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Abstract

Recent constructions of vector commitments and non-interactive zero-knowledge (NIZK) proofs from LWE
implicitly solve the following shifted multi-preimage sampling problem: given matrices Aj,...,A; € ZZX’" and

targets tq,...,t, € Z, sample a shift ¢ € ZZ and short preimages my,...,mp € Zg‘ such that A;zr; = t; + ¢ for all
i € [£]. In this work, we introduce a new technique for sampling Ay, ..., Ay together with a succinct public trapdoor
for solving the multi-preimage sampling problem with respect to Ay, ..., A. This enables the following applications:

« We provide a dual-mode instantiation of the hidden-bits model (and by correspondence, a dual-mode NIZK
proof for NP) with (1) a linear-size common reference string (CRS); (2) a transparent setup in hiding mode
(which yields statistical NIZK arguments); and (3) hardness from LWE with a polynomial modulus-to-noise
ratio. This improves upon the work of Waters (STOC 2024) which required a quadratic-size structured reference
string (in both modes) and LWE with a super-polynomial modulus-to-noise ratio.

+ We give a statistically-hiding vector commitment with transparent setup and polylogarithmic-size CRS, com-

mitments, and openings from SIS. This simultaneously improves upon the vector commitment schemes of
de Castro and Peikert (EUROCRYPT 2023) as well as Wee and Wu (EUROCRYPT 2023).

At a conceptual level, our work provides a unified view of recent lattice-based vector commitments and hidden-bits
model NIZKs through the lens of the shifted multi-preimage sampling problem.

1 Introduction

Starting from the seminal works of Ajtai [Ajt96] and of Gentry, Peikert, and Vaikuntanathan [GPV08], lattice
trapdoors have played a critical role in building advanced cryptographic primitives from lattices. These include
notions like hash-and-sign signatures [GPV08], identity-based and attribute-based encryption [GPV08, ABB10b,
ABB10a, CHKP10, GVW13, BGG" 14, GVW15a, BTVW17], homomorphic signatures [GVW 15b], functional commit-
ments [dCP23, WW23b, BCFL23, WW23a], succinct non-interactive arguments [ACL*22, CLM23], and non-interactive
zero-knowledge (NIZK) proofs [Wat24].!

Lattice trapdoors. In this work, we focus on gadget trapdoors [MP12]. In this setting, a trapdoor for a matrix
A € Zg"™ is a short matrix T where AT = G and G =1, ® g' € Z*™ is the gadget matrix, I, denotes the n-by-n
identity matrix, and g' = [20,21,..., 2llog ‘ﬂ_l]. Given a trapdoor for a matrix A along with a target vector ¢ € Z],
we can efficiently compute a short preimage 7 € Z7' satisfying A - 7 = ¢. In fact, we can even sample random short
discrete Gaussian preimages, whose distribution we denote by A™(c).

Shifted multi-preimage sampling. Recent constructions of lattice-based vector commitments [PPS21, WW23b]
and non-interactive zero-knowledge (NIZK) proofs [Wat24] implicitly considered variants of a “shifted multi-preimage
sampling problem” which is parameterized by a collection of matrices Ay, ..., Ag € Zg™™:

!Earlier constructions of lattice-based NIZKs [CCH* 19, PS19] did not require lattice trapdoors.



Shifted multi-preimage sampling: Given targets ti, ..., t, € Zg, sample a random vector ¢ & Zg along

with short discrete Gaussian preimages 7y, ..., 7y € Z(’Z" satisfying A;7m; = t; + cfor all i € [¢].

Solving this problem for arbitrary matrices Ay, ..., A, requires knowing some hint (e.g. trapdoors) related to
these matrices. The aforementioned applications also require “somewhere hardness:” namely, that the short integer
solutions (SIS) or the learning with errors (LWE) problems is hard with respect to any individual A; even given the
hint. This rules out the trivial solution of taking the hint to be trapdoors for each matrix Ay, ..., A,. As a warm-up,
observe that for £ = 1 (and A; being uniformly random), this problem is straightforward. One can sample a short
Gaussian 7y € Z[Z" and set ¢ = Ajsr; — t;. The work of [GPV08] shows that when m > O(nlog q), the distribution
of ¢ is statistically close to uniform over Zg.

For the more general version with ¢ > 1 targets, prior works [PPS21, WW23b, Wat24] required a hint of size
O(¢?), even for special cases of the problem where the target vectors ty, .. ., t; are the all-zeroes vector 0”. Among
them, only the work of Wee and Wu [WW23b] solved the problem in full generality for arbitrary target vectors. They
showed how to sample a random c together with random short discrete Gaussian preimages 71, .. ., 7, satisfying
A;7; = t; + c. In their construction, the hint corresponds to a gadget trapdoor for the matrix

A G
D, = : | = [diag(Ay, ..., Ap) | 1" ® G]. (1.1)
A, | G

The work of [WW23b] uses the gadget trapdoor to sample a random Gaussian preimage of D, for the target vector
(t1,...,tr) € Z%; namely, a vector (74,.. ., 7y, &) where

- . : - :
A A | G . t
¢ ¢ ¢ ¢

They then set ¢ = —G¢. In this case, for all i € [£], A;m; = t; — GE = t; + ¢, as required. Moreover, the ensuing
distribution of (c, 71, ..., ;) is statistically close to that given by first sampling ¢ & Zg and then m; « A7 (ti +c).

Drawbacks of prior works. There are two major drawbacks of needing to include hints for Ay, ..., A, as part
of the public parameters of the scheme:

« Trusted setup. First, sampling the hint typically requires private randomness. Existing constructions use private
randomness to sample Ay, ..., A, along with their respective trapdoors. In the aforementioned applications (to
vector commitments [PPS21, WW23b] and NIZKs [Wat24]), an adversary who knows the private randomness
is able to break security of the associated scheme. Thus, the aforementioned constructions all rely on a trusted
setup to sample the CRS.

+ Hint size. The aforementioned approaches require a hint whose size is quadratic in the dimension ¢. Here ¢ is
the input dimension (in the case of vector commitments) or the length of the hidden-bits string (in the case of
using a hidden-bits generator [FLS90, QRW19] to construct a NIZK). Thus, the existing schemes have large
public parameters.

This work: eliminating the hint. In this work, we show how to construct a shifted multi-preimage trapdoor
sampler that allows us to solve the shifted multi-preimage sampling problem with respect to a carefully-chosen set
of matrices Ay, ..., Ay without hints. In our construction, the matrices Ay, ..., A, will be correlated, but the marginal
distribution of each individual A; remains uniformly random, albeit with slightly larger dimensions: n x (m - [log £1).
Moreover, both SIS and LWE are hard with respect to any individual A;. In fact, A; is simply B — u; ® G, where
B & zmmiletl 4ng u; € {0,1}M°¢1 is the binary representation of i. Given only the matrix B, we show that we
can publicly derive a gadget trapdoor for the matrix D, in Eq. (1.1). Each entry in the public trapdoor of Dy lies in



{~1,0, 1}. Here, we rely on the machinery from [GSW13, BGG" 14, DHM*24] for homomorphic computation on matrix
encodings. Having a publicly-computable gadget trapdoor means that in our applications, the public parameters only
needs to specify the single (uniformly) random matrix B; we do not need to include the matrices Ay, ..., A; or its
trapdoor for D, (say, as needed in [WW23b]). This immediately yields improvements to existing constructions of
lattice-based vector commitments and dual-mode NIZKs which we discuss in more detail below.

