
Distributed Broadcast Encryption from Lattices

Jeffrey Champion
UT Austin

jchampion@utexas.edu

David J. Wu
UT Austin

dwu4@cs.utexas.edu

Abstract

A broadcast encryption scheme allows a user to encrypt a message to # recipients with a ciphertext
whose size scales sublinearly with # . While broadcast encryption enables succinct encrypted broadcasts,
it also introduces a strong trust assumption and a single point of failure; namely, there is a central
authority who generates the decryption keys for all users in the system. Distributed broadcast encryption
offers an appealing alternative where there is a one-time (trusted) setup process that generates a set of
public parameters. Thereafter, users can independently generate their own public keys and post them
to a public-key directory. Moreover, anyone can broadcast an encrypted message to any subset of user
public keys with a ciphertext whose size scales sublinearly with the size of the broadcast set. Unlike
traditional broadcast encryption, there are no long-term secrets in distributed broadcast encryption and
users can join the system at any time (by posting their public key to the public-key directory).

Previously, distributed broadcast encryption schemes were known from standard pairing-based
assumptions or from powerful tools like indistinguishability obfuscation or witness encryption. In this
work, we provide the first distributed broadcast encryption scheme from a falsifiable lattice assumption.
Specifically, we rely on the ℓ-succinct learning with errors (LWE) assumption introduced by Wee
(CRYPTO 2024). Previously, the only lattice-based candidate for distributed broadcast encryption goes
through general-purpose witness encryption, which in turn is only known from the private-coin evasive
LWE assumption, a strong and non-falsifiable lattice assumption. Along the way, we also describe a
more direct construction of broadcast encryption from lattices.

1 Introduction

Suppose a user wants to encrypt a message to a set of users (. With vanilla public-key encryption, the

encrypter would separately encrypt the message under each user’s public key, and then broadcast the

set of |(| ciphertexts. Each user can read the message by decrypting their respective ciphertext in the

broadcast. In this case, the size of the encrypted broadcast scales linearly with the size of the set |(|.
Broadcast encryption [FN93] provides an elegant approach for achieving succinct encrypted broadcasts.

With broadcast encryption, the encrypter can encrypt a message to an arbitrary set of (users with a

ciphertext whose length scales sublinearly with |(|. However, broadcast encryption achieves this savings at

a cost of introducing a central trusted authority that generates the public parameters for the scheme as well

as each user’s individual decryption key. Broadcast encryption thus has built-in key escrow, and indeed, if

the central authority is ever compromised, then the attacker learns the secret keys for every single user in

the system. This is in direct contrast to the setting with public-key encryption where each user generates

their own cryptographic keys. A natural question is whether we can achieve the efficiency advantages of

broadcast encryption without relying on a trusted centralized authority.

1

Distributed broadcast encryption. To circumvent the key escrow problem implicit in broadcast en-

cryption, several works have introduced the notion of distributed broadcast encryption [WQZDF10, BZ14].

Distributed broadcast encryption is a hybrid between public-key encryption and broadcast encryption.

Like the setting of public-key encryption, users in distributed broadcast encryption generate their own

public/secret key-pairs and then post their public keys to a public-key directory (i.e., a public bulletin

board). Anyone can encrypt a message to an arbitrary collection of public keys with a ciphertext whose

size scales sublinearly with the size of the broadcast set (much like in traditional broadcast encryption).

Note that in distributed broadcast encryption, we assume the encrypter and the decrypter know the set of

public keys associated with a ciphertext (similar to how in broadcast encryption, both the encrypter and

the decrypter know the set of users associated with the broadcast). While there is no trusted authority in

distributed broadcast encryption, we do allow for a one-time trusted sampling of a set of public parameters.

The trusted setup only needs to be performed once (e.g., using multiparty computation) and the same set of

public parameters can be shared across multiple schemes. There are no long-term secrets in the scheme

following the initial setup process. Thus, distributed broadcast encryption (and its generalizations) provide

an elegant way to combine the decentralized, trustless nature of public-key encryption with the efficiency

benefits of broadcast encryption.

To date, distributed broadcast encryption is known from indistinguishability obfuscation [BZ14],

witness encryption [FWW23], as well as assumptions over bilinear groups [WQZDF10, KMW23, GKPW24].

The work of [FWW23] also shows how to generic construct a distributed broadcast encryption scheme

from a registered attribute-based encryption (ABE) scheme; several recent works have shown how to

construct registered ABE from pairing-based assumptions [HLWW23, ZZGQ23, GLWW24, AT24]. Among

these constructions, the only one from plausibly post-quantum assumptions is the one based on witness

encryption, which can be constructed using lattice assumptions [Tsa22, VWW22]—specifically, the evasive

learning with errors (LWE) assumption [Wee22, Tsa22]. However, evasive LWE is a strong non-falsifiable

lattice assumption, and moreover, existing constructions of witness encryption rely on a private-coin version

of evasive LWE. As noted in [VWW22], there are (heuristic) obfuscation-based counter-examples for the

general version of private-coin evasive LWE, so the status of private-coin evasive LWE remains unsettled.

A natural goal then is to obtain simpler and more direct constructions of distributed broadcast encryption

from (preferably falsifiable) lattice assumptions. An even better objective would be to obtain distributed

broadcast encryption from the plain LWE assumption, but to date, even the simpler notion of centralized

broadcast encryption from LWE remains a long-standing open problem. Existing centralized broadcast

encryption schemes from lattice assumptions either lack a security proof [BV22], or rely on new lattice

assumptions such as (public-coin) evasive LWE [Wee22] or ℓ-succinct LWE [Wee24].

This work. In this work, we give the first distributed broadcast encryption scheme from a falsifiable lattice

assumption. Specifically, we rely on the ℓ-succinct LWE assumption recently introduced by Wee [Wee24]

for constructing broadcast encryption and succinct attribute-based encryption. The ℓ-succinct LWE

assumption essentially asserts that (A, sTA + eT) is pseudorandom even given a trapdoor for the related

matrix V = [Iℓ ⊗ A | U] where A r← Z=×<@ , s r← Z=@ , e← j< , U r← Zℓ=×<@ , and j is an error distribution.

We provide more details in Section 1.1. The ℓ-succinct LWE assumption is a falsifiable assumption and is

implied by (public-coin) evasive LWE (in combination with LWE). Variants of this assumption (adapted to

the setting of short integer solutions) have also been used in recent constructions of succinct functional

commitments [ACL+22, WW23a, CLM23, BCFL23, WW23b, FMN23]. We summarize our results with the

following informal theorem and provide a comparison to previous distributed broadcast encryption schemes

in Table 1.

2

Scheme Assumption |pp| |pk| |sk| |ct| TP PQ

Generic public-key encryption – 1 1 |(| ✓ ✓

Generic registration-based encryption 1 1 1 |(| ✓ ✓

[WQZDF10] bilinear Diffie-Hellman exponent # # 2 # 1 ✓ ✗

[BZ14] 8O + one-way function – 1 1 1 ✓ ✗

[FWW23]∗ witness encryption + LWE 1 1 1 1 ✓ ✓

[KMW23] bilinear Diffie-Hellman exponent # # 1 1 ✗ ✗

[KMW23] :-Lin (pairing group) # 2 # 1 1 ✗ ✗

[GKPW24] generic bilinear group # # 1 1 ✗ ✗

This work ℓ-succinct LWE # 2 # 1 1 ✗ ✓

∗ The work of [FWW23] also describe a generic approach for constructing distributed broadcast encryption

from any registered attribute-based encryption (ABE) scheme. A number of recent works have shown how to

construct registered ABE from bilinear maps [HLWW23, ZZGQ23, GLWW24, AT24]. Since these generic

instantiations do not improve upon other the other bilinear-map-based constructions already shown in the

table, we omit these for simplicity of comparison.

Table 1: Comparison with existing distributed broadcast encryption schemes. For each scheme, we report the

size of the public parameters pp, the user public/secret key-pair (pk, sk), and the ciphertext ct as a function

of the number of users # , and the size of the broadcast set |(|. For simplicity of comparison, we suppress

poly(_, log#) factors, where _ is the security parameter. For each scheme, we also indicate whether the

public parameters pp (if required) can be generated using a transparent setup procedure (TP), and whether

it is (plausibly) post-quantum secure (PQ). The first two rows describe generic non-succinct approaches of

using public-key encryption (PKE) or registration-based encryption (RBE) [GHMR18] to separately encrypt

to each user in the broadcast set. We write 8O to denote indistinguishability obfuscation [BGI+01, GGH+13].
The parameter ℓ in ℓ-succinct LWE must satisfy ℓ ≥ # ·$ (_ log#).

Theorem 1.1 (Informal). Let _ be a security parameter and # be a bound on the number of users. Then,

under the ℓ-succinct LWE assumption (with ℓ ≥ # ·$ (_ log#)), there exists a distributed broadcast encryption
scheme that supports up to # users with the following properties:

• The public parameters consist of a structured string of size # 2 · poly(_, log#).

• Each user’s public key has size $ (#_ log2 #) and secret key has size $ (_ log2 #).

• An encryption to a set of (⊆ [#] users has size $ (_ log2 #).

• Encryption and decryption with respect to a set (take time |(| · poly(_, log#). Moreover, if the set (is

known in advance, we can precompute a set-dependent encryption key pk(; encrypting to the set (then

requires poly(_, log#) time. Similarly, each user 8 ∈ (can also precompute a set-dependent decryption

key sk(,8 ; decrypting a ciphertext associated with (then requires poly(_, log#) time.

Open problems. Our work gives the first distributed broadcast encryption scheme from a falsifiable

lattice assumption. Our scheme has a quadratic-size CRS. An interesting open problem is to obtain a

distributed broadcast encryption scheme with a linear (or even sublinear-size) CRS from a falsifiable lattice

assumption. Schemes with linear-size public parameters are known from bilinear maps (under either the

3

bilinear Diffie-Hellman exponent assumption or in the generic bilinear group model) [KMW23, GKPW24].

Another interesting question is to construct a distributed broadcast encryption scheme that is able to

support an a priori unbounded number of users. Currently, this is only known from witness encryption and

indistinguishability obfuscation. Note that if we alternatively impose a bound on the size of the broadcast

set, then the transformation of [GLWW23] can be used to obtain a scheme that supports an arbitrary

number of users (but where each ciphertext can only target a bounded subset of users).

On the ℓ-succinct LWE assumption. Security of our lattice-based distributed broadcast encryption

scheme relies on the ℓ-succinct LWE assumption recently introduced by Wee [Wee24]. Prior to this work,

distributed broadcast encryption was known from witness encryption [FWW23], which can be built from

evasive LWE [Tsa22, VWW22]. Since both approaches rely on non-standard lattice assumptions, it is

natural to ask whether it is worthwhile to study constructions from ℓ-succinct LWE if we already have one

from evasive LWE. We provide a brief discussion here and refer to [Wee24, §1.4] for additional perspectives.

First, unlike evasive LWE, the ℓ-succinct LWE assumption is falsifiable. The ℓ-succinct LWE assumption

is also implied by (public-coin) evasive LWE together with plain LWE (c.f., [Wee24, §6.2]), so formally,

ℓ-succinct LWE is a weaker assumption than evasive LWE. On the other hand, evasive LWE is non-

falsifiable, and must be carefully-formulated to avoid counter-examples. In particular, there are obfuscation-

based counter-examples for the general version of private-coin evasive LWE [Wee22, VWW22]. Existing

constructions of witness encryption based on evasive LWE [Tsa22, VWW22] all rely on private-coin versions

of evasive LWE. Note that the known counter-examples for private-coin evasive LWE pertain only to the

most general version of the assumption, and not to the specific distributions needed by [Tsa22, VWW22].

A second advantage of the ℓ-succinct LWE assumption over evasive LWE is that it is “instance-

independent.” We reduce to the same assumption irrespective of the adversary. In contrast, when re-

ducing security to evasive LWE, the matrices in the pre- and post-conditions are typically functions of

the adversary (specifically, the queries that the adversary makes). Formally, this is captured by defining

a sampling algorithm based on the adversary. So even though the evasive LWE post-condition itself is

a falsifiable assumption, there is typically a different post-condition for each adversary. As such, when

analyzing security, we are relying on a family of computational assumptions (one for each adversary) as

opposed to a single instance-independent assumption (that applies to all adversaries). Since ℓ-succinct

LWE is falsifiable and instance-independent, the ℓ-succinct LWE assumption provides a concrete target for

cryptanalysis, especially compared to evasive LWE.

There has also recently been a proliferation of new (falsifiable) lattice assumptions. Most of these corre-

spond to some variant of the short integer solutions (SIS) problem or the LWE problem with hints [ACL+22,
WW23b, CLM23, BCFL23, WW23a, FMN23, AFLN24]; see [Alb24] for a survey and comparison. Essentially,

these assumptions assert that SIS or LWE is hard with respect to a matrix A even given some structured

preimage A−1(P) for some matrix P. Among these, the ℓ-succinct SIS assumption is weaker (up to poly-

nomial losses in the parameters) than assumptions like BASISstruct or :-'-ISIS assumptions considered in

many of the aforementioned works. From this perspective, we believe ℓ-succinct SIS and ℓ-succinct LWE to

be an appealing assumption to use when studying new lattice-based constructions.

