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Abstract

A succinct non-interactive argument (SNARG) for NP allows a prover to convince a verifier that
an NP statement x is true with a proof whose size is sublinear in the length of the traditional NP
witness. Moreover, a SNARG is adaptively sound if the adversary can choose the statement it wants
to prove after seeing the scheme parameters. Very recently, Waters and Wu (STOC 2024) showed
how to construct adaptively-sound SNARGs for NP in the plain model from falsifiable assumptions
(specifically, sub-exponentially-secure indistinguishability obfuscation, sub-exponentially-secure one-
way functions, and polynomial hardness of discrete log).

We consider the batch setting where the prover wants to prove a collection of T statements xy, . . ., xT
and its goal is to construct a proof whose size is sublinear in both the size of a single witness and the
number of instances T. In this setting, existing constructions either require the size of the public pa-
rameters to scale linearly with T (and thus, can only support an a priori bounded number of instances),
or only provide non-adaptive soundness, or have proof size that scales linearly with the size of a sin-
gle NP witness. In this work, we give two approaches for batching adaptively-sound SNARGs for NP,
and in particular, show that under the same set of assumptions as those underlying the Waters-Wu
adaptively-sound SNARG, we can obtain an adaptively-sound SNARG for batch NP where the size of
the proof is poly(A) and the size of the CRS is poly(A + |C|), where A is a security parameter and |C] is
the size of the circuit that computes the associated NP relation.

Our first approach builds directly on top of the Waters-Wu construction and relies on indistin-
guishability obfuscation and a homomorphic re-randomizable one-way function. Our second approach
shows how to combine ideas from the Waters-Wu SNARG with the chaining-based approach by Garg,
Sheridan, Waters, and Wu (TCC 2022) to obtain a SNARG for batch NP.

1 Introduction

Succinct non-interactive arguments (SNARGs) for NP allow an efficient prover to convince a verifier that
an NP statement x (with associated witness w) is true with a proof whose size scales with o(|x| + |w]).
The main security requirement is computational soundness which says that a computationally-bounded
prover should not be able to convince a verifier of a false statement. SNARGs were first constructed in the
random oracle model [Kil92,Mic94]. Many works have subsequently shown how to construct SNARGs in
the plain model assuming the prover and the verifier have access to a common reference string (CRS).
Until recently, SNARGs for NP in the CRS model have either relied on non-falsifiable cryptographic as-
sumptions (c.f., [Gro10,BCCT12,DFH12,Lip13,GGPR13,BCI*13,BCPR14,BISW17,BCC*17,ACL*22,CLM23]
and the references therein) or satisfied the weaker notion of non-adaptive soundness [SW14], where sound-
ness only holds against an adversary that declares its false statement before seeing the CRS. In contrast,
the standard or “adaptive” notion of soundness allows the malicious prover to choose the statement after



seeing the CRS. Very recently, several works gave the first adaptively-sound SNARGs for NP using in-
distinguishability obfuscation (i0) and either a sub-exponentially-secure re-randomizable one-way func-
tion [WW24a] or a sub-exponentially-secure lossy function [WZ24].! Moreover, in the designated-verifier
model where a secret key is needed to verify proofs, the work of [MPV24] shows that the original Sahai-
Waters scheme (based on iO and one-way functions) [SW14] is also adaptively sound. In conjunction with
constructions of iO from falsifiable cryptographic assumptions [JLS21,JLS22], these works provide the first
adaptively-sound SNARGs for NP from falsifiable assumptions.

Batch arguments. Existing constructions of adaptively-sound SNARGs for NP focus on the single-
statement setting where the prover constructs a proof for a single statement. In many settings (e.g., incre-
mentally verifiable computation [Val08] or proof-carrying data [CT10]), a prover might have a batch of T
(possibly correlated) statements xy, . . ., x that it wants to prove to the verifier, and the goal is to construct
a single short proof (whose size is sublinear in T and in the size of the associated NP relation) of all T
statements. There are two main approaches to constructing batch arguments:

« Using BARGs for NP: Non-interactive batch arguments (BARGs) for NP [KPY19, CJJ21,KVZ21,
CJJ22] provide one possible approach. Namely, a BARG for NP allows a prover to prepare a proof
on T statements with a proof whose size scales sublinearly (ideally, polylogarithmically) with the
number of statements T. Moreover, many recent works have shown how to construct BARGs for NP
from a broad range of cryptographic assumptions [C]J21, KVZ21, CJJ22, WW22, HJKS22, DGKV22,
PP22, CGJ*23, KLV23, KLVW23]. However, in these existing constructions, the size of the proof
grows with the size of the circuit that decides a single statement, and the goal is to amortize the
proof size across the number of statements. Allowing the proof size to grow with the size of the NP
relation avoids black-box separations that pertain to SNARGs for NP [GW11]. In this work, we are
interested in batching SNARG proofs, where the size of the proof is sublinear in both the number
of statements and size of the circuit computing the NP relation; such arguments are said to be fully
succinct [GSWW22]. The previous work of [GSWW22] showed how to construct fully succinct
BARGs for NP using iO and one-way functions, but the construction only achieved non-adaptive
soundness.

« Using SNARGs for NP: Another approach to constructing a fully succinct SNARG for a batch
language is to view the batch statement (xy, ..., x7) as a single NP statement for a product language
(i-e., the statement (xy,...,x7) is in the language if for each i € [T], there exists a valid witness
w; for x;), and then use a SNARG for NP to prove the product language. This approach achieves
adaptive soundness if we instantiate the underlying SNARG with an adaptively-sound SNARG for
NP [WW24a, WZ24]. However, the size of the CRS in existing adaptively-sound SNARGs [WW24a,
WZ24] grows polynomially with the size of the NP relation circuit. Thus, if we directly apply an
existing adaptively-sound SNARG for NP to a batch language, the NP relation circuit would take all
T statements as input, and the size of the CRS scales polynomially with T. This means the CRS is
large and moreover, there is an a priori bound on the number of statements that can be batched. In
this work, our goal is to support aggregating an arbitrary polynomial number of (adaptively-sound)
proofs on NP statements.

LA subsequent work [WW24b] also shows how to construct an adaptively-sound SNARG using iO and sub-exponentially-secure
one-way functions without any additional algebraic assumptions.



Why not compose? If we settle for non-adaptive soundness, the work of [GSWW22] shows that we can
construct a fully succinct SNARG for batch languages by composing a standard (somewhere-extractable)
BARG for NP with a SNARG for NP. Namely, a proof on statements (xi,...,xr) is a BARG proof that
there exists SNARG proofs 7, . . ., 7rr for the statements xy, . . ., xr. In this case, the NP relation associated
with the BARG is the SNARG verification circuit, which is small by construction. Moreover, if the BARG is
somewhere extractable [C]]22]° and the SNARG is non-adaptively sound, then it is straightforward to show
that the composed scheme satisfies non-adaptive soundness. While we can replace the underlying SNARG
in this composition with an adaptively-sound construction, we are not able to prove adaptive soundness
for the composition. The issue is that if we rely on somewhere extractability for the BARG, then the re-
duction needs to “know” the index of the false statement and program it into the CRS; this is not possible
when the statements are adaptively chosen.

Alternatively, we could consider a reduction algorithm that guesses the index of the false statement.
Since the index is computationally hidden from the malicious prover, the hope would be that a prover
that consistently chooses statements (xy, ..., xr) that evades the guess (i.e., where the index of the false
statement is different from the guessed index) must be breaking index hiding of the somewhere extractable
BARG. The problem is that checking whether the adversary successfully evaded the guess (and thus, broke
index hiding) is not an efficient procedure (it requires deciding the underlying NP statement). We could
handle this by complexity leveraging and relying on a super-polynomial time reduction that is able to de-
cide the underlying NP relation. However, if we do so, then the size of the resulting BARG starts scaling
with the size of the NP relation, and the resulting construction is no longer succinct.

This work. In this work, we show how to construct adaptively-sound SNARGs for batch languages with
almost no overhead compared to the single-statement setting. Specifically, we show how to leverage the
adaptively-sound SNARG for NP from [WW24a] to obtain an adaptively-sound SNARG for batch lan-
guages with only polylogarithmic additive overhead in the number of statements T. We summarize our
instantiation in the following (informal) theorem:

Theorem 1.1 (Informal). Let A be a security parameter. Assuming (1) the polynomial hardness of computing
discrete logs in a prime-order group, (2) the existence of a sub-exponentially-secure indistinguishability obfus-
cation scheme for Boolean circuits, and (3) the existence of a sub-exponentially-secure one-way function, there
exists an adaptively-sound SNARG for batch NP with the following properties:

« Preprocessing SNARG: Let C: {0,1}" x {0,1}? — {0, 1} be the circuit that computes the NP relation
(where n is the statement size and v is the witness size). The size of the common reference string for
proving up to T < 2* statements is poly (A + |C|).

« Proof size: A proofon a batch of T < 2* statements (x1, ..., xr) has size poly(2).
Additionally, the SNARG is perfect zero-knowledge.
The Gentry-Wichs separation. The classic result of Gentry and Wichs [GW11] gives a barrier for con-

structing adaptively-sound SNARGs for NP from falsifiable assumptions where the running time of the
reduction is insufficient to decide the underlying NP language. Consequently, existing constructions of

2A BARG is somewhere extractable if the CRS can be programmed on a (hidden) index i € [T]. Then, given a valid BARG proof
s on a batch of statements (x1, ..., xT), there is an efficient extraction algorithm that recovers a witness w; for x;. The special
index i is computationally hidden by the CRS. Somewhere extractable BARGs can be constructed from most number-theoretic
assumptions [CJJ21,KVZ21, CJJ22, WW 22, HJKS22, DGKV22,PP22, CGJ*23,KLV23,KLVW23].



adaptively-sound SNARGs for NP [WW24a, WZ24, MPV24] all rely on complexity leveraging and super-
polynomial-time security reductions. In these constructions, the cost of the complexity leveraging is in-
curred in the size of the CRS. In the setting of batch NP, the time it takes to decide a batch of T statements
(x1,...,x7) is only a factor of T greater than the time it takes to decide a single statement. As such, ob-
taining an adaptively-sound SNARG for batch NP would only increase the running time of the reduction
algorithm by a factor of T. In this case, the size of the CRS (or the proof) would only need to increase by a
factor of log T. In contrast, for a general NP relation where the statements and witnesses are a factor of T
longer, the reduction may have to run in time that is greater by a factor 2 to decide the larger language,
which would lead to a CRS that is larger by a factor of poly(T) rather than poly(log T).

1.1 Technical Overview

We begin by describing the Waters-Wu [WW24a] adaptively-sound SNARG for NP based on indistin-
guishability obfuscation (i0) and re-randomizable one-way functions. Throughout, we consider the lan-
guage of Boolean circuit satisfiability, where the Boolean circuit C: {0, 1}" x{0,1}° — {0, 1} is fixed ahead
of time (i.e., part of the CRS). A statement x € {0, 1}" is true if there exists a witness w € {0, 1}” such that
C(x,w) =1.

Building blocks. In addition to iO, the [WW24a] construction requires a puncturable pseudorandom
function (PRF) [BW13,KPTZ13,BGI14], and a re-randomizable one-way function:

« Inapuncturable PRF F(k, -), the holder of the secret key k can “puncture” the key at an input point x*
to create a punctured key k*"). The punctured key k*") can be used to evaluate F(k, x) on all points
x # x*. However, the value F(k, x*) at the punctured point remains pseudorandom even given the
punctured key k).

+ The second ingredient they require is a re-randomizable one-way function (OWF) f. This is a OWF
equipped with a statistical re-randomization algorithm that takes as input a OWF challenge yp,se and
produces a fresh challenge y (sampled uniformly at random from the challenge space of the OWF).
Moreover, given the re-randomization randomness together with a solution to the re-randomized
statement, there is an efficient algorithm for recovering a solution to the original OWF challenge
Ypase- In other words, the re-randomization can be viewed as a (perfect) random self-reducibility
property on the OWF.

The Waters-Wu construction. Inthe Waters-Wu construction, the CRS consists of two obfuscated pro-
grams: (1) a “solution-generator” program GenSol used to construct proofs; and (2) a “challenge-generator”
program GenChall used to verify proofs. The solution-generator GenSol has the circuit C (for the NP re-
lation) together with three puncturable PRF keys ks, ko, k1 hard-wired inside.

The solution-generator program takes as input a bit b € {0, 1}, a statement x, and a witness w. It checks
that b # F(ksel, x) and C(x, w) = 1. If so, it outputs the solution F(kp, x); the proof is the pair (b, F(kp, x)).
Next, the challenge-generator program takes as input a bit b and a statement x and outputs the challenge
yp = f(F(kp,x)). To verify a proof & = (b, z) on a statement x, the verification algorithm first runs the
challenge-generator program on input (b, x) to obtain a challenge y. Then it checks that f(z) = y.

The idea is that the solution-generator program only outputs one of the two possible solutions associ-
ated with each statement x. Moreover, which one it chooses is determined pseudorandomly by evaluating
the selector PRF F(kge|, x). We will refer to the challenge y; associated with b = F(kse|, x) as the “on-path”
challenge for x and the challenge y,, associated with b = 1 — F(kse|, x) as the “off-path” challenge for x.



In the Waters-Wu construction, the GenSol program is constructed so it only provides solutions to the
off-path challenge and never generates a solution to an on-path challenge. Then, in the proof of adaptive
soundness, [WW24a] show how to replace the on-path challenge for every statement with a re-randomized
challenge of a one-way function. The hope is that if the malicious prover ever produces a proof for a false
statement x that corresponds to the on-path challenge, then it successfully breaks the one-way function.
Finally, the [WW24a] analysis appeals to the fact that for a false statement x, the value of the selector
PRF F(ksel, x) is computationally unpredictable to the adversary; as such, with probability close to 1/2, the
prover provides a solution to the on-path challenge, which completes the adaptive soundness analysis. We
now give the formal description of the GenSol and GenChall programs:*

GenSol(b, x, w) GenChall(b, x)

« If C(x,w) = 0, output L. « Outputy = f(F(kp, x)).
o If b = F(ksel, x), output L.
« Output z = F(kp, x).

To construct a proof for a statement x and witness w, the prover simply runs the (obfuscated) GenSol
program on input (0, x, w) and input (1, x, w). GenSol will output L on one of these inputs, and an OWF
preimage z = F(kp, x) on the other. The proof 7 = (b, z) consists of the bit b and the preimage z. To check
the proof 7, the verifier simply runs the (obfuscated) GenChall program on input (b, x). GenChall will
output a OWF challenge y = f(F(kp, x)), and the verifier checks that f(z) = y.

We now sketch the proof of soundness from [WW24a]. As mentioned above, the proof proceeds in
a sequence of hybrid experiments. First, they argue that with probability 1/2, the malicious prover will
output an on-path solution as its proof; this is because for a false statement x, it is unable to predict the
value of F(ksel, x). Next, they gradually replace the on-path challenge for every statement program with
a re-randomized one-way function challenge. This way, a solution to any on-path challenge implies a so-
lution to the original one-way function challenge. Since the GenSol program never outputs an on-path
solution, this does not affect completeness. However, if the prover ever produces an on-path solution, then
it successfully inverts the one-way function and adaptive soundness follows. We now sketch the sequence
of hybrids from [WW24a]:

+ Hyb,: This is the real adaptive soundness game. The challenger outputs 1 only if the adversary A
produces an accepting proof 7 = (b, z) for a false statement x: namely, f(z) = y = GenChall(b, x).

+ Hyb,: After the adversary A outputs its proof 7 = (b, z), the challenger additionally checks that
b = F(ksel, x), or in other words, that A output a solution to the on-path challenge. This can only
reduce A’s success probability by a factor of 2, since the value of F(kse|, x) is computationally hidden
from the adversary for every false statement x (by puncturing security). Formally, [WW24a] show

this by considering an exponential sequence of hybrids, one for each false statement x*. In Hybix*),

the challenger punctures kg at x* and hard-wires the punctured key ks(:I*) in GenSol instead of k:

3Note that the original Waters-Wu construction did not require GenSol and GenChall to take the bit b € {0, 1} as input. Instead,
GenSol computed b = F(kg, x) and outputted z = F(kp, x) while GenChall outputted f(F(ko, x)) and f(F(k1,x)). The adaptation
here is equivalent to the original Waters-Wu construction and the updated syntax will be conducive when extending to batch NP.



GenSol ™) (b, x, w) GenChall(b, x)
- If C(x,w) = 0, output L. — Output y = f(F(kp, x)).
- Ifb= F(ks(exlu),x), output L.
— Output z = F(kp, x).

When x* is a false statement, GenSol *” still computes the same functionality as GenSol: both imme-
diately reject, since there does not exist a w such that C(x*, w) = 1. Thus, GenSol ™) does not need
to evaluate F(kse, x*). Now, by puncturing security, the value of F(kse, x*) is pseudorandom even
given ks(;*). Thus, if the adversary outputs a proof 7 = (b, z) for x*, with probability 1/2 — negl(4),
it will be the case that F(ke, x*) = b.

+ Hyb,: In this experiment, the challenger stops checking whether or not x is false; observe that this
can only increase the adversary’s success probability. In addition, the challenger samples a random
OWEF challenge ypase < f(r) for uniform r along with a puncturable PRF key kierand that will be
used to re-randomize ypase. The challenger now modifies GenChall to output a re-randomization
of Ypase On (b, x) whenever b = F(ksel, x). In other words, the on-path challenges are now replaced
by a re-randomized instance of yp,se. To argue that this is computationally indistinguishable from
the previous hybrid, the [WW24a] reduction again steps through an exponential number of hybrids,
one for each statement x*. Planting the re-randomized challenge is then an exercise in punctured
programming [SW14]. The key observation is that the GenSol program never evaluates F(kj, x*) for
b = F(ksel, x*). We can then appeal to punctured pseudorandomness of F(kp, x*) to conclude that the
challenge y;, is computationally indistinguishable from a fresh one-way function challenge, which
is in turn statistically indistinguishable from a re-randomized instance.

In Hyb,, algorithm A can only succeed if it provides a solution to a re-randomized one-way function
instance. But this means that A also inverts the original one-way function challenge, which completes
the proof of adaptive security. Observe that here, polynomial security of the one-way function already
suffices. Importantly, this final step is the only step in the analysis that relies on one-wayness. Thus, the
proof 7 remains succinct despite the use of an exponential number of hybrids in the previous steps. The
exponential sequence of hybrids require blowing up the security parameters for the iO and puncturable
PRF schemes, but this only affects the length of the CRS and not the proof.

1.1.1 Batching SNARGs Using Homomorphic One-Way Functions

We now show how to extend the Waters-Wu scheme to the batch setting. Recall that in this setting, the
prover has a collection of T statements xy, ..., xr and its goal is to prove that all T statements are true. If
we directly modify the GenSol and GenChall programs above to take in all T statements, then the result-
ing CRS would have size that scales linearly with T, and moreover, the scheme would only support an a
priori bounded number of statements. Our goal is to obtain a construction without this limitation. Our
first approach relies on a homomorphic re-randomizable one-way function while our second approach (see
Section 1.1.2) uses a chaining-based approach that does not rely on any homomorphic properties on the
re-randomizable one-way function.

Homomorphic re-randomizable one-way functions. As described above, the Waters-Wu construc-
tion [WW24a] uses a re-randomizable one-way function. Specifically, they show two instantiations of the



re-randomizable one-way function: the first is based on the hardness of discrete log while the second is
based on factoring. In this work, we will consider the construction based on discrete log. To recall, let G be
a group of prime-order p and let g be a generator of G. The one-way function f: Z, — G is then defined
to be the mapping z = g*. The re-randomizable algorithm takes an instance y = g* and samples a random
r & Z, and outputs y - g" = g**". Our first observation is that this one-way function is homomorphic:

fz1+25) = g7 = g* - g% = f(21) - f(22).

In the context of the Waters-Wu SNARG, the values z would correspond to the preimages in the proof
7. Suppose now that we have T proofs (b1, z1),..., (br,zr) on T different statements xi, ..., xr. Then a
natural approach to obtain a batch proof on all T statements is to compute z = };c (1 zi € Zp. Then,

F@=f > a|=[] fe =] vies

i€[T] i€[T] ie[T]

where y;, = GenChall(b;, x;) is the challenge bit associated with statement i. Now, if the verifier knew
the bits by, ..., br, it can compute y;, = GenChall(b;, x;) and then y = [[;c(7] yip; € G. Then, the veri-
fication algorithm would simply boil down to checking that y = f(z). In this case, the prover just needs
to provide the aggregated preimage z rather than the individual preimages (zi, ..., zr). The problem with
this basic approach is that the verifier does not know the individual bits b; € {0, 1}. While the prover can
certainly include the bits b; for each statement as part of the proof, this means the size of the proof is now
T + poly(A), which no longer meets our succinctness requirement. Note that if T = O(log A), the verifier
can try all the possible values for by, ..., by, but this approach does not work for general T.

Using a large alphabet. We solve this problem by increasing the alphabet size. Namely, instead of hav-
ing two challenges, suppose instead we had T + 1 challenges (i.e., the selector PRF F(ks, -) now outputs
an element of the set {1,2,...,T + 1}) and correspondingly, T + 1 PRF keys ky, ..., kr41 used to generate
the challenges. In the batch setting, the on-path challenge is a function of both the statement x; and the
index i € [T] (i.e., the j" challenge is z = PRF(k j» (xi,))). For each statement-index pair (x;,i), there
is a single “on-path” challenge index j = F(ksel, (xi,1)) € [T + 1] for which the GenSol program will not
provide a preimage and T off-path challenges for which the GenSol program will provide preimages (given
a valid witness for x;). This means that for any batch of T statements X = (xy, ..., xr), there always exists
some index j € [T + 1] for which j # F(kse, (i, x;)) for all i € [T]. Since the same index j can now be
shared across all T statements, the prover only needs to communicate the single index (of length O(log T))
as part of its proof. Concretely, the programs in the CRS (where the re-randomizable one-way function is
instantiated with the discrete log construction) are now defined as follows:

GenSol(i, j, x;, w;) GenChall(i, j, x;)

« If C(x;, w;) = 0, output L. . Output y = gFk»(xei),
o If j = F(ksel, (x;,1)), output L.
+ Output z = F(k;, (x;,1)).

Our scheme now operates as follows:

+ Proof generation: To construct a proof on x1, ..., x7 (using witnesses wy, . .., wr), the prover first
finds an index j € [T + 1] where z; = GenSol(i, j, x;, w;) # L for all i € [T]. Then it computes the
aggregated proof z = };c[7) z; and outputs the proof 7 = (j, 2).



« Proof verification: To verify the proof, the verifier computes the challenge y; = GenChall(i, j, x;)
for each i € [T] and then computes the aggregated challenge y = [];c[7)y;- Finally, the verifier
checks that g* = y.

As written, the GenSol and GenChall programs would require us to hard-wire all T+1 PRFkeys ki, . . ., k141
into the GenSol and GenChall programs. Consequently, the size of the CRS now grows with T, which is
no better than directly applying [WW24a] to the batch language. To get around this, we derive the keys
k;j for j € [T + 1] from another (puncturable) PRF. The modified programs are defined as follows:

GenSol(i, j, x;, w;) GenChall(i, j, x;)
o If C(x;,w;) =0, output L. « Compute k; « F(k, j).
o If j = F(kser, (x3, 1)), output L. « Qutputy = gF(kf’(xi’i)).