Vector commitments. Recall that a vector commitment allows a user to succinctly commit to a vector x and also
succinctly open to individual components x; of the committed vector. The security properties are binding and hiding.
Binding says that an adversary should not be able to open a commitment o to two distinct values x; # x; at any index i.
Hiding says that the openings for any set of indices should not reveal anything about the values at unopened indices.

By integrating our shifted multi-preimage trapdoor sampler with the framework of [WW23b], we obtain a
statistically-hiding and computationally-binding vector commitment scheme (Corollary 6.15) from the SIS assump-
tion with a transparent (i.e., public-coin) setup. For committing to £-dimensional inputs over Zf;, the size of the
(uniformly-random) common reference string (CRS), the commitment, and the openings are all poly(A, log £). Our
construction simultaneously improves upon and inherits the properties of prior vector commitments from the
SIS assumption [PSTY13, LLNW16, PPS21, dCP23, WW23b]. Here, we focus on comparing with the most recent
schemes [dCP23, WW23b]:

(1) Like [dCP23, WW23b], our scheme is linearly homomorphic and supports stateless updates (i.e., given a
commitment o to a vector x it is possible to transform it into a commitment to x’ using only knowledge of
o and the difference x’ — x);

(2) We achieve a transparent and polylogarithmic-size CRS, matching [dCP23] and improving upon the quadratic-
size CRS in [WW23b];

(3) We achieve statistical hiding and can directly commit to vectors over Zf; (while preserving linear homomor-
phism), as achieved in [WW23b] but not in [dCP23].

We refer to Section 2.3 for further discussion and comparison of our approach with prior work.

Dual-mode NIZKs. Our second application is to (dual-mode) hidden-bits generators [FLS90, QRW19, LPWW20],
which imply dual-mode NIZKs. In a dual-mode NIZK [GOS06, GOS12], the CRS can be sampled from one of two
computationally-indistinguishable distributions: one distribution yields computational NIZK proofs while the other
yields statistical NIZK arguments. Previously, Peikert and Shiehian [PS19] showed how to construct dual-mode NIZKs
for NP from LWE by constructing a correlation-intractable hash function [CGH04, KRR17, HL18, CCRR18, CCH*19].
For many years, the correlation-intractability approach was the only way of realizing NIZKs for NP from lattices.

Very recently, Waters [Wat24] showed a new path for constructing NIZKs from lattices by constructing a hidden-
bits generator from the LWE assumption. A hidden-bits generator [FLS90, QRW19] is a cryptographic primitive that
generates a succinct commitment to a pseudorandom sequence of hidden bits (and relative to a common reference
string). Unlike the case of vector commitments, we require the commitment to statistically bind to the sequence of
hidden bits (relative to the long CRS). Since the commitments are succinct and the hidden-bits generator is statistically
binding, the number of possible hidden-bit strings that can be associated with a commitment is small.

In this work, we present a new hidden-bits generator by combining our shifted multi-preimage trapdoor sampler
with ideas and techniques from [WW23b] and [Wat24]. Our hidden-bits generator improves upon the [Wat24]
hidden-bits generator in three key aspects (Corollary 5.19):

(1) We achieve a shorter CRS whose size scales linearly with the number of hidden bits ¢. This improves upon
the quadratic dependency in [Wat24].

(2) In hiding mode, our scheme has a transparent setup (i.e., a uniform random CRS). This yields statistical (multi-
theorem) NIZK arguments with a transparent setup. The [Wat24] construction required a structured CRS in
both modes.



(3) Security relies on LWE with a polynomial modulus-to-noise ratio, improving upon the super-polynomial
modulus-to-noise ratio in [Wat24].

Waters [Wat24] implicitly constructed a hidden-bits generator starting from a shifted multi-preimage trapdoor sampler
for the special case where the ¢ target vectors are set to the all-zeroes vector (the vector ¢ corresponds to the succinct
commitment and the preimage s; corresponds to an opening for the i bit). The sampler in [Wat24] essentially
outputs random linear combinations of quantities in the CRS.

Substituting our shifted multi-preimage trapdoor sampler into the [Wat24] approach yields our improved hidden-
bits generator. In particular, Properties (1) and (2) follow immediately from the improved parameters for our shifted
multi-preimage trapdoor sampler. The binding analysis for our hidden-bits generator is the same as that in [Wat24],
whereas the hiding analysis follows the proof of statistical hiding for the vector commitment from [WW?23b]. The
latter eliminates the use of noise flooding used in [Wat24], which allows us to achieve Property (3). We refer to
Section 5 for a more detailed technical comparison of our approach with that of [Wat24].

Taken together, we obtain a dual-mode NIZK for NP from LWE via the hidden-bits model approach that achieves
all of the properties of the Peikert-Shiehian construction [PS19] based on correlation-intractable hash functions.
Our scheme has the additional appealing feature that it does not need to make non-black-box use of cryptographic
primitives or lattice-sampling algorithms. But more broadly, our results show that the hidden-bits model approach
is just as versatile for realizing NIZKs for NP from the LWE assumption as the correlation-intractability framework.

A new abstraction. Ata conceptual level, our work provides a unified and more modular view of recent lattice-based
vector commitments [PPS21, WW23b] and dual-mode NIZKs [Wat24] through the lens of the shifted multi-preimage
sampling problem. By focusing on and giving an improved construction of this key cryptographic object (the shifted
multi-preimage trapdoor sampler), we immediately obtain improvements to both vector commitments and dual-mode
NIZKs. We believe that the notion of shifted multi-preimage sampling, as well as our new techniques for solving
this preimage sampling problem, will find additional applications to other lattice-based primitives in the future.

2 Technical Overview

The main technical building block in this work is a shifted multi-preimage trapdoor sampler for solving the shifted
multi-preimage sampling problem. Namely, starting from a seed (i.e., a random matrix) B &~ 27" wheret = [log £]-m,
we construct a structured matrix of the form in Eq. (1.1):

A G
D{; = = [diag(Al,...,Ag) | 1[®G].
A | G

The description of D; is extremely simple: let u; € {0, 1}[1°8¢1 be the binary representation of i, and set
Ai=B-u;®Gez (2.1)

Moreover, D, has the following remarkable property: given only the seed B, we can derive a gadget trapdoor for
D, where the entries of the trapdoor are in the set {—1, 0, 1}. Before we describe how to construct the trapdoor, we
describe three properties of D, that are useful for our applications:

« Shifted multi-preimage sampling: Given Dy, its trapdoor, and target vectors ty, ..., t, € Zg, we can sample
a uniform randomly ¢ < Z;’ together with short vectors x; € Z’qn such that A;7r; =t; +c € ZZ foralli e [£].

