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Abstract

A succinct non-interactive argument (SNARG) for NP allows a prover to convince a verifier that
an NP statement G is true with a proof whose size is sublinear in the length of the traditional NP
witness. Moreover, a SNARG is adaptively sound if the adversary can choose the statement it wants
to prove a�er seeing the scheme parameters. Very recently, Waters and Wu (STOC 2024) showed
how to construct adaptively-sound SNARGs for NP in the plain model from falsifiable assumptions
(specifically, sub-exponentially-secure indistinguishability obfuscation, sub-exponentially-secure one-
way functions, and polynomial hardness of discrete log).

We consider the batch se�ingwhere the proverwants to prove a collection of) statementsG1, . . . , G)
and its goal is to construct a proof whose size is sublinear in both the size of a single witness and the
number of instances ) . In this se�ing, existing constructions either require the size of the public pa-
rameters to scale linearly with) (and thus, can only support an a priori bounded number of instances),
or only provide non-adaptive soundness, or have proof size that scales linearly with the size of a sin-
gle NP witness. In this work, we give two approaches for batching adaptively-sound SNARGs for NP,
and in particular, show that under the same set of assumptions as those underlying the Waters-Wu
adaptively-sound SNARG, we can obtain an adaptively-sound SNARG for batch NP where the size of
the proof is poly(_) and the size of the CRS is poly(_ + |� |), where _ is a security parameter and |� | is
the size of the circuit that computes the associated NP relation.

Our first approach builds directly on top of the Waters-Wu construction and relies on indistin-
guishability obfuscation and a homomorphic re-randomizable one-way function. Our second approach
shows how to combine ideas from the Waters-Wu SNARG with the chaining-based approach by Garg,
Sheridan, Waters, and Wu (TCC 2022) to obtain a SNARG for batch NP.

1 Introduction

Succinct non-interactive arguments (SNARGs) for NP allow an efficient prover to convince a verifier that
an NP statement G (with associated witness F ) is true with a proof whose size scales with > ( |G | + |F |).
�e main security requirement is computational soundness which says that a computationally-bounded
prover should not be able to convince a verifier of a false statement. SNARGs were first constructed in the
random oracle model [Kil92,Mic94]. Many works have subsequently shown how to construct SNARGs in
the plain model assuming the prover and the verifier have access to a common reference string (CRS).

Until recently, SNARGs for NP in the CRS model have either relied on non-falsifiable cryptographic as-
sumptions (c.f., [Gro10,BCCT12,DFH12,Lip13,GGPR13,BCI+13,BCPR14,BISW17,BCC+17,ACL+22,CLM23]
and the references therein) or satisfied the weaker notion of non-adaptive soundness [SW14], where sound-
ness only holds against an adversary that declares its false statement before seeing the CRS. In contrast,
the standard or “adaptive” notion of soundness allows the malicious prover to choose the statement a�er
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seeing the CRS. Very recently, several works gave the first adaptively-sound SNARGs for NP using in-
distinguishability obfuscation (8O) and either a sub-exponentially-secure re-randomizable one-way func-
tion [WW24a] or a sub-exponentially-secure lossy function [WZ24].1 Moreover, in the designated-verifier
model where a secret key is needed to verify proofs, the work of [MPV24] shows that the original Sahai-
Waters scheme (based on 8O and one-way functions) [SW14] is also adaptively sound. In conjunction with
constructions of 8O from falsifiable cryptographic assumptions [JLS21,JLS22], these works provide the first
adaptively-sound SNARGs for NP from falsifiable assumptions.

Batch arguments. Existing constructions of adaptively-sound SNARGs for NP focus on the single-
statement se�ing where the prover constructs a proof for a single statement. In many se�ings (e.g., incre-
mentally verifiable computation [Val08] or proof-carrying data [CT10]), a prover might have a batch of )
(possibly correlated) statements G1, . . . , G) that it wants to prove to the verifier, and the goal is to construct
a single short proof (whose size is sublinear in ) and in the size of the associated NP relation) of all )
statements. �ere are two main approaches to constructing batch arguments:

• Using BARGs for NP: Non-interactive batch arguments (BARGs) for NP [KPY19, CJJ21, KVZ21,
CJJ22] provide one possible approach. Namely, a BARG for NP allows a prover to prepare a proof
on ) statements with a proof whose size scales sublinearly (ideally, polylogarithmically) with the
number of statements) . Moreover, many recent works have shown how to construct BARGs for NP
from a broad range of cryptographic assumptions [CJJ21, KVZ21, CJJ22,WW22, HJKS22, DGKV22,
PP22, CGJ+23, KLV23, KLVW23]. However, in these existing constructions, the size of the proof
grows with the size of the circuit that decides a single statement, and the goal is to amortize the
proof size across the number of statements. Allowing the proof size to grow with the size of the NP
relation avoids black-box separations that pertain to SNARGs for NP [GW11]. In this work, we are
interested in batching SNARG proofs, where the size of the proof is sublinear in both the number
of statements and size of the circuit computing the NP relation; such arguments are said to be fully
succinct [GSWW22]. �e previous work of [GSWW22] showed how to construct fully succinct
BARGs for NP using 8O and one-way functions, but the construction only achieved non-adaptive
soundness.

• Using SNARGs for NP: Another approach to constructing a fully succinct SNARG for a batch
language is to view the batch statement (G1, . . . , G) ) as a single NP statement for a product language
(i.e., the statement (G1, . . . , G) ) is in the language if for each 8 ∈ [) ], there exists a valid witness
F8 for G8 ), and then use a SNARG for NP to prove the product language. �is approach achieves
adaptive soundness if we instantiate the underlying SNARG with an adaptively-sound SNARG for
NP [WW24a,WZ24]. However, the size of the CRS in existing adaptively-sound SNARGs [WW24a,
WZ24] grows polynomially with the size of the NP relation circuit. �us, if we directly apply an
existing adaptively-sound SNARG for NP to a batch language, the NP relation circuit would take all
) statements as input, and the size of the CRS scales polynomially with ) . �is means the CRS is
large and moreover, there is an a priori bound on the number of statements that can be batched. In
this work, our goal is to support aggregating an arbitrary polynomial number of (adaptively-sound)
proofs on NP statements.

1A subsequent work [WW24b] also shows how to construct an adaptively-sound SNARG using 8O and sub-exponentially-secure
one-way functions without any additional algebraic assumptions.
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Why not compose? If we se�le for non-adaptive soundness, the work of [GSWW22] shows that we can
construct a fully succinct SNARG for batch languages by composing a standard (somewhere-extractable)
BARG for NP with a SNARG for NP. Namely, a proof on statements (G1, . . . , G) ) is a BARG proof that
there exists SNARG proofs c1, . . . , c) for the statements G1, . . . , G) . In this case, the NP relation associated
with the BARG is the SNARG verification circuit, which is small by construction. Moreover, if the BARG is
somewhere extractable [CJJ22]2 and the SNARG is non-adaptively sound, then it is straightforward to show
that the composed scheme satisfies non-adaptive soundness. While we can replace the underlying SNARG
in this composition with an adaptively-sound construction, we are not able to prove adaptive soundness
for the composition. �e issue is that if we rely on somewhere extractability for the BARG, then the re-
duction needs to “know” the index of the false statement and program it into the CRS; this is not possible
when the statements are adaptively chosen.

Alternatively, we could consider a reduction algorithm that guesses the index of the false statement.
Since the index is computationally hidden from the malicious prover, the hope would be that a prover
that consistently chooses statements (G1, . . . , G) ) that evades the guess (i.e., where the index of the false
statement is different from the guessed index) must be breaking index hiding of the somewhere extractable
BARG.�e problem is that checking whether the adversary successfully evaded the guess (and thus, broke
index hiding) is not an efficient procedure (it requires deciding the underlying NP statement). We could
handle this by complexity leveraging and relying on a super-polynomial time reduction that is able to de-
cide the underlying NP relation. However, if we do so, then the size of the resulting BARG starts scaling
with the size of the NP relation, and the resulting construction is no longer succinct.

�is work. In this work, we show how to construct adaptively-sound SNARGs for batch languages with
almost no overhead compared to the single-statement se�ing. Specifically, we show how to leverage the
adaptively-sound SNARG for NP from [WW24a] to obtain an adaptively-sound SNARG for batch lan-
guages with only polylogarithmic additive overhead in the number of statements ) . We summarize our
instantiation in the following (informal) theorem:

�eorem 1.1 (Informal). Let _ be a security parameter. Assuming (1) the polynomial hardness of computing

discrete logs in a prime-order group, (2) the existence of a sub-exponentially-secure indistinguishability obfus-

cation scheme for Boolean circuits, and (3) the existence of a sub-exponentially-secure one-way function, there

exists an adaptively-sound SNARG for batch NP with the following properties:

• Preprocessing SNARG: Let� : {0, 1}= × {0, 1}E → {0, 1} be the circuit that computes the NP relation

(where = is the statement size and E is the witness size). �e size of the common reference string for

proving up to ) ≤ 2_ statements is poly(_ + |� |).

• Proof size: A proof on a batch of ) ≤ 2_ statements (G1, . . . , G) ) has size poly(_).

Additionally, the SNARG is perfect zero-knowledge.

�eGentry-Wichs separation. �e classic result of Gentry andWichs [GW11] gives a barrier for con-
structing adaptively-sound SNARGs for NP from falsifiable assumptions where the running time of the
reduction is insufficient to decide the underlying NP language. Consequently, existing constructions of

2A BARG is somewhere extractable if the CRS can be programmed on a (hidden) index 8 ∈ [) ]. �en, given a valid BARG proof
c on a batch of statements (G1, . . . , G) ), there is an efficient extraction algorithm that recovers a witness F8 for G8 . �e special
index 8 is computationally hidden by the CRS. Somewhere extractable BARGs can be constructed from most number-theoretic
assumptions [CJJ21,KVZ21,CJJ22,WW22,HJKS22,DGKV22,PP22,CGJ+23,KLV23,KLVW23].
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adaptively-sound SNARGs for NP [WW24a,WZ24,MPV24] all rely on complexity leveraging and super-
polynomial-time security reductions. In these constructions, the cost of the complexity leveraging is in-
curred in the size of the CRS. In the se�ing of batch NP, the time it takes to decide a batch of) statements
(G1, . . . , G) ) is only a factor of ) greater than the time it takes to decide a single statement. As such, ob-
taining an adaptively-sound SNARG for batch NP would only increase the running time of the reduction
algorithm by a factor of) . In this case, the size of the CRS (or the proof) would only need to increase by a
factor of log) . In contrast, for a general NP relation where the statements and witnesses are a factor of )
longer, the reduction may have to run in time that is greater by a factor 2) to decide the larger language,
which would lead to a CRS that is larger by a factor of poly() ) rather than poly(log) ).

1.1 Technical Overview

We begin by describing the Waters-Wu [WW24a] adaptively-sound SNARG for NP based on indistin-
guishability obfuscation (8O) and re-randomizable one-way functions. �roughout, we consider the lan-
guage of Boolean circuit satisfiability, where the Boolean circuit� : {0, 1}=×{0, 1}E → {0, 1} is fixed ahead
of time (i.e., part of the CRS). A statement G ∈ {0, 1}= is true if there exists a witnessF ∈ {0, 1}E such that
� (G,F) = 1.

Building blocks. In addition to 8O, the [WW24a] construction requires a puncturable pseudorandom
function (PRF) [BW13,KPTZ13,BGI14], and a re-randomizable one-way function:

• In a puncturable PRF F(:, ·), the holder of the secret key : can “puncture” the key at an input point G∗

to create a punctured key : (G
∗ ) . �e punctured key : (G

∗ ) can be used to evaluate F(:, G) on all points
G ≠ G∗. However, the value F(:, G∗) at the punctured point remains pseudorandom even given the
punctured key : (G

∗ ) .

• �e second ingredient they require is a re-randomizable one-way function (OWF) 5 . �is is a OWF
equipped with a statistical re-randomization algorithm that takes as input a OWF challenge~base and
produces a fresh challenge ~ (sampled uniformly at random from the challenge space of the OWF).
Moreover, given the re-randomization randomness together with a solution to the re-randomized
statement, there is an efficient algorithm for recovering a solution to the original OWF challenge
~base. In other words, the re-randomization can be viewed as a (perfect) random self-reducibility
property on the OWF.

�eWaters-Wu construction. In theWaters-Wu construction, the CRS consists of two obfuscated pro-
grams: (1) a “solution-generator” programGenSol used to construct proofs; and (2) a “challenge-generator”
program GenChall used to verify proofs. �e solution-generator GenSol has the circuit � (for the NP re-
lation) together with three puncturable PRF keys :sel, :0, :1 hard-wired inside.

�e solution-generator program takes as input a bit1 ∈ {0, 1}, a statement G , and a witnessF . It checks
that 1 ≠ F(:sel, G) and � (G,F) = 1. If so, it outputs the solution F(:1, G); the proof is the pair (1, F(:1, G)).
Next, the challenge-generator program takes as input a bit 1 and a statement G and outputs the challenge
~1 = 5 (F(:1, G)). To verify a proof c = (1, I) on a statement G , the verification algorithm first runs the
challenge-generator program on input (1, G) to obtain a challenge ~. �en it checks that 5 (I) = ~.

�e idea is that the solution-generator program only outputs one of the two possible solutions associ-
ated with each statement G . Moreover, which one it chooses is determined pseudorandomly by evaluating
the selector PRF F(:sel, G). We will refer to the challenge ~1 associated with 1 = F(:sel, G) as the “on-path”
challenge for G and the challenge ~1 associated with 1 = 1 − F(:sel, G) as the “off-path” challenge for G .
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In the Waters-Wu construction, the GenSol program is constructed so it only provides solutions to the
off-path challenge and never generates a solution to an on-path challenge. �en, in the proof of adaptive
soundness, [WW24a] show how to replace the on-path challenge for every statement with a re-randomized
challenge of a one-way function. �e hope is that if the malicious prover ever produces a proof for a false
statement G that corresponds to the on-path challenge, then it successfully breaks the one-way function.
Finally, the [WW24a] analysis appeals to the fact that for a false statement G , the value of the selector
PRF F(:sel, G) is computationally unpredictable to the adversary; as such, with probability close to 1/2, the
prover provides a solution to the on-path challenge, which completes the adaptive soundness analysis. We
now give the formal description of the GenSol and GenChall programs:3

GenSol(1, G,F)

• If � (G,F) = 0, output ⊥.
• If 1 = F(:sel, G), output ⊥.
• Output I = F(:1, G).

GenChall(1, G)

• Output ~ = 5 (F(:1, G)).

To construct a proof for a statement G and witness F , the prover simply runs the (obfuscated) GenSol
program on input (0, G,F) and input (1, G,F). GenSol will output ⊥ on one of these inputs, and an OWF
preimage I = F(:1, G) on the other. �e proof c = (1, I) consists of the bit 1 and the preimage I. To check
the proof c , the verifier simply runs the (obfuscated) GenChall program on input (1, G). GenChall will
output a OWF challenge ~ = 5 (F(:1, G)), and the verifier checks that 5 (I) = ~.

We now sketch the proof of soundness from [WW24a]. As mentioned above, the proof proceeds in
a sequence of hybrid experiments. First, they argue that with probability 1/2, the malicious prover will
output an on-path solution as its proof; this is because for a false statement G , it is unable to predict the
value of F(:sel, G). Next, they gradually replace the on-path challenge for every statement program with
a re-randomized one-way function challenge. �is way, a solution to any on-path challenge implies a so-
lution to the original one-way function challenge. Since the GenSol program never outputs an on-path
solution, this does not affect completeness. However, if the prover ever produces an on-path solution, then
it successfully inverts the one-way function and adaptive soundness follows. We now sketch the sequence
of hybrids from [WW24a]:

• Hyb0: �is is the real adaptive soundness game. �e challenger outputs 1 only if the adversary A
produces an accepting proof c = (1, I) for a false statement G : namely, 5 (I) = ~ = GenChall(1, G).

• Hyb1: A�er the adversary A outputs its proof c = (1, I), the challenger additionally checks that
1 = F(:sel, G), or in other words, that A output a solution to the on-path challenge. �is can only
reduceA’s success probability by a factor of 2, since the value of F(:sel, G) is computationally hidden
from the adversary for every false statement G (by puncturing security). Formally, [WW24a] show

this by considering an exponential sequence of hybrids, one for each false statement G∗. In Hyb
(G∗ )
1 ,

the challenger punctures :sel at G
∗ and hard-wires the punctured key : (G

∗ )

sel
in GenSol instead of :sel:

3Note that the original Waters-Wu construction did not require GenSol and GenChall to take the bit 1 ∈ {0, 1} as input. Instead,
GenSol computed1 = F(:sel, G) and outpu�ed I = F(:1 , G) whileGenChall outpu�ed 5 (F(:0, G)) and 5 (F(:1, G)). �e adaptation
here is equivalent to the originalWaters-Wu construction and the updated syntax will be conducive when extending to batch NP.
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GenSol(G
∗ ) (1, G,F)

– If � (G,F) = 0, output ⊥.

– If 1 = F(:
(G∗ )

sel
, G), output ⊥.

– Output I = F(:1, G).

GenChall(1, G)

– Output ~ = 5 (F(:1, G)).

When G∗ is a false statement,GenSol(G
∗ ) still computes the same functionality asGenSol: both imme-

diately reject, since there does not exist aF such that � (G∗,F) = 1. �us, GenSol(G
∗ ) does not need

to evaluate F(:sel, G
∗). Now, by puncturing security, the value of F(:sel, G

∗) is pseudorandom even

given :
(G∗ )

sel
. �us, if the adversary outputs a proof c = (1, I) for G∗, with probability 1/2 − negl(_),

it will be the case that F(:sel, G
∗) = 1.

• Hyb2: In this experiment, the challenger stops checking whether or not G is false; observe that this
can only increase the adversary’s success probability. In addition, the challenger samples a random
OWF challenge ~base ← 5 (A ) for uniform A along with a puncturable PRF key :rerand that will be
used to re-randomize ~base. �e challenger now modifies GenChall to output a re-randomization
of ~base on (1, G) whenever 1 = F(:sel, G). In other words, the on-path challenges are now replaced
by a re-randomized instance of ~base. To argue that this is computationally indistinguishable from
the previous hybrid, the [WW24a] reduction again steps through an exponential number of hybrids,
one for each statement G∗. Planting the re-randomized challenge is then an exercise in punctured
programming [SW14]. �e key observation is that the GenSol program never evaluates F(:1, G

∗) for
1 = F(:sel, G

∗). We can then appeal to punctured pseudorandomness of F(:1, G
∗) to conclude that the

challenge ~1 is computationally indistinguishable from a fresh one-way function challenge, which
is in turn statistically indistinguishable from a re-randomized instance.

In Hyb2, algorithm A can only succeed if it provides a solution to a re-randomized one-way function
instance. But this means that A also inverts the original one-way function challenge, which completes
the proof of adaptive security. Observe that here, polynomial security of the one-way function already
suffices. Importantly, this final step is the only step in the analysis that relies on one-wayness. �us, the
proof c remains succinct despite the use of an exponential number of hybrids in the previous steps. �e
exponential sequence of hybrids require blowing up the security parameters for the 8O and puncturable
PRF schemes, but this only affects the length of the CRS and not the proof.

1.1.1 Batching SNARGs Using Homomorphic One-Way Functions

We now show how to extend the Waters-Wu scheme to the batch se�ing. Recall that in this se�ing, the
prover has a collection of ) statements G1, . . . , G) and its goal is to prove that all ) statements are true. If
we directly modify the GenSol and GenChall programs above to take in all ) statements, then the result-
ing CRS would have size that scales linearly with ) , and moreover, the scheme would only support an a
priori bounded number of statements. Our goal is to obtain a construction without this limitation. Our
first approach relies on a homomorphic re-randomizable one-way function while our second approach (see
Section 1.1.2) uses a chaining-based approach that does not rely on any homomorphic properties on the
re-randomizable one-way function.

Homomorphic re-randomizable one-way functions. As described above, the Waters-Wu construc-
tion [WW24a] uses a re-randomizable one-way function. Specifically, they show two instantiations of the
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re-randomizable one-way function: the first is based on the hardness of discrete log while the second is
based on factoring. In this work, we will consider the construction based on discrete log. To recall, letG be
a group of prime-order ? and let 6 be a generator of G. �e one-way function 5 : Z? → G is then defined
to be the mapping I ↦→ 6I . �e re-randomizable algorithm takes an instance ~ = 6I and samples a random
A

r← Z? and outputs ~ · 6A = 6I+A . Our first observation is that this one-way function is homomorphic:

5 (I1 + I2) = 6I1+I2 = 6I1 · 6I2 = 5 (I1) · 5 (I2) .

In the context of the Waters-Wu SNARG, the values I would correspond to the preimages in the proof
c . Suppose now that we have ) proofs (11, I1), . . . , (1) , I) ) on ) different statements G1, . . . , G) . �en a
natural approach to obtain a batch proof on all ) statements is to compute I =

∑
8∈[) ] I8 ∈ Z? . �en,

5 (I) = 5
©­«
∑
8∈[) ]

I8
ª®
¬
=

∏
8∈[) ]

5 (I8) =
∏
8∈[) ]

~8,18 ,

where ~8,18 = GenChall(18 , G8) is the challenge bit associated with statement 8 . Now, if the verifier knew
the bits 11, . . . , 1) , it can compute ~8,18 = GenChall(18 , G8) and then ~ =

∏
8∈[) ] ~8,18 ∈ G. �en, the veri-

fication algorithm would simply boil down to checking that ~ = 5 (I). In this case, the prover just needs
to provide the aggregated preimage I rather than the individual preimages (I1, . . . , I) ). �e problem with
this basic approach is that the verifier does not know the individual bits 18 ∈ {0, 1}. While the prover can
certainly include the bits 18 for each statement as part of the proof, this means the size of the proof is now
) + poly(_), which no longer meets our succinctness requirement. Note that if ) = $ (log _), the verifier
can try all the possible values for 11, . . . , 1) , but this approach does not work for general ) .

Using a large alphabet. We solve this problem by increasing the alphabet size. Namely, instead of hav-
ing two challenges, suppose instead we had ) + 1 challenges (i.e., the selector PRF F(:sel, ·) now outputs
an element of the set {1, 2, . . . ,) + 1}) and correspondingly, ) + 1 PRF keys :1, . . . , :)+1 used to generate
the challenges. In the batch se�ing, the on-path challenge is a function of both the statement G8 and the
index 8 ∈ [) ] (i.e., the 9 th challenge is I = PRF(: 9 , (G8 , 8))). For each statement-index pair (G8 , 8), there
is a single “on-path” challenge index 9 = F(:sel, (G8 , 8)) ∈ [) + 1] for which the GenSol program will not
provide a preimage and) off-path challenges for which theGenSol programwill provide preimages (given
a valid witness for G8 ). �is means that for any batch of ) statements ®G = (G1, . . . , G) ), there always exists
some index 9 ∈ [) + 1] for which 9 ≠ F(:sel, (8, G8)) for all 8 ∈ [) ]. Since the same index 9 can now be
shared across all) statements, the prover only needs to communicate the single index (of length$ (log) ))
as part of its proof. Concretely, the programs in the CRS (where the re-randomizable one-way function is
instantiated with the discrete log construction) are now defined as follows:

GenSol(8, 9, G8 ,F8)

• If � (G8 ,F8) = 0, output ⊥.
• If 9 = F(:sel, (G8 , 8)), output ⊥.
• Output I = F(: 9 , (G8 , 8)).

GenChall(8, 9, G8)

• Output ~ = 6F(: 9 ,(G8 ,8 ) ) .

Our scheme now operates as follows:

• Proof generation: To construct a proof on G1, . . . , G) (using witnesses F1, . . . ,F) ), the prover first
finds an index 9 ∈ [) + 1] where I8 = GenSol(8, 9, G8 ,F8) ≠ ⊥ for all 8 ∈ [) ]. �en it computes the
aggregated proof I =

∑
8∈[) ] I8 and outputs the proof c = ( 9, I).
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• Proof verification: To verify the proof, the verifier computes the challenge ~8 = GenChall(8, 9, G8)

for each 8 ∈ [) ] and then computes the aggregated challenge ~ =
∏

8∈[) ] ~8 . Finally, the verifier
checks that 6I = ~.

As wri�en, theGenSol andGenChall programswould require us to hard-wire all) +1 PRF keys:1, . . . , :)+1
into the GenSol and GenChall programs. Consequently, the size of the CRS now grows with ) , which is
no be�er than directly applying [WW24a] to the batch language. To get around this, we derive the keys
: 9 for 9 ∈ [) + 1] from another (puncturable) PRF. �e modified programs are defined as follows:

GenSol(8, 9, G8 ,F8)

• If � (G8 ,F8) = 0, output ⊥.
• If 9 = F(:sel, (G8 , 8)), output ⊥.
• Compute : 9 ← F(:, 9).
• Output I = F(: 9 , (G8 , 8)).

GenChall(8, 9, G8)

• Compute : 9 ← F(:, 9).
• Output ~ = 6F(: 9 ,(G8 ,8 ) ) .

To argue adaptive soundness, we adopt a strategy similar to that used in [WW24a]:

• We start by arguing that with non-negligible probability, the adaptive soundness adversary outputs
a tuple of statements ®G = (G1, . . . , G) ) and an accepting proof c = ( 9, I) where 9 = F(:sel, (G8∗, 8

∗))

for some 8∗ ∈ [) ]. In other words, the adversary gives a proof for an on-path challenge. �is step is
the analog of the transition between Hyb0 and Hyb1 in the above sketch of the [WW24a] reduction.

�is argument relies on the fact that if G8∗ is a false instance, the value of F(:sel, (G8∗, 8
∗)) is compu-

tationally indistinguishable from a random index in [) + 1]. �us, whenever the adversary outputs
a tuple ®G = (G1, . . . , G) ) that contains a false instance G8∗ together with a proof c = ( 9, I), then
with probability roughly 1/() + 1), the adversary’s index 9 satisfies 9 = F(:sel, (G8∗, 8

∗)). �e formal
argument relies on 8O security and security of the puncturable PRF.