. Compute kj — F(ka.])
« Output z = F(kj, (x;,1)).

To argue adaptive soundness, we adopt a strategy similar to that used in [WW24a]:

« We start by arguing that with non-negligible probability, the adaptive soundness adversary outputs
a tuple of statements X = (xi,...,xr) and an accepting proof 7 = (j, z) where j = F(ksel, (xi+, i¥))
for some i* € [T]. In other words, the adversary gives a proof for an on-path challenge. This step is
the analog of the transition between Hyb, and Hyb, in the above sketch of the [WW24a] reduction.

This argument relies on the fact that if x;« is a false instance, the value of F(kse|, (x;+,i*)) is compu-
tationally indistinguishable from a random index in [T + 1]. Thus, whenever the adversary outputs
a tuple X = (x,...,x7) that contains a false instance x;- together with a proof 7 = (j,z), then
with probability roughly 1/(T + 1), the adversary’s index j satisfies j = F(ksel, (2, i*)). The formal
argument relies on iO security and security of the puncturable PRF.

If the adversary breaks adaptive soundness with advantage ¢, then the above argument shows that
with probability roughly /(T + 1), the adversary outputs X and 7 = (j, z) where j = F(ksey, (xi+, i*))
for some i* € [T]. We can now move to an experiment where the challenger guesses the index
i* & [T] and the adversary is only considered successful if it breaks adaptive soundness and more-
over, the index j it outputs satisfies j = F(ksel, (xj+,i*)). Over the randomness of i*, we conclude
that the adversary will win this modified experiment with probability ¢/(T(T + 1)), which remains
non-negligible since the number of instances T is always polynomially-bounded.

« At this point, the adversary wins only if it outputs a proof 7 = (j, z) where j = PRF(ksel, (xj+, i)).
Similar to the analysis in [WW24a], the reduction algorithm now modifies the GenChall program
to output a re-randomized one-way function challenge (derived from a single base instance yp,se) as
the on-path challenge for every statement x* at index i*:

GenSol(i, j, xi, wi) GenChall(i, j, x;)
- If C(x;, w;) = 0, output L. - Compute kj < F(k, j).
-Ifj= F(ksel’ (xi, i))s output L. - Ifi =i*and j = F<ksels (x1, 1)), output
- Compute k; < F(k, j). Y = Ypase - gF k(D)
- Output z = F(kj, (x;,1)). — Otherwise, output y = g"(k»-(xi1))




This is the analog of the transition between Hyb, and Hyb, in the above sketch of the [WW24a]
reduction and relies on the fact that for all instances x*, the GenSol program never needs to evaluate
F(kj, (x*,i*)) where j = F(ksel, (x*,i")). Thus, we can rely on iO security and punctured pseudoran-
domness to replace the challenge g"R"(k/»(x")) with a re-randomized instance ypse - "~ K>,

Now, suppose the adversary is successful in the final experiment: namely, the adversary constructs a valid
proof 7 = (j,z) on X = (x1,...,xr) and j = PRF(kse, (x;+,1*)) is the on-path challenge index. We claim
that we can use any such adversary to solve the discrete log problem. Let (g, h) where h = g be the
discrete log challenge. The reduction algorithm samples all of the PRF keys itself and uses the discrete log
challenge h as the base instance yp,se = h that it embeds into GenChall. Suppose the adversary constructs
a valid proof 7 = (j,z) on X = (xy,...,x7) and j = PRF(ksey, (x;+,i*)). Then, the following hold:

« Foreach i € [T] \ {i*}, GenChall(i, j, x;) outputs y; = g"ki-xi1)),
« Since j = PRF(ksel, (xi+,i*)), GenChall(i*, j, x;) outputs the re-randomized instance y;+ = h-gF k1))

« If z € Z, is a valid proof, then it must be the case that

gz = l_[ yl = h . gZiG[T] F(kj:(xi)i)).
i€[T]

Writing h = g%, this means

a=z- Z F(kj, (xi, i) (1.1)

i€[T]

If the adversary outputs a valid proof z, then the reduction algorithm is able to recover the discrete log
a of the challenge instance h, which complete the proof. Note that the reduction algorithm chose all of
the PRF keys, so it is able to compute all terms in Eq. (1.1). We give the formal description and analysis of
this scheme in Section 4. There, we describe our construction with respect to an arbitrary homomorphic
re-randomizable one-way function (as opposed to just the discrete log version illustrated above).

Parameter sizes. The size of the programs in the CRS in the above construction is poly(A + |C| +log T).
Thus, setting T = 2* allows us to support any a priori unbounded polynomial number of statements. This
gives the first adaptively-sound SNARG for batch NP (that supports an unbounded number of statements)
with full succinctness from standard falsifiable assumptions.

1.1.2 Batching SNARGs via a Chaining Approach and Re-randomizable PRGs

Thus far, we have demonstrated how to extend the Waters-Wu SNARG to support batching by relying
on the homomorphic structure of the one-way function. In this work, we also give a second approach to
support batching that does not assume any homomorphic properties on the output SNARG. Instead, our
construction relies on a re-randomizable pseudorandom generator (PRG).

The chaining template from [GSWW22]. We follow a similar template as the general aggregation
approach from [GSWW22]. The work of [GSWW?22] constructs a non-adaptively-sound SNARG for batch
NP by adapting the non-adaptively-sound SNARG for NP by Sahai and Waters [SW14]. Specifically, they
describe a “chaining” approach where the prover program (in the CRS) takes as input a hash digest dig of
the statements (x, .. ., x7), a proof 7;_; on the first i—1 statements, the next statement x;, and an associated



witness w;, together with an opening of x; with respect to the digest dig. The prover checks that 7;_; is a
valid proof on the digest dig, that dig opens to x; at position i, and that w; is a valid witness for x;. If all
of these properties hold, then the program outputs a proof for the first i statements (with respect to dig).

To prove non-adaptive soundness, the idea in [GSWW22] is to first identify the index i € [T] of a false
statement, and use punctured programming to argue that there does not exist any accepting proofs on the
first i statements. This step relies on the fact that there are no witnesses for the false statement x;. Then,
they show that if there does not exist an accepting proof for index i, there also does not exist an accepting
proof for index i + 1. This proceeds until the final hybrid where they argue that there does not exist any
proof for index T, at which point non-adaptive soundness holds.

The challenge with adaptive soundness. Unlike the single-statement setting, in the chaining ap-
proach, it is no longer sufficient to argue that an accepting proof of a false statement is computationally
hard to find. This is because the obfuscated prover program (i.e., the analog of GenSol) is first checking
the proof on the first i — 1 statements when deciding whether to generate a proof for the first i statements
or not. If there exists a valid proof on the first i — 1 statements, then this program does not output L on
all inputs with index i (e.g., consider the setting where statement x; is true). As a result, we cannot argue
that there does not exist a proof on the first i statements. In contrast, if we can argue that there are no
accepting proofs on the first i — 1 statements, then we can leverage iO security to argue that there are also
no accepting proofs on the first i statements (since the obfuscated prover program never accepts a proof
on the first i — 1 statements, it would never output a proof for the first i statements).

In the Waters-Wu approach, they showed that if an adversary could construct a proof of a false state-
ment, then the adversary can also invert the one-way function. Notably, this is a computational property,
and the previous analysis can only rule out an adversary finding an accepting proof efficiently. Conse-
quently, this is insufficient to implement the chaining approach from [GSWW22] as proofs of false state-
ments do exist (but are hard to find). The work of [GSWW22] leverages an (expanding) pseudorandom
generator to check the proofs instead of using a one-way function precisely to move to a hybrid where
proofs on false statements no longer exist.

Re-randomizable PRGs. In Section 6, we show how to use a similar chaining strategy together with the
Waters-Wu approach to obtain an adaptively-sound SNARG for batch NP. For the reasons outlined above,
our approach requires a way to rule out the existence of proofs on false statements. To do so, we rely on the
stronger notion of a re-randomizable PRG instead of a re-randomizable OWF. In a re-randomizable PRG
G: {0,1}* — {0,1}?, there is an algorithm that takes a string ypase € {0, 1}* and re-randomizes it to a new
string y € {0, 1}’ with the following properties:

o If Ypase is the in the image of the PRG (i.e., ypase = PRG(s) for some s € {0,1}%), then the re-
randomized value y is distributed according to G(s) for a fresh seed s & {0, 1}*.

o If ypase is not in the image of the PRG, then the re-randomized value y is distributed according to a
random value y € {0,1}' \ {PRG(s) : s € {0, 1}*}.

We can construct a re-randomizable PRF from the decisional Diffie-Hellman (DDH) assumption. In par-
ticular, we work over a group G of prime order p and generator g, and define the public parameters to
be (g,h) where h < G. Then, we define the generator G: Z, — G x G as the mapping x — (g, ™).
Pseudorandomness follows directly from the DDH assumption, and the re-randomization follows via the
DDH random self-reduction that maps (u,v) — (u”,0") where r < Zy,.
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The chaining approach using re-randomizable PRGs. In our chaining-based approach for aggre-
gating adaptively-sound SNARGs, we replace the GenSol and GenChall programs from [WW24a] with a
proof aggregation program AggProof and a proof verification program VerProof with the following syntax:

« The proof aggregation program AggProof outputs a proof for a digest dig and index i if it is given a
valid proof on dig and index i — 1, a valid statement-witness pair (x;, w;), and a proof that dig opens
to statement x; at index i.

« The proof verification program VerProof only accepts a proof (j, z) for the digest dig and index i if
G(z) = G(F(kj, (dig,i))). Importantly, note that the proof just consists of the index j and the solu-
tion z; it does not contain the digest dig (which is at least as long as a single statement). The verifier
computes the digest dig from the statements at verification time.

Importantly, we have replaced the re-randomizable one-way function f with a re-randomizable PRG. If we
instantiate this template with the adaptively-sound construction with T + 1 challenges, the CRS consists
of obfuscations of the following programs:

AggProof (i, j, dig, x, w, 0, z;_1) VerProof (i, j, dig, z;)
« If C(x,w) =0, output L. + Compute k; « F(k, j).
« If 0 does not open dig to x at index i, output L. + If G(z;) = G(F(kj, (dig, i))), output 1. Otherwise,
o If j = F(kse, (x, 1)), output L. output 0.
« If i # 1 and VerProof(j,dig,i — 1,z;—1) = 0,
output L.
« Compute k; < F(k, j).
« Output z = F(kj, (dig, i)).

To construct a proof on statements ¥ = (xi,...,xr) with associated witnesses (wy, ..., wr), the prover
proceeds as follows:

« It start by computing a digest dig of the statements (x1, ..., x7). Let oy, . . ., or be the associated local
openings of dig to the statements xy, . . ., x1, respectively.
« For each j € [T + 1], the prover initializes zy = L. Then, for each i = 1,...,T, it computes

z; < AggProof(i, j, dig, x;, wi, 03, zi—1). If z,...,z7 # L, then the prover outputs the proof (j, zr).
Otherwise, it retries with the next value of ;.

For each statement-index pair (x;, i), there is exactly one index j where AggProof outputs L. Thus, there
exists at least one index j € [T + 1] where the prover succeeds in constructing a proof (j, zr). To check
a proof 7 = (j,z) for a batch of statements X = (xi,...,xr), the verifier computes the digest dig of
(x1, ..., xr) and outputs VerProof (T, j, dig, z).

Arguing adaptive soundness. We now give a sketch of the adaptive soundness proof:

«+ Suppose we have an adversary A that can break adaptive soundness with advantage ¢. This means
that A outputs a vector of statements X = (xy,...,xr) and a proof 7 = (j, z) such that r is a valid
proof and moreover, there exists some index i* € [T] where x;+ is a false instance.

« Our proof of adaptive soundness steps through a sequence of hybrid experiments. In the initial
sequence, the challenger starts by sampling an index i* <~ [T] and we declare the adversary
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to be successful only if it outputs a valid proof £ = (j,z) on a vector of statements X where
j = PRF(ksel, (x;+,i%)). As in the construction from Section 1.1.1, this corresponds to a proof for an
“on-path” challenge. To argue this, we use the fact that if x;- is a false statement, then the AggProof
program never needs to compute F(kse|, (x;+,i*)). Correspondingly, we can rely on puncturing secu-
rity of F(ksel, -) to conclude that the value of F(kse, (x;+, %)) is pseudorandom from the perspective
of the adversary. Then the following hold:

— Conditioned on x;- being a false statement, with probability negligibly close to ¢/(T + 1), the
adversary wins the adaptive soundness game and outputs an index j where j = F(kgel, (x;+, i¥)).

- The reduction samples i* <~ [T] and a successful adversary must choose X that contains at
least one false instance, so x;- is a false instance with probability at least 1/T.*

Putting these pieces together, we conclude that the adversary wins the adaptive soundness game and
outputs an index j where j = F(kge|, (x;+, i*)) with probability that is negligibly close to ¢/(T(T +1)).

« We are now ready to begin the chaining argument. Our analysis proceeds in a sequence of hybrids
indexed by t = i*,i* + 1,...,T. In Hyb,, we modify the verification program VerProof(j, dig, i, z;) to
always output 0 when j = F(kgel, (x;+,i%)) and i* < i < ¢t (irrespective of dig or z;). In the final hybrid
Hyb, the VerProof program always outputs 0 if j = F(ksel, (x;+,i*)) and i = T. Correspondingly, the
challenger in this final hybrid also always outputs 0, which completes the proof.

The wrinkle with this strategy is that we cannot embed the instance x;+ into the VerProof program.
This is because the adaptive adversary chooses the instance x;« after seeing the CRS (which contains
the obfuscated version of VerProof). To carry out this strategy, we need to augment VerProof with
a mechanism to determine x;+ from the inputs. In this case, we leverage the digest dig and assume
that the underlying hash function is somewhere extractable at i*. Namely, there is an Extract(td, dig)
algorithm that takes as input a trapdoor td and a digest dig and outputs a value x;+ with the property
that the only valid opening for dig at index i* is to the value x;-. We then inductively show that the
following invariant holds for all # = i*,i* +1,...,T:

- VerProof (j, dig, i, z;) outputs 0 for all dig and z; when j = j* and i* < i < t, where j* =
F(kser, (Extract(td, dig), i)).

The base case corresponds to showing that the invariant holds when t = i*. To argue this, we replace
the obfuscation of AggProof in the CRS with an obfuscation of the modified program AggProof ;. ;.
(and leave VerProof unchanged):

AggProofi*’i*(i, J.dig, x, w, 0,zi_1) VerProof (i, j, dig, z;)
- If C(x,w) =0, output L. - Compute k; < F(k, j).
— If o0 does not open dig to x at index i, output L. - If G(z;) = G(F(k;j, (dig,1))), output 1. Other-
— Compute j* = F(kse|, (Extract(td, dig), i*)). If wise, output 0.

i=1i"and j = j*, output L.

— If j = F(ksel, (x,1)), output L.

- Ifi # 1 and VerProof(j,dig,i — 1,z;—1) = 0,
output L.

- Compute k; < F(k, j).

- Output z = F(kj, (dig, i)).

4In the proof of Theorem 6.4, we provide the “most-likely” index i* where the adversary cheats as non-uniform advice. This is
analogous to guessing the cheating index.
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The somewhere extractability property of the hash function ensures that AggProof . ;. has the same
input/output behavior as AggProof. Namely, the only inputs (i, j, dig, x, w, 0, z;—1) where the two
programs could differ are those where i = i* and o opens to x at index i*. Since ¢ can be opened
to x at i*, and the hash function is extractable at i*, this means that Extract(td, dig) = x. The addi-
tional condition introduced in AggProof . ;. is simply checking if j = F(ksel, (x, i*)), which is already
checked in the original program AggProof. As such, the obfuscations of AggProof . ;. and AggProof
are computationally indistinguishable by iO security.

Next we modify the verification program to reject on dig and z; when i = i* and j = j*. This
corresponds to the base case for the chaining analysis:

AggProofi*’i*(i, J.dig, x, w,0,zi_1) VerProof - ;+ (i, j, dig, z;)

- If C(x,w) = 0, output L. Let j* = F(ksel, (Extract(td, dig), i*)).
- If o does not open dig to x at index i, output L. || — Ifi=1i"and j=j", output L.
— Compute j* = F(ksel, (Extract(td, dig),i*)). If Compute k; < F(k, j).
i=i"and j = j* output L. If G(z;) = G(F(kj, (dig,i))), output 1. Other-

— If j = F(ksel, (x, 1)), output L. wise, output 0.
- Ifi # 1 and VerProof; ;- (j,dig,i — 1,z;—1) = 0,
output L.

- Compute k; < F(k, j).
- Output z = F(kj, (dig, i)).

We argue this via the following sequence of steps:

- By construction, AggProof . ;. does not compute PRF(kj-, (dig, i*)) for all choices of dig. This
is because when i = i* and j = j*, the AggProof . ;. program always outputs L.

— We now appeal to (punctured) pseudorandomness of PRF(k;-, -) and iO security to replace all
of the PRG outputs G(PRF(kj+, (dig,i*))) with a re-randomized instance derived from a single
challenge yp,se (Where the re-randomization randomness is obtained by evaluating a PRF with
kj+). Formally, we implement this with an exponential number of hybrids (one for each dig)
and iteratively replace G(PRF(kj:, (dig, i*))) with the re-randomized instance.

— Then, we appeal to pseudorandomness of the PRG to replace ypase With a random instance.
If the PRG is (sufficiently) expanding, then with overwhelming probability, the value of ypase
is no longer in the image of the PRG. In this case, all of the re-randomized challenges (asso-
ciated with each (dig, i*) pair) are no longer in the image of the PRG, and as such, there no
longer exists z that satisfies the verification requirement for any choice of (dig, i*). This means
the verification program outputs 0 on all inputs (i, j, dig, z;) where i = i* and j = j*. This is
precisely the behavior of VerProof« ;+, and the claim holds by iO security.

Having established the base case, the inductive step proceeds similarly. We define a sequence of
hybrid experiments Hyb, where t = i*,i* +1,...,T where in Hyb,, the CRS contains obfuscations of
the programs:

13



AggProofi*’t(i, Jj.dig, x, w, 0,z;_1) VerProof - ; (i, j, dig, z;)

- IfC(x,w) = 0, output L. Let j* = F(ksel, (Extract(td, dig),i*)).

- If o does not open dig to x at index i, output L. - Ifi* <i <tandj=j" output L.
- Compute j* = F(ks, (Extract(td, dig),i*)). If || — Compute k; < F(k, j).
i=1i*and j = j*, output L. - If G(z;) = G(F(kj, (x;,1))), output 1. Other-
— If j = F(ksel, (x5, 1)), output L. wise, output 0.
— Ifi # 1 and VerProof;(j,dig,i — 1,z;-1) = 0,
output L.

- Compute k; < F(k, j).
- Output z = F(k;j, (dig, i)).

We can move from Hyb, to Hyb,_; using a similar argument as used to establish the base case:

— By construction, AggProof . , does not compute PRF(k;-, (dig, ¢ +1)) for all choices of dig. This
is because VerProof;«; (i, j, dig, z;) outputs 0 when i = t and j = j*.

— As in the base case, we next appeal to (punctured) pseudorandomness of PRF(kj+, -) and iO se-
curity to replace all of the PRG outputs G(PRF(kj:, (dig, t +1))) with a re-randomized instance
derived from a single challenge ypase.-

— Then, we appeal to pseudorandomness of the PRG to replace yp,se with a random instance. This
means the verification program outputs 0 on all inputs (i, j, dig, z;) where j = j* and i* < i <
t + 1. But this is precisely the behavior of VerProof;: 111, and the claim holds by iO security.

We provide the formal description in Section 6 (specifically, see the proof of Theorem 6.4).

Potential extensions and open problems. While this construction does not achieve better properties
than our above approach relying on homomorphic re-randomizable one-way functions, it provides an al-
ternative approach for constructing adaptively-sound SNARGs for batch NP. We believe these techniques
are of independent interest, and may be amenable to generalizing beyond batch NP (e.g., to monotone-
policy batch NP [BBK*23, NWW24]). We leave this as an intriguing open problem.

The homomorphic aggregation approach critically assumes that the proofs themselves are algebraic
objects and satisfy some homomorphism. While initial constructions such as [WW24a, WZ24] have this
property, it is not true of all adaptively-sound SNARGs (e.g., the very recent work [WW24b]). The chaining
approach does not rely on any assumption about the structure of the proofs themselves, and thus, could
plausibly be based on unstructured assumptions (similar to how [WW24b] constructs a SNARG for NP).

2 Preliminaries

Throughout this work, we write A to denote the security parameter. We write poly(A1) to denote a fixed
polynomial in the security parameter 1. We say a function f(A) is negligible in A if f(1) = 0(A7°) for all
constants ¢ € N and denote this by writing (1) = negl(1). When x,y € {0, 1}", we will view x and y as
both bit-strings of length n as well as the binary representation of an integer between 0 and 2" — 1. We
write “x < y” to refer to the comparison of the integer representations of x and y. We say an algorithm
is efficient if it runs in probabilistic polynomial time in the length of its input. For a function f: X — Y,
we write Im(f) to denote the image of f. For a finite set S, we write x <~ S to denote that x is sampled
uniformly at random from S.
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Sub-exponential hardness. Our construction will rely on sub-exponential hardness assumptions, so
we will formulate some of our security definitions using (¢, €)-notation. Generally, we say that a primitive
is (¢, £)-secure if, for all adversaries A running in time at most (1) - poly(A), there exists 1 4 € N such that
for all A > A4, the adversary’s advantage is bounded by £(1). We say a primitive is polynomially secure
if it is (1, negl(A))-secure for some negligible function negl(-).

2.1 Cryptographic Building Blocks

We now recall the main cryptographic primitives we use in this work.

Definition 2.1 (Indistinguishability Obfuscation [BGI*01]). An indistinguishability obfuscator for Boolean
circuits is an efficient algorithm iO(-, -, -) with the following properties:

« Correctness. For any security parameter A € N, circuit size parameter s € N, Boolean circuit C of
size at most s, and input x,

Pr[C(x) = C(x) : C «— i0O(1*,1%,0)] = 1.

« Security. For a security parameter A and a bit b € {0, 1}, we define the program indistinguishability
game between an adversary A and a challenger as follows:

- On input security parameter 1%, A outputs a size parameter 1° and two Boolean circuits Cy, C;
of size at most s.

— If there exists an input x such that Cy(x) # C;(x), then the challenger halts with output L.
Otherwise, the challenger replies with iO(lA, 15,Cp).

— A outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say that iO is (1, €)-secure if for all adversaries A running in time at most ¢(1) - poly(A), there
exists A# € N such that for all A > A4, we have that

iOAdvA(4) == [Pr[b"=1:b=1] = Pr[b' =1:b=0]| < ().
Definition 2.2 (Puncturable PRF [BW13,KPTZ13,BGI14]). A puncturable pseudorandom function consists
of a tuple of efficient algorithms IIpprr = (Setup, Eval, Puncture) with the following syntax:

« Setup(1%,14n, 1%ut) — k: On input security parameter 1%, input length 1%, and output length 1%,
the randomized setup algorithm outputs a key k. We assume that the key k contains an implicit
description of £, and £yyt.