« Hardness: For all i € [¢], both SIS and LWE are hard with respect to any A; even given D, and its trapdoor.

« Preimage distribution: We require that the joint distribution of (7;,..., 7y, ¢) sampled using D, and its
trapdoor to be statistically close to sampling ¢ < Zg and 7; — A;'(t; + ). In other words, the distribution of
each sr; should be statistically close to a random discrete Gaussian 7; conditioned on A;7r; = t; + c.



In the applications to vector commitments (resp., hidden-bits generators), the first property will be used to sample
the commitment and the openings, the second will be used to argue binding (resp., mode indistinguishability), and
the third will be use to argue hiding.

A gadget trapdoor for D,. To derive a gadget trapdoor T for D,, we rely on the machinery from [GSW13, BGG' 14,
DHM*24] for homomorphic computation on matrix encodings. We consider the specific application to the family
of indicator functions {,: {0, 1}* — {0, 1} }ueqo1y+ given by

Next, let B € Zng”’ be a matrix. Then, there is an efficient (and explicit) algorithm that takes as input u, x € {0, l}k
and outputs a short matrix Hg , x (with entries in {-1,0,1}) where

B,—-G ifu=x
B-x"®G) -Hpyx=1{_" 2.2
( ) B,u,x {Bu ifu # X, ( )

and moreover, we can efficiently compute B, € ZZX'" given just B and u.? Setting k = [log £], we have:

B-u[®G G| |[Meww 0 Heuw | rg
. —HB . _HB
B- llT ® G G N ,Up,Up - ,Up,Up G
¢ G I(Bul) G I(Bu[)
D, T

Shifted multi-preimage sampling using T. Given the trapdoor T for D, = [diag(A4, ..., A;) | 1 ® G], we can use
the [WW23b] approach to solve the shifted multi-preimage sampling problem with respect to the matrices A4, ..., A,.

Specifically, given target vectors ty,...,t, € ZZ, we use T to sample a Gaussian preimage (71, ..., 7., ¢) to the linear
system
T
Ay G ! t;
e
A | G R t
¢ & ¢
D,

By construction, for all i € [¢], we have A;7; + GC = t;, or equivalently, A;7; = t; — G¢. Defining ¢ = —G¢, we obtain
a solution (74, ..., 7y, ) to the shifted multi-preimage sampling problem.

Hardness. The second property we require is that the SIS and LWE problems are hard with respect to any A; given
D, = [diag(A4, ..., A;) | 1’ ® G] together with the trapdoor for D,. It suffices to show that given any index i € [£]
and any matrix A* € Z;”, we can simulate a seed B € Z;xr the expands into matrices Ay, ..., Ay where A; = A*.
We refer to this as a “somewhere programmability” property on our shifted multi-preimage trapdoor sampler. Recall
from Eq. (2.1) that A; = B — u] ® G. To simulate a seed B that expands to A" in position i, we can set

B:=A"+u]®G.

Under this definition, A; = B — u} ® G = A%, as required. Moreover, when A* is uniformly random (i.e., A* is an SIS or
LWE challenge), then the simulated seed is distributed identically to the real seed. This shows that given an SIS or LWE
challenge matrix A* € ZZ” , we can simulate an identically-distributed seed B that expands to A* in position i. This suf-
fices to demonstrate hardness of the SIS or LWE problems with respect to any of the matrices A; associated with a seed.

2B, is the homomorphic evaluation of &, on B.



Preimage distribution. The preimage distribution property requires that the joint distribution of (74, ..., 74, ¢)
sampled using Dy, T to be statistically close to sampling ¢ - Zg and ;; A;'(t;+c). This basic requirement follows
directly by properties of the discrete Gaussian distribution (see Lemma 3.6). For the application to statistically-hiding
vector commitments (and for proving a stronger simulation property on our dual-mode hidden-bits generator), we
rely on a stronger simulatability property that stipulates that there is an efficient algorithm that samples a seed B
together with trapdoors for the individual matrices A4, ..., A,. These trapdoors are used to efficiently simulate the
distribution s; < A;!(c). To satisfy this stronger hiding requirement, we append to the seed a random A < g
and derive D, by setting
A;:=[A|B-u;®G]

This way, we can derive gadget trapdoors for Ay, ..., A, starting from a gadget trapdoor for A. It is straightforward
to check that we can still derive a gadget trapdoor for the modified D, given just A, B, and moreover, that the
required hardness properties continue to hold. We provide the formal definition and construction details of our
shifted multi-preimage trapdoor sampler in Section 4.

2.1 Application to Vector Commitments

Our shifted multi-preimage trapdoor sampler can be directly applied to the Wee-Wu vector commitment [WW23b]
to obtain a statistically-hiding (and computationally-binding) scheme with a short transparent setup. We first recall
their construction (rephrased in the language of shifted multi-preimage sampling). In the following description, let
{ be the vector dimension.

« The common reference string contains matrices Ay, ..., A; € Z;Xt together with a hint for solving the shifted
multi-preimage sampling problem with respect to Ay,. .., As.

« The commitment to an input x € Zg is a vector ¢ € Zg and an opening to value x; € Zg atindex i € [¢] isa
short preimage s; where A;m; = x;e; + cand e; = [1,0,...,0]" is the first canonical basis vector.

In other words, a commitment ¢ and the openings (71, . .., 7r,) form a solution to the shifted multi-preimage sampling
problem with respect to matrices Ay, ..., A, and target vectors x;ey, . .., x,e;. The work of [WW23b] solve the shifted
multi-preimage sampling problem by publishing random matrices Ay, ..., Ay in the CRS together with a gadget
trapdoor for the matrix D, = [diag(A4,...,A;) | 1° ® G]. Thus, their construction requires a structured CRS whose
size scales quadratically with the input dimension ¢.

Vector commitments with short transparent setup. To obtain a vector commitment scheme with a succinct
transparent setup, we replace the structured matrix D, and its trapdoor T in the [WW23b] CRS with the seed [A | B] of
our shifted multi-preimage trapdoor sampler. This is sufficient for correctness. Security then follows by the properties
of the shifted multi-preimage trapdoor sampler:

+ Binding: The [WW23b] scheme is computationally binding if SIS is hard with respect to A; (even given D,
and T).? This is the same hardness property satisfied by our shifted multi-preimage trapdoor sampler.

+ Hiding: The [WW23b] scheme is statistically hiding if there is an alternative (and statistically indistinguishable)
way to sample Dy, T together with knowledge of a gadget trapdoor for each Ay, ..., A,. This is the simulatability
property of our shifted multi-preimage trapdoor sampler.

