, log#) + poly(_, log#), which satisfies the required succinctness properties. �

Application to distributed broadcast encryption. As discussed in Section 2, we can adapt Construction 5.1
to upgrade any semi-statically-secure distributed broadcast encryption scheme into an adaptively secure one using
a projective PRG. We give the full details in Appendix A. Our compiler yields the first constructions of distributed
broadcast encryption in the plain model (see Table 2) from search assumptions over groups with bilinear maps as
well as from witness encryption (together with function-binding hash functions).

6 Constructing Publicly-Sampleable Projective PRGs

In the following sections, we give a variety of constructions of projective PRGs from standard number theoretic
assumptions: (1) the computational Diffie-Hellman (CDH) assumption in pairing-free groups; (2) the computational
bilinear Diffie-Hellman (CBDH) assumption in pairing groups; and (3) the learning with errors (LWE) assumption.
Our constructions follow a similar template as the number-theoretic constructions from [ABI+23], though we will
need to introduce additional randomization to support the additional public-sampleability requirement we require. We
refer to Remark 4.2 for further discussion of the definitional differences between our notion of a publicly-sampleable
projective PRG and the notion from [ABI+23]. Finally, in Appendix B, we also give a construction from RSA; this
construction is nearly identical to the RSA-based construction from [ABI+23].

6.1 Publicly-Sampleable Projective PRGs from CDH

In this section, we show how to construct a projective PRG from the Computational Diffie-Hellman (CDH) assumption
in pairing-free groups. Our construction is an adaptation of the projective PRG scheme from [ABI+23, §3.4.1]. Impor-
tantly, the original construction from [ABI+23] does not satisfy sampling indistinguishability since the adversary can
use the components of the public parameters to determine whether a given seed is the output of Project or the output of
Samp. Our construction introduces additional randomization (specifically, the random exponent U in Construction 6.3)
to ensure sampling indistinguishability. Additionally, we use the Goldreich-Levin hardcore extractor to reduce the
assumption required for adaptive pseudorandomness from DDH to CDH. We begin by recalling the CDH assumption.

Definition 6.1 (Prime-Order Group Generator). A prime-order group generator PrimeGroupGen is an efficient
algorithm that takes as input the security parameter 1_ and outputs a description G = (G, ?, 6) of a group G with
prime-order ? = 2Θ(_) and generator 6. We require that the group operation in G be efficiently-computable, and that
each element of G can be represented by a bit-string of length at most d = d (_).

20

Notation. We will use implicit notation to represent group elements [EHK+13]. Specifically, let G = (G, ?, 6) be a
prime-order group. For a matrix A ∈ Z=×<? , we write [A]G to denote the matrix of group elements 6A (where exponen-
tiation is defined component-wise). For matrices A,B of identical dimension and a scalar 2 , we write 2 · [A]G := [2A]G
and [A]G + [B]G := [A + B]G. We now define the CDH problem.

Assumption 6.2 (Computational Diffie-Hellman). Let PrimeGroupGen be a prime-order group generator. The com-
putational Diffie-Hellman (CDH) assumption holds with respect to PrimeGroupGen if for all efficient (and possibly
non-uniform) adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

Pr

[
A(1_,G, [E]G, [F]G) = [EF]G :

G = (G, ?, 6) ← PrimeGroupGen(1_)
E,F

r← Z? .

]
= negl(_).

Construction 6.3 (Publicly-Sampleable Projective PRG fromCDH). Let _ be a security parameter. LetPrimeGroupGen

be a prime-order group generator and let d = d (_) be a bound on the bit-length of the group elements associated
with PrimeGroupGen. Let hc : {0, 1}d × {0, 1}d → {0, 1} be the Goldreich-Levin extractor. We construct a publicly-
sampleable projective PRG ΠpPRG = (Setup, Samp, Project, Eval) as follows:

• Setup(1_, 1ℓ): On input the security parameter _ and the output length ℓ ∈ N, the setup algorithm starts by
sampling G = (G, ?, 6) ← PrimeGroupGen(1_). It then samples U r← Z? and a, s

r← Zℓ? . It computes M ∈ Zℓ×ℓ?

where"8, 9 = B80 9 for all 8 ≠ 9 and"8,8 = 0 for all 8 ∈ [ℓ]. Finally, it samples the extractor seed r
r← {0, 1}d and

outputs the public parameters pp = (G, [a]G, [M]G, r) and the seed f = (U, s).

• Samp(pp, (): On input the public parameters pp = ((G, ?, 6), [a]G, [M]G, r) and the target set (⊆ [ℓ], the
sampling algorithm samples G r← Z? and outputs f(= G .

• Project(pp, f, (): On input the public parameters pp = ((G, ?, 6), [a]G, [M]G, r), the f = (U, s), and a target set
(⊆ [ℓ], the projection algorithm outputs the projected seed f(= U +∑

8∈(B8 .

• Eval(pp, f(, (, 8): On input the public parameters pp = ((G, ?, 6), [a]G, [M]G, r), a projected seed f(∈ Z? , the
associated set of indices (⊆ [ℓ], and an index 8 ∈ (, the evaluation algorithm computes

[~8]G = f(· [08]G −
∑

9∈(\{8 }
[" 9,8]G,

and outputs hc([~8]G, r).

Theorem 6.4 (Correctness). Construction 6.3 is correct.

Proof. Take any security parameter _ ∈ N, output length ℓ ∈ N, set of indices (⊆ [ℓ], and any index 8 ∈ (. Let
(pp, f) ← Setup(1_, 1ℓ) and f(← Project(pp, f, (). By construction, pp = (G, [a]G, [M]G, r) and f(= U +∑

8∈(B8 .
Consider the value of [~8]G computed by Eval(pp, f(, (, 8). By definition,

~8 = f(· 08 −
∑

9∈(\{8 }
" 9,8 =

(
U +

∑
9∈(

B 9

)
08 −

∑
9∈(\{8 }

B 908 = (U + B8)08 .

Next, letf[ℓ] ← Project(pp, f, [ℓ]). Thenf[ℓ] = U+∑8∈[ℓ] B8 . A similar calculation now show that Eval(pp, f[ℓ], [ℓ], 8) =
Eval(pp, f(, (, 8). �

Theorem 6.5 (Succinctness). Construction 6.11 is succinct.

Proof. Take any (pp, f) in the support of Setup(1_, 1ℓ). For all sets (, the projected key [f(]G output byProject(pp, f, ()
consists of a single element of Z? , which has size Θ(_). In particular, the size of the projected seed is independent
of the size of the associated set (. �

Theorem 6.6 (Sampling Indistinguishability). Construction 6.3 satisfies perfect sampling indistinguishability.

21

Proof. Let A be an adversary for the sampling indistinguishability game. We first recall the experiments in the
sampling indistinguishability security definition:

• EXP(0)samp (1_,A): This experiment proceeds as follows:

1. On input the security parameter 1_ , algorithm A outputs the input length 1ℓ .

2. The challenger samples (pp, f) ← Setup(1_, 1ℓ). Concretely, the challenger samples G = (G, ?, 6) ←
PrimeGroupGen(1_), U r← Z? , a, s r← Zℓ? , and r

r← {0, 1}d . It computes M ∈ Zℓ×ℓ? where "8, 9 = B80 9 for
all 8 ≠ 9 and"8,8 = 0 for all 8 ∈ [ℓ]. The challenger gives pp = (G, [a]G, [M]G, r) to A.

3. Algorithm A outputs a set (⊆ [ℓ] and the challenger replies with f(← Samp(pp, (). Specifically, the
challenger samples f(

r← Z? .
4. Algorithm A outputs a bit 1 ∈ {0, 1}, which is the output of the experiment.

• EXP(1)samp (1_,A): Same as EXP(0)samp, except the challenger sets f(= U +∑
8∈(B8 .

The only difference between EXP(0)samp (1_,A) and EXP(1)samp (1_,A) is the distribution of f(. In EXP(1)samp, the challenger
samples U r← Z? and the only element in the experiment that depends on U is f(= U +∑

8∈(B8 . Thus, we conclude
that the distribution of f(is uniform over Z? and independent of all other quantities. This is the distribution in

EXP(0)samp. Since the two experiments are identically distributed, the theorem holds. �

Theorem 6.7 (Adaptive Pseudorandomness). If the CDH assumption holds with respect to PrimeGroupGen, then

Construction 6.3 satisfies adaptive pseudorandomness.

Proof. Before proving the theorem, we first state the following corollary of the CDH assumption (Assumption 6.2)
and Theorem 3.2. This will be useful in our security analysis.

Lemma 6.8. Suppose the CDH assumption holds with respect to PrimeGroupGen and let hc : {0, 1}d × {0, 1}d → {0, 1}
be the Goldreich-Levin extractor. Then, for all efficient (and possibly non-uniform) adversariesA, there exists a negligible

function negl(·) such that for all _ ∈ N:���Pr [
A

(
1_, r, (G, U, [E]G, [F]G), hc([(U + E)F]G, r)

)
= 1

]
− Pr

[
A

(
1_, r, (G, U, [E]G, [F]G), 1

)
= 1

] ��� = negl(_),

where G = (G, ?, 6) ← PrimeGroupGen(1_), U, E,F r← Z? , r r← {0, 1}d , and 1 r← {0, 1}.

Proof. We start by defining a joint distribution (-,.) = {(-_, ._)}_∈N as follows:

• Sample G = (G, ?, 6) ← PrimeGroupGen(1_) and exponents U, E,F r← Z? .

• Let G = [(U + E)F]G and ~ = (G, U, [E]G, [F]G). Output the pair (G,~).

Next, under the CDH assumption, - is computationally unpredictable given . . To see this, suppose there exists an
efficient algorithm A that can predict G given ~ when (G,~) ← (-_, ._) with non-negligible probability Y. We use
A to construct an efficient algorithm B for the CDH problem:

• On input the CDH challenge (1_,G, [E]G, [F]G), where G = (G, ?, 6), algorithm B samples U r← Z? and sets
~ = (G, U, [E]G, [F]G).

• Algorithm B gives 1_ and ~ to algorithm A to obtain an output G = [I]G.

• Algorithm B outputs [I]G − U · [F]G.

By assumption, the CDH challenger samples G ← PrimeGroupGen(1_) and E,F r← Z? . Algorithm B then samples
U

r← Z? , so algorithm B perfectly simulates the distribution of ~ in (G,~) ← -_ ×._ , where the associated value of G
is G = [(U + E)F]G. Thus, with probability Y, algorithmA outputs [I]G = [(U + E)F]G. In this case, I − UF = EF and
algorithm B successfully solves the CDH problem with the same non-negligible advantage Y. We conclude that under
CDH, the distribution of - is computationally unpredictable given . . Lemma 6.8 now follows from Theorem 3.2. �

22

Proof of Theorem 6.7. We now return to the proof of Theorem 6.7. For each index 8 ∈ {0} ∪ N, we define an
experiment Hyb8 as follows:

• Hyb8 : This is a variant of the adaptive pseudorandomness experiment:

– On input the security parameter 1_ , algorithm A outputs the length parameter 1ℓ . The challenger runs
(pp, f) ← Setup(1_, 1ℓ). Specifically, the challenger samples G = (G, ?, 6) ← PrimeGroupGen(1_),
U

r← Z? , a, s r← Zℓ? , r r← {0, 1}d and constructsM ∈ Zℓ×ℓ? where "8, 9 = B80 9 for 8 ≠ 9 and "8,8 = 0 for all
8 ∈ [ℓ]. It sets pp = (G, [a]G, [M]G, r) and f = (U, s). The challenger gives pp to A.

– The challenger also samples f[ℓ] ← Project(pp, f, [ℓ]) and u
r← {0, 1}ℓ . In particular f[ℓ] = U +∑

9∈[ℓ] B 9 .

– When A makes an evaluation query on 9 ∈ [ℓ], the challenger replies with Eval(pp, f[ℓ], [ℓ], 9) if 9 > 8

and with D 9 if 9 ≤ 8 . In particular, when 9 > 8 , the challenger computes

[~ 9]G = f[ℓ] · [0 9]G −
∑

:∈[ℓ]\{ 9 }
[":,9]G = [(U + B 9)0 9]G

and responds with hc([~ 9]G, r).
– AfterA finishes making evaluation queries, the challenger computes the seed f(← Project(pp, f, [ℓ] \ �)
where � ⊆ [ℓ] is the set of indices on which algorithm A made an evaluation query. In particular,
f(= U +∑

9∈[ℓ]\� B 9 . The challenger gives f(to A.

– At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1}, which is the output of the experiment.

We write Hyb8 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb8 with
adversary A (and an implicit security parameter _). By construction, observe that EXP(0)prg (1_,A) ≡ Hyb0 (A) and
EXP(1)prg (1_,A) ≡ Hybℓ (A). For an index 8 ∈ {0} ∪ N, define ?8 := Pr[Hyb8 (A) = 1]. For each experiment, we define
E8 to be the event that algorithm A makes an evaluation query on index 8 . Then, for all 8 ∈ {0} ∪ N, we can write

?8 = Pr[Hyb8 (A) = 1] = Pr[Hyb8 (A) = 1 ∧ E8] + Pr[Hyb8 (A) = 1 ∧ ¬E8] .

By construction, the only difference between experiments Hyb8−1 and Hyb8 is how the challenger responds to an
evaluation query on index 8 . If the adversary does not make an evaluation query on index 8 , then its view in the two
experiments is identically distributed. Thus, we have

Pr[Hyb8−1 (A) = 1 ∧ ¬E8] = Pr[Hyb8 (A) = 1 ∧ ¬E8] .

Hence, we conclude
?8 − ?8−1 = Pr[Hyb8 (A) = 1 ∧ E8] − Pr[Hyb8−1 (A) = 1 ∧ E8] . (6.1)

Suppose now that
| Pr[EXP(0)prg (1_,A) = 1] − Pr[EXP(1)prg (1_,A) = 1] | ≥ Y (_) (6.2)

for some non-negligible Y. We use A to construct an efficient adversary B for the distinguishing problem from
Lemma 6.8:

1. On input the challenge (1_, r, (G, U, [E]G, [F]G), 1) where G = (G, ?, 6), algorithm B runs A on input 1_ to
obtain the output length 1ℓ . Algorithm B samples an index 8 r← [ℓ].

2. For all 9 ∈ [ℓ] \ {8}, algorithm B samples 0 9 , B 9
r← Z? and D 9

r← {0, 1}. It sets [08]G = [F]G. Next, for all 9 ≠ : ,
algorithm B constructs [" 9,:]G as follows:

[" 9,:]G =



[B 90:]G 9, : ≠ 8

[E]G · 0: 9 = 8, : ≠ 8

B 9 · [F]G : = 8, 9 ≠ 8

Algorithm B sets pp = (G, [a]G, [M]G, r) and gives pp to A.

23

3. When algorithm A makes an evaluation query on an index 9 ∈ [ℓ], the challenger responds as follow.

• If 9 < 8 , the challenger responds with D 9 .

• If 9 = 8 , the challenger responds with 1.

• If 9 > 8 , the challenger responds with hc([(U + B 9)0 9]G, r).

4. After A finishes making evaluation queries, let � ⊆ [ℓ] be the set of indices on which algorithm A made an
evaluation query. If 8 ∉ � , then algorithm B outputs 0. Otherwise algorithm B responds with f(= U +∑9∈[ℓ]\� B 9 .
Since 8 ∈ � , this means 8 ∉ [ℓ] \ � , so algorithm B knows all of the exponents B 9 needed to construct f(.

5. At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1} which algorithm B also outputs.

Since A is efficient, algorithm B is efficient, so it suffices to analyze its advantage.

Analyzing the advantage ofB. Let,0 be the event thatB outputs 1when the challenger sets1 = hc([(U + E)F]G, r)
and,1 be the event that B outputs 1 when the challenger samples 1 r← {0, 1}. Suppose algorithm B samples 8 = 8∗

in the above reduction. By construction, the challenger for the experiment in Lemma 6.8 samples U, E,F r← Z? . Thus,
algorithm B perfectly simulates the public parameters (where E plays the role of B8∗ andF plays the role of 08∗) and
the evaluation queries on indices 9 ≠ 8∗ for A. We consider the distribution of the challenge bit 1.

• Suppose 1 = hc([(U + E)F]G, r) = hc([U + B8∗08∗]G, r). In this case, the responses to the evaluation queries are
distributed according to the specification in Hyb8∗−1. We consider the probability that algorithm B outputs 1 in
this case. First, if algorithmA does not make an evaluation query on index 8∗, then algorithm B always outputs
0. If algorithmA does make an evaluation query on index 8∗, then algorithm B perfectly simulates the challenge
according to the distribution in Hyb8∗−1, and thus, outputs 1 with probability Pr[Hyb8∗−1 (A) = 1 | E8∗]. Thus,
in this case, algorithm B outputs 1 with probability

Pr[B outputs 1 | 8 = 8∗] = Pr[Hyb8∗−1 (A) = 1 | E8∗] · Pr[E8∗] = Pr[Hyb8∗−1 (A) = 1 ∧ E8∗] .

• Suppose 1 r← {0, 1}. In this case, the responses to the evaluation queries are distributed according to the
specification in Hyb8∗ . By a similar reasoning as in the previous case, we conclude that in this case

Pr[B outputs 1 | 8 = 8∗] = Pr[Hyb8∗ (A) = 1 | E8∗] · Pr[E8∗] = Pr[Hyb8∗ (A) = 1 ∧ E8∗] .

Finally, algorithm B samples 8 r← [ℓ]. Thus

Pr[,0 = 1] = 1

ℓ

∑
8∈[ℓ]

Pr[Hyb8−1 (A) = 1 ∧ E8],

Pr[,1 = 1] = 1

ℓ

∑
8∈[ℓ]

Pr[Hyb8 (A) = 1 ∧ E8] .

Since EXP(0)prg (1_,A) ≡ Hyb0 (A) and EXP(1)prg (1_,A) ≡ Hybℓ (A), we appeal to Eqs. (6.1) and (6.2) and conclude that

| Pr[,0 = 1] − Pr[,1 = 1] | = 1

ℓ

���∑
8∈[ℓ]

Pr[Hyb8−1 (A) = 1 ∧ E8] − Pr[Hyb8 (A) = 1 ∧ E8]
���

=
1

ℓ

���∑
8∈[ℓ]

?8 − ?8−1
���

=
1

ℓ
|?0 − ?ℓ | =

1

ℓ
| Pr[EXP(0)prg (1_,A) = 1] − Pr[EXP(1)prg (1_,A) = 1] | ≥ Y

ℓ
,

which is non-negligible since A is efficient which means ℓ = poly(_). �

24

6.2 Publicly-Sampleable Projective PRGs from Computational Bilinear Diffie-Hellman

A limitation of Construction 6.3 is the size of the public parameters scales quadratically with the output length of the
projective PRG. This is because the public parameters consist of a matrix of group elements [B80 9]G for all 8 ≠ 9 ∈ [ℓ].
In this section, we show how we can use bilinear maps to compress the public parameters in this construction to
be linear in ℓ . Note that the naïve approach of simply giving out [B8]G and [0 9]G for all 8, 9 ∈ [ℓ] in the public
parameters and using the pairing to compute the pairwise products [B80 9]G) = [B8]G · [0 9]G does not work because
this would also reveal the non-cross-terms [B808]G) . Instead, we adopt the approach from [BW10] who show how
to use bilinear maps to encode [B80 9]G) for all 8 ≠ 9 ∈ [ℓ] using just a linear number of group elements, while
simultaneously ensuring that the non-cross-terms [B808]G) remain (computationally) hidden. We note that this also
gives the first projective PRG scheme from bilinear maps with a linear-size public parameters; the scheme based on
bilinear maps from [ABI+23] also had quadratic-size public parameters. We begin by recalling the computational
bilinear Diffie-Hellman assumption over (symmetric) pairing groups.

Definition 6.9 (Prime-Order Bilinear Group Generator). A (symmetric) prime-order bilinear group generator
PrimeBGroupGen is an efficient algorithm that takes as input the security parameter 1_ and outputs a description
G = (G,G) , ?, 6, 4) of cyclic groups G,G) with prime-order ? = 2Θ(_) , a generator 6 of G, and an efficiently-
computable non-degenerate bilinear map 4 : G×G→ G) . We require that the group operation in bothG andG) to be
efficiently-computable, and that each element ofG andG) can be represented by a bit-string of length at most d = d (_).

Notation. We also use implicit notation to represent group elements. For a symmetric-pairing group G =

(G,G) , ?, 6, 4), we write [A]G to denote 6A and [A]G) to denote 4 (6,6)A. For matrices A,B with suitable di-
mensions and a scalar 2 ∈ Z? , we write 2 · [A]G := [2A]G, 2 · [A]G) := [2A]G) , [A]G + [B]G := [A + B]G,
[A]G) + [B]G) := [A + B]G) , and [A]G · [B]G := [AB]G) .

Assumption 6.10 (Computational Bilinear Diffie-Hellman Assumption). Let PrimeBGroupGen be a prime-order
bilinear group generator. The computational bilinear Diffie-Hellman (CBDH) assumption holds with respect to
PrimeGroupGen if for all efficient (and possibly non-uniform) adversariesA, there exists a negligible function negl(·)
such that for all _ ∈ N,

Pr

[
A(1_,G, [D]G, [E]G, [F]G) = [DEF]G) :

G = (G,G) , ?, 6, 4) ← PrimeBGroupGen(1_)
D, E,F

r← Z? .

]
= negl(_).

Construction 6.11 (Publicly-Sampleable Projective PRG from CBDH). Let _ be a security parameter. Next, let
PrimeBGroupGen be a prime-order bilinear group generator and let d = d (_) be a bound on the bit-length of the
group elements associated with PrimeBGroupGen. Let hc : {0, 1}d ×{0, 1}d → {0, 1} be the Goldreich-Levin extractor.
We construct a publicly-sampleable projective PRG ΠpPRG = (Setup, Samp, Project, Eval) as follows:

• Setup(1_, 1ℓ): On input the security parameter _ and the output length ℓ ∈ N, the setup algorithm starts
by sampling G = (G,G) , ?, 6, 4) ← PrimeBGroupGen(1_). It then samples U,W, X r← Z? and a, s

r← Zℓ? . It
computes vector c, d ∈ Zℓ? such that 28 = (W8 + X)08 , and 38 = (W8 + X)B8 Finally, it samples the extractor seed

r
r← {0, 1}d and outputs the public parameters pp = (G, [W]G, [a]G, [s]G, [c]G, [d]G, r) and the seed f = (U, s).