« Eval(k,x) — y: On input the key k and a point x € {0, 1}%, the deterministic evaluation algorithm
outputs a value y € {0, 1}fou,

« Puncture(k,x*) — k™) On input key k and point x* € {0, 1}%n, the puncturing algorithm outputs
a punctured key k*"). We assume that the punctured key k*") also contains an implicit description
of £, and £,t.

We require that IIppgr satisfy the following properties:
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Punctured correctness. For all A, £, £,,; € N, and all distinct points x # x* € {0, 1},

k « Setup(l’l, 16n, 7four) B

Pr |Eval(k,x) = Eval(k®.x) + o) o0 btk ey | =

1.

Puncturing security. For a security parameter A and a bit b € {0, 1}, we define the (selective)
puncturing security game between an adversary A and a challenger as follows:

On input security parameter 1%, A outputs the input length 1%, the output length 1%, and
commits to a point x* € {0, 1},

The challenger samples the PRF key k < Setup (1%, 1%n, 1%u). Then, it computes and gives the
punctured key k*") «— Puncture(k, x*) to A.

If b = 0, the challenger sends y* « Eval(k,x*) to A. If b = 1, then it sends y* < {0, 1}« to A.

A outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say that Ipprr satisfes (¢, €)-puncturing security if for all adversaries A running in time at most
t(A) - poly(A), there exists A4 € N such that for all A > A 4, it holds that

PPRFAdv (1) = [Pr[b’ =1:b=1] = Pr[b’ =1: b =0]| < e(A).

Definition 2.3 (Somewhere Extractable Hash Family [HW15,CJJ22]). A somewhere extractable hash fam-
ily consists of a tuple of efficient algorithms ITsgy = (Setup, SetupTD, Hash, Open, Verify, Extract) with the
following syntax:

Setup(1%,1¢) — hk: On input security parameter 1* and block size 1¢, the setup algorithm outputs
a hash key hk.

SetupTD(l’l, 1¢,i) — (hk, td): On input security parameter 1%, block size 1¢, and index i € [2’1], the
trapdoor setup algorithm outputs a hash key hk and an extraction trapdoor td.

Hash(hk, (xy,...,x;)) — dig: On input hash key hk and ordered list of inputs xi,...,x; € {0,1}¢,
the hash algorithm outputs a hash value dig.

Open(hk, (x1,...,x;),i) — o: On input hash key hk, ordered list of inputs x, ..., x; € {0,1}%, and
index i € [t], the opening algorithm outputs an opening o.

Verify(hk, dig, i, x, o) — b: On input hash key hk, hash value dig, index i, string x € {0,1}/, and
opening o, the verification algorithm outputs a bit b € {0, 1}.

Extract(td, dig) — x: On input extraction trapdoor td and hash value dig, the extraction algorithm
outputs a value x € {0, 1}*.

We require that ITsgy satisfy the following properties:

Opening completeness. For any A, £,t € N with t < 24, any i € [t],and any x;, ..., x; € {0,1},

hk « Setup(1%, 1°)
Pr | Verify(hk, dig, i, x;,0) =1: dig = Hash(hk, (x1,...,x;)) [ =1.
o = Open(hk, (x1,...,x;),1)
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+ Succinctness. There exists a fixed polynomial p such that the lengths of the hash values dig output
by Hash and the lengths of the openings ¢ output by Open in the completeness experiment satisfy

|digl. lo] = p(4, ).

« Index hiding. For a security parameter A and a bit b € {0, 1}, we define the index-hiding security
game between an adversary A and a challenger as follows:

- Oninput security parameter 1%, algorithm A outputs the block length 1° and an index i € [2*].

- If b = 0, the challenger samples hk « Setup(1%,1¢). If b = 1, the challenger samples
(hk, td) « SetupTD(1%, 1%, i) The challenger sends hk to A.

— A outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say that IIsgy satisfies (¢, €)-index-hiding security if for all adversaries A running in time #(A) -
poly (1), there exists A4 € N such that for all 1 > 14,

SEHAdv#(A) := |Pr[b' =1:b=1] —=Pr[b' =1:b=0]| < ().
« Extraction correctness. For any A, ¢,t € N with t < 24 any i € [t],any xy,...,x; € {0,1},

A1t
Pr [x,- # Extract(td, dig) : (hk.td) — SetupTD(1",1', i) } =0.

dig = Hash(hk, (x,...,x;))

« Statistically binding. For any A, ,t € N with t < 24, any i € [t],

3dig, x, 0 : x # Extract(td, dig)
A Verify(hk, dig,i,x,0) = 1

: (hk, td) « SetupTD(lA, 1¢, 1)] =0.

2.2 Batch Arguments for NP

We now formally define the notion of a batch argument for NP. We start with the definition of the NP-
complete language of Boolean circuit satisfiability.

Definition 2.4 (Circuit Satisfiability). We define the Boolean circuit satisfiability language Lsar as follows:
Lsar = {(C,x) | 3w € {0,1}° s.t. C(x, w) = 1}
where C is a Boolean circuit C: {0,1}" x {0,1}° — {0,1} and x € {0, 1}" is a statement.

Definition 2.5 (Non-interactive Batch Argument for NP). A non-interactive batch argument (BARG) for
the Boolean circuit satisfiability language Lsar is a tuple of efficient algorithms IIgarc = (Setup, P, V) with
the following syntax:

. Setup(lA, T,C) — crs: On input security parameter 1%, batch size T, and Boolean circuit C, the setup
algorithm outputs a common reference string crs.

« P(crs, (x1,...,x7), (W, ..., wr)) — m: On input common reference string crs, statements xy, . . ., xr,
and witnesses wy, ..., wr, the prover algorithm outputs a proof 7.
« V(crs, (x1,...,x7), ) — b: On input common reference string crs, statements x, . . ., x, and proof

7, the verifier algorithm outputs a bit b € {0, 1}.
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We require that ITgarg satisfy the following properties:

« Completeness. For any security parameter A € N, polynomials n = n(1),0 = v(1),T = T(4),
Boolean circuit C: {0,1}" x {0,1}* — {0, 1} of poly(A) size, and statements xy, ..., xr € {0,1}" and
witnesses wy, ..., wr € {0, 1}° such that C(x;, w;) = 1 for all i € [T], it holds that

crs «— Setup(l/l, T,C) 1

Pr|Viers, (e -oxr).m) =10 P(ers, (x1,. . %), (Wi, ..o wr)) |

+ Succinctness. There exists a universal polynomial p such that in the completeness experiment
above, we have that |z| = p(A,logT, |C|). We say the proof is fully succinct if we have that |7| =
p(Alog T,log|C|).°

« Adaptive soundness. For a security parameter A, we define the adaptive soundness game between
an adversary A and a challenger as follows:

— Oninput security parameter 1%, A starts by outputting a Boolean circuit C: {0,1}"x{0,1}° —
{0, 1} and a number of instances T.

The challenger replies with crs « Setup(14,T,C).

A outputs statements xq, ..., xr € {0,1}" and a proof 7.

The output of the experiment is b = 1 if there exists some i € [T] such that (C, x;) ¢ Lsar and
Verify(crs, (x1,...,x7),7) = 1 and b = 0 otherwise.

We say that IIgarc is adaptively sound if for all efficient adversaries A, there exists a negligible
function negl(-) such that for all A € N, Pr[b = 1] < negl(A) in the adaptive soundness game.

Remark 2.6 (Supporting Arbitrary Batch Size). In our definition, the Setup algorithm needs to take the
batch size T as input (in binary). Note that this restriction can be generically removed using a standard
“powers-of-two” construction, where we generate a CRS for every value of T = 2’ for i € [A]. This is still
efficient as the size of each CRS depends only polylogarithmically on the batch size, and padding to the
next power of two only incurs constant overhead.

Remark 2.7 (Fast Verification). Definition 2.5 only requires that the size of the proof be short and does
not impose any requirements on the running time of the verification algorithm. Since the size of the CRS
in an adaptively-sound SNARG can scale with the circuit size |C|, this means the verification time may also
scale polynomially with |C|. By the same approach described in [WW24a, Remark 2.7], we can compose
the SNARG with a RAM delegation scheme (e.g., [C]J]22,KVZ21,KLVW23]) to obtain a SNARG for batch
NP where the verification time is poly(A, T, n,1og |C|), where n is the length of a single statement.

Zero-knowledge. We also define a zero-knowledge property which essentially requires that the proof
7 for a batch of statements (x, ..., xr) leak nothing more about (x1, ..., x7) other than the fact that all of
the statements are true.

Definition 2.8 (Perfect Zero-Knowledge). A BARG IIgarc = (Setup, P, V) for the Boolean circuit satisfia-
bility language Lsar satisfies perfect zero-knowledge if there exists an efficient simulator S = (S, S;) such
that for any Boolean circuit C: {0, 1}" x {0,1}* — {0, 1} and any tuple of statements X = (xy, ..., xr) and
witnesses w = (wy, ..., wr) such that C(x;, w;) = 1 for all i € [T], the following distributions are identical:

crs « Setup(14, T, C) (crs, st) «— Sp(14, T, C)
7 «— P(crs, X, w) 1 — S;(st, X) '

{(crs,f, ) {(crs,a?, )

>This is the notion of succinctness that our constructions achieve.
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2.3 Cryptographic Assumptions in Pairing-Free Groups

Our constructions will rely on the hardness of the discrete log and decisional Diffie-Hellman (DDH) as-
sumptions in (pairing-free) groups. We recall the notion of a prime-order group along with the formal
description of the assumptions below.

Notation. For a positive integer p > 1, we write Z, to denote the set of integers {0, ..., p —1}. We write
Zy, to denote the multiplicative group of integers modulo p.

Definition 2.9 (Prime-Order Group Generator). Let A be a security parameter. A prime-order group gen-
erator is an efficient algorithm GroupGen that takes as input security parameter 1* and outputs the de-
scription G = (G, p,g) of a group G of prime order p = 22 and generated by g € G. Moreover, we
require that the group operation in G be efficiently computable.

Definition 2.10 (Discrete Log Assumption). Let GroupGen be a prime-order group generator. We say
that the discrete log assumption holds with respect to GroupGen if for all efficient adversaries A, there
exists a negligible function negl(A) such that for all A € N,

Pr[A (1%, G.7)=x:G=(G,p,g9) « Groquen(lA),x & Z,] < negl(}).

Definition 2.11 (Decisional Diffie-Hellman Assumption). For a security parameter A, a bit b € {0, 1}, and
a prime-order group generator GroupGen, we define the decisional Diffie-Hellman (DDH) security game
between an adversary A and a challenger as follows:

« The challenger starts by sampling G = (G, g, p) < GroupGen(1*) and x, y & Zy,.

« It b =0, the challenger computes z = xy € Z,,. If b = 1, the challenger samples z & Z;.()
« The challenger then sends (G, g%, g%, %) to A.

« A outputs a bit ', which is the output of the experiment.

We say that the DDH assumption holds with respect to GroupGen if for all efficient adversaries A, there
exists Az € N such that for all security parameters A > 14, it holds that

DDHAdv#(A) = |Pr[' =1:b=0] = Pr[b/ =1:b=1]| < e(})

in the DDH security game.

3 Homomorphic Re-randomizable One-Way Functions

In this section, we introduce the notion of a homomorphic re-randomizable OWF, which is one of the
main building blocks we use in our construction of an adaptive fully succinct BARG in Section 4. Then, in
Section 3.1, we show how to construct a homomorphic re-randomizable OWF from discrete log.

Definition 3.1 (Homomorphic Re-randomizable OWF). A homomorphic re-randomizable OWF is a tuple
of efficient algorithms ITowr = (Setup, Genlnstance, Rerandomize, Verify, InHom, OutHom,
RecoverSolution) with the following syntax:

For convenience, we define the DDH assumption as sampling the exponents x, y, z uniformly from Zj, as opposed to Z,. When

p= 22 the uniform distribution over Z; and Z,, for prime p is statistically indistinguishable.
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« Setup(1%,1™) — crs : On input security parameter 1* and re-randomization parameter 17, the
setup algorithm outputs a common reference string crs. We assume that the crs contains an implicit
description of the input space Z and the output space Y.

« Genlnstance(crs) — (y,z) : On input common reference string crs, the instance-generation algo-
rithm outputs challenge y € Y together with a preimage z € Z.

+ Rerandomize(crs,y) — y’ : On input common reference string crs and challenge y € Y, the ran-
domization algorithm outputs a new challenge y’ € Y.

« Verify(crs,y,z) — 0/1. On input common reference string crs, challenge y € Y, and preimage
z € Z, the verification algorithm outputs 0 or 1.

« RecoverSolution(crs,z’,r) — z : On input common reference string crs, preimage z’ € Z, and
randomness r, the preimage recovery algorithm outputs a new preimage z € Z.

« InHom(crs, (21, ..,2¢)) — z: On input common reference string crs and preimages z1,...,z, € Z,
the input homomorphism algorithm outputs a new preimage z € Z.

« OutHom(crs, (y1,...,y¢)) — y: On input common reference string crs and challenges y1,...,y, €
Y, the output homomorphism algorithm outputs a new challenge y € Y.

We require that IIowr satisfy the following properties:

+ Correctness. For all A, m € N, all crs in the support of Setup(ll, 1™), and all (y, z) in the support of
Genlnstance(crs), we have that Verify(crs,y, z) = 1.

« Homomorphism. For all A, m € N, all crs in the support of Setup(l’l, 1™),all zy,...,z, € Z, and
all yq,...,y, € Y such that Verify(crs, y;, z;) = 1 for all i € [£], we have that

Verify(crs, OutHom(crs, (y1, - . -, yr)), InHom(crs, (z1, ..., 2z¢))) = 1.

Further, InHom has a corresponding inversion algorithm InHom ™! such that for all crs in the support
of Setup(l/l, 1™), for all preimages z,z’ € Z and challenges y,y’ € Y, if

Verify(crs, OutHom(crs, (y,y")), z) = 1 and Verify(crs,y’,z") = 1,

then
Verify(crs, y, InHom ™ (crs, (z,2"))) = 1.

+ One-wayness. For a security parameter A, a re-randomization parameter m, and a bit b € {0, 1}, we
define the one-wayness security game between an adversary A and a challenger as follows:

— The challenger samples crs «<— Setup(1%*,1™) and (y, z) « Genlnstance(crs) and sends (crs, y)
to A.

- Algorithm A sends a preimage z’ to the challenger.
- The challenger outputs a bit b” « Verify(crs,y,z’).

20



We say that Iowr is (2, €)-one-way if for all polynomials m = m(A) and all adversaries A running
in time at most £(A) - poly(4), there exists A4 € N such that for all security parameters A > A4, it
holds that

PRGAdv#(A) = Pr[b’ = 1] < e(A)

in the one-wayness security game.

Re-randomization correctness. For all A € N, all polynomials m = m(4), all crs in the support of
Setup(l’l, 1), all preimages z’ € Z, all y € M, and all randomness r where

Verify(crs, Rerandomize(crs,y;r),z’) = 1

we have that
Verify(crs, y, RecoverSolution(crs, z’,r)) = 1.

Re-randomization security. For a security parameter A, a re-randomization parameter m, and a bit
b € {0,1}, we define the re-randomization security game between an adversary A and a challenger
as follows:

The challenger samples crs « Setup(14,1™) and (Ypase, Zbase) < Genlnstance(crs).

If b = 0, the challenger samples (y*, z*) « Genlnstance(crs). If b = 1, the challenger samples
y* < Rerandomize(crs, Ypase)-

The challenger then sends (crs, Ypase, y*) to A.

A outputs a bit b’, which is the output of the experiment.

We say that IIowr satisfies (¢, €)-re-randomization security if for all polynomials m = m(A) and all
adversaries A running in time at most ¢(1) - poly(1), there exists A4 € N such that for all security
parameters A > A4, it holds that

RerandAdv#(A) := |Pr[b' =1:b=0] —Pr[b' =1:b=1]| < ()
in the re-randomization security game.

Succinctness. There exists a polynomial poly(-) such that for all A, m € N, all crs in the support of
Setup(1%,1™), and all z € Z, it holds that |z| < poly(A + log m).

3.1 Constructing Homomorphic Re-randomizable OWFs

In this section, we show that the construction of a re-randomizable OWF from discrete log [WW24a,
Construction 5.3] is a homomorphic re-randomizable OWF. Though we do not formalize it in this work,
the second construction of a re-randomizable OWF in [WW24a] based on computing modular square
roots (i.e., the function f(z) = z2 mod N where N = pgq is an RSA modulus) is also homomorphic, as
f(zoz1) = (z021)% = zng = f(z0)f(z1) mod N. We start by recalling the discrete-log-based construction
from [WW24a], with the addition of the InHom and OutHom algorithms for the homomorphism property.
For simplicity, we describe the scheme with additive blinding rather than multiplicative blinding:

Construction 3.2 (Homomorphic Re-randomizable OWF). Let GroupGen be a prime-order group gen-
erator. We construct a homomorphic re-randomizable OWF Ilowr = (Setup, Genlnstance, Rerandomize,
InHom, OutHom, RecoverSolution) as follows:
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« Setup(1%4,1™): On input security parameter 1* and re-randomization parameter 1™, the setup algo-
rithm samples (G, p,g) < GroupGen(1%) and outputs crs = (G, p, g). The domain of the OWF is
Z= Z;‘, and the range is Y = G.

« Genlnstance(crs) — (y, z): On input common reference string crs = (G, p, g), the instance genera-
tion algorithm samples z <~ Z%, computes y = g7, and outputs (y, z).

+ Rerandomize(crs,y) — y’: On input common reference string crs = (G, p, g) and challenge y € G,
the randomization algorithm samples r ¢~ Z;, and outputs y - g" € G.

« Verify(crs,y,z) — 0/1: On input common reference string crs = (G, p, g), challenge y € G, and
preimage z € Z;,, the verification algorithm outputs 1 if y = g* and 0 otherwise.

« RecoverSolution(crs,z’,r) — z: On input common reference string crs, preimage z’ € Z;, and
randomness r € Z,, the preimage recovery algorithm outputs 2’ —r € Z;,.

« InHom(crs, (21, - ..,2¢)) — z: On input common reference string crs and preimages zy, ...,z € Z;’;,
the input homomorphism outputs 2;c[,) i € Z,,.

« OutHom(crs, (y1, . ..,y¢)) — y: Oninput common reference string crs and challenges yy, ..., y, € G,
the output homomorphism outputs [];c, y;i € G.

We refer to [WW24a, §5.1] for the proofs of the correctness, one-wayness, re-randomization correctness,
re-randomization security, and succinctness properties. Here, we show the homomorphism property.

Theorem 3.3 (Homomorphism). Construction 3.2 satisfies homomorphism.

Proof. Take any crs = (G, p, g) in the support of GroupGen(1%), and any z1,...,2, € Z, t1,...,yr € G
where Verify(crs, y;,z;) = 1 for all i € [£]. By construction of Verify, this means that y; = g% for all i € [£].
Then

gtom(es(znz0) = gliein s = [ g% = [ | vs = OutHom(crs, (g1, y0)).
ie[?] ie[f]

Thus
Verify(crs, OutHom(crs, (y1, - - -, yr)), InHom(crs, (z1, .. ., 2z))) =1,

as required. Next, define the inversion algorithm InHom™!(crs, z,2’) = z — z’. Take any 2,2’ € Z;‘, and
y,y" € G, where Verify(crs, OutHom(crs, (y,y")), z) = 1 and Verify(crs,y’,z’) = 1. This means

g° = OutHom(crs,y,y') =yy’ and g"' =y

Then,

InHom ™ (crs,z,2") _ gZ—Z, = yy—!{’ =y,

and Verify(crs, y, InHom™!(crs, (z,2’))) = 1 as desired. m|
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4 SNARG for Batch NP from Homomorphic Re-randomizable OWFs

In this section, we show how to construct a fully succinct SNARG for batch NP using indistinguishabil-
ity obfuscation together with a homomorphic re-randomizable OWF. Our construction follows a similar
template as the construction from [WW24a].

Construction 4.1 (Adaptive Batch Argument for NP). Let A be a security parameter. We construct a BARG
scheme that supports NP languages with an arbitrary polynomial number T = T(A) < 2* of instances of
length n = n(1). Our construction will leverage sub-exponential hardness of the below primitives (except
for one-wayness of IIgwr). Our construction relies on the following primitives:

« Let iO be an indistinguishability obfuscation scheme for Boolean circuits.

« Let ITpprr = (F.Setup, F.Eval, F.Puncture) be a puncturable PRF. For a key k and an input x, we will
write F(k, x) to denote F.Eval(k, x).

+ Let IIowr = (OWF.Setup, OWF.Genlnstance, OWF.Rerandomize, OWEF . Verify,
OWEF.RecoverSolution, OWF.InHom, OWF.OutHom) be a homomorphic re-randomizable one-way
function.

We will describe how to define the polynomials Aqpf, Aprr, and m in the security analysis. We construct a
fully succinct non-interactive batch argument Ilgarg = (Gen, P, V) for NP as follows:

. Setup(l’l, T,C): On input security parameter 1%, batch size T, and Boolean circuit C: {0,1}" x
{0,1}? — {0, 1}, the setup algorithm does the following:
- Sample OWF parameters crsy « OWF .Setup(14,1™).

— Let t = log(T + 1). Let p be a bound on the number of bits of randomness the sampling algo-
rithm OWF.Genlnstance(crsy) takes. Let 7 be the number of bits of randomness that the setup
algorithm F.Setup(147%F, 1+ 1P) takes.

— Sample a “selector” PPRF key ke < F.Setup (1477, 1"+ 1%),
- Sample a “key generator” PPRF key k « F.Setup (177, 1, 17).

— Define the GenSol program with the OWF parameters crsy, circuit C, and PPRF keys k, kse|
hard-coded:

GenSoI[chf, C, k, ket (i, j, xi, wi)

Inputs: index i, selection symbol j, statement x;, witness w;

: If C(x;, w;) =0, output L.

: If j = F(ksel, (x5,1)), output L.

: Compute k; « F.Setup(177/¢, 1™+ 1P F(k, j)).

: Compute (y,z) < OWF.Genlnstance(crsg; F(kj, (x;,i))) and output z.

B W N -

- Define the GenChall program with the OWF parameters crsy and PPRF key k hard-coded:
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GenChall[crss, k] (i, j, xi)

Inputs: index i, selection symbol j, statement x;
1: Compute k; < F.Setup(1%/F, 1" 17, F(k, j)).
2: Compute (y,z) < OWF.Genlnstance(crss; F(kj, (x;,i))) and output y.

— Lets = s(A,n, |C|) be the maximum size of the GenChall and GenSol programs as well as those
appearing in the security analysis.

— Construct the obfuscated programs
ObfGenChall « iO(1%, 1%, GenChall[crs, k])

and
ObfGenSol « iO(lA"bf, 1%, GenSol [chf, C k, keel]).