Taken together, we obtain a statistically-hiding vector commitment scheme with a transparent setup. Moreover,
the size of the common random string is polylogarithmic in the vector dimension (in contrast to [WW23b] which
required a structured quadratic-size CRS). We compare with other vector commitment schemes in Section 2.3 and
give the formal description in Section 6.

3Technically, binding holds if the SIS assumption holds with respect to A; without the first row, but we elide this detail in this overview.



2.2 Application to Dual-Mode NIZKs for NP

The second application of our shifted multi-preimage trapdoor sampler is to dual-mode hidden-bits generators, which
in turn, implies a dual-mode NIZK for NP. We start with a more modular view of the dual-mode hidden-bits generator
by Waters [Wat24] in the language of the shifted multi-preimage sampling and then show how our shifted multi-
preimage trapdoor sampler can simultaneously reduce the CRS size (from quadratic to linear), achieve transparent
setup in hiding mode, and only rely on LWE with a polynomial modulus-to-noise ratio. Thus, we simultaneously
improve on functionality and security.

Hidden-bits generators. At a high level, a hidden-bits generator [FLS90, QRW19] is a cryptographic primitive that
generates a pseudorandom sequence of hidden bits from a short seed. Moreover, the user can provide local openings
to any subset of the bits (with respect to a commitment of the seed). The unopened bits should remain pseudorandom.
While both vector commitments and hidden-bits generators have the flavor of committing to a long input with a
short commitment, there is a key distinction between the two notions:

« In a vector commitment, the user can choose any string of bits r € {0, 1}¢ and derive a succinct commitment to
r. The scheme is computationally binding (i.e., it is hard for an adversary to open a commitment to two distinct
values at any single index).

« In a hidden-bits generator, the user samples a succinct commitment o. The commitment together with a long
CRS determines an associated hidden-bits string r € {0, 1}¢. In this setting, the binding property is statistical;
each commitment can only be opened to at most one bit-string r with respect to the CRS. Since the commitment
is succinct, the number of potential bit-strings r € {0, 1}¢ that has an associated commitment ¢ is small.

More formally, a hidden-bits generator consists of three main algorithms:

« The Setup(1%, 1) algorithm takes the security parameter A and the output length £ and outputs a common
reference string crs.

« The GenBits(crs) algorithm takes the common reference string and outputs a short commitment o, a bit-string
r € {0,1}¢, and openings 71,. .., 7.

« The Verify(crs, o, i, r;, 1;) algorithm takes the common reference string crs, the commitment o, an index i € [£],
abit r; € {0, 1}, and a proof ; and decides whether to accept or reject.

The security requirements are (1) binding which says that the adversary should not be able to open a commitment o to
both a 0 and a 1 at any index i; and (2) hiding, which says that given the commitment o, the bits r; together with their
openings ; for all i € S, the unopened bits r; for i ¢ S should be pseudorandom. In conjunction with information-
theoretic NIZKs for NP in the hidden-bits model [FLS90], a hidden-bits generator gives a NIZK for NP [QRW19].

In a dual-mode hidden-bits generator [LPWW20], we impose an additional property where the crs output by Setup
is in one of two computationally indistinguishable modes. In binding mode, the hidden-bits generator should be statis-
tically binding while in hiding mode, the hidden-bits generator should be statistically hiding. Dual-mode hidden-bits
generators imply dual-mode NIZKs for NP (i.e., NIZKs where the CRS can be sampled in one of two computationally-
indistinguishable modes, with one mode yielding computational NIZK proofs and the other yielding statistical NIZK
arguments). Recently, Waters [Wat24] constructed the first dual-mode hidden-bits generator from LWE.

The [Wat24] hidden-bits generator. We now describe the recent dual-mode hidden-bits generator by Wa-
ters [Wat24] in the language of the shifted multi-preimage sampling problem. In the following description, let £ be
the length of the hidden-bits string.

« The common reference string consists of matrices Ay, ..., A, € Zg“ .

+ To generate a hidden-bits string, the prover invokes the shifted multi-preimage sampling procedure for
A1, ..., A, to obtain a random ¢ & ZZ together with short preimages my,..., 7, € Zg satisfying A;7; = c for
all i € [£]. In this setting, all of the target vectors ti,. .., t, in the shifted multi-preimage sampling problem
are the all-zeroes vector 0. The commitment is ¢ and an opening at index i is ;.



« The CRS also contains vectors vy,..., v, € Zf] which in conjunction with the openings, determine the hidden-
bits string: the i bit b; is given by [vizi], where we write |-] to denote the rounding operation (i.e., [x]
outputs 0 if x| < g/4 and 1if |x — q/2] < gq/4).

The distribution of v; determines whether the bit b; is binding or hiding:

« When v] = s{A; + e] is an LWE sample, then the bit b; is completely determined by the CRS component v;
and the commitment c. To see this, consider any valid opening (7;, b;) for any commitment ¢ € Z on index
i. Then, it must be the case that s; is short and A;sr; = c. Moreover,

bi = |vim;] = |vjm; —ejm;] = |(s]A; +€])m; — e[ ;] = |s]c],

where the second equality holds as long as v} s; is far from a rounding boundary (enforced by the verification re-
lation) and the fact that if sr; is small, then so is e} sr;. Thus, in this case, the commitment ¢ completely determines
the associated bit b;. Importantly, this analysis holds for any (even adversarial) choice of the commitment c.

« Whenv; & Zfl is a uniform random vector, then v; and c leaks no information about b;; in particular, the bit b; is
statistically close to uniform given the commitment c and the openings s ; for all j # i. In our work, we argue this
by relying on the hiding property of our shifted multi-preimage trapdoor sampler. Namely, when s; < A;'(c)
and v; is uniform, the distribution of v 7; € Zj is statistically close to uniform over Z; this holds by appealing to
the leftover hash lemma and the fact that the discrete Gaussian distribution has high min-entropy. Moreover, the
preimage distribution property of shifted multi-preimage trapdoor sampler also ensures that each s; is indepen-
dent of 7r; for j # i (indeed, the preimage distribution property stipulates that each ; is sampled independently
from A7!(c), independently of all other ;). The work of [Wat24] relied on a noise smudging argument to argue
hiding. We refer to Section 5 for a more detailed comparison between the two approaches for analyzing hiding.

Finally, the distribution of v; in the two modes is computationally indistinguishable under the LWE assumption. In
the context of the shifted multi-preimage trapdoor sampler, we require that LWE hold with respect to the matrix A;.

Instantiating [Wat24] with the shifted multi-preimage trapdoor sampler. The work of [Wat24] solve the
shifted multi-preimage sampling problem by publishing a collection of short preimages in the common reference string.
This leads to a structured CRS in both binding and hiding modes, and moreover, the size of the CRS scales quadratically
with the output length of the hidden-bits generator. The [Wat24] scheme also requires a super-polynomial modulus
to implement the noise smudging argument needed for hiding.