• Samp(pp, (): On input the public parameters pp = ((G,G) , ?, 6, 4), [W]G, [a]G, [s]G, [c]G, [d]G, r) and the target
set (⊆ [ℓ], the sampling algorithm samples G r← Z? and outputs [f(]G = G · [W]G.

• Project(pp, f, (): On input the public parameters pp = ((G,G) , ?, 6, 4), [W]G, [a]G, [s]G, [c]G, [d]G, r), the
seed f = (U, s), and a target set (⊆ [ℓ], the projection algorithm outputs the projected seed [f(]G =

(U +∑
8∈(B8) · [W]G.

• Eval(pp, [f(]G, (, 8): On input the public parameters pp = ((G,G) , ?, 6, 4), [W]G, [a]G, [s]G, [c]G, [d]G, r), a seed
[f(]G ∈ G, the associated set of indices (⊆ [ℓ], and an index 8 ∈ (, the evaluation algorithm first computes
the cross terms [" 9,8]G)

[" 9,8]G) = (8 − 9)−1 ·
(
[B 9]G · [28]G − [08]G · [3 9]G

)
,

25

for each 9 ∈ (\ {8}. Then, it computes

[~8]G) = [08]G · [f(]G −
∑

9∈(\{8 }
[" 9,8]G) ,

and outputs hc([~8]G) , r).

Theorem 6.12 (Correctness). Construction 6.11 is correct.

Proof. Take any security parameter _ ∈ N, output length ℓ ∈ N, set of indices (⊆ [ℓ], and index 8 ∈ (. Take any
(pp, f) in the support of Setup(1_, 1ℓ). Let [f(]G ← Project(pp, f, (). By construction,

pp = (G, [W]G, [a]G, [s]G, [c]G, [d]G, r) and [f(]G =

(
U +

∑
8∈(

B8

)
· [W]G.

Consider the value of" 9,8 and~8 computed by Eval(pp, [f(]G, (, 8). By construction, for all 8 ∈ [ℓ], the Setup algorithm
sets 28 = (W8 + X)08 and 38 = (W8 + X)B8 . By definition, for all 9 ∈ (\ {8}, we now have

" 9,8 = (8 − 9)−1 (B 928 − 083 9) = (8 − 9)−1 ((W8 + X)B 908 − (W 9 + X)08B 9) = WB 908 .

Next, f(= W (U +∑
9∈(B 9). Hence, for all 8 ∈ (,

~8 = f(· 08 −
∑

9∈(\{8 }
" 9,8 =

(
U +

∑
9∈(

B 9

)
W08 −

∑
9∈(\{8 }

WB 908 = W (U + B8)08 .

In particular, the value of ~8 for 8 ∈ (is independent of the choice of set (. We conclude that Eval(pp, [f[ℓ]]G, [ℓ], 8) =
Eval(pp, [f(]G, (, 8), where [f[ℓ]]G ← Project(pp, f, [ℓ]) and correctness holds. �

Theorem 6.13 (Succinctness). Construction 6.11 is succinct.

Proof. Take any (pp, f) in the support of Setup(1_, 1ℓ). For all sets (, the projected key [f(]G output byProject(pp, f, ()
consists of a single element of G, which has size d (_) = poly(_). In particular, the size of the projected seed is
independent of the size of the associated set (. �

Theorem 6.14 (Sampling Indistinguishability). Construction 6.11 satisfies perfect sampling indistinguishability.

Proof. Let A be an adversary for the sampling indistinguishability game. We first recall the experiments in the
sampling indistinguishability security definition:

• EXP(0)samp (1_,A): This experiment proceeds as follows:

1. On input the security parameter 1_ , algorithm A outputs the input length 1ℓ .

2. The challenger samples (pp, f) ← Setup(1_, 1ℓ). Concretely, the challenger samplesG = (G,G) , ?, 6, 4) ←
PrimeBGroupGen(1_),U,W, X r← Z? , a, s

r← Z
ℓ
? , and r

r← {0, 1}d . It computes c, d ∈ Zℓ? such that
28 = (W8 + X)08 , 38 = (W8 + X)B8 . The challenger gives pp = (G, [W]G, [a]G, [s]G, [c]G, [d]G, r) to A.

3. Algorithm A outputs a set (⊆ [ℓ] and the challenger replies with [f(]G ← Samp(pp, (). Specifically,
the challenger samples G r← Z? and sets [f(]G = G · [W]G.

4. Algorithm A outputs a bit 1 ∈ {0, 1}, which is the output of the experiment.

• EXP(1)samp (1_,A): Same as EXP(0)samp, except the challenger sets [f(]G = (U +∑
8∈(B8) · [W]G.

The only difference between EXP(0)samp (1_,A) and EXP(1)samp (1_,A) is the distribution of [f(]G. In EXP(1)samp, the chal-
lenger samples U r← Z? and the only element in the experiment that depends on U is [f(]G = (U +∑8∈(B8) · [W]G. Thus,
the distribution of the multiplicative term (U +∑

8∈(B8) is uniform over Z? and independent of all other quantities.

This is the distribution of G in EXP(0)samp. Since the two experiments are identically distributed, the theorem holds. �

26

Theorem 6.15 (Adaptive Pseudorandomness). If the CBDH assumption holds with respect to PrimeBGroupGen, then

Construction 6.11 satisfies adaptive pseudorandomness.

Proof. The proof structure is very similar to the proof of Theorem 6.7. We first state the following corollary of the
CBDH assumption (Assumption 6.10) and Theorem 3.2.

Lemma 6.16. Suppose the CBDH assumption holds with respect to PrimeBGroupGen and let hc : {0, 1}d × {0, 1}d →
{0, 1} be the Goldreich-Levin extractor. Then, for all efficient (and possibly non-uniform) adversaries A, there exists a

negligible function negl(·) such that for all _ ∈ N:�� Pr [
A

(
1_, r, chal, hc([(U + D)EF]G) , r)

)
= 1

]
− Pr

[
A

(
1_, r, chal, 1

)
= 1

] �� = negl(_),

where G = (G,G) , ?, 6, 4) ← PrimeBGroupGen(1_), U,D, E,F r← Z? , r
r← {0, 1}d , 1 r← {0, 1}, and chal =

(G, U, [D]G, [E]G, [F]G)

Proof. We start by defining a joint distribution (-,.) = {(-_, ._)}_∈N as follows:

• Sample G = (G,G) , ?, 6, 4) ← PrimeBGroupGen(1_) and exponents U,D, E,F r← Z? .

• Let G = [(U + D)EF]G) and ~ = (G, U, [D]G, [E]G, [F]G). Output the pair (G,~).

Next, under the CBDH assumption, - is computationally unpredictable given . . To see this, suppose there exists
an efficient algorithm A that can predict G given ~ when (G,~) ← (-_, ._) with non-negligible probability Y. We
use A to construct an efficient algorithm B for the CBDH problem:

• On input the CBDH challenge (1_,G, [D]G, [E]G, [F]G), where G = (G,G) , ?, 6, 4), algorithm B samples
U

r← Z? and sets ~ = (G, U, [D]G, [E]G, [F]G).

• Algorithm B gives 1_ and ~ to algorithm A to obtain an output G = [I]G) .

• Algorithm B outputs [I]G) − U · [E]G · [F]G.

By assumption, the CBDH challenger samples G ← PrimeBGroupGen(1_) and D, E,F r← Z? . Algorithm B then
samples U r← Z? , so algorithm B perfectly simulates the distribution of ~ in (G,~) ← -_ × ._ , where the associated
value of G is G = [(U + D)EF]G) . Thus, with probability Y, algorithm A outputs [I]G) = [(U + D)EF]G) . In this case,
I − UEF = DEF and algorithm B successfully solves the CBDH problem with the same non-negligible advantage
Y. We conclude that under CBDH, the distribution of - is computationally unpredictable given . . Lemma 6.8 now
follows from Theorem 3.2. �

Proof of Theorem 6.15. We now return to the proof of Theorem 6.15. For each index 8 ∈ {0} ∪ N, we define an
experiment Hyb8 as follows:

• Hyb8 : This is a variant of the adaptive pseudorandomness experiment:

– On input the security parameter 1_ , algorithm A outputs the length parameter 1ℓ . The challenger
runs (pp, f) ← Setup(1_, 1ℓ). Specifically, it samples G = (G,G) , ?, 6, 4) ← PrimeBGroupGen(1_),
U,W, X

r← Z? , a, s r← Zℓ? , r r← {0, 1}d and computes c, d ∈ Zℓ? such that 28 = (W8 + X)08 , 38 = (W8 + X)B8 . It
sets pp = (G, [W]G, [a]G, [s]G, [c]G, [d]G, r) and f = (U, s). The challenger gives pp to A.

– The challenger also samples [f[ℓ]]G ← Project(pp, f, [ℓ]) and t
r← {0, 1}ℓ . In particular [f[ℓ]]G =

(U +∑
9∈[ℓ] B 9) · [W]G.

– WhenA makes an evaluation query on 9 ∈ [ℓ], the challenger replies with Eval(pp, [f[ℓ]]G, [ℓ], 9) if 9 > 8

and with C 9 if 9 ≤ 8 . In particular, when 9 > 8 , the challenger computes ~ 9 = W (U + B 9)0 9 and responds
with hc([~ 9]G) , r).

– AfterA finishes making evaluation queries, the challenger computes the seed [f(]G ← Project(pp, f, [ℓ] \
�) where � ⊆ [ℓ] is the set of indices on which algorithm A made an evaluation query. In particular,
[f(]G = (U +∑

9∈[ℓ]\� B 9) · [W]G. The challenger gives [f(]G to A.

27

– At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1}, which is the output of the experiment.

We again write Hyb8 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb8
with adversaryA. Following the same argument in the proof of Theorem 6.7, we again have EXP(0)prg (1_,A) ≡ Hyb0 (A)
and EXP(1)prg (1_,A) ≡ Hybℓ (A), and that for all indices 8 ∈ {0} ∪ N,

Pr[Hyb8 (A) = 1 ∧ E8] − Pr[Hyb8−1 (A) = 1 ∧ E8] = Pr[Hyb8 (A) = 1] − Pr[Hyb8−1 (A) = 1], (6.3)

where E8 is the event that algorithm A makes an evaluation query on index 8 . Suppose now that

| Pr[EXP(0)prg (1_,A) = 1] − Pr[EXP(1)prg (1_,A) = 1] | ≥ Y (_) (6.4)

for some non-negligible Y. We use A to construct an efficient adversary B for the distinguishing problem from
Lemma 6.16:

1. On input the challenge (1_, r, (G, U, [D]G, [E]G, [F]G), 1) where G = (G,G) , ?, 6, 4), algorithm B runs A on
input 1_ to obtain the output length 1ℓ . Algorithm B samples an index 8 r← [ℓ].

2. For all 9 ∈ [ℓ] \ {8}, algorithm B samples 0 9 , B 9
r← Z? and C 9

r← {0, 1}. It sets [B8]G = [D]G, [08]G = [E]G, [W]G =

[F]G. It also samples X∗ r← Z? and (implicitly) sets X := X∗ − W8 . It then computes vector [c]G, [d]G as follows

• If 9 ≠ 8 , it sets

[2 9]G = [X∗0 9]G + (9 − 8) · 0 9 · [F]G,
[3 9]G = [X∗B 9]G + (9 − 8) · B 9 · [F]G.

• If 9 = 8 , it sets [28]G = X∗ · [E]G and [38]G = X∗ · [D]G.

Algorithm B sets pp = (G, [W]G, [a]G, [s]G, [c]G, [d]G, r) and gives pp to A.

3. When algorithm A makes an evaluation query on an index 9 ∈ [ℓ], the challenger responds as follow.

• If 9 < 8 , the challenger responds with C 9 .

• If 9 = 8 , the challenger responds with 1.

• If 9 > 8 , the challenger responds with hc((U + B 9)0 9 · [1]G · [F]G, r).

4. AfterA finishes making evaluation queries, let � ⊆ [ℓ] be the set of indices onwhich algorithmA made an evalu-
ation query. If 8 ∉ � , then algorithmB outputs 0. Otherwise algorithmB responds with [f(]G = (U+∑9∈[ℓ]\� B 9) ·
[W]G. Since 8 ∈ � , this means 8 ∉ [ℓ] \ � , so algorithm B knows all of the exponents B 9 needed to construct [f(]G.

5. At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1} which algorithm B also outputs.

Since A is efficient, algorithm B is efficient, so it suffices to analyze its advantage.

Analyzing the advantage of B. Let,0 be the event that B outputs 1 when 1 = hc([(U + D)EF]G) , r) and,1

be the event that B outputs 1 when 1
r← {0, 1}. Suppose algorithm B samples 8 = 8∗ in the above reduction. By

construction, the challenger for the experiment in Lemma 6.16 samples U,D, E,F r← Z? . First, we argue that algorithm
B perfectly simulates the public parameters (where D plays the role of B8∗ , E plays the role of 08∗ , and F plays the
role of W) and the evaluation queries on indices 9 ≠ 8∗ for A:

• Since the challenger samples D, E,F r← Z? , the distributions of B8∗ = D, 08∗ = E , and W = F are distributed exactly
as in Hyb8∗−1 and Hyb8∗ . We conclude that the distribution of G, [W]G, [a]G, [s]G, r in the public parameters
are distributed exactly as in Hyb8∗−1 and Hyb8∗ .

28

• Consider now the distribution of c and d. Let X = X∗ − W8 . Since algorithm B samples X∗ r← Z? , the distribution
of X is uniform over Z? . Now, for 9 ≠ 8 , we have

2 9 = X∗0 9 + (9 − 8)0 9F = X∗0 9 + (9 − 8)0 9W = X0 9 + W 90 9 = (W 9 + X)0 9 ,
3 9 = X∗B 9 + (9 − 8)B 9F = X∗B 9 + (9 − 8)B 9W = XB 9 + W 9B 9 = (W 9 + X)B 9 ,

which matches the specification in Hyb8∗−1 and Hyb8∗ . Similarly, for 28 and 38 , we have

28 = X∗E = X∗08 = (W8 + X)08 ,
38 = X∗D = X∗B8 = (W8 + X)B8 ,

which again matches the specification in Hyb8∗−1 and Hyb8∗ .

• Finally, the evaluation queries on indices 9 ≠ 8∗ are answered exactly according to the specification of Hyb8∗−1
and Hyb8∗ . Specifically, when 9 > 8∗, the challenger responds with the hard-core predicate on

(U + B 9)0 9 · [1]G · [F]G = [W (U + B 9)0 9]G) ,

which is precisely the behavior in Hyb8∗−1 and Hyb8∗ .

We consider the distribution of the challenge bit 1.

• Suppose 1 = hc([(U + D)EF]G) , r) = hc([W (U + B8∗)08∗]G) , r). In this case, the responses to the evaluation
queries are distributed according to the specification in Hyb8∗−1. We consider the probability that algorithm
B outputs 1 in this case. First, if algorithm A does not make an evaluation query on index 8∗, then algo-
rithm B always outputs 0. If algorithm A does make an evaluation query on index 8∗, then algorithm B
perfectly simulates the challenge according to the distribution in Hyb8∗−1, and thus, outputs 1 with probability
Pr[Hyb8∗−1 (A) = 1 | E8∗]. Thus, in this case, algorithm B outputs 1 with probability

Pr[B outputs 1 | 8 = 8∗] = Pr[Hyb8∗−1 (A) = 1 | E8∗] · Pr[E8∗] = Pr[Hyb8∗−1 (A) = 1 ∧ E8∗] .

• Suppose 1 r← {0, 1}. In this case, the responses to the evaluation queries are distributed according to the
specification in Hyb8∗ . By a similar reasoning as in the previous case, we conclude that in this case

Pr[B outputs 1 | 8 = 8∗] = Pr[Hyb8∗ (A) = 1 | E8∗] · Pr[E8∗] = Pr[Hyb8∗ (A) = 1 ∧ E8∗] .

Finally, algorithm B samples 8 r← [ℓ]. Thus

Pr[,0 = 1] = 1

ℓ

∑
8∈[ℓ]

Pr[Hyb8−1 (A) = 1 ∧ E8]

Pr[,1 = 1] = 1

ℓ

∑
8∈[ℓ]

Pr[Hyb8 (A) = 1 ∧ E8] .

Since EXP(0)prg (1_,A) ≡ Hyb0 (A) and EXP(1)prg (1_,A) ≡ Hybℓ (A), we appeal to Eqs. (6.3) and (6.4) and conclude that

| Pr[,0 = 1] − Pr[,1 = 1] | = 1

ℓ

���∑
8∈[ℓ]

Pr[Hyb8−1 (A) = 1 ∧ E8] − Pr[Hyb8 (A) = 1 ∧ E8]
���

=
1

ℓ

���∑
8∈[ℓ]

?8 − ?8−1
���

=
1

ℓ
|?0 − ?ℓ | =

1

ℓ
| Pr[EXP(0)prg (1_,A) = 1] − Pr[EXP(1)prg (1_,A) = 1] | ≥ Y

ℓ
,

which is non-negligible since A is efficient which means ℓ = poly(_). �

29

6.3 Publicly-Sampleable Projective PRGs from LWE

In this section, we show how to construct a publicly-sampleable projective PRG from LWE. Our construction is
essentially a translation of our construction from CDH (Section 6.1) to the LWE setting. Our construction has a
similar structure as the projective PRG from LWE in [ABI+23], except we introduce an additional blinding term to
support public sampling and sampling indistinguishability (similar to the modification made in the context of our
CDH construction). We now give the full construction and security analysis.

Lattice preliminaries. We start by recalling some basic facts about lattice-based cryptography. Throughout this
section, we associate elements ~ ∈ Z@ with its integer representative in the interval (−@/2, @/2] ∩ Z. For positive
integers =, @ ∈ N, we define G = I= ⊗ gT ∈ Z=×<′@ to be the gadget matrix [MP12] where I= is the identity matrix of

dimension =, gT
= [1, 2, . . . , 2⌈log@⌉−1], and<′ = =⌈log@⌉. When< ≥ <′, we write G ∈ Z=×<@ to denote the “padded

gadget matrix” [I= ⊗ gT | 0=×(<−<′)]. The inverse function G−1 : Z=@ → Z<
′

@ expands each entry G ∈ Z@ into a column
of size ⌈log@⌉ corresponding to the bits in the binary representation of G . Similarly, when G ∈ Z=×<@ is a padded

gadget matrix with dimension< ≥ <′, we extend the output of G−1 : Z=@ → Z<@ by zero-padding each column. By

construction, for all t ∈ Z=@ , it follows that G · G−1 (t) = t mod @. For a matrix V we write ‖V‖ = max8, 9
��+8, 9 ��. For an

element ~ ∈ Z@ , we define the rounding function ⌊~⌉ : Z@ → {0, 1} to be

⌊~⌉ =
{
0 |~ | ≤ @/4
1 otherwise.

For functions 5 = 5 (_), 6 = 6(_), we write 5 ≤ $ (6) if there exists a function 6′ (_) ∈ $ (6(_)) such that for all _ ∈ N,
5 (_) ≤ 6′ (_). We define 5 ≥ $ (6) analogously. We write �Z,j to denote the discrete Gaussian distribution over Z
with width parameter j > 0. Finally, we use the following standard Gaussian tail bound:

Lemma 6.17 (Gaussian Tail Bound [MP12, Lemma 2.6]). For all j > 0 and all _ ∈ N,

Pr[|G | >
√
j : G ← �Z,j] ≤ 2− .

Truncated discrete Gaussian. We use �̄Z,j,� to denote the truncated discrete Gaussian distribution defined by
the following sampling procedure:

• Sample G ← �Z,j .

• If |G | ≤ �, output G . Otherwise, output 0.

In this work, we will write �̄Z,j to denote �̄
Z,j,
√
_j
. By Lemma 6.17, the truncated discrete Gaussian distribution �̄Z,j

is statistically close to the discrete Gaussian distribution �Z,j .

Homomorphic evaluation. Similar to [ABI+23], our projective PRG will rely on the lattice-based pseudorandom
function (PRF) by Brakerski and Vaikuntanathan [BV15]. We first recall the lattice homomorphic evaluation procedure
from [GSW13, BGG+14]

Theorem 6.18 (Homomorphic Encodings [GSW13, BGG+14]). Let _ be a security parameter and = = =(_), @ = @(_)
be lattice parameters. Let ℓ = ℓ (_) be an input length. Take any< ≥ = ⌈log@⌉ and let F = {F_}_∈N be a family of

functions 5 : {0, 1}ℓ → {0, 1} that can be computed by a Boolean circuit of depth at most 3 = 3 (_). Then, there exists
a pair of efficient and deterministic algorithms (EvalF, EvalFX) with the following properties:

• EvalF(A, 5) → A5 : On input a matrix A ∈ Z=×ℓ<@ and a function 5 ∈ F , the input-independent evaluation
algorithm outputs a matrix A5 ∈ Z=×<@ .

• EvalFX(A, 5 , x) → HA,5 ,x: On input a matrix A ∈ Z=×ℓ<@ , a function 5 ∈ F , and an input x ∈ {0, 1}ℓ , the
input-dependent evaluation algorithm outputs a matrix HA,5 ,x ∈ Zℓ<×<@ .

30

Moreover, for all security parameters _ ∈ N, matrices A ∈ Z=×ℓ<@ , all functions 5 ∈ F , and all inputs x ∈ {0, 1}ℓ , the
matrices A5 = EvalF(A, 5) and HA,5 ,x = EvalFX(A, 5 , x) satisfy the following properties:

• ‖HA,5 ,x‖ ≤ (= log@)$ (3) .

• (A − xT ⊗ G) · HA,5 ,x = A5 − 5 (x) · G.

Learning with errors. We now recall the learning with errors (LWE) assumption [Reg05]:

Assumption 6.19 (Learning with Errors [Reg05]). Let _ be a security parameter, and = = =(_),< =<(_), @ = @(_),
and j = j (_) be lattice parameters. We say the learning with errors problem LWE=,<,@,j holds if for all efficient
adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

����Pr
[
A(A, sTA + eT) = 1 :

A
r← Z=×<@

s
r← Z=@ , e← �<

Z,j

]
− Pr

[
A(A, uT) = 1 :

A
r← Z=×<@

u
r← Z<@

] ���� = negl(_).

The Brakerski-Vaikuntanathan constrained PRF. We now describe the key-homomorphic constrained PRF
by Brakerski and Vaikuntanathan [BV15] for the special case of puncturing constraints.