Finally, if we compare our distributed broadcast encryption scheme directly to the one based on witness

encryption, we obtain a much more direct construction (conceptually similar to classic pairing-based

broadcast encryption schemes [BGW05, GW09]). For instance, the witness encryption approach makes

heavy non-black-box use of cryptographic objects (specifically, the witness encryption scheme is applied

to a function-binding hash function, which itself relies on leveled homomorphic encryption to construct).

In contrast, our approach directly realizes the broadcast functionality and does not need any kind of

4

homomorphic encryption machinery. We believe this to be a significant conceptual benefit of our approach.

1.1 Technical Overview

In this section, we provide a high-level overview of our approach for constructing distributed broadcast

encryption from lattices.

Notation. We write �Z,f to denote the discrete Gaussian distribution over Z with width parameter f > 0.

For a matrix A ∈ Z=×<@ and a target vector t ∈ Z=@ , we write A−1(t) to denote a random variable x← �<
Z,f

conditioned on Ax = t. We can efficiently sample from A−1(t) given a trapdoor for the matrix A. To simplify

the description in this overview, we use curly underlines to suppress small noise terms. Namely, we write

sTA
✿✿✿

to denote sTA + eT where e is a small error vector.

Distributed broadcast encryption. Next, we recall the syntax of a distributed broadcast encryption

scheme [WQZDF10, BZ14]:

• Setup: In distributed broadcast encryption, there is an initial (trusted) setup algorithm that samples a

set of public parameters pp. Similar to [WQZDF10, KMW23, GKPW24], we assume an a priori bound

on the maximum number of users, and allow the size of the public parameters to scale with # .

• Key-generation: In distributed broadcast encryption, each user has a distinct index 8 ∈ [#]. Using
the public parameters pp, user 8 can generate a public/secret key-pair (pk8 , sk8). Typically, user 8
would post the public key pk8 to the public key directory. As noted in Section 1.2, the notion of flexible

broadcast encryption [FWW23] eliminates the need for a user index (i.e., users simply generate a

public/secret key-pair). The work of [GLWW23] show how to generically transform a distributed

broadcast encryption into a flexible broadcast encryption scheme. In this work, we just focus on the

simpler notion of distributed broadcast encryption.

• Encryption: The encryption algorithm takes the public parameters pp, a set of public keys {pk8}8∈(,
the message `, and outputs the ciphertext ct.

• Decryption: The decryption algorithm takes a ciphertext, the public parameters pp, the associated

set of public keys {pk8}8∈(, the secret key sk8 for 8 ∈ (, and outputs the message.

The security requirement says that an encryption of ` to a set of public keys {pk8}8∈(should computationally

hide ` from an adversary who only sees the public parameters pp and the public keys {pk8}8∈(of the users

in the broadcast set. We say the scheme is selectively secure if the adversary has to declare the indices

(⊆ [#] of the honest users at the beginning of the security game before it sees the public keys, and that it

is adaptively secure if the adversary can choose the set (after seeing each user’s public key (and selectively

corrupting a subset of their keys). In this work, we are only able to prove selective security of our scheme;

it is an interesting question to construct an adaptively secure distributed broadcast encryption scheme from

lattice assumptions.1

1We are limited to selective security because our security proof relies on a “partitioning” argument where the reduction algorithm

first programs the challenge set into the public parameters. This limitation is common to most lattice-based ABE and broadcast

encryption schemes [GVW13, BGG+14, DKW21, WWW22, Wee22, HLL23, Wee24].

5

Starting point: a (centralized) broadcast encryption scheme. We begin by describing a simple

(centralized) broadcast encryption scheme for # users. While previous lattice-based broadcast encryption

schemes [BV22, Wee22, Wee24] start by constructing a ciphertext-policy ABE scheme with succinct

ciphertexts, we take a more direct approach which notably does not rely on any of the homomorphic

evaluation machinery typically seen in lattice-based ABE schemes. In turn, our approach more readily

extends to support distributed key generation. The structure of our construction can be viewed as a

lattice-based version of the pairing-based broadcast encryption scheme from [GW09, GKW18]. We describe

our approach below:

• Setup: The master public key mpk for the broadcast encryption scheme is a tuple(
A,B, p,W1, . . . ,W# , r1, . . . , r# ,

{
A−1(W8r9)

}
8≠9

)
.

Here, A,B,W8
r← Z=×<@ , p r← Z=@ , and r8 ← �<

Z,f
. The secret key for user 8 ∈ [#] is

sk8 = A−1(p + Br8 +W8r8).

• Encryption: To encrypt a bit ` ∈ {0, 1} to a set (⊆ [#], the encrypter samples an LWE secret

s
r← Z=@ and computesW(=

∑
9∈(W9 . The ciphertext is

ct(=
(
sTA
✿✿✿

, sT(B +W()
✿✿✿✿✿✿✿✿✿✿

, sTp + ` · ⌊@/2⌉
✿✿✿✿✿✿✿✿✿✿✿✿✿

)
,

where we write ⌊·⌉ to denote the function that rounds to the nearest integer.

• Decryption: Decryption relies on the fact that when 8 ∈ (, we have

sTA
✿✿✿

©­«
sk8 +

∑
9∈(\{8 }

A−1(W9r8)ª®¬
≈ sTp + sTBr8 + sTW8r8 +

∑
9∈(\{8 }

sTW9r8

= sTp + sTBr8 + sTW(r8 ,

where A−1(W9r8) are the “cross-terms” from the master public key. To decrypt, user 8 then computes

sTp + ` · ⌊@/2⌉
✿✿✿✿✿✿✿✿✿✿✿✿

+ sT(B +W()
✿✿✿✿✿✿✿✿✿✿

r8 − sTA
✿✿✿

©­
«
sk8 +

∑
9∈(\{8 }

A−1(W9r8)ª®¬
≈ ` · ⌊@/2⌉ ,

and rounds to recover `.

We can prove selective security of this construction by relying on evasive LWE [Wee22, Tsa22].2 The evasive

LWE assumption essentially asserts that if (sTA
✿✿✿

, sTP
✿✿

) is pseudorandom, then sTA
✿✿✿

is pseudorandom given

A−1(P). As noted above, in the selective security game, the adversary begins by declaring its challenge set

(∗ ⊆ [#]. It then receives the secret keys sk8 for all 8 ∉ (∗ and its goal is to distinguish between encryptions

of `0 and `1 to the set (
∗. To prove selective security from evasive LWE, we leverage a partitioning argument

2Note that the security of our distributed broadcast encryption scheme will ultimately be based on the ℓ-succinct LWE assump-

tion [Wee24], which is a falsifiable assumption that is implied by evasive LWE. However, we do not know how to prove security of

this particular centralized broadcast encryption scheme from ℓ-succinct LWE. This is because our distributed broadcast encryption

scheme will use a modified key-generation algorithm (described below).

6

where the reduction programs B ≔ B∗ −W(∗ where B
∗ r← Z=×<@ . Under evasive LWE, the claim now boils

down to showing that

sTA
✿✿✿

, sTB∗
✿✿✿

, sTp
✿✿

,
{
sTW8r9
✿✿✿✿✿✿

}
8≠9

,
{
sT(p + (B∗ −W(∗)r8 +W8r8)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

}
8∉(∗

is pseudorandom. Since the details of this proof is immaterial to our subsequent construction (and analysis),

we omit the formal details in this overview.3

Distributed key generation. To extend to distributed broadcast encryption, we partition the public

parameters for the centralized broadcast encryption described above into two sets of components: one that

is sampled by the initial (trusted) setup, and one that is sampled by each individual user:

• The components (A,B, p, r1, . . . , r#) are part of the public parameters for the distributed broadcast

encryption scheme.

• The matrices W8 as well as the cross terms A−1(W8r9) for 9 ≠ 8 will be chosen by user 8 . Namely,

the 8th user’s public key is then pk8 =
(
W8 ,

{
A−1(W8r9)

}
9≠8

)
. The decryption key for user 8 is still

sk8 = A−1(p + Br8 +W8r8). At this point, it is unclear how user 8 samples these components since it

does not (and cannot) have a trapdoor for A.

Observe that the public parameters pp together with any collection of public keys {pk8}8∈(now define

a set of public parameters for the centralized broadcast encryption scheme (for |(| users). Correctness
now follows immediately. It suffices to build a mechanism for users to sample their public and secret keys

without knowledge of a trapdoor for A.

Sampling public keys. To complete the construction, we need a way for a user to sample a public key

pk8 =
(
W8 ,

{
A−1(W8r9)

}
9≠8

)
together with a secret key sk8 = A−1(p + Br8 +W8r8) without a trapdoor for A.

For simplicity, consider first the simpler goal of sampling a freshW8 ∈ Z=×<@ together with short vectors

y9 ∈ Z<@ where Ay9 = W8r9 for all 9 ∈ [#]. To facilitate this, we can publish a collection of randommatrices

Z1, . . . ,Z: ∈ Z=×<@ in the public parameters together with their preimages A−1(Z8r9) for all 8 ∈ [:] and
9 ∈ [#]. The user can now pick a (short) vector d ∈ Z:@ and define W8 ≔

∑
g∈[:] 3gZg . Moreover, if d is

short, then
∑

g∈[:] 3gA
−1(Zgr9) is a short preimage of

∑
g∈[:] 3gZgr9 = W8r9 for all 8, 9 ∈ [#]. In essence,

the public parameters contain : public/secret key-pairs and the user samples their key by taking a random

linear combination of the fixed keys in the public parameters. The hope then is that the user’s public

key W8 =
∑

g∈[:] 3gZg and cross-terms
∑

g∈[:] 3gA
−1(Zgr9) hide the linear combination d the user used to

generate their public/secret key-pair. While a Gaussian leftover hash lemma [AGHS13, AR16] can plausibly

be used to show that the cross-terms are statistically close to A−1(∑g∈[:] 3gZgr9), we opt for a more direct

approach inspired by recent constructions of functional commitments [WW23a, WW23b]. Namely, we

publish a full trapdoor to facilitate direct sampling of the cross terms A−1(∑g∈[:] 3gZgr9) and the secret

key. This approach is also more conducive to proving security from the ℓ-succinct LWE assumption.

3One approach is to first argue that sTW8r9
✿✿✿✿✿

is pseudorandom for all 8, 9 ∈ [#]. Since r9 is short, we can use noise smudging to

argue that sTW8r9
✿✿✿✿✿

≈ (sTW8 + eT)r9
✿✿✿✿✿✿✿✿✿✿

, for a small error vector e. Then, by LWE (with secret s), this is indistinguishable from tT8 r8
✿✿

,

where t8
r← Z<@ . We can now appeal to LWE again (with secret t8) to argue that this is pseudorandom. Since r9 is short, this step

would rely on the analysis from [BLMR13].

7

Publishing a trapdoor for a related matrix. Instead of publishing short preimages A−1(Z8r9) in the

public parameters, we give out a full trapdoor for a matrix related toA in the public parameters. In particular,

we define the matrix

V =


A −Z1r1 · · · −Z:r1

. . .
...

. . .
...

A −Z1r# · · · −Z:r#


=


A −Z(I: ⊗ r1)

. . .
...

A −Z(I: ⊗ r#)


∈ Z=#×(<#+:)

@ , (1.1)

where Z = [Z1 | · · · | Z:] ∈ Z=×<:
@ . Suppose we sample



y1
...

y#
d


← V−1(u8 ⊗ (p + Br8)) ∈ Z<#+:

@ , (1.2)

where u8 ∈ Z#@ denotes the 8th canonical basis vector, and each y9 ∈ Z<@ and d ∈ Z:@ . This means


A −Z(I: ⊗ r1)

. . .
...

A −Z(I: ⊗ r#)


·



y1
...

y#
d


=



0=

...
0=

p+Br8
0=

...
0=


∈ Z=#@ . (1.3)

Next, by the mixed product rule for tensor (Kronecker) products (Eq. (2.1)), we can also write

Z(I: ⊗ r9)d = Z(I: ⊗ r9) (d ⊗ 1) = Z(d ⊗ I<) (1 ⊗ r9) = Z(d ⊗ I<)r9 .

DefineW8 ≔ Z(d ⊗ I<). Then, Eq. (1.3) says that for all 8 ≠ 9 ,

∀9 ≠ 8 : Ay9 − Z(I: ⊗ r9)d = 0= =⇒ Ay9 = W8r9

and

Ay8 − Z(I: ⊗ r8)d = p + Br8 =⇒ Ay8 = p + Br8 +W8r8 .

These are the same relations for the public parameters and the secret key as in the centralized broadcast

encryption scheme. Moreover, when A
r← Z=×<@ and < ≥ $ (= log@), the distribution of d output by

Eq. (1.2) is distributed according to a discrete Gaussian. This follows implicitly from the Gaussian preimage

sampling algorithm from [GPV08]; we also refer to [WW23b, §2] for a formal proof. Correspondingly

then, when : ≥ $ (=< log@), the distribution of W8 = Z(d ⊗ I<) is statistically close to uniform. Moreover

the distribution of cross-terms y9 is distributed exactly according to A−1(W8r9). As such, the public keys
sampled using this procedure precisely coincide with the distribution in the original centralized broadcast

encryption scheme. Putting all the pieces together, we now describe the full distributed broadcast encryption

scheme:

• Setup: The public parameters pp consists of

pp = (A,B, p, r1, . . . , r# ,Z, tdV),

where A,B
r← Z

=×<
@ , p r← Z

=
@ , and r1, . . . , r# ← �<

Z,f
exactly as in the centralized broadcast

encryption scheme. The additional components Z and tdV are sampled as Z r← Z=×<:
@ and tdV is a

(random) trapdoor for the matrix V in Eq. (1.1).