In this work, we replace the CRS with the seed for our shifted multi-preimage trapdoor sampler. This provides
an efficient way to solve the shifted multi-preimage sampling problem and thus, suffices to instantiate the general
blueprint of [Wat24]. In this case, the CRS for the hidden-bits generator consists of the seed for the sampler together
with the vectors vq,...,v, € Zf]. This yields a hidden-bits generator with a CRS that is linear in the output length.
Moreover, in statistically-hiding mode, each v; is uniformly random, and we obtain a scheme in the common random
string model (equivalently, a scheme with a transparent setup). We provide the full details in Section 5.

Dual-mode NIZKs for NP. Taken together, we obtain a dual-mode hidden-bits generator from plain LWE (Corol-
lary 5.19). In conjunction with existing compilers [FLS90, QRW19, LPWW20, Wat24], this yields a dual-mode
(multi-theorem) NIZK for NP from LWE with a polynomial modulus-to-noise ratio (Corollary 5.20). Our construction
achieves the same set of properties as the Peikert-Shiehian construction [PS19] based on correlation-intractable
hash functions. Our approach thus yields an alternative route to constructing NIZKs for NP that does not rely on
non-black-box use of cryptographic primitives or lattice sampling algorithms.

2.3 Related Work

Vector commitments. Starting from Merkle’s construction of vector commitments from any collision-resistant
hash function [Mer87], many works have studied constructions of vector commitments from algebraic assumptions
over groups with bilinear maps [LY10, KZG10, CF13, LRY16, LM19, TAB*20, GRWZ20], groups of unknown or-
der [CF13, LM19, CFG*20, AR20, TXN20], and lattice-based assumptions [PSTY13, LLNW16, PPS21, dCP23, WW23b].



Compared to schemes like Merkle [Mer87] based on collision-resistant hash functions, the advantage of the algebraic
approach we take is the support for properties like linear homomorphism (e.g., given commitments to x, x’, we can
compute a commitment to the sum x + x”) or the support for stateless updates. Moreover, the basic approach based
on collision-resistant hash functions does not satisfy hiding. It is possible to augment Merkle commitments to be
(statistically) hiding using (lossy) public-key encryption or (statistical) NIZK arguments.

Prior to this work, the state-of-the-art in lattice-based vector commitments are [dCP23, WW23b]; both works give
constructions from the SIS assumption. The work of de Castro and Peikert [dCP23] has a transparent polylogarithmic-
size CRS (similar to our scheme). However, their scheme does not natively support hiding. While their work describes
a way to achieve statistical hiding, the transformation comes at the price of relaxing binding to the weaker notion
of target binding (i.e., where an adversary cannot open an honestly-generated commitment to two different values).
Alternatively, one could compose the [dCP23] commitment scheme with a statistical NIZK argument [PS19, Wat24]
(or a lossy public-key encryption scheme [PW08, HLOV11]) to obtain a statistically-hiding scheme. This approach
would additionally bring in the LWE assumption. The advantage of our approach is we achieve statistical hiding
directly without needing additional tools. Conversely, the scheme of Wee and Wu [WW23b] is statistically hiding.
However, their scheme requires a structured CRS whose size scales quadratically with the vector dimension. Our
construction has a transparent and polylogarithmic-size CRS.

Non-interactive zero-knowledge. NIZKs have been extensively studied and we have constructions from most stan-
dard algebraic assumptions, such as factoring [FLS90], pairing-based assumptions [CHK03, GOS06], (sub-exponential)
decisional Diffie-Hellman [JJ21], learning with errors [CCH*19, PS19, Wat24], and the combination of learning parity
with noise in conjunction with multivariate quadratic equations [DJ]J24]. Among the lattice-based constructions, the
initial constructions [CCH" 19, PS19] leveraged correlation-intractable hash functions to provably instantiate the Fiat-
Shamir heuristic, while the recent work of [Wat24] use the LWE assumption to implement the classic hidden-bits model.

Concurrent work. In a concurrent and independent work, Branco et al. [BCD*25] show how to construct NIZKs
from vector trapdoor hashing. Similar to our work, they improve upon the dual-mode hidden-bits generator [Wat24]
to obtain a construction with a transparent setup in hiding mode and where security relies on LWE with a polynomial
modulus-to-noise ratio. Like [Wat24], the size of the CRS in their construction remains quadratic in the output length
¢ of the hidden-bits generator, while our construction has a linear-size CRS. The size of and time to verify the openings
in their scheme also scale linearly with £ whereas in our scheme (and in [Wat24]), the sizes of the openings scale
polylogarithmically with ¢. At a technical level, the two works take different and incomparable approaches. The work
of [BCD*25] show how to avoid lattice trapdoors altogether, whereas our approach relies on building a trapdoor for
solving the shifted multi-preimage sampling problem that has a succinct description. Our work also differs in how we
handle inputs that land within a “rounding boundary;” we provide more discussion in Remark 5.21. Finally, our shifted
multi-preimage trapdoor sampler allows us to directly show our hidden-bits generator satisfies a stronger simulation-
based notion of security (see Remark 5.3). Then, using the results from [LPWW20], we can directly argue that the
resulting NIZKs obtained via our hidden-bits generator satisfies multi-theorem statistical zero-knowledge in the
uniform random string model. In contrast, the work of [BCD*25] needs to invoke an additional [FLS90]-style compiler
based on “or-proofs.” This step requires non-black-box use of a cryptographic language (i.e., the single-theorem NIZK
is used to prove membership in a cryptographic language). Our approach avoids this step entirely.

3 Preliminaries

Throughout this work, we write A to denote the security parameter. For a positive integer n € N, we define the set
[n] := {1,...n}. For a positive integer q € N, we write Z, to denote the ring of integers modulo g. We write poly(A)
to denote a fixed polynomial in A. We write negl(1) to denote a function that is negligible in A (i.e., a function that
is 0(A7°) for all ¢ € N). We say an event occurs with overwhelming probability if the probability of its complement
occurring is negligible. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of
its input. For two ensembles of distributions D; = {Z)L ,1} reny and Dy = {Z)z, ,1} AeN indexed by a security parameter,
we say they are computationally indistinguishable if for all efficient adversaries A, there exists a negligible function



negl(-) such that for all A € N,
|Pr[ A" x) = 1:x « D] = Pr[A(1Y %) = 1: x « Dy;]| = negl(A).

We say they are statistically indistinguishable if there exists a negligible function negl(-) such that for all A € N, the
statistical distance between them is negl(1). We write D, £ D, (resp., D £ D,) if D; and D, are computationally
(resp., statistically) indistinguishable. We write D; = D, if the distributions are identical.