If the adversary breaks adaptive soundness with advantage Y, then the above argument shows that
with probability roughly Y/() + 1), the adversary outputs ®G and c = ( 9, I) where 9 = F(:sel, (G8∗, 8

∗))

for some 8∗ ∈ [) ]. We can now move to an experiment where the challenger guesses the index
8∗

r← [) ] and the adversary is only considered successful if it breaks adaptive soundness and more-
over, the index 9 it outputs satisfies 9 = F(:sel, (G8∗, 8

∗)). Over the randomness of 8∗, we conclude
that the adversary will win this modified experiment with probability Y/() () + 1)), which remains
non-negligible since the number of instances ) is always polynomially-bounded.

• At this point, the adversary wins only if it outputs a proof c = ( 9, I) where 9 = PRF(:sel, (G8∗, 8
∗)).

Similar to the analysis in [WW24a], the reduction algorithm now modifies the GenChall program
to output a re-randomized one-way function challenge (derived from a single base instance ~base) as
the on-path challenge for every statement G∗ at index 8∗:

GenSol(8, 9, G8 ,F8)

– If � (G8 ,F8) = 0, output ⊥.
– If 9 = F(:sel, (G8 , 8)), output ⊥.
– Compute : 9 ← F(:, 9).
– Output I = F(: 9 , (G8 , 8)).

GenChall(8, 9, G8)

– Compute : 9 ← F(:, 9).
– If 8 = 8∗ and 9 = F(:sel, (G8 , 8)), output
~ = ~base · 6

F(: 9 ,(G8 ,8 ) ) .
– Otherwise, output ~ = 6F(: 9 ,(G8 ,8 ) ) .
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�is is the analog of the transition between Hyb1 and Hyb2 in the above sketch of the [WW24a]
reduction and relies on the fact that for all instances G∗, theGenSol program never needs to evaluate
F(: 9 , (G

∗, 8∗)) where 9 = F(:sel, (G
∗, 8∗)). �us, we can rely on 8O security and punctured pseudoran-

domness to replace the challenge 6PRF(: 9 ,(G
∗,8∗ ) ) with a re-randomized instance ~base · 6

PRF(: 9 ,(G
∗,8∗ ) ) .

Now, suppose the adversary is successful in the final experiment: namely, the adversary constructs a valid
proof c = ( 9, I) on ®G = (G1, . . . , G) ) and 9 = PRF(:sel, (G8∗, 8

∗)) is the on-path challenge index. We claim
that we can use any such adversary to solve the discrete log problem. Let (6, ℎ) where ℎ = 6U be the
discrete log challenge. �e reduction algorithm samples all of the PRF keys itself and uses the discrete log
challenge ℎ as the base instance ~base = ℎ that it embeds into GenChall. Suppose the adversary constructs
a valid proof c = ( 9, I) on ®G = (G1, . . . , G) ) and 9 = PRF(:sel, (G8∗, 8

∗)). �en, the following hold:

• For each 8 ∈ [) ] \ {8∗}, GenChall(8, 9, G8) outputs ~8 = 6F(: 9 ,(G8 ,8 ) ) .

• Since 9 = PRF(:sel, (G8∗, 8
∗)),GenChall(8∗, 9, G8) outputs the re-randomized instance~8∗ = ℎ·6F(: 9 ,(G8∗ ,8

∗ ) ) .

• If I ∈ Z? is a valid proof, then it must be the case that

6I =
∏
8∈[) ]

~8 = ℎ · 6
∑

8∈ [) ] F(: 9 ,(G8 ,8 ) ) .

Writing ℎ = 6U , this means

U = I −
∑
8∈[) ]

� (: 9 , (G8 , 8)) . (1.1)

If the adversary outputs a valid proof I, then the reduction algorithm is able to recover the discrete log
U of the challenge instance ℎ, which complete the proof. Note that the reduction algorithm chose all of
the PRF keys, so it is able to compute all terms in Eq. (1.1). We give the formal description and analysis of
this scheme in Section 4. �ere, we describe our construction with respect to an arbitrary homomorphic
re-randomizable one-way function (as opposed to just the discrete log version illustrated above).

Parameter sizes. �e size of the programs in the CRS in the above construction is poly(_ + |� | + log) ).
�us, se�ing ) = 2_ allows us to support any a priori unbounded polynomial number of statements. �is
gives the first adaptively-sound SNARG for batch NP (that supports an unbounded number of statements)
with full succinctness from standard falsifiable assumptions.

1.1.2 Batching SNARGs via a Chaining Approach and Re-randomizable PRGs

�us far, we have demonstrated how to extend the Waters-Wu SNARG to support batching by relying
on the homomorphic structure of the one-way function. In this work, we also give a second approach to
support batching that does not assume any homomorphic properties on the output SNARG. Instead, our
construction relies on a re-randomizable pseudorandom generator (PRG).

�e chaining template from [GSWW22]. We follow a similar template as the general aggregation
approach from [GSWW22]. �e work of [GSWW22] constructs a non-adaptively-sound SNARG for batch
NP by adapting the non-adaptively-sound SNARG for NP by Sahai and Waters [SW14]. Specifically, they
describe a “chaining” approach where the prover program (in the CRS) takes as input a hash digest dig of
the statements (G1, . . . , G) ), a proof c8−1 on the first 8−1 statements, the next statement G8 , and an associated
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witnessF8 , together with an opening of G8 with respect to the digest dig. �e prover checks that c8−1 is a
valid proof on the digest dig, that dig opens to G8 at position 8 , and that F8 is a valid witness for G8 . If all
of these properties hold, then the program outputs a proof for the first 8 statements (with respect to dig).

To prove non-adaptive soundness, the idea in [GSWW22] is to first identify the index 8 ∈ [) ] of a false
statement, and use punctured programming to argue that there does not exist any accepting proofs on the
first 8 statements. �is step relies on the fact that there are no witnesses for the false statement G8 . �en,
they show that if there does not exist an accepting proof for index 8 , there also does not exist an accepting
proof for index 8 + 1. �is proceeds until the final hybrid where they argue that there does not exist any
proof for index ) , at which point non-adaptive soundness holds.

�e challenge with adaptive soundness. Unlike the single-statement se�ing, in the chaining ap-
proach, it is no longer sufficient to argue that an accepting proof of a false statement is computationally
hard to find. �is is because the obfuscated prover program (i.e., the analog of GenSol) is first checking
the proof on the first 8 − 1 statements when deciding whether to generate a proof for the first 8 statements
or not. If there exists a valid proof on the first 8 − 1 statements, then this program does not output ⊥ on
all inputs with index 8 (e.g., consider the se�ing where statement G8 is true). As a result, we cannot argue
that there does not exist a proof on the first 8 statements. In contrast, if we can argue that there are no
accepting proofs on the first 8 − 1 statements, then we can leverage 8O security to argue that there are also
no accepting proofs on the first 8 statements (since the obfuscated prover program never accepts a proof
on the first 8 − 1 statements, it would never output a proof for the first 8 statements).

In the Waters-Wu approach, they showed that if an adversary could construct a proof of a false state-
ment, then the adversary can also invert the one-way function. Notably, this is a computational property,
and the previous analysis can only rule out an adversary finding an accepting proof efficiently. Conse-
quently, this is insufficient to implement the chaining approach from [GSWW22] as proofs of false state-
ments do exist (but are hard to find). �e work of [GSWW22] leverages an (expanding) pseudorandom
generator to check the proofs instead of using a one-way function precisely to move to a hybrid where
proofs on false statements no longer exist.

Re-randomizable PRGs. In Section 6, we show how to use a similar chaining strategy together with the
Waters-Wu approach to obtain an adaptively-sound SNARG for batch NP. For the reasons outlined above,
our approach requires a way to rule out the existence of proofs on false statements. To do so, we rely on the
stronger notion of a re-randomizable PRG instead of a re-randomizable OWF. In a re-randomizable PRG
G : {0, 1}_ → {0, 1}C , there is an algorithm that takes a string ~base ∈ {0, 1}

C and re-randomizes it to a new
string ~ ∈ {0, 1}C with the following properties:

• If ~base is the in the image of the PRG (i.e., ~base = PRG(B) for some B ∈ {0, 1}_), then the re-
randomized value ~ is distributed according to G(B) for a fresh seed B r← {0, 1}_ .

• If ~base is not in the image of the PRG, then the re-randomized value ~ is distributed according to a
random value ~ r← {0, 1}C \

{
PRG(B) : B ∈ {0, 1}_

}
.

We can construct a re-randomizable PRF from the decisional Diffie-Hellman (DDH) assumption. In par-
ticular, we work over a group G of prime order ? and generator 6, and define the public parameters to
be (6, ℎ) where ℎ r← G. �en, we define the generator G : Z∗? → G × G as the mapping G ↦→ (6G , ℎG ).
Pseudorandomness follows directly from the DDH assumption, and the re-randomization follows via the
DDH random self-reduction that maps (D, E) ↦→ (DA , EA ) where A r← Z∗? .

10



�e chaining approach using re-randomizable PRGs. In our chaining-based approach for aggre-
gating adaptively-sound SNARGs, we replace the GenSol and GenChall programs from [WW24a] with a
proof aggregation programAggProof and a proof verification programVerProof with the following syntax:

• �e proof aggregation program AggProof outputs a proof for a digest dig and index 8 if it is given a
valid proof on dig and index 8 − 1, a valid statement-witness pair (G8 ,F8), and a proof that dig opens
to statement G8 at index 8 .

• �e proof verification program VerProof only accepts a proof ( 9, I) for the digest dig and index 8 if
G(I) = G(F(: 9 , (dig, 8))). Importantly, note that the proof just consists of the index 9 and the solu-
tion I; it does not contain the digest dig (which is at least as long as a single statement). �e verifier
computes the digest dig from the statements at verification time.

Importantly, we have replaced the re-randomizable one-way function 5 with a re-randomizable PRG. If we
instantiate this template with the adaptively-sound construction with ) + 1 challenges, the CRS consists
of obfuscations of the following programs:

AggProof (8, 9, dig, G,F, f, I8−1)

• If � (G,F) = 0, output ⊥.
• If f does not open dig to G at index 8 , output ⊥.
• If 9 = F(:sel, (G, 8)), output ⊥.
• If 8 ≠ 1 and VerProof ( 9, dig, 8 − 1, I8−1) = 0,
output ⊥.

• Compute : 9 ← F(:, 9).
• Output I = F(: 9 , (dig, 8)).

VerProof (8, 9, dig, I8)

• Compute : 9 ← F(:, 9).
• If G(I8 ) = G(F(: 9 , (dig, 8))), output 1. Otherwise,
output 0.

To construct a proof on statements ®G = (G1, . . . , G) ) with associated witnesses (F1, . . . ,F) ), the prover
proceeds as follows:

• It start by computing a digest dig of the statements (G1, . . . , G) ). Let f1, . . . , f) be the associated local
openings of dig to the statements G1, . . . , G) , respectively.

• For each 9 ∈ [) + 1], the prover initializes I0 = ⊥. �en, for each 8 = 1, . . . ,) , it computes
I8 ← AggProof (8, 9, dig, G8 ,F8 , f8 , I8−1). If I1, . . . , I) ≠ ⊥, then the prover outputs the proof ( 9, I) ).
Otherwise, it retries with the next value of 9 .

For each statement-index pair (G8 , 8), there is exactly one index 9 where AggProof outputs ⊥. �us, there
exists at least one index 9 ∈ [) + 1] where the prover succeeds in constructing a proof ( 9, I) ). To check
a proof c = ( 9, I) for a batch of statements ®G = (G1, . . . , G) ), the verifier computes the digest dig of
(G1, . . . , G) ) and outputs VerProof (), 9, dig, I).

Arguing adaptive soundness. We now give a sketch of the adaptive soundness proof:

• Suppose we have an adversary A that can break adaptive soundness with advantage Y. �is means
that A outputs a vector of statements ®G = (G1, . . . , G) ) and a proof c = ( 9, I) such that c is a valid
proof and moreover, there exists some index 8∗ ∈ [) ] where G8∗ is a false instance.

• Our proof of adaptive soundness steps through a sequence of hybrid experiments. In the initial
sequence, the challenger starts by sampling an index 8∗

r← [) ] and we declare the adversary
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to be successful only if it outputs a valid proof c = ( 9, I) on a vector of statements ®G where
9 = PRF(:sel, (G8∗, 8

∗)). As in the construction from Section 1.1.1, this corresponds to a proof for an
“on-path” challenge. To argue this, we use the fact that if G8∗ is a false statement, then the AggProof
program never needs to compute F(:sel, (G8∗, 8

∗)). Correspondingly, we can rely on puncturing secu-
rity of F(:sel, ·) to conclude that the value of F(:sel, (G8∗, 8

∗)) is pseudorandom from the perspective
of the adversary. �en the following hold:

– Conditioned on G8∗ being a false statement, with probability negligibly close to Y/() + 1), the
adversary wins the adaptive soundness game and outputs an index 9 where 9 = F(:sel, (G8∗, 8

∗)).

– �e reduction samples 8∗ r← [) ] and a successful adversary must choose ®G that contains at
least one false instance, so G8∗ is a false instance with probability at least 1/) .4

Pu�ing these pieces together, we conclude that the adversary wins the adaptive soundness game and
outputs an index 9 where 9 = F(:sel, (G8∗, 8

∗)) with probability that is negligibly close to Y/() () +1)).

• We are now ready to begin the chaining argument. Our analysis proceeds in a sequence of hybrids
indexed by C = 8∗, 8∗ + 1, . . . ,) . In HybC , we modify the verification program VerProof ( 9, dig, 8, I8) to
always output 0 when 9 = F(:sel, (G8∗, 8

∗)) and 8∗ ≤ 8 ≤ C (irrespective of dig or I8 ). In the final hybrid
Hyb) , the VerProof program always outputs 0 if 9 = F(:sel, (G8∗, 8

∗)) and 8 = ) . Correspondingly, the
challenger in this final hybrid also always outputs 0, which completes the proof.

�e wrinkle with this strategy is that we cannot embed the instance G8∗ into the VerProof program.
�is is because the adaptive adversary chooses the instance G8∗ a�er seeing the CRS (which contains
the obfuscated version of VerProof). To carry out this strategy, we need to augment VerProof with
a mechanism to determine G8∗ from the inputs. In this case, we leverage the digest dig and assume
that the underlying hash function is somewhere extractable at 8∗. Namely, there is an Extract(td, dig)
algorithm that takes as input a trapdoor td and a digest dig and outputs a value G8∗ with the property
that the only valid opening for dig at index 8∗ is to the value G8∗ . We then inductively show that the
following invariant holds for all C = 8∗, 8∗ + 1, . . . ,) :

– VerProof ( 9, dig, 8, I8) outputs 0 for all dig and I8 when 9 = 9∗ and 8∗ ≤ 8 ≤ C , where 9∗ =

F(:sel, (Extract(td, dig), 8
∗)).

�e base case corresponds to showing that the invariant holds when C = 8∗. To argue this, we replace
the obfuscation of AggProof in the CRS with an obfuscation of the modified program AggProof8∗,8∗

(and leave VerProof unchanged):

AggProof8∗,8∗ (8, 9, dig, G,F, f, I8−1)

– If � (G,F) = 0, output ⊥.
– If f does not open dig to G at index 8 , output⊥.
– Compute 9∗ = F(:sel, (Extract(td, dig), 8

∗)). If
8 = 8∗ and 9 = 9∗, output ⊥.

– If 9 = F(:sel, (G, 8)), output ⊥.
– If 8 ≠ 1 and VerProof ( 9, dig, 8 − 1, I8−1) = 0,

output ⊥.
– Compute : 9 ← F(:, 9).
– Output I = F(: 9 , (dig, 8)).

VerProof (8, 9, dig, I8)

– Compute : 9 ← F(:, 9).
– If G(I8 ) = G(F(: 9 , (dig, 8))), output 1. Other-

wise, output 0.

4In the proof of �eorem 6.4, we provide the “most-likely” index 8∗ where the adversary cheats as non-uniform advice. �is is
analogous to guessing the cheating index.
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�e somewhere extractability property of the hash function ensures that AggProof8∗,8∗ has the same
input/output behavior as AggProof. Namely, the only inputs (8, 9, dig, G,F, f, I8−1) where the two
programs could differ are those where 8 = 8∗ and f opens to G at index 8∗. Since f can be opened
to G at 8∗, and the hash function is extractable at 8∗, this means that Extract(td, dig) = G . �e addi-
tional condition introduced in AggProof8∗,8∗ is simply checking if 9 = F(:sel, (G, 8

∗)), which is already
checked in the original program AggProof. As such, the obfuscations of AggProof8∗,8∗ and AggProof
are computationally indistinguishable by 8O security.

Next we modify the verification program to reject on dig and I8 when 8 = 8∗ and 9 = 9∗. �is
corresponds to the base case for the chaining analysis:

AggProof8∗,8∗ (8, 9, dig, G,F, f, I8−1)

– If � (G,F) = 0, output ⊥.
– If f does not open dig to G at index 8 , output⊥.
– Compute 9∗ = F(:sel, (Extract(td, dig), 8

∗)). If
8 = 8∗ and 9 = 9∗, output ⊥.

– If 9 = F(:sel, (G, 8)), output ⊥.
– If 8 ≠ 1 and VerProof8∗,8∗ ( 9, dig, 8 − 1, I8−1) = 0,

output ⊥.
– Compute : 9 ← F(:, 9).
– Output I = F(: 9 , (dig, 8)).

VerProof8∗,8∗ (8, 9, dig, I8)

– Let 9∗ = F(:sel, (Extract(td, dig), 8
∗)).

– If 8 = 8∗ and 9 = 9∗, output ⊥.
– Compute : 9 ← F(:, 9).
– If G(I8 ) = G(F(: 9 , (dig, 8))), output 1. Other-

wise, output 0.

We argue this via the following sequence of steps:

– By construction, AggProof8∗,8∗ does not compute PRF(: 9∗, (dig, 8
∗)) for all choices of dig. �is

is because when 8 = 8∗ and 9 = 9∗, the AggProof8∗,8∗ program always outputs ⊥.

– We now appeal to (punctured) pseudorandomness of PRF(: 9∗, ·) and 8O security to replace all
of the PRG outputs G(PRF(: 9∗, (dig, 8

∗))) with a re-randomized instance derived from a single
challenge ~base (where the re-randomization randomness is obtained by evaluating a PRF with
: 9∗ ). Formally, we implement this with an exponential number of hybrids (one for each dig)
and iteratively replace G(PRF(: 9∗, (dig, 8

∗))) with the re-randomized instance.

– �en, we appeal to pseudorandomness of the PRG to replace ~base with a random instance.
If the PRG is (sufficiently) expanding, then with overwhelming probability, the value of ~base
is no longer in the image of the PRG. In this case, all of the re-randomized challenges (asso-
ciated with each (dig, 8∗) pair) are no longer in the image of the PRG, and as such, there no
longer exists I that satisfies the verification requirement for any choice of (dig, 8∗). �is means
the verification program outputs 0 on all inputs (8, 9, dig, I8) where 8 = 8∗ and 9 = 9∗. �is is
precisely the behavior of VerProof8∗,8∗ , and the claim holds by 8O security.

Having established the base case, the inductive step proceeds similarly. We define a sequence of
hybrid experiments HybC where C = 8∗, 8∗ + 1, . . . ,) where in HybC , the CRS contains obfuscations of
the programs:
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AggProof8∗,C (8, 9, dig, G,F, f, I8−1)

– If � (G,F) = 0, output ⊥.
– If f does not open dig to G at index 8 , output⊥.
– Compute 9∗ = F(:sel, (Extract(td, dig), 8

∗)). If
8 = 8∗ and 9 = 9∗, output ⊥.

– If 9 = F(:sel, (G8 , 8)), output ⊥.
– If 8 ≠ 1 and VerProof8∗,C ( 9, dig, 8 − 1, I8−1) = 0,

output ⊥.
– Compute : 9 ← F(:, 9).
– Output I = F(: 9 , (dig, 8)).

VerProof8∗,C (8, 9, dig, I8)

– Let 9∗ = F(:sel, (Extract(td, dig), 8
∗)).

– If 8∗ ≤ 8 ≤ C and 9 = 9∗, output ⊥.
– Compute : 9 ← F(:, 9).
– If G(I8 ) = G(F(: 9 , (G8 , 8))), output 1. Other-

wise, output 0.

We can move from HybC to HybC+1 using a similar argument as used to establish the base case:

– By construction, AggProof8∗,C does not compute PRF(: 9∗, (dig, C +1)) for all choices of dig. �is
is because VerProof8∗,C (8, 9, dig, I8) outputs 0 when 8 = C and 9 = 9∗.

– As in the base case, we next appeal to (punctured) pseudorandomness of PRF(: 9∗, ·) and 8O se-
curity to replace all of the PRG outputs G(PRF(: 9∗, (dig, C +1))) with a re-randomized instance
derived from a single challenge ~base.

– �en, we appeal to pseudorandomness of the PRG to replace~base with a random instance. �is
means the verification program outputs 0 on all inputs (8, 9, dig, I8) where 9 = 9∗ and 8∗ ≤ 8 ≤

C + 1. But this is precisely the behavior of VerProof8∗,C+1, and the claim holds by 8O security.

We provide the formal description in Section 6 (specifically, see the proof of �eorem 6.4).

Potential extensions and open problems. While this construction does not achieve be�er properties
than our above approach relying on homomorphic re-randomizable one-way functions, it provides an al-
ternative approach for constructing adaptively-sound SNARGs for batch NP. We believe these techniques
are of independent interest, and may be amenable to generalizing beyond batch NP (e.g., to monotone-
policy batch NP [BBK+23,NWW24]). We leave this as an intriguing open problem.

�e homomorphic aggregation approach critically assumes that the proofs themselves are algebraic
objects and satisfy some homomorphism. While initial constructions such as [WW24a,WZ24] have this
property, it is not true of all adaptively-sound SNARGs (e.g., the very recent work [WW24b]). �e chaining
approach does not rely on any assumption about the structure of the proofs themselves, and thus, could
plausibly be based on unstructured assumptions (similar to how [WW24b] constructs a SNARG for NP).

2 Preliminaries

�roughout this work, we write _ to denote the security parameter. We write poly(_) to denote a fixed

polynomial in the security parameter _. We say a function 5 (_) is negligible in _ if 5 (_) = > (_−2) for all
constants 2 ∈ N and denote this by writing 5 (_) = negl(_). When G,~ ∈ {0, 1}= , we will view G and ~ as
both bit-strings of length = as well as the binary representation of an integer between 0 and 2= − 1. We
write “G ≤ ~” to refer to the comparison of the integer representations of G and ~. We say an algorithm
is efficient if it runs in probabilistic polynomial time in the length of its input. For a function 5 : X → Y,
we write Im(5 ) to denote the image of 5 . For a finite set ( , we write G r← ( to denote that G is sampled
uniformly at random from ( .
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Sub-exponential hardness. Our construction will rely on sub-exponential hardness assumptions, so
we will formulate some of our security definitions using (C, Y)-notation. Generally, we say that a primitive
is (C, Y)-secure if, for all adversariesA running in time at most C (_) ·poly(_), there exists _A ∈ N such that
for all _ ≥ _A , the adversary’s advantage is bounded by Y (_). We say a primitive is polynomially secure
if it is (1, negl(_))-secure for some negligible function negl(·).

2.1 Cryptographic Building Blocks

We now recall the main cryptographic primitives we use in this work.

Definition 2.1 (Indistinguishability Obfuscation [BGI+01]). An indistinguishability obfuscator for Boolean
circuits is an efficient algorithm 8O(·, ·, ·) with the following properties:

• Correctness. For any security parameter _ ∈ N, circuit size parameter B ∈ N, Boolean circuit � of
size at most B , and input G ,

Pr[�̂ (G) = � (G) : �̂ ← 8O(1_, 1B ,�)] = 1.

• Security. For a security parameter _ and a bit 1 ∈ {0, 1}, we define the program indistinguishability
game between an adversary A and a challenger as follows:

– On input security parameter 1_ ,A outputs a size parameter 1B and two Boolean circuits�0,�1

of size at most B .

– If there exists an input G such that �0(G) ≠ �1(G), then the challenger halts with output ⊥.
Otherwise, the challenger replies with 8O(1_, 1B ,�1).

– A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say that 8O is (C, Y)-secure if for all adversaries A running in time at most C (_) · poly(_), there
exists _A ∈ N such that for all _ ≥ _A , we have that

iOAdvA (_) ≔ |Pr[1
′
= 1 : 1 = 1] − Pr[1′ = 1 : 1 = 0] | ≤ Y (_) .

Definition 2.2 (Puncturable PRF [BW13,KPTZ13,BGI14]). Apuncturable pseudorandom function consists
of a tuple of efficient algorithms ΠPPRF = (Setup, Eval, Puncture) with the following syntax:

• Setup(1_, 1ℓin, 1ℓout) → : : On input security parameter 1_ , input length 1ℓin , and output length 1ℓout ,
the randomized setup algorithm outputs a key : . We assume that the key : contains an implicit
description of ℓin and ℓout.

• Eval(:, G) → ~: On input the key : and a point G ∈ {0, 1}ℓin , the deterministic evaluation algorithm
outputs a value ~ ∈ {0, 1}ℓout .

• Puncture(:, G∗) → : (G
∗ ) : On input key : and point G∗ ∈ {0, 1}ℓin , the puncturing algorithm outputs

a punctured key : (G
∗ ) . We assume that the punctured key : (G

∗ ) also contains an implicit description
of ℓin and ℓout.

We require that ΠPPRF satisfy the following properties:
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• Punctured correctness. For all _, ℓin, ℓout ∈ N, and all distinct points G ≠ G∗ ∈ {0, 1}ℓin ,

Pr

[
Eval(:, G) = Eval(: (G

∗ ) , G) :
: ← Setup(1_, 1ℓin, 1ℓout)

: (G
∗ ) ← Puncture(:, G∗)

]
= 1.