8

• Key generation: To generate a public/secret key pair for an index 8 ∈ [#], the user uses the trapdoor
tdV to sample (y1, . . . , y# , d) according to Eq. (1.2). It computes W8 = Z(d ⊗ I<) and defines the

public key to be pk8 =
(
W8 ,

{
y9

}
9≠8

)
and the secret key to be sk8 = y8 . As shown previously, for all

9 ≠ 8 , it holds that Ay9 = W8r9 and Ay8 = p + Br8 +W8r8 .

• Encryption and decryption: These are the same as in the centralized broadcast encryption scheme.

Specifically, the combination of the public parameters pp with the individual user public keys{
pk8

}
8∈[#] can be viewed as a set of public parameters for the centralized broadcast encryption

scheme. Since each user’s secret key satisfies the same invariant as the centralized scheme, correctness

follows as before.

We give the formal description in Section 3.1.

-structured LWE. To prove security, we rely on the # -structured LWE assumption which asserts that

(A, sTA
✿✿✿

,Z, r1, . . . , r# , tdV) ≈ (A, vT,Z, r1, . . . , r# , tdV), (1.4)

where V is the matrix in Eq. (1.1), tdV is a random trapdoor for V, and A
r← Z=×<@ , s r← Z=@ , v

r← Z<@ ,
Z

r← Z=×<:
@ , and r1, . . . , r# ← �<

Z,f
. Later on, we will show that the # -structured LWE assumption follows

from the ℓ-succinct LWE assumption recently introduced by Wee [Wee24]. We discuss both assumptions at

the end of this section.

Proof strategy. We now provide a sketch of our security proof, and specifically, how the reduction

algorithm simulates the key-generation queries. In the selective security game, the adversary begins by

committing to the set of indices (∗ ⊆ [#] associated with the challenge ciphertext. The reduction algorithm

obtains (A, vT,Z, r1, . . . , r# , tdV) from the ℓ-structured LWE challenger. It uses A,Z, r1, . . . , r# , tdV as the

corresponding components of the public parameters for the distributed broadcast encryption scheme. The

question is how the reduction algorithm simulates the public keys pk8 = (W8 , {y8, 9 } 9≠8) for the honest users
and how it simulates the challenge ciphertext. Suppose for a moment that the reduction algorithm knew

theW8 for each index 8 ∈ (∗ in the challenge set. Then, it would be able to computeW(∗ =
∑

8∈(∗W8 and

set B = AH −W(∗ , p = Ah where H r← {0, 1}<×< and h
r← {0, 1}< . In this case, the reduction could define

the challenge ciphertext to be

ct(∗ =
(
vT, vTH, vTh + ` · ⌊@/2⌉

)
.

If vT
= sTA

✿✿✿

, then

ct(∗ =
(
vT, vTH, vTh

)
=
(
sTA
✿✿✿

, sTAH
✿✿✿✿

, sTAh + ` · ⌊@/2⌉
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

)
=
(
sTA
✿✿✿

, sT(B +W(∗)
✿✿✿✿✿✿✿✿✿✿

, sTp + ` · ⌊@/2⌉
✿✿✿✿✿✿✿✿✿✿✿✿

)
,

which is distributed according to the real scheme. If v is a random vector, then by the leftover hash lemma,

the challenge ciphertext is uniformly random and security holds.

The problem with this approach is that the reduction algorithm cannot chooseW8 arbitrarily. Recall that

W8 is a component of the public key, and in the real scheme, is derived by first sampling (y8,1, . . . , y8,# , d8)
from V−1(u8 ⊗ (p + Br8)) according to Eq. (1.3) and then settingW8 = Z(d8 ⊗ I<). Here, we immediately

run into a circularity issue. The reduction algorithm needs to know W8 in order to program the challenge

set (∗ into B, but samplingW8 seemingly requires that B is already fixed!

Thus, the reduction algorithm needs an alternative method for simulating the honest users’ public

keys. The observation is simple: the public key pk8 for an index 8 ∈ (∗ only depends on y8, 9 for 9 ≠ 8 and d;

9

importantly, pk8 does not depend on the value of y8,8 . Indeed, y8,8 is the secret key for user 8 which is not

revealed to the adversary and also cannot be known to the reduction. Thus, in the reduction, instead of

sampling y8,8 so that Ay8,8 = p + Br8 +W8r8 as in the real scheme, the reduction algorithm simply samples

y8,8 so that Ay8,8 = W8r8 . In other words, the reduction algorithm samples (y8,1, . . . , y8,# , d8) from V−1(0=#).
By the structure of V (see Eq. (1.1)), we can show that sampling from this distribution does not affect the

marginal distributions of y8, 9 for 9 ≠ 8 and d. As such, this does not affect the adversary’s view. With this

modified sampling procedure, the reduction algorithm is able to sample the W8 components of each public

key (independently of B), and then program W(∗ =
∑

8∈(∗W8 into the public parameters (as described

above). We provide the full details in Section 3.1.

-structured LWE and ℓ-succinct LWE. The above reduction relies on the # -structured LWE as-

sumption (Eq. (1.4)) which essentially asserts hardness of LWE given a trapdoor for the related matrix

V used in our construction. We can relate this assumption to the recently introduced ℓ-succinct LWE

assumption [Wee24] which asserts that

(A, sTA
✿✿✿

,U, tdV) ≈ (A, vT,U, tdV), (1.5)

where A r← Z=×<@ , s r← Z=@ , v
r← Z<@ , U

r← Zℓ=×<@ , V = [Iℓ ⊗ A | U] and tdV is a random trapdoor for the

matrix V. The ℓ-succinct LWE assumption is a falsifiable assumption and moreover, Wee showed that it is

implied by the (public-coin) evasive LWE assumption [Wee24]. Wee also showed how to leverage ℓ-succinct

LWE to construct an ABE scheme with succinct ciphertexts, which in particular, implies a (centralized)

broadcast encryption scheme with short ciphertexts (and long public parameters). The analogous ℓ-succinct

short integer solutions (SIS) assumption (i.e., SIS is hard with respect to A given a trapdoor for V) has been

used to construct succinct functional commitments [WW23a]. As shown in [Wee24], the ℓ-succinct SIS

assumption is the least-structured or weakest among the multitude of structured lattice assumptions (e.g.,

BASISstruct [WW23b] or :-'-ISIS [ACL+22]) that have been introduced in recent years.

In Section 4, we show that if the ℓ-succinct LWE assumption holds with parameter ℓ ≥ # ·$ (_ log#),
then the # -structured LWE assumption also holds, provided that the width parameter : (i.e., the number

of blocks in Z) is at least : ≥ $ (=< log@). While it may appear that the # -structured LWE assumption

gives out a trapdoor for a more structured matrix than the # -succinct LWE assumption, we show here

that they are very similar. We illustrate this with a simple example. In the following description, we write

[I# ⊗ A | MZ,R] (for R = [r1 | · · · | r#]) to denote the matrix V from Eq. (1.1) and [I# ⊗ A | U] to denote

the matrix V from the ℓ-succinct LWE assumption (Eq. (1.5)). In particular,

MZ,R ≔


−Z(I: ⊗ r1)

...

−Z(I: ⊗ r#)


∈ Z=#×:@ and U =


U1

...

Uℓ


∈ Z=ℓ×<@ .

Suppose we sample (y1, . . . , yℓ , r) from [Iℓ ⊗ A | U]−1(0=ℓ), where y8 ∈ Z<@ , r ∈ Z<@ . This is statistically
indistinguishable from sampling

r← �<
Z,f and ∀8 ∈ [ℓ] : y8 ← A−1(−U8r) . (1.6)

On the other hand, suppose we sample (ŷ1, . . . , ŷ# , d̂) from [I# ⊗ A | MZ,R]−1(0=#), where ŷ8 ∈ Z<@ and

d̂ ∈ Z:@ . This is statistically indistinguishable from sampling

d̂← �:
Z,f and ∀9 ∈ [#] : ŷ8 ← A−1(Z(d̂ ⊗ I<)r8) . (1.7)

10

Since d̂ ← �:
Z,f

, when : ≥ $ (=< log@), the marginal distribution of Z(d̂ ⊗ I<) is statistically close to

uniform. If we define U ≔ Z(d̂ ⊗ I<), then the distribution in Eq. (1.7) becomes

d̂← �:
Z,f and ∀9 ∈ [#] : ŷ8 ← A−1(Ur8). (1.8)

This is a similar “cross-term” structure as in Eq. (1.6), except with the roles of U and r interchanged (i.e., the

same r is used for all 8 ∈ [ℓ] in Eq. (1.6) while the same U is used for all 8 ∈ [#] in Eq. (1.8)). By “transposing”

a collection of preimages sampled as in Eq. (1.6), we can transform them into a collection of preimages

distributed as in Eq. (1.8). To simulate the Z and d̂ components that determine the U matrix in Eq. (1.8), we

rely on preimage sampling techniques. We provide a formal reduction in Section 4 (Theorem 4.1).

1.2 Additional Related Work

Decentralized broadcast encryption. An alternative approach for solving the key-escrow problem in

broadcast encryption is to rely on an interactive key-generation process. This is referred to as decentralized

broadcast encryption [PPS12]. Namely, when a new user joins the system, the users in the system runs an

MPC protocol with the existing users to obtain their secret key (and existing users obtain an updated key).

In distributed broadcast encryption, key-generation is non-interactive and we do not require users to be

cognizant of other users in the system.

Flexible broadcast encryption. In distributed broadcast encryption, each user’s public key is actually

associated with a slot index 8 ∈ [#]. Moreover, a user can only encrypt to a set of public keys if they occupy

different slots. The work of [FWW23] introduced a stronger notion of flexible broadcast encryption where

it is possible to encrypt to an arbitrary set of public keys without any slot restrictions. In the same work,

the authors showed how to construct flexible broadcast encryption using witness encryption (together

with a function-binding hash function). Recently, the work of [GLWW23] showed a generic compiler from

distributed broadcast encryption to flexible broadcast encryption using combinatoric tools. The work of

[GKPW24] also provides a direct construction of flexible broadcast encryption from pairings.

Registration-based cryptography. Distributed broadcast encryption falls into themore general umbrella

of “registration-based cryptography” [GHMR18], which seeks to remove the trusted authority from advanced

encryption schemes like identity-based encryption (IBE) [GHMR18, GHM+19, GV20, CES21, GKMR23,

DKL+23, FKdP23], attribute-based encryption (ABE) [HLWW23, FWW23, ZZGQ23, GLWW24, AT24],

functional encryption (FE) [FFM+23, DPY23], and traitor tracing [BLM+24]. Broadly speaking, the goal in

each of these settings is to replace the trusted key-issuing authority with a public bulletin board where users

can post their own public keys (that they themselves sample). Moreover a (transparent) key curator can then

aggregate the individual public keys into a single short set of public parameters. The work of [FWW23] also

shows how to compile any registered ABE scheme (that supports a single attribute and the always-accept

policy) into a distributed broadcast encryption scheme (with succinct ciphertexts). Existing constructions of

registered ABE either rely on indistinguishability obfuscation [HLWW23], witness encryption [FWW23],

or pairing-based assumptions [HLWW23, ZZGQ23, GLWW24, AT24].

2 Preliminaries

Throughout this work, we write _ to denote the security parameter. For a positive integer = ∈ N, we
write [=] ≔ {1, . . . , =}. We write poly(_) to denote a fixed polynomial in _. We write negl(_) to denote a

11

function that is negligible in _: namely, > (_−2) for all 2 ∈ N. We say an event occurs with overwhelming

probability if the probability of its complement occurring is negligible. For functions 5 = 5 (_) and 6 = 6(_),
we write 5 ≥ $ (6) to denote that there exists a fixed function 6′ ∈ $ (6) such that 5 (_) ≥ 6′(_) for all
_ ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input.

For two ensembles of distributions D1 =
{
D1,_

}
_∈N and D2 =

{
D2,_

}
_∈N indexed by a security parameter,

we say they are computationally indistinguishable if no efficient algorithm can distinguish them except

with negl(_) probability. We say they are statistically indistinguishable if the statistical distance between

them is negl(_). We write D1
2≈ D2 (resp., D1

B≈ D2) if D1 and D2 are computationally (resp., statistically)

indistinguishable. Throughout this work, we will use bold uppercase letters (e.g., A, B) to denote matrices

and bold lowercase letters (e.g., u, v) to denote vectors. We use non-boldface letters (e.g., E1, . . . , E=) to refer

their components. For a dimension = ∈ N, we write I= ∈ Z=×= to denote the identity matrix of dimension =.

Throughout, we write ‖·‖ to denote the ℓ∞ norm.