— Output crs = (crsy, ObfGenChall, ObfGenSol).

« P(crs, (x1,...,x7), (Wg,...,wr)): On input crs = (chf, ObfGenChall, ObfGenSol), the statements
X1, ..., xr, and the witnesses wy, . .., wr, the prover algorithm proceeds as follows.
— Initialize i = 1, j = 1. Then, while i < T:
+ Compute z; < ObfGenSol(i, j, x;, w;).
x« Ifz; = 1,seti=1,j = j+ 1. Otherwise, set i =i + 1.
- Compute z = OWF.InHom(crsy, (z1, ..., 2z7)) and output (j, z).
* V(crs, (x1,...,x7),7): On input crs = (crsy, ObfGenChall, ObfGenSol), the statements x;, ..., x,
and the proof 7 = (j, z), the verification algorithm proceeds as follows:
— For each i € [T], compute y; < ObfGenChall(i, j, x;).
- Compute y = OWF.OutHom(crsy, (y1, . .., yr)) and output OWF.Verify(crss, y, z).

Theorem 4.2 (Completeness). Suppose iO is correct and Ilowr satisfies homomorphism. Then Construc-
tion 4.1 is complete.

Proof. Take any security parameter A € N, any Boolean circuit C: {0,1}"x{0,1}* — {0,1},any T < 2%, and
any statements (xi,. .., xr) and witnesses (wy, ..., wr) such that C(x;, w;) = 1 for alli € [T]. Let crs =
(crsg, ObfGenSol, ObfGenChall) « Setup(14,C,T) and 7 = (j,z) « P(crs, (x1,...,x7), (W, ..., wr)).
Consider the output of V(crs, (x1,. .., xT), 7):

« By construction, ObfGenSol is an obfuscation of the program GenSol[crsy, C, k, ksel], where
kool — F.Setup(l’lPRF, 1" 1Y) and k « F.Setup(lA"RF, 14,17).

Algorithm P obtains (j, z1), . .., (J, zr) by evaluating ObfGenSol on inputs (i, j, x;, w;). By correct-
ness of i0 and the definition of GenSol, this means that z; was generated by computing (y;, z;) «
OWF.Genlnstance(crss; F(kj, (x;,1))) for all i € [T]. Note that an index j € [T + 1] always exists,
because for each index i, there is just a single index j; = F(ksel, (x;, 1)) where the GenSol program
outputs L. Since there are at most T instances, there are at most T indices j € [T + 1] that fail, or
equivalently, there must exist at least one index j € [T + 1] where j # F(kse, (x;,1)) for all i € [T].
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« By construction, ObfGenChall is an obfuscation of the program GenChall[crsg, k] where crsy «
OWF Setup(14,1™). Algorithm V computes the instance y; < ObfGenChall(i, j, x;), which was
generated by computing (y;, z;) < OWF.Genlnstance(crsy; F(kj, (x;,1))) forall i € [T]. By correct-
ness of iO and correctness of OWF, this means that OWF .Verify(crsy, y;,z;) = 1 forall i € [T].

» Finally, algorithm P computes z = OWF.InHom(crsy, (z1,...,2r)) and algorithm V computes y =
OWF.OutHom(chf, (y1, - - -»yr)). By homomorphism of IIpwe, we have OWF.Verify(chf, y,z) = 1.

Thus V outputs 1 with probability 1. O
Theorem 4.3 (Succinctness). Suppose Ilowr is succinct. Then Construction 4.1 is succinct.

Proof. A proof (j, z) in Construction 4.1 consists of a selection symbol j € [T + 1] and a OWF preimage
z. Since Iowr is succinct, there is a fixed polynomial p such that |z| < p(A+logm). Since m(A, n) in Con-
struction 4.1 is a fixed polynomial in the security parameter A and the statement length n and the statement
length is always upper-bounded by the circuit size, it follows that || < poly(A +log|C|) + log T. O

Theorem 4.4 (Adaptive Soundness). Suppose iO is (1,2_Azg?f)—secure, IIppgrr satisfies punctured correct-
ness and (1, Z_A;i?)—puncturing security, and Ilowr satisfies re-randomization correctness, (1, negl(1))-one-
wayness, and (1, 2_m£m)—re—randomization security for constants opf, €prr, €m € (0, 1) and security parame-
ters Aopr = (A + n) /%5 dppe = (A +n)Y/¥%F m = (A + n)'/em. Then Construction 4.1 is adaptively sound.

Proof. Our proof follows a similar structure as the proof of [WW24a, Theorem 4.3]. Let A be an efficient
adversary that succeeds in the adaptive soundness game against Construction 4.1 with (non-negligible)
probability £(1). We first claim that without loss of generality, we can assume that for every security pa-
rameter A, A always outputs a circuit C with statements of a fixed length n = n(1) and witnesses of a fixed
length v = (1) and a fixed batch size T = T(1). Formally, since A is a polynomial-time algorithm, A (1%)
outputs a Boolean circuit of size at most syax(4) = poly(4) and a maximum batch size T, (1) = poly(A).
This in turn defines maximum statement and witness lengths nm,y (1), Umax (A1) < Smax(4). In an execution
of the adaptive soundness game, let E,/ v 77 be the event that A outputs a circuit C with statements of
length n” and witnesses of length v’ and batch size T’. Then

Pr[A wins the soundness game] = Z Pr[A wins the soundness game A E, v 7].

nle[nmax]
v’ €[ vmax |
T/G[Tmax]

Thus there must exist some (1,9, T) € [Nmax] X [Umax] X [Tmax] such that such that

(1)

Pr[A(1") wins the soundness game A E, 7] >
Nmax * Ymax * Tmax

For each security parameter A, define n = n(1), v = v(Ad), and T = T(A) to be the smallest values
such that the above equation holds. We now construct a new (non-uniform) adversary (A’ that func-
tions as a wrapper around A, but only outputs circuits with fixed statement and witness lengths and
a fixed batch size. Namely, A’ takes as input the security parameter 1* and the non-uniform advice
n=n(A),0 =0),T = T(A). A runs (C',T") < A(1Y). If C’ does not have statements of length n
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and witnesses of length v or T’ # T , then A’ aborts. Otherwise, A’ simply follows the behavior of A
(and outputs whatever A outputs). By construction,

Pr[A’(1%) wins the soundness game| = Pr[A(1") wins the soundness game A E, 7]
£(A)

Rmax * Ymax * Tmax

Thus A’ still has a non-negligible success probability in the soundness game. For the remainder of this
proof, we will assume the adversary always outputs a circuit C with statements of length n and witnesses
of length v and batch size T. We now define a sequence of hybrid experiments:

Hyb,: This is the real adaptive soundness experiment.

+ Adversary A, on input 1%, starts by outputting a Boolean circuit C: {0,1}" x {0,1}° — {0, 1},
and the batch size T.

« The challenger samples crs < Setup(1%, T, C) and gives crs to A.

« Adversary A outputs a batch of statements X = (x1,...,xr) and a proof 7 = (j, z).

« The challenger outputs 1 if and only if for some i € [T], (C, x;) ¢ Lsar and V(crs, X, ) = 1.

Hyb,: Same as Hyb, except the challenger samples i* <~ [T] and outputs 1 ifand only if (C, x;-) & Lsar
and V(crs, X, 7)) = 1.

Hyb,: Same as Hyb, except the challenger additionally checks that j = F(ks, (x;+,i"))
Hyb,: Same as Hyb, except the challenger stops checking that (C, x;+) ¢ Lsar.

Hyb,: Same as Hyb, except the challenger changes how it defines the GenChall program. During
setup, the challenger additionally samples

* (Ubase: Zbase) «— OWF.Genlnstance(crsy)
o krerand < F.Setup(l’lPRF, 17 1K)

where p is a bound on the number of bits of randomness the OWF.Rerandomize algorithm takes. It
defines GenChall” as follows:

GenChall’ [CrSf, k, ksels i, kreranda ybase] (i: Js xi)

Inputs: index i, selection symbol j, statement x;

1: Compute k; < F.Setup (1%, 1" 17, F(k, j)).
2: If i = i" and j = F(ksel, (xi, 1)), output OWF.Rerandomize(crsy, Ybases F(Krerand, (i, 1))).

3: Else: compute (y, z) < OWF.Genlnstance(crss; F(kj, (x;,i))) and output y.

We write Hyb,(A) to denote the output distribution of an execution of Hyb; with the adversary A. We
now argue that each pair of adjacent hybrid distributions is indistinguishable.

Lemma 4.5. Pr[Hyb, (A) = 1] > 7 Pr[Hyby(A) = 1].
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Proof. Suppose the output in Hyb, is 1. This means there exists some index i € [T] where (C, x;+) ¢ Lsar.
Since the challenger samples i* <~ [T] independently of the common reference string (and thus, the view
of the adversary), with probability at least 1/T, it will also be the case that (C, x;+) ¢ Lsat, in which case
the output in Hyb, is also 1. o

5 %0bf . _ 1€PRF
Lemma 4.6. Suppose iO is (1,27 %bf )-secure and Tppgs satisfies punctured correctness and (1,2 e )-

puncturing security for constants eopf, eprr € (0,1) and security parameters Aops = (A + n) /e Appp =

(A + n)'/eeRe | Then
1

+1

Pr[Hyb,(A) = 1] > —— Pr[Hyb, (A) = 1] - 272,

Proof. Consider an execution of Hyb, or Hyb,. For a fixed x* € {0, 1}", let E,+ be the event that A outputs

X = (x1,...,xr) such that x;s = x*. By definition, we can now write
Pr[Hyb, (A) = 1] = Z Pr[Hyb, (A) = 1 A Ey]
X e{0,1}n (1)
Pr[Hyb,(A) =1] = > Pr[Hyb,(A) = 1 A Ex].
x*€{0,1}7
To prove the lemma, we show that for all x* € {0,1}",
1 o(T)
Pr[Hyb,(A) =1 A Ex] > Ta1 Pr[Hyb,(A) =1 A Ex] = e (4.2)
If Eq. (4.2) holds, then
Pr[Hyb,(A) = 1] = Z Pr[Hyb,(A) = 1 A E,-]
X e{0,1}n
1 o(7T)
> (T+ - PrlHyb, (A A Ex] - 2 )
X e{0,1}n
1 3 o(7T)
Z T Pr[Hyb,(A) = 1] - 7

which proves the claim since T = poly(1). We now show Eq. (4.2) holds. Fix any x* € {0,1}". If
(C,x*) € Lsar, then

Pr[Hyb,(A) =1 A Exx] =0 =Pr[Hyb,(A) =1 A Ex],
so Eq. (4.2) holds. Thus we only need to consider the case where (C, x*) ¢ Lsar. We proceed by defining
a sequence of intermediate hybrids.

Hybl)(ox*) : Same as Hyb, except the challenger additionally checks that x;+ = x* (i.e., that E+ occurred).

Hybl,(lx ) Same as Hybl’(ox*) except the challenger does the following. It first computes a punctured key

ks(;*’i*) «— F.Puncture(ks, (x*, i*)) and defines a modified version of GenSol which additionally has

i*, x* hard-coded as follows:

GenSol'[crsy, C, k, k(x*’i‘:), i, x| (i, j, xi, wi)

sel

Inputs: index i, selection symbol j, statement x;, witness w;

1: If i = i* and x; = x™, output L.
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2: If C(x;, w;) = 0, output L.
3: Ifj= F(kfjl' ) (xi, 1)), output L.

4: Compute k; « F.Setup(1°%F, 1™+ 1P, F(k, j)).
5: Compute (y,z) < OWF.Genlnstance(crss; F(kj, (x;,i))) and output z.

Hybl)(zx*) : Same as Hybl’(lx*) except that after A outputs (X, r) where X = (x1,...,xr) and 7 = (j, z), the
challenger samples j* <~ [T + 1] and additionally checks that j = j’.

Hybl,gx*) : Same as Hybl,gx*) except the challenger replaces the check j = j° with an updated check
j = F(ksels (in l\))

Hybl’(f) : Same as Hybl,gx*) except the challenger reverts to obfuscating GenSol|[c rsf, G, k, kee1] instead of
GenSol'[crsy, C, k,k(x*’i*)

sk
o sihx ].

By definition,
Pr[Hyb, " (A) = 1] = Pr[Hyb,(A) = 1 A Ex]

Pr[Hyb, ) (A) = 1] = Pr[Hyb,(A) = 1 A E,].

We now consider each pair of adjacent distributions.

(4.3)

Claim 4.7. Suppose iO is (1, Z_Aoﬁsf)—secure for constant eqpe € (0,1) and security parameter Agps = (A +
n)l/ b gnd Ipprr satisfies punctured correctness. Then

| Pr[Hyb, 7 (A) = 1] - Pr[Hyb, ) (A) = 1]| < 1/27*".
Proof. We first show that GenSol [chf, C, k, keel] in Hybl(ox*) and GenSol’ [chf, C k, kgl*’i*), i*,x*]in Hybl(lx*)
compute identical functionalities. For a particular input (i, j, x;, w;) consider the following cases:

Case 1. If i # i" or x; # x*, the two programs behave identically except that the latter is using ks(j’i*) ,
so by punctured correctness, they have the same output.

Case2. If i = i* and x; = x*, GenSol’ immediately rejects. Since (C,x*) ¢ Lgar, it follows that
C(x*,w;) = C(x;, w;) = 0, so GenSol also rejects.

The claim now follows from iO security. Formally, suppose there exists an infinite set Az C N such that
for all A € A, we have that | Pr[Hyb, " () = 1] = Pr[Hyb, (" (A)]| > 1/2%*". Let Ag = {(A +n)'/e |
A € Ag}. Since n is non-negative, A g is also an infinite set.

We define an efficient algorithm B which plays the iO security game with Agpr = (A + n)!/%b by run-
ning A with security parameter A. For each value of Aops € Ag, we provide the associated value of 1 € A 4
to B as non-uniform advice (if there are multiple such A € A # associated with a particular ¢, we pick
the largest such A; note that since ¢,,¢ < 1 and n > 0, it will always be the case that 1 < Agpf).

Algorithm B[x*]

Inputs: 1% from iO challenger, 1* as non-uniform advice
1: Run (C,T) « A(1}).

2: Sample i* < [T] and crsy, ksel, k. Then compute ObfGenChall as in Setup.
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3: Compute ks(exl*’i*) — F.Puncture(ks, (x*,i*)).

4: Construct challenge programs GenSol[chf, C, k, kee|] and GenSol’ [chf, C k, ks(;*’i*), i*,x*] and
send to the iO challenger. The challenger replies with an obfuscated program ObfGenSol.

5: Let crs = (crsy, ObfGenChall, ObfGenSol).

6: Run (X, 7) « A(crs) and parse X = (x1,...,x7) and 7 = (j, z).

7: Output 1 if and only if x* = x;+ and V(crs, (x1,...,x7),7) = 1.

If the iO challenger obfuscates GenSol[crsy, C, k, k], then B perfectly simulates Hybl)(ox*) and outputs 1
with probability Pr[Hybl,(Ox*)(ﬂ) = 1]. If the iO challenger obfuscates GenSol’[crsy, C, k, ks(;cl*’i*), i, x*],
then B perfectly simulates Hybl’(lx 7 and outputs 1 with probability Pr[Hybl,(lx (A) = 1]. Thus by iO
security we have that

| Pr[Hyb, " (A) = 1] - Pr[Hyb, (" (A) = 1]] = iOAdvg (Aopr) < 1280 =120 < 1/22n @

Claim 4.8. Pr[Hyb, ") (A) = 1] > 71 Pr[Hyb, ) () = 11.

Proof. The challenger samples j* < [T + 1] after A outputs X = (xy,...,x7) and 7 = (j,2)). O

Claim 4.9. Suppose Ippgrr satisfies (1, Z_A;E';F)-puncturing security for constant eprg € (0, 1) and security
parameter Apgr = (A + n)'/*°% Then

| Pr[Hyb, ) (A) = 1] - Pr[Hyb, ) (A) = 1]] < 1/27*".
Proof. Suppose there exists an infinite set Az € N such that for all 1 € A,
| Pr[Hyb, §/ (A) = 1] - Pr[Hyb, 5 (A)]| > 1/27*",

Let Ag = {(A+n)/%% | 1 € Ag}. Since n is non-negative, Ag is also an infinite set. We define an
efficient algorithm 8B which plays the puncturing security game with Apgr = (A + n)'/*** by running A
with security parameter A. For each value of Aprr € Ag, we provide the associated value of A € Az to B
as non-uniform advice (if there are multiple such A € A # associated with a particular Apgp, we pick the
largest such A; note that since eppr < 1 and n > 0, it will always be the case that A < Apgf).

Algorithm B[x*]

Inputs: 177% from PPRF challenger, 1* as non-uniform advice

: Run (C, T) « A(1%).

—

2: Sample i* & [T], and crsg, ksl as in Setup. Compute ObfGenChall as in Setup.

w

: Send input length 1", output length 17, and punctured point (x*, i*) to the PPRF challenger. The
PPRF challenger replies with the punctured key ks(:l ) and challenge value j' € {0, 1}".

W~

: Compute ObfGenSol « iOQ(1%, 1%, GenSol'[crsy, C, k, ks(;*’i*), i, x*]).

5: Let crs = (crsy, ObfGenSol, ObfGenChall).
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6: Run (X, 7) « A(crs) and parse X = (x1,...,x7) and 7 = (j, 2).

7: Output 1 if and only if x* = x;«, V(crs, (x1,...,x7), 1) = 1,and j = j’.

If the PPRF challenger samples j’ <~ {0, 1}, then B perfectly simulates Hybl,(Zx*) and outputs 1 with prob-
ability Pr[Hybl)(zx*) (A) = 1]. If the PPRF challenger computes j* « F(kse|, (x*,i*)) then B perfectly sim-
ulates Hybl’(gx*) and outputs 1 with probability Pr[Hybl,gx*) (A) = 1]. Thus by PPRF security we have that

| Pr[Hyb, 5 (A) = 1] - Pr[Hyb, ) (A) = 1]] = PPRFAdvg (Aere) < 1/2%%¢ = 1/2%" < 17277 o

€obf
Claim 4.10. Suppose iO is (1,2 % )-secure for constant eqps € (0,1) and security parameter Aops
(A + n)eort and Tppge satisfies punctured correctness. Then

| Pr[Hyb, "/ (A) = 1] = Pr[Hyb, ) (A) = 1]| < 1/2*".
Proof. This follows by an analogous argument as Claim 4.7. O

Combining Claims 4.7 to 4.10, we have that

Pr[Hyb, (A) = 1 A Ex] = Pr[Hybly ) (A) = 1] by Eq. (4.3)

< Pr[Hybgf)(ﬂ) =1] + pre by Claim 4.7
<(T+1) -Pr[Hybf;)(ﬂ) =1]+ pye by Claim 4.8
<(T+1)- (pr[Hybg")(ﬂ) = 1] +2%) +2% by Claim 4.9
< (T+1) - (BrlHyb) (A) = 1] + 2A+n) + 2A1+n by Claim 4.10
= (T+1) - Pr[Hyb,(A) =1 AEx:] + Z;j: by Eq. (4.3).

Thus, Eq. (4.2) holds for the case where (C, x*) ¢ Lsa7. This proves Lemma 4.6. O

Lemma 4.11. Pr[Hyb;(A) = 1] > Pr[Hyb,(A) = 1].

Proof. The conditions for outputting 1 in Hyb, are a strict subset of those for outputting 1 in Hyb,. O

€obf
Lemma 4.12. Suppose iO is (1,27 )-secure, the punctured PRF Ilppge satisfies punctured correctness

PRF
and (1, 2 e )-puncturing security, and Howr satisfies re-randomization correctness and (1, negl(1))-one-
wayness and (1,2~™™)-re-randomization security for constants eqpf, prr, €m € (0, 1) and security parameters
Aobf = (A +n)/e Jppp = (A +n) /R m = (A + n)Y/*m_ Then

Pr[Hyb,(A) = 1] > Pr[Hyb,(A) = 1] - 27%W.
Proof. We proceed by defining a sequence of intermediate hybrids for each value of x* € {0, 1}".

Hyb3,(1x ). Same as Hyb, except the challenger computes
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o e Flksel (x7,1%));

o kj  F.Setup(1/=r, 17 1P, F(k, j*));

« kU « F.Puncture(k, j*);

. (¥, 2") « OWF.GenInstance(chf; Flkje, (x*,0%)));
* (gbase Fase) = OWF Genlnstancefcrsy):

o Krerand < F.Setup(1747re, 17+ 1H),

Here, p is a bound on the number of bits of randomness the OWF.Rerandomize algorithm takes. The
challenger then defines a modified version of GenChall as follows:

GenCha”” [CrSf‘, ksel, iﬁ:) ‘]*3 k(j‘)a k_]a kreranda x*, ka, ybaSE] (ls ja xi)

Inputs: index i, selection symbol j, statement x;

1: If j = j* :let k; = k;+. Otherwise, compute k;j « F.Setup(177/¢, 17+ 17, F(kU"), j)).
2: If i =i* and j = F(kse), (x3,1)):
o If x; < x™: output OWF.Rerandomize(crsy, Ypase; F(Krerand, (Xi, £)))-
o If x; = x™: output y*.
« If x; > x™: compute (y,z) < OWF.Genlnstance(crsg; F(kj, (x;,1))) and output y.
Otherwise, compute (y, z) <~ OWF.Genlnstance(crsg; F(kj, (x;,1))) and output y.

Hyb3’(2x*) : Same as Hyb3,(1x*) except the challenger samples k- « F.Setup (177, 1"+ 1) instead of com-
puting kj- — F.Setup (147, 1" 17, F(k, j*)).

Hyb3,(3x*) : Same as Hyb3’(2x*) except the challenger additionally computes

. kj(.fck’i*) « F.Puncture(kj:, (x*,i"))

. k(x*,i*)

rerand — F-PUnCtul’e(krerand; (X*, lr))

and uses the punctured keys in place of k-, krerand-

Hyb3)(4x*) : Same as Hyb3)(3x*) except the challenger samples (7", z*) < OWF.Genlnstance(crsy) instead of
computing (y*,z") < OWF.Genlnstance(crsg; F(kjs, (x*,i%))).

Hyb3,(5x*) : Same as Hyb3’(4x*) except the challenger samples y* <~ OWF.Rerandomize(crsg, Ypase)-

Hyb3,(6x*) : Same as Hbe’(Sx*) except the challenger computes

Hyb3)(7x*) : Same as Hyb3)(6x*) exz:ept)the challenger reverts to using unpunctured keys kj+, kyerand instead of
x*, 0"
rerand *

punctured keys k](f )k

Hyb3’(8x*) : Same as Hyb3’(7x*) except the challenger reverts to computing k- « F.Setup(147%, 171 17, F(k, j*))
instead of sampling k- « F.Setup(17°%F, 17+ 17),
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We now consider each pair of adjacent distributions.