Theorem 6.20 (Key-Homomorphic Puncturable PRF [BV15, adapted]). Let _ be a security parameter and ℓ be an input

length. Let =,<,@, j, ĵ be parameters (which are functions of _, ℓ) and suppose< ≥ = ⌈log@⌉. For every x ∈ {0, 1}ℓ , let
Xx : {0, 1}ℓ → {0, 1} be the indicator function

Xx (y) :=
{
1 x = y

0 x ≠ y.

For a (public) matrix A ∈ Z=×ℓ<@ , vector d ∈ Z=@ , and inputs x, y ∈ {0, 1}ℓ , define

Ay = EvalF(A, Xy) and HA,y,x = EvalFX(A, Xy, x).

Then, the following properties hold:

• Correctness. For all y ≠ x, (A − xT ⊗ G) · HA,y,xG
−1 (d) = AyG

−1 (d). In addition, ‖HA,u,x‖ ≤ <$ (log ℓ) .

• Punctured pseudorandomness. For a security parameter _ ∈ N, an adversary A, and a bit V ∈ {0, 1}, we
define the punctured pseudorandomness experiment EXP(V)PPRF (1_,A) as follows:

– On input the security parameter 1_ , the adversary A outputs a point x ∈ {0, 1}ℓ .
– The challenger samples the public parameters A r← Z=×ℓ<@ and d r← Z=@ , a PRF key s

r← Z=@ , and error terms

e← �ℓ<
Z,j

, 4̂ ← �Z,ĵ , and sets cx = sT (A − xT ⊗ G) + eT, C0 = sTAxG
−1 (d) + 4̂ , and C1 r← Z@ . The challenger

gives (A, d, cx, CV) to the adversary.
– The adversary outputs a bit 1 ∈ {0, 1}, which is the output of the experiment.

Suppose ĵ ≥ _l (1) · j<$ (log ℓ) ℓ log ℓ . Then, under the LWE=,<̂,@,j assumption with <̂ = poly(=, log@), for all
efficient adversaries A, there exist a negligible function negl(·) such that for all _ ∈ N,���Pr[EXP(0)PPRF (1_,A)] − Pr[EXP(1)PPRF (1_,A)]

��� = negl(_).

Construction 6.21 (Publicly-Sampleable Projective PRG from LWE). Let _ be a security parameter and ℓ be an output
length parameter. Let =,<,@, j, ĵ, � be scheme parameters (which are functions of _ and ℓ) and suppose< ≥ = ⌈log@⌉
and @ > 4� + 2. For each integer 8 ∈ [ℓ], we associate with it a unique canonical vector u8 ∈ {0, 1}ℓ

′
where ℓ ′ = ⌈log ℓ⌉;

for example, we can take u8 to be the binary representation of 8 − 1. We now construct a projective PRG as follows:

31

• Setup(1_, 1ℓ) → (pp, f): On input the security parameter _ and the output length ℓ ∈ N, the setup algorithm
sets ℓ ′ = ⌈log ℓ⌉. Then, it samples public components A r← Z=×ℓ ′<@ and d

r← Z=@ . Next, the algorithm samples

r, s1, . . . , sℓ
r← Z=@ . Then it defines the set

NR@,� := Z@ \
(
[⌊@/4⌋ − �, ⌊@/4⌋ + �] ∪ [− ⌊@/4⌋ − �,− ⌊@/4⌋ + �]

)
.

The setNR@,� contains all elements of Z@ that are not contained in a rounding boundary: that is, for all~ ∈ NR@,�
and all 4 ∈ Z where |4 | ≤ �, it holds that ⌊~ + 4⌉ = ⌊~⌉. Note that this set is non-empty as long as @ > 4� + 2.
The setup algorithm now samples ~8

r← NR@,� for all 8 ∈ [ℓ]. Finally, for each 8 ∈ [ℓ], the setup algorithm
samples e8 ← �̄ℓ ′<

Z,j
and 4̂8 ← �̄Z,ĵ . It then computes A8 = EvalF(A, Xu8) and

c8 = sT8 (A − uT

8 ⊗ G) + eT8 and I8 = (r + s8)TA8G
−1 (d) + 4̂8 + ~8 .

The algorithm outputs
pp =

(
A, d, {c8 , I8 }8∈[ℓ]

)
and f = (r, s1, . . . , sℓ).

• Samp(pp, () → f(: On input the public parameters pp = (A, d, {c8 , I8 }8∈[ℓ]) and a target set (, the sampling
algorithm samples a random vector k r← Z=@ and outputs f(= k.

• Project(pp, f, () → f(: On input the public parameters pp = (A, d, {c8 , I8 }8∈[ℓ]), the seed f = (r, s1, . . . , sℓ), and
a target set (⊆ [ℓ], the projection algorithm computes and outputs f(= r +∑

8∈(s8 .

• Eval(pp, f, (, 8): On input the public parameters pp = (A, d, {c8 , I8 }8∈[ℓ]), the projected seed f = k, the as-
sociated set of indices (⊆ [ℓ], and an index 8 ∈ (, the evaluation algorithm computes A8 = EvalF(A, Xu8),
HA,8, 9 = EvalFX(A, Xu8 , u9), and

~′8 = I8 +
∑

9∈(\{8 }
cT9HA,8, 9G

−1 (d) − kTA8G
−1 (d).

It outputs
⌊
~′8

⌉
.

Theorem 6.22 (Correctness). Suppose � ≥
√
_ĵ +

√
_j<$ (log log ℓ) ℓ log ℓ . Then, Construction 6.21 is correct.

Proof. Take any security parameter _ ∈ N, output length ℓ ∈ N, any set of indices (⊆ [ℓ], and index 8 ∈ (.
Let (pp, f) ← Setup(1_, 1ℓ) and f(← Project(pp, f, (). Then pp = (A, d, {c8 , I8 }8∈[ℓ]), f = (r, s1, . . . , sℓ) and
f(= r +∑

8∈(s8 . By construction, c8 = sT8 (A − uT

8 ⊗ G) + eT8 , I8 = (r + s8)TA8G
−1 (d) + 4̂8 + ~8 , and A8 = Eval(A, Xu8).

Consider ~8 = Eval(pp, f(, (, 8). Since e8 and 4̂8 is sampled from the truncated discrete Gaussian distributions �̄ℓ ′<
Z,j

and �̄Z,ĵ , we have ‖e8 ‖ ≤
√
_j and |4̂8 | ≤

√
_ĵ . From Theorem 6.20, we have for all 9 ∈ (\ {8},

cT9HA,8, 9G
−1 (d) = (sT9 (A − uT

9 ⊗ G) + eT9) · HA,8, 9G
−1 (d) = sT9A8G

−1 (d) + 4∗9 ,

where
|4∗9 | = |eT9HA,8, 9G

−1 (d) | ≤ ‖e9 ‖ · ℓ ′<$ (log log ℓ) ≤ ℓ ′<$ (log log ℓ) j
√
_.

The evaluation algorithm computes

~′8 = I8 +
∑

9∈(\{8 }
cT9HA,8, 9G

−1 (d) − kTA8G
−1 (d)

= (r + s8)TA8G
−1 (d) + 4̂8 + ~8 +

∑
9∈(\{8 }

cT9HA,8, 9G
−1 (d) − rTA8G

−1 (d) −
∑
9∈(

sT9A8G
−1 (d)

= ~8 + 4̂8 +
∑

9∈(\{8 }
4∗9 .

32

Next, ������4̂8 +
∑

9∈(\{8 }
4∗9

������ ≤
√
_ĵ + |(| · ℓ ′<$ (log log ℓ) j

√
_.

Taking � ≥
√
_ĵ + ℓ ⌈log ℓ⌉<$ (log log ℓ)√_j and using the fact that ~′8 ∈ NR@,� , we conclude that

⌊
~′8

⌉
= ⌊~8⌉. Finally,

this holds for all 8 ∈ (, independent of the choice of (. Correctness holds. �

Theorem 6.23 (Succinctness). Suppose = log@ = poly(_, log ℓ). Then, Construction 6.21 is succinct.

Proof. The projected key f(is a vector in Z=@ , which can be described by = log@ bits. �

Theorem 6.24 (Sampling Indistinguishability). Suppose @ > ℓ� · _l (1) . Then, Construction 6.21 satisfies statistical

sampling indistinguishability.

Proof. LetA be an adversary for the sampling indistinguishability game. We define a sequence of hybrid experiments:

• Hyb0: This is experiment EXP(0)samp (1_,A). Namely, afterA outputs the input length 1ℓ , the challenger provides
pp = (A, d, {c8 , I8 }8∈[ℓ]) to the adversary, where cT8 = sT8 (A − uT

8 ⊗ G) + eT8 , I8 = (r + s8)TA8G
−1 (d) + 4̂8 + ~8 ,

A8 = EvalF(A, Xu8), and ~8
r← NR@,� . Algorithm A then outputs a set (⊆ [ℓ] and the challenger replies with

f(
r← Z=@ . Algorithm A outputs a bit 1 ∈ {0, 1}, which is the output of the experiment.

• Hyb1: Same as Hyb0 except the challenger samples ~8
r← Z@ for all 8 ∈ [ℓ].

• Hyb2: Same as Hyb1 except the challenger samples I8
r← Z@ for all 8 ∈ [ℓ]. In this experiment, the distribution

of each I8 is independent of r.

• Hyb3: Same as Hyb2 except the challenger sets f(= r +∑
8∈(s8 .

• Hyb4: Same as Hyb3 except the challenger samples I8 = (r + s8)Ta8 + 4̂8 + ~8 for all 8 ∈ [ℓ].

• Hyb5: Same asHyb4 except the challenger samples~8
r← NR@,� for all 8 ∈ [ℓ]. This is experiment EXP(1)samp (1_,A).

We write Hyb8 (A) to denote the random variable corresponding to an output of an execution of Hyb8 with adversary
A. We now show that each pair of adjacent distributions is statistically indistinguishable.

• The only difference between Hyb0 (A) and Hyb1 (A) is the distribution of ~8 . The statistical distance between
the uniform distribution over Z@ and NR@,� is (4� + 2)/@. Thus, the statistical distance between the tuple
(~1, . . . , ~ℓ) in the two experiments is at most ℓ (4� + 2)/@ = negl(_).

• The only difference between Hyb1 (A) and Hyb2 (A) is the distribution of I8 . In Hyb1, the challenger samples
~8

r← Z@ and the only element in the experiment that depends on~8 is I8 . Thus, we conclude that the distribution
of I8 is uniform over Z@ and independent of all other quantities. This is identical to the distribution in Hyb2.

• The only difference between Hyb2 (A) and Hyb3 (A) is the distribution of f(. In Hyb3, the challenger samples
r

r← Z=@ , and the only element in the experiment that depends on r is f(. Thus, we conclude that the distribution
of f(is uniform over Z? and independent of all other quantities. This is the distribution in Hyb2.

• Hyb3 (A) and Hyb4 (A) are identically distributed by the same argument used to argue that Hyb1 (A) and
Hyb2 (A) are identically distributed.

• Hyb4 (A) andHyb5 (A) are statistically close by the same argument used to argue statistical indistinguishability
of Hyb1 (A) and Hyb2 (A).

Since each pair of adjacent distributions has negligible statistical distance, the theorem holds. �

Theorem 6.25 (Adaptive Pseudorandomness). Suppose = log@ = poly(_, ℓ), ĵ ≥ _l (1) · j<$ (log log ℓ) ℓ log ℓ , � ≥√
_ĵ +

√
_j<$ (log log ℓ) ℓ log ℓ , and @ > _l (1) + 4�. Then, under the LWE=,<̂,@,j for <̂ = poly(=, log@). Then, Construc-

tion 6.21 satisfies adaptive pseudorandomness.

33

Proof. The proof follows a similar structure as that of Theorem 6.7. We first state a corollary of the pseudorandomness
property from Theorem 6.20, which is tailored to our construction.

Lemma 6.26. For a security parameter _, an adversary A and a bit V ∈ {0, 1}, we define the following distinguishing
game EXP(V) (1_,A):

• On input the security parameter 1_ , the adversary A chooses an output length 1ℓ and an index 8 ∈ [ℓ].

• The challenger computes ℓ ′ = ⌈log ℓ⌉ and samples a set of public parameters using a similar procedure as that of

the Setup algorithm in Construction 6.21. Specifically, the challenger proceeds as follows:

– Sample A r← Z=×ℓ ′<@ and d r← Z=@ .
– Sample r, s r← Z=@ , e← �̄ℓ ′<

Z,j
, 4̂ ← �̄Z,ĵ , and ~

r← NR@,� .

– Compute A8 = EvalF(A, Xu8), c = sT (A − uT

8 ⊗ G) + eT, and I = (r + s)TA8G
−1 (d) + 4̂ + ~.

Finally, the challenger computes 10 = ⌊~⌉, 11 r← {0, 1}, and gives (A, d, r, c, I, 1V) to the adversary.

• The adversary outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

Suppose ĵ ≥ _l (1) · j<$ (log log ℓ) ℓ log ℓ and = log@ = poly(_). Then, under the LWE=,<̂,@,j assumption with <̂ =

poly(=, log@), for all efficient adversaries A, there exist a negligible function negl(·), such that for all _ ∈ N,���Pr[EXP(0) (1_,A)] − Pr[EXP(1) (1_,A)]��� ≤ negl(_).

Proof. Let A be an efficient distinguisher for EXP(0) and EXP(1) . We define a sequence of hybrid experiments:

• Hyb0: This is experiment EXP(0) , where the challenger sets 1 = ⌊~⌉.

• Hyb1: Same as Hyb0 except the challenger samples e← �ℓ ′<
Z,j

and 4̂ ← �Z,ĵ . In particular, the errors e and 4̂

are sampled from the discrete Gaussian distribution rather than the truncated discrete Gaussian distribution.

• Hyb2: Same as Hyb1 except the challenger samples I r← Z@ .

• Hyb3: Same as Hyb2 except the challenger samples 1 r← {0, 1}.

• Hyb4: Same as Hyb3 except the challenger samples I = (r + s)TA8G
−1 (d) + 4 + ~.

• Hyb5: Same as Hyb4 except the challenger samples e← �̄ℓ ′<
Z,j

and 4̂ ← �̄Z,ĵ . Specifically, the errors e and 4̂

are now sampled from the truncated discrete Gaussian distribution. This is experiment EXP(1) .

We write Hyb8 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb8 with
adversary A (and an implicit security parameter _). We now show that the output distributions of each adjacent
pair of hybrid experiments is indistinguishable.

• The only difference between Hyb0 (A) and Hyb1 (A) is the distribution of e and 4̂ . By Lemma 6.17, the distribu-
tions �Z,ĵ and �̄Z,ĵ are statistically close to �Z,j and �̄Z,j . Therefore Hyb0 (A) and Hyb1 (A) are statistically
indistinguishable (since< = poly(= log@) = poly(_) and ℓ = poly(_) by the efficiency requirement of A).

• We appeal to Theorem 6.20. Specifically, when ĵ > _l (1) · j<$ (log log ℓ) ℓ log ℓ and the LWE=,<̂,@,j assumption
holds, the punctured pseudorandomness property of Theorem 6.20 holds. Suppose now that | Pr[Hyb1 (A) =
1] − Pr[Hyb2 (A) = 1] | ≥ Y (_) for some non-negligible Y. We use A to construct an efficient adversary B that
breaks the punctured pseudorandomness property from Theorem 6.20.

– On input the security parameter 1_ , algorithm B runs A(1_) to obtain 1ℓ and 8 ∈ [ℓ].
– Algorithm B sets ℓ ′ = ⌈log ℓ⌉ and gives 1ℓ

′
and u8 ∈ {0, 1}ℓ

′
to the challenger. The challenger replies with

(A, d, c, C).

34

– Algorithm B samples a vector r r← Z=@ and a scalar ~ r← NR@,� . It computes A8 = EvalF(A, Xu8) and
I = rTA8G

−1 (d) + C + ~. It send (A, d, r, c, I, C) to A.

– Algorithm A outputs a bit 1′ ∈ {0, 1}, which algorithm B also outputs.

By construction, the challenger samples A r← Z=×ℓ ′<@ , d r← Z=@ and c = sT (A − uT

8 ⊗ G) + eT, exactly as in the

punctured pseudorandomness experiment. When C = sTA8G
−1 (d) + 4̂ , then algorithm B perfectly simulates

Hyb1. On the other hand, when C
r← Z? , the distribution of I = rTA8G

−1 (d) + C + ~ also uniformly random
since no other element in the experiment depends on C . Therefore B perfectly simulates Hyb2 when C

r← Z? .
Hence B breaks the pseudorandomness property of Theorem 6.20 with the same non-negligible probability
Y, which is a contradiction.

• The only difference between Hyb2 (A) and Hyb3 (A) is the distribution of 1. In Hyb2, the challenger sets
1 = ⌊~⌉ where ~ ← NR@,� . By construction of NR@,� , this means,����Pr[⌊~⌉ = 1 : ~ r← NR@,�] −

1

2

���� = $ (1)
|NR@,� |

= negl(_),

since |NR@,� | ≥ @ − (4� + 2) = _l (1) . Thus, the marginal distribution of 1 ∈ {0, 1} in Hyb2 is statistically close
to uniform. Finally, the only variable in Hyb2 that depends on ~ is 1. We conclude that Hyb2 (A) and Hyb3 (A)
are statistically indistinguishable.

• Hyb3 (A) and Hyb4 (A) are computationally indistinguishable by the same argument used to argue indistin-
guishability of Hyb1 (A) and Hyb2 (A).

• Hyb4 (A) and Hyb5 (A) are statistically indistinguishable by the same argument used to argue indistinguisha-
bility of Hyb0 (A) and Hyb1 (A). �

Proof of Theorem 6.25. We now return to the proof of Theorem 6.25. The proof follows a similar strategy as the
proof of Theorem 6.7. For each index 8 ∈ {0} ∪ N, we define an experiment Hyb8 as follows:

• Hyb8 : This is a variant of the adaptive pseudorandomness experiment:

– On input the security parameter 1_ , algorithmA outputs 1ℓ . The challenger runs (pp, f) ← Setup(1_, 1ℓ).
Specifically, the challenger samples A r← Z

=×ℓ ′<
@ , d r← Z

=
@ , r, s1, . . . , sℓ

r← Z
=
@ , ~1, . . . , ~ℓ

r← NR@,� ,

e1, . . . , eℓ ← �̄ℓ ′<
Z,j

and 4̂1, . . . , 4̂ℓ ← �̄Z,ĵ . Then, it computes cT8 = sT8 (A − uT

8 ⊗ G) + eT8 , A8 = EvalF(A, Xu8),
and I8 = (r + s8)TA8G

−1 (d) + 4̂8 + ~8 for all 8 ∈ [ℓ]. The challenger gives pp = (A, d, {c8 , I8 }8∈[ℓ]) to A.

– Next, the challenger computes f[ℓ] ← Project(pp, f, [ℓ]) and samples t r← {0, 1}ℓ . In particular f[ℓ] =
r +∑

9∈[ℓ] s9 .

– When A makes an evaluation query on 9 ∈ [ℓ], the challenger replies with Eval(pp, f[ℓ], [ℓ], 9) if 9 > 8

and with C 9 if 9 ≤ 8 . In particular, when 9 > 8 , the challenger computes A9 = EvalF(A, Xu9
) and

~′9 = I 9 +
∑

:∈[ℓ]\{ 9 }
cT: · HA, 9,:G

−1 (d) − fT

[ℓ]A9G
−1 (d)

and responds with ⌊~′9 ⌉.
– AfterA finishes making evaluation queries, the challenger computes the seed f(← Project(pp, f, [ℓ] \ �)
where � ⊆ [ℓ] is the set of indices on which algorithm A made an evaluation query. In particular,
f(= r +∑

9∈[ℓ]\� s9 . The challenger gives f(to A.

– At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1}, which is the output of the experiment.

35

We write Hyb8 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb8 with
adversary A. By construction, observe that EXP(0)prg (1_,A) ≡ Hyb0 (A) and EXP(1)prg (1_,A) ≡ Hybℓ (A). Following
the same argument in the proof of Theorem 6.7, for all indices 8 ∈ {0} ∪ N,

Pr[Hyb8 (A) = 1 ∧ E8] − Pr[Hyb8−1 (A) = 1 ∧ E8] = Pr[Hyb8 (A) = 1] − Pr[Hyb8−1 (A) = 1], (6.5)

where E8 is the event that algorithm A makes an evaluation query on index 8 . Suppose now that

| Pr[EXP(0)prg (1_,A) = 1] − Pr[EXP(1)prg (1_,A) = 1] | ≥ Y (_) (6.6)

for some non-negligible Y. We use A to construct an efficient adversary B for the distinguishing problem from
Lemma 6.26:

1. On input the security parameter 1_ , algorithm B runs A(1_) to obtain the output length 1ℓ . Algorithm B
samples a random index 8 r← [ℓ] and send (1ℓ , 8) to the challenger to receive (A, d, r, c, I, 1).

2. For all 9 ∈ [ℓ] \ {8}, algorithm B samples s9
r← Z=@ , C 9 r← {0, 1}, ~ 9

r← NR@,� , e9 ← �̄ℓ ′<
Z,j

, 4̂ 9 ← �̄Z,ĵ and

computes cT9 = sT9 (A − uT

9 ⊗ G) + eT9 , A9 = EvalF(A, Xu9
), and I 9 = (r + s9)TA9G

−1 (d) + 4̂ 9 +~ 9 . Algorithm B also
sets c8 = c, I8 = I. Algorithm B gives pp = (A, d, {c9 , I 9 } 9∈[ℓ]) to A.

3. When algorithm A makes an evaluation query on an index 9 ∈ [ℓ], the challenger responds as follow.

• If 9 < 8 , the challenger responds with C 9 .

• If 9 = 8 , the challenger responds with 1.

• If 9 > 8 , the challenger responds with
⌊
~ 9

⌉
.

4. After A finishes making evaluation queries, let � ⊆ [ℓ] be the set of indices on which algorithm A made an
evaluation query. If 8 ∉ � , then algorithm B outputs 0. Otherwise algorithm B responds with f(= r+∑9∈[ℓ]\� s9 .
Since 8 ∈ � , this means 8 ∉ [ℓ] \ � , so algorithm B knows all of the s9 needed to construct f(.

5. At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1} which algorithm B also outputs.

Since A is efficient, algorithm B is efficient, so it suffices to analyze its advantage.