• Puncturing security. For a security parameter _ and a bit 1 ∈ {0, 1}, we define the (selective)
puncturing security game between an adversary A and a challenger as follows:

– On input security parameter 1_ , A outputs the input length 1ℓin , the output length 1ℓout , and
commits to a point G∗ ∈ {0, 1}ℓin .

– �e challenger samples the PRF key : ← Setup(1_, 1ℓin, 1ℓout). �en, it computes and gives the
punctured key : (G

∗ ) ← Puncture(:, G∗) to A.

– If 1 = 0, the challenger sends~∗ ← Eval(:, G∗) toA. If 1 = 1, then it sends~∗ r← {0, 1}ℓout toA.

– A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPPRF satisfes (C, Y)-puncturing security if for all adversariesA running in time at most
C (_) · poly(_), there exists _A ∈ N such that for all _ ≥ _A , it holds that

PPRFAdvA (_) ≔ |Pr[1
′
= 1 : 1 = 1] − Pr[1′ = 1 : 1 = 0] | ≤ Y (_).

Definition 2.3 (Somewhere Extractable Hash Family [HW15,CJJ22]). A somewhere extractable hash fam-
ily consists of a tuple of efficient algorithms ΠSEH = (Setup, SetupTD,Hash,Open,Verify, Extract) with the
following syntax:

• Setup(1_, 1ℓ ) → hk: On input security parameter 1_ and block size 1ℓ , the setup algorithm outputs
a hash key hk.

• SetupTD(1_, 1ℓ , 8) → (hk, td): On input security parameter 1_ , block size 1ℓ , and index 8 ∈ [2_], the
trapdoor setup algorithm outputs a hash key hk and an extraction trapdoor td.

• Hash(hk, (G1, . . . , GC )) → dig: On input hash key hk and ordered list of inputs G1, . . . , GC ∈ {0, 1}
ℓ ,

the hash algorithm outputs a hash value dig.

• Open(hk, (G1, . . . , GC ), 8) → f : On input hash key hk, ordered list of inputs G1, . . . , GC ∈ {0, 1}
ℓ , and

index 8 ∈ [C], the opening algorithm outputs an opening f .

• Verify(hk, dig, 8, G, f) → 1: On input hash key hk, hash value dig, index 8 , string G ∈ {0, 1}ℓ , and
opening f , the verification algorithm outputs a bit 1 ∈ {0, 1}.

• Extract(td, dig) → G : On input extraction trapdoor td and hash value dig, the extraction algorithm
outputs a value G ∈ {0, 1}ℓ .

We require that ΠSEH satisfy the following properties:

• Opening completeness. For any _, ℓ, C ∈ N with C ≤ 2_ , any 8 ∈ [C], and any G1, . . . , GC ∈ {0, 1}
ℓ ,

Pr


Verify(hk, dig, 8, G8 , f) = 1 :

hk← Setup(1_, 1ℓ )
dig = Hash(hk, (G1, . . . , GC ))

f = Open(hk, (G1, . . . , GC ), 8)


= 1.
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• Succinctness. �ere exists a fixed polynomial ? such that the lengths of the hash values dig output
by Hash and the lengths of the openings f output by Open in the completeness experiment satisfy
|dig|, |f | = ? (_, ℓ).

• Index hiding. For a security parameter _ and a bit 1 ∈ {0, 1}, we define the index-hiding security
game between an adversary A and a challenger as follows:

– On input security parameter 1_ , algorithmA outputs the block length 1ℓ and an index 8 ∈ [2_].

– If 1 = 0, the challenger samples hk ← Setup(1_, 1ℓ ). If 1 = 1, the challenger samples
(hk, td) ← SetupTD(1_, 1ℓ , 8)�e challenger sends hk to A.

– A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSEH satisfies (C, Y)-index-hiding security if for all adversariesA running in time C (_) ·
poly(_), there exists _A ∈ N such that for all _ ≥ _A ,

SEHAdvA (_) ≔ |Pr[1
′
= 1 : 1 = 1] − Pr[1′ = 1 : 1 = 0] | ≤ Y (_) .

• Extraction correctness. For any _, ℓ, C ∈ N with C ≤ 2_ , any 8 ∈ [C], any G1, . . . , GC ∈ {0, 1}
ℓ ,

Pr

[
G8 ≠ Extract(td, dig) :

(hk, td) ← SetupTD(1_, 1ℓ , 8)
dig = Hash(hk, (G1, . . . , GC ))

]
= 0.

• Statistically binding. For any _, ℓ, C ∈ N with C ≤ 2_ , any 8 ∈ [C],

Pr

[
∃dig, G, f : G ≠ Extract(td, dig)

∧ Verify(hk, dig, 8, G, f) = 1
: (hk, td) ← SetupTD(1_, 1ℓ , 8)

]
= 0.

2.2 Batch Arguments for NP

We now formally define the notion of a batch argument for NP. We start with the definition of the NP-
complete language of Boolean circuit satisfiability.

Definition 2.4 (Circuit Satisfiability). Wedefine the Boolean circuit satisfiability languageLSAT as follows:

LSAT = {(�, G) | ∃F ∈ {0, 1}E s.t. � (G,F) = 1}

where � is a Boolean circuit � : {0, 1}= × {0, 1}E → {0, 1} and G ∈ {0, 1}= is a statement.

Definition 2.5 (Non-interactive Batch Argument for NP). A non-interactive batch argument (BARG) for
the Boolean circuit satisfiability languageLSAT is a tuple of efficient algorithms ΠBARG = (Setup, P,V) with
the following syntax:

• Setup(1_,) ,�) → crs: On input security parameter 1_ , batch size) , and Boolean circuit� , the setup
algorithm outputs a common reference string crs.

• P(crs, (G1, . . . , G) ), (F1, . . . ,F) )) → c : On input common reference string crs, statements G1, . . . , G) ,
and witnessesF1, . . . ,F) , the prover algorithm outputs a proof c .

• V(crs, (G1, . . . , G) ), c) → 1: On input common reference string crs, statements G1, . . . , G) , and proof
c , the verifier algorithm outputs a bit 1 ∈ {0, 1}.
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We require that ΠBARG satisfy the following properties:

• Completeness. For any security parameter _ ∈ N, polynomials = = =(_), E = E (_),) = ) (_),
Boolean circuit � : {0, 1}= × {0, 1}E → {0, 1} of poly(_) size, and statements G1, . . . , G) ∈ {0, 1}

= and
witnessesF1, . . . ,F) ∈ {0, 1}

E such that � (G8 ,F8) = 1 for all 8 ∈ [) ], it holds that

Pr

[
V(crs, (G1, . . . , G) ), c) = 1 :

crs← Setup(1_,) ,�)
c ← P(crs, (G1, . . . , G) ), (F1, . . . ,F) ))

]
= 1.

• Succinctness. �ere exists a universal polynomial ? such that in the completeness experiment
above, we have that |c | = ? (_, log), |� |). We say the proof is fully succinct if we have that |c | =
? (_, log), log |� |).5

• Adaptive soundness. For a security parameter _, we define the adaptive soundness game between
an adversary A and a challenger as follows:

– On input security parameter 1_ ,A starts by outpu�ing a Boolean circuit� : {0, 1}=×{0, 1}E →
{0, 1} and a number of instances ) .

– �e challenger replies with crs← Setup(1_,) ,�).

– A outputs statements G1, . . . , G) ∈ {0, 1}
= and a proof c .

– �e output of the experiment is 1 = 1 if there exists some 8 ∈ [) ] such that (�, G8) ∉ LSAT and
Verify(crs, (G1, . . . , G) ), c) = 1 and 1 = 0 otherwise.

We say that ΠBARG is adaptively sound if for all efficient adversaries A, there exists a negligible
function negl(·) such that for all _ ∈ N, Pr[1 = 1] ≤ negl(_) in the adaptive soundness game.

Remark 2.6 (Supporting Arbitrary Batch Size). In our definition, the Setup algorithm needs to take the
batch size ) as input (in binary). Note that this restriction can be generically removed using a standard
“powers-of-two” construction, where we generate a CRS for every value of ) = 28 for 8 ∈ [_]. �is is still
efficient as the size of each CRS depends only polylogarithmically on the batch size, and padding to the
next power of two only incurs constant overhead.

Remark 2.7 (Fast Verification). Definition 2.5 only requires that the size of the proof be short and does
not impose any requirements on the running time of the verification algorithm. Since the size of the CRS
in an adaptively-sound SNARG can scale with the circuit size |� |, this means the verification time may also
scale polynomially with |� |. By the same approach described in [WW24a, Remark 2.7], we can compose
the SNARG with a RAM delegation scheme (e.g., [CJJ22, KVZ21, KLVW23]) to obtain a SNARG for batch
NP where the verification time is poly(_,) , =, log |� |), where = is the length of a single statement.

Zero-knowledge. We also define a zero-knowledge property which essentially requires that the proof
c for a batch of statements (G1, . . . , G) ) leak nothing more about (G1, . . . , G) ) other than the fact that all of
the statements are true.

Definition 2.8 (Perfect Zero-Knowledge). A BARG ΠBARG = (Setup, P,V) for the Boolean circuit satisfia-
bility languageLSAT satisfies perfect zero-knowledge if there exists an efficient simulatorS = (S0,S1) such
that for any Boolean circuit � : {0, 1}= × {0, 1}E → {0, 1} and any tuple of statements ®G = (G1, . . . , G) ) and
witnesses ®F = (F1, . . . ,F) ) such that� (G8 ,F8) = 1 for all 8 ∈ [) ], the following distributions are identical:{

(crs, ®G, c) :
crs← Setup(1_,) ,�)
c ← P(crs, ®G, ®F)

}
≡

{
(crs, ®G, c) :

(crs, st) ← S0(1
_,) ,�)

c ← S1(st, ®G)

}
.

5�is is the notion of succinctness that our constructions achieve.
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2.3 Cryptographic Assumptions in Pairing-Free Groups

Our constructions will rely on the hardness of the discrete log and decisional Diffie-Hellman (DDH) as-
sumptions in (pairing-free) groups. We recall the notion of a prime-order group along with the formal
description of the assumptions below.

Notation. For a positive integer ? > 1, we write Z? to denote the set of integers {0, . . . , ? − 1}. We write
Z
∗
? to denote the multiplicative group of integers modulo ? .

Definition 2.9 (Prime-Order Group Generator). Let _ be a security parameter. A prime-order group gen-
erator is an efficient algorithm GroupGen that takes as input security parameter 1_ and outputs the de-
scription G = (G, ?, 6) of a group G of prime order ? = 2Θ(_) and generated by 6 ∈ G. Moreover, we
require that the group operation in G be efficiently computable.

Definition 2.10 (Discrete Log Assumption). Let GroupGen be a prime-order group generator. We say
that the discrete log assumption holds with respect to GroupGen if for all efficient adversaries A, there
exists a negligible function negl(_) such that for all _ ∈ N,

Pr[A(1_,G, 6G ) = G : G = (G, ?, 6) ← GroupGen(1_), G r← Z?] ≤ negl(_) .

Definition 2.11 (Decisional Diffie-Hellman Assumption). For a security parameter _, a bit 1 ∈ {0, 1}, and
a prime-order group generator GroupGen, we define the decisional Diffie-Hellman (DDH) security game
between an adversary A and a challenger as follows:

• �e challenger starts by sampling G = (G, 6, ?) ← GroupGen(1_) and G,~ r← Z∗? .

• If 1 = 0, the challenger computes I = G~ ∈ Z∗? . If 1 = 1, the challenger samples I r← Z∗? .
6

• �e challenger then sends (G, 6G , 6~, 6I) to A.

• A outputs a bit 1′, which is the output of the experiment.

We say that the DDH assumption holds with respect to GroupGen if for all efficient adversaries A, there
exists _A ∈ N such that for all security parameters _ ≥ _A , it holds that

DDHAdvA (_) ≔ | Pr[1
′
= 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | ≤ Y (_)

in the DDH security game.

3 Homomorphic Re-randomizable One-Way Functions

In this section, we introduce the notion of a homomorphic re-randomizable OWF, which is one of the
main building blocks we use in our construction of an adaptive fully succinct BARG in Section 4. �en, in
Section 3.1, we show how to construct a homomorphic re-randomizable OWF from discrete log.

Definition 3.1 (Homomorphic Re-randomizable OWF). A homomorphic re-randomizable OWF is a tuple
of efficient algorithms ΠOWF = (Setup, GenInstance, Rerandomize, Verify, InHom, OutHom,

RecoverSolution) with the following syntax:

6For convenience, we define the DDH assumption as sampling the exponents G,~, I uniformly from Z∗? as opposed to Z? . When

? = 2Ω (_) , the uniform distribution over Z∗? and Z? for prime ? is statistically indistinguishable.
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• Setup(1_, 1<) → crs : On input security parameter 1_ and re-randomization parameter 1< , the
setup algorithm outputs a common reference string crs. We assume that the crs contains an implicit
description of the input spaceZ and the output space Y.

• GenInstance(crs) → (~, I) : On input common reference string crs, the instance-generation algo-
rithm outputs challenge ~ ∈ Y together with a preimage I ∈ Z.

• Rerandomize(crs, ~) → ~′ : On input common reference string crs and challenge ~ ∈ Y, the ran-
domization algorithm outputs a new challenge ~′ ∈ Y.

• Verify(crs, ~, I) → 0/1. On input common reference string crs, challenge ~ ∈ Y, and preimage
I ∈ Z, the verification algorithm outputs 0 or 1.

• RecoverSolution(crs, I′, A ) → I : On input common reference string crs, preimage I′ ∈ Z, and
randomness A , the preimage recovery algorithm outputs a new preimage I ∈ Z.

• InHom(crs, (I1, . . . , Iℓ )) → I: On input common reference string crs and preimages I1, . . . , Iℓ ∈ Z,
the input homomorphism algorithm outputs a new preimage I ∈ Z.

• OutHom(crs, (~1, . . . , ~ℓ )) → ~: On input common reference string crs and challenges ~1, . . . , ~ℓ ∈
Y, the output homomorphism algorithm outputs a new challenge ~ ∈ Y.

We require that ΠOWF satisfy the following properties:

• Correctness. For all _,< ∈ N, all crs in the support of Setup(1_, 1<), and all (~, I) in the support of
GenInstance(crs), we have that Verify(crs, ~, I) = 1.

• Homomorphism. For all _,< ∈ N, all crs in the support of Setup(1_, 1<), all I1, . . . , Iℓ ∈ Z, and
all ~1, . . . , ~ℓ ∈ Y such that Verify(crs, ~8 , I8) = 1 for all 8 ∈ [ℓ], we have that

Verify(crs,OutHom(crs, (~1, . . . , ~ℓ )), InHom(crs, (I1, . . . , Iℓ ))) = 1.

Further, InHom has a corresponding inversion algorithm InHom−1 such that for all crs in the support
of Setup(1_, 1<), for all preimages I, I′ ∈ Z and challenges ~,~′ ∈ Y, if

Verify(crs,OutHom(crs, (~,~′)), I) = 1 and Verify(crs, ~′, I′) = 1,

then
Verify(crs, ~, InHom−1(crs, (I, I′))) = 1.

• One-wayness. For a security parameter _, a re-randomization parameter<, and a bit 1 ∈ {0, 1}, we
define the one-wayness security game between an adversary A and a challenger as follows:

– �e challenger samples crs← Setup(1_, 1<) and (~, I) ← GenInstance(crs) and sends (crs, ~)
to A.

– Algorithm A sends a preimage I′ to the challenger.

– �e challenger outputs a bit 1′ ← Verify(crs, ~, I′).
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We say that ΠOWF is (C, Y)-one-way if for all polynomials< = <(_) and all adversaries A running
in time at most C (_) · poly(_), there exists _A ∈ N such that for all security parameters _ ≥ _A , it
holds that

PRGAdvA (_) ≔ Pr[1′ = 1] ≤ Y (_)

in the one-wayness security game.

• Re-randomization correctness. For all _ ∈ N, all polynomials< =<(_), all crs in the support of
Setup(1_, 1<), all preimages I′ ∈ Z, all ~ ∈ Y, and all randomness A where

Verify(crs,Rerandomize(crs, ~; A ), I′) = 1

we have that
Verify(crs, ~,RecoverSolution(crs, I′, A )) = 1.

• Re-randomization security. For a security parameter _, a re-randomization parameter<, and a bit
1 ∈ {0, 1}, we define the re-randomization security game between an adversaryA and a challenger
as follows:

– �e challenger samples crs← Setup(1_, 1<) and (~base, Ibase) ← GenInstance(crs).

– If 1 = 0, the challenger samples (~∗, I∗) ← GenInstance(crs). If 1 = 1, the challenger samples
~∗ ← Rerandomize(crs, ~base).

– �e challenger then sends (crs, ~base, ~
∗) to A.

– A outputs a bit 1′, which is the output of the experiment.

We say that ΠOWF satisfies (C, Y)-re-randomization security if for all polynomials< = <(_) and all
adversaries A running in time at most C (_) · poly(_), there exists _A ∈ N such that for all security
parameters _ ≥ _A , it holds that

RerandAdvA (_) ≔ | Pr[1
′
= 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | ≤ Y (_)

in the re-randomization security game.

• Succinctness. �ere exists a polynomial poly(·) such that for all _,< ∈ N, all crs in the support of
Setup(1_, 1<), and all I ∈ Z, it holds that |I | ≤ poly(_ + log<).

3.1 Constructing Homomorphic Re-randomizable OWFs

In this section, we show that the construction of a re-randomizable OWF from discrete log [WW24a,
Construction 5.3] is a homomorphic re-randomizable OWF. �ough we do not formalize it in this work,
the second construction of a re-randomizable OWF in [WW24a] based on computing modular square
roots (i.e., the function 5 (I) = I2 mod # where # = ?@ is an RSA modulus) is also homomorphic, as
5 (I0I1) = (I0I1)

2
= I20I

2
1 = 5 (I0) 5 (I1) mod # . We start by recalling the discrete-log-based construction

from [WW24a], with the addition of the InHom andOutHom algorithms for the homomorphism property.
For simplicity, we describe the scheme with additive blinding rather than multiplicative blinding:

Construction 3.2 (Homomorphic Re-randomizable OWF). Let GroupGen be a prime-order group gen-
erator. We construct a homomorphic re-randomizable OWF ΠOWF = (Setup,GenInstance,Rerandomize,

InHom,OutHom,RecoverSolution) as follows:
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• Setup(1_, 1<): On input security parameter 1_ and re-randomization parameter 1< , the setup algo-
rithm samples (G, ?, 6) ← GroupGen(1_) and outputs crs = (G, ?, 6). �e domain of the OWF is
Z = Z

∗
? and the range is Y = G.

• GenInstance(crs) → (~, I): On input common reference string crs = (G, ?, 6), the instance genera-
tion algorithm samples I r← Z∗? , computes ~ = 6I , and outputs (~, I).

• Rerandomize(crs, ~) → ~′: On input common reference string crs = (G, ?, 6) and challenge ~ ∈ G,
the randomization algorithm samples A r← Z∗? and outputs ~ · 6A ∈ G.

• Verify(crs, ~, I) → 0/1: On input common reference string crs = (G, ?, 6), challenge ~ ∈ G, and
preimage I ∈ Z∗? , the verification algorithm outputs 1 if ~ = 6I and 0 otherwise.

• RecoverSolution(crs, I′, A ) → I: On input common reference string crs, preimage I′ ∈ Z∗? , and
randomness A ∈ Z∗? , the preimage recovery algorithm outputs I′ − A ∈ Z∗? .

• InHom(crs, (I1, . . . , Iℓ )) → I: On input common reference string crs and preimages I1, . . . , Iℓ ∈ Z
∗
? ,

the input homomorphism outputs
∑

8∈[ℓ ] I8 ∈ Z
∗
? .

• OutHom(crs, (~1, . . . , ~ℓ )) → ~: On input common reference string crs and challenges~1, . . . , ~ℓ ∈ G,
the output homomorphism outputs

∏
8∈[ℓ ] ~8 ∈ G.

We refer to [WW24a, §5.1] for the proofs of the correctness, one-wayness, re-randomization correctness,
re-randomization security, and succinctness properties. Here, we show the homomorphism property.

�eorem 3.3 (Homomorphism). Construction 3.2 satisfies homomorphism.

Proof. Take any crs = (G, ?, 6) in the support of GroupGen(1_), and any I1, . . . , Iℓ ∈ Z? , ~1, . . . , ~ℓ ∈ G

where Verify(crs, ~8 , I8) = 1 for all 8 ∈ [ℓ]. By construction of Verify, this means that ~8 = 6I8 for all 8 ∈ [ℓ].
�en

6InHom(crs,(I1,...,Iℓ ) ) = 6
∑

8∈ [ℓ ] I8 =

∏
8∈[ℓ ]

6I8 =
∏
8∈[ℓ ]

~8 = OutHom(crs, (~1, . . . , ~ℓ )).

�us
Verify(crs,OutHom(crs, (~1, . . . , ~ℓ )), InHom(crs, (I1, . . . , Iℓ ))) = 1,

as required. Next, define the inversion algorithm InHom−1(crs, I, I′) = I − I′. Take any I, I′ ∈ Z∗? and
~,~′ ∈ G, where Verify(crs,OutHom(crs, (~,~′)), I) = 1 and Verify(crs, ~′, I′) = 1. �is means

6I = OutHom(crs, ~,~′) = ~~′ and 6I
′

= ~′.

�en,

6InHom
−1 (crs,I,I′ )

= 6I−I
′

=
~~′

~′
= ~,

and Verify(crs, ~, InHom−1(crs, (I, I′))) = 1 as desired. �

22



4 SNARG for Batch NP from Homomorphic Re-randomizable OWFs

In this section, we show how to construct a fully succinct SNARG for batch NP using indistinguishabil-
ity obfuscation together with a homomorphic re-randomizable OWF. Our construction follows a similar
template as the construction from [WW24a].

Construction 4.1 (Adaptive Batch Argument for NP). Let _ be a security parameter. We construct a BARG
scheme that supports NP languages with an arbitrary polynomial number ) = ) (_) < 2_ of instances of
length = = =(_). Our construction will leverage sub-exponential hardness of the below primitives (except
for one-wayness of ΠOWF). Our construction relies on the following primitives:

• Let 8O be an indistinguishability obfuscation scheme for Boolean circuits.

• Let ΠPPRF = (F.Setup, F.Eval, F.Puncture) be a puncturable PRF. For a key : and an input G , we will
write F(:, G) to denote F.Eval(:, G).

• Let ΠOWF = (OWF.Setup, OWF.GenInstance, OWF.Rerandomize, OWF.Verify,

OWF.RecoverSolution,OWF.InHom,OWF.OutHom) be a homomorphic re-randomizable one-way
function.

We will describe how to define the polynomials _obf, _PRF, and< in the security analysis. We construct a
fully succinct non-interactive batch argument ΠBARG = (Gen, P,V) for NP as follows:

• Setup(1_,) ,�): On input security parameter 1_ , batch size ) , and Boolean circuit � : {0, 1}= ×
{0, 1}E → {0, 1}, the setup algorithm does the following:

– Sample OWF parameters crs5 ← OWF.Setup(1_, 1<).

– Let C = log() + 1). Let d be a bound on the number of bits of randomness the sampling algo-
rithmOWF.GenInstance(crs5 ) takes. Let g be the number of bits of randomness that the setup
algorithm F.Setup(1_PRF, 1=+C , 1d ) takes.

– Sample a “selector” PPRF key :sel ← F.Setup(1_PRF, 1=+C , 1C ).

– Sample a “key generator” PPRF key : ← F.Setup(1_PRF, 1C , 1g ).

– Define the GenSol program with the OWF parameters crs5 , circuit � , and PPRF keys :, :sel
hard-coded:

GenSol[crs5 ,�, :, :sel] (8, 9, G8 ,F8)

Inputs: index 8 , selection symbol 9 , statement G8 , witnessF8

1: If � (G8 ,F8) = 0, output ⊥.

2: If 9 = F(:sel, (G8 , 8)), output ⊥.

3: Compute : 9 ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9)).

4: Compute (~, I) ← OWF.GenInstance(crs5 ; F(: 9 , (G8 , 8))) and output I.

– Define the GenChall program with the OWF parameters crs5 and PPRF key : hard-coded:
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GenChall[crs5 , :] (8, 9, G8)

Inputs: index 8 , selection symbol 9 , statement G8

1: Compute : 9 ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9)).

2: Compute (~, I) ← OWF.GenInstance(crs5 ; F(: 9 , (G8 , 8))) and output ~.

– Let B = B (_, =, |� |) be the maximum size of the GenChall and GenSol programs as well as those
appearing in the security analysis.

– Construct the obfuscated programs

ObfGenChall← 8O(1_obf , 1B ,GenChall[crs5 , :])

and
ObfGenSol← 8O(1_obf , 1B ,GenSol[crs5 ,�, :, :sel]) .

– Output crs = (crs5 ,ObfGenChall,ObfGenSol).

• P(crs, (G1, . . . , G) ), (F1, . . . ,F) )): On input crs = (crs5 ,ObfGenChall,ObfGenSol), the statements
G1, . . . , G) , and the witnessesF1, . . . ,F) , the prover algorithm proceeds as follows.

– Initialize 8 = 1, 9 = 1. �en, while 8 ≤ ) :

∗ Compute I8 ← ObfGenSol(8, 9, G8 ,F8).

∗ If I8 = ⊥, set 8 = 1, 9 = 9 + 1. Otherwise, set 8 = 8 + 1.

– Compute I = OWF.InHom(crs5 , (I1, . . . , I) )) and output ( 9, I).

• V(crs, (G1, . . . , G) ), c): On input crs = (crs5 ,ObfGenChall,ObfGenSol), the statements G1, . . . , G) ,
and the proof c = ( 9, I), the verification algorithm proceeds as follows:

– For each 8 ∈ [) ], compute ~8 ← ObfGenChall(8, 9, G8).

– Compute ~ = OWF.OutHom(crs5 , (~1, . . . , ~) )) and output OWF.Verify(crs5 , ~, I).