Claim 4.13. Fix any x* € {0,1}" \ {0"}. Suppose iO is (1, Z_Aog?f)-secure for constant eops € (0,1) and
security parameter Aops = (A + n)'/% and Ipprr satisfies punctured correctness. Then
=D (A) = 1] < 1722

|Pr[Hyb3,(1x*)(ﬂ) =1] - Pr[Hybg,8

Proof. Suppose there exists an infinite set Az C N such that for all A € A,
[ Pr[Hyb, () = 1] = Pr[Hyb{y ™ () = 1]] > 1/21*".

Let Ag = {(A+n)Y/% | 1 € Az}. Since n is non-negative, Ag is also an infinite set. We define an effi-
cient algorithm B which plays the iQ security game with Aops = (A + n)/%b by running A with security
parameter A. For each value of Aop¢ € Ag, we provide the associated value of 1 € A # to B as non-uniform
advice (if there are multiple such A € A # associated with a particular A.ps, we pick the largest such A; note
that since &, < 1 and n > 0, it will always be the case that 4 < Agpf).

Algorithm B[x*]

Inputs: 1% from iO challenger, 1* as non-uniform advice

: Run (C, T) « A(11).

—_

2: Sample i* « [T], and crsy, ksel, k as in Setup.

3: Compute (Ypases Zbase) < OWF.Genlnstance(crsy) and Kierand < F.Setup(l’lPRF, 1™ 1M,
4: Compute j’ « F(kge|, (x* — 1,i%)).

5: Compute kU") «— F.Puncture(k, j/), and kjr F.Setup(17#%F 1™+ 1P, F(k, j)).

6: Compute y’ < OWF.Rerandomize(crsg, Ybase; F(Krerands (x* = 1,1%))).

7: Compute j* « F(kse, (x*,i%)).

8: Compute k") «— F.Puncture(k, j*), and kj F.Setup(lAPRF, 1™ 1P, F(k, j*)).

9: Compute (y*,z") < OWF.Genlnstance(crsy; F(kj+, (x*,i%))).
10: Compute ObfGenSol «— iO (1%, 15, GenSol[crsy, C, kgel, k]).

11: Construct challenge programs GenChall” [crsy, Ksel, i*,j’,k(j’),kjf,krerand,x* — 1,9, Ypase] and
GenChall” [crs, ksel, i*,j*,k(j*),kj*,krerand,x*,y*,ybase] and send to the iO challenger. The iO
challenger replies with an obfuscated program ObfGenChall.

12: Let crs = (crsg, ObfGenSol, ObfGenChall).
13: Run (X, 7) « A(crs) and parse X = (x1,...,xr) and 7 = (j, 2).

14: Output 1 if and only if V(crs, X, 1) = 1 and j = F(ksey, (x+,1%)).

We first show that

V = GenChall” [Cl’Sf, Ksel, i, j/, k(j,), kj’, krerand x* -1, y,, ybase]
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which is computed as in Hybéf;*_l) and
V" = GenChall” [Crsf, ksel; i*a j*, k(j*), kj*, krerand, x*a y*s ybase]

which is computed as in Hyb, (1x*) compute identical functionalities. For a particular input (i, j, x;) consider
the following cases:

Case 1. If i # i* or x; > x™ or j # F(ksel, (x,1)), the two programs behave identically except V may
be using hard-coded key k;» « F.Setup(14%%, 1"** 17 F(k, j’)) and V' may be using hard-coded key
kj F.Setup(17°/F, 1"+t 1P F(k, j*)). Both programs compute

(yi, zi) = OWF.Genlnstance(crs; F(k;, (x;,1)))
and output y;.
Case 2. If i = i* and x; < x* — 1 and j = F(ksel, (x;, i), both programs output

y; = OWF.Rerandomize(crsy, Ypases F(Kkrerands (Xis 1))).

Case 3. If i = i* and x; = x* — 1 and j = F(ksel, (x5, 1)) = j’, the two programs behave identically except
V uses the hard-coded value y’ = OWF.Rerandomize(crsy, Ypase; F(Krerand: (X* = 1,1%))).

Case 4. If i = i* and x; = x™ and j = F(ksel, (x5,1)) = j*, the two programs behave identically except V'
uses the hard-coded value y* where (%, z*) = OWF.Genlnstance(crsg; F(kj-, (x*,i%))).

We conclude that the two programs output identical functionality. If the iO challenger obfuscates V, then
B perfectly simulates Hybéf; Y and outputs 1 with probability Pr[Hybgf3 b (A) = 1]. If the iO challenger

obfuscates V’, then B perfectly simulates Hyb3,(1x ) and outputs 1 with probability Pr[Hybg,(lx ) (A) =1].
Thus by iO security we have that

| Pr[Hyb, & (A) = 1] = Pr[Hyb' X ™V (A) = 1] = i0Advs (Aap) < 1/2%0F = 1/24", O
Claim 4.14. Fix x* = 0™. Suppose iO is (1, Z_Asﬁ?f)-secure for constant eqps € (0,1) and security parameter
Aobf = (A + n)l/‘sfbe and IlppRrr satisfies punctured correctness. Then
| Pr[Hyb, (") (A) = 1] - Pr[Hyb, (A) = 1] < 1/2™".
Proof. This follows by an analogous argument as Claim 4.13. O

Claim 4.15. Fix any x* € {0,1}". Suppose Ipprr satisfies (1, Z_AggﬁF)-puncturing security for constants
eprr € (0,1) and security parameter Apgr = (A + n)'/**% Then

| Pr[Hyb, " (A) = 1] - Pr[Hyb, ¥ (A) = 1]] < 1/27*".
Proof. Suppose there exists an infinite set A z € N such that for all 1 € A,
| Pr[Hyb; 5/ (A) = 1] = Pr[Hyb, 7 (A)]| > 1/2%*",

Let Ag = {(A+n)/%% | 1 € Ag}. Since n is non-negative, Ag is also an infinite set. We define an
efficient algorithm B which plays the puncturing security game with Apr = (A + n)/"* by running A
with security parameter A. For each value of Aprr € Ag, we provide the associated value of A € A7 to B
as non-uniform advice (if there are multiple such A € A # associated with a particular Aprg, we pick the
largest such A; note that since eppr < 1 and n > 0, it will always be the case that A < ApgF).
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Algorithm B[x*]

Inputs: 17°% from PPRF challenger, 1* as non-uniform advice

: Run (C, T) « A(11).

—_

2: Sample i* « [T], and crsy, ks as in Setup.
3: Compute j*  F(ksel, (x*,1%)).

4: Send input length 17, output length 17, and punctured point j* to the PPRF challenger. The
PPRF challenger replies with the punctured key k") and challenge value r € {0, 1}’

5: Compute kj- < F.Setup(14°rF, 17 17, 7).

6: Compute (y*,z*) < OWF.Genlnstance(crsg; F(k;+, (dig*,d))) and
(Ybases Zbase) < OWF.Genlnstance(crsy).

7: Sample the re-randommization key kyerang < F.Setup(14PRF, 174 1#),

8: Compute ObfGenSol « iO(l’L’bf, 1%, GenSol[crsy, C, k, ksel]).

9: Compute ObfGenChall « iOQ (1%, 1°, GenChall” [crsf, ksel, i*,j*,k(j*),kj*,krerand,x*,y*,ybase]).
10: Letcrs = (crsf, ObfGenSol, ObfGenChall).
11: Run (X, ) « A(crs) and parse X = (x1,...,xr) and 7 = (J, 2).

12: Output 1 if and only if V(crs, X, 7) = 1 and j = F(ksey, (x;+,1%)).

If the PPRF challenger samples r <~ {0, 1}*, then B perfectly simulates Hyb3,(2x*) and outputs 1 with prob-
ability Pr[Hyb3,(2x*) (A) = 1]. If the PPRF challenger computes r < F(k, (j*)) then B perfectly simulates
Hyb3’(1x ) and outputs 1 with probability Pr[Hyb3,(1x K (A) = 1]. Thus by PPRF security we have that

| Pr[Hyb, ¥ (A) = 1] - Pr[Hyb, ¥ (A) = 1]] = PPRFAdvg (Apr) < 1/2%F = 1/2%", O

€obf
Claim 4.16. Fix any x* € {0,1}". Suppose iO is (1, 27 %ab )-secure for constant eqp¢ € (0,1) and security
parameter Aops = (A + n)l/gObf and Tppgr satisfies punctured correctness. Then

| Pr[Hyb, ) (A) = 1] = Pr[Hyb, () (A) = 1]] < 1/27*".
Proof. This follows by an analogous argument as Claim 4.13. O

Claim 4.17. Fix any x* € {0,1}". Suppose Ipprr satisfies (1, Z_A;ERFF)-puncturing security for constants
eprr € (0,1) and security parameter Apgr = (A + n) /%% Then

| Pr[Hyb, [ (A) = 1] - Pr[Hyb, ¥ (A) = 1]] < 1/27*".

Proof. This follows by an analogous argument as Claim 4.15. m]
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Claim 4.18. Fix any x* € {0, 1}". Suppose Ilowr satisfies (1,2~™ ™ )-re-randomization security for constant
¢m € (0,1) and re-randomization parameter m = (A + n)"/*m. Then

| Pr[Hyb; S (A) = 1] = Pr[Hyb, ) (A) = 1]| < 1/2*".
Proof. Suppose there exists an infinite set Az € N such that for all A € A,
| Pr[Hyb; &) (A) = 1] - Pr[Hyb, () (A)]| > 1/27*",

Let m(1) = (A + n)'/ém. We define an efficient algorithm B which plays the re-randomization security
game with m = (1 + n)!/*» by running A with security parameter A.

Algorithm B[x*]

Inputs: crsy « OWF.Setup(lA, 1™), Ypase, Y~ from re-randomization challenger

: Run (C,T) « A(1%).

—_

2: Sample i* ¢ [T], and k, k.| as in Setup.

3: Compute j* « F(kge, (x*,i*)) and kj» < F.Setup(17°%F, 17+ 17),

4: Compute Kyerand < F.Setup(1478F 14 1H),

5: Compute the punctured keys kU « F.Puncture(k, j*), k](.f*’i*) «— F.Puncture(kj-, (x*,i")) as

(x*,i%)

rerand < F-Puncture(kierand, (x*,1%)).

well as the re-randomization key k
6: Compute ObfGenSol «— iO(lAObf, 1%, GenSol[crsy, C, k, ksel]).
7: Compute ObfGenChall « iO (1%, 1°, GenChall” [crsf, ksel, i*,j*,k(j*),kj*,krerand,x*,y*,ybase]).
8: Let crs = (crsy, ObfGenSol, ObfGenChall).

9: Run (X, 7) « A(crs) and parse X = (x1,...,x7) and 7 = (j, 2).

10: Output 1 if and only if V(crs, X, 1) = 1 and j = F(ksey, (x;+,1%)).

If the re-randomization challenger samples (y*,z*) < OWF.Genlnstance(crsys), then 8 perfectly simu-
lates Hyb3,(4x*) and outputs 1 with probability Pr[Hyb3,(4x*)(&Zl) = 1]. If the re-randomization challenger
computes (y*,z*) < OWF.Rerandomize(crsy, ypase) then B perfectly simulates Hyb3’(5x*) and outputs 1
with probability Pr[Hybigx*) (A) = 1]. Thus by re-randomization security we have that

| Pr[Hyb, 0 (A) = 1] = Pr[Hyb, ) (A) = 1]| = RerandAdvg (m) < 1/2"m = 1/2%*". O

Claim 4.19. Fix any x* € {0,1}". Suppose Ipprr satisfies (1, Z_A;EFEF)—puncturing security for constants
eprr € (0,1) and security parameter Apgr = (A + n)l/EPRF. Then

| Pr[Hyb, 0 (A) = 1] - Pr[Hyb, " (A) = 1]| < 1/27*".

Proof. This follows by an analogous argument as Claim 4.15. O
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£obf
Claim 4.20. Fix any x* € {0,1}". Suppose iO is (1, 27 %ob )-secure for constant e, € (0,1) and security
parameter Aops = (A + n)l/fobf and Ippgr satisfies punctured correctness. Then

| Pr[Hyb, 5 (A) = 1] = Pr[Hyb, 0" (A) = 1]| < 1/27*".
Proof. This follows by an analogous argument as Claim 4.13. m]

Claim 4.21. Fix any x* € {0,1}". Suppose Ipprr satisfies (1, Z_APEEF)-puncturing security for constants
eprr € (0,1) and security parameter Aprr = (A + n)'/ePRe Then

| Pr[Hyb, " (A) = 1] - Pr[Hyb, 0" (A) = 1]] < 1/27*".
Proof. This follows by an analogous argument as Claim 4.15. O

Eobf
Claim 4.22. Fix x* = 1". Suppose iO is (1,2 %br )-secure for constant e € (0,1) and security parameter
Aobf = (A + n)l/ bf gnd IppRr satisfies punctured correctness. Then

| Pr[Hyb,(A) = 1] - Pr[Hyb, 0"/ (A) = 1]] < 1/2™".

Proof. 'This follows by an analogous argument as Claim 4.13. O

Proof of Lemma 4.12. We now return to the proof of Lemma 4.12. By Claims 4.7 to 4.10, and the triangle
inequality, we can now write

!Pr[Hyb4(ﬂ) = 1] = Pr[Hyb,(A) = 1]|

< |Pr[Hyb,(A) = 1] = Pr[HybS} ' (A) = 1]]

8
+ 3 3 |Pr[Hyb{Y (A) = 1] - Pr[Hyb{) () = 1]]
xe{0,1} £=2
+ Z | Pr[Hyb{) (A) = 1] - Pr[Hybs " (A) = 1]|
x€{0,1}™\{0"}
+|Pr[HybS" (A) = 1] - Pr[Hyb,(A) = 1]|

; n, O(l) +2n. 1 + L
2Q(4) oA+n oA+n oA+n
—— —————— ~———— ——

Claim 4.22 Claims 4.15t0 4.21  Claim 4.13  Claim 4.14

which is bounded by a negligible function. Lemma 4.12 holds. O

Lemma 4.23. Suppose that Howr satisfies re-randomization correctness, homomorphism, and (1, negl(1))-
one-wayness. Then Pr[Hyb,(A) = 1] < negl(1).

Proof. We define an efficient algorithm 8 which plays the one-wayness security game with security pa-
rameter A and re-randomization parameter m = m(A, n):

Algorithm 8

Inputs: crsy « OWEF.Setup(1%,1™) and ypase from the challenger where the challenger samples
(Ubase: Zbase) < OWF.Genlnstance(crsy)
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1: Run (C,T) « A(1Y).

2: Sample i* & [T], and k, ks as in Setup.

3: Compute Kyerand < F.Setup(147%F, 17+ 1#),

4: Compute ObfGenSol «— iO(l’lﬂbf, 1%, GenSol[crsy, C, k, ksel]).

5: Compute ObfGenChall « iO(lAObf, 15, GenChaII’[chf, k, ksel, I*, Krerands Ubase) ) -
6: Letcrs = (chf, ObfGenSol, ObfGenChall).

7: Run (¥, 1) <« A(crs) and parse X = (xy,...,x7) and 7 = (j, 2).

8: For each i € [T], compute (y;, z;) < OWF.Genlnstance(crss; F(kj, (x;,))).

9: Compute z* < OWF.InHom(crsy, {z;}ic[)\{i})-

10: Compute z;+ < OWF.lnHom_l(chf, z,2%).

11: Send zpase <~ OWF.RecoverSolution(crsy, z;+, F(krerand (X, i*))) to challenger.

Let y;- = OWF.Rerandomize(crs, Ypase; F(Krerands (X, i*))). Similarly, let
y* = OWF.OutHom(crsy, {ObfGenChall(i, j, x;) }ie 1]\ (i#}) -
Recall that Hyb,(A) = 1 only if V(crs, X, 7) = 1. This means
OWEF.Verify(crsy, OWF.OutHom(y", y;+), z) = 1.
Next note that for all i # i*, we have
OWF.Verify(crs¢, ObfGenChall(i, j, x;), z;) = 1,

so by homomorphism of IIowr, we have OWF .Verify(crsy, y*, z*) = 1. Since j = F(ksel, (x;+,i*)), we have
ObfGenChall(i*, j, x;+) = y;+. Then by (reverse) homomorphism of IIgwr, we have

OWEF Verify(crsg, y*, z%) = 1.

Lastly, by re-randomization correctness of Ilowr, we have that OWF.Verify(crsy, ypase, Zbase) = 1. Com-
bining the above, we conclude

Pr[Hyb,(A) = 1] < PrlOWF.Verify(crsg, Yvases Zbase) = 1] = OWFAdvg (1) < negl(A). O

Proof of Theorem 4.4. Combining Lemmas 4.5, 4.6, 4.11, and 4.12, we have for all sufficiently-large
A €N,

1
Pr[Hyb,(A) =1] > m

By Lemma 4.23, we have Pr[Hyb, = 1] = negl(1). We conclude that

- Pr[Hyb,(A) = 1] - 2790,

Pr[Hyby(A) = 1] < T+ (T +1) - negl(1) + 27,

which remains negligible since T = poly(A). Finally Hyb, corresponds to the real adaptive soundness
security game, so Theorem 4.4 holds. O
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Theorem 4.24 (Perfect Zero-Knowledge). Suppose iO is correct. Then Construction 4.1 satisfies perfect zero-
knowledge.

Proof. We construct the simulator as follows:

. 80(1/1, T,C): On input the security parameter A, a batch size T, and a Boolean circuit C: {0, 1}" X
{0,1}? — {0, 1}, the simulator samples the common reference string crs « Setup(1%, T, C) exactly
as in the real scheme. Let crsy, ks, k be the underlying OWF parameters and PPRF keys sampled in
Setup. The simulator outputs the crs along with the state st = (crsy, ksel, k).

« Si(st, (x1,...,x7)): On input the state st = (crsy, ksel, k) and statements (xi, ..., xr), the simulator
computes j; « F(ksel, (x;, 1)) and selects the smallest j € [T+1] suchthat j # j; foralli € [T]. It then
computes k; < F.Setup (177’ 1"+ 1P; F(k, j)) and (y;, z;) < OWF.Genlnstance(crsy, F(kj, (x;, 1))
for all i. The simulator outputs 7 = (j, OWF.InHom(crsy, (z1,...,271))).

Take any Boolean circuit C: {0,1}" x {0,1}* — {0, 1}, batch size T, and statements x, ..., xr and wit-
nesses wy, . . ., wr such that C(x;, w;) = 1 for all i € [T]. First, observe that the common reference string
crs output by Sy(1%, T, €) is distributed identically to Setup(1%, T, C). It now suffices to consider the proof.
By construction, the proof 7 = (j,z) output by P(crs, (x1,...,x7), (W, ..., wr)) is obtained by evalu-
ating ObfGenSol on inputs (i, j, x;, w;). By correctness of iO and the definition of GenSol and P, this
means that j is the smallest value in [T + 1] such that j # F(kse, (x,1)) for all i € [T], and that z; was
generated by computing (y;,z;) < OWF.Genlnstance(crss; F(kj, (x;,1))) for all i. Finally, P computes
z = OWF.InHom(crsy, (z1, ..., z7)). Thus the proof output by S; (st, (x1, ..., x7)) is distributed identically
to . O

5 Re-randomizable Pseudorandom Generators

In this section, we introduce the notion of a re-randomizable pseudorandom generator (PRG), which is one
of the main building blocks we use in our alternative construction of an adaptively-sound fully succinct
BARG in Section 6. Then, in Section 5.1, we show how to construct a re-randomizable PRG from DDH.

Definition 5.1 (Re-randomizable PRG). A re-randomizable pseudorandom generator (PRG) is a tuple of
efficient algorithms IIrprc = (Setup, GenSeed, Eval, Rerandomize) with the following syntax:

« Setup(1%,1™) — crs : On input security parameter 1* and re-randomization parameter 1™, the setup
algorithm outputs a common reference string crs. We assume that the crs contains an implicit de-
scription of the seed space Z and the output space Y, and that elements of Z can be represented
by bit-strings of length £, and elements of Y/ can be represented by bit-strings of length ¢,.

« GenSeed(crs) — z : On input common reference string crs, the seed-generation algorithm outputs
aseedz € Z.

« Eval(crs,z) — y. Oninput common reference string crs and seed z € Z, the deterministic evaluation
algorithm outputs y € V.

« Rerandomize(crs,y) — y’ : On input common reference string crs and instance y € Y, the re-
randomization algorithm outputs a new instance y’ € Y.

We require that IIgprg satisfy the following properties:
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« Succinctness and expansion. There exists a fixed polynomial poly(-) such that for all , m € N,
and all crs in the support of Setup (1%, 1™), it holds that the seed length satisfies £, < poly (A + log m).
In addition, the size of the output space satisfies | Y| > 2% . | Z]|.

« Pseudorandomness. For a security parameter A, a re-randomization parameter m, and a bit b €
{0, 1}, we define the pseudorandomness security game between an adversary A and a challenger as
follows:

The challenger samples crs < Setup (14, 1™).

If b = 0, the challenger samples z < GenSeed(crs) and computes y « Eval(crs,z). If b = 1,
the challenger samples y < Y.

The challenger then sends (crs, y) to A.

A outputs a bit b’, which is the output of the experiment.

We say that IIrpre is (, €)-pseudorandom if for all polynomials m = m(A) and all adversaries A
running in time at most (1) - poly(A), there exists Az € N such that for all security parameters
A > A, it holds that

PRGAdvA(A) == |Pr[b' =1:b=0] —=Pr[b' =1:b=1]| < e(R)
in the pseudorandomness security game.

« Re-randomization correctness. For all security parameters A, all m = m(A) all crs in the support
of Setup(1%,1™), ally € Y, and all ¢/ in the support of Rerandomize(crs, y), either
- y,y are both in the image of Eval(crs, -); or
- y,y are both not in the image of Eval(crs, -).
« Re-randomization security. For a security parameter A, a re-randomization parameter m, and a bit

b € {0,1}, we define the re-randomization security game between an adversary A and a challenger
as follows:

The challenger samples crs « Setup(14,1™), zpae < GenSeed(crs), and computes Ypaee —
Eval(crs, zpase)-

If b = 0, the challenger samples z* < GenSeed(crs) and computes y* « Eval(crs, z*). If b = 1,
the challenger samples y* < Rerandomize(crs, Ypase)-

The challenger then sends (crs, Ypase, y*) to A.

A outputs a bit b’, which is the output of the experiment.

We say that Ilgpgrg satisfies (t, €)-re-randomization security if for all polynomials m = m(A) and all
adversaries A running in time at most t(A) - poly(A), there exists Az € N such that for all security
parameters A > A4, it holds that

RerandAdv#(A) := |Pr[b' =1:b=0] —Pr[b' =1:b=1]| < ()

in the re-randomization security game.
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5.1 Constructing Re-randomizable PRGs

In this section, we show how to construct a re-randomizable PRG from the decisional Diffie-Hellman as-
sumption.

Construction 5.2 (Re-randomizable PRG). Let GroupGen be a prime-order group generator. We construct
a re-randomizable PRG Ilgrprg = (Setup, GenSeed, Eval, Rerandomize) as follows:

« Setup(1%,1™): On input security parameter 1* and re-randomization parameter 1™, the setup algo-
rithm samples (G, p, g) < GroupGen(1%), x & Zy,, and outputs crs = (G, p, g, h) where h = g*. The
seed space is Z = Z;, and the output space is Y = (G \ {1H

« GenSeed(crs): On input common reference string crs = (G, p, g, h), the seed generation algorithm
samples and outputs z ¢~ Zj.