Analyzing the advantage of B. By construction, c = sT (A − uT

8 ⊗ G) + eT and I = (r + s)TA8G
−1 (d) + 4̂ + ~. In

the following analysis, let

f[ℓ] = r + s +
∑

:∈[ℓ]\{8 }
s: .

Note that algorithm B does not (and cannot) compute f[ℓ] ; however, it will be useful in our analysis below. Let,0 be
the event that B outputs 1 when the challenger sets 1 = ⌊~⌉ and,1 be the event that B outputs 1 when the challenger
samples 1 r← {0, 1}. Suppose algorithm B samples 8 = 8∗ in the above reduction. Then, the following holds:

• By definition, algorithmB perfectly simulates the public parameters pp for algorithmA as well as the evaluation
queries for all 9 < 8∗ according to the specification in hybrid Hyb8∗−1 and Hyb8∗ .

• Consider the evaluation queries for 9 > 8∗

• In Hyb8∗−1 and Hyb8∗ , the challenger would first compute A9 = EvalF(A, Xu9
) and

~′9 = I 9 +
∑

:∈[ℓ]\{ 9 }
cT:HA, 9,:G

−1 (d) − fT

[ℓ]A9G
−1 (d).

By the same analysis as in the proof of Theorem 6.22, ⌊~′9 ⌉ =
⌊
~ 9

⌉
, and we conclude that algorithm B perfectly

simulates the evaluation queries for 9 > 8∗ according to the specification of Hyb8∗−1 and Hyb8∗ .

36

Next, we consider the distribution of the challenge bit 1:

• Suppose 1 = ⌊~⌉. By the same argument as in the proof of Theorem 6.22, we have

⌊~⌉ =

I +

∑
:∈[ℓ]\{8 }

cT:HA,8,:G
−1 (d) − fT

[ℓ]A8G
−1 (d)


.

In this case, the response to an evaluation query on index 8 is distributed according to the specification in
Hyb8∗−1. We consider the probability that algorithm B outputs 1 in this case. First, if algorithm A does not
make an evaluation query on index 8∗, then algorithm B always outputs 0. If algorithm A does make an
evaluation query on index 8∗, then algorithm B perfectly simulates an execution of Hyb8∗−1, and thus, outputs
1 with probability Pr[Hyb8∗−1 (A) = 1 | E8∗]. Thus, in this case, algorithm B outputs 1 with probability

Pr[B outputs 1 | 8 = 8∗] = Pr[Hyb8∗−1 (A) = 1 | E8∗] · Pr[E8∗] = Pr[Hyb8∗−1 (A) = 1 ∧ E8∗] .

• Suppose 1 r← {0, 1}. In this case, the responses to the evaluation queries are distributed according to the
specification in Hyb8∗ . By a similar reasoning as in the previous case, we conclude that in this case

Pr[B outputs 1 | 8 = 8∗] = Pr[Hyb8∗ (A) = 1 | E8∗] · Pr[E8∗] = Pr[Hyb8∗ (A) = 1 ∧ E8∗] .

Finally, algorithm B samples 8 r← [ℓ]. Thus

Pr[,0 = 1] = 1

ℓ

∑
8∈[ℓ]

Pr[Hyb8−1 (A) = 1 ∧ E8],

Pr[,1 = 1] = 1

ℓ

∑
8∈[ℓ]

Pr[Hyb8 (A) = 1 ∧ E8] .

Since EXP(0)prg (1_,A) ≡ Hyb0 (A) and EXP(1)prg (1_,A) ≡ Hybℓ (A), we appeal to Eqs. (6.5) and (6.6) and conclude that

| Pr[,0 = 1] − Pr[,1 = 1] | = 1

ℓ

���∑
8∈[ℓ]

Pr[Hyb8−1 (A) = 1 ∧ E8] − Pr[Hyb8 (A) = 1 ∧ E8]
���

=
1

ℓ

���∑
8∈[ℓ]

?8 − ?8−1
���

=
1

ℓ
|?0 − ?ℓ | =

1

ℓ
| Pr[EXP(0)prg (1_,A) = 1] − Pr[EXP(1)prg (1_,A) = 1] | ≥ Y

ℓ
,

which is non-negligible since A is efficient which means ℓ = poly(_). �

Parameter instantiations. We now show how to instantiate the parameters for Construction 6.21 to satisfy the
requirements in Theorems 6.22 to 6.25. Let _ be a security parameter and ℓ be the output length. We instantiate the
lattice parameters as follows:

• We set the lattice dimension to be = = (_ log ℓ)1/Y for some small constant Y ∈ (0, 1). In the following, we will
assume log@ = $̃ (_ log ℓ), where $̃ (·) suppresses poly(log _, log log ℓ) factors. Next, we set< = $ (= log@) =
poly(_, log ℓ).

• We set j = poly(_). We set ĵ = 2_ · j<$ (log log ℓ) ℓ log ℓ = 2$̃ (_ log ℓ) . We set � = 2
√
ĵ = 2$̃ (log ℓ)

• Finally, we set @ = 2_ ·ℓ� = 2$̃ (_ log ℓ) = 2$̃ (=
Y) so that the LWE=,<̂,@,j assumption holds where <̂ = poly(=, log@).

This yields a projective PRG from polynomial hardness of LWE with a sub-exponential modulus-to-noise ratio.

37

7 Nearly-Linear Semi-Static Broadcast Encryption from Bilinear Maps

In this section, we show how to construct a semi-statically secure broadcast encryption with a nearly-linear-size public
key from a search assumption (in the target group). The construction combines ideas from the semi-static broadcast
encryption scheme from [GW09, §3.1] with the recent cross-term-compression technique from [GLWW24]. Security
relies on the search version of the set-consistent bilinear Diffie-Hellman exponent assumption from [GLWW24,
Assumption 4.2]. We first recall the notion of a progression-free and double-free set as well as the set-consistent
bilinear Diffie Hellman exponent assumption [GLWW24].

Progression-free sets. A progression-free set [ET36] is a set of natural numbers that does not contain any arith-
metic progressions of length 3. Similar to the applications from [GLWW24], we also require the set system to be
double-free, which means the set does not contain any integer which is twice that of another integer. The work
of [GLWW24] describes a simple way to convert any progression-free set into a progression-free and double-free
set. We provide the formal definitions below:

Definition 7.1 (Progression-Free Set [ET36]). A set D ⊂ N is progression-free if for all 8, 9, : ∈ D where 8 ≠ 9 , it
follows that 8 + 9 ≠ 2 · : .

Definition 7.2 (Double-Free Set [GLWW24]). A set D ⊂ N is double-free if for all 8, 9 ∈ D, it holds that 8 ≠ 2 · 9 .

Lemma 7.3 (Progression-Free and Double-Free Sets [Beh46, Elk10, GLWW24]). There exists a family of progression-

free and double-free sets {D=}=∈N where |D= | = = andmax(D=) = =1+> (1) . Moreover, there exists an explicit and efficient

algorithm that takes as input 1= and outputs D= .

Set-consistent bilinear Diffie-Hellman exponent assumption. We prove security from a search version of
the set-consistent bilinear Diffie-Hellman exponent assumption from [GLWW24]. While [GLWW24, Assumption 4.2]
formulates the assumption as a decisional assumption in the target group, for our applications, it suffices to use the
search version of the assumption. The formulation in [GLWW24] gives out some additional group elements compared
to our formulation. We exclude these additional elements to simplify the statement of the assumption as they are
not needed for our construction. We now give the formal statement of the assumption:

Assumption 7.4 (Search Set-Consistent Bilinear Diffie-Hellman Exponent [GLWW24, Assumption 4.2, adapted]). Let
PrimeBGroupGen be a prime-order bilinear group generator. For a security parameter _ and an adversaryA, we define
the search computational @-set-consistent bilinear Diffie-Hellman exponent experiment @-SC-BDHE(1_,A) as follow:

• On input the security parameter 1_ , the adversary A outputs a parameter 1@ and two sets (0, (1 ⊆ [2@].

• The challenger samples G = (G,G) , ?, 6, 4) ← PrimeBGroupGen(1_) and random exponents 0, C r← Z? . The
challenger gives (G, [C]G, {[0 9]G} 9∈(0 , {[C · 0 9]G} 9∈(1 , [0@]G)) to the adversary.

• The adversary outputs a group element [/]G) ∈ G) . The experiment outputs 1 if [/]G) = [C · 0@]G) and
outputs 0 otherwise.

We say an adversary is admissible if it outputs a triple (@, (0, (1) where for every B0 ∈ (0 ∪ {0} and B1 ∈ (1 ∪ {0}, it
holds that B0 + B1 ≠ @. We say the search @-set-consistent bilinear Diffie-Hellman exponent assumption holds with
respect to PrimeBGroupGen if for every efficient and admissible adversaryA, there exist a negligible function negl(·)
such that for all _ ∈ N,

Pr[@-SC-BDHE(1_,A) = 1] = negl(_).

Semi-static broadcast encryption. We now give our construction of a semi-static broadcast encryption scheme
from the search set-consistent bilinear Diffie-Hellman exponent assumption. As noted before, our construction can
be viewed as a combination of the semi-static broadcast encryption scheme from [GW09, §3.1] with the cross-term
compression techniques based on progression-free sets from [GLWW24]. At a high level, our construction replaces
the cross-terms ℎA89 in the [GW09] construction with ℎ 9 = [V03 9]G and A8 = 038 , where the exponents 38 are drawn

38

from a progression free set D# . This way, there are many pairs of indices (8, 9) that share a common cross-term
ℎA89 = [V038+3 9]G (e.g., every 8, 9 with a common value of 38 + 3 9 share a cross term). At the same time, the non-cross-

terms terms ℎA88 = [V0238]G remain hidden by the progression-free structure of D# . We give the construction below:

Construction 7.5 (Semi-Static Broadcast Encryption). Let PrimeBGroupGen be a prime-order bilinear group gen-
erator and let d = d (_) be a bound on the bit-length of the group elements associated with PrimeBGroupGen. Let
hc : {0, 1}d × {0, 1}d → {0, 1} be the Goldreich-Levin hardcore extractor. Let {D=}=∈N be the efficiently-computable
family of progression-free and double-free sets from Lemma 7.3. We construct a broadcast encryption scheme
ΠBE = (Setup,KeyGen, Enc,Dec) as follows:

• Setup(1_, 1#): On input the security parameter _ and the number of parties # , the setup algorithm sam-
ples a prime-order pairing group G = (G,G) , ?, 6, 4) ← PrimeBGroupGen(1_) and sets D = D# to be a
progression-free and double-free set of size # . It then computes the set E of all distinct pairwise sums

E = {38 + 3 9 | 8, 9 ∈ [#] : 8 ≠ 9}.
Let |E | = " and denote the distinct elements of E by 41, 42, . . . , 4" ∈ E. We define a canonical function
5 : [#] × [#] → ["] where 45 (8, 9) = 38 + 3 9 for all 8 ≠ 9 . Finally, the setup algorithm samples random

exponents U, V, 0, C r← Z? and compute vectors u = (031 , . . . , 03#), v = (041 , . . . , 04"). Finally, the algorithm
samples the extractor seed r

r← {0, 1}d and outputs

mpk = (G,D, [V]G, [u]G, [Vu]G, [Vv]G, [U]G) , r) and msk = (G, U, V, u).

• KeyGen(msk, 8): On input the master secret key msk = (G, U, V, u) and an index 8 ∈ [#], the key-generation
algorithm outputs the secret key sk8 = (8, [U − VD2

8]G).

• Enc(mpk, (, `): On input the master public keympk = (G,D, [V]G, [u]G, [Vu]G, [Vv]G, [U]G) , r), a set (⊆ [#],
and a message ` ∈ {0, 1}, the encryption algorithm samples a random C

r← Z? and computes

�1 = hc(C · [U]G) , r) ⊕ `, [�2]G) = [C]G, [�3]G) = C ·
∑
8∈(
[VD8]G .

The encryption algorithm outputs the ciphertext ct = (�1, [�2]G) , [�3]G)).

• Dec(mpk, (, sk, ct): On input the master public key mpk = (G,D, [V]G, [u]G, [Vu]G, [Vv]G, [U]G) , r), a set
(⊆ [#], a secret key sk = (8, [W]G) and a ciphertext ct = (�1, [�2]G, [�3]G), the decryption algorithm computes

[/]G) = [�2]G · [W]G + [�3]G · [D8]G −
∑

9∈(\{8 }
[�2]G · [VE 5 (8, 9)]G.

Then it outputs ` = �1 ⊕ hc([/]G) , r).
Theorem 7.6 (Correctness). Construction 7.5 is correct.

Proof. Take any _, # ∈ N any set (⊆ [#], any index 8 ∈ (, and any message ` ∈ {0, 1}. Take any (mpk,msk) ←
Setup(1_, 1#), any secret key sk8 ← KeyGen(msk, 8), and any ct← Enc(mpk, (, `). By construction,

mpk = (G,D, [V]G, [u]G, [Vu]G, [Vv]G, [U]G) , r) and msk = (G, U, V, u),
sk8 = (8, [W]G) where W = U − VD28 , and ct = (�1, [�2]G, [�3]G). By construction of Setup, D8 = 038 and E8 = 048 . Since
45 (8, 9) = 38 + 3 9 , this means E 5 (8, 9) = 038+3 9 = D8D 9 . Now, by construction of Setup, KeyGen, and Enc, we can write

/ = �2 · W +�3 · D8 −
∑

9∈(\{8 }
�2 · VE 5 (8, 9)

= C (U − VD2
8) + C

∑
9∈(

VD 9D8 −
∑

9∈(\{8 }
VCE 5 (8, 9)

= CU +
∑
9∈(

CVD8D 9 − CVD2
8 −

∑
9∈(\{8 }

CVD8D 9

= CU .

39

In particular, this means

�1 ⊕ hc([/]G) , r) = hc([CU]G) , r) ⊕ ` ⊕ hc([/]G) , r) = `,

and correctness holds. �

Theorem 7.7 (Semi-Static Security). Suppose the search set-consistent bilinear Diffie-Hellman exponent assumption

holds with respect to PrimeBGroupGen. Then Construction 7.5 is semi-statically secure (Definition 3.4).

Proof. We first state a corollary of the search set-consistent bilinear Diffie-Hellman exponent assumption (Assump-
tion 7.4) and Theorem 3.2.

Lemma 7.8. Let PrimeBGroupGen be a prime-order bilinear group generator and let hc : {0, 1}d × {0, 1}d → {0, 1}
be the Goldreich-Levin extractor. For a security parameter _ and an adversary A, define the following distinguishing

game EXP(V) (1_,A), which can be viewed as a decisional version of the @-SC-BDHE game:

• On input the security parameter 1_ , the adversary A outputs a parameter 1@ and two sets (0, (1 ⊆ [2@].

• The challenger samples G = (G,G) , ?, 6, 4) ← PrimeBGroupGen(1_) and random exponents B, 0, C r← Z? . Addi-
tionally, the challenger samples extractor seed r r← {0, 1}d and computes bits 10 = hc([BC0@]G) , r) and 11

r← {0, 1}.
The challenger provides (G, B, [C]G, {[0 9]G} 9∈(0 , {[C · 0 9]G} 9∈(1 , [0@]G) , r, 1V) to the adversary.

• The adversary outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

Similar to the@-SC-BDHE game, we say an adversary is admissible if it outputs a triple (@, (0, (1) where for every B0 ∈ (0∪
{0} and B1 ∈ (1∪{0}, it holds that B0+B1 ≠ @. Suppose the@-SC-BDHE assumption holds with respect to PrimeBGroupGen.

Then, for all efficient and admissible adversaries A, there exist a negligible function negl(·) such that for all _ ∈ N,���Pr[EXP(0) (1_,A) = 1] − Pr[EXP(1) (1_,A) = 1]
��� = negl(_).

Proof. Suppose there exists an efficient and admissible adversary A such that

| Pr[EXP(0) (1_,A) = 1] − Pr[EXP(1) (1_,A) = 1] | = Y (_)

for some non-negligible Y. For simplicity, we decompose A into two algorithms A = (A0,A1), where A0 takes as
input 1_ and outputs (1@, (0, (1) along with a private state st, andA1 takes as input the private state st along with the
challenger’s response and outputs the bit 1′. We now define a joint distribution (-,.) = {(-_, ._)}_∈N as follows:

• RunA0 (1_) to obtain a triple (1@, (0, (1) and private state st. Then, sample a bilinear groupG = (G,G) , ?, 6, 4) ←
PrimeBGroupGen(1_) along with exponents B, 0, C r← Z? .

• Let G = [BC0@]G) and ~ = (st,G, B, [C]G, {[0 9]G} 9∈(0 , {[C · 0 9]G} 9∈(1). Output the pair (G,~).

We now show that under the @-SC-BDHE assumption, - is computationally unpredictable given . . Suppose there
exist an efficient algorithm A′ that can predict G given ~ with some non-negligible probability Y′. We use A′ to
construct an efficient algorithm B for the @-SC-BDHE problem:

• On input the security parameter 1_ , algorithm B first runs A0 (1_) to obtain a triple (1@, (0, (1) and state st.
It forwards (1@, (0, (1) to the @-SC-BDHE challenger.

• On receiving the @-SC-BDHE challenge (G, [C]G, {[0 9]G} 9∈(0 , {[C · 0 9]G} 9∈(1 , [0@]G)), algorithm B samples
B

r← Z? and set ~ = (st,G, B, [C]G, {[0 9]G} 9∈(0 , {[C · 0 9]G} 9∈(1 , [0@]G)).

• Algorithm B runs A′ (1_, ~) and obtains an output G = [I]G) .

• Algorithm B outputs B−1 · [I]G) .

40

By construction, algorithm B perfectly simulates the distribution of ~ in (G,~) ← (-_, ._), where G = [BC0@]G) . Thus,
with probability Y′, algorithmA′ outputs [I]G) = [BC0@]G) . In this case, algorithm B outputs B−1 · [BC0@]G) = [C0@]G,
successfully solving the @-SC-BDHE challenge. Finally, B is admissible as long asA is admissible. This contradicts the
@-SC-BDHE assumption. We conclude that under the @-SC-BDHE assumption, - is computationally unpredictable
given . . The lemma now follows by Theorem 3.2:

• Since- is computationally unpredictable given. , Theorem 3.2 now states that the distributions (1_, r, hc(G, r), ~)
and (1_, r, 1,~) are computationally indistinguishable when r

r← {0, 1}d , (G,~) ← (-_, ._), and 1 r← {0, 1}.

• If algorithm A distinguishes EXP(0) and EXP(1) with advantage Y, then we can use A1 to construct a distin-
guisher for the distributions (1_, r, hc(G, r), ~) and (1_, r, 1,~) as follows:

– On input (1_, r, 1,~) where ~ = (st,G, B, [C]G, {[0 9]G} 9∈(0 , {[C · 0 9]G} 9∈(1 , [0@]G)), compute and output
A1 (st,G, B, [C]G, {[0 9]G} 9∈(0 , {[C · 0 9]G} 9∈(1 , [0@]G) , r, 1).

When 1 = hc(G, r), this process perfectly simulates an execution of EXP(0) for A1 and when 1 r← {0, 1}, this
perfectly simulates an execution of EXP(1) forA1. Thus, this algorithm distinguishes between (1_, r, hc(G, r), ~)
and (1_, r, 1,~) with non-negligible advantage Y, which is a contradiction. �

Proof of Theorem 7.7. We now return to the proof of Theorem 7.7. We first define a hybrid experiment EXP(rand)SSBE ,
which is almost identical to EXP(a)SSBE, but in the challenge query, after computing ct = (�1, [�2]G, [�3]G) ←
Enc(mpk, (, `), replace �1 with �′1

r← {0, 1} and output ct′ = (�′1, [�2]G, [�3]G). Suppose there exist a ∈ {0, 1}
and an efficient adversary A where���Pr[EXP(a)SSBE (1_,A) = 1] − Pr[EXP(rand)SSBE (1_,A) = 1]

��� = Y (_).

for some non-negligible Y. We useA to construct an efficient adversaryB for the distinguishing problem fromLemma 7.8.

• On input the security parameter 1_ , run A(1_) to obtain the number of user 1# and a set (∗ ⊆ [#].

• Let D = D# be the progression-free and double-free set of size # and let E = {38 + 3 9 | 8, 9 ∈ [#] : 8 ≠ 9}
be the set of pairwise sums. Let 5 : [#] × [#] → ["] be the canonical function where 45 (8, 9) = 38 + 3 9 for all
8 ≠ 9 . Let 3max = max(D) and set @ = 43max + 2.

• Let C = {238 − 3 9 : 8 ∈ [#] \ (∗, 9 ∈ (∗} and define

(0 = [2@] \ (C ∪ {@})
(1 = {@ − 2 : 2 ∈ C} ∪ [@ + 1, 2@] .

Algorithm B gives (1@, (0, (1) to the challenger and receives (G, B, [C]G, {[0 9]G} 9∈(0 , {[C · 0 9]G} 9∈(1 , [0@]G) , r, 1).

• Algorithm B samples B′ r← Z? and implicitly set U = B0@ and V = B′0@+1 +∑
8∈[# \(∗] B0

@−238 . It then computes

– [U]G) = B · [0@]G) ;
– [V]G = B′ · [0@+1]G +

∑
9∈[#]\(∗ B · [0@−23 9]G;

– for all 8 ∈ [#], [D8]G = [038]G and [VD8]G = B′ · [0@+1+38]G +
∑

9∈[#]\(∗ B · [0@−23 9+38]G;
– for all 8 ∈ ["], [VE8]G = B′ · [0@+1+48]G +

∑
9∈[#]\(∗ B · [0@−23 9+48]G.

Algorithm B responds to A with mpk = (G,D, [V]G, [u]G, [Vu]G, [Vv]G, [U]G) , r).

• For each key-generation query 8 ∈ [#] \ (∗ from A, the algorithm B computes

[W8]G = −B′ · [0@+1+238]G −
∑

9∈[#]\((∗∪{8 })
B · [0@−23 9+238]G (7.1)

and sends sk8 = [W8]G to A.

41

• When A makes a challenge query (⊆ (∗, algorithm B sets

�1 = 1 ⊕ a, [�2]G = [C]G, [�3]G =

∑
:∈(

©­«
B′ · [C0@+1+3:]G +

∑
9∈[#]\(∗

B · [C0@−23 9+3:]Gª®¬
(7.2)

and replies to A with ct = (�1, [�2]G, [�3]G).