�eorem 4.2 (Completeness). Suppose 8O is correct and ΠOWF satisfies homomorphism. �en Construc-

tion 4.1 is complete.

Proof. Take any security parameter _ ∈ N, any Boolean circuit� : {0, 1}=×{0, 1}E → {0, 1}, any) ≤ 2_ , and
any statements (G1, . . . , G) ) and witnesses (F1, . . . ,F) ) such that � (G8 ,F8) = 1 for all 8 ∈ [) ]. Let crs =

(crs5 ,ObfGenSol,ObfGenChall) ← Setup(1_,�,) ) and c = ( 9, I) ← P(crs, (G1, . . . , G) ), (F1, . . . ,F) )).
Consider the output of V(crs, (G1, . . . , G) ), c):

• By construction, ObfGenSol is an obfuscation of the program GenSol[crs5 ,�, :, :sel], where

:sel ← F.Setup(1_PRF, 1=+C , 1C ) and : ← F.Setup(1_PRF, 1C , 1g ) .

Algorithm P obtains ( 9, I1), . . . , ( 9, I) ) by evaluating ObfGenSol on inputs (8, 9, G8 ,F8). By correct-
ness of 8O and the definition of GenSol, this means that I8 was generated by computing (~8 , I8) ←
OWF.GenInstance(crs5 ; F(: 9 , (G8 , 8))) for all 8 ∈ [) ]. Note that an index 9 ∈ [) + 1] always exists,
because for each index 8 , there is just a single index 98 = F(:sel, (G8 , 8)) where the GenSol program
outputs ⊥. Since there are at most ) instances, there are at most ) indices 9 ∈ [) + 1] that fail, or
equivalently, there must exist at least one index 9 ∈ [) + 1] where 9 ≠ F(:sel, (G8 , 8)) for all 8 ∈ [) ].
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• By construction, ObfGenChall is an obfuscation of the program GenChall[crs5 , :] where crs5 ←

OWF.Setup(1_, 1<). Algorithm V computes the instance ~8 ← ObfGenChall(8, 9, G8), which was
generated by computing (~8 , I8) ← OWF.GenInstance(crs5 ; F(: 9 , (G8 , 8))) for all 8 ∈ [) ]. By correct-
ness of 8O and correctness of OWF, this means that OWF.Verify(crs5 , ~8 , I8) = 1 for all 8 ∈ [) ].

• Finally, algorithm P computes I = OWF.InHom(crs5 , (I1, . . . , I) )) and algorithm V computes ~ =

OWF.OutHom(crs5 , (~1, . . . , ~) )). By homomorphism of ΠOWF, we haveOWF.Verify(crs5 , ~, I) = 1.

�us V outputs 1 with probability 1. �

�eorem 4.3 (Succinctness). Suppose ΠOWF is succinct. �en Construction 4.1 is succinct.

Proof. A proof ( 9, I) in Construction 4.1 consists of a selection symbol 9 ∈ [) + 1] and a OWF preimage
I. Since ΠOWF is succinct, there is a fixed polynomial ? such that |I | ≤ ? (_ + log<). Since<(_, =) in Con-
struction 4.1 is a fixed polynomial in the security parameter _ and the statement length= and the statement
length is always upper-bounded by the circuit size, it follows that |c | ≤ poly(_ + log |� |) + log) . �

�eorem 4.4 (Adaptive Soundness). Suppose 8O is (1, 2−_
Yobf
obf )-secure, ΠPPRF satisfies punctured correct-

ness and (1, 2−_
YPRF
PRF )-puncturing security, and ΠOWF satisfies re-randomization correctness, (1, negl(_))-one-

wayness, and (1, 2−<
Y<
)-re-randomization security for constants Yobf, YPRF, Y< ∈ (0, 1) and security parame-

ters _obf = (_ + =)
1/Yobf , _PRF = (_ + =)

1/YPRF,< = (_ + =)1/Y< . �en Construction 4.1 is adaptively sound.

Proof. Our proof follows a similar structure as the proof of [WW24a, �eorem 4.3]. Let A be an efficient
adversary that succeeds in the adaptive soundness game against Construction 4.1 with (non-negligible)
probability Y (_). We first claim that without loss of generality, we can assume that for every security pa-
rameter _,A always outputs a circuit� with statements of a fixed length = = =(_) and witnesses of a fixed
length E = E (_) and a fixed batch size) = ) (_). Formally, sinceA is a polynomial-time algorithm,A(1_)
outputs a Boolean circuit of size at most Bmax(_) = poly(_) and a maximum batch size )max(_) = poly(_).
�is in turn defines maximum statement and witness lengths =max(_), Emax(_) ≤ Bmax(_). In an execution
of the adaptive soundness game, let E=′,E′,) ′ be the event that A outputs a circuit � with statements of
length =′ and witnesses of length E ′ and batch size ) ′. �en

Pr[A wins the soundness game] =
∑

=′∈[=max ]
E′∈[Emax ]
) ′∈[)max ]

Pr[A wins the soundness game ∧ E=′,E′,) ′] .

�us there must exist some (=, E,) ) ∈ [=max] × [Emax] × [)max] such that such that

Pr[A(1_) wins the soundness game ∧ E=,E,) ] ≥
Y (_)

=max · Emax ·)max
.

For each security parameter _, define = = =(_), E = E (_), and ) = ) (_) to be the smallest values
such that the above equation holds. We now construct a new (non-uniform) adversary A′ that func-
tions as a wrapper around A, but only outputs circuits with fixed statement and witness lengths and
a fixed batch size. Namely, A′ takes as input the security parameter 1_ and the non-uniform advice
= = =(_), E = E (_),) = ) (_). A′ runs (�′,) ′) ← A(1_). If �′ does not have statements of length =
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and witnesses of length E or ) ′ ≠ ) , then A′ aborts. Otherwise, A′ simply follows the behavior of A
(and outputs whatever A outputs). By construction,

Pr[A′(1_) wins the soundness game] = Pr[A(1_) wins the soundness game ∧ E=,E,) ]

≥
Y (_)

=max · Emax ·)max
.

�us A′ still has a non-negligible success probability in the soundness game. For the remainder of this
proof, we will assume the adversary always outputs a circuit� with statements of length = and witnesses
of length E and batch size ) . We now define a sequence of hybrid experiments:

Hyb0: �is is the real adaptive soundness experiment.

• Adversary A, on input 1_ , starts by outpu�ing a Boolean circuit � : {0, 1}= × {0, 1}E → {0, 1},
and the batch size ) .

• �e challenger samples crs← Setup(1_,) ,�) and gives crs to A.

• Adversary A outputs a batch of statements ®G = (G1, . . . , G) ) and a proof c = ( 9, I).

• �e challenger outputs 1 if and only if for some 8 ∈ [) ], (�, G8) ∉ LSAT and V(crs, ®G, c) = 1.

Hyb1: Same asHyb0 except the challenger samples 8∗ r← [) ] and outputs 1 if and only if (�, G8∗) ∉ LSAT

and V(crs, ®G, c)) = 1.

Hyb2: Same as Hyb1 except the challenger additionally checks that 9 = F(:sel, (G8∗, 8
∗))

Hyb3: Same as Hyb2 except the challenger stops checking that (�, G8∗) ∉ LSAT.

Hyb4: Same as Hyb3 except the challenger changes how it defines the GenChall program. During
setup, the challenger additionally samples

• (~base, Ibase) ← OWF.GenInstance(crs5 )

• :rerand ← F.Setup(1_PRF, 1=+C , 1`)

where ` is a bound on the number of bits of randomness the OWF.Rerandomize algorithm takes. It
defines GenChall′ as follows:

GenChall′ [crs5 , :, :sel, 8
∗, :rerand, ~base] (8, 9, G8)

Inputs: index 8 , selection symbol 9 , statement G8

1: Compute : 9 ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9)).

2: If 8 = 8∗ and 9 = F(:sel, (G8 , 8)), output OWF.Rerandomize(crs5 , ~base; F(:rerand, (G8 , 8))).

3: Else: compute (~, I) ← OWF.GenInstance(crs5 ; F(: 9 , (G8 , 8))) and output ~.

We write Hyb8 (A) to denote the output distribution of an execution of Hyb8 with the adversary A. We
now argue that each pair of adjacent hybrid distributions is indistinguishable.

Lemma 4.5. Pr[Hyb1(A) = 1] ≥ 1
)
Pr[Hyb0(A) = 1].
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Proof. Suppose the output in Hyb0 is 1. �is means there exists some index 8 ∈ [) ] where (�, G8∗) ∉ LSAT.
Since the challenger samples 8∗ r← [) ] independently of the common reference string (and thus, the view
of the adversary), with probability at least 1/) , it will also be the case that (�, G8∗) ∉ LSAT, in which case
the output in Hyb1 is also 1. �

Lemma 4.6. Suppose 8O is (1, 2−_
Yobf
obf )-secure and ΠPPRF satisfies punctured correctness and (1, 2−_

YPRF
PRF )-

puncturing security for constants Yobf, YPRF ∈ (0, 1) and security parameters _obf = (_ + =)1/Yobf , _PRF =

(_ + =)1/YPRF . �en

Pr[Hyb2(A) = 1] ≥
1

) + 1
Pr[Hyb1(A) = 1] − 2−Ω (_) .

Proof. Consider an execution of Hyb1 or Hyb2. For a fixed G
∗ ∈ {0, 1}= , let EG∗ be the event thatA outputs

®G = (G1, . . . , G) ) such that G8∗ = G∗. By definition, we can now write

Pr[Hyb1(A) = 1] =
∑

G∗∈{0,1}=

Pr[Hyb1(A) = 1 ∧ EG∗]

Pr[Hyb2(A) = 1] =
∑

G∗∈{0,1}=

Pr[Hyb2(A) = 1 ∧ EG∗] .
(4.1)

To prove the lemma, we show that for all G∗ ∈ {0, 1}= ,

Pr[Hyb2(A) = 1 ∧ EG∗] ≥
1

) + 1
Pr[Hyb1(A) = 1 ∧ EG∗] −

$ () )

2_+=
. (4.2)

If Eq. (4.2) holds, then

Pr[Hyb2(A) = 1] =
∑

G∗∈{0,1}=

Pr[Hyb2(A) = 1 ∧ EG∗]

≥
∑

G∗∈{0,1}=

( 1

) + 1
Pr[Hyb1(A) ∧ EG∗] −

$ () )

2_+=

)

≥
1

) + 1
Pr[Hyb1(A) = 1] −

$ () )

2_
,

which proves the claim since ) = poly(_). We now show Eq. (4.2) holds. Fix any G∗ ∈ {0, 1}= . If
(�, G∗) ∈ LSAT, then

Pr[Hyb2(A) = 1 ∧ EG∗] = 0 = Pr[Hyb1(A) = 1 ∧ EG∗],

so Eq. (4.2) holds. �us we only need to consider the case where (�, G∗) ∉ LSAT. We proceed by defining
a sequence of intermediate hybrids.

Hyb1
(G∗ )
,0 : Same as Hyb1 except the challenger additionally checks that G8∗ = G∗ (i.e., that EG∗ occurred).

Hyb1
(G∗ )
,1 : Same as Hyb1

(G∗ )
,0 except the challenger does the following. It first computes a punctured key

:
(G∗,8∗ )

sel
← F.Puncture(:sel, (G

∗, 8∗)) and defines a modified version of GenSol which additionally has
8∗, G∗ hard-coded as follows:

GenSol′ [crs5 ,�, :, :
(G∗,8∗ )

sel
, 8∗, G∗] (8, 9, G8 ,F8)

Inputs: index 8 , selection symbol 9 , statement G8 , witnessF8

1: If 8 = 8∗ and G8 = G∗, output ⊥.
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2: If � (G8 ,F8) = 0, output ⊥.

3: If 9 = F(:
(G∗,8∗ )

sel
, (G8 , 8)), output ⊥.

4: Compute : 9 ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9)).

5: Compute (~, I) ← OWF.GenInstance(crs5 ; F(: 9 , (G8 , 8))) and output I.

Hyb1
(G∗ )
,2 : Same as Hyb1

(G∗ )
,1 except that a�er A outputs ( ®G, c) where ®G = (G1, . . . , G) ) and c = ( 9, I), the

challenger samples 9 ′ r← [) + 1] and additionally checks that 9 = 9 ′.

Hyb1
(G∗ )
,3 : Same as Hyb1

(G∗ )
,2 except the challenger replaces the check 9 = 9 ′ with an updated check

9 = F(:sel, (G8∗, 8
∗)).

Hyb1
(G∗ )
,4 : Same as Hyb1

(G∗ )
,3 except the challenger reverts to obfuscating GenSol[crs5 ,�, :, :sel] instead of

GenSol′ [crs5 ,�, :, :
(G∗,8∗ )

sel
, 8∗, G∗].

By definition,

Pr[Hyb1
(G∗ )
,0 (A) = 1] = Pr[Hyb1(A) = 1 ∧ EG∗]

Pr[Hyb1
(G∗ )
,4 (A) = 1] = Pr[Hyb2(A) = 1 ∧ EG∗] .

(4.3)

We now consider each pair of adjacent distributions.

Claim 4.7. Suppose 8O is (1, 2−_
Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security parameter _obf = (_ +

=)1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb1
(G∗ )
,1 (A) = 1] − Pr[Hyb1

(G∗ )
,0 (A) = 1] | ≤ 1/2_+= .

Proof. Wefirst show thatGenSol[crs5 ,�, :, :sel] inHyb1
(G∗ )
,0 andGenSol′ [crs5 ,�, :, :

(G∗,8∗ )

sel
, 8∗, G∗] inHyb1

(G∗ )
,1

compute identical functionalities. For a particular input (8, 9, G8 ,F8) consider the following cases:

Case 1. If 8 ≠ 8∗ or G8 ≠ G∗, the two programs behave identically except that the la�er is using : (G
∗,8∗ )

sel
,

so by punctured correctness, they have the same output.

Case 2. If 8 = 8∗ and G8 = G∗, GenSol′ immediately rejects. Since (�, G∗) ∉ LSAT, it follows that
� (G∗,F8) = � (G8 ,F8) = 0, so GenSol also rejects.

�e claim now follows from 8O security. Formally, suppose there exists an infinite set ΛA ⊆ N such that

for all _ ∈ Λ, we have that | Pr[Hyb1
(G∗ )
,1 (A) = 1] − Pr[Hyb1

(G∗ )
,0 (A)] | > 1/2_+= . Let ΛB = {(_ + =)1/Yobf |

_ ∈ ΛA}. Since = is non-negative, ΛB is also an infinite set.
We define an efficient algorithm B which plays the 8O security game with _obf = (_ + =)

1/Yobf by run-
ningA with security parameter _. For each value of _obf ∈ ΛB , we provide the associated value of _ ∈ ΛA
to B as non-uniform advice (if there are multiple such _ ∈ ΛA associated with a particular _obf , we pick
the largest such _; note that since Yobf < 1 and = > 0, it will always be the case that _ < _obf).

Algorithm B[G∗]

Inputs: 1_obf from 8O challenger, 1_ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Sample 8∗ ← [) ] and crs5 , :sel, : . �en compute ObfGenChall as in Setup.
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3: Compute : (G
∗,8∗ )

sel
← F.Puncture(:sel, (G

∗, 8∗)).

4: Construct challenge programs GenSol[crs5 ,�, :, :sel] and GenSol′ [crs5 ,�, :, :
(G∗,8∗ )

sel
, 8∗, G∗] and

send to the 8O challenger. �e challenger replies with an obfuscated program ObfGenSol.

5: Let crs = (crs5 ,ObfGenChall,ObfGenSol).

6: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

7: Output 1 if and only if G∗ = G8∗ and V(crs, (G1, . . . , G) ), c) = 1.

If the 8O challenger obfuscates GenSol[crs5 ,�, :, :sel], then B perfectly simulates Hyb1
(G∗ )
,0 and outputs 1

with probability Pr[Hyb1
(G∗ )
,0 (A) = 1]. If the 8O challenger obfuscates GenSol′ [crs5 ,�, :, :

(G∗,8∗ )

sel
, 8∗, G∗],

then B perfectly simulates Hyb1
(G∗ )
,1 and outputs 1 with probability Pr[Hyb1

(G∗ )
,1 (A) = 1]. �us by 8O

security we have that

| Pr[Hyb1
(G∗ )
,1 (A) = 1] − Pr[Hyb1

(G∗ )
,0 (A) = 1] | = iOAdvB (_obf) ≤ 1/2_

Yobf
obf = 1/2_+= ≤ 1/2_+= . �

Claim 4.8. Pr[Hyb1
(G∗ )
,2 (A) = 1] ≥ 1

)+1 Pr[Hyb1
(G∗ )
,1 (A) = 1].

Proof. �e challenger samples 9 ′ r← [) + 1] a�er A outputs ®G = (G1, . . . , G) ) and c = ( 9, I)). �

Claim 4.9. Suppose ΠPPRF satisfies (1, 2−_
YPRF
PRF )-puncturing security for constant YPRF ∈ (0, 1) and security

parameter _PRF = (_ + =)
1/YPRF . �en

| Pr[Hyb1
(G∗ )
,3 (A) = 1] − Pr[Hyb1

(G∗ )
,2 (A) = 1] | ≤ 1/2_+= .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ Λ,

| Pr[Hyb1
(G∗ )
,3 (A) = 1] − Pr[Hyb1

(G∗ )
,2 (A)] | > 1/2_+= .

Let ΛB = {(_ + =)1/YPRF | _ ∈ ΛA}. Since = is non-negative, ΛB is also an infinite set. We define an
efficient algorithm B which plays the puncturing security game with _PRF = (_ + =)1/YPRF by running A
with security parameter _. For each value of _PRF ∈ ΛB , we provide the associated value of _ ∈ ΛA to B
as non-uniform advice (if there are multiple such _ ∈ ΛA associated with a particular _PRF, we pick the
largest such _; note that since YPRF < 1 and = > 0, it will always be the case that _ < _PRF).

Algorithm B[G∗]

Inputs: 1_PRF from PPRF challenger, 1_ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Sample 8∗ r← [) ], and crs5 , :sel as in Setup. Compute ObfGenChall as in Setup.

3: Send input length 1= , output length 1C , and punctured point (G∗, 8∗) to the PPRF challenger. �e

PPRF challenger replies with the punctured key : (G
∗,8∗ )

sel
and challenge value 9 ′ ∈ {0, 1}C .

4: Compute ObfGenSol← 8O(1_obf , 1B ,GenSol′ [crs5 ,�, :, :
(G∗,8∗ )

sel
, 8∗, G∗]).

5: Let crs = (crs5 ,ObfGenSol,ObfGenChall).
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6: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

7: Output 1 if and only if G∗ = G8∗ , V(crs, (G1, . . . , G) ), c) = 1, and 9 = 9 ′.

If the PPRF challenger samples 9 ′ r← {0, 1}C , then B perfectly simulates Hyb1
(G∗ )
,2 and outputs 1 with prob-

ability Pr[Hyb1
(G∗ )
,2 (A) = 1]. If the PPRF challenger computes 9 ′ ← F(:sel, (G

∗, 8∗)) then B perfectly sim-

ulates Hyb1
(G∗ )
,3 and outputs 1 with probability Pr[Hyb1

(G∗ )
,3 (A) = 1]. �us by PPRF security we have that

| Pr[Hyb1
(G∗ )
,3 (A) = 1] − Pr[Hyb1

(G∗ )
,2 (A) = 1] | = PPRFAdvB (_PRF) ≤ 1/2_

YPRF
PRF = 1/2_+= ≤ 1/2_+= . �

Claim 4.10. Suppose 8O is (1, 2−_
Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security parameter _obf =

(_ + =)1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb1
(G∗ )
,4 (A) = 1] − Pr[Hyb1

(G∗ )
,3 (A) = 1] | ≤ 1/2_+= .

Proof. �is follows by an analogous argument as Claim 4.7. �

Combining Claims 4.7 to 4.10, we have that

Pr[Hyb1(A) = 1 ∧ EG∗] = Pr[Hyb(G
∗ )

1,0 (A) = 1] by Eq. (4.3)

≤ Pr[Hyb(G
∗ )

1,1 (A) = 1] +
1

2_+=
by Claim 4.7

≤ () + 1) · Pr[Hyb(G
∗ )

1,2 (A) = 1] +
1

2_+=
by Claim 4.8

≤ () + 1) ·
(
Pr[Hyb(G

∗ )
1,3 (A) = 1] +

1

2_+=

)
+

1

2_+=
by Claim 4.9

≤ () + 1) ·
(
Pr[Hyb(G

∗ )
1,4 (A) = 1] +

2

2_+=

)
+

1

2_+=
by Claim 4.10

= () + 1) · Pr[Hyb2(A) = 1 ∧ EG∗] +
2) + 3

2_+=
by Eq. (4.3).

�us, Eq. (4.2) holds for the case where (�, G∗) ∉ LSAT. �is proves Lemma 4.6. �

Lemma 4.11. Pr[Hyb3(A) = 1] ≥ Pr[Hyb2(A) = 1].

Proof. �e conditions for outpu�ing 1 in Hyb3 are a strict subset of those for outpu�ing 1 in Hyb2. �

Lemma 4.12. Suppose 8O is (1, 2−_
Yobf
obf )-secure, the punctured PRF ΠPPRF satisfies punctured correctness

and (1, 2−_
YPRF
PRF )-puncturing security, and ΠOWF satisfies re-randomization correctness and (1, negl(_))-one-

wayness and (1, 2−<
Y<
)-re-randomization security for constants Yobf, YPRF, Y< ∈ (0, 1) and security parameters

_obf = (_ + =)
1/Yobf , _PRF = (_ + =)

1/YPRF,< = (_ + =)1/Y< . �en

Pr[Hyb4(A) = 1] ≥ Pr[Hyb3(A) = 1] − 2−Ω (_) .

Proof. We proceed by defining a sequence of intermediate hybrids for each value of G∗ ∈ {0, 1}= .

Hyb3
(G∗ )
,1 : Same as Hyb3 except the challenger computes
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• 9∗ ← F(:sel, (G
∗, 8∗));

• : 9∗ ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9∗));

• : ( 9
∗ ) ← F.Puncture(:, 9∗);

• (~∗, I∗) ← OWF.GenInstance(crs5 ; F(: 9∗, (G
∗, 8∗)));

• (~base, Ibase) ← OWF.GenInstance(crs5 );

• :rerand ← F.Setup(1_PRF, 1=+C , 1`).

Here, ` is a bound on the number of bits of randomness theOWF.Rerandomize algorithm takes. �e
challenger then defines a modified version of GenChall as follows:

GenChall′′ [crs5 , :sel, 8
∗, 9∗, : ( 9

∗ ) , : 9∗, :rerand, G
∗, ~∗, ~base] (8, 9, G8)

Inputs: index 8 , selection symbol 9 , statement G8

1: If 9 = 9∗ : let : 9 = : 9∗ . Otherwise, compute : 9 ← F.Setup(1_PRF, 1=+C , 1d ; F(: ( 9
∗ ) , 9)).

2: If 8 = 8∗ and 9 = F(:sel, (G8 , 8)):

• If G8 < G∗: output OWF.Rerandomize(crs5 , ~base; F(:rerand, (G8 , 8))).

• If G8 = G∗: output ~∗.

• If G8 > G∗: compute (~, I) ← OWF.GenInstance(crs5 ; F(: 9 , (G8 , 8))) and output ~.

Otherwise, compute (~, I) ← OWF.GenInstance(crs5 ; F(: 9 , (G8 , 8))) and output ~.

Hyb3
(G∗ )
,2 : Same as Hyb3

(G∗ )
,1 except the challenger samples : 9∗ ← F.Setup(1_PRF, 1=+C , 1d ) instead of com-

puting : 9∗ ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9∗)).

Hyb3
(G∗ )
,3 : Same as Hyb3

(G∗ )
,2 except the challenger additionally computes

• :
(G∗,8∗ )
9∗ ← F.Puncture(: 9∗, (G

∗, 8∗))

• :
(G∗,8∗ )

rerand
← F.Puncture(:rerand, (G

∗, 8∗))

and uses the punctured keys in place of : 9∗, :rerand.

Hyb3
(G∗ )
,4 : Same as Hyb3

(G∗ )
,3 except the challenger samples (~∗, I∗) ← OWF.GenInstance(crs5 ) instead of

computing (~∗, I∗) ← OWF.GenInstance(crs5 ; F(: 9∗, (G
∗, 8∗))).

Hyb3
(G∗ )
,5 : Same as Hyb3

(G∗ )
,4 except the challenger samples ~∗ ← OWF.Rerandomize(crs5 , ~base).

Hyb3
(G∗ )
,6 : Same as Hyb3

(G∗ )
,5 except the challenger computes

~∗ ← OWF.Rerandomize(crs5 , ~base; F(:rerand, (G
∗, 8∗))).

Hyb3
(G∗ )
,7 : Same asHyb3

(G∗ )
,6 except the challenger reverts to using unpunctured keys : 9∗, :rerand instead of

punctured keys : (G
∗,8∗ )

9∗ , :
(G∗,8∗ )

rerand
.

Hyb3
(G∗ )
,8 : Same asHyb3

(G∗ )
,7 except the challenger reverts to computing: 9∗ ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9∗))

instead of sampling : 9∗ ← F.Setup(1_PRF, 1=+C , 1d ).
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We now consider each pair of adjacent distributions.

Claim 4.13. Fix any G∗ ∈ {0, 1}= \ {0=}. Suppose 8O is (1, 2−_
Yobf
obf )-secure for constant Yobf ∈ (0, 1) and

security parameter _obf = (_ + =)
1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb3
(G∗ )
,1 (A) = 1] − Pr[Hyb(G

∗−1)
3,8 (A) = 1] | ≤ 1/2_+= .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ Λ,

| Pr[Hyb3
(G∗ )
,1 (A) = 1] − Pr[Hyb(G

∗−1)
3,8 (A) = 1] | > 1/2_+= .