Tensor products. For matrices A ∈ Z=×<@ and B ∈ Z:×ℓ@ , we write A ⊗ B ∈ Z=:×<ℓ
@ to denote their tensor

(Kronecker) product. For matrices A,B,C,D where the products AC and BD are well-defined, then

(A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD) . (2.1)

We now recall a generalization of the leftover hash lemma along with a simple corollary that will be useful

in our analysis.

Lemma 2.1 (Generalized Leftover Hash Lemma [ABB10, Lemma 13, adapted]). Let =,<,@ be integers such

that< ≥ 2= log@ and @ > 2 is prime. Then, for all fixed vectors e ∈ Z<@ and all : = poly(=), the statistical
distance between the following distributions is negl(=):

{
(A,AR, eTR) : A r← Z=×<@ ,R

r← {0, 1}<×:
}

and

{
(A,U, eTR) : A

r← Z=×<@ ,U
r← Z=×:@

R
r← {0, 1}<×:

}
.

Corollary 2.2 (Column Space of Random Matrix [GPV08, Lemma 5.1]). Let =,<,@ be lattice parameters

where @ is prime and< ≥ 2= log@. Then, for all but a @−= = negl(=) fraction of matrices A ∈ Z=×<@ , the

columns of A generate Z=@ .

Discrete Gaussians and gadget matrices. We write �Z,f to denote the discrete Gaussian distribution

over Zwith width parameter f > 0. For a matrixA ∈ Z=×<@ and a target vector t ∈ Z=@ in the column-space of

A, we write A−1f (t) to denote a random variable x← �<
Z,f

conditioned on Ax = t mod @. We extend A−1f to

matrices by applyingA−1f to each column of the input. For positive integers=, @ ∈ N, letG= = I=⊗gT ∈ Z=×<′@

be the gadget matrix [MP12] where I= is the identity matrix of dimension =, gT
= [1, 2, . . . , 2⌊log@⌋], and

<′ = =(⌊log@⌋ + 1). We also recall some basic properties of the discrete Gaussian distribution.

Lemma 2.3 (Gaussian Tail Bound [MP12, Lemma 2.6, adapted]). Let =,<,@ be lattice parameters where

< ≥ 2= log@. Sample A r← Z=×<@ . Then, for all f > log< and all vectors t ∈ Z=@ in the span of A,

Pr[‖u‖ >
√
<f : u← A−1f (t)] ≤ $ (2−<) .

For the particular case of the discrete Gaussian over the integers and any _ ∈ N,

Pr[|G | >
√
_f : G ← �

Z,f] ≤ 2−_ .

12

Lemma 2.4 (Gaussian Samples [GPV08, adapted]). Let =,<,@, f be lattice parameters such that f ≥ log<,

< ≥ 2= log@, and @ is prime. Then the statistical distance between the following distributions is at most

negl(=):{
(A, x,Ax) : A r← Z=×<@ , x← �<

Z,f

}
and

{
(A, x, t) : A r← Z=×<@ , t

r← Z=@ , x← A−1f (t)
}
.

Basis extension and lattice trapdoors. We will also use the following lemma characterizing the

distribution of [A | B]−1(·). We give the statement from [WW23b], which follows immediately from earlier

works on preimage sampling and basis delegation [GPV08, CHKP10, MP12]. Finally, we recall the notion of

a gadget trapdoor [MP12].

Lemma 2.5 (Marginal of Gaussian Preimages [WW23b]). Let=,<,@ be lattice parameters where< ≥ 2= log@

and @ is prime. Let B ∈ Z=ℓ×:@ where ℓ, : = poly(=, log@). Let C = [Iℓ ⊗ A | B] ∈ Z=ℓ×(<ℓ+:)
@ . Then for all

target vectors t ∈ Z=ℓ@ and all width parameters B ≥ log(ℓ<), the statistical distance between the following

distributions is negl(=):

{v : A r← Z=×<@ , v← C−1B (t)} and

{[
v1
v2

]
: A r← Z=×<@ , v2 ← �:

Z,B , v1 ← (Iℓ ⊗ A)−1B (t − Bv2)
}
.

Lemma 2.6 (Gadget Trapdoor [Ajt96, GPV08, MP12]). Let =,<,@ be lattice parameters with< ≥ 3= log@.

Then there exists efficient algorithms (TrapGen, SamplePre) with the following syntax:

• TrapGen(1=, @,<) → (A,R): On input the lattice dimension =, the modulus @, and the number of

samples<, the trapdoor-generation algorithm outputs a matrix A ∈ Z=×<@ together with a trapdoor

R ∈ Z<×<′@ where<′ = =(⌊log@⌋ + 1).

• SamplePre(A,R, t, f) → x: On input a matrix A ∈ Z=×<@ , a trapdoor R ∈ Z<×<′@ , a target vector t ∈ Z=@ ,
and a Gaussian width parameter f , the preimage-sampling algorithm outputs a vector x ∈ Z<@ .

Moreover, the above algorithms satisfy the following properties:

• Trapdoor distribution: If (A,R) ← TrapGen(1=, @,<) and A′ r← Z=×<@ , then Δ(A,A′) = negl(=).
Moreover, AR = G= ∈ Z=×<

′
@ and ‖R‖ = 1.

• Preimage sampling: For all matrices R ∈ Z<×<′@ , parameters f > 0, and all target vectors t ∈ Z=@ in

the column span of A, the output x← SamplePre(A,R, t, f) satisfies Ax = t.

• Preimage distribution: Suppose R is a gadget trapdoor for A ∈ Z=×<@ (i.e., AR = G=). Then, for all

f ≥ <‖R‖ log=, and all target vectors t ∈ Z=@ , the statistical distance between the following distributions

is at most negl(=):
{x← SamplePre(A,R, t, f)} and {x← A−1f (t)}.

Learning with errors and ℓ-succinct LWE. The learning with errors (LWE) assumption [Reg05] with

parameters (=,<,@, f) states that the distribution of (A, sTA + eT) is computationally indistinguishable from

(A, vT) when A
r← Z=×<@ , s r← Z=@ , e← �<

Z,f
, and v

r← Z<@ . Many recent works [ACL+22, WW23b, BCFL23,

WW23a, CLM23, FMN23, Wee24] have introduced falsifiable variants of the LWE assumption (or the dual

problem of short integer solutions (SIS)) which conjecture that the LWE (or SIS) problem with respect to A

is hard even given a trapdoor for a matrix related to A. In this work, we use the ℓ-succinct LWE assumption

13

introduced by Wee [Wee24], which asserts that LWE is hard with respect to A even given a trapdoor for the

matrix [Iℓ ⊗ A | U] where U r← Z=ℓ×<@ . As discussed in [Wee24], the ℓ-succinct LWE assumption is weaker

than many of the other recently-proposed structured lattice assumptions (specifically, the LWE analogs of

:-'-ISIS [ACL+22, BCFL23] and BASISstruct [WW23a, FMN23]). It is also implied by assumptions like the

evasive LWE assumption [Wee22, Tsa22]. We now give the formal statement of the assumption:

Assumption 2.7 (ℓ-Succinct LWE [Wee24]). Let _ be a security parameter and let = = =(_),< =<(_), @ =

@(_), f = f (_) be lattice parameters. Let B = B (_) be a Gaussian width parameter and ℓ = ℓ (_) be a

dimension. We say that the ℓ-succinct LWE assumption with parameters (=,<,@, f, B) holds if for all
efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N:��Pr[A(A, sTA + eT,U,T) = 1] − Pr[A(A, vT,U,T) = 1]

�� = negl(_),

where A r← Z=×<@ , s r← Z=@ , e← �<
Z,f

, v r← Z<@ , U
r← Z=ℓ×<@ , and T← [Iℓ ⊗ A | U]−1B (G=ℓ).4

In other words, we require that LWE is hard with respect to A even given a fresh gadget trapdoor T for a

related matrix [Iℓ ⊗ A | U].

2.1 Distributed Broadcast Encryption

We now define the notion of distributed broadcast encryption.

Definition 2.8 (Distributed Broadcast Encryption [BZ14, KMW23]). Let _ be the security parameter and #

be the number of users. An # -user distributed broadcast encryption scheme is a tuple of efficient algorithms

(Setup,KeyGen, IsValid, Enc,Dec) with the following syntax:

• Setup(1_, 1#) → pp: On input the security parameter _ and the number of users # , the setup

algorithm outputs the public parameters pp.

• KeyGen(pp, 8) → (pk8 , sk8): On input the public parameters pp and an index 8 ∈ [#], the key-

generation algorithm outputs a public key and secret key (pk8 , sk8).

• IsValid(pp, 8, pk8) → 1: On input the public parameters pp, an index 8 ∈ [#], and a public key pk8 ,

the validity-checking algorithm outputs a bit 1 ∈ {0, 1}.

• Enc(pp, {(8, pk8)}8∈(, `) → ct: On input the public parameters pp, a collection of public keys pk8 and

a message ` ∈ {0, 1}, the encryption algorithm outputs a ciphertext ct.

• Dec(pp, {(8, pk8)}8∈(, ct, (9, sk9)) → `: On input the public parameters pp, a collection of public keys

pk8 , a ciphertext ct, and a secret key sk9 for an index 9 , the decryption algorithm outputs a message

` ∈ {0, 1}.

We require that (Setup,KeyGen, IsValid, Enc,Dec) satisfy the following properties:

• Correctness: For a security parameter _ ∈ N, a bound # on the number of users, and an adversary

A, we define the correctness experiment as follows:

– The challenger samples pp← Setup(1_, 1#) and gives pp to A.

4Note that this distribution is only well defined when G=ℓ is in the image of [Iℓ ⊗ A | U]. Thus, when G=ℓ is not in the image, we

set T = ⊥. Accordingly, taking< ≥ 2= log@ ensures that this event occurs with negligible probability (Corollary 2.2).

14

– The adversary specifies a target index 9 ∈ [#]. The challenger responds by computing

(pk9 , sk9) ← KeyGen(pp, 9). It gives pk9 to the adversary A.

– The adversary outputs a set (⊆ [#], a collection of public keys pk8 for 8 ∈ (\ { 9}, and a

message ` ∈ {0, 1}.
– The challenger checks that 9 ∈ (and that IsValid(pp, 8, pk8) = 1 for each 8 ∈ (\ { 9} and

outputs 1 = 1 if not. Otherwise, the challenger computes ct ← Enc(pp, {(8, pk8)}8∈(, `) and
`′ ← Dec(pp, {(8, pk8)}8∈(, ct, (9, sk9)). It outputs 1 = 1 if ` = `′ and 1 = 0 otherwise.

We say that the scheme is correct if for all _, # ∈ N and all adversaries A, there exists a negligible

function negl(·) such that for all _ ∈ N, Pr[1 = 1] ≥ 1 − negl(_) in the correctness experiment.

• Verifiable keys: For all _, # ∈ N, and all indices 8 ∈ [#], it holds that

Pr

[
IsValid(pp, 8, pk8) = 1 :

pp← Setup(1_, 1#)
(pk8 , sk8) ← KeyGen(pp, 8)

]
≥ 1 − negl(_) .

• Selective security: For a security parameter _, a bound # on the number of users, and a bit 1 ∈ {0, 1} ,
we define the selective security game between an adversary A and a challenger as follows:

– On input the security parameter 1_ and the number of users 1# , the adversary outputs a

challenge set (∗ ⊆ [#].
– The challenger samples pp← Setup(1_, 1#) and (pk8 , sk8) ← KeyGen(pp, 8) for 8 ∈ (∗. It also

computes ct1 ← Enc(pp, {pk8}8∈(∗, 1, (∗) and sends
(
pp, {pk8}8∈(∗, ct1

)
to A.

– At the end of the game, algorithm A outputs 1′ ∈ {0, 1} , which is the output of the experiment.

We say the distributed broadcast encryption scheme is selectively secure if for all polynomials

= # (_), and all efficient adversaries A, there exists a negligible function negl(·) such that for all

_ ∈ N,
|Pr[1′ = 1 | 1 = 1] − Pr[1′ = 1 | 1 = 0] | = negl(_) (2.2)

in the selective security game. We say that the scheme is selectively secure for up to # users if

Eq. (2.2) holds for the specific value of # .

• Short ciphertexts: There exists a fixed polynomial poly(·) such that for all _, # ∈ N, all subsets
(⊆ [#], all public parameters pp in the support of Setup(1_, 1#), all key-pairs (pk8 , sk8) in the

support of KeyGen(pp, 8) for 8 ∈ (, all messages ` ∈ {0, 1}, and all ciphertexts ct in the support of

Enc(pp, {pk8}8∈(, `, (), it holds that |ct| ≤ poly(_ + log#).

Remark 2.9 (Encrypting Long Messages). Definition 2.8 considers the (simple) setting where the ciphertext

encrypts a single bit. It is straightforward to support encrypting longer messages by composing with a

symmetric encryption scheme. Namely, to encrypt a message ` ∈ {0, 1}< , the encryption algorithm samples

a symmetric key : ∈ {0, 1}poly(_) , encrypts the bits of : using the broadcast encryption scheme, and then

encrypts ` using the symmetric key : . The size of the overall ciphertext is then |` | + poly(_, log#).