• At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1} which algorithm B also outputs.

We first argue that B is an admissible algorithm.

• Since D is double free, 0 ∉ C. Thus, by definition @ ∉ (0, @ ∉ (1.

• Furthermore, for all ~ ∈ (1 ∩ [@ − 1], ~ is of the form ~ = @ − 2 for some 2 ∈ C. By definition of (0, 2 ∉ (0.
Hence, there does not exist B0 ∈ (0 and B1 ∈ (1 where @ = B0 + B1.

We conclude that B is admissible. Now we show that B correctly simulates either EXP(rand)SSBE or EXP(a)SSBE.

• Algorithm B sets U = B0@ and V = B′0@+1 + ∑
9∈[#]\(∗ B0

@−23 9 . Since the challenger samples B r← Z? and
algorithm B samples B′ r← Z? , both U and V are independently uniform in Z? as long as 0@, 0@+1 ≠ 0. Since the
challenger samples 0 r← Z? , with probability at least 1 − (@ + 1)/? , it will be the case that 0@ and 0@+1 are both
non-zero. Finally, @ = poly(#) = poly(_), so with overwhelming probability over the choice of 0, the values
of U, V are distributed as in EXP(rand)SSBE and EXP(V)SSBE.

• We now consider each component of the master public key and show that they can be constructed from
components in the challenge and that they are correctly distributed. First, by definition max(C) ≤ 23max < @/2.
Thus [@/2, @ − 1] ∪ [@ + 1, 2@] ⊆ (0. We now consider each component in the master public key:

– First, we argue that algorithm B can compute [V]G from the elements in the challenge. First, @ − 238 ∈ (0
for all 8 ∈ [#] because 38 ∈ N and @ − 238 > @/2. We also have @ + 1 ∈ (0. Therefore all of the components
[0@−238]G and [0@+1]G are included in the challenge so algorithm B can successfully construct [V]G.
As argued previously, the distribution of V is uniform over Z? with overwhelming probability because
algorithm B samples B′ r← Z? .

– Consider the elements [D8]G. We first show that 38 ∉ C which means 38 ∈ (0. Suppose that 38 ∈ C. This
means 38 = 23 9 − 3: for some 9 ≠ : . We consider a few sub-cases:

∗ If 38 ≠ 3 9 , 3: , then 38 + 3: = 23 9 , which contradicts the assumption that D is progression-free.

∗ If 38 = 3 9 , then 3 9 = 3: which is a contradiction since 9 ≠ : and the elements of D are distinct.

∗ If 38 = 3: , then again we have 3 9 = 3: , which contradicts the requirement 9 ≠ : .

We conclude that 38 ∉ C, which means 38 ∈ (0. Thus, algorithm B correctly simulates [D8]G for all 8 ∈ [#].
– Consider the elements [VD8]G. First, for all 9 ≠ 8 , we have @ − 23 9 + 38 > @ − 23max > @/2. Moreover,
@−23 9 +38 ≠ @ sinceD is double-free. This means @−23 9 +38 ∈ (0. We also have @+1+38 ∈ [@+1, 2@] ⊂ (0.
Thus, algorithm B simulates these terms exactly as in EXP(rand)SSBE and EXP(a)SSBE.

– Finally, consider [VE8]G. First, for all 9 ≠ 8 , @−23 9 +48 > @−23max > @/2. Now, we show that @−23 9 +48 ≠ @.
By construction 48 = 381 + 382 for some distinct 81, 82 ∈ [#]. We consider several possibilities:

∗ Suppose 9 ≠ 81, 82. In this case, if @−23 9 +48 = @, then 381 +382 = 23 9 , which contradicts the assumption
that D is progression-free.

∗ Suppose 9 = 81 or 9 = 82. In this case, if @ − 23 9 + 48 = @, then 381 = 382 , which contradicts the fact that
81 and 82 are distinct indices.

We conclude that @ − 23 9 + 48 > @/2 and @ − 23 9 + 48 ≠ @. In this case, @ − 23 9 + 48 ∈ (0, so algorithm B
correctly simulates these terms exactly as in EXP(rand)SSBE and EXP(a)SSBE.

42

We conclude that all of the components in the master public key are constructed according to the specification
of EXP(rand)SSBE and EXP(a)SSBE.

• Next, consider the key-generation queries. First, we argue that algorithmB can compute Eq. (7.1) using the terms
from the challenge. Consider Eq. (7.1) for some index 8 ∈ [#]\(∗. First, @−23 9 +238 > @−23max > @/2. Moreover,
when 9 ≠ 8 , we have that @−23 9 +238 ≠ @, so this means @−23 9 +238 ∈ (0. Similarly, @+1+238 ∈ [@+1, 2@] ⊂ (0.
Thus, algorithm B is able to compute [W8]G from the challenge components. Furthermore, from Eq. (7.1) and
using the fact that 8 ∉ (∗, we can write

W8 = −B′0@+1+238 −
∑

9∈[#]\((∗∪{8 })
B0@−23 9+238

= B0@ − B′0@+1+238 −
∑

9∈[#]\(∗
B0@−23 9+238

= B0@ − ©­«
B′0@+1 +

∑
9∈[#]\(∗

B0@−23 9
ª®¬
0238 = U − VD28 .

We conclude that algorithm B simulates the secret keys exactly as in EXP(rand)SSBE and EXP(a)SSBE.

• Finally, consider the challenge ciphertext. As usual, we start by showing that algorithm B can compute
Eq. (7.2) using the terms from the challenge. Observe that for all : ∈ (⊆ (∗ and all 9 ∈ [#] \ (∗, we have
that 23 9 − 3: ∈ C by construction. Thus @ − 23 9 + 3: ∈ (1. We also have @ + 1 + 23: ∈ [@ + 1, 2@] ⊂ (1.
Hence B receives all [C0@−23 9+3:]G and [C0@+1+3:]G from the challenge and can simulate �3 as described. Since
the challenger samples C r← Z? , the distribution of �2 is exactly as in EXP(rand)SSBE and EXP(a)SSBE. Consider the
distribution of �3. By definition, we have

�3 =

∑
:∈(

©­«
B′ · C0@+1+3: +

∑
9∈[#]\(∗

BC0@−23 9+3: ª®¬
=

∑
:∈(

C03:
©­«
B′0@+1 +

∑
9∈[#]\(∗

B0@−23 9
ª®¬

=

∑
:∈(

C03: V = C
∑
:∈(

VD: ,

which is exactly the distribution in EXP(rand)SSBE and EXP(a)SSBE. Finally, consider the distribution of �1:

– If 1 = hc([BC0@]G) , r) = hc([CU]G) , r), then �1 = 1 ⊕ a , which is the distribution of �1 in EXP(a)SSBE.

– If 1 r← {0, 1}, �1 = 1 ⊕ a is uniformly random, which is the distribution in EXP(rand)SSBE .

Thus, depending on the distribution of 1 (and with overwhelming probability over the choice of the challenge), algo-
rithm B either simulates an execution of EXP(a)SSBE or EXP

(rand)
SSBE . Thus, we conclude that B succeeds in distinguishing

the distributions in Lemma 7.8 with advantage Y (_) −negl(_). As argued above, algorithm B is also admissible, which
concludes the proof of semi-static security. �

Instantiations. Instantiating the double-free and progression-free set family in Construction 7.5 with Lemma 7.3,
we obtain a semi-statically-secure broadcast encryption scheme where the public parameters contain # 1+> (1) group
elements and the secret keys and ciphertexts contain a constant number of group elements. Security follows from
a search assumption. We summarize the instantiation below:

Corollary 7.9 (Semi-Statically-Secure Broadcast Encryption Scheme). Let # be the number of users. Under the search

set-consistent bilinear Diffie-Hellman exponent assumption, there exists a semi-statically-secure broadcast encryption

where the public keys contain # 1+> (1) group elements, the secret keys contain one group element, and the ciphertexts

contain two group elements.

43

Acknowledgments

We thank Hoeteck Wee for several insightful discussions on broadcast encryption. Brent Waters is supported by
NSF CNS-1908611, CNS-2318701, and a Simons Investigator award. David J. Wu is supported by NSF CNS-2140975,
CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References

[ABI+23] Benny Applebaum, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, Tianren Liu, and Vinod Vaikuntanathan.
Succinct computational secret sharing. In STOC, 2023.

[AT24] Nuttapong Attrapadung and Junichi Tomida. A modular approach to registered ABE for unbounded
predicates. In CRYPTO, 2024.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast encryption from LWE and
pairings in the standard model. In TCC, 2020.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings and LWE. In
EUROCRYPT, 2020.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size
ciphertext. In EUROCRYPT, pages 440–456, 2005.

[Beh46] F. Behrend. On sets of integers which contain no three terms in arithmetical progression. Proceedings
of the National Academy of Sciences, 32(12), 1946.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In EUROCRYPT, 2014.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short
ciphertexts and private keys. In CRYPTO, 2005.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Contemporary

Mathematics, 324(1), 2003.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs from standard lattice
assumptions - or: How to secretly embed a circuit in your PRF. In TCC, 2015.

[BV22] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-inspired broadcast encryption and succinct
ciphertext-policy ABE. In ITCS, 2022.

[BW06] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace, and revoke system. In ACM

CCS, 2006.

[BW10] Xavier Boyen and Brent Waters. Shrinking the keys of discrete-log-type lossy trapdoor functions. In
ACNS, 2010.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT, 2013.

[BWZ14] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast encryption from multilinear
maps. In CRYPTO, 2014.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In CRYPTO, 2014.

44

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order groups via
predicate encodings. In EUROCRYPT, 2015.

[CHW25] Jeffrey Champion, Yao-Ching Hsieh, and David J. Wu. Registered ABE and adaptively-secure
broadcast encryption from succinct LWE. IACR Cryptol. ePrint Arch., 2025. Available at
https://eprint.iacr.org/2025/044.pdf.

[CW24] Jeffrey Champion and David J. Wu. Distributed broadcast encryption from lattices. In TCC, 2024.

[DF02] Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for stateless receivers. In ACM CCS,
2002.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge L. Villar. An algebraic framework
for diffie-hellman assumptions. In CRYPTO, 2013.

[Elk10] Michael Elkin. An improved construction of progression-free sets. In SODA, 2010.

[ET36] Paul Erdös and Paul Turán. On some sequences of integers. Journal of the London Mathematical Society,
1(4), 1936.

[FN93] Amos Fiat and Moni Naor. Broadcast encryption. In CRYPTO, 1993.

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered ABE,
flexible broadcast, and more. In CRYPTO, 2023.

[GKSW10] Sanjam Garg, Abishek Kumarasubramanian, Amit Sahai, and Brent Waters. Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In ACM CCS, 2010.

[GKW18] Romain Gay, Lucas Kowalczyk, and Hoeteck Wee. Tight adaptively secure broadcast encryption with
short ciphertexts and keys. In SCN, 2018.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In STOC, 1989.

[GLWW24] Rachit Garg, George Lu, Brent Waters, and David J. Wu. Reducing the CRS size in registered ABE
systems. In CRYPTO, 2024.

[GQWW19] Rishab Goyal, Willy Quach, Brent Waters, and Daniel Wichs. Broadcast and trace with =Y ciphertext
size from standard assumptions. In CRYPTO, 2019.

[GST04] Michael T. Goodrich, Jonathan Z. Sun, and Roberto Tamassia. Efficient tree-based revocation in groups
of low-state devices. In CRYPTO, 2004.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

[GVW19] Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. Collusion resistant broadcast and trace
from positional witness encryption. In PKC, 2019.

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with short
ciphertexts). In EUROCRYPT, 2009.

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational entropy, or toward
separating pseudoentropy from compressibility. In EUROCRYPT, 2007.

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-based encryption.
In EUROCRYPT, 2023.

[HS02] Dani Halevy and Adi Shamir. The LSD broadcast encryption scheme. In CRYPTO, 2002.

45

[KMW23] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed broadcast encryption from bilinear
groups. In ASIACRYPT, 2023.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In TCC, 2012.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT, 2012.

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers.
In CRYPTO, 2001.

[NP00] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In Financial Cryptography, 2000.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, 2005.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2), 1978.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In CRYPTO, 2022.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-io from evasive
LWE. In ASIACRYPT, 2022.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions.
In CRYPTO, 2009.

[Wee21] Hoeteck Wee. Broadcast encryption with size =1/3 and more from :-lin. In CRYPTO, 2021.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In
EUROCRYPT, 2022.

[Wee24] HoeteckWee. Circuit ABE with poly(depth, _)-sized ciphertexts and keys from lattices. In CRYPTO, 2024.

[Wee25] Hoeteck Wee. Almost optimal KP and CP-ABE for circuits from succinct LWE. In EUROCRYPT, 2025.

[WQZD10] Qianhong Wu, Bo Qin, Lei Zhang, and Josep Domingo-Ferrer. Ad hoc broadcast encryption. In ACM

CCS, 2010.

[ZZGQ23] Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered ABE via predicate encodings. In
ASIACRYPT, 2023.

A Distributed Broadcast Encryption

In this section, we give the definition of distributed broadcast encryption along with the semi-static to adaptive
transformation for distributed broadcast encryption schemes. The construction is almost identical to the construction
for centralized broadcast encryption given in Construction 5.1. We start by recalling the definition of distributed
broadcast encryption.

Definition A.1 (Distributed Broadcast Encryption [BZ14, KMW23]). A distributed broadcast encryption scheme
is a tuple of efficient algorithms (Setup,KeyGen, IsValid, Enc,Dec) with the following syntax:

• Setup(1_, 1#) → pp: On input the security parameter _ and the number of users # , the setup algorithm outputs
the public parameters pp.

• KeyGen(pp, 8) → (pk8 , sk8): On input the public parameters pp and an index 8 ∈ [#], the key-generation
algorithm outputs a public key and a secret key (pk8 , sk8).

46

• IsValid(pp, 8, pk8) → 1: On input the public parameters pp, an index 8 ∈ [#], and a public key pk8 , the
validity-checking algorithm outputs a bit 1 ∈ {0, 1}.

• Enc(pp, {(8, pk8)}8∈(, `) → ct: On input the public parameters pp, a collection of public keys pk8 and a message
` ∈ {0, 1}, the encryption algorithm outputs a ciphertext ct.

• Dec(pp, {(8, pk8)}8∈(, ct, (9, sk9)) → `: On input the public parameters pp, a collection of public keys pk8 , a
ciphertext ct, and a secret key sk9 for an index 9 , the decryption algorithm outputs a message ` ∈ {0, 1}.

We require that (Setup,KeyGen, IsValid, Enc,Dec) satisfy the following properties:

• Correctness: For all _, # ∈ N, 8 ∈ [#], all (⊆ [#] such that 8 ∈ (, all pp in the support of Setup(1_, 1#), all
(pk8 , sk8) in the support of KeyGen(pp, 8), all {pk9 } 9∈(\{8 } such that IsValid(pp, 9, pk9) = 1 for all 9 ∈ (\ {8},
and all ` ∈ {0, 1}, we have

Pr[Dec(pp, {(9, pk:)} 9∈(, ct, (8, sk8)) = ` : ct← Enc(pp, {(9, pk9)}8∈(, `)] = 1.

• Verifiable keys: For all _, # ∈ N, and all indices 8 ∈ [#], it holds that

Pr

[
IsValid(pp, 8, pk8) = 1 :

pp← Setup(1_, 1#)
(pk8 , sk8) ← KeyGen(pp, 8)

]
= 1.

• Succinctness: There exists a fixed polynomial poly(·) such that for all _, # ∈ N, all subsets (⊆ [#], all
public parameters pp in the support of Setup(1_1#), all key-pairs (pk8 , sk8) in the support of KeyGen(pp, 8)
for 8 ∈ (, all messages ` ∈ {0, 1}, and all ciphertexts ct in the support of Enc(pp, {pk8 }8∈(, `, (), it holds that
|ct| ≤ > (|(|) · poly(_, log#).

We also define adaptive security and semi-static security as follows:

• Adaptive security: For a security parameter _, an adversary A, and a bit V ∈ {0, 1}, we define the adaptive
security experiment EXP(V)DBE (1_,A):

– Setup: On input the security parameter 1_ , the adversary outputs the number of users 1# . The challenger
samples pp← Setup(1_, 1#) and sends pp to A. The challenger also initializes two (initially empty) sets
Q and C to keep track of the set of identities on which A makes a key-generation query and the set of
identities on which A makes a corruption query, respectively.

– Query phase: The adversary A can (adaptively) make the following queries.

∗ Key generation queries: On input index 8 ∈ [#], if 8 ∈ Q, the query is invalid and the challenger
responds with ⊥. Otherwise, the challenger samples (pk8 , sk8) ← KeyGen(pp, 8), sends pk8 to A,
and add 8 to Q.

∗ Key corruption queries: On input index 8 ∈ [#], if 8 ∉ Q \C, the query is invalid and the challenger
responds with ⊥. Otherwise the challenger responds with sk8 and add 8 to C.

– Challenge query: AfterA finishes making evaluation queries, it sends a set (⊆ Q \ C to the challenger.
The challenger then computes ctV ← Enc(pp, {pk8 }8∈(, V) and sends ctV to A.

– Output: At the end of the game, A outputs 1 ∈ {0, 1}, which is the output of the experiment.

We say that ΠDBE satisfies adaptive security if for all efficient adversaries A, there exists a negligible function
negl(·) such that for all _ ∈ N,���Pr[EXP(0)DBE (1_,A) = 1] − Pr[EXP(1)DBE (1_,A) = 1]

��� = negl(_).

• Semi-static security: For a security parameter _, an adversaryA, and a bit V ∈ {0, 1}, we define the semi-static
security experiment EXP(V)SSDBE (1_,A):

47

– Setup: On input the security parameter 1_ , the adversary outputs the number of users 1# , along with
a set (∗. The challenger samples pp← Setup(1_, 1#) and sends pp to A. Next, the challenger samples
(pk8 , sk8) ← KeyGen(pp, 8) for all 8 ∈ (∗ and sends {pk8 }8∈(∗ to A.

– Challenge query: The adversary A sends a set (⊆ (∗ to the challenger. The challenger computes
ctV ← Enc(pp, {pk8 }8∈(, V) and sends ctV to A.

– Output: At the end of the game, A outputs 1 ∈ {0, 1}, which is the output of the experiment.

We say that ΠDBE satisfies semi-static security if for all efficient adversariesA, there exists a negligible function
negl(·) such that for all _ ∈ N,���Pr[EXP(0)SSDBE (1_,A) = 1] − Pr[EXP(1)SSDBE (1_,A) = 1]

��� = negl(_).

Semi-static to adaptive security. Wenow showhow to use publicly-sampleable projective PRGs to generically com-
pile any semi-statically-secure distributed broadcast encryption scheme into an adaptively-secure one. Our approach is
an adaptation of Construction 5.1 to the setting of distributed broadcast encryption. Previously, [KMW23] showed how
to apply the Gentry-Waters compiler [GW09] to achieve an analogous transformation in the random oraclemodel. Our
approach is the plain-model analog where we replace the random oracle with a publicly-sampleable projective PRG.

ConstructionA.2 (Adaptively-SecureDistributed Broadcast Encryption). LetΠSS = (SS.Setup, SS.KeyGen, SS.IsValid,
SS.Enc, SS.Dec) be a semi-statically-secure distributed broadcast encryption scheme. Let ΠpPRG = (pPRG.Setup,
pPRG.Samp, pPRG.Project, pPRG.Eval) be a publicly-sampleable projective PRG. We construct an adaptively-secure
broadcast encryption ΠDBE = (Setup,KeyGen, IsValid, Enc,Dec) as follows:

• Setup(1_, 1#): On input the security parameter _ and the number of users ℓ , the setup algorithm proceeds as
follows:

1. Samples (pp, f) ← pPRG.Setup(1_, 1#).
2. Sample SS.pp← SS.Setup(1_, 12#). For ease of exposition, we index the set [2#] using a pair (8, 1) ∈
[ℓ] × {0, 1}.

3. Output pp = (SS.pp, pPRG.pp).

• KeyGen(pp, 8): On input the public parameters pp = (SS.pp, pPRG.pp), the key-generation algorithm samples
(SS.pk(8,0) , SS.sk(8,0)) ← SS.KeyGen(SS.pp, (8, 0)) and (SS.pk(8,1) , SS.sk(8,1)) ← SS.KeyGen(SS.pp, (8, 1)). It
then samples a random bit B8

r← {0, 1} and output key pair pk8 = (SS.pk(8,0) , SS.pk(8,1)), sk8 = (8, B8 , SS.sk(8,B8)).

• IsValid(pp, 8, pk8): On input the public parameters pp = (SS.pp, pPRG.pp), an index 8 ∈ [#], and a public key
pk8 = (SS.pk(8,0) , SS.pk(8,1)) the validity-checking algorithm output 1 if SS.IsValid(SS.pp, (8, 0), SS.pk(8,0)) = 1
and SS.IsValid(SS.pp, (8, 1), SS.pk(8,1)) = 1. The algorithm outputs 0 otherwise.

• Enc(pp, {8, pk8 }8∈(, `): On input the public parameters pp = (SS.pp, pPRG.pp), and a set (⊆ [#] of public
keys pk8 = (SS.pk(8,0) , SS.pk(8,1)), and a message ` ∈ {0, 1}, the encryption algorithm proceeds as follows:

1. Sample f(← pPRG.Samp(pp, ().
2. For each 8 ∈ (, compute C8 = pPRG.Eval(pPRG.pp, f(, (, 8).
3. Compute ciphertexts

SS.ct0 ← SS.Enc(SS.mpk, {(8, C8), SS.pk(8,C8) }8∈(, `),
SS.ct1 ← SS.Enc(SS.mpk, {(8, 1 − C8), SS.pk(8,1−C8) }8∈(, `).

Output the ciphertext ct = (SS.ct0, SS.ct1, f().

• Dec(pp, {8, pk8 }8∈(, ct, (9, sk9)): On input the public parameters pp = (SS.pp, pPRG.pp), a set (⊆ [#] of
public keys pk8 = (SS.pk(8,0) , SS.pk(8,1)), the secret key sk9 = (B 9 , SS.sk(9,B 9)) for some 9 ∈ (, and a ciphertext
ct = (SS.ct0, SS.ct1, f), the decryption algorithm proceeds as follows:

48

1. For each 8 ∈ (, compute C8 = pPRG.Eval(pPRG.pp, f, (, 8). Let 1 = C 9 ⊕ B 9 .
2. Finally, compute and output SS.Dec(SS.pp, {(8, C8 ⊕ 1), SS.pk(8,C8⊕1) }8∈(, SS.sk(9,B 9) , SS.ct1).