Vectors and matrices. Throughout, we use bold uppercase letters (e.g., A, B) to denote matrices, bold lowercase
letters (e.g., u, v) to denote vectors, and non-boldface letters to refer to their components (e.g., v = [0y, ...,0,]). For
matrices Ay, ..., Ay, we write diag(A, ..., Ay) to denote the block diagonal matrix where the blocks are the matrices
Ay, ..., A For avector v € Z", we write ||v|| to denote the fw-norm of v. When v € Zg, we write ||v|| to denote the
f-norm of the vector (over Z") obtained by first associating each component v; € Z, with its unique representative in
the set (—q/2, q/2] N Z. For a matrix A, we write ||A|| to denote the £,,-norm of the vector obtained by concatenating
together the columns of A (i.e., [|A|| = max; ; |A; ;).

Lemma 3.1 (Full Rank Matrices [GPV08, Lemma 5.1]). Let n,m,q be lattice parameters where q is prime and
m > 2nlogq. Then, all but a negl(n) fraction of matrices A € Zg™™ are full rank.

Discrete Gaussians and gadget matrices. We write Dz to denote the discrete Gaussian distribution over Z with
width parameter s > 0. For a matrix A € Z;X’" and a target vector y € Zg in the column-span of A, we write A~(y) to
denote the random variable x <= D7’  conditioned on Ax =y mod g. Note that if y is not in the column-span of A, then
the distribution A~!(y) simply outputs L with probability 1. We extend A~! to operate on matrices by applying A™!
column-wise. For positive integers n,q € N, we write G=1, ® g' € ngm/ to be the gadget matrix [MP12] where I,, is
the identity matrix of dimension n, g' = [1,2,..., oflog ‘1]‘1], and m’ = n[log q]. For dimensions m > m’, we overload
the notation and write G € Zg*™ to denote the “padded gadget matrix” [I, ® g' | 0™ (m=m")] The inverse function
G Zg — ZZI"/ expands each entry x € Z, into a column of size [log q] corresponding to the bits in the binary
representation of x. Similarly, when G € ngm is a padded gadget matrix with dimension m > m’, we extend the output
of G1: Zg — Zg by zero-padding each column. By construction, for all t € Zg, it follows that G - G 1(t) =t mod q.

Lemma 3.2 (Gaussian Tail Bound [MP12, Lemma 2.6, adapted]). Let n, m, q be lattice parameters where m > 2nlog q.
Then, for all but a negl(n)-fraction of matrices A € Zg*™, all width parameters s > log m and all vectors'y € Zj in the
column-span of A,

Pr(||x|| > Vms : x «— A (y)] < 0(2™™).

For the particular case of the discrete Gaussian over the integers and any A € N,
Pr[|x| > Vs x Dz] < 277,

Lemma 3.3 (Discrete Gaussian Preimages [GPV08, adapted]). Let n,m,q,s be lattice parameters where m > n [log q|
and s > log m. Then the statistical distance between the following distributions is at most negl(n):

{Gx:x <D} } and {u:u&Z;}.
Discrete Gaussian preimages. We will need to reason about the distribution of [diag(Ay, ..., A,) | B];!(t) where

A; € Z*™ and B € Z2%F.

Definition 3.4 (Minimum Distance of A(A;)). For a matrix A € Z;’xm, we write A(A) to denote the g-ary lattice
A(A) ={y € Z™ : y = A'x mod q for some x € Z™}. For a lattice A C R™, we write A{°(A) to denote the minimum
distance A7°(A) = mingzven |1X]|.

Lemma 3.5 (Minimum Distance of Random Matrix [GPV08, Lemma 5.3]). Let n, m, q be lattice parameters where q
is prime and m > 2nlog q. Then, for all but a q™" = negl(n) fraction of matrices A € Zg"™, A7 (A(A)) > q/4.
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Lemma 3.6 (Discrete Gaussian Preimages [WW23b, Corollary 2.11]). Let n,m, q,t be parameters where m > n. Take
any t,k = poly(n,log q), any collection of matrices Ay, ..., A, € Zg™™ where A; is full rank and A7 (A(A;)) > t for all

i € [£], any collection of matricesBy,...,B; € ZZX", and any target vectort € Zg[. Define the following matrices
Ay B, t
C= and t=|:
A[ B[ ty

Then, for all width parameterss > q/t - log(£m), the statistical distance between the following distributions is negl(m):

Vi
- . Vel < Dk s
v:veCl(t))  and o ) L ) 3.1
{ -} v, | vi e (A)7!(ti - Biu). G
Vi1

Min-entropy. Let D be a distribution with finite support X. We define the min-entropy of D to be Hy, (D) :=
—log maxyex Pr[X = x : X « D]. We now state the following corollary of the leftover hash lemma [HILL99]:

Lemma 3.7 (Leftover Hash Lemma). Let m,q € N be positive integers where q is prime. Let D be a distribution over
Zg where Hoo (D) = 2A +log q. Then, for allt = £(A), the statistical distance between the following two distributions

is at most £(A) - 27%:

R m R m
v & Zy v & Zy }

T T . .
{(V’VXI""’VX[)' ViE[f]:xiHZ)} and {(V’rl’”"r[)' ViE[[]:rﬁqu

Lemma 3.8 (Min-Entropy of Discrete Gaussian [PR06, Lemma 2.11, adapted]). Let n, q be lattice parameters and
suppose m > 2nlogq. Then, for all but a negl(n)-fraction of matrices A € Zg*™, all width parameters s > logm, all
target vectorsy € Zg, the random variable x « A;'(y) has min-entropy Heo(x) > n/2.

Gadget trapdoors. Our constructions will use the gadget trapdoors from [MP12], which builds on a long sequence
of works on constructing lattice trapdoors [Ajt96, GPV08, AP09, ABB10a, ABB10b, CHKP10].

Theorem 3.9 (Gadget Trapdoor [MP12, adapted]). Let n,m, q be lattice parameters with m > 3n [log q]. Then there
exist efficient algorithms (TrapGen, SamplePre) with the following syntax:

« TrapGen(1",gq,m) — (A, T): On input the lattice dimension n, the modulus q, and the number of samples m, the
trapdoor-generation algorithm outputs a matrix A € Zg™™ together with a trapdoor T.

« SamplePre(A, T,y,s) — x: On input a matrix A € ngm, a trapdoor T, a target vectory € Z, and a Gaussian
width parameter s, the preimage-sampling algorithm outputs a vectorx € Zg'.

Moreover, the above algorithms satisfy the following properties:

« Trapdoor distribution: If (A, T) « TrapGen(1", g, m), then the distribution of A is 2~ "-close to the uniform
distribution over ngm. Moreover, AT = G and ||T|| = 1.

« Preimage sampling: For all matrices T, width parameters s > 0, and all target vectorsy € Zg in the column
span of A, if we sample x < SamplePre(A, T,y,s), then Ax = y.

- Preimage distribution: Suppose T is a gadget trapdoor for A € Z*™ (i.e, AT = G). Then, for alls > m||T|| log n,
and all target vectors'y € Zg, the statistical distance between the following distributions is at most 27":

{x « SamplePre(A, T,y,s)} and {x — As_l(y)} .
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Homomorphic evaluation. Our construction of succinct functional commitments will rely on the lattice homo-
morphic evaluation procedure developed in [GSW13, BGG* 14, DHM™*24]. In this work, we consider a specialization
to indicator functions &y: {0,1}¢ — {0,1} where

1 x=u
511()() = {0 X#u

Specifically, we focus on the version for “database reads” from [DHM*24, §4.1].