15

3 Distributed Broadcast Encryption from Lattices

In this section, we give our construction of a selectively-secure distributed broadcast encryption scheme.

We begin by introducing an intermediate assumption called the ℓ-structured LWE assumption which we

will use in our security analysis. Then, in Section 4, we show that our intermediate assumption follows from

the ℓ ′-succinct LWE assumption (Assumption 2.7) for ℓ ′ ≥ ℓ ·$ (= log@), where =, @ are lattice parameters.

Assumption 3.1 (ℓ-Structured LWE). Let _ be a security parameter and = = =(_),< =<(_), @ = @(_), f =

f (_) be lattice parameters. Let B = B (_) be a Gaussian width parameter. Let : = : (_) and ℓ = ℓ (_) be
dimension parameters. We say that the ℓ-structured LWE assumption with parameters (=,<,@, f, B, :) holds
if for all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N:��Pr[A(A, sTA + eT,Z,R,T) = 1] − Pr[A(A, uT,Z,R,T) = 1]

�� = negl(_),

where A r← Z=×<@ , s r← Z=@ , e← �<
Z,f

, u r← Z<@ , Z = [Z1 | · · · | Z:] r← Z=×<:
@ , R = [r1 | · · · | rℓ] ← �<×ℓ

Z,B
,

T← (Vℓ,:)−1B (G=ℓ), and

Vℓ,: =


A −Z1r1 · · · −Z:r1

. . .
...

. . .
...

A −Z1rℓ · · · −Z:rℓ


=


A −Z(I: ⊗ r1)

. . .
...

A −Z(I: ⊗ rℓ)


∈ Z=ℓ×(<ℓ+:)

@ . (3.1)

Similar to ℓ-succinct LWE, we require that LWE is hard with respect to A even given a trapdoor T for

a related matrix Vℓ,: . While the right side of the matrix Vℓ,: appears significantly more structured than

the random matrix U in the ℓ-succinct LWE assumption (Assumption 2.7), we show in Section 4 that this

assumption is implied by the ℓ ′-succinct LWE assumption (when ℓ ′ ≥ ℓ ·$ (= log@) and : ≥ 3=< log@).

Parameter setting. Similar to ℓ-succinct LWE, we only consider instantiations with< ≥ $ (= log@) so
that the matrix A spans Z=@ with overwhelming probability and the Z8 matrices have sufficient width. We

additionally note that the ℓ-structured LWE assumption is false when : is too small. In this setting, the

adversary can use the trapdoor to repeatedly sample (Vℓ,:)−1B (0). By Lemma 2.5, these preimages include

samples from A−1B (Z(d ⊗ I<)r8) where d ← �:
Z,B
. When : is too small, collisions in the value of d will

arise with noticeable probability. Such a collision immediately gives a short vector x such that Ax = 0

(which immediately breaks LWE with respect to A). Thus, we require : = l (log=) to ensure that collisions

are unlikely to occur. In our setting, we will only consider : ≥ $ (=< log@). In this case, the marginal

distribution of Z(d ⊗ I<) is statistically close to uniform by Lemma 2.4. For this parameter reigme, we can

in fact show that the ℓ-structured LWE assumptions holds under the ℓ ′-succinct LWE for ℓ ′ ≥ ℓ ·$ (= log@).
We provide this reduction in Section 4.

3.1 Distributed Broadcast Encryption from ℓ-Structured LWE

In this section, we describe our distributed broadcast encryption scheme from ℓ-structured LWE, where

ℓ = # is the bound on the number of users in the system.

Construction 3.2 (Distributed Broadcast Encryption). Let _ ∈ N be a security parameter, # ∈ N be

the number of users, and = = =(_, #),< = <(_, #), @ = @(_, #), f = f (_, #) be lattice parameters. Let

B0 = B0(_, #), B1 = B1(_, #) be Gaussian width parameters, : = : (_, #) be a dimension, and V = V (_, #) be a
norm bound. We construct our distributed broadcast encryption scheme (Setup,KeyGen, IsValid, Enc,Dec)
as follows:

16

• Setup(1_, 1#): On input the security parameter _ and the bound on the number of users # , the setup

algorithm proceeds as follows:

1. Sample (A,TA) ← TrapGen(1=, @,<), B r← Z=×<@ , p r← Z=@ .
2. For each 8 ∈ [:], sample Z8

r← Z=×<@ and let Z = [Z1 | · · · | Z:] ∈ Z=×<:
@ . For each 8 ∈ [#],

sample r8 ← �<
Z,B0

.

3. Sample TV ← SamplePre
(
V#,: ,

[
I# ⊗TA

0

]
,G=# , B0

)
, where

V#,: =


A −Z1r1 · · · −Z:r1

. . .
...

. . .
...

A −Z1r# · · · −Z:r#


=


A −Z(I: ⊗ r1)

. . .
...

A −Z(I: ⊗ r#)


∈ Z=#×(<#+:)

@ .

(3.2)

Output pp = (A,B, p,Z, {r8}8∈[#],TV).

• KeyGen(pp, 8): On input the public parameters pp = (A,B, p,Z, {r8}8∈[#],TV) and an index 8 ∈ [#],
the key-generation algorithm samples



y1
...
y#
d


← SamplePre(V#,: ,TV, u8 ⊗ (p + Br8), B1), (3.3)

where u8 ∈ {0, 1}# is the the 8th standard basis vector, y8 ∈ Z< for each 8 ∈ [#], and d ∈ Z: . It sets
W = Z(d ⊗ I<) ∈ Z=×<@ and outputs the public key pk = (W, {y9 } 9≠8) and the secret key sk = y8 .

• IsValid(pp, 8, pk8): On input the public parameters pp = (A,B, p,Z, {r8}8∈[#],TV), an index 8 ∈ [#],
and a public key pk8 = (W8 , {y8, 9 } 9≠8), the validity-checking algorithm outputs 1 if the following

holds:

∀9 ≠ 8 : Ay8, 9 = W8r9 and ‖y8, 9 ‖ ≤ V.

Otherwise, the algorithm outputs 0.

• Enc(pp, {(9, pk9)} 9∈(, `): On input the public parameters pp = (A,B, p,Z, {r8}8∈[#],TV), a collection
of public keys pk9 = (W9 , {y9, 9 ′} 9 ′≠9) for each 9 ∈ (, and a message ` ∈ {0, 1} , the encryption

algorithm samples s r← Z=@ , e← �<
Z,f

, H r← {0, 1}<×< , and h r← {0, 1}< . It computesW(=
∑

9∈(W9

and outputs

ct =
(
sTA + eT , sT(B +W() + eTH , sTp + eTh + ` · ⌊@/2⌋

)
.

• Dec(pp, {(9, pk9)} 9∈(, ct, (8, sk8)): On input the public parameters pp = (A,B, p,Z, {r8}8∈[#],TV), a
collection of public keys pk9 = (W9 , {y9, 9 ′} 9 ′≠9) for each 9 ∈ (, a ciphertext ct = (cT1, cT2, 23), and a

secret key sk8 = y8,8 ∈ Z<@ for an index 8 , the decryption algorithm computes

I = 23 + cT2r8 − cT1
©­«
y8,8 +

∑
9∈(\{8 }

y9,8
ª®¬
∈ Z@,

and outputs ⌊I⌉ where ⌊I⌉ outputs 0 if −@/4 ≤ I < @/4 and 1 otherwise.

17

Theorem 3.3 (Verifiable Keys). Suppose @ is prime, = ≥ _, < ≥ 2= log@, B0 ≥ (<# + :) log(=#), B1 ≥
(<# + :)

√
<B0 log(=#), and V ≥

√
<B1. Then, Construction 3.2 has verifiable keys.

Proof. Let _, # ∈ N and take any index 8 ∈ [#]. Let pp = (A,B, p,Z, {r8}8∈[#],TV) ← Setup(1_, 1#), and
sample (pk8 , sk8) ← KeyGen(pp, 8). Then, we can write

pk8 =
(
W8 , {y8, 9 } 9≠8

)
and sk8 = y8,8 .

We now show that IsValid(pp, 8, pk8) = 1 with overwhelming probability:

• Since B0 ≥ (<#+:) log(=#), by Lemma 2.6, the distribution ofTV is statistically close to (V#,:)−1B0
(G=#).

Since< ≥ 2= log@ and @ is prime, by Lemmas 2.3 and 2.5, we have that ‖TV‖ ≤
√
<B0 with over-

whelming probability.

• Since B1 ≥ (<# + :)
√
<B0 log(=#), by Lemma 2.6, the distribution of y8,1, . . . , y8,# , d8 output by

Eq. (1.2) is statistically close to sampling from (V#,:)−1B1
(u8 ⊗ (p + Br8)). By construction of V#,: (see

Eq. (3.2)) and using Eq. (2.1), this means that for all 9 ≠ 8

0 = Ay8, 9 − Z(I: ⊗ r9)d8 = Ay8, 9 − Z(I: ⊗ r9) (d8 ⊗ 1) = Ay8, 9 − Z(d8 ⊗ I<)r9 .

By definition of KeyGen, it setsW8 = Z(d8 ⊗ I<). Correspondingly, this means that

Ay8, 9 = Z(d8 ⊗ I<)r9 = W8r9 .

• By Lemmas 2.3 and 2.5, ‖y8, 9 ‖ ≤
√
<B1 ≤ V with overwhelming probability.

Thus, IsValid(pp, 8, pk8) = 1 holds with overwhelming probability. �

Theorem 3.4 (Correctness). Suppose the modulus @ is prime, < ≥ 2= log@, B0 ≥ (<# + :) log(=#),
B1 ≥ (<# + :)

√
<B0 log(=#), V ≥

√
<B1, and @ ≥ 4

√
=<f (1 + #V +

√
=<B0). Then, Construction 3.2 satisfies

correctness.

Proof. Let pp = (A,B, p,Z, {r8}8∈[#],TV) ← Setup(1_, 1#). Take any index 8 ∈ [#], and let (pk8 , sk8) ←
KeyGen(msk, 8). Write pk8 =

(
W8 , {y8, 9 } 9≠8

)
and sk8 = y8,8 . By the same analysis as in the proof of

Theorem 3.3, we have ‖y8,8 ‖ ≤ V and Ay8,8 − Z(d8 ⊗ I<)r8 = p + Br8 . SinceW8 = Z(d8 ⊗ I<), this means that

Ay8,8 = p + Br8 +W8r8 (3.4)

Take any set (⊆ [#] and any collection of public keys {pk9 } 9∈(\{8 } where pk9 satisfies IsValid(pp, 8, pk8) = 1.

This means that for all 9 ∈ (\ {8},

Ay9,8 = W9r8 and ‖y9,8 ‖ ≤ V. (3.5)

Take any message ` ∈ {0, 1} and let ct = (cT1, cT2, 23) ← Enc(pp, {pk8}8∈(, `, (). Let s ∈ Z=@ , e ∈ Z<@ ,H ∈
{0, 1}<×<, h ∈ {0, 1}< be the components sampled by encryption. Consider the output of the decryption

algorithm Dec(pp, {(8, pk8)}8∈(, ct, (9, sk9)). First,

cT1
©­
«
y8,8 +

∑
9∈(\{8 }

y9,8
ª®
¬
= sTAy8,8 +

∑
9∈(\{8 }

sTAy9,8 + eTy8,8 +
∑

9∈(\{8 }
eTy9,8

︸ ︷︷ ︸
4̃1

.

18

Combined with Eqs. (3.4) and (3.5), this becomes

cT1
©­«
y8,8 +

∑
9∈(\{8 }

y9,8
ª®¬
= sT(p + Br8 +W8r8) +

∑
9∈(\{8 }

sTW9r8 + 4̃1 = sT(p + Br8 +W(r8) + 4̃1,

using the fact thatW(=
∑

9∈(W9 and 8 ∈ (. Next,

23 + cT2r8 = ` · ⌊@/2⌋ + sTp + sT(B +W()r8 + eTh + eTHr8︸ ︷︷ ︸
4̃2

.

Putting everything together, we have

23 + cT2r8 − cT1
©­«
y8,8 +

∑
9∈(\{8 }

y9,8
ª®¬
= ` · ⌊@/2⌋ − 4̃1 + 4̃2.

It suffices to show that |4̃1 − 4̃2 | < @/4. We show this holds with overwhelming probability:

• Since Enc samples e← �<
Z,f

, by Lemma 2.3, with overwhelming probability, ‖e‖ ≤
√
=f .

• Since ‖y9,8 ‖ ≤ V for all 9 ∈ (, it follows that |eTy9,8 | ≤
√
=<Vf . Thus,

|4̃1 | ≤
∑
9∈(
|eTy9,8 | ≤ #

√
=<Vf.

• Next, H ∈ {0, 1}<×< and h ∈ {0, 1}< so |eTh| ≤
√
=<f and ‖eTH‖ ≤

√
=<f . Since r8 ← �<

Z,B0
, by

Lemma 2.3, with overwhelming probability ‖r8 ‖ ≤
√
=B0. Then, |eTHr8 | ≤ =<2fB0. Thus,

|4̃2 | ≤ |eTh| + |eTHr8 | ≤
√
=<f (1 +

√
=<B0) .