Theorem A.3 (Correctness). If ΠSS is correct, then Construction A.2 is correct.

Proof. Take any _, # ∈ N. Take any set (⊆ [#] and index 8 ∈ (, any message ` ∈ {0, 1}. Let (mpk,msk) ←
Setup(1_, 1#), sk8 ← KeyGen(msk, 8), and ct← Enc(mpk, (, `). By construction, the following hold:

• First, pp = (SS.mpk, pPRG.pp), where SS.pp← SS.Setup(1_, 12#) and (pPRG.pp, f) ← pPRG.Setup(1_, 1#).

• Next, pk8 = (SS.pk(8,0) , SS.pk(8,1)), sk8 = (8, B8 , SS.sk(8,B8)) where B8
r← {0, 1} and

(SS.pk(8,0) , SS.sk(8,0)) ← SS.KeyGen(SS.pp, (8, 0))
(SS.pk(8,1) , SS.sk(8,1)) ← SS.KeyGen(SS.pp, (8, 1)) .

• Finally, ct = (SS.ct0, SS.ct1, f(), where

f(← pPRG.Samp(pPRG.pp, ()
∀8 ∈ (: C8 = pPRG.Eval(pPRG.pp, f(, (, 8)

SS.ct0 ← SS.Enc(SS.mpk, {(8, C8)SS.pk(8,C8) }8∈(, `)
SS.ct1 ← SS.Enc(SS.mpk, {(8, 1 − C8), SS.pk(8,1−C8) }8∈(, `).

Consider now the value of Dec(pp, {8, pk8 }8∈(, ct, (9, sk9)). By construction, (9, C 9 ⊕ 1) = (9, C 9 ⊕ (C 9 ⊕ B 9)) = (9, B 9).
Hence by the correctness of ΠSS, this means that with probability 1,

` = SS.Dec(SS.pp, {(8, C8 ⊕ 1), SS.pk(8,C8⊕1) }8∈(, SS.sk(9,B 9) , SS.ct1),

and correctness follows. �

Theorem A.4 (Verifiable Keys). If ΠSS has verifiable keys, then so does Construction A.2.

Proof. By construction, the public key in ΠDBE consists of two public keys of ΠSS. The property now follows by the
verifiable keys property of the underlying scheme:

Pr

[
IsValid(pp, 8, pk8) = 1 :

pp← Setup(1_, 1#)
(pk8 , sk8) ← KeyGen(pp, 8)

]

= Pr


SS.IsValid(SS.pp, (8, 0), SS.pk(8,0)) = 1

and SS.IsValid(SS.pp, (8, 1), SS.pk(8,1)) = 1
:

SS.pp← SS.Setup(1_, 12#)
(SS.pk8,0, SS.sk8,0) ← SSKeyGen(SS.pp, (8, 0))
(SS.pk8,1, SS.sk8,0) ← SSKeyGen(SS.pp, (8, 1))


= 1.

The claim follows. �

Theorem A.5 (Adaptive Security). Suppose ΠSS satisfies semi-static security and ΠpPRG satisfies correctness, sampling

indistinguishability, and adaptive pseudorandomness. Then Construction A.2 is adaptively secure.

Proof. Let A be an efficient adversary for the adaptive broadcast security game. We begin by defining a sequence
of hybrid experiments:

• Hyb0: This is the adaptive experiment EXP(0)DBE from Definition A.1:

– Setup: On input the security parameter 1_ , algorithm A outputs the number of slots 1# . The challenger
responds by computing pp ← Setup(1_, 1#) and gives pp = (SS.pp, pPRG.pp) to A. Specifically, the
challenger samples (pPRG.pp, f) ← pPRG.Setup(1_, 1#), SS.pp ← SS.Setup(1_, 12#). The challenger
also initializes sets Q and C to keep track of key-generation queries and corruption queries, respectively.

49

– Query phase: The challenger handles queries as follows:

∗ Key-generation queries: On input index 8 ∈ [#], the challenger sends ⊥ to A if 8 ∈ Q. Otherwise,
the challenger samples (pk8 , sk8) ← KeyGen(pp, 8), sends pk8 to A, and adds 8 to Q. In particular,
pk8 = (SS.pk(8,0) , SS.pk(8,1)), sk8 = (8, B8 , SS.sk(8,B8)) where B8

r← {0, 1} and

(SS.pk(8,0) , SS.sk(8,0)) ← SS.KeyGen(SS.pp, (8, 0))
(SS.pk(8,1) , SS.sk(8,1)) ← SS.KeyGen(SS.pp, (8, 1)) .

∗ Key-corruption queries: On input index 8 ∈ [#], the challenger sends ⊥ to A if 8 ∉ Q \ C.
Otherwise the challenger sends sk8 to A and add 8 to C.

– Challenge query: After A outputs (⊆ Q \ C, the challenger responds with ct← Enc(pp, {8, pk8 }8∈(, 0).
Specifically, the challenger first computes C8 = pPRG.Eval(pPRG.pp, f(, (, 8) for all 8 ∈ (and set ciphertext
ct = (SS.ct0, SS.ct1, f() where

SS.ct0 ← SS.Enc(SS.mpk, {(8, C8)SS.pk(8,C8) }8∈(, 0)
SS.ct1 ← SS.Enc(SS.mpk, {(8, 1 − C8), SS.pk(8,1−C8) }8∈(, 0).

– Output: At the end of the game, algorithmA outputs a bit1 ∈ {0, 1}, which is the output of the experiment.

• Hyb1; Same as Hyb0 except the challenger samples s = (B1, . . . , B#) r← {0, 1}# in the setup phase. Furthermore,
it delays the computation of sk8 to the key-corruption queries. In particular, when responding to key-generation
queries, the challenger samples the key pairs (SS.pk(8,0) , SS.sk(8,0)), (SS.pk(8,1) , SS.sk(8,1)) exactly as inHyb0 and
replies with pk8 = (SS.pk(8,0) , SS.pk(8,1)). It also stores (SS.sk(8,0) , SS.sk(8,0)). IfA later makes a key-corruption

query on index 8 , then the challenger samples B8
r← {0, 1} and replies with sk8 = (8, B8 , SS.sk(8,B8)) Note that in

this hybrid, the challenger’s behavior in a key-generation query does not depend on the bit B8 .

• Hyb2: Same as Hyb1 except when constructing the challenge ciphertext, the challenger now computes
f(← pPRG.Project(pPRG.pp, f, ().

• Hyb3: Same as Hyb2, except during setup, the challenger computes f[#] ← pPRG.Project(pp, f, [#]), and on
each key-corruption query, the challenger sets B8 = pPRG.Eval(pp, f[#], [#], 8).

• Hyb4: Same as Hyb3 except the challenger switches SS.ct1 to be an encryption of 1. Namely, the challenger
now computes SS.ct1 ← SS.Enc(SS.mpk, (1, 1).

• Hyb5: Same as Hyb4, except on every key-corruption query, the challenger samples B8
r← {0, 1}.

• Hyb6: Same as Hyb5, except during setup, the challenger first computes f[#] ← pPRG.Project(pp, f, [#]), and
on every key-corruption query, the challenger sets B8 = 1 − pPRG.Eval(pp, f[#], [#], 8).

• Hyb7: Same as Hyb6, except the challenger switches SS.ct0 to be an encryption of 1. Namely, the challenger
now computes SS.ct0 ← SS.Enc(SS.mpk, (0, 1).

• Hyb8: Same as Hyb7 except the challenger now samples s r← {0, 1}# during the setup phase.

• Hyb9: Same as Hyb8 except when constructing the challenge ciphertext, the challenger samples f(←
pPRG.Samp(pp, ().

• Hyb10: Same as Hyb9 except the challenger now samples B8 in key-generation queries. In particular, when
responding to a key-generation query, the challenger samples (SS.pk(8,0) , SS.sk(8,0)), (SS.pk(8,1) , SS.sk(8,1)) as
in Hyb9. Then, it samples B8

r← {0, 1} and sets pk8 = (SS.pk(8,0) , SS.pk(8,1)), sk8 = (8, B8 , SS.sk(8,B8)). This is
experiment EXP(1)DBE from Definition A.1.

50

We write Hyb8 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb8 with
adversary A (and an implicit security parameter _). We now show that the output distributions of each adjacent
pair of hybrid experiments is computationally indistinguishable.

Lemma A.6. For all _ ∈ N, Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1].

Proof. Note that in Hyb0, the bit B8 is never revealed to the adversary A unless it makes a key corruption query on
index 8 . Therefore the view of A is identical in both hybrids and the lemma follows. �

Lemma A.7. Suppose ΠpPRG satisfies sampling indistinguishability. Then, there exists a negligible function negl(·) such
that for all _ ∈ N, | Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1] | = negl(_).

Proof. Suppose | Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1] | ≥ Y (_) for some non-negligible Y. We use A to construct
an efficient adversary B for the sampling indistinguishability game:

1. On input the security parameter 1_ , algorithm B starts running algorithmA(1_). AlgorithmA outputs a length
parameter 1# which algorithm B forwards to its challenger. The sampling indistinguishability challenger
replies with pPRG.pp.

2. Algorithm B samples s r← {0, 1}# , SS.pp← SS.Setup(1_, 12#) and gives pp = (SS.pp, pPRG.pp) to A.

3. Algorithm B implements all of the key-generation and key-corruption queries from A using the challenger
specification of Hyb1.

4. When algorithm A makes a challenge query for the set (⊆ Q \ C, algorithm B forwards (to its challenger
and receives f(.

5. For each 8 ∈ (, algorithm B computes C8 = pPRG.Eval(pPRG.pp, f(, (, 8). It then sets

SS.ct0 ← SS.Enc(SS.mpk, {(8, C8), SS.pk(8,C8) }8∈(, 0)
SS.ct1 ← SS.Enc(SS.mpk, {(8, 1 − C8), SS.pk(8,1−C8) }8∈(, 0).

The challenger responds with ct = (SS.ct0, SS.ct1, f().

6. At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1} which algorithm B also outputs.

We now analyze the distribution of EXP(0)samp (1_,B) for V ∈ {0, 1}:

• Suppose V = 0. This means (pp, f) ← pPRG.Setup(1_, 1#) and f(← pPRG.Samp(pp, (). This is the distribu-
tion in Hyb1, so algorithm B outputs 1 with probability Pr[Hyb1 (A) = 1].

• Suppose V = 1. This means (pp, f) ← pPRG.Setup(1_, 1#) and f(← pPRG.Project(pp, f, (). This is the
distribution in Hyb2, so algorithm B outputs 1 with probability Pr[Hyb2 (A) = 1].

We conclude that algorithm B breaks mode indistinguishability with non-negligible advantage Y. �

Lemma A.8. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all _ ∈ N, | Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1] | = negl(_).

Proof. Suppose | Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1] | ≥ Y (_) for some non-negligible Y. We use A to construct
an efficient adversary B for the adaptive pseudorandomness game:

1. On input the security parameter 1_ , algorithm B starts running algorithmA(1_). AlgorithmA outputs a length
parameter 1# which algorithm B forwards to its challenger. The sampling indistinguishability challenger
replies with pPRG.pp.

2. Algorithm B samples SS.pp← SS.Setup(1_, 12#) and gives pp = (SS.mpk, pPRG.pp) to A.

51

3. When algorithm A makes a key-corruption query on an index 8 ∈ Q \ C, algorithm B makes an evaluation
query to its challenger on 8 and receives B8 . It then returns sk8 = (8, B8 , SS.sk(8,B8)). Algorithm B implements
all key-generation queries using the challenger specification of Hyb2.

4. When algorithm A makes a challenge query for the set (⊆ Q \ S, algorithm B makes an evaluation query
on all indices [#] \ (. It then makes a challenge query and receives f(.

5. For each 8 ∈ (, algorithm B computes C8 = pPRG.Eval(pp, f(, (, 8). It then sets

SS.ct0 ← SS.Enc(SS.mpk, {(8, C8), SS.pk(8,C8) }8∈(, 0)
SS.ct1 ← SS.Enc(SS.mpk, {(8, 1 − C8), SS.pk(8,1−C8) }8∈(, 0).

The challenger responds with ct = (SS.ct0, SS.ct1, f().

6. At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1} which algorithm B also outputs.

We now analyze the distribution EXP(V)prg (1_,B). First, let � ⊆ [#] be the indices algorithm B makes to its evaluation
oracle. First, from the requirements of the distributed broadcast security definition, we have that (⊆ Q \ C. This
means C ⊆ Q \ (⊆ [#] \ (. Then by construction of B, we have that � = C ∪ ([#] \ () = [#] \ (. Correspondingly,
[#] \ � = (. We now consider the distribution of of EXP(V)prg (1_,B) for each V ∈ {0, 1}:

• Suppose V = 0. In this case, the challenger samples (pPRG.pp, f) ← pPRG.Setup(1_, 1#) and computes f[#] ←
pPRG.Project(pp, f, [#]). It responds to each evaluation query on 8 ∈ [#] with B8 = pPRG.Eval(pp, f, [#], 8).
Since [#] \ �B = (, the challenger responds with f(← pPRG.Project(pp, f, () in the challenge phase. This is
precisely the behavior in Hyb3 (A), so in this case, algorithm B outputs 1 with probability Pr[Hyb3 (A) = 1].

• Suppose V = 1. In this case, the challenger samples (pPRG.pp, f) ← pPRG.Setup(1_, 1#) and u
r← {0, 1}# . It

responds to each evaluation query on 8 ∈ [#] with B8 = D8 . In the challenge phase, the challenger again responds
with f(← pPRG.Project(pp, f, (). This is precisely the behavior in Hyb2 (A), so in this case, algorithm B
outputs 1 with probability Pr[Hyb2 (A) = 1].

We conclude that algorithm B breaks adaptive pseudorandomness with non-negligible advantage Y. �

Lemma A.9. Suppose ΠSS satisfies semi-static security and ΠpPRG is correct. Then, there exists a negligible function

negl(·) such that for all _ ∈ N, | Pr[Hyb3 (A) = 1] − Pr[Hyb4 (A) = 1] | = negl(_).

Proof. Suppose | Pr[Hyb3 (A) = 1] − Pr[Hyb4 (A) = 1] | ≥ Y (_) for some non-negligible Y. We use A to construct
an efficient adversary B for the semi-static security game:

1. On input the security parameter 1_ , algorithm B starts running algorithm A(1_). Algorithm A outputs a
length parameter 1# . Algorithm B then initializes two (empty) sets Q and C.

2. Algorithm B samples (pPRG.pp, f) ← pPRG.Setup(1_, 1#) and f[#] ← pPRG.Project(pPRG.pp, f, [#]).
Then, for each 8 ∈ [#], it computes B8 = pPRG.Eval(pp, f[#], [#], 8).

3. Algorithm B constructs the set (∗ = {(8, 1− B8)}8∈[#] . It forwards 12# together with the set (∗ to the semi-static
security challenger. The challenger replies with SS.pp and a collection of public keys {SS.pk(8,1−B8) }8∈[#] .
Algorithm B gives pp = (SS.pp, pPRG.pp) to A.

4. When algorithm A makes a key-generation query on an index 8 ∈ [#], algorithm B replies with ⊥ if 8 ∈ Q.
Otherwise, it samples

(SS.pk8,B8 , SS.sk8,B8) ← KeyGen(SS.pp, (8, B8))
and replies with pk8 = (SS.pk8,0, SS.pk8,1). Algorithm B then adds 8 to Q.

5. When algorithmA makes a key-corruption query on an index 8 ∈ [#], algorithm B replies with ⊥ if 8 ∉ Q \ C.
Otherwise, it replies with sk8 = (8, B8 , SS.sk8,B8) and adds 8 to C.

52

6. When algorithm A makes a challenge query for a set (⊆ [#], algorithm B starts by computing a pro-
jected seed f(← pPRG.Project(pp, f, (). Then it sets (0 = {(8, B8)}8∈(and (1 = {(8, 1 − B8)}8∈(. It computes
SS.ct0 ← SS.Enc(SS.pp, (8, B8), SS.pk8,B8 (8,B8) ∈(0 , 0) and forwards (1 to the semi-static security challenger. The

challenger replies with a ciphertext SS.ct1. Algorithm B replies to A with ct = (SS.ct0, SS.ct1, f().

7. At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1} which algorithm B also outputs.

By construction, algorithm B is a valid adversary for the semi-static security game. Specifically, the challenge set (1
always satisfies (1 ⊆ (∗. We now analyze the distributions of EXP(V)SSBE (1_,B). We consider each component separately.

• The semi-static security challenger samples SS.pp← SS.Setup(1_, 12#), which coincides with the distribution
of SS.pp in Hyb3 and Hyb4. In addition, the challenger samples the public keys as (SS.pk8,1−B8 , SS.sk8,1−B8) ←
SS.KeyGen(SS.pp, (8, B8)). This also coincides with the distribution in Hyb3 and Hyb4.

• Next, consider the sets (0 and (1. In the reduction, algorithm B uses public key sets {pk(8,B8) }8∈(for SS.ct0 and
{pk(8,1−B8) }8∈(for SS.ct1, where B8 = pPRG.Eval(pp, f[#], [#], 8). Since f(← pPRG.Project(pp, f, (), correct-
ness of ΠpPRG means that B8 = pPRG.Eval(pp, f(, (, 8) for all 8 ∈ (. Thus, the public key sets are constructed
exactly as in Hyb3 and Hyb4. Thus, SS.ct0 is distributed exactly according to the distribution in Hyb3 and Hyb4.

• It suffices to consider the distribution of SS.ct1. When V = 0, SS.ct1 ← SS.Enc(SS.pp, {pk(8,1−B8) }8∈(, 0) and
when V = 1, SS.ct1 ← SS.Enc(SS.pp, {pk(8,1−B8) }8∈(, 1). The former corresponds to the distribution in Hyb3
while the latter corresponds to the distribution in Hyb4.

We conclude that algorithm B breaks semi-static security with non-negligible advantage Y. �

Lemma A.10. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all _ ∈ N, | Pr[Hyb4 (A) = 1] − Pr[Hyb5 (A) = 1] | = negl(_).

Proof. Follows by an analogous argument as the proof of Lemma A.8. �

Lemma A.11. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all _ ∈ N, | Pr[Hyb5 (A) = 1] − Pr[Hyb6 (A) = 1] | = negl(_).

Proof. Follows by an analogous argument as the proof of Lemma A.8. �

Lemma A.12. Suppose ΠSS satisfies semi-static security and ΠpPRG is correct. Then, there exists a negligible function

negl(·) such that for all _ ∈ N, | Pr[Hyb6 (A) = 1] − Pr[Hyb7 (A) = 1] | = negl(_).

Proof. Follows by an analogous argument as the proof of Lemma A.9. �

Lemma A.13. Suppose ΠpPRG satisfies adaptive pseudorandomness. Then, there exists a negligible function negl(·) such
that for all _ ∈ N, | Pr[Hyb7 (A) = 1] − Pr[Hyb8 (A) = 1] | = negl(_).

Proof. Follows by an analogous argument as the proof of Lemma A.8. �

Lemma A.14. Suppose ΠpPRG satisfies sampling indistinguishability. Then, there exists a negligible function negl(·)
such that for all _ ∈ N, | Pr[Hyb8 (A) = 1] − Pr[Hyb9 (A) = 1] | = negl(_).

Proof. Follows by an analogous argument as the proof of Lemma A.7. �

Lemma A.15. For all _ ∈ N, | Pr[Hyb9 (A) = 1] − Pr[Hyb10 (A) = 1] | = 0.

Proof. Follows by an analogous argument as the proof of Lemma A.6. �

Adaptive security now follows by combining Lemmas A.6 to A.15. �

Theorem A.16 (Succinctness). Suppose ΠSS and ΠpPRG are succinct. Then Construction A.2 is succinct.

53

Proof. In Construction A.2, a ciphertext for a set (⊆ [#] consists of two ciphertexts for the semi-static distributed
broadcast encryption scheme ΠSS as well as a projected seed f(for ΠpPRG. By succinctness of the underlying prim-
itives, the size of the ciphertext is 2 · > (|(|) · poly(_, log#) + poly(_, log#), which satisfies the required succinctness
properties. �

B Publicly-Sampleable Projective PRGs from RSA

In this section, we recall the projective PRG scheme from [ABI+23, §3.2] based on the RSA assumption [RSA78].
In the following, we write Primes_ ⊂ N to denote the set of _-bit primes. Similar to [ABI+23], we state the RSA
assumption with respect to prime exponents (as opposed to random exponents over Z∗

i (#)). Since the density of primes

is Θ(1/log#), the standard RSA assumption implies the variant with prime exponents. We define this as follows:

Definition B.1 (Composite Modulus Sampler). Let _ be a security parameter. A composite-modulus sampler is an
efficient algorithm SampleN that takes as input the security parameter 1_ and outputs (#, ?, @) where # = ?@ and
?, @ ∈ Primes_ are distinct _-bit primes.

Assumption B.2 (RSA with Prime Exponents). Let SampleN be a composite-modulus sampler. We say the RSA
assumption with prime exponents holds with respect to SampleN if for all efficient adversaries A, there exists a
negligible function negl(·) such that for all _ ∈ N,

Pr

[
A(1_, # , 4,D4 mod #) = D :

(#, ?, @) ← SampleN(1_)
4

r← Z∗
i (#) ∩ Primes_ , D

r← Z∗#

]
= negl(_).

Publicly-sampleable projective PRG from RSA. We now show how to construct a publicly-sampleable projec-
tive PRGs from the RSA assumption. The construction is nearly identical with the one from [ABI+23, §3.2], except we
introduce an explicit public sampling algorithm. We then prove that the construction satisfies the security properties
from Definition 4.1. As discussed in Definition 4.1, our security properties do not follow as a consequence of the
security properties considered in [ABI+23] which is why we include the full analysis here.

Construction B.3 (Projective PRG from RSA). Let SampleN be a composite-modulus sampler. Let hc : {0, 1}2_ ×
{0, 1}2_ → {0, 1} be the Goldreich-Levin extractor. We construct a publicly-sampleable projective PRG ΠpPRG =

(Setup, Samp, Project, Eval) as follows:
• Setup(1_, 1ℓ) → (pp, f): On input the security parameter _ and the output length ℓ ∈ N, the setup algorithm
starts by sampling (#, ?, @) ← SampleN(1_). It then samples G r← Z∗# , extractor randomness r r← {0, 1}2_ ,
and primes 41, . . . , 4ℓ

r← Z∗
i (#) ∩ Primes_ . It outputs the public parameters pp = (#, 41, . . . , 4ℓ , r) and the seed

f = (G, i (#)).