Let ΛB = {(_ + =)1/Yobf | _ ∈ ΛA}. Since = is non-negative, ΛB is also an infinite set. We define an effi-
cient algorithm B which plays the 8O security game with _obf = (_ + =)

1/Yobf by running A with security
parameter _. For each value of _obf ∈ ΛB , we provide the associated value of _ ∈ ΛA to B as non-uniform
advice (if there are multiple such _ ∈ ΛA associated with a particular _obf , we pick the largest such _; note
that since Yobf < 1 and = > 0, it will always be the case that _ < _obf).

Algorithm B[G∗]

Inputs: 1_obf from 8O challenger, 1_ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Sample 8∗ ← [) ], and crs5 , :sel, : as in Setup.

3: Compute (~base, Ibase) ← OWF.GenInstance(crs5 ) and :rerand ← F.Setup(1_PRF, 1=+C , 1`).

4: Compute 9 ′ ← F(:sel, (G
∗ − 1, 8∗)).

5: Compute : ( 9
′ ) ← F.Puncture(:, 9 ′), and : 9 ′ ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9 ′)).

6: Compute ~′ ← OWF.Rerandomize(crs5 , ~base; F(:rerand, (G
∗ − 1, 8∗))).

7: Compute 9∗ ← F(:sel, (G
∗, 8∗)).

8: Compute : ( 9
∗ ) ← F.Puncture(:, 9∗), and : 9∗ ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9∗)).

9: Compute (~∗, I∗) ← OWF.GenInstance(crs5 ; F(: 9∗, (G
∗, 8∗))).

10: Compute ObfGenSol← 8O(1_obf , 1B ,GenSol[crs5 ,�, :sel, :]).

11: Construct challenge programs GenChall′′ [crs5 , :sel, 8
∗, 9 ′, : ( 9

′ ) , : 9 ′, :rerand, G
∗ − 1, ~′, ~base] and

GenChall′′ [crs5 , :sel, 8
∗, 9∗, : ( 9

∗ ) , : 9∗, :rerand, G
∗, ~∗, ~base] and send to the 8O challenger. �e 8O

challenger replies with an obfuscated program ObfGenChall.

12: Let crs = (crs5 ,ObfGenSol,ObfGenChall).

13: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

14: Output 1 if and only if V(crs, ®G, c) = 1 and 9 = F(:sel, (G8∗, 8
∗)).

We first show that

+ ≔ GenChall′′ [crs5 , :sel, 8
∗, 9 ′, : ( 9

′ ) , : 9 ′, :rerand, G
∗ − 1, ~′, ~base]
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which is computed as in Hyb
(G∗−1)
3,8 and

+ ′ ≔ GenChall′′ [crs5 , :sel, 8
∗, 9∗, : ( 9

∗ ) , : 9∗, :rerand, G
∗, ~∗, ~base]

which is computed as inHyb3
(G∗ )
,1 compute identical functionalities. For a particular input (8, 9, G8) consider

the following cases:

Case 1. If 8 ≠ 8∗ or G8 > G∗ or 9 ≠ F(:sel, (G8 , 8)), the two programs behave identically except + may
be using hard-coded key : 9 ′ ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9 ′)) and+ ′ may be using hard-coded key
: 9∗ ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9∗)). Both programs compute

(~8 , I8) = OWF.GenInstance(crs5 ; F(: 9 , (G8 , 8)))

and output ~8 .

Case 2. If 8 = 8∗ and G8 < G∗ − 1 and 9 = F(:sel, (G8 , 8)), both programs output

~8 = OWF.Rerandomize(crs5 , ~base; F(:rerand, (G8 , 8))).

Case 3. If 8 = 8∗ and G8 = G∗ − 1 and 9 = F(:sel, (G8 , 8)) = 9 ′, the two programs behave identically except
+ uses the hard-coded value ~′ = OWF.Rerandomize(crs5 , ~base; F(:rerand, (G

∗ − 1, 8∗))).

Case 4. If 8 = 8∗ and G8 = G∗ and 9 = F(:sel, (G8 , 8)) = 9∗, the two programs behave identically except + ′

uses the hard-coded value ~∗ where (~∗, I∗) = OWF.GenInstance(crs5 ; F(: 9∗, (G
∗, 8∗))).

We conclude that the two programs output identical functionality. If the 8O challenger obfuscates+ , then

B perfectly simulatesHyb(G
∗−1)

3,8 and outputs 1 with probability Pr[Hyb(G
∗−1)

3,8 (A) = 1]. If the 8O challenger

obfuscates + ′, then B perfectly simulates Hyb3
(G∗ )
,1 and outputs 1 with probability Pr[Hyb3

(G∗ )
,1 (A) = 1].

�us by 8O security we have that

| Pr[Hyb3
(G∗ )
,1 (A) = 1] − Pr[Hyb′ (G

∗−1)
3,8 (A) = 1] | = iOAdvB (_obf) ≤ 1/2_

Yobf
obf = 1/2_+= . �

Claim 4.14. Fix G∗ = 0= . Suppose 8O is (1, 2−_
Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security parameter

_obf = (_ + =)
1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb3
(G∗ )
,1 (A) = 1] − Pr[Hyb3(A) = 1] | ≤ 1/2_+= .

Proof. �is follows by an analogous argument as Claim 4.13. �

Claim 4.15. Fix any G∗ ∈ {0, 1}= . Suppose ΠPPRF satisfies (1, 2−_
YPRF
PRF )-puncturing security for constants

YPRF ∈ (0, 1) and security parameter _PRF = (_ + =)
1/YPRF . �en

| Pr[Hyb3
(G∗ )
,2 (A) = 1] − Pr[Hyb3

(G∗ )
,1 (A) = 1] | ≤ 1/2_+= .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ Λ,

| Pr[Hyb3
(G∗ )
,2 (A) = 1] − Pr[Hyb3

(G∗ )
,1 (A)] | > 1/2_+= .

Let ΛB = {(_ + =)1/YPRF | _ ∈ ΛA}. Since = is non-negative, ΛB is also an infinite set. We define an
efficient algorithm B which plays the puncturing security game with _PRF = (_ + =)1/YPRF by running A
with security parameter _. For each value of _PRF ∈ ΛB , we provide the associated value of _ ∈ ΛA to B
as non-uniform advice (if there are multiple such _ ∈ ΛA associated with a particular _PRF, we pick the
largest such _; note that since YPRF < 1 and = > 0, it will always be the case that _ < _PRF).
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Algorithm B[G∗]

Inputs: 1_PRF from PPRF challenger, 1_ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Sample 8∗ ← [) ], and crs5 , :sel as in Setup.

3: Compute 9∗ ← F(:sel, (G
∗, 8∗)).

4: Send input length 1C , output length 1g , and punctured point 9∗ to the PPRF challenger. �e
PPRF challenger replies with the punctured key : ( 9

∗ ) and challenge value A ∈ {0, 1}C .

5: Compute : 9∗ ← F.Setup(1_PRF, 1=+C , 1d ; A ).

6: Compute (~∗, I∗) ← OWF.GenInstance(crs5 ; F(: 9∗, (dig
∗, 3))) and

(~base, Ibase) ← OWF.GenInstance(crs5 ).

7: Sample the re-randommization key :rerand ← F.Setup(1_PRF, 1=+_, 1`).

8: Compute ObfGenSol← 8O(1_obf , 1B ,GenSol[crs5 ,�, :, :sel]).

9: ComputeObfGenChall← 8O(1_obf , 1B ,GenChall′′ [crs5 , :sel, 8
∗, 9∗, : ( 9

∗ ) , : 9∗, :rerand, G
∗, ~∗, ~base]) .

10: Let crs = (crs5 ,ObfGenSol,ObfGenChall).

11: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

12: Output 1 if and only if V(crs, ®G, c) = 1 and 9 = F(:sel, (G8∗, 8
∗)).

If the PPRF challenger samples A r← {0, 1}d , then B perfectly simulates Hyb3
(G∗ )
,2 and outputs 1 with prob-

ability Pr[Hyb3
(G∗ )
,2 (A) = 1]. If the PPRF challenger computes A ← F(:, ( 9∗)) then B perfectly simulates

Hyb3
(G∗ )
,1 and outputs 1 with probability Pr[Hyb3

(G∗ )
,1 (A) = 1]. �us by PPRF security we have that

| Pr[Hyb3
(G∗ )
,1 (A) = 1] − Pr[Hyb3

(G∗ )
,2 (A) = 1] | = PPRFAdvB (_PRF) ≤ 1/2_

YPRF
PRF = 1/2_+= . �

Claim 4.16. Fix any G∗ ∈ {0, 1}= . Suppose 8O is (1, 2−_
Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security

parameter _obf = (_ + =)
1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb3
(G∗ )
,3 (A) = 1] − Pr[Hyb3

(G∗ )
,2 (A) = 1] | ≤ 1/2_+= .

Proof. �is follows by an analogous argument as Claim 4.13. �

Claim 4.17. Fix any G∗ ∈ {0, 1}= . Suppose ΠPPRF satisfies (1, 2−_
YPRF
PRF )-puncturing security for constants

YPRF ∈ (0, 1) and security parameter _PRF = (_ + =)
1/YPRF . �en

| Pr[Hyb3
(G∗ )
,4 (A) = 1] − Pr[Hyb3

(G∗ )
,3 (A) = 1] | ≤ 1/2_+= .

Proof. �is follows by an analogous argument as Claim 4.15. �
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Claim 4.18. Fix any G∗ ∈ {0, 1}= . Suppose ΠOWF satisfies (1, 2
−<Y<
)-re-randomization security for constant

Y< ∈ (0, 1) and re-randomization parameter< = (_ + =)1/Y< . �en

| Pr[Hyb3
(G∗ )
,5 (A) = 1] − Pr[Hyb3

(G∗ )
,4 (A) = 1] | ≤ 1/2_+= .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ Λ,

| Pr[Hyb3
(G∗ )
,5 (A) = 1] − Pr[Hyb3

(G∗ )
,4 (A)] | > 1/2_+= .

Let <(_) = (_ + =)1/Y< . We define an efficient algorithm B which plays the re-randomization security
game with< = (_ + =)1/Y< by running A with security parameter _.

Algorithm B[G∗]

Inputs: crs5 ← OWF.Setup(1_, 1<), ~base, ~
∗ from re-randomization challenger

1: Run (�,) ) ← A(1_).

2: Sample 8∗ r← [) ], and :, :sel as in Setup.

3: Compute 9∗ ← F(:sel, (G
∗, 8∗)) and : 9∗ ← F.Setup(1_PRF, 1=+C , 1d ).

4: Compute :rerand ← F.Setup(1_PRF, 1=+_, 1`).

5: Compute the punctured keys : ( 9
∗ ) ← F.Puncture(:, 9∗), : (G

∗,8∗ )
9∗ ← F.Puncture(: 9∗, (G

∗, 8∗)) as

well as the re-randomization key : (G
∗,8∗ )

rerand
← F.Puncture(:rerand, (G

∗, 8∗)).

6: Compute ObfGenSol← 8O(1_obf , 1B ,GenSol[crs5 ,�, :, :sel]).

7: ComputeObfGenChall← 8O(1_obf , 1B ,GenChall′′ [crs5 , :sel, 8
∗, 9∗, : ( 9

∗ ) , : 9∗, :rerand, G
∗, ~∗, ~base]).

8: Let crs = (crs5 ,ObfGenSol,ObfGenChall).

9: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

10: Output 1 if and only if V(crs, ®G, c) = 1 and 9 = F(:sel, (G8∗, 8
∗)).

If the re-randomization challenger samples (~∗, I∗) ← OWF.GenInstance(crs5 ), then B perfectly simu-

lates Hyb3
(G∗ )
,4 and outputs 1 with probability Pr[Hyb3

(G∗ )
,4 (A) = 1]. If the re-randomization challenger

computes (~∗, I∗) ← OWF.Rerandomize(crs5 , ~base) then B perfectly simulates Hyb3
(G∗ )
,5 and outputs 1

with probability Pr[Hyb3
(G∗ )
,5 (A) = 1]. �us by re-randomization security we have that

| Pr[Hyb3
(G∗ )
,5 (A) = 1] − Pr[Hyb3

(G∗ )
,4 (A) = 1] | = RerandAdvB (<) ≤ 1/2<

Y
< = 1/2_+= . �

Claim 4.19. Fix any G∗ ∈ {0, 1}= . Suppose ΠPPRF satisfies (1, 2−_
YPRF
PRF )-puncturing security for constants

YPRF ∈ (0, 1) and security parameter _PRF = (_ + =)
1/YPRF . �en

| Pr[Hyb3
(G∗ )
,6 (A) = 1] − Pr[Hyb3

(G∗ )
,5 (A) = 1] | ≤ 1/2_+= .

Proof. �is follows by an analogous argument as Claim 4.15. �
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Claim 4.20. Fix any G∗ ∈ {0, 1}= . Suppose 8O is (1, 2−_
Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security

parameter _obf = (_ + =)
1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb3
(G∗ )
,7 (A) = 1] − Pr[Hyb3

(G∗ )
,6 (A) = 1] | ≤ 1/2_+= .

Proof. �is follows by an analogous argument as Claim 4.13. �

Claim 4.21. Fix any G∗ ∈ {0, 1}= . Suppose ΠPPRF satisfies (1, 2−_
YPRF
PRF )-puncturing security for constants

YPRF ∈ (0, 1) and security parameter _PRF = (_ + =)
1/YPRF . �en

| Pr[Hyb3
(G∗ )
,8 (A) = 1] − Pr[Hyb3

(G∗ )
,7 (A) = 1] | ≤ 1/2_+= .

Proof. �is follows by an analogous argument as Claim 4.15. �

Claim 4.22. Fix G∗ = 1= . Suppose 8O is (1, 2−_
Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security parameter

_obf = (_ + =)
1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb4(A) = 1] − Pr[Hyb3
(G∗ )
,8 (A) = 1] | ≤ 1/2_+= .

Proof. �is follows by an analogous argument as Claim 4.13. �

Proof of Lemma 4.12. We now return to the proof of Lemma 4.12. By Claims 4.7 to 4.10, and the triangle
inequality, we can now write�� Pr[Hyb4(A) = 1] − Pr[Hyb3(A) = 1]

��
≤

�� Pr[Hyb4(A) = 1] − Pr[Hyb(1
= )

3,8 (A) = 1]
��

+
∑

G∈{0,1}=

8∑
ℓ=2

�� Pr[Hyb(G )3,ℓ (A) = 1] − Pr[Hyb(G )3,ℓ−1(A) = 1]
��

+
∑

G∈{0,1}=\{0= }

�� Pr[Hyb(G )3,1 (A) = 1] − Pr[Hyb(G−1)3,8 (A) = 1]
��

+
�� Pr[Hyb(0= )3,1 (A) = 1] − Pr[Hyb3(A) = 1]

��
≤

1

2Ω (_)︸︷︷︸
Claim 4.22

+ 2= ·
$ (1)

2_+=︸     ︷︷     ︸
Claims 4.15 to 4.21

+ 2= ·
1

2_+=︸    ︷︷    ︸
Claim 4.13

+
1

2_+=︸︷︷︸
Claim 4.14

,

which is bounded by a negligible function. Lemma 4.12 holds. �

Lemma 4.23. Suppose that ΠOWF satisfies re-randomization correctness, homomorphism, and (1, negl(_))-
one-wayness. �en Pr[Hyb4(A) = 1] ≤ negl(_).

Proof. We define an efficient algorithm B which plays the one-wayness security game with security pa-
rameter _ and re-randomization parameter< =<(_, =):

Algorithm B

Inputs: crs5 ← OWF.Setup(1_, 1<) and ~base from the challenger where the challenger samples
(~base, Ibase) ← OWF.GenInstance(crs5 )
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1: Run (�,) ) ← A(1_).

2: Sample 8∗ r← [) ], and :, :sel as in Setup.

3: Compute :rerand ← F.Setup(1_PRF, 1=+C , 1`).

4: Compute ObfGenSol← 8O(1_obf , 1B ,GenSol[crs5 ,�, :, :sel]).

5: Compute ObfGenChall← 8O(1_obf , 1B ,GenChall′ [crs5 , :, :sel, 8
∗, :rerand, ~base]).

6: Let crs = (crs5 ,ObfGenSol,ObfGenChall).

7: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

8: For each 8 ∈ [) ], compute (~8 , I8) ← OWF.GenInstance(crs5 ; F(: 9 , (G8 , 8))).

9: Compute I∗ ← OWF.InHom(crs5 , {I8}8∈[) ]\{8∗}).

10: Compute I8∗ ← OWF.InHom−1(crs5 , I, I
∗).

11: Send Ibase ← OWF.RecoverSolution(crs5 , I8∗, F(:rerand, (G8∗, 8
∗))) to challenger.

Let ~8∗ = OWF.Rerandomize(crs5 , ~base; F(:rerand, (G8∗, 8
∗))). Similarly, let

~∗ = OWF.OutHom(crs5 , {ObfGenChall(8, 9, G8)}8∈[) ]\{8∗}).

Recall that Hyb4(A) = 1 only if V(crs, ®G, c) = 1. �is means

OWF.Verify(crs5 ,OWF.OutHom(~∗, ~8∗), I) = 1.

Next note that for all 8 ≠ 8∗, we have

OWF.Verify(crs5 ,ObfGenChall(8, 9, G8), I8) = 1,

so by homomorphism of ΠOWF, we have OWF.Verify(crs5 , ~
∗, I∗) = 1. Since 9 = F(:sel, (G8∗, 8

∗)), we have
ObfGenChall(8∗, 9, G8∗) = ~8∗ . �en by (reverse) homomorphism of ΠOWF, we have

OWF.Verify(crs5 , ~
∗, I∗) = 1.

Lastly, by re-randomization correctness of ΠOWF, we have that OWF.Verify(crs5 , ~base, Ibase) = 1. Com-
bining the above, we conclude

Pr[Hyb4(A) = 1] ≤ Pr[OWF.Verify(crs5 , ~base, Ibase) = 1] = OWFAdvB (_) ≤ negl(_). �

Proof of �eorem 4.4. Combining Lemmas 4.5, 4.6, 4.11, and 4.12, we have for all sufficiently-large
_ ∈ N,

Pr[Hyb4(A) = 1] ≥
1

) () + 1)
· Pr[Hyb0(A) = 1] − 2−Ω (_) .

By Lemma 4.23, we have Pr[Hyb4 = 1] = negl(_). We conclude that

Pr[Hyb0(A) = 1] ≤ ) · () + 1) · negl(_) + 2−Ω (_) ,

which remains negligible since ) = poly(_). Finally Hyb0 corresponds to the real adaptive soundness
security game, so �eorem 4.4 holds. �
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�eorem 4.24 (Perfect Zero-Knowledge). Suppose 8O is correct. �en Construction 4.1 satisfies perfect zero-

knowledge.

Proof. We construct the simulator as follows:

• S0(1
_,) ,�): On input the security parameter _, a batch size ) , and a Boolean circuit � : {0, 1}= ×

{0, 1}E → {0, 1}, the simulator samples the common reference string crs ← Setup(1_,) ,�) exactly
as in the real scheme. Let crs5 , :sel, : be the underlying OWF parameters and PPRF keys sampled in
Setup. �e simulator outputs the crs along with the state st = (crs5 , :sel, :).

• S1(st, (G1, . . . , G) )): On input the state st = (crs5 , :sel, :) and statements (G1, . . . , G) ), the simulator
computes 98 ← F(:sel, (G8 , 8)) and selects the smallest 9 ∈ [) +1] such that 9 ≠ 98 for all 8 ∈ [) ]. It then
computes : 9 ← F.Setup(1_PRF, 1=+C , 1d ; F(:, 9)) and (~8 , I8) ← OWF.GenInstance(crs5 , F(: 9 , (G8 , 8)))

for all 8 . �e simulator outputs c = ( 9,OWF.InHom(crs5 , (I1, . . . , I) ))).

Take any Boolean circuit � : {0, 1}= × {0, 1}E → {0, 1}, batch size ) , and statements G1, . . . , G) and wit-
nesses F1, . . . ,F) such that � (G8 ,F8) = 1 for all 8 ∈ [) ]. First, observe that the common reference string
crs output by S0(1

_,) ,�) is distributed identically to Setup(1_,) ,�). It now suffices to consider the proof.
By construction, the proof c = ( 9, I) output by P(crs, (G1, . . . , G) ), (F1, . . . ,F) )) is obtained by evalu-
ating ObfGenSol on inputs (8, 9, G8 ,F8). By correctness of 8O and the definition of GenSol and P, this
means that 9 is the smallest value in [) + 1] such that 9 ≠ F(:sel, (G8 , 8)) for all 8 ∈ [) ], and that I8 was
generated by computing (~8 , I8) ← OWF.GenInstance(crs5 ; F(: 9 , (G8 , 8))) for all 8 . Finally, P computes
I = OWF.InHom(crs5 , (I1, . . . , I) )). �us the proof output by S1(st, (G1, . . . , G) )) is distributed identically
to c . �

5 Re-randomizable Pseudorandom Generators

In this section, we introduce the notion of a re-randomizable pseudorandom generator (PRG), which is one
of the main building blocks we use in our alternative construction of an adaptively-sound fully succinct
BARG in Section 6. �en, in Section 5.1, we show how to construct a re-randomizable PRG from DDH.

Definition 5.1 (Re-randomizable PRG). A re-randomizable pseudorandom generator (PRG) is a tuple of
efficient algorithms ΠRPRG = (Setup,GenSeed, Eval,Rerandomize) with the following syntax:

• Setup(1_, 1<) → crs : On input security parameter 1_ and re-randomization parameter 1< , the setup
algorithm outputs a common reference string crs. We assume that the crs contains an implicit de-
scription of the seed space Z and the output space Y, and that elements of Z can be represented
by bit-strings of length ℓI and elements of Y can be represented by bit-strings of length ℓ~ .

• GenSeed(crs) → I : On input common reference string crs, the seed-generation algorithm outputs
a seed I ∈ Z.

• Eval(crs, I) → ~.On input common reference string crs and seed I ∈ Z, the deterministic evaluation
algorithm outputs ~ ∈ Y.

• Rerandomize(crs, ~) → ~′ : On input common reference string crs and instance ~ ∈ Y, the re-
randomization algorithm outputs a new instance ~′ ∈ Y.

We require that ΠRPRG satisfy the following properties:
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• Succinctness and expansion. �ere exists a fixed polynomial poly(·) such that for all _,< ∈ N,
and all crs in the support of Setup(1_, 1<), it holds that the seed length satisfies ℓI ≤ poly(_ + log<).
In addition, the size of the output space satisfies |Y| ≥ 2Ω (_) · |Z|.

• Pseudorandomness. For a security parameter _, a re-randomization parameter <, and a bit 1 ∈
{0, 1}, we define the pseudorandomness security game between an adversaryA and a challenger as
follows:

– �e challenger samples crs← Setup(1_, 1<).

– If 1 = 0, the challenger samples I ← GenSeed(crs) and computes ~ ← Eval(crs, I). If 1 = 1,
the challenger samples ~ r← Y.

– �e challenger then sends (crs, ~) to A.

– A outputs a bit 1′, which is the output of the experiment.

We say that ΠRPRG is (C, Y)-pseudorandom if for all polynomials < = <(_) and all adversaries A
running in time at most C (_) · poly(_), there exists _A ∈ N such that for all security parameters
_ ≥ _A , it holds that

PRGAdvA (_) ≔ | Pr[1
′
= 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | ≤ Y (_)

in the pseudorandomness security game.

• Re-randomization correctness. For all security parameters _, all< =<(_) all crs in the support
of Setup(1_, 1<), all ~ ∈ Y, and all ~′ in the support of Rerandomize(crs, ~), either

– ~,~′ are both in the image of Eval(crs, ·); or

– ~,~′ are both not in the image of Eval(crs, ·).

• Re-randomization security. For a security parameter _, a re-randomization parameter<, and a bit
1 ∈ {0, 1}, we define the re-randomization security game between an adversaryA and a challenger
as follows:

– �e challenger samples crs ← Setup(1_, 1<), Ibase ← GenSeed(crs), and computes ~base ←
Eval(crs, Ibase).

– If 1 = 0, the challenger samples I∗ ← GenSeed(crs) and computes ~∗ ← Eval(crs, I∗). If 1 = 1,
the challenger samples ~∗ ← Rerandomize(crs, ~base).

– �e challenger then sends (crs, ~base, ~
∗) to A.

– A outputs a bit 1′, which is the output of the experiment.

We say that ΠRPRG satisfies (C, Y)-re-randomization security if for all polynomials< =<(_) and all
adversaries A running in time at most C (_) · poly(_), there exists _A ∈ N such that for all security
parameters _ ≥ _A , it holds that

RerandAdvA (_) ≔ | Pr[1
′
= 1 : 1 = 0] − Pr[1′ = 1 : 1 = 1] | ≤ Y (_)

in the re-randomization security game.

39



5.1 Constructing Re-randomizable PRGs

In this section, we show how to construct a re-randomizable PRG from the decisional Diffie-Hellman as-
sumption.

Construction 5.2 (Re-randomizable PRG). LetGroupGen be a prime-order group generator. We construct
a re-randomizable PRG ΠRPRG = (Setup,GenSeed, Eval,Rerandomize) as follows:

• Setup(1_, 1<): On input security parameter 1_ and re-randomization parameter 1< , the setup algo-
rithm samples (G, ?, 6) ← GroupGen(1_), G r← Z∗? , and outputs crs = (G, ?, 6, ℎ) where ℎ = 6G . �e
seed space isZ = Z

∗
? and the output space is Y = (G \ {1})2.

• GenSeed(crs): On input common reference string crs = (G, ?, 6, ℎ), the seed generation algorithm
samples and outputs I r← Z∗? .

• Eval(crs, I): On input common reference string crs = (G, ?, 6, ℎ) and seed I ∈ Z∗? , the evaluation
algorithm outputs (6I, ℎI) ∈ Y.

• Rerandomize(crs, ~): On input common reference string crs and instance~ = (~1, ~2), the re-randomization
algorithm samples A r← Z∗? and outputs (~A1, ~

A
2) ∈ Y.

�eorem 5.3 (Succinctness and Expansion). Construction 5.2 satisfies succinctness and expansion.