Theorem 3.10 (Homomorphic Encodings [DHM*24, Theorem 4.5, adapted]). Let A be a security parameter and
n =n(A), q = q(A) be lattice parameters. Take any m > n [log q] and let k = k(1) be an input length. Then there exist
a pair of efficient algorithms (EvalF, EvalFX) with the following properties:

« EvalF(A,8,) — Ay: On input a matrix A € Z;Xk”‘ and the indicator function 8, (where u € {0,1}), the
input-independent evaluation algorithm outputs a matrix Ay € Z5*™.

« EvalFX(A, 6y, x) — Haux: On input a matrix A € ZZX’“", an indicator function 8, (whereu € {0,1}%), and an

input x € {0,1}*, the input-dependent evaluation algorithm outputs a matrix Ha ,x € Z’;mxm.

Moreover, for all security parameters A € N, matrices A € Z;ka, all indicator functions 8,, and all inputs x € {0, 1}k,
the matrices A, «— EvalF(A, y) and Ha ux < EvalFX(A, dy, x) satisfy the following properties:

M HA,u,x € {_L 0, 1}km><m'
« (A-x"®G) -Hpux = Ay — (%) - G.
The running time of EvalF(A, 8,) and EvalFX(A, 8,,x) is bounded by 2~ - poly(n, m, k, log q).

Lattice assumptions. We recall the short integer solutions (SIS) [Ajt96] and learning with errors (LWE) [Reg05]
problems.

Assumption 3.11 (Short Integer Solutions [Ajt96]). Let A be a security parameter and n = n(1), m = m(1), g = q(1),
and f§ = B(A) be lattice parameters. We say the short integer solution problem SIS, , 4 5 holds if for all efficient

adversaries A,
A (l anm.
= < : q ’ = .
Pr [Ax 0and 0 < ||x|| < B x — AGAA) ] negl(1)

Assumption 3.12 (Learning with Errors [Reg05]). Let A be a security parameter and n = n(1), m = m(1), ¢ = q(1),
and s = s(A) be lattice parameters. We say the learning with errors problem LWE,, , 4 holds if for all efficient
adversaries A,

A &K gnxm A & gnxm
T Ty — . q _ Ty — . q -
Pr[ﬂ(A,sA+e)_1. S‘LZZ"“_D%S ] Pr[ﬂ(A,u)—l. H&ZZ’ ”—negl(/l).
4 Shifted Multi-Preimage Trapdoor Sampler
In this section, we describe our technique for deriving a collection of matrices Ay, ..., A, together with a trapdoor for

solving the shifted multi-preimage sampling problem from a short common random string. Our construction relies
on the following key lemma asserting that a certain structured matrix has a public trapdoor:

Lemma 4.1 (Structured Lattice with a Public Trapdoor). Let A be a security parameter and n = n(1), m = m(A)
and q = q(A) be lattice parameters. Suppose m > n[logq]. Then, for all ¢ € N, andt = m{[logt], there ex-

ists an explicit polynomial-time algorithm StructTrapGen that takes as input (B,uy,...,u;) where B € Z"*!, and
uy, ..., up € {0, 131181 gre distinct vectors, and outputs a gadget trapdoor T € Zg”m)”m where || T|| = 1 for the matrix
B-u®G G
— . . tnx (ft+m)
D; = . D ez .
B-u;®G |G
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Proof. Algorithm StructTrapGen(B, uy, ..., u;) works as follows:

1. For i € [¢], let &y,: {0, 1}Mg¢1 — {0, 1} be the indicator function where Ou; (V) outputs 1 if v = u; and 0
otherwise. For each i, j € [¢], compute Hp y,u, < EvalFX(B, 8y;,u;) and By, « EvalF(B, dy,).

2. Output the trapdoor

_HB,ul,ul o _HB,U(,lll

T: ~.. : c Z;{’t+m)xfﬂ’l' (41>
_HB,ul,u[ e _HB,u[,u{
G_I(Bul) e G_I(BU[)

To complete the proof, we show that the trapdoor T output by StructTrapGen satisfies the required properties. Namely,
we need to show that

B-u[®G G [Meew 0 THBwa | g
D;T = : : ' : = . . (4.2)
B-wec |G| | Mwa 0 Hiw 6
¢ G_l (Bul) e G_l(Bu()

Since t = m - [log £] > n[logq] [log ¢], by Theorem 3.10 (with the input length k = [log 1), we have

By, -G i=j
(B-u;®G) - Hpu;u, =By, =6y, (w) -G = {Buj» i#j.
Correspondingly, Eq. (4.2) holds. Again by Theorem 3.10, for all i, j € [¢], we have that Hpy,u, € {-1,0, 1xm,
Moreover G™'(By,) € {0,1}™*™, so it follows that ||T|| = 1. O

Shifted multi-preimage trapdoor syntax. At a high-level, a shifted multi-preimage trapdoor sampler provides a
way to sample a set of matrices Ay, . . ., A, together with a trapdoor td that allows us to efficiently solve the shifted multi-
preimage sampling problem with respect to Ay, . .., A,. Formally, the sampler consists of a Gen algorithm that samples
a common reference string crs, an Expand algorithm that expands crs into the matrices Ay, ..., A; and the trapdoor
td, and a shifted multi-preimage sampler algorithm SampleMultPre. The main properties we require are as follows:

« Correctness: Given the trapdoor td and any set of target vectors ty, . .., ty, the shifted multi-preimage sampler
SampleMultPre(td, ty, .. ., t;) outputs a solution (51, ..., /s, ¢) where for all i € [£], A;m; =t; +c.

+ Preimage distribution: We require that the solutions output by SampleMultPre to have a “nice” distribu-
tion. Formally, we require that the joint distribution of the solution (77y,..., 7, c) output by the sampler
SampleMultPre(td, ty, . . ., t;) to be statistically close to sampling ¢ <- ZZ and 7; « Al.‘1 (t; +¢). In other words,
the distribution of each sr; should be statistically close to an independent discrete Gaussian sr; conditioned on
A;m; = t; + c. We use this property to argue hiding for our dual-mode hidden-bits generator (Theorem 5.11)
and for our vector commitment scheme (Theorem 6.8).

« Somewhere programmable: We also require that SIS and LWE are hard with respect to any A; given Ay, ..., A,
and the trapdoor td. We model this by defining a “somewhere programmable” property which stipulates that
there is an auxiliary sampling algorithm GenProg that takes as input an index i and a (random) matrix A; and
outputs a common reference string crs that is indistinguishable from the common reference string output by
Gen. Moreover, the i matrix associated with cFs is precisely the programmed matrix A;. This property ensures
that the marginal distribution of any individual A; associated with an honestly-generated crs is statistically
close to uniform, and in addition, that problems like SIS or LWE remain hard with respect to any individual
A; even given the common reference string. We use this property to argue mode indistinguishability for our
dual-mode hidden-bits generator (Theorem 5.6) and binding for our vector commitment scheme (Theorem 6.4).