« Eval(crs, z): On input common reference string crs = (G, p, g, h) and seed z € Z}, the evaluation
algorithm outputs (g%, h%) € Y.

+ Rerandomize(crs, y): On input common reference string crs and instance y = (y1, y2), the re-randomization
algorithm samples r ¢~ Zj, and outputs (7, y}) € Y.

Theorem 5.3 (Succinctness and Expansion). Construction 5.2 satisfies succinctness and expansion.

Proof. For (G, p,g) « GroupGen(1*), we have that p is a A-bit prime. Thus a seed z € Zj, can be described
by a string of length at most £, = A. Next, an instance y = (g7, h*) consists of two group elements and thus
Y| = (p—-1)2>2°00. |Z;;|, since p = 2%, O

Theorem 5.4 (Pseudorandomness). Suppose the decisional Diffie-Hellman assumption holds with respect to
GroupGen. Then Construction 5.2 satisfies pseudorandomness.

Proof. Let A be an efficient adversary for the pseudorandomness game against Construction 5.2. We use
A to construct an adversary 8 for the DDH problem:

Algorithm 8

Inputs: ((G, p, g), 9% g”, g") from the DDH challenger
1: Let crs = (G, p, g, h) where h = g% and y = (g7, gY).
2: Run b’ « A(crs, y).

3: Send b’ to challenger.

Note that if b = 0 (i.e., y = af for uniform a, f < Zy), then g" = g*P =W soy = (g%, hP). If b = 1 (ie.,
By € Zp), theny = (g%, g¥) is uniform over (G \ {1})2. Thus,

PRGAdv #(4) < DDHAdvg (1) < negl(4). O
Theorem 5.5 (Re-randomization Correctness). Construction 5.2 satisfies re-randomization correctness.

Proof. Take any A, m € N, any crs = (G, p, g, h = g¥) in the support of Setup(1%,1™), any y € Y, and any
Y’ in the support of Rerandomize(crs, y). We show that y is in the support of Eval(crs, -) if and only if y’
is in the support of Eval(crs, -).
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» For the forward direction, suppose y = (y1,y2) = Eval(crs, z) for some seed z € Z;,. Then y; = g*
and y; = h*. We have that for some r € Z,,, y’" = (y1,y3) = (9"% h™®), so y’ = Eval(crs, rz).

« For the reverse direction, suppose y* = (y{,y,) = Eval(crs, z) for some z € Z;,. Then y; = g* and
Yy, = h*. Since y’ = Rerandomize(crs, y), and by construction of Rerandomize, there exists r € Zj,
such that

y = ((yi)r_l’ (yé)r'l) - (gr_lz’ hr'lz).

Thus y = Eval(crs, r~'z), as required.

We conclude that either y,y’ are both in the image of Eval(crs, ) or they are both not in the image of
Eval(crs, -). O

Theorem 5.6 (Re-randomization Security). Construction 5.2 satisfies perfect re-randomizable security. For
all polynomials m = m(A) and all adversaries A, RerandAdv #(1) = 0.

Proof. Take any polynomial m = m(1). Let crs = (G, p, g, h) « Setup(1%*,1™) where h = g*. By construc-
tion of GenSeed, we have that a fresh instance Eval(crs, z*) = (gz*, hz*) is uniformly distributed over the set
{(¢%,h*) | z € Z,,}. By construction of Rerandomize, we have that a re-randomized instance y’ = (y1,y3) =
(g"*, h'%) is still uniformly distributed over the set {(¢g?, h*) | z € Z}",}, since rz is uniformly distributed
over Z,,. Note that this proof uses the fact that the exponents are sampled from Z,, (rather thanZ,). O

6 SNARG for Batch NP from Re-randomizable PRGs

In this section, we show how to construct a fully succinct SNARG for batch NP using indistinguishability
obfuscation together with a re-randomizable PRG. As described in Section 1.1, this construction builds on
the chaining approach from [GSWW?22]. We give the construction below:

Construction 6.1 (Adaptive Batch Argument for NP). Let A be a security parameter. We construct a BARG
scheme that supports NP languages with an arbitrary polynomial number T = T(1) < 2* of instances of
length n = n(A). Our construction will leverage sub-exponential hardness of the following primitives (ex-
cept for pseudorandomness of the re-randomizable PRG Ilgprg). Our construction relies on the following
primitives:

« Let iO be an indistinguishability obfuscator for Boolean circuits.
« LetIIsgy = (H.Setup, H.Hash, H.Open, H.Verify, H.Extract) be a somewhere-extractable hash family.

« Let ITpprr = (F.Setup, F.Eval, F.Puncture) be a puncturable PRF. For a key k and an input x, we will
write F(k, x) to denote F.Eval(k, x).

« Let ITrprg = (PRG.Setup, PRG.GenSeed, PRG.Eval, PRG.Rerandomize) be a re-randomizable PRG.

We will describe how to define the polynomials Asgp, Aopf, Aprr, and m in the security analysis. We construct
a fully succinct non-interactive batch argument Ilgarc = (Gen, P, V) for NP as follows:

. Setup(l’l, T,C): On input security parameter 1%, batch size T, and Boolean circuit C: {0,1}" %
{0,1}° — {0, 1}, the setup algorithm does the following:

— Sample PRG parameters crsg « PRG.Setup(1%,1™).
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Sample an SEH hash key hk < H.Setup(1%st+,17).

Lett = log(T+1). Let n’ be the output length of H.Hash(hk, -). Let p be a bound on the number
of bits of randomness the PRG.GenSeed(crsg) algorithm takes. Let 7 be the number of bits of
randomness the F.Setup(17°% 1"+ 1) algorithm takes.

Sample a “selector” PPRF key kg «<— F.Setup(147%F, 17+ 1),
Sample a “key generator” PPRF key k « F.Setup(177%F, 1%, 17).

Define the VerProof program with the PRG parameters crsg and PPRF key k hard-coded:

VerProof[crsg, k] (i, j, dig, z;)

Inputs: index i, selection symbol j, hash value dig, proof z;
1: Compute k; « F.Setup(17°%F 17+ 1P F(k, j)).
2: Compute z < PRG.GenSeed(crsg; F(kj, (dig, i))).
3: Output 1 if PRG.Eval(crsg, z;) = PRG.Eval(crsg, z) and 0 otherwise.

— Define the AggProof program (which has the code for VerProof replicated inside) with the
circuit C, PRG parameters crsg, SEH hash key hk, and PPRF keys k[, k hard-coded:

AggProof[C, crsg, hk, ksel, k] (i, j, dig, x;, Wi, 04, 2i—1)

Inputs: index i, selection symbol j, hash value dig, statement x;, witness w;, opening o,
prior proof z;_;

If C(x;, w;) = 0, output L.

If H.Verify(hk, dig, x;, i, 0;) = 0, output L.

If j = F(ksel, (x;,1)), output L.

If i # 1 and VerProof[crsg, k] (i — 1, j, dig, z;—1) = 0, output L.

Compute k; < F.Setup(14%%, 17+ 17, F(k, j)).

Output z; = PRG.GenSeed(crsc; F(kj, (dig, i))).

SANERANEE Rl > i e

— Let s = s(4,n,|C|) be the maximum size of the AggProof and VerProof programs as well as
those appearing in the security analysis.

— Construct the obfuscated programs
ObfAggProof « iO (1%, 15, AggProof [C, crsg, hk, ksel, k])

and
ObfVerProof «— iO(1%, 1%, VerProof [crsg, k]).

— Output crs = (hk, crsg, ObfAggProof, ObfVerProof).

o P(crs, (x1,...,x7), (W, ..., wr)): On input crs = (hk, crsg, ObfAggProof, ObfVerProof), statements
X1, .-, xr € {0,1}", and witnesses wy, ..., wr € {0, 1}, the prover algorithm proceeds as follows:

— Compute dig « H.Hash(hk, (x,...,xr)).

— Initializei =1,j =1 and zg = @.
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— Whilei <T:
+ Compute o; < H.Open(hk, (xq,...,xr),1).
+ Compute z; « ObfAggProof (i, j, dig, x;, wi, 0y, zi—1).
x Ifz; = 1,seti=1and j = j + 1. Otherwise, seti =i+ 1.
— Output 7 = (j, z7).
« V(crs, (x1,...,x7), m): Oninput crs = (hk, crsg, ObfAggProof, ObfVerProof), statements xy, .. ., xr €
{0, 1}", and the proof & = (j, z7), the verification algorithm proceeds as follows:
- If j ¢ [T + 1], then output 0.
— Otherwise, compute dig < H.Hash(hk, (x, ..., xr)) and output ObfVerProof (T, j, dig, zr).

Theorem 6.2 (Completeness). Suppose iO is correct and Ilggy satisfies opening completeness. Then Con-
struction 6.1 is complete.

Proof. Take any security parameter A € N, any Boolean circuit C: {0,1}" X {0,1}* — {0,1}, any T <

2%, and any collection of statements (xy,...,xr) and witnesses (wy, ..., wr) where C(x;, w;) = 1 for
all i € [T]. Let crs = (hk, crsg, ObfAggProof, ObfVerProof) « Setup(1*,C,T) and 7 = (j,zr) «
P(crs, (x1,...,x7), (W1,...,wr)). Consider the output of V(crs, (x1,...,x1), 7):

+ By construction, ObfAggProof is an obfuscation of the program AggProof [C, crsg, hk, ks, k], where

crsg «— G.Setup(1,1™)
hk « H.Setup(lASEH, 1)
ke — F.Setup(147RF 17+ 1)
k « F.Setup(lAPRF, 14,17).

« Let dig = H.Hash(hk, (x1,...,x7)) and o; « H.Open(hk, (x,...,xr),i) for all i € [T]. By com-
pleteness of IIsgy, we have that for all i € [T],

H.Verify(hk, dig, i, x;, ;) = 1.
« Let j* € [T + 1] be the smallest index where F(kse, (x;,i)) # j* for all i € [T]. By correctness of iO

and the definition of AggProof, it must be the case that j > j*.

« Let zj, ..., z} be the intermediate proofs obtained by P through evaluating ObfAggProof on inputs
(i, j*, dig, x;, wj, 03, z;—1). By construction, it follows that C(x;, w;) = 1 and H.Verify(hk, dig, x;, 1, 0;) =
1 and ]* ;t F(ksels (xi> l))

« We now claim that by correctness of iO and the definition of AggProof, this means that foralli € [T],
it holds that
VerProof [crsg, k] (i, j*, dig, z}) = 1. (6.1)

Consider the case where i = 1. In this case, AggProof outputs

z1 = PRG.GenSeed(crsg; F(kj+, (dig, 1))).
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Correspondingly, this means
PRG.Eval(crsg, z1) = PRG.Eval(crsg, PRG.GenSeed(crsg; F(kj+, (dig, 1)))),

which precisely coincides with the verification condition VerProof (1, j*, dig, z7). Thus, Eq. (6.1) holds
when i = 1. For the inductive step, take i > 1 and suppose VerProof(i - 1, j,dig,z;_ ;) = 1. Then,
AggProof outputs

z; = PRG.GenSeed(crsg; F(kj+, (dig, i))).

As in the base case, this means VerProof(i, j*, dig, z;) = 1 and so by induction on i, we have that
Eq. (6.1) holds for all i € [T]. In this case, algorithm P outputs the proof = = (j*, z7) = (j, z1).

« By construction, ObfVerProof is an obfuscation of the program VerProof|crsg, k|. The verification
algorithm V computes dig = H.Hash(hk, (x1, ..., xr)) and outputs b « ObfVerProof (T, j, dig, zr).
By correctness of iO, the definition of VerProof|crsg, k], and Eq. (6.1), b = 1 and completeness
holds. O

Theorem 6.3 (Succinctness). Suppose IIsgy and Irprg are succinct. Then Construction 6.1 is succinct.

Proof. A proof (j,zr) in Construction 6.1 consists of a selection symbol j € [T + 1] and a PRG seed
zr. By construction, there is a fixed polynomial poly(-) such that |z| < poly(A +logm). In Construc-
tion 6.1, m(A,n’) is a fixed polynomial in the security parameter A and n’, which is the output length
of H.Hash(hk,-) for hk « H.Setup(1/st4, 1) where Asgy is a fixed polynomial in the witness length
v and A. By succinctness of IIsgy, we have that n’ is a fixed polynomial in A, n, and v. The state-
ment length and witness length are always upper-bounded by the circuit size, so it follows that |7]| <
poly(A+1log|C]|) +logT. ]

Theorem 6.4 (Adaptive Soundness). Suppose iO is (1, Z_Azg?f)—secure, sen satisfies statistical binding and
(ZA;E'H, negl(Asgn))-index hiding security, pprr satisfies punctured correctness and (1, Z_A;PR[;F)—puncturing
security, Igprg is expanding and (1, negl(A))-pseudorandomness and (1,2~™"™)-re-randomization security
for constants (esen, £obf> €PRE €m) € (0,1) and security parameters Asey = (0 + w(log 1)) V&8 Aope = (A +
n/) Vet Jppr = (A +n')/R m = (A +n’)V/em wheren’ is the length of H.Hash(H.Setup (1754, 1), ). Then
Construction 6.1 satisfies adaptive soundness.

Proof. Let A be an efficient adversary that succeeds in the adaptive soundness game against Construc-
tion 6.1 with (non-negligible) probability (). We first claim that without loss of generality, we can as-
sume that for every security parameter A, A always outputs a circuit C with statements of a fixed length
n = n(A) and witnesses of a fixed length v = v(A1) and a fixed batch size T = T(A4). Formally, since A
is a polynomial-time algorithm, A (1%) outputs a Boolean circuit of size at most spax(A) = poly(1) and
a maximum batch size Tiyax(A) = poly(A). This in turn defines maximum statement and witness lengths
Nmax(A4), Umax(4) < Smax(4). In an execution of the adaptive soundness game, let E,; v 77 be the event that
A outputs a circuit C with statements of length n” and witnesses of length v” and batch size T”. Then

Pr[A wins the soundness game] = Z Pr[A wins the soundness game A E, s 1/].
n’ €[ nmax|
0, e [Umax]
T,G[Tmax]
Thus there must exist some (1,9, T) € [Nmax] X [0max] X [Tmax] such that such that
(A)

Mmax * Ymax * Tmax

Pr[A(1") wins the soundness game A E, 7] >
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For each security parameter A, define n = n(1), v = v(Ad), and T = T(A) to be the smallest values
such that the above equation holds. We now construct a new (non-uniform) adversary A’ that func-
tions as a wrapper around A, but only outputs circuits with fixed statement and witness lengths and
a fixed batch size. Namely, A’ takes as input the security parameter 1* and the non-uniform advice
n=nA),o =0),T = T(A). A runs (C",T") « A(1"). If C’ does not have statements of length n
and witnesses of length v or 7" # T , then A’ aborts. Otherwise, A’ simply follows the behavior of A
(and outputs whatever A outputs). By construction,

¢ = Pr[A’(1") wins the soundness game]
e(d)

Mmax * max * Tmax

= Pr[A(1") wins the soundness game A E,, , 7] >

Thus A’ still has a non-negligible success probability ¢ in the soundness game. Furthermore, we note
that without loss of generality there exists some index i* = i*(A1) € [T] such that A’ cheats on index i*,
with probability at least ¢’/T. In other words, in the adaptive soundness game, algorithm A’ outputs a
batch of statements X = (xy,...,xr) and an accepting proof 7, and moreover, instance x;- is false. Since
T = poly(4), and ¢’ is non-negligible, we have that ¢’ /T remains non-negligible. Thus, for the remainder of
this proof, we will declare the adversary successful if it wins the adaptive soundness game by outputting
an accepting proof on X = (xy,...,xr) where x;- is a false instance for a fixed index i*. As argued here,
every adversary that breaks adaptive soundness implies an adversary that succeeds in this “fixed-index”
variant for some index i*. The index i* will be provided as non-uniform advice to all of our reduction
algorithms. We now define our sequence of hybrid experiments.

Hyb, : This is the real adaptive soundness experiment with a fixed index i*.

+ Adversary A, on input 1%, starts by outputting a Boolean circuit C: {0,1}" x {0,1}° — {0, 1},
and the batch size T.

« The challenger samples crs « Setup(1%, T, C) and gives crs to A.

« Adversary A outputs statements X = (x1, ..., x7) and a proof 7 = (J, z).

« The challenger outputs 1 if and only if (C, x;+) € Lsar and V(crs, X, 7) = 1.

Hyb, : Same as Hyb, except the challenger samples (hk, td) « H.SetupTD(14,1",i").

Hyb, : Same as Hyb, except the challenger additionally checks that j = F(kse|, (x;+,i")). Specifically, if
j # F(ksel, (x3+, 1)), then the challenger outputs 0.

Hyb, : Same as Hyb, except the challenger stops checking that (C, x;+) ¢ Lsar.

Hyb, : Same as Hyb, except the challenger defines a modified version of AggProof which additionally
has td, i* hard-coded as follows:

AggProof’ [C, crsg, hk, ke, k, td, i*](i, j, dig, xi, wi, 07, zi—1)

Inputs: index i, selection symbol j, hash value dig, statement x;, witness w;, opening o;, prior
proof z;_q

1: If C(x;, w;) = 0, output L.

2: If H.Verify(hk, dig, x;, i, 0;) = 0, output L.

3: If i = i* and j = F(kse|, (H.Extract(td, dig),i*)), output L.
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4: If j = F(kser, (x3, 1)), output L.

5: If i # 1 and VerProof|[crsg, k] (i — 1, j, dig, z;—1) = 0, output L.
6: Compute k; « F.Setup(1%%, 1"+ 17 F(k, j)).

7: Output z; = PRG.GenSeed(crsg; F(kj, (dig, i))).

When constructing the CRS, the challenger now computes

ObfAggProof « iO(1%, 1%, AggProof’ [C, crsg, hk, ke, k, td, i*]).

Hybs ; : Ford € [T] : Hyb, ; is the same as Hyb, except the challenger defines a modified version of
VerProof which additionally has k|, td, i*, and d hard-coded as follows:

VerProof’ [crsg, k, ks, td, i, d] (i, j, dig, z;)

Inputs: index i, selection symbol j, hash value dig, proof z;

1: Ifi* <i <dand j = F(ks, (H.Extract(td, dig), i*)), output 0.

2: Compute k;j « F.Setup(17°/F 17+ 1P F(k, j)).

3: Compute z = PRG.GenSeed(crsg; F(kj, (dig, i))).

4: Output 1 if PRG.Eval(crsg, z;) = PRG.Eval(crsg, z) and 0 otherwise.

The challenger also uses VerProof’[crsc, k, ke, td, i*, d] in place of VerProof|[crsg, k] in the proof
aggregation program. Specifically, in this experiment, the challenger defines a modified version of
AggProof as follows:

AggProof’ [C, crsg, hk, ksel, k, td, i*, d] (i, j, dig, x;, w;, 0y, zi—1)

Inputs: index i, selection symbol j, hash value dig, statement x;, witness w;, opening o;, prior
proof z;_q

If C(x;, w;) = 0, output L.

If H.Verify (hk, dig, x;, i, 0;) = 0, output L.

If i =i* and j = F(ksel, (H.Extract(td, dig),i*)), output L.

If j = F(ksel, (x3,1)), output L.

If i # 1 and VerProof”[crsg, k, ksel, td, i, d] (i — 1, j, dig, zi—1) = 0, output L.

Compute k; « F.Setup(14%%, 17+ 17, F(k, j)).

Output z; = PRG.GenSeed(crsg; F(kj, (dig, i))).

When constructing the CRS, the challenger now computes
ObfAggProof « iO(17% 15, AggProof’[C, crsc, hk, ke, k. td, i*, d])

and
ObfVerProof «— iO(1%, 1%, VerProof’ [crsc, k, ke, td, i, d]).
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We write Hyb,(A) to denote the output distribution of an execution of Hyb, with the adversary A. We
now argue that each pair of adjacent hybrid distributions is indistinguishable.

Lemma 6.5. Suppose Ilsgy satisfies (ZAEEE'H, negl(Asgn))-index hiding security for constant esgy € (0,1) and
security parameter Asgy = (0(A) + w(log 1))/, Then

| Pr[Hyb, (A) = 1] — Pr[Hyb,(A) = 1]| < negl(}).
Proof. Suppose there exists an infinite set Az C N such that for all A € A,
| Pr[Hyb, (A) = 1] = Pr[Hyby(A)]| > 5(4).

Let Ag = {(0(A) + w(log 1))/%% | X € Ag}. Since v is non-negative, Ag is also an infinite set. We define
a 2/t -time algorithm B which plays the index-hiding security game with Asgy = (v + w(log 1))/ by
running A with security parameter A. For each value of Asgy € Ag, we provide the associated value of
A € Az to B as non-uniform advice (if there are multiple such 1 € A # associated with a particular Asgp,
we pick the largest such A; note that since esgy < 1 and 0 > 0, it will always be the case that A < Aggp).

Algorithm 8

Inputs: 17584 from index-hiding challenger, 1* and i* as non-uniform advice
1: Run (C,T) « A(1Y).

2: Send the block size 1" and the index i* to the index-hiding challenger. The index-hiding chal-
lenger replies with the hash key hk.

3: Sample crsg, ksel, k and compute ObfAggProof, ObfVerProof as in Setup.
4: Let crs = (hk, crsg, ObfAggProof, ObfVerProof).
5: Run (¥, 1) « A(crs) and parse X = (xy,...,x7) and & = (j, z).

6: Output 1 if and only if (C, x;+) ¢ Lsar and V(crs, X, ) = 1.

Algorithm B has to check all possible witnesses for x;+, so it runs in time 2° - poly(1) < 22+ (logd) —

25t If the index-hiding challenger sampled hk « H.Setup(1*st, 1), then B perfectly simulates Hyb,
and outputs 1 with probability Pr[Hyb,(A) = 1]. If the index-hiding challenger sampled (hk,td) «
H.SetupTD(1%54, 17, i*), then B perfectly simulates Hyb, and outputs 1 with probability Pr[Hyb, (A) = 1].
Thus by index-hiding security we have that

| Pr[Hyb, (A) = 1] = Pr[Hyb,(A) = 1]| = SEHAdvg(Asen) < negl(Asen) = negl(4)
for sufficiently large Asep. O

£obf
Lemma 6.6. SupposeiO is (1,27 )-secure, Ilsgy satisfies statistical binding, and Ipprr satisfies punctured
£PRF
correctness and (1,27 %rF )-puncturing security for constants (eqps, €pre) € (0,1) and security parameters
Aobf = (A +n/)1/eobf Jppr = (A +n') /R Then
1
+1

Pr[Hyb,(A) = 1] > —— Pr[Hyb, (A) =1] - 9= Q).
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Proof. Consider an execution of Hyb, or Hyb,. For a fixed x* € {0, 1}", let E,~ be the event that A outputs
(x1, . - ., x7) such that x;» = x*. By definition, we can now write

Pr[Hyb,(A) =1]= > Pr[Hyb,(A) = 1A Ex]

x*e{0,1}n

(6.2)
Pr[Hyb,(A) = 1] = Z Pr[Hyb,(A) = 1 A Ey].
x*e{01}"
To prove the lemma, we show that for all x* € {0, 1}",
1 o(T)
Pr[Hyb,(A) =1 A Ex] > Tl Pr[Hyb,(A) =1 A Ex] = pree (6.3)

By a similar argument as in the proof of Lemma 4.6, this suffices to prove the claim. Fix any x* € {0, 1}".
If (C,x*) € Lsat, then

Pr[Hyb,(A) = 1 A Ex:] = 0 = Pr[Hyb, (A) = 1 A Ex-]. (6.4)

In this case, Eq. (6.3) holds. Thus, we only need to consider the case where (C, x*) ¢ Lsar. We proceed by
defining a sequence of intermediate hybrids.