Proof. For (G, ?, 6) ← GroupGen(1_), we have that ? is a _-bit prime. �us a seed I ∈ Z∗? can be described
by a string of length at most ℓI = _. Next, an instance ~ = (6I, ℎI) consists of two group elements and thus
|Y| = (? − 1)2 > 2Ω (_) · |Z∗? |, since ? = 2Ω (_) . �

�eorem 5.4 (Pseudorandomness). Suppose the decisional Diffie-Hellman assumption holds with respect to

GroupGen. �en Construction 5.2 satisfies pseudorandomness.

Proof. Let A be an efficient adversary for the pseudorandomness game against Construction 5.2. We use
A to construct an adversary B for the DDH problem:

Algorithm B

Inputs: ((G, ?, 6), 6U , 6V , 6W ) from the DDH challenger

1: Let crs = (G, ?, 6, ℎ) where ℎ = 6U and ~ = (6V , 6W ).

2: Run 1′ ← A(crs, ~).

3: Send 1′ to challenger.

Note that if 1 = 0 (i.e., W = UV for uniform U, V
r← Z∗? ), then 6W = 6UV = ℎV so ~ = (6V , ℎV ). If 1 = 1 (i.e.,

V,W
r← Z∗? ), then ~ = (6V , 6W ) is uniform over (G \ {1})2. �us,

PRGAdvA (_) ≤ DDHAdvB (_) ≤ negl(_). �

�eorem 5.5 (Re-randomization Correctness). Construction 5.2 satisfies re-randomization correctness.

Proof. Take any _,< ∈ N, any crs = (G, ?, 6, ℎ = 6G ) in the support of Setup(1_, 1<), any ~ ∈ Y, and any
~′ in the support of Rerandomize(crs, ~). We show that ~ is in the support of Eval(crs, ·) if and only if ~′

is in the support of Eval(crs, ·).
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• For the forward direction, suppose ~ = (~1, ~2) = Eval(crs, I) for some seed I ∈ Z∗? . �en ~1 = 6I

and ~2 = ℎI . We have that for some A ∈ Z∗? , ~
′
= (~A1, ~

A
2) = (6

AI, ℎAI), so ~′ = Eval(crs, AI).

• For the reverse direction, suppose ~′ = (~′1, ~
′
2) = Eval(crs, I) for some I ∈ Z∗? . �en ~′1 = 6I and

~′2 = ℎI . Since ~′ = Rerandomize(crs, ~), and by construction of Rerandomize, there exists A ∈ Z∗?
such that

~ =
(
(~′1)

A −1, (~′2)
A −1

)
=
(
6A
−1I, ℎA

−1I
)
.

�us ~ = Eval(crs, A−1I), as required.

We conclude that either ~,~′ are both in the image of Eval(crs, ·) or they are both not in the image of
Eval(crs, ·). �

�eorem 5.6 (Re-randomization Security). Construction 5.2 satisfies perfect re-randomizable security. For

all polynomials< =<(_) and all adversaries A, RerandAdvA (_) = 0.

Proof. Take any polynomial< =<(_). Let crs = (G, ?, 6, ℎ) ← Setup(1_, 1<) where ℎ = 6G . By construc-
tion ofGenSeed, we have that a fresh instance Eval(crs, I∗) = (6I

∗
, ℎI

∗
) is uniformly distributed over the set

{(6I, ℎI) | I ∈ Z∗? }. By construction of Rerandomize, we have that a re-randomized instance~′ = (~A1, ~
A
2) =

(6AI, ℎAI) is still uniformly distributed over the set {(6I, ℎI) | I ∈ Z∗? }, since AI is uniformly distributed
over Z∗? . Note that this proof uses the fact that the exponents are sampled from Z∗? (rather than Z? ). �

6 SNARG for Batch NP from Re-randomizable PRGs

In this section, we show how to construct a fully succinct SNARG for batch NP using indistinguishability
obfuscation together with a re-randomizable PRG. As described in Section 1.1, this construction builds on
the chaining approach from [GSWW22]. We give the construction below:

Construction 6.1 (Adaptive Batch Argument for NP). Let _ be a security parameter. We construct a BARG
scheme that supports NP languages with an arbitrary polynomial number ) = ) (_) < 2_ of instances of
length = = =(_). Our construction will leverage sub-exponential hardness of the following primitives (ex-
cept for pseudorandomness of the re-randomizable PRG ΠRPRG). Our construction relies on the following
primitives:

• Let 8O be an indistinguishability obfuscator for Boolean circuits.

• LetΠSEH = (H.Setup,H.Hash,H.Open,H.Verify,H.Extract) be a somewhere-extractable hash family.

• Let ΠPPRF = (F.Setup, F.Eval, F.Puncture) be a puncturable PRF. For a key : and an input G , we will
write F(:, G) to denote F.Eval(:, G).

• Let ΠRPRG = (PRG.Setup, PRG.GenSeed, PRG.Eval, PRG.Rerandomize) be a re-randomizable PRG.

Wewill describe how to define the polynomials _SEH, _obf, _PRF, and< in the security analysis. We construct
a fully succinct non-interactive batch argument ΠBARG = (Gen, P,V) for NP as follows:

• Setup(1_,) ,�): On input security parameter 1_ , batch size ) , and Boolean circuit � : {0, 1}= ×
{0, 1}E → {0, 1}, the setup algorithm does the following:

– Sample PRG parameters crsG ← PRG.Setup(1_, 1<).
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– Sample an SEH hash key hk← H.Setup(1_SEH, 1=).

– Let C = log() +1). Let =′ be the output length ofH.Hash(hk, ·). Let d be a bound on the number
of bits of randomness the PRG.GenSeed(crsG) algorithm takes. Let g be the number of bits of
randomness the F.Setup(1_PRF, 1=

′+C , 1d ) algorithm takes.

– Sample a “selector” PPRF key :sel ← F.Setup(1_PRF, 1=+C , 1C ).

– Sample a “key generator” PPRF key : ← F.Setup(1_PRF, 1C , 1g ).

– Define the VerProof program with the PRG parameters crsG and PPRF key : hard-coded:

VerProof [crsG, :] (8, 9, dig, I8)

Inputs: index 8 , selection symbol 9 , hash value dig, proof I8

1: Compute : 9 ← F.Setup(1_PRF, 1=
′+C , 1d ; F(:, 9)).

2: Compute I ← PRG.GenSeed(crsG; F(: 9 , (dig, 8))).

3: Output 1 if PRG.Eval(crsG, I8) = PRG.Eval(crsG, I) and 0 otherwise.

– Define the AggProof program (which has the code for VerProof replicated inside) with the
circuit � , PRG parameters crsG, SEH hash key hk, and PPRF keys :sel, : hard-coded:

AggProof [�, crsG, hk, :sel, :] (8, 9, dig, G8 ,F8 , f8 , I8−1)

Inputs: index 8 , selection symbol 9 , hash value dig, statement G8 , witness F8 , opening f8 ,
prior proof I8−1

1: If � (G8 ,F8) = 0, output ⊥.

2: If H.Verify(hk, dig, G8 , 8, f8) = 0, output ⊥.

3: If 9 = F(:sel, (G8 , 8)), output ⊥.

4: If 8 ≠ 1 and VerProof [crsG, :] (8 − 1, 9, dig, I8−1) = 0, output ⊥.

5: Compute : 9 ← F.Setup(1_PRF, 1=
′+C , 1d ; F(:, 9)).

6: Output I8 = PRG.GenSeed(crsG; F(: 9 , (dig, 8))).

– Let B = B (_, =, |� |) be the maximum size of the AggProof and VerProof programs as well as
those appearing in the security analysis.

– Construct the obfuscated programs

ObfAggProof ← 8O(1_obf , 1B ,AggProof [�, crsG, hk, :sel, :])

and
ObfVerProof ← 8O(1_obf , 1B ,VerProof [crsG, :]) .

– Output crs = (hk, crsG,ObfAggProof,ObfVerProof).

• P(crs, (G1, . . . , G) ), (F1, . . . ,F) )): On input crs = (hk, crsG,ObfAggProof,ObfVerProof), statements
G1, . . . , G) ∈ {0, 1}

= , and witnessesF1, . . . ,F) ∈ {0, 1}
E , the prover algorithm proceeds as follows:

– Compute dig← H.Hash(hk, (G1, . . . , G) )).

– Initialize 8 = 1, 9 = 1 and I0 = ∅.

42



– While 8 ≤ ) :

∗ Compute f8 ← H.Open(hk, (G1, . . . , G) ), 8).

∗ Compute I8 ← ObfAggProof (8, 9, dig, G8 ,F8 , f8 , I8−1).

∗ If I8 = ⊥, set 8 = 1 and 9 = 9 + 1. Otherwise, set 8 = 8 + 1.

– Output c = ( 9, I) ).

• V(crs, (G1, . . . , G) ), c): On input crs = (hk, crsG,ObfAggProof,ObfVerProof), statements G1, . . . , G) ∈
{0, 1}= , and the proof c = ( 9, I) ), the verification algorithm proceeds as follows:

– If 9 ∉ [) + 1], then output 0.

– Otherwise, compute dig← H.Hash(hk, (G1, . . . , G) )) and output ObfVerProof (), 9, dig, I) ).

�eorem 6.2 (Completeness). Suppose 8O is correct and ΠSEH satisfies opening completeness. �en Con-

struction 6.1 is complete.

Proof. Take any security parameter _ ∈ N, any Boolean circuit � : {0, 1}= × {0, 1}E → {0, 1}, any ) ≤

2_ , and any collection of statements (G1, . . . , G) ) and witnesses (F1, . . . ,F) ) where � (G8 ,F8) = 1 for
all 8 ∈ [) ]. Let crs = (hk, crsG,ObfAggProof,ObfVerProof) ← Setup(1_,�,) ) and c = ( 9, I) ) ←

P(crs, (G1, . . . , G) ), (F1, . . . ,F) )). Consider the output of V(crs, (G1, . . . , G) ), c):

• By construction, ObfAggProof is an obfuscation of the program AggProof [�, crsG, hk, :sel, :], where

crsG ← G.Setup(1_, 1<)

hk← H.Setup(1_SEH, 1=)

:sel ← F.Setup(1_PRF, 1=+C , 1C )

: ← F.Setup(1_PRF, 1C , 1g ) .

• Let dig = H.Hash(hk, (G1, . . . , G) )) and f8 ← H.Open(hk, (G1, . . . , G) ), 8) for all 8 ∈ [) ]. By com-
pleteness of ΠSEH, we have that for all 8 ∈ [) ],

H.Verify(hk, dig, 8, G8 , f8) = 1.

• Let 9∗ ∈ [) + 1] be the smallest index where F(:sel, (G8 , 8)) ≠ 9∗ for all 8 ∈ [) ]. By correctness of 8O
and the definition of AggProof, it must be the case that 9 ≥ 9∗.

• Let I∗1, . . . , I
∗
) be the intermediate proofs obtained by P through evaluating ObfAggProof on inputs

(8, 9∗, dig, G8 ,F8 , f8 , I8−1). By construction, it follows that� (G8 ,F8) = 1 andH.Verify(hk, dig, G8 , 8, f8) =
1 and 9∗ ≠ F(:sel, (G8 , 8)).

• We now claim that by correctness of 8O and the definition ofAggProof, this means that for all 8 ∈ [) ],
it holds that

VerProof [crsG, :] (8, 9
∗, dig, I∗8 ) = 1. (6.1)

Consider the case where 8 = 1. In this case, AggProof outputs

I1 = PRG.GenSeed(crsG; � (: 9∗, (dig, 1))) .
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Correspondingly, this means

PRG.Eval(crsG, I1) = PRG.Eval(crsG, PRG.GenSeed(crsG; � (: 9∗, (dig, 1)))),

which precisely coincides with the verification conditionVerProof (1, 9∗, dig, I∗1). �us, Eq. (6.1) holds
when 8 = 1. For the inductive step, take 8 > 1 and suppose VerProof (8 − 1, 9, dig, I∗8−1) = 1. �en,
AggProof outputs

I∗8 = PRG.GenSeed(crsG; F(: 9∗, (dig, 8))) .

As in the base case, this means VerProof (8, 9∗, dig, I∗8 ) = 1 and so by induction on 8 , we have that
Eq. (6.1) holds for all 8 ∈ [) ]. In this case, algorithm P outputs the proof c = ( 9∗, I∗) ) = ( 9, I) ).

• By construction, ObfVerProof is an obfuscation of the program VerProof [crsG, :]. �e verification
algorithm V computes dig = H.Hash(hk, (G1, . . . , G) )) and outputs 1 ← ObfVerProof (), 9, dig, I) ).
By correctness of 8O, the definition of VerProof [crsG, :], and Eq. (6.1), 1 = 1 and completeness
holds. �

�eorem 6.3 (Succinctness). Suppose ΠSEH and ΠRPRG are succinct. �en Construction 6.1 is succinct.

Proof. A proof ( 9, I) ) in Construction 6.1 consists of a selection symbol 9 ∈ [) + 1] and a PRG seed
I) . By construction, there is a fixed polynomial poly(·) such that |I | ≤ poly(_ + log<). In Construc-
tion 6.1, <(_, =′) is a fixed polynomial in the security parameter _ and =′, which is the output length
of H.Hash(hk, ·) for hk ← H.Setup(1_SEH, 1=) where _SEH is a fixed polynomial in the witness length
E and _. By succinctness of ΠSEH, we have that =′ is a fixed polynomial in _, =, and E . �e state-
ment length and witness length are always upper-bounded by the circuit size, so it follows that |c | ≤
poly(_ + log |� |) + log) . �

�eorem 6.4 (Adaptive Soundness). Suppose 8O is (1, 2−_
Yobf
obf )-secure, ΠSEH satisfies statistical binding and

(2_
YSEH
SEH , negl(_SEH))-index hiding security, ΠPPRF satisfies punctured correctness and (1, 2−_

YPRF
PRF )-puncturing

security, ΠRPRG is expanding and (1, negl(_))-pseudorandomness and (1, 2−<
Y<
)-re-randomization security

for constants (YSEH, Yobf, YPRF, Y<) ∈ (0, 1) and security parameters _SEH = (E + l (log _))1/YSEH, _obf = (_ +
=′)1/Yobf , _PRF = (_ + =

′)1/YPRF,< = (_ + =′)1/Y< where =′ is the length of H.Hash(H.Setup(1_SEH, 1=), ·). �en

Construction 6.1 satisfies adaptive soundness.

Proof. Let A be an efficient adversary that succeeds in the adaptive soundness game against Construc-
tion 6.1 with (non-negligible) probability Y (_). We first claim that without loss of generality, we can as-
sume that for every security parameter _, A always outputs a circuit � with statements of a fixed length
= = =(_) and witnesses of a fixed length E = E (_) and a fixed batch size ) = ) (_). Formally, since A
is a polynomial-time algorithm, A(1_) outputs a Boolean circuit of size at most Bmax(_) = poly(_) and
a maximum batch size )max(_) = poly(_). �is in turn defines maximum statement and witness lengths
=max(_), Emax(_) ≤ Bmax(_). In an execution of the adaptive soundness game, let E=′,E′,) ′ be the event that
A outputs a circuit � with statements of length =′ and witnesses of length E ′ and batch size ) ′. �en

Pr[A wins the soundness game] =
∑

=′∈[=max ]
E′∈[Emax ]
) ′∈[)max ]

Pr[A wins the soundness game ∧ E=′,E′,) ′] .

�us there must exist some (=, E,) ) ∈ [=max] × [Emax] × [)max] such that such that

Pr[A(1_) wins the soundness game ∧ E=,E,) ] ≥
Y (_)

=max · Emax ·)max
.

44



For each security parameter _, define = = =(_), E = E (_), and ) = ) (_) to be the smallest values
such that the above equation holds. We now construct a new (non-uniform) adversary A′ that func-
tions as a wrapper around A, but only outputs circuits with fixed statement and witness lengths and
a fixed batch size. Namely, A′ takes as input the security parameter 1_ and the non-uniform advice
= = =(_), E = E (_),) = ) (_). A′ runs (�′,) ′) ← A(1_). If �′ does not have statements of length =

and witnesses of length E or ) ′ ≠ ) , then A′ aborts. Otherwise, A′ simply follows the behavior of A
(and outputs whatever A outputs). By construction,

Y′ = Pr[A′(1_) wins the soundness game]

= Pr[A(1_) wins the soundness game ∧ E=,E,) ] ≥
Y (_)

=max · Emax ·)max
.

�us A′ still has a non-negligible success probability Y′ in the soundness game. Furthermore, we note
that without loss of generality there exists some index 8∗ = 8∗(_) ∈ [) ] such that A′ cheats on index 8∗,
with probability at least Y′/) . In other words, in the adaptive soundness game, algorithm A′ outputs a
batch of statements ®G = (G1, . . . , G) ) and an accepting proof c , and moreover, instance G8∗ is false. Since
) = poly(_), and Y′ is non-negligible, we have that Y′/) remains non-negligible. �us, for the remainder of
this proof, we will declare the adversary successful if it wins the adaptive soundness game by outpu�ing
an accepting proof on ®G = (G1, . . . , G) ) where G8∗ is a false instance for a fixed index 8∗. As argued here,
every adversary that breaks adaptive soundness implies an adversary that succeeds in this “fixed-index”
variant for some index 8∗. �e index 8∗ will be provided as non-uniform advice to all of our reduction
algorithms. We now define our sequence of hybrid experiments.

Hyb0 : �is is the real adaptive soundness experiment with a fixed index 8∗.

• Adversary A, on input 1_ , starts by outpu�ing a Boolean circuit � : {0, 1}= × {0, 1}E → {0, 1},
and the batch size ) .

• �e challenger samples crs← Setup(1_,) ,�) and gives crs to A.

• Adversary A outputs statements ®G = (G1, . . . , G) ) and a proof c = ( 9, I).

• �e challenger outputs 1 if and only if (�, G8∗) ∉ LSAT and V(crs, ®G, c) = 1.

Hyb1 : Same as Hyb0 except the challenger samples (hk, td) ← H.SetupTD(1_, 1=, 8∗).

Hyb2 : Same as Hyb1 except the challenger additionally checks that 9 = F(:sel, (G8∗, 8
∗)). Specifically, if

9 ≠ F(:sel, (G8∗, 8
∗)), then the challenger outputs 0.

Hyb3 : Same as Hyb2 except the challenger stops checking that (�, G8∗) ∉ LSAT.

Hyb4 : Same as Hyb3 except the challenger defines a modified version of AggProof which additionally
has td, 8∗ hard-coded as follows:

AggProof′ [�, crsG, hk, :sel, :, td, 8
∗] (8, 9, dig, G8 ,F8 , f8 , I8−1)

Inputs: index 8 , selection symbol 9 , hash value dig, statement G8 , witness F8 , opening f8 , prior
proof I8−1

1: If � (G8 ,F8) = 0, output ⊥.

2: If H.Verify(hk, dig, G8 , 8, f8) = 0, output ⊥.

3: If 8 = 8∗ and 9 = F(:sel, (H.Extract(td, dig), 8
∗)), output ⊥.
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4: If 9 = F(:sel, (G8 , 8)), output ⊥.

5: If 8 ≠ 1 and VerProof [crsG, :] (8 − 1, 9, dig, I8−1) = 0, output ⊥.

6: Compute : 9 ← F.Setup(1_PRF, 1=
′+C , 1d ; F(:, 9)).

7: Output I8 = PRG.GenSeed(crsG; F(: 9 , (dig, 8))).

When constructing the CRS, the challenger now computes

ObfAggProof ← 8O(1_obf , 1B ,AggProof′ [�, crsG, hk, :sel, :, td, 8
∗]).

Hyb5,3 : For 3 ∈ [) ] : Hyb5,3 is the same as Hyb4 except the challenger defines a modified version of
VerProof which additionally has :sel, td, 8

∗, and 3 hard-coded as follows:

VerProof′ [crsG, :, :sel, td, 8
∗, 3] (8, 9, dig, I8)

Inputs: index 8 , selection symbol 9 , hash value dig, proof I8

1: If 8∗ ≤ 8 ≤ 3 and 9 = F(:sel, (H.Extract(td, dig), 8
∗)), output 0.

2: Compute : 9 ← F.Setup(1_PRF, 1=
′+C , 1d ; F(:, 9)).

3: Compute I = PRG.GenSeed(crsG; F(: 9 , (dig, 8))).

4: Output 1 if PRG.Eval(crsG, I8) = PRG.Eval(crsG, I) and 0 otherwise.

�e challenger also uses VerProof′ [crsG, :, :sel, td, 8
∗, 3] in place of VerProof [crsG, :] in the proof

aggregation program. Specifically, in this experiment, the challenger defines a modified version of
AggProof as follows:

AggProof′ [�, crsG, hk, :sel, :, td, 8
∗, 3] (8, 9, dig, G8 ,F8 , f8 , I8−1)

Inputs: index 8 , selection symbol 9 , hash value dig, statement G8 , witness F8 , opening f8 , prior
proof I8−1

1: If � (G8 ,F8) = 0, output ⊥.

2: If H.Verify(hk, dig, G8 , 8, f8) = 0, output ⊥.

3: If 8 = 8∗ and 9 = F(:sel, (H.Extract(td, dig), 8
∗)), output ⊥.

4: If 9 = F(:sel, (G8 , 8)), output ⊥.

5: If 8 ≠ 1 and VerProof′ [crsG, :, :sel, td, 8
∗, 3] (8 − 1, 9, dig, I8−1) = 0, output ⊥.

6: Compute : 9 ← F.Setup(1_PRF, 1=
′+C , 1d ; F(:, 9)).

7: Output I8 = PRG.GenSeed(crsG; F(: 9 , (dig, 8))).

When constructing the CRS, the challenger now computes

ObfAggProof ← 8O(1_obf , 1B ,AggProof′ [�, crsG, hk, :sel, :, td, 8
∗, 3])

and
ObfVerProof ← 8O(1_obf , 1B ,VerProof′ [crsG, :, :sel, td, 8

∗, 3]).
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We write Hyb8 (A) to denote the output distribution of an execution of Hyb8 with the adversary A. We
now argue that each pair of adjacent hybrid distributions is indistinguishable.

Lemma 6.5. Suppose ΠSEH satisfies (2_
YSEH
SEH , negl(_SEH))-index hiding security for constant YSEH ∈ (0, 1) and

security parameter _SEH = (E (_) + l (log _))1/YSEH . �en

| Pr[Hyb1(A) = 1] − Pr[Hyb0(A) = 1] | ≤ negl(_).

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ Λ,

| Pr[Hyb1(A) = 1] − Pr[Hyb0(A)] | > X (_).

Let ΛB = {(E (_) + l (log _))1/YSEH | _ ∈ ΛA}. Since E is non-negative, ΛB is also an infinite set. We define

a 2_
YSEH
SEH -time algorithm B which plays the index-hiding security game with _SEH = (E +l (log _))1/YSEH by

running A with security parameter _. For each value of _SEH ∈ ΛB , we provide the associated value of
_ ∈ ΛA to B as non-uniform advice (if there are multiple such _ ∈ ΛA associated with a particular _SEH,
we pick the largest such _; note that since YSEH < 1 and E > 0, it will always be the case that _ < _SEH).

Algorithm B

Inputs: 1_SEH from index-hiding challenger, 1_ and 8∗ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Send the block size 1= and the index 8∗ to the index-hiding challenger. �e index-hiding chal-
lenger replies with the hash key hk.

3: Sample crsG, :sel, : and compute ObfAggProof,ObfVerProof as in Setup.

4: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

5: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

6: Output 1 if and only if (�, G8∗) ∉ LSAT and V(crs, ®G, c) = 1.

Algorithm B has to check all possible witnesses for G8∗ , so it runs in time 2E · poly(_) ≤ 2E+l (log_) =

2_
YSEH
SEH . If the index-hiding challenger sampled hk ← H.Setup(1_SEH, 1=), then B perfectly simulates Hyb0

and outputs 1 with probability Pr[Hyb0(A) = 1]. If the index-hiding challenger sampled (hk, td) ←
H.SetupTD(1_SEH, 1=, 8∗), thenB perfectly simulatesHyb1 and outputs 1 with probability Pr[Hyb1(A) = 1].
�us by index-hiding security we have that

| Pr[Hyb1(A) = 1] − Pr[Hyb0(A) = 1] | = SEHAdvB (_SEH) ≤ negl(_SEH) = negl(_)

for sufficiently large _SEH. �

Lemma 6.6. Suppose 8O is (1, 2−_
Yobf
obf )-secure, ΠSEH satisfies statistical binding, and ΠPPRF satisfies punctured

correctness and (1, 2−_
YPRF
PRF )-puncturing security for constants (Yobf, YPRF) ∈ (0, 1) and security parameters

_obf = (_ + =
′)1/Yobf , _PRF = (_ + =

′)1/YPRF . �en

Pr[Hyb2(A) = 1] ≥
1

) + 1
Pr[Hyb1(A) = 1] − 2−Ω (_) .
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Proof. Consider an execution of Hyb1 or Hyb2. For a fixed G
∗ ∈ {0, 1}= , let EG∗ be the event thatA outputs

(G1, . . . , G) ) such that G8∗ = G∗. By definition, we can now write

Pr[Hyb1(A) = 1] =
∑

G∗∈{0,1}=

Pr[Hyb1(A) = 1 ∧ EG∗]

Pr[Hyb2(A) = 1] =
∑

G∗∈{0,1}=

Pr[Hyb2(A) = 1 ∧ EG∗] .
(6.2)

To prove the lemma, we show that for all G∗ ∈ {0, 1}= ,

Pr[Hyb2(A) = 1 ∧ EG∗] ≥
1

) + 1
Pr[Hyb1(A) = 1 ∧ EG∗] −

$ () )

2_+=
. (6.3)

By a similar argument as in the proof of Lemma 4.6, this suffices to prove the claim. Fix any G∗ ∈ {0, 1}= .
If (�, G∗) ∈ LSAT, then

Pr[Hyb2(A) = 1 ∧ EG∗] = 0 = Pr[Hyb1(A) = 1 ∧ EG∗] . (6.4)

In this case, Eq. (6.3) holds. �us, we only need to consider the case where (�, G∗) ∉ LSAT. We proceed by
defining a sequence of intermediate hybrids.