Correctness holds as long as

@ ≥ 4|4̃1 − 4̃2 | ≥ 4
√
=<f (1 + #V +

√
=<B0). �

Theorem 3.5 (Selective Security). Let _ be a security parameter and # = # (_) be any polynomial function.

Suppose = ≥ _, < ≥ 3= log@, B0 ≥ (<# + :) log(=#) and B1 ≥ (<# + :)
√
<B0 log(=#). Then, under

the # -structured LWE assumption (Assumption 3.1) with parameters (=,<,@, f, B0, :), Construction 3.2 is

selectively-secure for up to # users.

Proof. Take any polynomial # = # (_) and any efficient adversary A for the selective security game. We

start by defining a sequence of hybrid experiments:

• Hyb
(1)
0 : This is the selective security game with challenge bit 1 ∈ {0, 1} . At the beginning of the

game, the adversary A declares the set (∗ ⊆ [#]. The challenger then samples pp← Setup(1_, 1#),
(pk8 , sk8) ← KeyGen(pp, 8) for each 8 ∈ (∗, and ct← Enc(pp, {pk8}8∈(∗, 1, (∗). The challenger gives
(pp, {pk8}8∈(∗, ct1) to the adversary A. To recall, the challenger samples the elements as follows:

– The challenger starts by sampling the components (A,TA) ← TrapGen(1=, @,<), B r← Z=×<@ ,

p
r← Z=@ , Z1, . . . ,Z:

r← Z=×<@ , and r1, . . . , r# ← �<
Z,B0

. It sets Z = [Z1 | · · · | Z:] ∈ Z=×<:
@ and

V#,: as in Eq. (3.2).

19

– Next, it samples a trapdoor TV ← SamplePre(V#,: ,
[
I# ⊗TA

0

]
,G=# , B0). The challenger sets the

public parameters to be

pp = (A,B, p,Z, {r8}8∈[#],TV).

– To generate the public key for 8 ∈ (∗, the challenger samples

+ 8 ← SamplePre(V#,: ,TV, u8 ⊗ (p + Br8), B1),

and then parses

+ 8 =



y8,1
...

y8,#
d8


∈ Z#<+:

@ , (3.6)

where y8, 9 ∈ Z<@ and d8 ∈ Z:@ . It setsW8 = Z(d8 ⊗ I<) and pk8 =
(
W8 , {y8, 9 } 9≠8

)
.

– Finally, to generate the challenge ciphertext, the challenger samples s r← Z
=
@ , e ← �<

Z,f
,

H
r← {0, 1}<×< , and h

r← {0, 1}< . It sets W(=
∑

9∈(∗W9 and constructs the challenge

ciphertext as

ct1 = (cT1, cT2, 23) =
(
sTA + eT , sT(B +W() + eTH , sTp + eTh + 1 · ⌊@/2⌋

)
.

At the end of the experiment, algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output of the

experiment.

• Hyb
(1)
1 : Same as Hyb

(1)
0 , except the challenger samples TV ← (V#,:)−1B0

(G=#).

• Hyb
(1)
2 : Same as Hyb

(1)
1 , except for all 8 ∈ (∗, the challenger samples + 8 ← (V#,:)−1B1

(u8 ⊗ (p + Br8)).

• Hyb
(1)
3 : Same as Hyb

(1)
2 , except the challenger samples A r← Z=×<@ .

• Hyb
(1)
4 : Same as Hyb

(1)
3 , except for all 8 ∈ (∗, the challenger first samples d8 ← �:

Z,B1
. Then, it sets

W8 = Z(d8 ⊗ I<). Finally, it samples

∀9 ≠ 8 : y8, 9 ← A−1B1
(W8r9) and y8,8 ← A−1B1

(p + Br8 +W8r8) .

• Hyb
(1)
5 : Same as Hyb

(1)
4 , except for all 8 ∈ (∗, the challenger samples y8,8 ← A−1B1

(W8r8).

• Hyb
(1)
6 : Same as Hyb

(1)
5 , except for all 8 ∈ (∗, the challenger samples + 8 ← (V#,:)−1B1

(0=#) and the

components y8, 9 , d8 are again derived from + 8 according to Eq. (3.6).

• Hyb
(1)
7 : Same asHyb

(1)
6 except for all 8 ∈ (∗, the challenger samples+ 8 ← SamplePre(V#,: ,TV, 0

=# , B1).

• Hyb
(1)
8 : Same as Hyb

(1)
7 , except the challenger sets B = B∗ −W(∗ , where B

∗ r← Z=×<@ .

• Hyb
(1)
9 : Same as Hyb

(1)
8 except the challenger sets B∗ = AH and p = Ah.

• Hyb
(1)
10 : Same as Hyb

(1)
9 except the challenger samples c1

r← Z
<
@ and sets cT2 = cT1H and 23 =

cT1h + 1 · ⌊@/2⌋.

20

• Hyb
(1)
11 : Same as Hyb

(1)
10 except the challenger samples B∗ r← Z=×<@ , p r← Z=@ , c2

r← Z<@ and 23
r← Z@ .

We write Hyb
(1)
8 (A) to denote the output distribution of an execution of Hyb

(1)
8 with adversary A. We

now argue that each adjacent pair of distributions are indistinguishable.

Lemma 3.6. Suppose = ≥ _,< ≥ 3= log@ and B0 ≥ (<# + :) log(=#). Then, Hyb(1)0 (A)
B≈ Hyb

(1)
1 (A).

Proof. Since< ≥ 3= log@ and B0 ≥ (<# + :) log(=#), by Lemma 2.6, the distribution of TV in Hyb
(1)
0 is

statistically indistinguishable from sampling TV ← (V#,:)−1B0
(G=#). �

Lemma 3.7. Suppose= ≥ _,< ≥ 2= log@ and B1 ≥ (<# +:)
√
<B0 log(=#). Then,Hyb(1)1 (A)

B≈ Hyb
(1)
2 (A).

Proof. Since < ≥ 2= log@ and @ is prime, by Lemmas 2.3 and 2.5, we have that ‖TV‖ ≤
√
<B0 with

overwhelming probability. Since B1 ≥ (<# + :)
√
<B0 log(=#), by Lemma 2.6, the distribution of + 8 in

Hyb
(1)
1 is statistically close to sampling from (V#,:)−1B1

(u8 ⊗ (p + Br8)). Since # = poly(_), the claim now

follows by a hybrid argument. �

Lemma 3.8. Suppose = ≥ _ and< ≥ 3= log@. Then, Hyb
(1)
2 (A)

B≈ Hyb
(1)
3 (A).

Proof. Follows immediately by Lemma 2.6. �

Lemma 3.9. Suppose = ≥ _,< ≥ 2= log@, and B1 ≥ log(<#). Then, Hyb(1)3 (A)
B≈ Hyb

(1)
4 (A).

Proof. By Lemma 2.5, for each 8 ∈ (∗, the distribution of {y8, 9 } 9∈[#] and d8 in Hyb
(1)
3 is statistically close to

the distribution

d8 ← �:
Z,B1

and ∀9 ≠ 8 : y8, 9 ← A−1B1
(Z(I: ⊗ r9)d8) and y8,8 ← A−1B1

(p + Br8 + Z(I: ⊗ r8)d8).

In Hyb
(1)
3 , the challenger then setsW8 = Z(d8 ⊗ I<). In this case, by Eq. (2.1),

Z(I: ⊗ r9)d8 = Z(I: ⊗ r9) (d8 ⊗ 1) = Z(d8 ⊗ I<)r9 = W8r9 .

The challenger’s sampling procedure in Hyb
(1)
3 is thus equivalent to first sampling d8 ← �:

Z,B1
, then setting

W8 = Z(d8 ⊗ I<), and finally sampling

∀9 ≠ 8 : y8, 9 ← A−1B1
(W8r9) and y8,8 ← A−1B1

(p + Br8 +W8r8).

This is the sampling procedure in Hyb
(1)
4 . Since # = poly(_), the claim now follows by a hybrid argument

over each 8 ∈ (∗. �

Lemma 3.10. The distributions Hyb
(1)
4 (A) and Hyb

(1)
5 (A) are identically distributed.

Proof. The adversary’s view in the two experiments is independent of y8,8 for all 8 ∈ (∗, so these two

distributions are identical. �

Lemma 3.11. Suppose = ≥ _ and< ≥ 2= log@, and B1 ≥ log(<#). Then, Hyb(1)5 (A)
B≈ Hyb

(1)
6 (A).

21

Proof. This follows by a similar argument as in the proof of Lemma 3.9. Specifically, by Lemma 2.5, the

distribution of {y8, 9 } 9∈[#] and d8 in Hyb
(1)
6 is statistically close to the distribution

d8 ← �:
Z,B1

and ∀9 ∈ [#] : y8, 9 ← A−1B1
(Z(I: ⊗ r9)d8).

Then, the challenger setsW8 = Z(d8 ⊗ I<). As in the proof of Lemma 3.9, we can writeW8r9 = Z(I: ⊗ r9)d8 .
Thus, the challenger is sampling y8, 9 ← A−1B1

(W8r9) for all 9 ∈ [#]. This is the distribution in Hyb
(1)
5 . �

Lemma 3.12. Suppose = ≥ _, < ≥ 2= log@ and B1 ≥ (<# + :)
√
<B0 log(=#). Then, Hyb

(1)
6 (A)

B≈
Hyb

(1)
7 (A).

Proof. Follows by the same argument as in the proof of Lemma 3.7. �

Lemma 3.13. The distributions Hyb
(1)
7 (A) and Hyb

(1)
8 (A) are identically distributed.

Proof. In Hyb
(1)
7 and Hyb

(1)
8 , none of the + 8 depend on B. As such, the distribution of B is uniform and

independent ofW(∗ in both experiments. As such, these two distributions are identical. �

Lemma 3.14. Suppose = ≥ _,< ≥ 2= log@ and @ > 2 is prime. Then, Hyb
(1)
8 (A)

B≈ Hyb
(1)
9 (A).

Proof. By Lemma 2.1, for all e ∈ Z<@ , the following two distributions are statistically indistinguishable:



(A,AH,Ah, eTH, eTh) :

A
r← Z=×<@

H
r← {0, 1}<×<

h
r← {0, 1}<




and



(A,B∗, p, eTH, eTh) :

A
r← Z=×<@ ,

B∗ r← Z=×<@ , p
r← Z=@

H
r← {0, 1}<×<, h r← {0, 1}<



.

The left distribution corresponds to Hyb
(1)
9 while the right distribution corresponds to Hyb

(1)
8 . �

Lemma 3.15. Suppose the # -structured LWE (Assumption 3.1) holds with parameters (=,<,@, f, B0, :). Then,
Hyb

(1)
9 (A)

2≈ Hyb
(1)
10 (A).

Proof. Suppose there exists a bit 1 ∈ {0, 1} and an efficient adversary A that can distinguish between

Hyb
(1)
9 and Hyb

(1)
10 with non-negligible advantage Y > 0. We use algorithm A to construct an algorithm B

that breaks the # -structured LWE assumption with parameters (=,<,@, f, B0, :):

1. At the start of the game, algorithmB receives an # -structured LWE challenge (A, cT1,Z,R, TV) from its

challenger. LetV#,: be the matrix from Eq. (3.2) formed from the components Z and R = [r1 | · · · | r#].

2. Algorithm B samples H r← {0, 1}<×< and h
r← {0, 1}< , then sets B∗ = AH, p = Ah, cT2 = cT1H and

23 = cT1h + 1 · ⌊@/2⌋.

3. Algorithm B starts running A and receives a challenge set (∗ ⊆ [#] from algorithm A. For all

8 ∈ (∗, algorithm B samples + 8 ← SamplePre(V#,: ,TV, 0
=# , B1) and sets W8 = Z(d ⊗ I<), where y8, 9

and d8 are derived from + 8 according to Eq. (3.6).

4. Algorithm B sets B = B∗ −W(∗ , pp = (A,B, p,Z, {r8}8∈[#],TV), and pk8 = (W8 , {y8, 9 } 9≠8) for each
8 ∈ (∗. It sets ct1 = (cT1, cT2, 23). It gives (pp, {pk8}8∈(∗, ct1) to A and outputs whatever algorithm A
outputs.

We first show that B correctly simulates an execution of Hyb
(1)
9 and Hyb

(1)
10 for A.

22

• The # -structured LWE challenger samples A r← Z=×<@ , Z r← Z=×<:
@ , and R ← �<×ℓ

Z,B0
. Moreover,

the challenger samples TV ← (V#,:)−1B0
(G=#), which coincides with the distribution of the public

parameters in Hyb
(1)
9 and Hyb

(1)
10 . Next, algorithm B sets B = AH and p = Ah, so we conclude that

the public parameters pp are perfectly simulated.

• Next, algorithm B samples + 8 using the same procedure as in Hyb
(1)
9 and Hyb

(1)
10 , so the public keys

are perfectly simulated.

• Consider the distribution of the challenge ciphertext:

– If cT1 = sTA + eT where s r← Z=@ and e← �<
Z,f

, then

cT2 = cT1H = sTAH + eTH = sTB∗ + eTH = sT(B +W(∗) + eTH
23 = cT1h + 1 · ⌊@/2⌋ = sTAh + eTp + 1 · ⌊@/2⌋ = sTp + eTh + 1 · ⌊@/2⌋ ,

which is the distribution of the challenge ciphertext in Hyb
(1)
9 .