• Samp(pp, () → f(: On input the parameter pp = (#, 41, . . . , 4ℓ , r) and a target set (⊆ [ℓ], the sampling
algorithm samples a random element ~ r← Z∗# and output the simulated projected seed f(= ~.

• Project(pp, f, () → f(: On input the public parameters pp = (#, 41, . . . , 4ℓ , r), the key f = (G, i (#)), and a tar-
get set (⊆ [ℓ], the projection algorithm computes G(= G

∏
9 ∈ [ℓ]\(4 9 mod # . It outputs the projected seed f(= G(.

• Eval(pp, f, (, 8): On input the public parameters pp = (#, 41, . . . , 4ℓ , r), a projected seed f = G(, the associated
set of indices (⊆ [ℓ], and an index 8 ∈ (, the evaluation algorithm computes G8 = G

∏
9 ∈(\{8} 4 9 mod # and

outputs hc(G8 , r).
Theorem B.4 (Correctness). Construction B.3 is correct.

Proof. Take any security parameter _ ∈ N, output length ℓ ∈ N, set of indices (⊆ [ℓ], and index 8 ∈ (. Let
(pp, f) ← Setup(1_, 1ℓ) and f(← Project(pp, f, (). By construction, this means pp = (#, 41, . . . , 4ℓ , r) and
f = G ∈ Z∗# . Now, observe that f(= G(= G

∏
9 ∈ [ℓ]\(4 9 mod # , therefore in Eval(pp, f(, (, 8),

G8 = G
∏

9 ∈(\{8} 4 9
(

= G
∏

9 ∈ [ℓ]\{8} 4 9 ,

which is a fixed value independent of the choice of (. Therefore, Eval(pp, f(, (, 8) = Eval(pp, f[ℓ], [ℓ], 8). �

54

Theorem B.5 (Succinctness). Construction B.3 is succinct.

Proof. A projected seed is a single element of Z# , which can be described by at most 2_ bits. �

Theorem B.6 (Sampling Indistinguishability). Construction B.3 satisfies perfect sampling indistinguishability.

Proof. Since 48 ∈ Z∗i (#) , for all sets (⊆ [ℓ], the mapping G ↦→ G(= G
∏

9 ∈ [ℓ]\(4 9 is a permutation over Z∗# . There-

fore, for all (, the distribution of f(= G(for random sampled G
r← Z∗# is identical to a random ~

r← Z∗# . Hence
EXP(0)samp ≡ EXP(1)samp and that Construction B.3 satisfies perfect sampling indistinguishability. �

Theorem B.7 (Adaptive Pseudorandomness). If the RSA assumption with prime exponents hold, then Construction B.3

satisfies adaptive pseudorandomness.

Proof. Before proving the theorem, we first state the following corollary of the RSA assumption (Assumption B.2)
and Theorem 3.2. This will be useful in our security analysis.

Lemma B.8. Let hc : {0, 1}2_ × {0, 1}2_ → {0, 1} be the Goldreich-Levin extractor. For a security parameter _ and an

adversary A, define the following distinguishing game EXP(V) (1_,A):

• On input the security parameter 1_ , the adversary outputs a length parameter 1ℓ and an index 8 ∈ [ℓ].

• The challenger samples (#, ?, @) ← SampleN(1_), D r← Z
∗
, extractor randomness r r← {0, 1}2_ , and ran-

dom primes 41, . . . , 4ℓ
r← Primes_ . Additionally, the challenger computes bits 10 = hc(D

∏
9≠8 4 9 mod #, r) and

11
r← {0, 1}. The challenger gives (#,D48 , 41, . . . , 4ℓ , r, 1V) to the adversary.

• The adversary outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

Suppose the RSA assumption holds. Then, for all efficient adversaries A, there exist a negligible function negl(·) such
that for all _ ∈ N, ���Pr[EXP(0) (1_,A) = 1] − Pr[EXP(1) (1_,A) = 1]

��� = negl(_).

Proof. Suppose there exists some efficient adversary A where

| Pr[EXP(0) (1_,A) = 1] − Pr[EXP(1) (1_,A) = 1] | = Y (_)

for some non-negligible Y. For simplicity, we split A into two algorithm A = (A0,A1), where A0 takes as input
1_ and outputs a pair (1ℓ , 8) along with a private state st, and A1 takes as input the private state st along with the
challenger’s response and outputs the bit 1′. We now define a joint distribution (-,.) = {(-_, ._)}_∈N as follows:

• RunA0 (1_) to receive a pair (1ℓ , 8) and private state st. Sample (#, ?, @) ← SampleN(1_),D r← Z∗# , r
r← {0, 1}2_ ,

and 41, . . . , 4ℓ
r← Primes_ .

• Let G = D
∏

9≠8 4 9 and ~ = (st, 8, # ,D48 , 41, . . . , 4ℓ). Output the pair (G,~).

We now show that under the RSA assumption, - is computationally unpredictable given . . Suppose there exist an
efficient algorithm A′ that can predict G given ~ with some non-negligible probability Y′. We construct an efficient
algorithm B for the RSA problem:

• On input (1_, # , 4, E), where (#, ?, @) ← SampleN(1_), 4 r← Z∗
i (#) ∩ Primes_ , E = D4 mod # , and D r← Z∗# ,

algorithm B starts running A0 (1_) to receive a pair (1ℓ , 8) and state st. For each 8 ∈ [ℓ] \ {8}, it samples
48

r← Primes_ . It sets 48 = 4 . Finally, it sets ~ = (st, 8, # , E, 41, . . . , 4ℓ)

• AlgorithmB runsA′ (1_, ~) to obtain G . It then computes the Bezout coefficients U, V ∈ Zwhere U ∏
9≠8 4 9 +V4 =

1, which exists and are efficiently computable as long as gcd(4 9 , 4) = 1 for all 9 ≠ 8 . The algorithm B aborts
if the coefficients do not exist.

• Algorithm B outputs GU · EV .

55

The advantage of B can be analyzed as follows:

• With overwhelming probability, a random prime 48
r← Primes_ will satisfy gcd(48 , i (#)) = 1, so the uniform

distribution over Primes_ and Z∗
i (#) ∩ Primes_ is statistically indistinguishable. In this case, algorithm B

correctly simulates the distribution of ~ in (G,~) ← (-_, ._).

• By assumption, with probability Y′ − negl(_), algorithm A′ outputs G = D
∏

9≠8 4 9 .

• With overwhelming probability over the choice of 4 9
r← Primes_ , it holds that 4 9 ≠ 4 . Since 41, . . . , 4ℓ , 4 are all

prime, this means gcd(4 9 , 4) = 1 for all 9 ≠ 8 , and correspondingly, that gcd(∏9≠8 4 9 , 4) = 1. Thus, with over-
whelming probability over the choice of 41, . . . , 4ℓ , 4 , algorithm B successfully computes the Bezout coefficients
U, V .

• If G = D
∏

9≠8 4 9 and the Bezout coefficients exist, algorithm B outputs GU · EV = DU ·
∏

9≠8 4 9 · DV4
= D, which is the

solution to the RSA challenge.

Therefore the advantage ofB is Y′−negl(_), which is non-negligible. Therefore, under the RSA assumption with prime
exponents, we conclude that - is computationally unpredictable given . . The lemma now follows from Theorem 3.2:

• Since- is computationally unpredictable given. , Theorem 3.2 now states that the distributions (1_, r, hc(G, r), ~)
and (1_, r, 1,~) are computationally indistinguishable when r

r← {0, 1}2_ , (G,~) ← (-_, ._) and 1 r← {0, 1}.

• If algorithm A distinguishes EXP(0) and EXP(1) with advantage Y, then we can use A1 to construct a distin-
guisher for the distributions (1_, r, hc(G, r), ~) and (1_, r, 1,~) as follows:

– On input (1_, r, 1,~) where ~ = (st, 8, # , E, 41, . . . , 4ℓ), compute and output A1 (st, # , E, 41, . . . , 4ℓ , r, 1).

When 1 = hc(G, r), this process perfectly simulates an execution of EXP(0) for A1 and when 1 r← {0, 1}, this
perfectly simulates an execution of EXP(1) forA1. Thus, this algorithm distinguishes between (1_, r, hc(G, r), ~)
and (1_, r, 1,~) with non-negligible advantage Y. �

Proof of Theorem B.7. We now return to the proof of Theorem B.7. The proof follows a similar strategy as the
proof of Theorem 6.7. For each index 8 ∈ {0} ∪ N, we define an experiment Hyb8 as follows:

• Hyb8 : This is a variant of the adaptive pseudorandomness experiment:

– On input the security parameter 1_ , algorithm A outputs the length parameter 1ℓ . The challenger
runs (pp, f) ← Setup(1_, 1ℓ). Specifically, the challenger samples (#, ?, @) ← SampleN(1_), G r← Z∗# ,
r

r← {0, 1}2_ , and 41, . . . , 4ℓ r← Z∗
i (#) ∩ Primes_ . It sets pp = (#, 41, . . . , 4ℓ , r) and f = G . The challenger

gives pp to A.

– The challenger samples f[ℓ] ← Project(pp, f, [ℓ]) and t
r← {0, 1}ℓ . In particular f[ℓ] = G .

– When A makes an evaluation query on 9 ∈ [ℓ], the challenger replies with Eval(pp, f[ℓ], [ℓ], 9) if 9 > 8

and with C 9 if 9 ≤ 8 . In particular, when 9 > 8 , the challenger computes G 9 = G
∏

:∈ [ℓ]\{ 9 } 4: mod # and
responds with hc(G 9 , r).

– AfterA finishes making evaluation queries, the challenger computes the seed f(← Project(pp, f, [ℓ] \ �)
where � ⊆ [ℓ] is the set of indices on which algorithm A made an evaluation query. In particular,
f(= G

∏
9 ∈ [ℓ]\(4 9 mod # . The challenger gives f(to A.

– At the end of the game, algorithm A outputs a bit 1 ∈ {0, 1}, which is the output of the experiment.

We write Hyb8 (A) to denote the random variable corresponding to the output of an execution of hybrid Hyb8 with
adversary A (and an implicit security parameter _). By construction, observe that EXP(0)prg (1_,A) ≡ Hyb0 (A) and
EXP(1)prg (1_,A) ≡ Hybℓ (A). Following the same argument in the proof of Theorem 6.7, for all indices 8 ∈ {0} ∪ N,

Pr[Hyb8 (A) = 1 ∧ E8] − Pr[Hyb8−1 (A) = 1 ∧ E8] = Pr[Hyb8 (A) = 1] − Pr[Hyb8−1 (A) = 1], (B.1)

56

where E8 is the event that algorithm A makes an evaluation query on index 8 . Suppose now that

| Pr[EXP(0)prg (1_,A) = 1] − Pr[EXP(1)prg (1_,A) = 1] | ≥ Y (_) (B.2)

for some non-negligible Y. We use A to construct an efficient adversary B for the distinguishing problem from
Lemma B.8:

1. On input the security parameter 1_ , algorithm B runs A(1_) to obtain the output length 1ℓ . Algorithm B
samples a random index 8 r← [ℓ] and sends (1ℓ , 8) to the challenger.

2. The challenger responds with (#, E, 41, . . . , 4ℓ , r, 1), where E = D48 and D
r← Z

∗
. Algorithm B sets pp =

(#, 41, . . . , 4ℓ , r) and gives pp to A. Algorithm B also samples t r← {0, 1}ℓ .

3. When algorithm A makes an evaluation query on an index 9 ∈ [ℓ], the challenger responds as follows:

• If 9 < 8 , the challenger responds with C 9 .

• If 9 = 8 , the challenger responds with 1.

• If 9 > 8 , the challenger computes G 9 = E
∏

:∈ [ℓ]\{8,9 } 4: mod # and responds with hc(G 9 , r).

4. After A finishes making evaluation queries, let � ⊆ [ℓ] be the set of indices on which algorithm A made an
evaluation query. If 8 ∉ � , then algorithm B outputs 0. Otherwise algorithm B responds with f(= E

∏
9 ∈�\{8} 4 9 .

5. At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1} which algorithm B also outputs.

Since A is efficient, algorithm B is efficient, so it suffices to analyze its advantage.

Analyzing the advantage of B. Let,0 be the event that B outputs 1 when the challenger sets 1 = hc(D
∏

9≠8 4 9 , r)
and,1 be the event that B outputs 1 when the challenger samples 1 r← {0, 1}. Suppose algorithm B samples 8 = 8∗ in
the above reduction. By construction, the challenger for the experiment in Lemma B.8 samples #,D, 41, . . . , 4ℓ as in the
normal setup algorithm, except it samples the exponents 48

r← Primes_ instead of 48
r← Z∗

i (#) ∩ Primes_ . However,

with overwhelming probability over the choice of 48
r← Primes_ , it holds that gcd(48 , i (#)) = 1, so these two

distributions are statistically close. Correspondingly, the public parameters simulated by algorithm B are statistically
close to the distribution of public parameters in EXP(0)prg and EXP(1)prg. By construction, algorithm B also simulates the
evaluation queries for 9 > 8 and the projected seed exactly as in EXP(0)prg and EXP(1)prg, where the challenger’s secret
D plays the role of G in the reduction. We consider the distribution of the challenge bit 1.

• Suppose 1 = hc(D
∏

9≠8 4 9 , r). In this case, the responses to the evaluation queries are distributed according to the
specification in Hyb8∗−1. We consider the probability that algorithm B outputs 1 in this case. First, if algorithm
A does not make an evaluation query on index 8∗, then algorithm B always outputs 0. If algorithm A does
make an evaluation query on index 8∗, then algorithm B perfectly simulates the challenge according to the
distribution in Hyb8∗−1, and thus, outputs 1 with probability Pr[Hyb8∗−1 (A) = 1 | E8∗]. Thus, in this case,
algorithm B outputs 1 with probability

Pr[B outputs 1 | 8 = 8∗] = Pr[Hyb8∗−1 (A) = 1 | E8∗] · Pr[E8∗] = Pr[Hyb8∗−1 (A) = 1 ∧ E8∗] .

• Suppose 1 r← {0, 1}. In this case, the responses to the evaluation queries are distributed according to the
specification in Hyb8∗ . By a similar reasoning as in the previous case, we conclude that in this case

Pr[B outputs 1 | 8 = 8∗] = Pr[Hyb8∗ (A) = 1 | E8∗] · Pr[E8∗] = Pr[Hyb8∗ (A) = 1 ∧ E8∗] .

Finally, algorithm B samples 8 r← [ℓ]. Thus

Pr[,0 = 1] = 1

ℓ

∑
8∈[ℓ]

Pr[Hyb8−1 (A) = 1 ∧ E8],

Pr[,1 = 1] = 1

ℓ

∑
8∈[ℓ]

Pr[Hyb8 (A) = 1 ∧ E8] .

57

Since EXP(0)prg (1_,A) ≡ Hyb0 (A) and EXP(1)prg (1_,A) ≡ Hybℓ (A), we appeal to Eqs. (6.1) and (6.2) and conclude that

| Pr[,0 = 1] − Pr[,1 = 1] | = 1

ℓ

���∑
8∈[ℓ]

Pr[Hyb8−1 (A) = 1 ∧ E8] − Pr[Hyb8 (A) = 1 ∧ E8]
���

=
1

ℓ

���∑
8∈[ℓ]

?8 − ?8−1
���

=
1

ℓ
|?0 − ?ℓ | =

1

ℓ
| Pr[EXP(0)prg (1_,A) = 1] − Pr[EXP(1)prg (1_,A) = 1] | ≥ Y

ℓ
,

which is non-negligible since A is efficient which means ℓ = poly(_). �

Remark B.9 (Reducing the Public Parameter Size). The public parameters in Construction B.3 scale linearly with
the output length (since it includes the description of the exponents 41, . . . , 4ℓ). The work of [ABI+23] describes an
approach to replace the description of (41, . . . , 4ℓ) with a succinct seed of size poly(_, log ℓ). The idea is to generate
the primes in a pseudorandom manner and replace the tuple (41, . . . , 4ℓ) with a short seed d that can be expanded into
a sequence of primes. Moreover, to facilitate the security proof, there is a procedure that allows “programming” the
seed to output a specific prime at a particular index 8 ∈ [ℓ]. We refer to [ABI+23, §3.2.1] for details on this approach.

C The Gentry-Waters Semi-Static Broadcast Encryption Scheme

Gentry andWaters [GW09] previously showed how to construct a semi-statically-secure broadcast encryption scheme
with linear-size public parameters (and constant-size secret keys and ciphertexts) from the decisional @-bilinear
Diffie-Hellman exponent sum assumption. Their work describes the construction as a special case of an adaptively-
secure identity-based broadcast encryption scheme in the random oracle model. For completeness, we include a
self-contained description of a simplified version of their construction specialized to the setting of vanilla broadcast
encryption with semi-static security in the plainmodel. Then, using our publicly-sampleable projective PRGs (say from
the computational bilinear Diffie-Hellman assumption), we obtain an adaptively-secure broadcast encryption scheme
in the plain model with linear-size public keys (and constant-size secret keys and ciphertexts). We start by introducing
the decisional @-BDHE sum problem that they rely on for security. For simplicity, we give a game-based formulation.

Assumption C.1 (Decision @-BDHE Sum). Let PrimeBGroupGen be a prime-order bilinear group generator. For
a security parameter _, a bit 1 ∈ {0, 1}, and an adversary A, we define the @-bilinear Diffie-Hellman exponent sum
experiment @-BDHES(1) (1_,A) as follow:

• On input the security parameter 1_ , the adversary A outputs a tuple ((,<), where (⊂ Z,< ∈ Z.

• The challenger samples G = (G,G) , ?, 6, 4) ← PrimeBGroupGen(1_) and a random exponent 0 r← Z? . The
challenger computes [/0]G) = [0<]G) and [/1]G)

r← G) , and gives (G, {[08]G}8∈(, [/1]G)) to the adversary.

• The adversary outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say the adversary A is admissible if it outputs a tuple ((,<) where for every B0, B1 ∈ (∪ {0} it holds that
B0 +B1 ≠<. We say the decision @-BDHE sum assumption holds with respect to PrimeBGroupGen if for every efficient
and admissible adversary A, there exist a negligible function negl(·) such that for all _ ∈ N,���Pr[@-BDHES(0) (1_,A) = 1] − Pr[@-BDHES(1) (1_,A) = 1]

��� = negl(_).

Construction C.2 ([GW09, §4, adapted]). Let PrimeBGroupGen be a prime-order bilinear group generator. The
broadcast encryption scheme ΠBE = (Setup,KeyGen, Enc,Dec) is constructed as follows:

• Setup(1_, 1#): On input the security parameter _ and the number of parties # , the setup algorithm sam-
ples a prime-order pairing group G = (G,G) , ?, 6, 4) ← PrimeBGroupGen(1_) and random exponents
0,D, E, V,W, A1, . . . , A#

r← Z? . If 0 ∈ [#], then the setup algorithm outputsmpk = msk = ⊥. Otherwise, it outputs

mpk = ({[D0 9]G} 9∈[0,#−2], {[E0:]G, [VE0:]G}:∈[0,#], [WVE]G, [WVE0]G),
msk = (0,D, E, V,W, A1, . . . , A=).

58

• KeyGen(msk, 8): On input the master secret key msk and an index 8 ∈ [#], if msk = ⊥, then output ⊥. Oth-
erwise, parse msk = (0,D, E, V,W, A1, . . . , A=) and compute [B8]G = [VD · W−A8

0−8]G. Output sk8 = (8, A8 , [B8]G). Note
that by construction of Setup, if msk ≠ ⊥, then 0 ∉ [#] so (0 − 8)−1 is well-defined.

• Enc(mpk, (, `): On input the master public key mpk a set (⊆ [#], and a message ` ∈ {0, 1}, the encryption
algorithm simply outputs ct = ` if mpk = ⊥. Otherwise, it parses

mpk = ({[D0 9]G} 9∈[0,#−2], {[E0:]G, [VE0:]G}:∈[0,#], [WVE]G, [WVE0]G),

samples a random C
r← Z? and computes the degree-# polynomial % defined by

% (G) =
(∏
:∈(
(G − :)

)
· ©­«

∏
:∈[#]\(

(G − : − #)ª®¬
. (C.1)

Let ?0, . . . , ?# be the coefficients of % (G). Namely, write % (G) = ∑#
:=0 ?:G

: . The encryption algorithm then
computes

[�1]G =

#∑
:=0

(?:C · [E0:]G) = [CE% (0)]G,

[�2]G = C · [WVE]G = [CWVE]G,
[�3]G = C · [VE]G = [CVE]G,
[�4]G) = C · [D0#−2]G · [VE0]G = [CVDE0#−1]G) ,
[�5]G) = C · [D0#−2]G · [WVE0]G + [`]G) = [CWVDE0#−1 + `]G) ,

and outputs ct = ([�1]G, [�2]G, [�3]G, [�4]G) , [�5]G))

• Dec(mpk, (, sk, ct): On input the master public key mpk a set (⊆ [#], a secret key sk = (8, A8 , [B8]G) and a
ciphertext ct, the decryption algorithm outputs ct if mpk = ⊥. Otherwise, it parses

mpk = ({[D0 9]G} 9∈[0,#−2], {[E0:]G, [VE0:]G}:∈[0,#], [WVE]G, [WVE0]G)

and ct = ([�1]G, [�2]G, [�3]G, [�4]G) , [�5]G)). Then, it outputs 0 if 8 ∉ (. Otherwise, the decryption algorithm
computes the degree-(# − 1) polynomial % ′8 (G) = % (G)/(G − 8), where % (G) is the polynomial from Eq. (C.1).
In particular,

% ′8 (G) =
©­«

∏
:∈(\{8 }

(G − :)ª®¬
· ©­«

∏
:∈[#]\(

(G − : − #)ª®¬
. (C.2)

Let ?′0, . . . , ?
′
#−1 be the coefficients of % ′8 . Namely, % ′8 (G) =

∑#−1
:=0 ?′

:
G: . Note that ?′#−1 = 1. The algorithm then

computes

[�6]G) = [B8]G · [�1]G −
(
#−2∑
9=0

?′9 [D0 9]G

)
· ([�2]G − A8 [�3]G),

[`′]G) = [�5]G) − [�6]G) − A8 · [�4]G) .