Hyb
(G∗ )
1,0 : Same as Hyb1 except the challenger additionally checks that G8∗ = G∗ (i.e., that EG∗ occurred).

Hyb
(G∗ )
1,1 : Same as Hyb(G

∗ )
1,0 except the challenger does the following. It computes

:
(G∗,8∗ )

sel
← F.Puncture(:sel, (G

∗, 8∗))

and defines a modified version of AggProof which additionally has G∗ hard-coded as follows:

AggProof1 [�, crsG, hk, :, td, 8
∗, :
(G∗,8∗ )

sel
, G∗] (8, 9, dig, G8 ,F8 , f8 , I8−1)

Inputs: index 8 , selection symbol 9 , hash value dig, statement G8 , witnessF8 , opening f8 , proof
I8−1

1: If 8 = 8∗ and H.Extract(td, dig) = G∗, output ⊥.

2: If � (G8 ,F8) = 0, output ⊥.

3: If H.Verify(hk, dig, G8 , 8, f8) = 0, output ⊥.

4: If 9 = F(:sel, (G8 , 8)), output ⊥.

5: If 8 ≠ 1 and VerProof [crsG, :] (8 − 1, 9, dig, I8−1) = 0, output ⊥.

6: Compute : 9 ← F.Setup(1_PRF, 1=
′+C , 1d ; F(:, 9)).

7: Output I8 = F(: 9 , (dig, 8)).

Hyb
(G∗ )
1,2 : Same as Hyb(G

∗ )
1,1 except that a�er A outputs ( ®G, c) where ®G = (G1, . . . , G) ) and c = ( 9, I)), the

challenger samples 9 ′ r← [) + 1] and additionally checks that 9 = 9 ′.

Hyb
(G∗ )
1,3 : Same as Hyb(G

∗ )
1,2 except the challenger instead checks that 9 = F(:sel, (G8∗, 8

∗)).
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Hyb
(G∗ )
1,4 : Same as Hyb(G

∗ )
1,3 except the challenger reverts to obfuscating AggProof instead of AggProof1.

By definition,

Pr[Hyb(G
∗ )

1,0 (A) = 1] = Pr[Hyb1(A) = 1 ∧ EG∗]

Pr[Hyb(G
∗ )

1,4 (A) = 1] = Pr[Hyb2(A) = 1 ∧ EG∗] .
(6.5)

We now consider each pair of adjacent distributions.

Claim 6.7. Suppose 8O is (1, 2−_
Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security parameter _obf = (_ +

=′)1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb(G
∗ )

1,1 (A) = 1] − Pr[Hyb(G
∗ )

1,0 (A) = 1] | ≤ 1/2_+= .

Proof. We first show that AggProof [�, crsG, hk, :sel, :] in Hyb
(G∗ )
1,0 and AggProof1 [�, crsG, hk, :

(G∗,8∗ )

sel
, :] in

Hyb
(G∗ )
1,1 compute identical functionalities. For a particular input (8, 9, dig, G8 ,F8 , f8 , I8−1) consider the fol-

lowing cases:

Case 1. Suppose 8 ≠ 8∗. In this case, the two programs behave identically except that the la�er is using

:
(G∗,8∗ )

sel
, so by punctured correctness, the two programs compute identical functionality.

Case 2. Suppose G8 = G∗. By assumption, (�, G∗) ∉ LSAT, so there does not exist a witnessF8 such that
� (G8 ,F8) = 0, so both programs reject.

Case 3. Suppose 8 = 8∗, G8 ≠ G∗, and H.Extract(td, dig) ≠ G∗. Like the first case, the two programs be-

have identically except that the la�er is using : (G
∗,8∗ )

sel
, so by punctured correctness, the two programs

compute identical functionality.

Case 4. Suppose 8 = 8∗, G8 ≠ G∗, and H.Extract(td, dig) = G∗. In this case AggProof1 immediately out-
puts ⊥. By statistical binding of ΠSEH, since dig extracts to G∗ at position 8 , there does not exist an
opening f8 such that H.Verify(hk, dig, G8 , 8, f8) = 1 whenever G8 ≠ G∗. As such, AggProof also rejects.

�e claim now follows from 8O security. Formally, suppose there exists an infinite set ΛA ⊆ N such that
for all _ ∈ Λ,

| Pr[Hyb(G
∗ )

1,1 (A) = 1] − Pr[Hyb(G
∗ )

1,0 (A)] | > 1/2_+=
′

.

Let ΛB = {(_ + =′)1/Yobf | _ ∈ ΛA}. Since =
′ is non-negative, ΛB is also an infinite set. We define an effi-

cient algorithm B which plays the 8O security game with _obf = (_ + =
′)1/Yobf by runningA with security

parameter _. For each value of _obf ∈ ΛB , we provide the associated value of _ ∈ ΛA to B as non-uniform
advice (if there are multiple such _ ∈ ΛA associated with a particular _obf , we pick the largest such _; note
that since Yobf < 1 and =′ > 0, it will always be the case that _ < _obf).

Algorithm B[G∗]

Inputs: 1_obf from 8O challenger, 1_ and 8∗ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Sample (hk, td) ← H.SetupTD(1_, 1=, 8∗).

3: Sample crsG, :sel, : and compute ObfVerProof as in Setup.
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4: Compute : (G
∗,8∗ )

sel
← F.Puncture(:sel, (G

∗, 8∗)).

5: Construct the challenge programs

AggProof [�, crsG, hk, :sel, :] and AggProof1 [�, crsG, hk, :, td, 8
∗, :
(G∗,8∗ )

sel
, G∗]

and send them to the 8O challenger. �e 8O challenger replies with an obfuscated program
ObfAggProof.

6: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

7: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

8: Output 1 if and only if G∗ = G8∗ and V(crs, (G1, . . . , G) ), c) = 1.

If the 8O challenger obfuscates AggProof [�, crsG, hk, :sel, :], then algorithm B perfectly simulatesHyb(G
∗ )

1,0

and outputs 1 with probability Pr[Hyb(G
∗ )

1,0 (A) = 1]. Alternatively, if the 8O challenger obfuscates the pro-

gram AggProof1 [�, crsG, hk, :, td, 8
∗, :
(G∗,8∗ )

sel
, G∗], then algorithm B perfectly simulatesHyb(G

∗ )
1,1 and outputs

1 with probability Pr[Hyb(G
∗ )

1,1 (A) = 1]. �us by 8O security we have that

| Pr[Hyb(G
∗ )

1,1 (A) = 1] − Pr[Hyb(G
∗ )

1,0 (A) = 1] | = iOAdvB (_obf) ≤ 1/2_
Yobf
obf = 1/2_+=

′

≤ 1/2_+= . �

Claim 6.8. Pr[Hyb(G
∗ )

1,2 (A) = 1] ≥ 1
)+1 Pr[Hyb

(G∗ )
1,1 (A) = 1].

Proof. �e challenger samples the index 9 ′
r← [) + 1] a�erA outputs ( ®G, c), where c = ( 9, I). �e output

in Hyb
(G∗ )
1,1 (A) is 1 only if 9 ∈ [) + 1]. �us, with probability at least 1

)+1 , it will be the case that 9
′
= 9 . In

this case, the output in Hyb
(G∗ )
1,2 (A) is also 1 and the claim holds. �

Claim 6.9. Suppose ΠPPRF satisfies (1, 2
−_

YPRF
PRF )-puncturing security for constants YPRF ∈ (0, 1) and security

parameter _PRF = (_ + =
′)1/YPRF . �en | Pr[Hyb(G

∗ )
1,3 (A) = 1] − Pr[Hyb(G

∗ )
1,2 (A) = 1] | ≤ 1/2_+= .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ Λ,

| Pr[Hyb(G
∗ )

1,3 (A) = 1] − Pr[Hyb(G
∗ )

1,2 (A)] | > 1/2_+=
′

.

Let ΛB = {(_ + =′)1/YPRF | _ ∈ ΛA}. Since =
′ is non-negative, ΛB is also an infinite set. We define an

efficient algorithm B which plays the puncturing security game with _PRF = (_ + =′)1/YPRF by running A
with security parameter _. For each value of _PRF ∈ ΛB , we provide the associated value of _ ∈ ΛA to B
as non-uniform advice (if there are multiple such _ ∈ ΛA associated with a particular _PRF, we pick the
largest such _; note that since YPRF < 1 and =′ > 0, it will always be the case that _ < _PRF).

Algorithm B[G∗]

Inputs: 1_PRF from PPRF challenger, 1_ and 8∗ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Sample (hk, td) ← H.SetupTD(1_, 1=, 8∗), and crsG, :sel as in Setup.
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3: Compute ObfVerProof as in Setup.

4: Send input length 1= , output length 1C , and punctured point (G∗, 8∗) to the PPRF challenger. �e

PPRF challenger replies with the punctured key : (G
∗,8∗ )

sel
and a challenge value 9 ′ ∈ {0, 1}C .

5: Compute ObfAggProof ← 8O(1_obf , 1B ,AggProof1 [�, crsG, hk, :, td, 8
∗, :
(G∗,8∗ )

sel
, G∗]).

6: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

7: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

8: Output 1 if and only if G∗ = G8∗ , V(crs, ®G, c) = 1, and 9 = 9 ′.

If the PPRF challenger samples 9 ′ r← {0, 1}C , then B perfectly simulates Hyb(G
∗ )

1,2 and outputs 1 with prob-

ability Pr[Hyb(G
∗ )

1,2 (A) = 1]. If the PPRF challenger computes 9 ′ ← F(:sel, (G
∗, 8∗)) then B perfectly simu-

lates Hyb(G
∗ )

1,3 and outputs 1 with probability Pr[Hyb(G
∗ )

1,3 (A) = 1]. �us by PPRF security we have that

| Pr[Hyb(G
∗ )

1,3 (A) = 1] − Pr[Hyb(G
∗ )

1,2 (A) = 1] | = PPRFAdvB (_PRF) ≤ 1/2_
YPRF
PRF = 1/2_+=

′

≤ 1/2_+= . �

Claim 6.10. Suppose 8O is (1, 2−_
Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security parameter _obf =

(_ + =′)1/Yobf and ΠPPRF satisfies punctured correctness. �en,

| Pr[Hyb(G
∗ )

1,4 (A) = 1] − Pr[Hyb(G
∗ )

1,3 (A) = 1] | ≤ 1/2_+= .

Proof. �is follows by an analogous argument as Claim 6.7. �

Combining Claims 6.7 to 6.10, we conclude that

Pr[Hyb1(A) = 1 ∧ EG∗] = Pr[Hyb(G
∗ )

1,0 (A) = 1] by Eq. (6.5)

≤ Pr[Hyb(G
∗ )

1,1 (A) = 1] +
1

2_+=
by Claim 6.7

≤ () + 1) · Pr[Hyb(G
∗ )

1,2 (A) = 1] +
1

2_+=
by Claim 6.8

≤ () + 1) ·
(
Pr[Hyb(G

∗ )
1,3 (A) = 1] +

1

2_+=

)
+

1

2_+=
by Claim 6.9

≤ () + 1) ·
(
Pr[Hyb(G

∗ )
1,4 (A) = 1] +

2

2_+=

)
+

1

2_+=
by Claim 6.10

= () + 1) · Pr[Hyb2(A) = 1 ∧ EG∗] +
2) + 3

2_+=
by Eq. (6.5).

�us Eq. (6.3) holds for all G∗ where (�, G∗) ∉ LSAT. Combined with Eq. (6.4), this means Eq. (6.3) holds for
all G∗ ∈ {0, 1}= . �is proves Lemma 6.6. �

Lemma 6.11. Pr[Hyb3(A) = 1] ≥ Pr[Hyb2(A) = 1].

Proof. �e conditions for outpu�ing 1 in Hyb3 are a strict subset of those for outpu�ing 1 in Hyb2. �

Lemma 6.12. Suppose 8O is (1, 2−_
Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security parameter _obf =

(_ + =′)1/Yobf and ΠSEH satisfies statistical binding. �en��Pr[Hyb4(A) = 1] − Pr[Hyb3(A) = 1]
�� ≤ 1/2_ .
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Proof. We first show that AggProof [�, crsG, hk, :sel, :] in Hyb2 and AggProof′ [�, crsG, hk, :sel, :, td, 8
∗] in

Hyb4 compute identical functionalities. For a particular input (8, 9, dig, G8 ,F8 , f8 , I8−1), consider the follow-
ing cases:

Case 1. If 8 ≠ 8∗, then the two programs behave identically.

Case 2. If 8 = 8∗ and H.Extract(td, dig) = G8 , then the condition 9 = F(:sel, (H.Extract(td, dig), 8
∗)) in

AggProof′ is equivalent to checking 9 = F(:sel, (G8 , 8)) and outpu�ing ⊥ if this condition holds. �is
is the same condition in AggProof, so the output of both programs is ⊥ in this case.

Case 3. If 8 = 8∗ and H.Extract(td, dig) ≠ G8 , then by statistical binding of ΠSEH, there does not exist an
opening f8 where H.Verify(hk, dig, G8 , 8

∗, f8) = 1. In this case, both programs reject.

�e claim now follows from 8O security. Formally, suppose there exists an infinite set ΛA ⊆ N such that
for all _ ∈ Λ, we have that

| Pr[Hyb4(A) = 1] − Pr[Hyb3(A)] | > 1/2_ .

Let ΛB = {(_ + =′)1/Yobf | _ ∈ ΛA}. ΛB is also an infinite set. We define an efficient algorithm B which
plays the 8O security game with _obf = (_ + =

′)1/Yobf by running A with security parameter _. For each
value of _obf ∈ ΛB , we provide the associated value of _ ∈ ΛA to B as non-uniform advice (if there are
multiple such _ ∈ ΛA associated with a particular _obf , we pick the largest such _; note that since Yobf < 1
and =′ > 0, it will always be the case that _ < _obf).

Algorithm B

Inputs: 1_obf from 8O challenger, 1_ and 8∗ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Sample (hk, td) ← H.SetupTD(1_, 1=, 8∗).

3: Sample crsG, :sel, : and compute ObfVerProof as in Setup.

4: Construct the challenge programs

AggProof [�, crsG, hk, :sel, :] and AggProof′ [�, crsG, hk, :sel, :, td, 8
∗]

and send them to the 8O challenger. �e 8O challenger replies with the obfuscated program
ObfAggProof.

5: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

6: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

7: Output 1 if and only if 9 = F(:sel, (G8∗, 8
∗)) and V(crs, (G1, . . . , G) ), c) = 1.

If the 8O challenger obfuscates AggProof [�, crsG, hk, :sel, :], then B perfectly simulates Hyb3 and outputs
1 with probability Pr[Hyb3(A) = 1]. If the 8O challenger obfuscates AggProof′ [�, crsG, hk, :sel, :, td, 8

∗],
then B perfectly simulates Hyb4 and outputs 1 with probability Pr[Hyb4(A) = 1]. �us by 8O security
we have that

| Pr[Hyb4(A) = 1] − Pr[Hyb3(A) = 1] | = iOAdvB (_obf) ≤ 1/2_
Yobf
obf = 1/2_+=

′

≤ 1/2_ . �
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Lemma6.13. Suppose 8O is (1, 2−_
Yobf
obf )-secure,ΠPPRF satisfies punctured correctness and (1, 2

−_
YPRF
PRF )-puncturing

security,ΠRPRG is expanding, satisfies (1, negl(_))-pseudorandomness, and (1, 2−<
Y<
)-re-randomization secu-

rity for constants (Yobf, YPRF, Y<) ∈ (0, 1) and security parameters _obf = (_+=
′)1/Yobf , _PRF = (_+=

′)1/YPRF,< =

(_ + =′)1/Y< . �en for all 3 ∈ [) ],

Pr[Hyb5,3 (A) = 1] ≥ Pr[Hyb5,3−1(A) = 1] − negl(_).

where for notational convenience we define Hyb5,0 := Hyb4.

Proof. We proceed by defining a sequence of intermediate hybrids for each value of dig∗ ∈ {0, 1}=
′
.

Hyb
(dig∗ )

5,3,1
: Same as Hyb

(dig∗−1)

5,3,8
(or Hyb5,3−1 if dig

∗
= 0=

′
) except the challenger computes

• 9∗ ← F(:sel, (H.Extract(td, dig
∗), 8∗))

• : 9∗ ← F.Setup(1_PRF, 1=
′+C , 1_ ; F(:, 9∗))

• : ( 9
∗ ) ← F.Puncture(:, 9∗)

• ~∗ ← PRG.Eval(crsG, PRG.GenSeed(crsG; F(: 9∗, (dig
∗, 3))))

• ~base ← PRG.Eval(crsG, PRG.GenSeed(crsG))

• :rerand ← F.Setup(1_PRF, 1=
′+_, 1`)

where ` is a bound on the number of bits of randomness the PRG.Rerandomize algorithm takes.
�en, the challenger defines the following modified version of VerProof′ as follows:

VerProof2 [crsG, :sel, td, 8
∗, 3, : ( 9

∗ ) , : 9∗, :rerand, dig
∗, 9∗, ~∗, ~base] (8, 9, dig, I8)

Inputs: index 8 , selection symbol 9 , hash value dig, proof I8

1: If 8∗ ≤ 8 < 3 and 9 = F(:sel, (H.Extract(td, dig), 8
∗)), output 0.

2: If 9 = 9∗ : let : 9 = : 9∗ .

3: Else: compute : 9 ← F.Setup(1_PRF, 1=
′+C , 1d ; F(: ( 9

∗ ) , 9)).

4: If 8∗ ≤ 8 = 3 and 9 = F(:sel, (H.Extract(td, dig), 8
∗)):

• If dig < dig∗ : compute ~8 ← PRG.Rerandomize(crsG, ~base; F(:rerand, (dig, 8)))

• If dig = dig∗ : let ~8 = ~∗.

• If dig > dig∗ : compute ~8 ← PRG.Eval(crsG, PRG.GenSeed(crsG; F(: 9 , (dig, 8)))).

5: Else: Compute ~8 = PRG.Eval(crsG, PRG.GenSeed(crsG; F(: 9 , (dig, 8)))).

6: Output 1 if PRG.Eval(crsG, I8) = ~8 and 0 otherwise.

�e challenger also uses VerProof2 [crsG, :sel, td, 8
∗, 3, : ( 9

∗ ) , : 9∗, :rerand, dig
∗, 9∗, ~∗, ~base] in place of

VerProof′ [crsG, :, :sel, td, 8
∗, 3] in the proof aggregation program. Specifically, in this experiment,

the challenger defines a modified version of AggProof′ as follows:

AggProof2 [�, crsG, hk, :sel, :, td, 8
∗, 3, : ( 9

∗ ) , : 9∗, :rerand, dig
∗, 9∗, ~∗, ~base] (8, 9, dig, G8 ,F8 , f8 , I8−1)

Inputs: index 8 , selection symbol 9 , hash value dig, statement G8 , witness F8 , opening f8 , prior
proof I8−1
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1: If � (G8 ,F8) = 0, output ⊥.

2: If H.Verify(hk, dig, G8 , 8, f8) = 0, output ⊥.

3: If 8 = 8∗ and 9 = F(:sel, (H.Extract(td, dig), 8
∗)), output ⊥.

4: If 9 = F(:sel, (G8 , 8)), output ⊥.

5: If VerProof2 [crsG, :sel, td, 8
∗, 3, : ( 9

∗ ) , : 9∗, :rerand, dig
∗, 9∗, ~∗, ~base] (8 − 1, 9, dig, I8−1) = 0

and 8 ≠ 1, output ⊥.

6: Compute : 9 ← F.Setup(1_PRF, 1=
′+C , 1d ; F(:, 9)).

7: Output I8 = PRG.GenSeed(crsG; F(: 9 , (dig, 8))).

When constructing the CRS, the challenger now computes

ObfAggProof ← 8O(1_obf , 1B ,AggProof2 [�, crsG, hk, :sel, :, td, 8
∗, 3, : ( 9

∗ ) , : 9∗, :rerand, dig
∗, 9∗, ~∗, ~base])

and

ObfVerProof ← 8O(1_obf , 1B ,VerProof2 [crsG, :sel, td, 8
∗, 3, : ( 9

∗ ) , : 9∗, :rerand, dig
∗, 9∗, ~∗, ~base]).

Hyb
(dig∗ )

5,3,2
: Same as Hyb

(dig∗ )

5,3,1
except the challenger samples : 9∗ ← F.Setup(1_PRF, 1=

′+C , 1_) instead of com-

puting : 9∗ ← F.Setup(1_PRF, 1=
′+C , 1_ ; F(:, 9∗)).

Hyb
(dig∗ )

5,3,3
: Same as Hyb

(dig∗ )

5,3,2
except the challenger additionally computes

• :
(dig∗,3 )
9∗ ← F.Puncture(: 9∗, (dig

∗, 3))

• :
(dig∗,3 )

rerand
← F.Puncture(:rerand, (dig

∗, 3))

and uses the punctured keys in place of : 9∗, :rerand.

Hyb
(dig∗ )

5,3,4
: Same as Hyb

(dig∗ )

5,3,3
except the challenger samples ~∗ ← PRG.Eval(PRG.GenSeed(crsG)) instead

of computing ~∗ = PRG.Eval(PRG.GenSeed(crsG; F(: 9∗, (dig
∗, 3)))).

Hyb
(dig∗ )

5,3,5
: Same as Hyb

(dig∗ )

5,3,4
except the challenger samples ~∗ ← PRG.Rerandomize(crsG, ~base).

Hyb
(dig∗ )

5,3,6
: Same as Hyb

(dig∗ )

5,3,5
except the challenger computes

~∗ ← PRG.Rerandomize(crsG, ~base; F(:rerand, (dig
∗, 3))).

Hyb
(dig∗ )

5,3,7
: Same as Hyb

(dig∗ )

5,3,6
except the challenger reverts to using unpunctured keys : 9∗, :rerand in place

of the punctured keys :
(dig∗,3 )
9∗ , :

(dig∗,3 )

rerand
.

Hyb
(dig∗ )

5,3,8
: Same as Hyb

(dig∗ )

5,3,7
except the challenger reverts to computing

: 9∗ ← F.Setup(1_PRF, 1=
′+C , 1_ ; F(:, 9∗))

instead of sampling : 9∗ ← F.Setup(1_PRF, 1=
′+C , 1_).

54



We also define two more intermediate hybrids:

Hyb5,3,9 : Same as Hyb(1
=′ )

5,3,8
except the challenger reverts to using the unpunctured key : in place of the

punctured key : ( 9
∗ ) and defines a modified version of VerProof2 as follows:

VerProof3 [crsG, td, 8
∗, 3, :, :sel, :rerand, ~base] (8, 9, dig, I8)

Inputs: index 8 , selection symbol 9 , hash value dig, proof I8

1: Compute G∗8∗ ← H.Extract(td, dig).

2: If 8∗ ≤ 8 < 3 and 9 = F(:sel, (G
∗
8∗, 8
∗)), output 0.

3: Compute : 9 ← F.Setup(1_PRF, 1=
′+C , 1d ; F(:, 9)).

4: If 8∗ ≤ 8 = 3 and 9 = F(:sel, (G
∗
8∗, 8
∗)), compute

~8 ← PRG.Rerandomize(crsG, ~base; F(:rerand, (dig, 8))).

5: Else: Compute ~8 = PRG.Eval(crsG, PRG.GenSeed(crsG; F(: 9 , (dig, 8)))).

6: Output 1 if PRG.Eval(crsG, I8) = ~8 and 0 otherwise.

�e challenger also uses VerProof3 [crsG, td, 8
∗, 3, :, :sel, :rerand, ~base] in place of the verification pro-

gramVerProof2 [crsG, :sel, td, 8
∗, 3, : ( 9

∗ ) , : 9∗, :rerand, dig
∗, 9∗, ~∗, ~base] in the proof aggregation program.

Specifically, in this experiment, the challenger defines a modified version of AggProof2 as follows:

AggProof3 [�, crsG, td, 8
∗, 3, :, :sel, :rerand, ~base] (8, 9, dig, G8 ,F8 , f8 , I8−1)

Inputs: index 8 , selection symbol 9 , hash value dig, statement G8 , witness F8 , opening f8 , prior
proof I8−1

1: If � (G8 ,F8) = 0, output ⊥.

2: If H.Verify(hk, dig, G8 , 8, f8) = 0, output ⊥.

3: If 8 = 8∗ and 9 = F(:sel, (H.Extract(td, dig), 8
∗)), output ⊥.

4: If 9 = F(:sel, (G8 , 8)), output ⊥.

5: If 8 ≠ 1 and VerProof3 [crsG, td, 8
∗, 3, :, :sel, :rerand, ~base] (8 − 1, 9, dig, I8−1) = 0, output ⊥.

6: Compute : 9 ← F.Setup(1_PRF, 1=
′+C , 1d ; F(:, 9)).

7: Output I8 = PRG.GenSeed(crsG; F(: 9 , (dig, 8))).

When constructing the CRS, the challenger now computes

ObfAggProof ← 8O(1_obf , 1B ,AggProof3 [�, crsG, td, 8
∗, 3, :, :sel, :rerand, ~base])

and
ObfVerProof ← 8O(1_obf , 1B ,VerProof3 [crsG, td, 8

∗, 3, :, :sel, :rerand, ~base]) .

Hyb5,3,10 : Same as Hyb5,3,9 except the challenger samples ~base
r← Y (where Y is the output space im-

plicitly defined by crsG).

We now consider each pair of adjacent distributions.
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Claim 6.14. Fix any dig∗ ∈ {0, 1}=
′
\ {0=

′
}. Suppose 8O is (1, 2−_

Yobf
obf )-secure for constant Yobf ∈ (0, 1) and

security parameter _obf = (_ + =
′)1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb
(dig∗ )

5,3,1
(A) = 1] − Pr[Hyb

(dig∗−1)

5,3,8
(A) = 1] | ≤ 2/2_+=

′

.