– Conversely, if c1
r← Z<@ . Then, algorithm B perfectly simulates an execution of Hyb

(1)
10 .

We conclude that algorithm B breaks the # -structured LWE problem with the same advantage Y. �

Lemma 3.16. If = ≥ _,< ≥ 2(= + 1) log@, and @ > 2 is a prime, then Hyb
(1)
10 (A)

B≈ Hyb
(1)
11 (A)

Proof. This follows from Lemma 2.1 applied to the matrix
[
A
cT1

]
∈ Z(=+1)×<@ . �

Lemma 3.17. The experiments Hyb
(0)
10 (A) and Hyb

(1)
11 (A) are identically distributed.

Proof. By construction, the challenger’s behavior in Hyb
(1)
11 is independent of the challenge bit 1 ∈ {0, 1}, so

the adversary’s view in the two distributions is identical. �

Combining Lemmas 3.6 to 3.17, selective security follows by a hybrid argument. �

Parameter instantiation. Let _ be a security parameter and # be a bound on the number of users. We

can instantiate the lattice parameters in Construction 3.2 to satisfy Theorems 3.3 to 3.5:

• We set the lattice dimension = = _ and< = $ (= log@).

• We set the noise parameter f = poly(=) (such that the LWE assumption with parameters (=,<,@, f)
holds). We set the dimension to be : = $ (=< log@).

• We set B0 = (<# + :) log(=#) and B1 = (<# + :)
√
<B0 log(=#) = (<# + :)2

√
< log2(=#).

• Finally, we set the norm bound V =
√
<B1 = (<# + :)2< log2(=#) and the modulus @ such that

@ ≥ 4
√
=<f (1 + #V +

√
=<B0) = # 3 · poly(_, log#) .

In this case, log@ = $ (log# + log _).

With this setting of parameters, we obtain a distributed broadcast encryption scheme with the following

parameter sizes. Without loss of generality, we assume that # ≥ _.

23

• Public parameter size: The public parameters pp have size |pp| = # 2 · poly(_, log#).

• Public key size: Each user’s public key pk consists of a matrixW ∈ Z=×<@ and # − 1 cross-terms

y9 ∈ Z<@ , so |pk| ≤ (= + #)< log@ = $ (#_ log2 #).

• Secret key size: The secret key for user 8 ∈ [#] consists of a vector y8 ∈ Z<@ , so |sk8 | = $ (< log@) =
$ (_ log2 #).

• Ciphertext size: The ciphertext for any set (⊆ [#] and message ` ∈ {0, 1} consists of of 2< + 1
elements of Z@ , so |ct| = $ (_ log2 #).

Combined with the reduction from ℓ-structured LWE to ℓ ′-succinct LWE (for ℓ ′ ≥ ℓ · $ (= log@)) from
Section 4 (Theorem 4.1), we obtain the following corollary:

Corollary 3.18 (Distributed Broadcast Encryption from ℓ-succinct LWE). Let _ be a security parameter

and # = # (_) be any polynomial. Let ℓ ≥ # · $ (_ log#). Under the ℓ-succinct LWE assumption for

ℓ = # · $ (_ log#) (and a polynomial modulus-to-noise ratio), there exists a selectively-secure distributed

broadcast encryption scheme. Both the size of the ciphertext and a user’s secret key is$ (_ log2 #), the size of a
user’s public key is $ (#_ log2 #), and the size of the public parameters is # 2 · poly(_, log#).

Remark 3.19 (Precomputing Encryption and Decryption Keys). Similar to the pairing-based constructions

of distributed broadcast encryption [KMW23, GLWW23, GKPW24], we can improve the efficiency of the

encryption and decryption algorithms when the broadcast set (is known in advance. Specifically, we

can view the matrix W(=
∑

8∈(W8 as the public key for encrypting to the set (; given W(, encrypting

a message to the set (just requires time poly(_, log#). Similarly, if user 9 knows the broadcast set (in

advance, she can pre-compute her decryption component y9,(≔
∑

8∈(\{ 9 } y8, 9 . Given y9,(, decryption now

runs in time poly(_, log#). Precomputation is useful in settings where users frequently send or receive

broadcasts to the same set (.

4 Relating ℓ-Structured LWE and ℓ-Succinct LWE

In this section, we formally show that the ℓ-structured LWE assumption (Assumption 3.1) used in Section 3.1

follows under the ℓ ′-succinct LWE assumption (Assumption 2.7) when ℓ ′ ≥ ℓ ·$ (= log@), where = is the

lattice dimension and @ is the modulus. Essentially, our proof shows how to build a trapdoor for the

ℓ-structured LWE assumption using a trapdoor for the ℓ ′-succinct LWE assumption. We refer to Section 1.1

for a high-level overview of our proof strategy.

Theorem 4.1 (ℓ ′-succinct LWE implies ℓ-structured LWE). Let _ be a security parameter and = = =(_),< =

<(_), @ = @(_), f = f (_) be lattice parameters. Let B = B (_), B′ = B′(_) be Gaussian width parameters, and

ℓ = ℓ (_), : = : (_) be polynomially-bounded dimensions. Suppose @ is prime and the following conditions hold:

• = ≥ _,< ≥ 2= log@, : ≥ 3=< log@, @ ≤ 2= ;

• B′ ≥ log<, B ≥ max
{
<3/2(ℓ ′ + 1)B′ log(=ℓ ′), : log(=<)

}
.

Let ℓ ′ = ℓ=(⌊log@⌋ + 1). Then, the ℓ ′-succinct LWE assumption with parameters (=,<,@, f, B′) implies the

ℓ-structured LWE with parameters (=,<,@, f, B, :).

24

Proof. We show how to transform the components in an ℓ ′-succinct LWE instance into those of an ℓ-

structured LWE instance. Specifically, consider the components (A,U,T′) in an ℓ ′-succinct LWE instance

with parameters (=,<,@, f, B′):

A
r← Z=×<@ and U

r← Z=ℓ ′×<@ and T′ ← [Iℓ ′ ⊗ A | U]−1B′ (G=ℓ ′), (4.1)

We show how to use these components to construct a tuple (A,Z,R,T) distributed according to the

specification of an ℓ-structured LWE instance with parameters (=,<,@, f, B, :):

A
r← Z=×<@ and Z

r← Z=×<:
@ and R← �<×ℓ

Z,B and T← (Vℓ,:)−1B (G=ℓ), (4.2)

where Vℓ,: is the matrix from Eq. (3.1). We construct a reduction algorithm R as follows:

1. On input (A,U,T′), parse

U =


U1

...

Uℓ ′


∈ Z=ℓ×<@ , (4.3)

where U8 ∈ Z=×<@ . Next, write the gadget matrix G=ℓ as

G=ℓ =


v1,1 · · · v1,ℓ ′
...

. . .
...

vℓ,1 · · · vℓ,ℓ ′


∈ Z=ℓ×ℓ ′@ , (4.4)

where v8, 9 ∈ Z=@ for all 8 ∈ [ℓ] and 9 ∈ [ℓ ′]. For each 8 ∈ [ℓ], define

v̂8 ≔


v8,1
...

v8,ℓ ′


∈ Z=ℓ ′@ .

Then, for each 8 ∈ [ℓ], sample



x8,1
...

x8,ℓ ′

r8


← SamplePre

(
[Iℓ ′ ⊗ A | U],T′, v̂8 , B

)
∈ Z<ℓ ′+<

@ , (4.5)

where x8, 9 , r8 ∈ Z<@ .

2. Next, sample (Z′,TZ′) ← TrapGen(1=<, @, :) and

d9 ← SamplePre(Z′,TZ′, vec(−U9), B) ∈ Z:@ (4.6)

for each 9 ∈ [ℓ ′]. Here, vec(−U8) ∈ Z=<@ denotes the vectorization of −U8 (i.e., the vector obtained by

vertically stacking the columns of −U8 from left to right).

25

3. For each 8 ∈ [:], let Z8 ∈ Z=×<@ be the matrix where vec(Z8) = z′8 and z
′
8 ∈ Z=<@ is the 8th column of Z′.

Let Z = [Z1 | · · · | Z:] ∈ Z=×<:
@ and R = [r1 | · · · | rℓ] ∈ Z<×ℓ@ . Finally, let

Vℓ,: =


A −Z(I: ⊗ r1)

. . .
...

A −Z(I: ⊗ rℓ)


∈ Z=ℓ×(<ℓ+:)

@ and T =



x1,1 · · · x1,ℓ ′
...

. . .
...

xℓ,1 · · · xℓ,ℓ ′

d1 · · · dℓ ′


∈ Z(<ℓ+:)×ℓ ′

@ . (4.7)

Output (A,Z,R,T).

We now show that if the inputs (A,U,T′) to the above algorithm are distributed according to Eq. (4.1),

then the outputs (A,Z,R,T) are statistically close to the distribution in Eq. (4.2). To do so, we define the

following distributions:

• Hyb0: In this experiment, the challenger first samples (A,U,T′) according to Eq. (4.1) and then

outputs (A,Z,R,T) ← R(A,U,T′). Specifically, the challenger does the following:

– SampleA r← Z=×<@ ,U r← Z=ℓ ′×<@ andT′ ← [Iℓ ′⊗A | U]−1B′ (G=ℓ ′). ParseU intoU1, . . . ,Uℓ ′ ∈ Z=×<@

according to Eq. (4.3).

– For each 8 ∈ [ℓ], sample



x8,1
...

x8,ℓ ′

r8


← SamplePre

(
[Iℓ ′ ⊗ A | U],T′, v̂8 , B

)
∈ Z<ℓ ′+<

@ .

– Sample (Z′,TZ′) ← TrapGen(1=<, @, :) and d9 ← SamplePre(Z′,TZ′, vec(−U9), B) ∈ Z:@ for

each 9 ∈ [ℓ ′].
– For each 8 ∈ [:], let Z8 ∈ Z=×<@ be the matrix where vec(Z8) = z′8 and z′8 ∈ Z=<@ is the 8th column

of Z′. Let Z = [Z1 | · · · | Z:] ∈ Z=×<:
@ and R = [r1 | · · · | rℓ] ∈ Z<×ℓ@ .

– Construct Vℓ,: and T according to Eq. (4.7) and output (A,Z,R,T).

• Hyb1: Same as Hyb0 except for each 8 ∈ [ℓ], the challenger changes how it samples x8, 9 and r8 :

– For each 8 ∈ [ℓ], sample



x8,1
...

x8,ℓ ′

r8


← [Iℓ ′ ⊗ A | U]−1B (v̂8) where v̂8 =


v8,1
...

v8,ℓ ′


∈ Z=ℓ ′@ . (4.8)

• Hyb2: Same as Hyb1 except for each 8 ∈ [ℓ], the challenger again changes how it samples x8, 9 and r8 :

– For each 8 ∈ [ℓ], sample r8 ← �<
Z,B

and for all 9 ∈ [ℓ ′], x8, 9 ← A−1B (v8, 9 − U9r8).

• Hyb3: Same as Hyb2 except the challenger changes how it samples Z′ and d9 .

26

– SampleA r← Z=×<@ ,U r← Z=ℓ ′×<@ andT′ ← [Iℓ ′⊗A | U]−1B′ (G=ℓ ′). ParseU intoU1, . . . ,Uℓ ′ ∈ Z=×<@

according to Eq. (4.3).

– For each 8 ∈ [ℓ], sample r8 ← �<
Z,B

and for all 9 ∈ [ℓ ′], x8, 9 ← A−1B (v8, 9 − U9r8).
– Sample Z′ r← Z=<×:@ and d9 ← (Z′)−1B (vec(−U9)) for each 9 ∈ [ℓ ′].
– For each 8 ∈ [:], let Z8 ∈ Z=×<@ be the matrix where vec(Z8) = z′8 and z′8 ∈ Z=<@ is the 8th column

of Z′. Let Z = [Z1 | · · · | Z:] ∈ Z=×<:
@ and R = [r1 | · · · | rℓ] ∈ Z<×ℓ@ .

– Construct Vℓ,: and T according to Eq. (4.7) and output (A,Z,R,T).

• Hyb4: Same as Hyb3, except the challenger reorders some of the sampling steps:

– Sample A
r← Z=×<@ , Z = [Z1 | · · · | Z:] r← Z=×<:

@ and set Z′ = [vec(Z1) | · · · | vec(Z:)].
Sample R = [r1 | · · · | rℓ] ← �<×ℓ

Z,B
.

– Sample U r← Z=ℓ ′×<@ . Parse U into U1, . . . ,Uℓ ′ ∈ Z=×<@ according to Eq. (4.3). Sample d9 ←
(Z′)−1B (vec(−U9)) for each 9 ∈ [ℓ ′].

– For each 8 ∈ [ℓ] and 9 ∈ [ℓ ′], sample x8, 9 ← A−1B (v8, 9 − U9r8).
– Construct Vℓ,: and T according to Eq. (4.7) and output (A,Z,R,T).

• Hyb5: Same as Hyb4, except the challenger changes how it samples d9 and U9 :

– Sample A
r← Z=×<@ , Z = [Z1 | · · · | Z:] r← Z=×<:

@ and set Z′ = [vec(Z1) | · · · | vec(Z:)].
Sample R = [r1 | · · · | rℓ] ← �<×ℓ

Z,B
.