Hybif) : Same as Hyb, except the challenger additionally checks that x;- = x* (i.e., that Ex+ occurred).
Hybif) : Same as Hybgf) except the challenger does the following. It computes
ks(;*’i*) « F.Puncture(kse, (x*, i*))

and defines a modified version of AggProof which additionally has x* hard-coded as follows:

AggProof, [C, crsg, hk, k, td, i*, ks(;l ' 13, j, dig, xi, wi, 04, zim1)
Inputs: index i, selection symbol j, hash value dig, statement x;, witness w;, opening o;, proof
Zi-1

1: If i = i* and H.Extract(td, dig) = x*, output L.

2: If C(x;, w;) = 0, output L.

3: If H.Verify(hk, dig, x;, i, 0;) = 0, output L.

4: If j = F(kser, (x3, 1)), output L.

5: Ifi # 1 and VerProof|[crsg, k] (i — 1, j, dig, z;—1) = 0, output L.

6: Compute k; « F.Setup(1%7%, 1"+ 12 F(k, j)).

7: Output z; = F(kj, (dig, i)).

Hybif) : Same as Hybixl*) except that after A outputs (X, ) where X = (x1,...,xr) and 7 = (j, z)), the

challenger samples j* < [T + 1] and additionally checks that j = j’.

Hybg*) : Same as Hybif) except the challenger instead checks that j = F(kse, (x5, 17)).
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Hybi’f:) : Same as Hybg) except the challenger reverts to obfuscating AggProof instead of AggProof,.
By definition,
Pr[Hyb(s ' (A) = 1] = Pr[Hyb, (A) = 1 A Ex]

x*)

(6.5)
Pr[Hyb (A) = 1] = Pr[Hyb,(A) = 1 A Ex].

We now consider each pair of adjacent distributions.

Eobf
Claim 6.7. Suppose iO is (1,27 )-secure for constant o € (0,1) and security parameter Aops = (A +
n’)l/f‘)bf and Ippgr satisfies punctured correctness. Then

| Pr[Hybl ) (A) = 1] - Pr[Hyb(s ) (A) = 1] < 1/2M".

Proof. We first show that AggProof[C, crsg, hk, ks, k] in Hybi’(‘:) and AggProof, [C, crsg, hk, ks(:”'*)’ k] in

Hybixl*) compute identical functionalities. For a particular input (i, j, dig, x;, w;, 0, zi—1) consider the fol-
lowing cases:

Case 1. Suppose i # i*. In this case, the two programs behave identically except that the latter is using
e
S

. '»so by punctured correctness, the two programs compute identical functionality.

Case 2. Suppose x; = x*. By assumption, (C, x*) ¢ LsaT, so there does not exist a witness w; such that
C(x;, w;) = 0, so both programs reject.

Case 3. Suppose i = i*, x; # x*, and H.Extract(td, dig) # x*. Like the first case, the two programs be-

)

have identically except that the latter is using k(xI ) soby punctured correctness, the two programs
se

compute identical functionality.

Case 4. Suppose i = i*, x; # x*, and H.Extract(td, dig) = x*. In this case AggProof, immediately out-
puts L. By statistical binding of IIsgy, since dig extracts to x* at position i, there does not exist an
opening o; such that H.Verify(hk, dig, x;, i, 0;) = 1 whenever x; # x*. As such, AggProof also rejects.

The claim now follows from iO security. Formally, suppose there exists an infinite set Az € N such that
forall A € A,
| Pr[Hyb" ) (A) = 1] - Pr[Hybly ) (A)]] > 1727

Let Ag = {(A+n/)/% | ) € Ag}. Since n’ is non-negative, Ag is also an infinite set. We define an effi-
cient algorithm B which plays the iO security game with Agps = (A + n’) /% by running A with security
parameter A. For each value of Ao € Ag, we provide the associated value of A € A # to B as non-uniform
advice (if there are multiple such A € A # associated with a particular A¢, we pick the largest such A; note
that since &, < 1 and n’ > 0, it will always be the case that A < Agps).

Algorithm B[x*]

Inputs: 1% from iO challenger, 1* and i* as non-uniform advice
1: Run (C,T) « A(1Y).
2: Sample (hk, td) < H.SetupTD(1%, 1", i*).

3: Sample crsg, ksel, k and compute ObfVerProof as in Setup.

49



4: Compute ks(exl*’i*) — F.Puncture(ks, (x*,i*)).

5: Construct the challenge programs
AggProof [C, crsg, hk, keel, k] and AggProof, [C, crsg, hk, k, td, i*, k", x*]

and send them to the iO challenger. The iO challenger replies with an obfuscated program
ObfAggProof.

6: Let crs = (hk, crsg, ObfAggProof, ObfVerProof).
7: Run (¥, 1) « A(crs) and parse X = (x1,...,x7) and 7 = (j, z).

8: Output 1 if and only if x* = x;+ and V(crs, (x1,...,x7), 1) = 1.

If the iO challenger obfuscates AggProof[C, crsg, hk, k|, k], then algorithm B perfectly simulates Hyb(x )

and outputs 1 with probability Pr[Hyb(x )(ﬂ) = 1]. Alternatively, if the iO challenger obfuscates the pro-
gram AggProof, [C, crsg, hk, k, td, i* k(x "), x*], then algorithm B perfectly simulates Hybixl*) and outputs

sel

1 with probability Pr[Hyb(x ) (A) = 1]. Thus by iO security we have that
| Pr[Hyb ) (A) = 1] = Pr[Hyb(S (A) = 1]] = i0Advg (Aops) < 1/2% = 17277 < 172" @

7 Pr[Hyby ) (A) = 11.

Claim 6.8. Pr[Hyb(x )(5{) =1] 2 575

Proof. The challenger samples the index j* <~ [T + 1] after A outputs (x 1), where 7 = (j, z). The output
in Hyb(x )(.?l) is 1 only if j € [T + 1]. Thus, with probability at least — T I>

this case, the output in Hybif)(ﬂ) is also 1 and the claim holds. O

it will be the case that j* = j. In

Claim 6.9. Suppose Ilpprr satisfies (1,2~ lii';F) -puncturing security for constants eprr € (0, 1) and security
parameter Apgr = (A +n')V/e°%F Then |Pr[Hyb )(ﬂ) =1] - Pr[Hyb(x )(ﬂ) =1]| < 1/2M",

Proof. Suppose there exists an infinite set Az € N such that for all A € A,
| PrlHybyy (A) = 1] = Pr[Hyby, (A)]] > 1/247.

Let Ag = {(A+n)Y/¥% | 1 € Ag}. Since n’ is non-negative, Ag is also an infinite set. We define an
efficient algorithm B which plays the puncturing security game with Apge = (A + n’)"/%* by running A
with security parameter A. For each value of Aprr € Ag, we provide the associated value of A € Az to B
as non-uniform advice (if there are multiple such A € A # associated with a particular Aprg, we pick the
largest such A; note that since eppr < 1 and n’ > 0, it will always be the case that A < Apgp).

Algorithm B[x*]

Inputs: 17°% from PPRF challenger, 1* and i* as non-uniform advice
1: Run (C,T) « A(1Y).

2: Sample (hk, td) « H.SetupTD(l’l, 17,i*), and crsg, kse| as in Setup.
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3: Compute ObfVerProof as in Setup.

4: Send input length 1", output length 17, and punctured point (x*, i*) to the PPRF challenger. The

PPRF challenger replies with the punctured key ks(:l*’i*) and a challenge value j' € {0, 1}'.

5: Compute ObfAggProof « iO(l’lﬂbf, 1%, AggProof | [C, crsg, hk, k, td, i*,ks(;*’i*),x*]).
6: Let crs = (hk, crsg, ObfAggProof, ObfVerProof).
7: Run (¥, 1) « A(crs) and parse X = (xy,...,x7) and 7 = (j, 2).

8: Output 1 if and only if x* = x;+, V(crs, X, 1) = 1, and j = j’.

If the PPRF challenger samples j’ <~ {0, 1}/, then B perfectly simulates Hybg) and outputs 1 with prob-
ability Pr[Hyb(x )(ﬂ) = 1]. If the PPRF challenger computes j* « F(kse|, (x*,i*)) then B perfectly simu-
lates Hybi”; and outputs 1 with probability Pr[Hyb(x )(5"{) = 1]. Thus by PPRF security we have that

| Pr[Hyb"y ) (A) = 1] - Pr[Hyb(y (A) = 1]| = PPRFAdvg (Apgr) < 1/2%0 = 1/2M0 < 1/9Mm

O
Claim 6.10. Suppose iO is (l,Z_AZE?f)—secure for constant eqops € (0,1) and security parameter Agps =
A+ n’)l/'Sobf and Ilppgrr satisfies punctured correctness. Then,
| Pr[Hyb\% (A) = 1] - Pr[Hyb{3 ) (A) = 1]| < 1/2"*".
Proof. This follows by an analogous argument as Claim 6.7. O

Combining Claims 6.7 to 6.10, we conclude that

Pr[Hyb, (A) = 1 A Ex-] = Pr[Hyb(s ) (A) = 1] by Eq. (6.5)

< Pr[Hyb(x )(ﬂ) =1] + e by Claim 6.7

< (T+1) - Pr[Hyb%y ) (A) = 1] + pym by Claim 6.8

< (T Pr[Hyb %’ ! ! by Clai

<( +1)-( r[Hy (A)=1]+ 2/1+n)+% y Claim 6.9
x 1 .

<(T+1)- (Pr[Hyb( )(ﬂ) =1]+ 2“”) + pye by Claim 6.10

2T
=(T+1) -Pr[Hyb,(A) =1 AEx] + *3 by Eq. (6.5).

21+n

Thus Eq. (6.3) holds for all x* where (C, x*) ¢ Lsar. Combined with Eq. (6.4), this means Eq. (6.3) holds for
all x* € {0, 1}". This proves Lemma 6.6. O

Lemma 6.11. Pr[Hyb,(A) = 1] > Pr[Hyb,(A) = 1].
Proof. The conditions for outputting 1 in Hyb, are a strict subset of those for outputting 1 in Hyb,. O

€obf
Lemma 6.12. Suppose iO is (1, 2 obf )-secure for constant e, € (0,1) and security parameter Agpf =
A+ n’)l/gobf and lggy satisfies statistical binding. Then

[Pr[Hyb,(A) = 1] = Pr[Hyb,(A) = 1]| < 1/2*.
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Proof. We first show that AggProof[C, crsg, hk, ks, k] in Hyb, and AggProof’[C, crsg, hk, ke, k, td, i*] in
Hyb, compute identical functionalities. For a particular input (i, j, dig, x;, w;, 0, zi—1), consider the follow-
ing cases:

Case 1. If i # i*, then the two programs behave identically.

Case 2. If i = i* and H.Extract(td, dig) = x;, then the condition j = F(kse|, (H.Extract(td, dig), i*)) in
AggProof’ is equivalent to checking j = F(ksel, (x;, 1)) and outputting L if this condition holds. This
is the same condition in AggProof, so the output of both programs is L in this case.

Case 3. If i = i* and H.Extract(td, dig) # x;, then by statistical binding of IIsgy, there does not exist an
opening o; where H.Verify(hk, dig, x;, i*, 0;) = 1. In this case, both programs reject.

The claim now follows from iO security. Formally, suppose there exists an infinite set Az € N such that
for all A € A, we have that

| Pr[Hyb, (A) = 1] — Pr[Hyb, (A)]| > 1/2".

Let Ag = {(A+n')/%b | 1 € Ag}. Ag is also an infinite set. We define an efficient algorithm B which
plays the iO security game with Agpr = (A + n’)!/% by running A with security parameter A. For each
value of Ao € Ag, we provide the associated value of A € A 4 to 8 as non-uniform advice (if there are
multiple such A € A # associated with a particular A,pf, we pick the largest such A; note that since & < 1
and n’ > 0, it will always be the case that 1 < Agpf).

Algorithm 8

Inputs: 1% from iO challenger, 1* and i* as non-uniform advice

—_

: Run (C, T) « A(11).
2: Sample (hk, td) < H.SetupTD (1%, 17, i*).
3: Sample crsg, ksel, k and compute ObfVerProof as in Setup.

4: Construct the challenge programs
AggProof[C, crsg, hk, ks, k] and AggProof’ [C, crsg, hk, ke, k, td, i*]

and send them to the iO challenger. The iO challenger replies with the obfuscated program
ObfAggProof.

5: Let crs = (hk, crsg, ObfAggProof, ObfVerProof).
6: Run (%, 7) « A(crs) and parse X = (xy,...,x7) and 7 = (j, 2).

7: Output 1 if and only if j = F(ksel, (x3+,i")) and V(crs, (xy, ..., x1), 7) = 1.

If the iO challenger obfuscates AggProof[C, crsg, hk, ks, k], then B perfectly simulates Hyb, and outputs
1 with probability Pr[Hyb,(A) = 1]. If the iO challenger obfuscates AggProof’[C, crsg, hk, ke, k. td, i*],
then B perfectly simulates Hyb, and outputs 1 with probability Pr[Hyb,(A) = 1]. Thus by iO security
we have that

| Pr[Hyb, (A) = 1] — Pr[Hyb, (A) = 1]| = iOAdvg (Aepf) < 1/2%5¢ = 1/2%*7 < 1/2%, O
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Lemma 6.13. SupposeiO is (1, Z_Azglf)f)-secure, IIpprr satisfies punctured correctness and (1, 2 e )-puncturing
security, Irprg is expanding, satisfies (1, negl(1))-pseudorandomness, and (1, 2~™™ ) -re-randomization secu-
rity for constants (eob, €prr» €m) € (0, 1) and security parameters Agps = (A+n")Vebf Appp = (A+n’)V/ePRe m =
(A+n")/em_Then for alld € [T],

Pr[Hyb; ;(A) = 1] = Pr[Hyb; ; ,(A) = 1] — negl(4).
where for notational convenience we define Hyb ; := Hyb,.

Proof. We proceed by defining a sequence of intermediate hybrids for each value of dig* € {0,1}"".

Hybg’d;i*) : Same as Hybé’d;’%;_l) (or Hybs ;_, if dig" = 0™) except the challenger computes

o j* « F(ksel, (H.Extract(td, dig"),i*))

o kj « F.Setup(177vF, 17+ 14 F(k, j*))

« kU « F.Puncture(k, j*)

« y* < PRG.Eval(crsg, PRG.GenSeed(crsg; F(kj=, (dig", d))))
* Ypase <— PRG.Eval(crsg, PRG.GenSeed(crsg))

o Krerand < F.Setup(17Prr, 1744, 1#)

where y is a bound on the number of bits of randomness the PRG.Rerandomize algorithm takes.
Then, the challenger defines the following modified version of VerProof” as follows:

VerPrOOfg [CFSG, ksel, td, i*, d, k('l), k] ) krerands dig*s j*s y*3 ybase] (is ja digs zl)

Inputs: index i, selection symbol j, hash value dig, proof z;

If i* <i<dand j = F(ks, (H.Extract(td, dig), i*)), output 0.
If j=j":letk; =kj.
Else: compute k; < F.Setup(177rF 17+ 12, F(kU") j)).
If i* <i=dand j= F(ks (H.Extract(td, dig),i*)):
. If dig < dig" : compute y; < PRG.Rerandomize(crsg, Ybase; F (krerand, (dig, 1))

« If dig = dig” : let y; = y*.
. If dig > dig" : compute y; < PRG.Eval(crsg, PRG.GenSeed(crsg; F(k;, (dig,i)))).
5: Else: Compute y; = PRG.Eval(crsg, PRG.GenSeed(crsg; F(k;j, (dig, i)))).

6: Output 1 if PRG.Eval(crsg, z;) = y; and 0 otherwise.

The challenger also uses VerProof;[crsc, ksel, td, i*, d, kU, k- krerand, dig”, J*, U", Upase| in place of
VerProof’ [crsg, k, ksel, td, i*, d] in the proof aggregation program. Specifically, in this experiment,
the challenger defines a modified version of AggProof” as follows:

AggProof, [C, crsg, hk, ksel, k, td, i, d, KUY, kj<, krerand> dig”, J*, Y™, Ybase] (i, j, dig, xi, wi, 03, zi—1)

Inputs: index i, selection symbol j, hash value dig, statement x;, witness w;, opening o;, prior
proof z;_q
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If C(x;, w;) = 0, output L.

If H.Verify(hk, dig, x;, i, 0;) = 0, output L.

If i = i" and j = F(kse, (H.Extract(td, dig), i*)), output L.
If j = F(ksel, (xi, 1)), output L.

If VerProof,[crsg, kel td, i*, d, kU™, ki, krerands dig”, 75 U™, Ypase | (i = 1, j, dig, zi—1) = 0
and i # 1, output L.

6: Compute k; < F.Setup(17°/F 17+ 1P F(k, j)).
7: Output z; = PRG.GenSeed(crsg; F(kj, (dig, i))).

When constructing the CRS, the challenger now computes
ObfAggProof « iO (1%, 1%, AggProof, [C, crsc, hk, keel, k, td, i, d, kY ko, Krerands dig”, 15 47, Ybase])
and

ObfVerProof « iO(1%, 1%, VerProof,[crsg, ke, td, i*, d, kY, kj, krerand> dig", J*, ¥", Ubase])-

Hybéﬂg) : Same as Hybgiii,g:) except the challenger samples ;- « F.Setup(177%, 1"* 1) instead of com-

puting kj- < F.Setup(1%°%, 17"+ 14 F(k, j*)).

Hybéfjii*) : Same as Hybgfiii*) except the challenger additionally computes

. k](.f“g*’d) « F.Puncture(k;, (dig", d))
dig",d L.
. kr(erfnd) «— F.Puncture(kerands (dig*, d))

and uses the punctured keys in place of k+, krerand-

Hybgi*) : Same as Hybgjjg;) except the challenger samples y* <— PRG.Eval(PRG.GenSeed(crsg)) instead

of computing y* = PRG.Eval(PRG.GenSeed(crsg; F(kj- (dig*,d)))).

Hybgi;%;) : Same as Hybéjj;i*) except the challenger samples y* «— PRG.Rerandomize(crsc, Ypase)-

Hybé,d;i*) : Same as Hybéfiii*) except the challenger computes

y* « PRG.Rerandomize(crsg, Ypase; F(krerand, (dig*, d))).

Hyb(dig*) : Same as Hyb(dig*) except the challenger reverts to using unpunctured keys kj+, kierand in place

5,d,7 5,d,6
(dig",d) ; (dig".d)
of the punctured keys k.= ™",k _ ="

Hyb;fj{;i*) : Same as Hyb;ig ) except the challenger reverts to computing

kjo < F.Setup(177%, 1"+ 14 F(k, j*))

instead of sampling kj+ « F.Setup (147, 17+ 14,
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We also define two more intermediate hybrids:

")
5.d,8
punctured key k") and defines a modified version of VerProof as follows:

Hybs 44 : Same as Hyb except the challenger reverts to using the unpunctured key k in place of the

VerProof3 [CFSG, td, i*, d, k, ksels krerand, ybase] (i’ js dig, Zi)

Inputs: index i, selection symbol j, hash value dig, proof z;

Compute x}. « H.Extract(td, dig).
Ifi* <i<dandj=F(ksl (x},i")), output 0.
Compute k; « F.Setup(l’lPRF, 17+ 1P, F(k, j)).

Ifi* <i=dand j=F(ksl (x5, i")), compute
y; < PRG.Rerandomize(crsg, Ypase; F(Krerand, (dig, 1))).

Else: Compute y; = PRG.Eval(crsg, PRG.GenSeed(crsg; F(kj, (dig, i)))).
6: Output 1 if PRG.Eval(crsg, z;) = y; and 0 otherwise.

bk

The challenger also uses VerProofs|crsg, td, i*, d, k, ksel, krerands Ubase | in place of the verification pro-
gram VerProof,[crsg, ksel, td, i*, d, KUY, kj, krerand> dig”, j*, Y*, Ypase] in the proof aggregation program.
Specifically, in this experiment, the challenger defines a modified version of AggProof, as follows:

AggProof,[C, crsg, td, i, d, k, ksel, krerand> Ubase] (i, J, dig, Xi, wi, 0y, zi—1)
Inputs: index i, selection symbol j, hash value dig, statement x;, witness w;, opening o;, prior
proof z;_q
1: If C(x;, w;) = 0, output L.
2: If H.Verify (hk, dig, x;, i, 0;) = 0, output L.
3: If i = i* and j = F(ksel, (H.Extract(td, dig),i*)), output L.
4: If j = F(ksel, (x5, 1)), output L.
5: If i # 1 and VerProofs[crsg, td, i*, d, k, ksel, krerand> Ybase | (i — 1, j, dig, zi—1) = 0, output L.
6: Compute k; « F.Setup (17#rF, 1"+ 1P, F(k, j)).
7: Output z; = PRG.GenSeed(crsg; F(kj, (dig, i))).

When constructing the CRS, the challenger now computes
ObfAggProof « iO (1%, 1%, AggProof ,[C, crs, td, i*, d, k, keel, Krerands Ybase])

and
ObfVerProof « iO(1%, 1%, VerProofs|crsg, td, i*, d, k, ksel, Krerands Ybase | )-

Hybs ;10 : Same as Hybs ;4 except the challenger samples ypase < Y (where Y is the output space im-
plicitly defined by crsg).

We now consider each pair of adjacent distributions.
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. ’ ’ Eobf
Claim 6.14. Fix any dig" € {0,1}" \ {0™ }. Suppose iO is (1, 27 Aobt )-secure for constant eops € (0,1) and
security parameter Aops = (A +n’)/% and Ilpprr satisfies punctured correctness. Then

| Pr[Hyb{E " (A) = 1] - Pr[Hyb{E ™) (A) = 1]] < 2/2M"".

Proof. To complete the proof, we first introduce an intermediate hybrid:

(dig"—1)

iHyb(dig*) : Same as Hyb(dig*) except the challenger defines AggProof as in Hyb, %

5,d,1 5,d,1
Suppose there exists an infinite set Az € N such that for all A € A,

. dig* dig* n'
| Pr[iHyb{$8 ) (A) = 1] - Pr[Hyb{S8 (A)]] > 1727

Let Ag = {(A+n')/% | 1 € Ag}. Since n’ is non-negative, Ag is also an infinite set. We define an effi-
cient algorithm B which plays the iO security game with Aops = (A +n’)"/ by running A with security
parameter A. For each value of Aop¢ € Ag, we provide the associated value of A € A # to B as non-uniform
advice (if there are multiple such A € A # associated with a particular Aps, we pick the largest such A; note
that since &, < 1 and n’ > 0, it will always be the case that A < Agps).