The algorithm outputs 1 if [`′]G) = [1]G) and 0 otherwise.

Theorem C.3 (Correctness [GW09, adapted]). Construction C.2 is correct.

Proof. Take any _ ∈ N and any polynomial function # = poly(_). Let (mpk,msk) ← Setup(1_, 1#). First, ifmpk = ⊥,
then correctness holds trivially (in this case, the encryption algorithm simply outputs the message in the clear and
the decryption algorithm simply outputs the ciphertext). Suppose that mpk ≠ ⊥. Then, we can write

mpk = ({[D0 9]G} 9∈[0,#−2], {[E0:]G, [VE0:]G}:∈[0,#], [WVE]G, [WVE0]G),
msk = (0,D, E, V,W, A1, . . . , A=).

59

where 0,D, E, V,W, A1, . . . , A#
r← Z? and 0 ∉ [#]. Take any set (⊆ [#], any index 8 ∈ (, and any message ` ∈ {0, 1}.

Suppose sk8 is in the support of KeyGen(msk, 8). Then, we can write sk8 = (8, A8 , [B8]G) where B8 = VD · W−A8
0−8 . Take any

ciphertext ct = ([�1]G, [�2]G, [�3]G, [�4]G) , [�5]G)) in the support of Enc(mpk, (, `). Let C ∈ Z? be the encryption
randomness. Consider the behavior of Dec(mpk, (, sk8 , ct). By definition, we have

[B8]G · [�1]G =

[
VD · W − A8

0 − 8
]
G

· [CE% (0)]G =

[
CV (W − A8)DE

% (0)
0 − 8

]
G)

= [CV (W − A8)DE% ′8 (0)]G) ,

where % ′8 (G) = % (G)/(G − 8) is the polynomial from Eq. (C.2). Since ?′#−1 = 1, we can write

% ′8 (G) = G#−1 +
#−2∑
:=0

?′:G
: .

This means

#−2∑
9=0

?′9 [D0 9]G · ([�2]G − A8 [�3]G) = [D (% ′8 (0) − 0#−1)]G · [C (W − A8)VE]G

= [CV (W − A8)DE% ′8 (0)]G) − [CV (W − A8)DE0#−1]G) .

Therefore,

[�6]G) = [B8]G · [�1]G −
(
#−2∑
9=0

?′9 [D0 9]G

)
· ([�2]G − A8 [�3]G)

= [CV (W − A8)DE0#−1]G)
= [CVWDE0#−1]G) − A8 [CVDE0#−1]G)
= [�5]G) − A8 [�4]G) − [`]G) .

Thus [`′]G) = [�5]G) − [�6]G) − A8 · [�4]G) = [`]G) and correctness holds. �

Theorem C.4 (Semi-Static Security [GW09, adapted]). Assuming the decision @-BDHE sum problem (Assumption C.1)

is hard with respect to PrimeBGroupGen, Construction C.2 is semi-statically secure.

Proof. In the following, for any polynomial % (G), we write % |8 to denote the coefficient of G8 in % . The proof uses
the following lemma from [GW09, §B], which we state below:

Lemma C.5 ([GW09, Lemma B.1]). Let %1, %2 ∈ Z? [G] be polynomials of degree 31, 32, respectively. Suppose more-

over that %1 and %2 do not share any common factors. Let 33 = 31 + 32 − 1 and 8 ∈ [31, 33]. Then, there exists an
efficiently-computable polynomial & of degree 33 such that

• %1& |8 = 1;

• ∀9 ∈ [31, 33] \ {8}, %1& | 9 = 0; and

• ∀9 ∈ [32, 33], %2& | 9 = 0.

Proof of TheoremC.4. Suppose there exists an efficient adversaryA that breaks semi-static security (Definition 3.4)
of Construction C.2 with non-negligible advantage Y:���Pr[EXP(0)SSBE (1_,A) = 1] − Pr[EXP(1)SSBE (1_,A) = 1]

��� = Y (_).

We use A to construct an efficient adversary B for the decision @-BDHE sum problem (Assumption C.1) as follows:

60

• On input the security parameter 1_ , algorithm B runs A(1_) to receive the number of users 1# and the set
(∗. Algorithm B also samples a random bit ` r← {0, 1}, which serves as the challenge bit of the simulated
semi-static experiment.

• Algorithm B sets< = 12# − 1 and

(0 = [0, # − 2] ∪ [3#, 5# − 1] ∪ [6#, 7# − 1] ∪ [9#, 11#] ∪ [12#, 14# + 1] .

Algorithm B submits ((0,<) to the @-BDHES challenger to receive the challenge (G, {[08]G}8∈(0 , [/]G)) where
G = (G,G) , ?, 6, 4).

• Algorithm B samples D0, E0, V0
r← Z? and (implicitly) sets D = D0, E = E00

9# , V = V00
3# .

• Algorithm B samples I r← Z? and A8
r← Z? for all 8 ∉ (∗. It samples a random polynomial Γ(G) = ∑2#

9=0 W 9G
9

of degree 2# such that Γ(8) = A8 for all 8 ∉ (∗ and Γ(8) = I for all 8 ∈ (∗ ∪ [# + 1, 2#]. It implicitly programs
W = Γ(0). Since Γ has degree 2# , and algorithm B only constrains the value of Γ on the points in [2#], the
value of W = Γ(0) is uniform over Z? and independent of I and A8 for 8 ∉ (∗ so long as 0 ∉ [2#].

• Algorithm B now computes the master public key as follows:

– for all 9 ∈ [0, # − 2], [D0 9]G = D0 [0 9]G;
– for all : ∈ [0, #], [E0:]G = E0 [09#+:]G, [VE0:]G = V0E0 [012#+:]G;
– [WVE]G = V0E0 [Γ(0)012#]G = V0E0

∑2#
9=0 W 9 [012#+9]G; and

– [WVE0]G = V0E0
∑2#

9=0 W 9 [012#+9+1]G.

Algorithm B sends mpk = ({[D0 9]G} 9∈[0,#−2], {[E0:]G, [VE0:]G}:∈[0,#], [WVE]G, [WVE0]G) to A.

• Whenever A makes a key-generation query on an index 8 ∈ [#] \ (∗, algorithm B computes the polynomial

Γ
′
8 (G) =

Γ (G)−A8
G−8 . Since 8 ∉ (∗, Γ(8) = A8 , so 8 is a root of the polynomial Γ(G) − A8 . This means (G − 8) is a factor

of Γ(G) − A8 , so we can express Γ′8 as a polynomial of degree 2# − 1. Algorithm B writes Γ′8 (G) =
∑2#−1

9=0 W ′9G
9

and simulates the secret key by computing

[B8]G =

[
VD · W − A8

0 − 8
]
G

=

[
VD · Γ(0) − A8

0 − 8

]
G

= [VD · Γ′8 (0)]G = V0D0

2#−1∑
9=0

W ′9 [03#+9]G

Algorithm B gives sk8 = (8, A8 , [B8]G) to A.

• After algorithm A finishes making its key-generation queries, it submits a set (⊆ (∗ to B. Algorithm B
computes the degree-# polynomial

% (G) =
(∏
:∈(
(G − :)

)
· ©­«

∏
:∈[#]\(

(G − : − #)ª®¬
.

As usual, let ?0, . . . , ?# be the coefficients of % (G). Namely, write % (G) = ∑#
:=0 ?:G

: . Invoking Lemma C.5 with

(%1, %2, 8) = (Γ, %, 2#), algorithm B computes the polynomial)0 =
∑3#−1

:=0 C:G
: of degree 3# − 1 such that

Γ)0 |2# = 1

Γ)0 | 9 = 0 ∀9 ∈ [2# + 1, 3# − 1]
%)0 | 9 = 0 ∀9 ∈ [#, 3# − 1] .

(C.3)

It then samples g r← Z? and implicitly programs C = g + I · 0−3#)0 (0).

61

• Algorithm B simulates the challenge ciphertext components as follows:

[�1]G = [CE% (0)]G = E0g [09#% (0)]G + E0I [06#)0 (0)% (0)]G
[�2]G = [CWVE]G = E0V0g [012# Γ(0)]G + IE0V0 [09#)0 (0)Γ(0)]G
[�3]G = [CVE]G = E0V0g [012#]G + IE0V0 [09#)0 (0)]G
[�4]G) = D0E0V0g [013#−1]G) + ID0E0V0 [010#−1 ()0 (0) − I−102#)]G) + D0E0V0 [/]G)
[�5]G) = D0E0V0g [013#−1Γ(0)]G) + ID0E0V0 [010#−1 ()0 (0)Γ(0) − 02#)]G) + ID0E0V0 [/]G) + [`]G) .

Algorithm B gives ct = ([�1]G, [�2]G, [�3]G, [�4]G) , [�5]G)) to A. Below, we will show how B can compute
each of these terms from the corresponding terms in the challenge.

• At the end of the experiment, algorithm A outputs a bit `′. Algorithm B outputs 0 if ` = `′ and outputs 1
otherwise.

Efficiency analysis of B. First, we show that B is efficient. In particular, we show that algorithm B is able to
efficiently compute each term shown in the above reduction using the group elements from the @-BDHES challenge
(G, {[08]G}8∈(0 , [/]G)). Recall that

(0 = [0, # − 2] ∪ [3#, 5# − 1] ∪ [6#, 7# − 1] ∪ [9#, 11#] ∪ [12#, 14# + 1] .

In the following analysis, we assume that 0 ∉ [2#]. Since the challenger samples 0 r← Z? and # = poly(_), this
holds with overwhelming probability over the choice of 0. We consider each component individually:

• The master public key mpk is efficiently computable since [0, # − 2] (for [D0 9]G), [9#, 10#] (for [E0:]G),
[12#, 13#] (for [VE0:]G), and [12#, 14# + 1] (for [WVE]G and [WVE0]G) are all subsets of (0.

• Next, the key-generation queries only require [08] for 8 ∈ [3#, 5# − 1] ⊂ (0.

• To argue that the challenge ciphertext ct is efficiently computable, we first affirm that the hypothesis of
Lemma C.5 is satisfied:

– By construction, the roots of the polynomial % are at the points G where either G ∈ (or G = # + : for
some : ∈ [#] \ (.

– Since (⊆ (∗, we conclude that all of the roots of % are contained in the set (∗∪[# +1, 2#]. By construction,
the polynomial Γ has value I on every G ∈ (∗ ∪ [# + 1, 2#]. Since the reduction algorithm samples
I

r← Z? , with overwhelming probability I ≠ 0, which means Γ does not have roots at G ∈ (∗ ∪ [# + 1, 2#].

Then, the following two properties hold:

– With overwhelming probability over the choice of I, Γ and % do not share any common factors. Lemma C.5
now guarantees the existence of the polynomial)0 of degree 3# −1 that satisfies the properties in Eq. (C.3).

– Second, the polynomial (I−1Γ(G) − 1) has roots on all G ∈ (∗ ∪ [# + 1, 2#]. Since all of the roots of %
are contained in this interval, this means % divides the polynomial (I−1Γ − 1). Equivalently, there exists
a polynomial & (G) of degree at most # where % (G) ·& (G) = I−1 · Γ(G) − 1.

From Eq. (C.3), we have %)0 | 9 = 0 for all 9 ∈ [#, 3# − 1]. Since & has degree at most # , this means

∀9 ∈ [2#, 3# − 1] : %&)0 | 9 = 0 =⇒ (I−1Γ − 1))0 | 9 = I−1Γ)0 | 9 −)0 | 9 = 0. (C.4)

Again by Eq. (C.3), we know that Γ)0 |2# = 1, and that for all 9 ∈ [2# + 1, 3# − 1], Γ)0 | 9 = 0. Combining with
Eq. (C.4), we have

)0 |2# = I−1Γ)0 |2# = I−1

)0 | 9 = I−1Γ)0 | 9 = 0 ∀9 ∈ [2# + 1, 3# − 1] .

62

Finally, since)0 is a polynomial with degree at most 3# −1, this means that)0 has degree exactly 2# and leading
coefficient I−1. Moreover, we note that the reduction algorithm knows the coefficients of the polynomials %, Γ,)0
as well as the exponentsD0, E0, V0, I, g ∈ Z? . We now consider each of the components in the challenge ciphertext:

– To compute [�1]G, the reduction needs to compute [09#% (0)]G and [06#)0 (0)% (0)]G:
∗ Since % has degree at most # , the reduction can compute [09#% (0)]G using [08]G for 8 ∈ [9#, 10#] ⊂
(0.

∗ From Eq. (C.3), %)0 | 9 = 0 for all 9 ∈ [#, 3# − 1]. Moreover, %)0 has degree at most 3# . Thus, the
reduction can compute [06#)0 (0)% (0)]G using [08]G for 8 ∈ [6#, 7# − 1] ∪ {9# } ⊆ (0.

– To compute [�2]G, the reduction needs to compute [012# Γ(0)]G and [09#)0 (0)Γ(0)]G:
∗ Since Γ has degree atmost 2# , the reduction can compute [012# Γ(0)]G using [08]G for 8 ∈ [12#, 14#] ⊂
(0.

∗ By Eq. (C.3), Γ)0 | 9 = 0 for all 9 ∈ [2# + 1, 3# − 1]. Moreover Γ)0 has degree at most 4# . This means
the reduction can compute [09#)0 (0)Γ(0)]G using [08]G for 8 ∈ [9#, 11#] ∪ [12#, 13#] ⊆ (0.

– To compute [�3]G, the reduction needs to first compute [012#]G, which is given out since 12# ∈ (0.
Then it needs to compute [09#)0 (0)]G. Since)0 has degree 2# , the reduction can do so using [08]G for
8 ∈ [9#, 11#] ⊆ (0.

– To compute [�4]G) , the reduction needs to compute [013#−1]G) and [010#−1 ()0 (0) − I−102#)]G) :
∗ First, it computes [013#−1]G) = [013#−1]G · [1]G. Note that 13# − 1 ∈ (0.
∗ Consider [010#−1 ()0 (0) − I−102#)]G) . From above, we argued that)0 has degree 2# with leading
coefficient I−1. This means)0 (0) − I−102# is a polynomial of degree 2# − 1. Thus, the reduction
needs to be able to compute [08]G) for 8 ∈ [10# − 1, 12# − 2]. For each 8 ∈ [10# − 1, 12# − 2], the
reduction can compute

[08]G) = [07#−1]G · [08−7#+1]G.
Now 7# − 1 ∈ (0 and moreover, when 8 ∈ [10# − 1, 12# − 2], we have 8 − 7# + 1 ∈ [3#, 5# − 1] ⊂ (0.

– To compute [�5]G) , the reduction needs to compute [013#−1Γ(0)]G) and [010#−1 ()0 (0)Γ(0) − 02#)]G) :
∗ Since Γ has degree at most 2# , to compute [013#−1Γ(0)]G) , it suffices to be able to compute [08]G)
for 8 ∈ [13# − 1, 15# − 1]. For each 8 ∈ [13# − 1, 15# − 1], the reduction can compute

[08]G) = [04#−1]G · [08−4#+1]G,

which is feasible since 4# − 1 ∈ (0 and likewise, 8 − 4# + 1 ∈ [9#, 11#] ⊂ (0.

∗ By Eq. (C.3), Γ)0 | 9 = 0 for all 9 ∈ [2# + 1, 3# − 1] and Γ)0 |2# = 1. This means ()0 (0)Γ(0) −
02#) | 9 = 0 for all 9 ∈ [2#, 3# − 1]. In addition, the degree of)0Γ is at most 4# . Thus, to
compute [010#−1 ()0 (0)Γ(0) − 02#)]G) , it suffices that the reduction can compute [08]G) for all
8 ∈ [10# −1, 12# −2] ∪ [13# −1, 14# −1]. First, for 8 ∈ [10# −1, 12# −2], the reduction can compute

[08]G) = [07#−1]G · [08−7#+1]G,

which is feasible since 7# − 1 ∈ (0 and 8 − 7# + 1 ∈ [3#, 5# − 1] ⊂ (0. For 8 ∈ [13# − 1, 14# − 1],
the reduction can compute

[08]G) = [010#−1]G · [08−10#+1]G,
which is feasible since 10# − 1 ∈ (0 and 8 − 10# + 1 ∈ [3#, 4#] ⊂ (0.

We conclude that algorithm B can efficiently construct the listed group elements from the elements given out in the
challenge.

63

Advantage analysis of B. It suffices now to compute the advantage of B. First, by inspection, there does not exist
B, B′ ∈ (0 ∪ {0} such that B + B′ = 12# − 1, so algorithm B is admissible. As in the correctness analysis, we assume
that 0 ∉ [2#]. Since the challenger samples 0 r← Z? and # = poly(_) while ? = 2Ω (_) , this property holds with
overwhelming probability. We now consider two possibilities depending on the distribution of the challenge [/]G) :

• Suppose [/]G) = [0<]G) = [012#−1]G) . In this case, we claim that with overwhelming probability, algorithm
B simulates the semi-static security experiment @-BDHES(`) , where ` is the random (message) bit sampled
by B at the start of its execution. We analyze the distribution of the master public key mpk, the responses sk8
to the key-generation queries, and the challenge ciphertext ct:

– Computation of mpk. First, the @-BDHES challenger samples 0 r← Z? . Since the reduction algorithm
samplesD0, E0, V0

r← Z? , as long as 0 ≠ 0, the distributions ofD = D0, E = E00
9# , V = V00

3# are independent
and uniformly random. Furthermore, since Γ is a random 2# -degree polynomial with 2# fixed points,
the evaluation outcome W = Γ(0) at any point 0 ∉ [2#] is uniformly random. Thus as long as 0 ∉ [2#],
the master public key

mpk = ({[D0 9]G} 9∈[0,#−2], {[E0:]G, [VE0:]G}:∈[0,#], [WVE]G, [WVE0]G).

constructed by B is distributed exactly according to the specification of the semi-static experiment. As
argued above, 0 ∉ [2#] with overwhelming probability over the choice of 0.

– Computation of sk8 . For each index 8 ∈ [#] \ (∗, algorithm B sampled A8
r← Z? , which is distributed

exactly according to the specification of the semi-static experiment. Since algorithm B constructs [B8]G
to satisfy [B8]G = [VD · W−A8

0−8]G, we conclude that the secret keys sk8 are also distributed as specified in
the semi-static experiment.

– Computation of ct. First, the reduction algorithm implicitly defines C = g + I · 0−3#)0 (0) where g r← Z? .
Since g is uniform, the same holds for C . Now, if [/]G) = [012#−1]G) , the challenge ciphertext B computes
can be written as follows:

[�1]G = [CE% (0)]G
[�2]G = [CWVE]G
[�3]G = [CVE]G
[�4]G) = D0E0V0g [013#−1]G) + ID0E0V0 [010#−1 ()0 (0) − I−102#)]G) + D0E0V0 [/]G)

= [DEVg0#−1]G) + [DEV (I0−2#−1)0 (0) − 0−1)]G) + [DEV0−1]G)
= [DEV0#−1 (g + I0−3#)0 (0))]G)
= [DEV0#−1C]G)

[�5]G) = D0E0V0g [013#−1Γ(0)]G) + ID0E0V0 [010#−1 ()0 (0)Γ(0) − 02#)]G) + ID0E0V0 [/]G) + [`]G)
= [DEVgW0#−1]G) + [DEVI (0−2#−1)0 (0)W − 0−1)]G) + [DEVI0−1]G) + [`]G)
= [DEVW0#−1 (g + I0−3#)0 (0)) + `]G)
= [DEVW0#−1C + `]G) ,

which is distributed exactly as in the real semi-static experiment.

Thus, with overwhelming probability over the choice of 0, we have

Pr[@-BDHES(0) (1_,B) = 1] = 1

2
Pr[EXP(0)SSBE (1_,A) = 0] + 1

2
Pr[EXP(1)SSBE (1_,A) = 1] + a (_)

=
1

2
− 1

2

(
Pr[EXP(0)SSBE (1_,A) = 1] − Pr[EXP(1)SSBE (1_,A) = 1]

)
+ a (_),

where |a (_) | ≤ negl(_). We conclude that����Pr[@-BDHES(0) (1_,B) = 1] − 1

2

���� ≥ Y (_)
2
− negl(_). (C.5)

64

• Suppose [/]G)
r← G) . Then, we can equivalently write [/]G) = [012#−11 + X]G) where X r← Z? . By the same

analysis as in the previous case, conditioned on 0 ∉ [2#], the components constructed by algorithm B are
distributed as follows:

mpk =
(
{[D0 9]G} 9∈[0,#−2], {[E0:]G, [VE0:]G}:∈[0,#], [WVE]G, [WVE0]G

)
,

sk8 =
(
8, A8 ,

[
VD · W − A8

0 − 8
]
G

)
,

and the challenge ciphertext components ct = ([�1]G, [�2]G, [�3]G, [�4]G) , [�5]G)) are distributed as follows:

[�1]G = [CE% (0)]G
[�2]G = [CWVE]G
[�3]G = [CVE]G,
[�4]G) = [DEV0#−1C]G) + [D0E0V0X]G)
[�5]G) = [DEVW0#−1C]G) + [ID0E0V0X + `]G) .

Now as long as 0 ∉ [2#], the values of D, E, V, {A8 }8∉(∗ , W, C are independent of I. Specifically, when 0 ∉ [2#],
the value of W = Γ(0) is uniform and independent over Z? (because Γ is a polynomial of degree 2# that is
constrained on only 2# points). Similarly, the value of C is blinded by g r← Z? , which is sampled independently
of all of the other parameters. Thus, as long as D0, E0, V0 ≠ 0 (which holds with overwhelming probability), the
distribution of ID0E0V0X remains uniform over Z? even given all of the other components (including D0E0V0X).
In particular, this means that the distribution of [�5]G) is statistically close to uniform over G) (independent
of the message `). Correspondingly, this means����Pr[@-BDHES(1) (1_,B) = 1] − 1

2

���� = negl(_). (C.6)

Combining Eqs. (C.5) and (C.6), we have���Pr[@-BDHES(0) (1_,B) = 1] − Pr[@-BDHES(1) (1_,B) = 1]
���

≥
���Pr[@-BDHES(0) (1_,B) = 1] − 1/2

��� − ���Pr[@-BDHES(1) (1_,B) = 1] − 1/2
���

≥ Y (_)
2
− negl(_),

which is non-negligible. Thus B breaks the @-BDHES assumption, and the theorem holds. �

65