– For each 9 ∈ [ℓ ′], sample d9 ← �:
Z,B
, and setU9 ∈ Z=×<@ to be the matrix where vec(−U9) = Z′d9 .

– For each 8 ∈ [ℓ] and 9 ∈ [ℓ ′], sample x8, 9 ← A−1B (v8, 9 − U9r8).
– Construct Vℓ,: and T according to Eq. (4.7) and output (A,Z,R,T).

• Hyb6: In this experiment, the challenger changes how it samples T.

– Sample A r← Z=×<@ , Z = [Z1 | · · · | Z:] r← Z=×<:
@ and R = [r1 | · · · | rℓ] ← �<×ℓ

Z,B
.

– Construct Vℓ,: according to Eq. (4.7) and sample T← (Vℓ,:)−1B (G=ℓ).
– Output (A,Z,R,T).

In this experiment, the challenger samples (A,Z,R,T) according to Eq. (4.2).

We show that the outputs of each pair of adjacent hybrids are statistically indistinguishable.

Lemma 4.2. Suppose < ≥ 2= log@, B′ ≥ log<, B ≥ <3/2(ℓ ′ + 1)B′ log(=ℓ ′), and ℓ ′ = poly(=). Then,

Hyb0
B≈ Hyb1.

Proof. Since < ≥ 2= log@, B′ ≥ log<, and ℓ ′ = $ (= log@) = poly(_), we can appeal to Lemmas 2.3

and 2.5 together with a union bound to conclude that with probability 1 − negl(_), ‖T′‖ ≤
√
<B′. Next, if

B ≥ <3/2(ℓ ′ + 1)B′ log(=ℓ ′) > <(ℓ ′ + 1) ‖T′‖ log(=ℓ ′), then the claim follows by Lemma 2.6. �

Lemma 4.3. If< ≥ 2= log@, @ is prime, and B ≥ log(<ℓ ′), then Hyb1
B≈ Hyb2.

Proof. Follows immediately by Lemma 2.5. �

27

Lemma 4.4. If : ≥ 3=< log@ and B ≥ : log(=<), then Hyb2
B≈ Hyb3.

Proof. Since : ≥ 3=< log@, the distribution of Z′ in Hyb2 is negl(_)-close to uniform (over Z=<×:@) by

Lemma 2.6, which is the distribution of Z′ in Hyb3. Moreover, since B ≥ : log(=<), by Lemma 2.6, the

distribution of d9 in Eq. (4.6) is statistically close to sampling d9 ← (Z′)−1B (vec(−U9)). �

Lemma 4.5. Hyb3 and Hyb4 are identically distributed.

Proof. In both experiments, the distribution of Z is uniform over Z=×<:
@ and Z′ = [vec(Z1) | · · · | vec(Z:)].

Similarly, in both experiments, the distribution of R is �<×ℓ
Z,B

. All other quantities are sampled identically in

the two experiments, just in a different order. �

Lemma 4.6. If : ≥ 2=< log@, @ is prime, and B ≥ log: , then Hyb4
B≈ Hyb5.

Proof. The only difference between Hyb4 and Hyb5 is the distribution of U9 and d9 for each 9 ∈ [ℓ ′].
This follows by Lemma 2.4. Namely, for every 9 ∈ [ℓ ′], the following distributions are statistically

indistinguishable:

• Sample Z′ r← Z=<×:@ , w9
r← Z=<@ , and d9 ← (Z′)−1B (w9), and output (Z′, d9 ,w9).

• Sample Z′ r← Z=<×:@ , d9 ← �:
Z,B
, and w9 = Z′d9 . Output (Z′, d9 ,w9).

Setting U9 ∈ Z=×<@ to be the matrix where vec(−U9) = w9 , the first distribution corresponds to Hyb4 while

the second corresponds to Hyb5. Since ℓ
′
= poly(=), the claim follows by a hybrid argument. �

Lemma 4.7. If< ≥ 2= log@, @ is prime, and B ≥ log(<ℓ), then Hyb5
B≈ Hyb6.

Proof. In Hyb5, the challenger sets U9 such that vec(−U9) = Z′d9 and then samples x8, 9 ← A−1B (v8, 9 −U9r8)
for each 8 ∈ [ℓ] and 9 ∈ [ℓ ′]. Since< ≥ 2= log@, and A is sampled uniformly from Z=×<@ , the columns

of A generate Z=@ by Corollary 2.2 with overwhelming probability. Thus, Ax8, 9 = v8, 9 − U9r8 . Next,

Z′ = [vec(Z1) | · · · | vec(Z:)], so

Z(d9 ⊗ I<) = [Z1 | · · · | Z:] (d9 ⊗ I<) = −U9 . (4.9)

By Eq. (2.1), for all 8 ∈ [ℓ] and 9 ∈ [ℓ ′], we can write

Z(I: ⊗ r8)d9 = Z(I: ⊗ r8) (d9 ⊗ 1) = Z(d9 ⊗ I<)r8 = −U9r8 .

In particular, this means that for all 8 ∈ [ℓ] and 9 ∈ [ℓ ′],

Ax8, 9 − Z(I: ⊗ r8)d9 = v8, 9 − U9r8 + U9r8 = v8, 9 . (4.10)

We now claim that T is a gadget trapdoor for Vℓ,: . From Eqs. (4.4), (4.7) and (4.10),

Vℓ,:T =


A −Z(I: ⊗ r1)

. . .
...

A −Z(I: ⊗ rℓ)


·



x1,1 · · · x1,ℓ ′
...

. . .
...

xℓ,1 · · · xℓ,ℓ ′

d1 · · · dℓ ′


=


v1,1 · · · v1,ℓ ′
...

. . .
...

vℓ,1 · · · vℓ,ℓ ′


= G=ℓ .

Since the challenger in Hyb5 samples d9 ← �:
Z,B

and x8, 9 ← A−1B (v8, 9 + Z(I: ⊗ r8)d9) for all 8 ∈ [ℓ] and
9 ∈ [ℓ ′], by Lemma 2.5, the distribution of T is statistically close to T ← (Vℓ,:)−1B (G=ℓ). This is the

distribution in Hyb6. �

28

Theorem 4.1 now follows by combining Lemmas 4.3 to 4.7. Specifically, the reduction algorithm R shows

how to efficiently simulate the components of the ℓ-structured LWE assumption using the components

from the ℓ ′-succinct LWE assumption. �

SIS variants. Our proof for Theorem 4.1 shows how to use a trapdoor for the ℓ ′-succinct LWE assumption

to construct a trapdoor for the ℓ-structured LWE assumption. The same transformation would apply to

show a similar reduction between the ℓ ′-succinct SIS assumption and the ℓ-structured SIS assumption. We

can also construct an analogous reduction algorithm that transforms an instance of the ℓ ′-structured LWE

assumption into an instance of the ℓ-succinct LWE assumption. Thus, up to a $ (= log@) increase in the

dimension (and polynomial blow-up in the noise parameters), these assumptions are essentially equivalent.

Acknowledgments

We thank Hoeteck Wee for many insightful discussions on distributed broadcast encryption and the ℓ-

succinct LWE assumption. We thank Brent Waters and the anonymous TCC reviewers for providing many

helpful comments on the presentation. David J. Wu is supported by NSF CNS-2140975, CNS-2318701, a

Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model.

In EUROCRYPT, 2010.

[ACL+22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krishnan

Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively

composable - (extended abstract). In CRYPTO, 2022.

[AFLN24] Martin R. Albrecht, Giacomo Fenzi, Oleksandra Lapiha, and Ngoc Khanh Nguyen. SLAP:

succinct lattice-based polynomial commitments from standard assumptions. In EUROCRYPT,

2024.

[AGHS13] Shweta Agrawal, Craig Gentry, Shai Halevi, and Amit Sahai. Discrete gaussian leftover hash

lemma over infinite domains. In ASIACRYPT, 2013.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC,

1996.

[Alb24] Martin R. Albrecht. SIS with hints zoo, 2024.

[AR16] Divesh Aggarwal and Oded Regev. A note on discrete gaussian combinations of lattice vectors.

Chic. J. Theor. Comput. Sci., 2016, 2016.

[AT24] Nuttapong Attrapadung and Junichi Tomida. A modular approach to registered abe for

unbounded predicates. In CRYPTO, 2024.

[BCFL23] David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Chainable functional

commitments for unbounded-depth circuits. In TCC, 2023.

29

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod

Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption,

arithmetic circuit ABE and compact garbled circuits. In EUROCRYPT, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,

and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with

short ciphertexts and private keys. In CRYPTO, 2005.

[BLM+24] Pedro Branco, Russell W. F. Lai, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Ivy

K. Y. Woo. Traitor tracing without trusted authority from registered functional encryption.

IACR Cryptol. ePrint Arch., 2024.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homo-

morphic prfs and their applications. In CRYPTO, 2013.

[BV22] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-inspired broadcast encryption and

succinct ciphertext-policy ABE. In ITCS, 2022.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more

from indistinguishability obfuscation. In CRYPTO, 2014.

[CES21] Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing registration based encryption.

In Cryptography and Coding, 2021.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate

a lattice basis. In EUROCRYPT, 2010.

[CLM23] Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. Lattice-based succinct arguments from

vanishing polynomials - (extended abstract). In CRYPTO, 2023.

[DKL+23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and

Ahmadreza Rahimi. Efficient laconic cryptography from learning with errors. In EUROCRYPT,

2023.

[DKW21] Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority ABE for

dnfs from LWE. In EUROCRYPT, 2021.

[DPY23] Pratish Datta, Tapas Pal, and Shota Yamada. Registered FE beyond predicates:(attribute-based)

linear functions and more. Cryptology ePrint Archive, 2023.

[FFM+23] Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and

Daniele Venturi. Registered (inner-product) functional encryption. In ASIACRYPT, 2023.

[FKdP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments: Registration-

based encryption and key-value map commitments for large spaces. In ASIACRYPT, 2023.

[FMN23] Giacomo Fenzi, Hossein Moghaddas, and Ngoc Khanh Nguyen. Lattice-based polynomial

commitments: Towards asymptotic and concrete efficiency. IACR Cryptol. ePrint Arch., 2023.

30

[FN93] Amos Fiat and Moni Naor. Broadcast encryption. In CRYPTO, 1993.

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Regis-

tered ABE, flexible broadcast, and more. In CRYPTO, 2023.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.

Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,

2013.

[GHM+19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi

Sekar. Registration-based encryption from standard assumptions. In PKC, 2019.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi.

Registration-based encryption: Removing private-key generator from IBE. In TCC, 2018.

[GKMR23] Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient

registration-based encryption. In ACM CCS, 2023.

[GKPW24] Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and Mingyuan Wang. Threshold

encryption with silent setup. In CRYPTO, 2024.

[GKW18] Romain Gay, Lucas Kowalczyk, and Hoeteck Wee. Tight adaptively secure broadcast encryp-

tion with short ciphertexts and keys. In SCN, 2018.

[GLWW23] Rachit Garg, George Lu, BrentWaters, andDavid J.Wu. Realizing flexible broadcast encryption:

How to broadcast to a public-key directory. In ACM CCS, 2023.

[GLWW24] Rachit Garg, George Lu, Brent Waters, and David J. Wu. Reducing the CRS size in registered

ABE systems. In CRYPTO, 2024.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new

cryptographic constructions. In STOC, 2008.

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In

CRYPTO, 2020.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for

circuits. In STOC, 2013.

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with

short ciphertexts). In EUROCRYPT, 2009.

[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of unbounded

depth from lattices. In FOCS, 2023.

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-based

encryption. In EUROCRYPT, 2023.

[KMW23] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed broadcast encryption

from bilinear groups. In ASIACRYPT, 2023.

31

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.

In EUROCRYPT, 2012.

[PPS12] Duong Hieu Phan, David Pointcheval, and Mario Strefler. Decentralized dynamic broadcast

encryption. In SCN, 2012.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In

STOC, 2005.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In CRYPTO, 2022.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-io

from evasive LWE. In ASIACRYPT, 2022.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions.

In EUROCRYPT, 2022.

[Wee24] Hoeteck Wee. Circuit ABE with poly(depth, _)-sized ciphertexts and keys from lattices. In

CRYPTO, 2024.

[WQZDF10] Qianhong Wu, Bo Qin, Lei Zhang, and Josep Domingo-Ferrer. Ad hoc broadcast encryption.

In ACM CCS, 2010.

[WW23a] Hoeteck Wee and David J. Wu. Lattice-based functional commitments: Fast verification and

cryptanalysis. In ASIACRYPT, 2023.

[WW23b] Hoeteck Wee and David J. Wu. Succinct vector, polynomial, and functional commitments

from lattices. In EUROCRYPT, 2023.

[WWW22] Brent Waters, Hoeteck Wee, and David J. Wu. Multi-authority ABE from lattices without

random oracles. In TCC, 2022.

[ZZGQ23] Ziqi Zhu, Kai Zhang, Junqing Gong, andHaifeng Qian. Registered ABE via predicate encodings.

In ASIACRYPT, 2023.

32