Proof. To complete the proof, we first introduce an intermediate hybrid:

iHyb
(dig∗ )

5,3,1
: Same as Hyb

(dig∗ )

5,3,1
except the challenger defines AggProof as in Hyb

(dig∗−1)

5,3,8
.

Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ Λ,

| Pr[iHyb
(dig∗ )

5,3,1
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,1
(A)] | > 1/2_+=

′

.

Let ΛB = {(_ + =′)1/Yobf | _ ∈ ΛA}. Since =
′ is non-negative, ΛB is also an infinite set. We define an effi-

cient algorithm B which plays the 8O security game with _obf = (_ + =
′)1/Yobf by runningA with security

parameter _. For each value of _obf ∈ ΛB , we provide the associated value of _ ∈ ΛA to B as non-uniform
advice (if there are multiple such _ ∈ ΛA associated with a particular _obf , we pick the largest such _; note
that since Yobf < 1 and =′ > 0, it will always be the case that _ < _obf).

Algorithm B[3, dig∗]

Inputs: 1_obf from 8O challenger, 1_ and 8∗ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Sample (hk, td) ← H.SetupTD(1_, 1=, 8∗), and crsG, :sel as in Setup.

3: Sample ~base ← PRG.Eval(crsG, PRG.GenSeed(crsG)), and :rerand ← F.Setup(1_PRF, 1=
′+_, 1`).

4: Compute 9 ′ ← F(:sel, (H.Extract(td, dig
∗ − 1), 8∗)).

5: Compute : ( 9
′ ) ← F.Puncture(:, 9 ′), and : 9 ′ ← F.Setup(1_PRF, 1=

′+C , 1_ ; F(:, 9 ′)).

6: Compute ~′ ← PRG.Rerandomize(crsG, ~base; F(:rerand, (dig
∗ − 1, 3))).

7: Compute 9∗ ← F(:sel, (H.Extract(td, dig
∗), 8∗)).

8: Compute : ( 9
∗ ) ← F.Puncture(:, 9∗), and : 9∗ ← F.Setup(1_PRF, 1=

′+C , 1_ ; F(:, 9∗)).

9: Compute ~∗ ← PRG.Eval(crsG, PRG.GenSeed(crsG; F(: 9∗, (dig
∗, 3)))).

10: Construct the obfuscated program ObfAggProof ← 8O(1_obf , 1B , %) where

% ≔ AggProof2 [�, crsG, hk, td, 8
∗, 3, : ( 9

′ ) , :sel, : 9 ′, :rerand, dig
∗ − 1, 9 ′, ~′, ~base] .

11: Construct the following two challenge programs:

• + ≔ VerProof2 [�, crsG, td, 8
∗, 3, : ( 9

′ ) , :sel, : 9 ′, :rerand, dig
∗ − 1, 9 ′, ~′, ~base]

• + ′ ≔ VerProof2 [�, crsG, td, 8
∗, 3, : ( 9

∗ ) , :sel, : 9∗, :rerand, dig
∗, 9∗, ~∗, ~base]

and send (+ ,+ ′) to the 8O challenger. �e 8O challenger replies with the obfuscated program
ObfVerProof.
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12: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

13: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

14: Output 1 if and only if V(crs, ®G, c) = 1 and 9 = F(:sel, (G8∗, 8
∗)).

We first show that the program+ computed as inHyb
(dig∗−1)

5,3,8
and the program+ ′ computed as inHyb

(dig∗ )

5,3,1
compute identical functionalities. For a particular input (8, 9, dig, I8) consider the following cases:

Case 1. If 9 = F(:sel, (H.Extract(td, dig), 8
∗)) and 8∗ ≤ 8 < 3 , both programs output 0.

Case 2. If dig < dig∗ − 1 and 9 = F(:sel, (H.Extract(td, dig), 8
∗)) and 8∗ ≤ 8 = 3 , then both programs

compute ~8 as
~8 = PRG.Rerandomize(crsG, ~base; F(:rerand, (dig, 8))) .

�e remaining logic in the two programs is identical.

Case 3. If dig = dig∗ − 1 and 9 = F(:sel, (H.Extract(td, dig), 8
∗)) = 9 ′ and 8∗ ≤ 8 = 3 , the two programs

behave identically except + uses the hard-coded value

~′ = PRG.Rerandomize(crsG, ~base; F(:rerand, (dig
∗ − 1, 3))).

Case 4. If dig = dig∗ and 9 = F(:sel, (H.Extract(td, dig), 8
∗)) = 9∗ and 8∗ ≤ 8 = 3 , the two programs

behave identically except + ′ uses the hard-coded value

~∗ = PRG.Eval(crsG, PRG.GenSeed(crsG; F(: 9∗, (dig
∗, 3)))).

Case 5. If dig > dig∗ or 9 ≠ F(:sel, (H.Extract(td, dig), 8
∗)) or 8∗ > 8 or 8 > 3 , the two programs be-

have identically except + may be using the hard-coded key : 9 ′ = F.Setup(1_PRF, 1=
′+C , 1_ ; F(:, 9 ′))

and + ′ may be using the hard-coded key : 9∗ = F.Setup(1_PRF, 1=
′+C , 1_ ; F(:, 9∗)). Both compute

~8 = PRG.Eval(crsG, PRG.GenSeed(crsG; F(: 9 , (dig, 8)))) in an identical manner.

We conclude that the two programs output identical functionality. If the 8O challenger obfuscates+ , thenB

perfectly simulatesHyb
(dig∗−1)

5,3,8
and outputs 1 with probability Pr[Hyb

(dig∗−1)

5,3,8
(A) = 1]. If the 8O challenger

obfuscates+ ′, then B perfectly simulates iHyb
(dig∗ )

5,3,1
and outputs 1 with probability Pr[iHyb

(dig∗ )

5,3,1
(A) = 1].

�us by 8O security we have that

| Pr[iHyb
(dig∗ )

5,3,1
(A) = 1] − Pr[Hyb

(dig∗−1)

5,3,8
(A) = 1] | = iOAdvB (_obf) ≤ 1/2_

Yobf
obf = 1/2_+=

′

.

By an analogous argument (where the reduction algorithm obtains ObfAggProof from the 8O challenger),
we can show that for all sufficiently large _ ∈ N,

| Pr[Hyb
(dig∗ )

5,3,1
(A) = 1] − Pr[iHyb

(dig∗ )

5,3,1
(A)] | ≤ 1/2_+=

′

.

�us by combining the above two relations, we conclude that

| Pr[Hyb
(dig∗ )

5,3,1
(A) = 1] − Pr[Hyb

(dig∗−1)

5,3,8
(A)] | ≤ 2/2_+=

′

. �
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Claim 6.15. Let dig∗ = 0=
′
. Suppose 8O is (1, 2−_

Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security parameter

_obf = (_ + =
′)1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb
(dig∗ )

5,3,1
(A) = 1] − Pr[Hyb5,3−1(A) = 1] | ≤ 2/2_+=

′

.

Proof. �is follows by an analogous argument as Claim 6.14. �

Claim 6.16. Fix any dig∗ ∈ {0, 1}=
′
. Suppose ΠPPRF satisfies (1, 2

−_
YPRF
PRF )-puncturing security for constants

YPRF ∈ (0, 1) and security parameter _PRF = (_ + =
′)1/YPRF . �en

| Pr[Hyb
(dig∗ )

5,3,2
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,1
(A) = 1] | ≤ 1/2_+=

′

.

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ Λ,

| Pr[Hyb
(dig∗ )

5,3,2
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,1
(A)] | > 1/2_+=

′

.

Let ΛB = {(_ + =′)1/YPRF | _ ∈ ΛA}. Since =
′ is non-negative, ΛB is also an infinite set. We define an

efficient algorithm B which plays the puncturing security game with _PRF = (_ + =′)1/YPRF by running A
with security parameter _. For each value of _PRF ∈ ΛB , we provide the associated value of _ ∈ ΛA to B
as non-uniform advice (if there are multiple such _ ∈ ΛA associated with a particular _PRF, we pick the
largest such _; note that since YPRF < 1 and =′ > 0, it will always be the case that _ < _PRF).

Algorithm B[3, dig∗]

Inputs: 1_PRF from PPRF challenger, 1_ and 8∗ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Sample hk← H.SetupTD(1_, 1=, 8∗), and crsG, :sel as in Setup.

3: Compute 9∗ ← F(:sel, (dig
∗, 8∗))

4: Send input length 1C , output length 1g , and punctured point 9∗ to the PPRF challenger. �e
PPRF challenger replies with the punctured key : ( 9

∗ ) and the challenge value A ∈ {0, 1}C from
PPRF challenger.

5: Compute : 9∗ ← F.Setup(1_PRF, 1=
′+C , 1_ ; A ).

6: Compute ~∗ = PRG.Eval(crsG, PRG.GenSeed(crsG; F(: 9∗, (dig
∗, 3)))).

7: Sample ~base ← PRG.Eval(crsG, PRG.GenSeed(crsG)).

8: Compute :rerand ← F.Setup(1_PRF, 1=
′+_, 1`).

9: Compute ObfAggProof ← 8O(1_obf , 1B , %) where

% ≔ AggProof2 [�, crsG, hk, td, 8
∗, :sel, :

( 9∗ ) , 3, : 9∗, :rerand, dig
∗, 9∗, ~∗, ~base] .

10: Compute ObfVerProof ← 8O(1_obf , 1B ,+ ) where

+ ≔ VerProof2 [�, crsG, td, 8
∗, : ( 9

∗ ) , 3, :sel, : 9∗, :rerand, dig
∗, 9∗, ~∗, ~base] .
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11: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

12: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

13: Output 1 if and only if V(crs, ®G, c) = 1 and 9 = F(:sel, (G8∗, 8
∗)).

We consider the two possibilities for the behavior for the PPRF challenger:

• If the PPRF challenger samples A r← {0, 1}d , then B perfectly simulatesHyb
(dig∗ )

5,3,2
and outputs 1 with

probability Pr[Hyb
(dig∗ )

5,3,2
(A) = 1].

• If the PPRF challenger computes A ← F(:, ( 9∗)) then B perfectly simulates Hyb
(dig∗ )

5,3,1
and outputs 1

with probability Pr[Hyb
(dig∗ )

5,3,1
(A) = 1].

�us by PPRF security, we have that

| Pr[Hyb
(dig∗ )

5,3,1
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,2
(A) = 1] | = PPRFAdvB (_PRF) ≤ 1/2_

YPRF
PRF = 1/2_+=

′

. �

Claim 6.17. Fix any dig∗ ∈ {0, 1}=
′
. Suppose 8O is (1, 2−_

Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security

parameter _obf = (_ + =
′)1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb
(dig∗ )

5,3,3
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,2
(A) = 1] | ≤ 2/2_+=

′

.

Proof. �is follows by an analogous argument as Claim 6.14. �

Claim 6.18. Fix any dig∗ ∈ {0, 1}=
′
. Suppose ΠPPRF satisfies (1, 2

−_
YPRF
PRF )-puncturing security for constants

YPRF ∈ (0, 1) and security parameter _PRF = (_ + =
′)1/YPRF . �en

| Pr[Hyb
(dig∗ )

5,3,4
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,3
(A) = 1] | ≤ 1/2_+=

′

.

Proof. �is follows by an analogous argument as Claim 6.16. �

Claim 6.19. Fix any dig∗ ∈ {0, 1}=
′
. Suppose ΠRPRG satisfies (1, 2−<

Y<
)-re-randomization security for con-

stant Y< ∈ (0, 1) and re-randomization parameter< = (_ + =′)1/Y< . �en

| Pr[Hyb
(dig∗ )

5,3,5
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,4
(A) = 1] | ≤ 1/2_+=

′

.

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ Λ,

| Pr[Hyb
(dig∗ )

5,3,5
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,4
(A)] | > 1/2_+=

′

.

Let <(_) = (_ + =)1/Y< . We define an efficient algorithm B which plays the re-randomization security
game with< = (_ + =′)1/Y< by running A with security parameter _.

Algorithm B[3, dig∗]

Inputs: crsG ← G.Setup(1_, 1<), ~base, ~
∗ from re-randomization challenger, 8∗ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Sample hk← H.SetupTD(1_, 1=, 8∗), and :sel as in Setup.

3: Compute 9∗ ← F(:sel, (dig
∗, 8∗)) and : 9∗ ← F.Setup(1_PRF, 1=

′+C , 1_).
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4: Compute :rerand ← F.Setup(1_PRF, 1=
′+_, 1`).

5: Compute : ( 9
∗ ) ← F.Puncture(:, 9∗), :

(dig∗,3 )
9∗ ← F.Puncture(: 9∗, (dig

∗, 3)), and :
(dig∗,3 )

rerand
←

F.Puncture(:rerand, (dig
∗, 3)).

6: Compute ObfAggProof ← 8O(1_obf , 1B , %) where

% ≔ AggProof2 [�, crsG, hk, :sel, :
( 9∗ ) , 8∗, 3, :

(dig∗,3 )
9∗ , :

(dig∗,3 )

rerand
, dig∗, 9∗, ~∗, ~base]).

7: Compute ObfVerProof ← 8O(1_obf , 1B ,+ where

+ ≔ VerProof2 [�, crsG, hk, :
( 9∗ ) , 8∗, 3, :sel, :

(dig∗,3 )
9∗ , :

(dig∗,3 )

rerand
, dig∗, 9∗, ~∗, ~base]).

8: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

9: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

10: Output 1 if and only if V(crs, ®G, c) = 1 and 9 = F(:sel, (H.Hash(hk, ®G), 8
∗)).

If the re-randomization challenger samples ~∗ ← PRG.Eval(crsG, PRG.GenSeed(crsG)), then B perfectly

simulates Hyb
(dig∗ )

5,3,4
and outputs 1 with probability Pr[Hyb

(dig∗ )

5,3,4
(A) = 1]. If the re-randomization chal-

lenger samples ~∗ ← PRG.Rerandomize(crsG, ~base), then B perfectly simulates Hyb
(dig∗ )

5,3,5
and outputs 1

with probability Pr[Hyb
(dig∗ )

5,3,5
(A) = 1]. �us by re-randomization security we have that

| Pr[Hyb
(dig∗ )

5,3,5
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,4
(A) = 1] | = RerandAdvB (<) ≤ 1/2<

Y
< = 1/2_+=

′

. �

Claim 6.20. Fix any dig∗ ∈ {0, 1}=
′
. Suppose ΠPPRF satisfies (1, 2

−_
YPRF
PRF )-puncturing security for constants

YPRF ∈ (0, 1) and security parameter _PRF = (_ + =
′)1/YPRF . �en

| Pr[Hyb
(dig∗ )

5,3,6
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,5
(A) = 1] | ≤ 1/2_+=

′

.

Proof. �is follows by an analogous argument as Claim 6.16. �

Claim 6.21. Fix any dig∗ ∈ {0, 1}=
′
. Suppose 8O is (1, 2−_

Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security

parameter _obf = (_ + =
′)1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb
(dig∗ )

5,3,7
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,6
(A) = 1] | ≤ 2/2_+=

′

.

Proof. �is follows by an analogous argument as Claim 6.14. �

Claim 6.22. Fix any dig∗ ∈ {0, 1}=
′
. Suppose ΠPPRF satisfies (1, 2

−_
YPRF
PRF )-puncturing security for constants

YPRF ∈ (0, 1) and security parameter _PRF = (_ + =
′)1/YPRF . �en

| Pr[Hyb
(dig∗ )

5,3,8
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,7
(A) = 1] | ≤ 1/2_+=

′

.

Proof. �is follows by an analogous argument as Claim 6.16. �
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Claim 6.23. Fix dig∗ = 1=
′
. Suppose 8O is (1, 2−_

Yobf
obf )-secure for constant Yobf ∈ (0, 1) and security parameter

_obf = (_ + =
′)1/Yobf and ΠPPRF satisfies punctured correctness. �en

| Pr[Hyb5,3,9(A) = 1] − Pr[Hyb
(dig∗ )

5,3,8
(A) = 1] | ≤ 2/2_+=

′

.

Proof. �is follows by an analogous argument as Claim 6.14. �

Claim 6.24. Suppose that ΠRPRG is (1, negl(_))-pseudorandom. �en

| Pr[Hyb5,3,10(A) = 1] − Pr[Hyb5,3,9(A) = 1] | ≤ negl(_) .

Proof. We define an efficient algorithm B which plays the pseudorandomness security game with security
parameter _ by running A with security parameter _.

Algorithm B[3]

Inputs: crsG ← G.Setup(1_, 1< (_) ), ~base from challenger, 8∗ as non-uniform advice

1: Run (�,) ) ← A(1_).

2: Sample hk← H.SetupTD(1_, 1=, 8∗), and :sel as in Setup.

3: Compute :rerand ← F.Setup(1_PRF, 1=
′+_, 1`).

4: Compute ObfAggProof ← 8O(1_obf , 1B ,AggProof3 [�, crsG, hk, :sel, :, 8
∗, 3, :rerand, ~base]).

5: Compute ObfVerProof ← 8O(1_obf , 1B ,VerProof3 [�, crsG, hk, :sel, :, 8
∗, 3, :rerand, ~base]).

6: Let crs = (hk, crsG,ObfAggProof,ObfVerProof).

7: Run ( ®G, c) ← A(crs) and parse ®G = (G1, . . . , G) ) and c = ( 9, I).

8: Output 1 if and only if V(crs, ®G, c) = 1 and 9 = F(:sel, (H.Hash(hk, ®G), 8
∗)).

If the challenger samples~base ← PRG.Eval(crsG, PRG.GenSeed(crsG)), thenB perfectly simulatesHyb5,3,9
and outputs 1 with probability Pr[Hyb5,3,9(A) = 1]. If the challenger samples~base uniformly fromY, then
B perfectly simulates Hyb5,3,10 and outputs 1 with probability Pr[Hyb5,3,10(A) = 1]. �us we have that

| Pr[Hyb5,3,10(A) = 1] − Pr[Hyb5,3,9(A) = 1] | ≤ negl(_) . �

Claim 6.25. Suppose that ΠRPRG satisfies correctness and re-randomization correctness and is expanding.

�en

| Pr[Hyb5,3 (A) = 1] − Pr[Hyb5,3,10(A) = 1] | ≤ 1/2Ω (_) .

Proof. We show that with overwhelming probability over the choice of ~base, the programs

AggProof3 [�, crsG, hk, :sel, :, 8
∗, 3, :rerand, ~base]) and VerProof3 [crsG, :sel, :, 8

∗, 3, :rerand, ~base])

which the challenger obfuscates in Hyb5,3,10 and

AggProof′ [�, crsG, hk, :, 8
∗, 3] and VerProof′ [crsG, :, 8

∗, 3]

which the challenger obfuscates in Hyb5,3 compute identical functionalities, respectively.
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�everificationprograms. Wefirst considerVerProof3 andVerProof
′. For a particular input (8, 9, dig, I8),

consider the following cases:

Case 1. If 8 ≠ 3 or 9 ≠ F(:sel, (dig, 8)), then VerProof3 and VerProof′ behave identically.

Case 2. If 8 = 3 and 9 = F(:sel, (dig, 8)), then VerProof′ always outputs 0. Consider the behavior in
VerProof3. By construction, VerProof3 first computes

~8 = PRG.Rerandomize(crsG, ~base; F(:rerand, (dig, 8)))

and outputs 1 if and only if PRG.Eval(crsG, I8) = ~8 . Note that by re-randomization correctness, this
never occurs if ~base is not in the image of PRG.Eval(crsG, ·).

Since |Y| ≥ 2Ω (_) · |Z| and ~base
r← Y, we have that

Pr[∃I ∈ Z : PRG.Eval(crsG, I) = ~base] ≤ 1/2Ω (_) .

so with probability 1−1/2Ω (_) , VerProof3 andVerProof
′ also behave identically for all inputs which fall into

case 2. In other words, with overwhelming probability over the choice of ~base, VerProof3 and VerProof′

compute identical functionality.

�e proof-aggregation programs. Next, we consider the proof-aggregation programs AggProof3 and
AggProof′. �e only difference between these is that AggProof3 calls VerProof3 while AggProof′ calls
VerProof′. By our above argument, the verification programs VerProof3 and VerProof′ compute identical
functionality, so the same extends to AggProof3 and AggProof′. �e claim now follows by 8O security,
using an analogous argument as in 6.14. �

Proof of Lemma 6.13. We now return to the proof of Lemma 6.13. By Claims 6.14 to 6.25 and the
triangle inequality, we can now write�� Pr[Hyb5,3 (A) = 1] − Pr[Hyb5,3−1(A) = 1]

��
≤

�� Pr[Hyb5,3 (A) = 1] − Pr[Hyb5,3,10(A) = 1]
��

+
�� Pr[Hyb5,3,10(A) = 1] − Pr[Hyb5,3,9(A) = 1]

��
+
�� Pr[Hyb5,3,9(A) = 1] − Pr[Hyb(1

=′ )

5,3,8
(A) = 1]

��
+

∑
dig∗∈{0,1}=

′

8∑
ℓ=2

�� Pr[Hyb(dig∗ )
5,3,ℓ
(A) = 1] − Pr[Hyb

(dig∗ )

5,3,ℓ−1
(A) = 1]

��
+

∑
dig∗∈{0,1}=

′
\{0=

′
}

�� Pr[Hyb(dig∗ )
5,3,1
(A) = 1] − Pr[Hyb

(dig∗−1)

5,3,8
(A) = 1]

��
+
�� Pr[Hyb(0=′ )

5,3,1
(A) = 1] − Pr[Hyb5,3−1(A) = 1]

��
≤

1

2Ω (_)︸︷︷︸
Claim 6.25

+ negl(_)︸  ︷︷  ︸
Claim 6.24

+
2

2_+=
′︸︷︷︸

Claim 6.23

+ 2=
′

·
$ (1)

2_+=
′︸      ︷︷      ︸

Claims 6.16 to 6.22

+ 2=
′

·
2

2_+=
′︸      ︷︷      ︸

Claim 6.14

+
2

2_+=
′︸︷︷︸

Claim 6.15

,

which is bounded by a negligible function. Lemma 6.13 holds. �
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Lemma 6.26. Pr[Hyb5,) (A) = 1] = 0.

Proof. In Hyb5,) , the program VerProof, and thus ObfVerProof, and thus V, outputs 0 on all inputs where
8 = ) and 9 = F(:sel, (G

∗
8∗, 8
∗)), where G∗8∗ ← H.Extract(td,H.Hash( ®G)). By extraction correctness of ΠSEH, it

cannot be the case that V(crs, ®G, c) = 1 and 9 = F(:sel, (G8∗, 8
∗)). �erefore the challenger in this experiment

always outputs 0. �

Proof of �eorem 6.4. �eorem 6.4 now follows from Lemmas 6.5, 6.6, and 6.11 to 6.13. Specifically,
there exist negligible functions X1, X2, X3 such that

Pr[Hyb0(A) = 1] ≤ Pr[Hyb1(A) = 1] + X1(_) by Lemma 6.5

≤ () + 1) · Pr[Hyb2(A) = 1] + X1(_) + X2(_) by Lemma 6.6

≤ () + 1) · Pr[Hyb3(A) = 1] + X1(_) + X2(_) by Lemma 6.11

≤ () + 1)

(
Pr[Hyb4(A) = 1] +

1

2_

)
+ X1(_) + X2(_) by Lemma 6.12

≤ () + 1)
(
Pr[Hyb5,) (A) = 1] +) · X3(_)

)
+
) + 1

2_
+ X1(_) + X2(_) by Lemma 6.13,

where we have used the fact that Hyb5,0 ≡ Hyb4. By Lemma 6.26, we have that Pr[Hyb5,) (A) = 1] = 0.
Since) = poly(_) and X1, X2, X3 = negl(_), we conclude that Pr[Hyb0(A) = 1] = negl(_), which completes
the proof of adaptive soundness. �

�eorem 6.27 (Perfect Zero-Knowledge). Suppose 8O is correct. �en Construction 6.1 satisfies perfect zero-

knowledge.

Proof. We construct the simulator as follows:

• S0(1
_,) ,�): On input the security parameter 1_ , the batch size) , and the Boolean circuit� : {0, 1}=×

{0, 1}E → {0, 1}, the simulator samples the common reference string crs ← Setup(1_,) ,�) exactly
as in the real scheme. Let hk, crsG, :sel, : be the underlying hash key, PRG parameters and PPRF keys
sampled in Setup. �e simulator outputs the crs along with the state st = (hk, crsG, :sel, :).

• S1(st, (G1, . . . , G) )): On input the state st = (hk, crsG, :sel, :) and statements (G1, . . . , G) ), the simu-
lator computes 98 ← F(:sel, (G8 , 8)) and selects the smallest 9 ∈ [) + 1] such that 9 ≠ 98 for all 8 ∈ [) ].
It then computes : 9 ← F.Setup(1_PRF, 1=+C , 1_ ; F(:, 9)) and I) = PRG.GenSeed(crsG; F(: 9 , (dig,) ))).
�e simulator outputs c = ( 9, I) ).

Take any Boolean circuit � : {0, 1}= × {0, 1}E → {0, 1}, batch size ) , and statements G1, . . . , G) and wit-
nesses F1, . . . ,F) such that � (G8 ,F8) = 1 for all 8 ∈ [) ]. First, observe that the common reference string
crs output by S0(1

_,) ,�) is distributed identically to Setup(1_,) ,�). It now suffices to consider the proof.
By construction, the proof c = ( 9, I) ) output by P(crs, (G1, . . . , G) ), (F1, . . . ,F) )) is obtained by evaluat-
ing ObfAggProof on inputs (8, 9, dig, G8 ,F8 , f8 , I8+1). By correctness of 8O and the definition of AggProof
and P, this means that 9 is the smallest value in [) + 1] such that 9 ≠ F(:sel, (G8 , 8)) for all 8 ∈ [) ] and
that I) = PRG.GenSeed(crsG; F(: 9 , (dig,) ))). �us the proof c = ( 9, I) ) output by S1(st, (G1, . . . , G) )) is
distributed identically to P(crs, (G1, . . . , G) ), (F1, . . . ,F) )). �
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