Algorithm B[d, dig"]

Inputs: 1% from iO challenger, 1* and i* as non-uniform advice

—_

: Run (C,T) « A(1Y).

2: Sample (hk, td) « H.SetupTD(l’l, 17,i*), and crsg, ksel as in Setup.

3: Sample ypase < PRG.Eval(crsg, PRG.GenSeed(crsg)), and kyerand <— F.Setup (177%F, 17+ 1.
4: Compute j* « F(ksel, (H.Extract(td, dig" — 1),i")).

5: Compute kU") « F.Puncture(k, j’), and kjr F.Setup(17°7F 17+ 14, F(k, j')).

6: Compute y’ < PRG.Rerandomize(crsg, Ybase; F(Krerands (dig™ — 1,d))).

7: Compute j* < F(ksel, (H.Extract(td, dig"), i*)).

8: Compute kU") « F.Puncture(k, j*), and kjo — F.Setup(17°rF 17+t 14, F(k, j*)).

9: Compute y* « PRG.Eval(crsg, PRG.GenSeed(crsc; F(kj+, (dig”, d)))).

10: Construct the obfuscated program ObfAggProof « iO(1%, 1%, P) where

P = AggProofz [C, crsg, hk, td, i*,d, k(j,), Ksels kj’, krerands d'g* -1, j/, y', ybase] .

11: Construct the following two challenge programs:

* V = VerPrOsz [Ca CrSG, td, i*, d, k(]/)a ksels kj’a krerand> dlg* - 13 j,s yl’ ybase]
° V’ = VerPrOsz [Ca CrSG, td, i*, d, k(]*)a ksel: k]*, kreranda dlg*a j*a y*’ ybase]

and send (V,V’) to the iO challenger. The iO challenger replies with the obfuscated program
Obf VerProof.
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12: Let crs = (hk, crsg, ObfAggProof, ObfVerProof).
13: Run (X, 7) « A(crs) and parse X = (x1,...,xr) and 7 = (J, 2).

14: Output 1 if and only if V(crs, X, 7) = 1 and j = F(ksey, (x;+,1%)).

We first show that the program V computed as in Hybé‘zgg_l) and the program V' computed as in Hy

compute identical functionalities. For a particular input (i, j, dig, z;) consider the following cases:

(dig")
bS,d,l

Case 1. If j = F(ksel, (H.Extract(td, dig),i*)) and i* < i < d, both programs output 0.

Case 2. If dig < dig" — 1 and j = F(ksel, (H.Extract(td, dig),i*)) and i* < i = d, then both programs
compute y; as
y; = PRG.Rerandomize(crsg, Yvase; F (Krerands (dig, 1))).

The remaining logic in the two programs is identical.

Case 3. If dig = dig” — 1 and j = F(ksel, (H.Extract(td, dig),i*)) = j’ and i* < i = d, the two programs
behave identically except V uses the hard-coded value

y’ = PRG.Rerandomize(crsg, Ybase; F (Krerands (dig” — 1,d))).

Case 4. If dig = dig" and j = F(kse, (H.Extract(td, dig),i*)) = j* and i* < i = d, the two programs
behave identically except V’ uses the hard-coded value

y* = PRG.Eval(crsg, PRG.GenSeed(crsg; F(kj-, (dig", d)))).

Case 5. If dig > dig" or j # F(ksel, (H.Extract(td, dig),i*)) or i* > i ori > d, the two programs be-
have identically except V may be using the hard-coded key k; = F.Setup(1%°%, 1"+ 145 F(k, 7))
and V' may be using the hard-coded key ks = F.Setup(1/%, 1"+ 14 F(k, j*)). Both compute
y; = PRG.Eval(crsg, PRG.GenSeed(crsc; F(kj, (dig, i)))) in an identical manner.

We conclude that the two programs output identical functionality. If the iO challenger obfuscates V, then 8

é(iiigg*_l) and outputs 1 with probability Pr[Hyb;‘Eg’;_l) (A) = 1]. Ifthe iO challenger
(dig")

obfuscates V’, then 8 perfectly simulates iHyb, ,° * and outputs 1 with probability Pr[iHyb;ddig;) (A) =1].
Thus by iO security we have that

perfectly simulates Hyb

[ PeliHyb{%5 () = 1] - Pr[Hyb{ ) (A) = 1]] = I0Advs (o) < 1/2288" = 1/22°7

By an analogous argument (where the reduction algorithm obtains ObfAggProof from the iO challenger),
we can show that for all sufficiently large A € N,

dig* . dig* n
| Pr[Hyb{% ) (A) = 1] - Pr[iHyb{S% ) (A)]| < 1/2%"

Thus by combining the above two relations, we conclude that
| Pr[Hyb ") (A) = 1] - Pr[Hyb{"E V' (A)]| < 2/2**"". o

5,d,1 5d,8

57



’ £obf
Claim 6.15. Let dig* = 0", Suppose iO is (1,2 % )-secure for constant eqp¢ € (0,1) and security parameter
Aobf = (A + n’)l/gobf and Ippgr satisfies punctured correctness. Then

dig* n’
| PrlHybgGS (A) = 1] = Pr[Hybs o, () = 1]] < 2/2"

Proof. This follows by an analogous argument as Claim 6.14. O

Claim 6.16. Fix any dig* € {0,1 " Suppose IIpprr satisfies 1,2_’1;];[;F -puncturing security for constants
y dig pp y4 g Yy
eprr € (0,1) and security parameter Apgr = (A + n’)l/EPRF. Then

dig* dig* n'
| Pr[Hyb{%8 ) (A) = 1] - Pr[Hyb{S8) (A1) = 1]] < 1/2™7".

Proof. Suppose there exists an infinite set Az C N such that for all A € A,

dig* dig* n'
| Pr[Hyb5 ) (A) = 1] - Pr[Hyb{ %) (A)]| > 1/2%"

Let Ag = {(A+n)Y/% | 1 € Ag}. Since n’ is non-negative, Ag is also an infinite set. We define an
efficient algorithm B which plays the puncturing security game with Apgr = (A + n’)"/%* by running A
with security parameter A. For each value of Aprr € Ag, we provide the associated value of A € Az to 8
as non-uniform advice (if there are multiple such A € A # associated with a particular Aprp, we pick the
largest such A; note that since eppr < 1 and n’ > 0, it will always be the case that A < Apgg).

Algorithm B[d, dig*]

Inputs: 1'% from PPRF challenger, 1* and i* as non-uniform advice

: Run (C,T) « A(1%).

—_

2: Sample hk « H.SetupTD(l’l, 1™,i*), and crsg, kse| as in Setup.
3: Compute j* « F(kse|, (dig”, i*))

4: Send input length 17, output length 17, and punctured point j* to the PPRF challenger. The
PPRF challenger replies with the punctured key /") and the challenge value r € {0,1}! from
PPRF challenger.

5: Compute kj» F.Setup(177rF, 17+ 14, ),

6: Compute y* = PRG.Eval(crsg, PRG.GenSeed(crsg; F(kj-, (dig*, d)))).
7: Sample ypase — PRG.Eval(crsg, PRG.GenSeed(crsg)).

8: Compute kyerand < F.Setup(lAPRF, 17+ 1K),

9: Compute ObfAggProof « iO (1%, 1%, P) where

P = AggPrOOf2 [Ca chG, hk; tda i*9 ksel: k(J*)a d; k]*, krerand; dlg*a j*5 y*a ybase] M

10: Compute ObfVerProof « iO(1%, 1%, V) where

V = VerPrOsz [C, chCu td: i*a k(J*)y d: ksela kj*: kreranda dlg*: j*a y*9 ybase] .
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11: Let crs = (hk, crsg, ObfAggProof, ObfVerProof).
12: Run (X, ) « A(crs) and parse X = (x1,...,xr) and 7 = (J, z).

13: Output 1 if and only if V(crs, X, 7) = 1 and j = F(ksey, (x;+,1%)).

We consider the two possibilities for the behavior for the PPRF challenger:

(dig")

« If the PPRF challenger samples r < {0, 1}”, then B perfectly simulates Hyb, 5

probability Pr[Hyb;d;g;)(ﬂ) =1].

and outputs 1 with

b dig)

« If the PPRF challenger computes r < F(k, (j*)) then 8 perfectly simulates Hyb, 5

with probability Pr[Hybéddigl*) (A) =1].

Thus by PPRF security, we have that

and outputs 1

| Pr[Hyb ") (A) = 1] - Pr[Hyb "€ (A) = 1]| = PPRFAdvg (Apre) < 1/2%R¢ = 1/22". o

’ €obf
Claim 6.17. Fix any dig* € {0,1}". Suppose iO is (1,27 )-secure for constant eops € (0,1) and security
parameter Aops = (A + n’)l/£0bf and Ilppgr satisfies punctured correctness. Then

dig* dig* n
| Pr[Hyb{%8 ) (A) = 1] - Pr[Hyb{S8 ) (A) = 1]] < 2/2™"".

Proof. This follows by an analogous argument as Claim 6.14. O

Claim 6.18. Fix any dig" € {0,1 " Suppose IIpprr satisfies 1,2_’1;]:2[;F -puncturing security for constants
y dig pp y4 g Yy
eprr € (0,1) and security parameter Apgr = (A + n’)Y/°%¥ Then

dig* dig* ”
| Pr[Hyb{8 (A) = 1] - Pr[Hyb{S8) (A) = 1]] < 1727,

Proof. This follows by an analogous argument as Claim 6.16. O

Claim 6.19. Fix any dig* € {0, 1}". Suppose Irprg satisfies (1,27 )-re-randomization security for con-
stant e, € (0,1) and re-randomization parameter m = (A +n’)'/¢m. Then

dig* dig* 4
| Pr[Hyb{%8 ) (A) = 1] - Pr[Hyb{S8 ) (7) = 1]] < 1/2™7".

Proof. Suppose there exists an infinite set Az € N such that for all 1 € A,

" o ,
| Pr[Hyb{% ) (A) = 1] - Pr[Hyb{"% ) (A)]| > 1/2%"

Let m(1) = (A + n)/ém. We define an efficient algorithm B which plays the re-randomization security
game with m = (1 + n’)/%m by running A with security parameter A.

Algorithm B[d, dig"]

Inputs: crsg < G.Setup (14, 1™), Ypase, y* from re-randomization challenger, i* as non-uniform advice
1: Run (C,T) « A(1Y).
2: Sample hk < H.SetupTD(14, 1%, i*), and ks as in Setup.

3: Compute j* « F(kg, (dig*,i*)) and k;+ « F.Setup(147%F, 17+ 14),
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4: Compute Kyerand < F.Setup(147%F, 17 +4 1),

(dig*.d)

(_
rerand

5: Compute kU « F.Puncture(k, j*), k;fig*’d) «— F.Puncture(k;-, (dig*,d)), and k
F.Puncture(krerand, (dig*, d)).

6: Compute ObfAggProof « iO (1%, 1%, P) where

i) dig",d dig"d) . o« o x
P := AggProof,[C, crsc, hk, keel, kY7, i*, d, kj(.* ® ),kr(er'agnd 2 dig™, j*, ", Ubasel)-

7: Compute ObfVerProof « iO(l’IObf, 1%,V where

V = verPrOsz [Ca CrsG: hka k(]*)’ i*a da kSeI’ kj(flg*,d)> k(d[g*,d) dig*: j*7 y*7 ybase])-

rerand

8: Let crs = (hk, crsg, ObfAggProof, ObfVerProof).

9: Run (X, 7) « A(crs) and parse X = (x1,...,x7) and 7 = (j, z).

10: Output 1 if and only if V(crs, X, 1) = 1 and j = F(kse, (H.Hash(hk, %), i*)).

If the re-randomization challenger samples y* < PRG.Eval(crsg, PRG.GenSeed(crsg)), then B perfectly

;jji*) égi)(ﬂ) = 1]. If the re-randomization chal-
(dig")

lenger samples y* < PRG.Rerandomize(crsg, Ybase), then B perfectly simulates Hyb, =

simulates Hyb and outputs 1 with probability Pr[Hyb

and outputs 1

with probability Pr[HybécZ*c’:) (A) = 1]. Thus by re-randomization security we have that
|Pr[Hyb;<2‘(’?)(ﬂ) =1] - Pr[Hybé‘j‘i)(ﬂ) = 1]| = RerandAdvg(m) < 1/2™m = 1/2**", o

Claim 6.20. Fix any dig* € {0,1}". Suppose Ippge satisfies (1, Z_APEEF)-puncturing security for constants
eprr € (0,1) and security parameter Aprr = (A + n’) /R Then

dig” dig” ’
| Pr[Hyb{E ) (A) = 1] = Pr[Hyb{SE) (A) = 1]] < 172",

Proof. This follows by an analogous argument as Claim 6.16. O

’ €obf
Claim 6.21. Fix any dig" € {0,1}". Suppose iO is (1,2 %br )-secure for constant o € (0,1) and security
parameter Aops = (A + n’)l/EObf and Ippgr satisfies punctured correctness. Then

d‘ * d * ’
| Pr[Hyb{5 ) (A) = 1] - Pr[Hyb{S2 ) (A) = 1]] < 2/2M""

Proof. This follows by an analogous argument as Claim 6.14. O

Claim 6.22. Fix any dig* € {0,1}". Suppose Ippgr satisfies (1, Z_AggﬁF)-puncturing security for constants
eprr € (0,1) and security parameter Apge = (A + n’)Y/°%¥ Then
(dig") _ 11 (dig") _ A+n’
|Pr[Hyb5’d’8 (A) =1] Pr[Hybs’d’7 (A)=1]| <1/2M".

Proof. This follows by an analogous argument as Claim 6.16. ]
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’ Eobf
Claim 6.23. Fixdig* = 1. Suppose iO is (1,2 %br )-secure for constant eqpe € (0,1) and security parameter
Aobf = (A + n’)l/gobf and Ippgr satisfies punctured correctness. Then

| PrlHybs go(A) = 1] = Pr[Hybs (A) = 1]] < 2/2*"".
Proof. This follows by an analogous argument as Claim 6.14. m]
Claim 6.24. Suppose that Ilgpgg is (1, negl(A))-pseudorandom. Then

| Pr[Hybs ;1o(A) = 1] = Pr[Hybs ;4(A) = 1]| < negl(4).

Proof. We define an efficient algorithm 8B which plays the pseudorandomness security game with security
parameter A by running A with security parameter A.

Algorithm B[d]

Inputs: crsg < G.Setup(1%, 1), yp.c. from challenger, i* as non-uniform advice

: Run (C, T) « A(11).

—_

2: Sample hk « H.SetupTD(l’l, 17,i*), and ks as in Setup.

3: Compute Kyerand < F.Setup(147%F, 17+ 1),

4: Compute ObfAggProof « iO (170 15, AggProof,[C, crsg, hk, ksel, k. i*, d, krerand, Ybase | )-
5: Compute ObfVerProof « iQ(1%, 1%, VerProofs[C, crsg, hk, ksel, k, i*, d, krerand» Ybase])-
6: Let crs = (hk, crsg, ObfAggProof, ObfVerProof).

7: Run (¥, 1) « A(crs) and parse X = (x1,...,x7) and 7 = (j, 2).

8: Output 1 if and only if V(crs, X, ) = 1 and j = F(kse, (H.Hash(hk, X),i")).

If the challenger samples yp,se <— PRG.Eval(crsg, PRG.GenSeed(crsg)), then B perfectly simulates Hybs 4
and outputs 1 with probability Pr[Hyb; ; ,(A) = 1]. If the challenger samples ypase uniformly from Y, then
B perfectly simulates Hyb; ;,, and outputs 1 with probability Pr[Hybs ;,,(A) = 1]. Thus we have that

| Pr[Hybs 4,0(A) = 1] = Pr[Hybs 4,(A) = 1]| < negl(4). m|

Claim 6.25. Suppose that IIrprg satisfies correctness and re-randomization correctness and is expanding.
Then
| Pr[Hybs 4 (A) = 1] — Pr[Hyb; 4 ,o(A) = 1]| < 1/2%).

Proof. We show that with overwhelming probability over the choice of ypase, the programs
AggProof,[C, crsg, hk, ksel, k, i*, d, krerands Ybase]) and VerProofs|crsg, ksel, k, i, d, krerands Ybasel)
which the challenger obfuscates in Hybs ; ;, and
AggProof’ [C, crsg, hk, k,i*,d] and VerProof’[crsc, k,i",d]

which the challenger obfuscates in Hyb; ; compute identical functionalities, respectively.
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The verification programs. We first consider VerProof; and VerProof’. For a particular input (i, j, dig, z;),
consider the following cases:

Case 1. If i # d or j # F(kse, (dig, i)), then VerProofs; and VerProof’ behave identically.

Case 2. If i = d and j = F(ks, (dig, 1)), then VerProof’ always outputs 0. Consider the behavior in
VerProofs. By construction, VerProof; first computes

y; = PRG.Rerandomize(crsg, Yvase; F(Krerands (dig, i)))

and outputs 1 if and only if PRG.Eval(crsg, z;) = y;. Note that by re-randomization correctness, this
never occurs if ypase is not in the image of PRG.Eval(crsg, -).

Since | Y| > 220 . | Z] and ypase & Y, we have that
Pr[3z € Z : PRG.Eval(crsg, z) = Ypase] < 1/290).

so with probability 1—1/2%%) VerProofs and VerProof’ also behave identically for all inputs which fall into
case 2. In other words, with overwhelming probability over the choice of ypase, VerProofs and VerProof’
compute identical functionality.

The proof-aggregation programs. Next, we consider the proof-aggregation programs AggProof, and
AggProof’. The only difference between these is that AggProof, calls VerProof; while AggProof’ calls
VerProof’. By our above argument, the verification programs VerProof3 and VerProof’ compute identical
functionality, so the same extends to AggProof, and AggProof’. The claim now follows by iO security,
using an analogous argument as in 6.14. O

Proof of Lemma 6.13. We now return to the proof of Lemma 6.13. By Claims 6.14 to 6.25 and the
triangle inequality, we can now write

| Pr[Hybs 4(A) = 1] - Pr[Hybs 4, (A) = 1]]
< | Pr[Hyb; 4(A) = 1] = Pr[Hybs 4 1o (A) = 1]|
+ |Pr[Hyb5!d’10(ﬂ) =1] - Pr[HYbs,dﬁ(ﬂ) = 1]|

+|Pr[Hybs 4o (A) = 1] = Pr[Hyb{") ) (A) = 1]|

8
dig* dig”
+ Z Z |Pr[Hybg’di,)(&’() =1] —Pr[Hybé’di)_)l(ﬂ) = 1|
dig*e{0,1}7" =2
dig” dig*—
Y | Pr[Hyb{$8 (A) = 1] - Pr[Hyb{%E ™ (A) = 1]|
dig*e{0,1}7"\{o""}

+|Pr[Hyb(’, ) (A) = 1] = Pr[Hybs 4_, (A) = 1]|

5,d,1
1 Lo 2 2
Q1) + negl(/l) + oA+n’ ' oA+n ' oA+n’ + oA+n’
—— ——— —— ——— ————— ——

Claim 6.25 Claim 6.24 Claim 6.23 Claims 6.16 to 6.22 Claim 6.14 Claim 6.15

which is bounded by a negligible function. Lemma 6.13 holds. O
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Lemma 6.26. Pr[Hyb,(A) = 1] = 0.

Proof. In Hybs 1, the program VerProof, and thus ObfVerProof, and thus V, outputs 0 on all inputs where
i =Tand j = F(ksel, (x}.,i*)), where x}. «— H.Extract(td, H.Hash(x)). By extraction correctness of IIsg, it
cannot be the case that V(crs, X, 7) = 1 and j = F(ksel, (xi+, i*)). Therefore the challenger in this experiment
always outputs 0. ]

Proof of Theorem 6.4. Theorem 6.4 now follows from Lemmas 6.5, 6.6, and 6.11 to 6.13. Specifically,
there exist negligible functions J;, d,, 93 such that

Pr[Hyb,(A) = 1] < Pr[Hyb,(A) = 1] + §:(4) by Lemma 6.5
< (T +1) - Pr[Hyb,(A) = 1] + 61 (A) + 82(4) by Lemma 6.6
< (T +1) - Pr[Hybs(A) = 1] + 61(A) + 82(4) by Lemma 6.11
<(T+1) (Pr[Hyb4(ﬂ) =1]+ 2%) +61(A) +52(A) by Lemma 6.12

< (T+1) (Pr[Hyb; +(A) =1]+ T - §3(A) +ﬂ+51(/1)+52(/1) by Lemma 6.13,
y 5T 2,1

where we have used the fact that Hybs , = Hyb,. By Lemma 6.26, we have that Pr[Hybs ;(A) = 1] = 0.
Since T = poly(4) and 64, &,, 83 = negl(A), we conclude that Pr[Hyb,(A) = 1] = negl(1), which completes
the proof of adaptive soundness. O

Theorem 6.27 (Perfect Zero-Knowledge). Suppose iO is correct. Then Construction 6.1 satisfies perfect zero-
knowledge.

Proof. We construct the simulator as follows:

o So( 14T, C): On input the security parameter 1%, the batch size T, and the Boolean circuit C: {0,1}"x
{0,1}? — {0, 1}, the simulator samples the common reference string crs « Setup(1*, T, C) exactly
as in the real scheme. Let hk, crsg, ks, k be the underlying hash key, PRG parameters and PPRF keys
sampled in Setup. The simulator outputs the crs along with the state st = (hk, crsg, keI, k).

o Si(st, (x1,...,x7)): On input the state st = (hk, crsg, ksel, k) and statements (xy, ..., xr), the simu-
lator computes j; < F(kgel, (x;, 1)) and selects the smallest j € [T +1] such that j # j; foralli € [T].
It then computes k; < F.Setup (1% 1"+ 1%, F(k, j)) and zr = PRG.GenSeed(crsg; F(kj, (dig,T))).
The simulator outputs 7 = (j, z7).

Take any Boolean circuit C: {0,1}" x {0,1}* — {0, 1}, batch size T, and statements x, ..., xr and wit-
nesses wy, . . ., wr such that C(x;, w;) = 1 for all i € [T]. First, observe that the common reference string
crs output by Sy(1%, T, €) is distributed identically to Setup(1%, T, C). It now suffices to consider the proof.
By construction, the proof 7 = (j, zr) output by P(crs, (x1,...,x7), (W1,..., wr)) is obtained by evaluat-
ing ObfAggProof on inputs (i, j, dig, x;, Wi, 04, zi+1). By correctness of iO and the definition of AggProof
and P, this means that j is the smallest value in [T + 1] such that j # F(kse, (x;,i)) for alli € [T] and
that zr = PRG.GenSeed(crsg; F(kj, (dig, T))). Thus the proof 7 = (j, zr) output by S;(st, (x1,...,x7)) is
distributed identically to P(crs, (x1, ..., x7), (W, ..., wr)). O
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