We now give the formal definition and construction.
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Definition 4.2 (Shifted Multi-Preimage Trapdoor Sampler). Let A be a security parameter and ¢ be a dimension. Let
n,t,q, s be parameters that are functions of A and £. An (n, t, g, s)-shifted multi-preimage trapdoor sampler is a tuple
of efficient algorithms Ils,mp = (Gen, Expand, SampleMultPre) with the following syntax:

« Gen(1%4,1%) — crs: On input the security parameter A and the dimension ¢, the generator algorithm outputs
a common reference string crs.

. Expand(l’l, 14, crs) = (A4, ...,Aq td): On input the security parameter A, the dimension ¢, and the common
reference string crs, the expand algorithm outputs matrices Ay, ..., A, € ZZ’“ and a trapdoor td. This algorithm
is deterministic.

« SampleMultPre(td, ty,...,t,) — (s1,..., 7, ¢): On input a trapdoor td and a collection of preimages ti, . . ., t,
the shifted multi-preimage sampling algorithm outputs a shift ¢ € Zg together with preimages 1, ..., ¢ € Zf].

The shifted multi-preimage trapdoor sampler should satisfy the following properties:

« Correctness: For all A, ¢ € N, all crs in the support of Gen(lA, 19), all target vectors t, ..., t, € Z], and setting
(A4, ..., Ay td) = Expand(1%, 1, crs), it holds that

Pr[Ajm; =t;+cforalli e [£]: (my,...,m,c) < SampleMultPre(td, ty,...,t,)] = 1.

« Preimage distribution: For all polynomials £ = £(1), there exists a negligible function negl(-) such that with
overwhelming probability over the choice of crs « Gen(l/l, 19), letting (A4, ..., Aptd) = Expand(l’l, crs), and
for all targets ty, ..., t, € Zg and all A € N, the statistical distance between the following distributions is negl(1):

— Dy: Output (74, ..., 7, c) < SampleMultPre(td, ty, ..., t;).
- Dy: Sample ¢ & Zg and 7; — (A1 (t; +¢) for each i € [¢£]. Output (74, ..., 7, C).

« Somewhere programmable: There exists an efficient algorithm GenProg such that for all polynomials
¢ = £(A), the following hold:

— Forall A € N, all indices i € [£], and all matrices A; € Zg”, it holds that
~ Crs « GenProg(lA, 144, A))
P Ai = Ai : ~ -~ —_— =1.

r [ (A, ..., Ay td) = Expand(1%,1¢, crs)

— There exists a negligible function negl(-) such that for all A € N and all i € [¢], the statistical distance
between the following distributions is negl(1):

— Ay &7
{crs : crs « Gen(1%, 1[)} and {crs : N } .

crs « GenProg(14,1¢,1,A;)

When these distributions are identical, we say the shifted multi-preimage trapdoor sampler satisfies perfect
somewhere programmability.

Definition 4.3 (Transparent Setup). A shifted multi-preimage trapdoor sampler (Gen, Expand, SampleMultPre)
supports transparent setup if the common reference string crs output by Gen just consists of the random coins used
to sample crs. Otherwise, we say the common reference string is a structured reference string (i.e., sampled using
private randomness).
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Local expansion. The Expand algorithm in Definition 4.2 outputs a collection of £ matrices Ay, ..., A, along with
a trapdoor T. Consequently, this necessarily takes poly (A, £) time. In some applications (e.g., to vector commitments),
we require the shifted multi-preimage trapdoor sampler to support a more fine-grained algorithm ExpandLocal that
takes as input a single index i € [£] and outputs A;. In particular, the local expansion algorithm only needs to read
poly(4,log ¢) bits of the CRS and runs in time poly (A, log ¢). We give the formal definition below:

Definition 4.4 (Local Expansion). A shifted multi-preimage trapdoor sampler (Gen, Expand, SampleMultPre) sup-
ports local expansion if there exists an efficient algorithm ExpandLocal that takes as input crs together with an index
i € [£] and outputs A;:

« Expand Local(ll, crs, i): On input the security parameter A, the common reference string crs, and an index i,
the local expand algorithm outputs a matrix A; € Zg*’. This algorithm is deterministic.

The requirement for ExpandLocal is that for all A, £ € N and all crs, if Expand(l’l, 1%, crs) = (A4, ..., A, T), then for
all i € [£], ExpandLocal(1%, crs, i) = A;. In addition, ExpandLocal(1%, crs, i) only needs to read poly(A, log £) bits of
crs, and moreover, runs in time poly(4, log £) given these bits.

Simulatable openings. In some applications (e.g., to statistically-hiding vector commitments; see Section 6), we
require a stronger requirement where we can sample a common reference string crs (that is indistinguishable from
a real CRS) together with trapdoors Ty, ..., T; for each of the matrices Ay, ..., A, associated with crs. Notably, the
trapdoor T; can be used to efficiently sample from A7 !(c) for any vector c in the column-space of A;. We give the
formal definition below:

Definition 4.5 (Simulatable Openings). An (n, t, g, s)-shifted multi-preimage trapdoor sampler ITsm, = (Gen, Expand,
SampleMultPre) has simulatable openings if there exists an efficient algorithm GenTD with the following syntax:

. GenTD(lA, 1Y) — (crs, Ty,...,Ty): On input the security parameter A and the dimension ¢, the trapdoor
generator algorithm outputs a common reference string crs together with trapdoors Ty, ..., T,.

Moreover, the GenTD algorithm should satisfy the following properties:

« Mode indistinguishability: There exists a negligible function negl(-) such that for all A € N, the statistical
distance between the following distributions is negl(1):

{crs : crs — Gen(1%, 1[)} and {crs : (crs, Ty, ..., T;) « GenTD(17, 15)} .

« Trapdoor generation: For all A,# € N, and all (crs, Ty, ..., T;) in the support of GenTD(lA, 1%), and setting
(Aq,...,Aptd) = Expand(lA, 1¢, crs), we have that

Vie[f] :AT;=G and ||T;]| <s/(tlogn).

Shifted multi-preimage trapdoor sampler construction. We now give our shifted multi-preimage trapdoor
sampler and analysis. The construction critically leverages Lemma 4.1. We refer to Section 2 for an overview of our
construction.

Construction 4.6 (Shifted Multi-Preimage Trapdoor Sampler). Let A be a security parameter and ¢ be a dimension.
Let n = n(A4,£), g = q(A, ), and s = s(A, £) be lattice parameters. Let m = 3n [logq] and ¢t = m([log¢] + 1). In the
following construction, we associate each index i € [¢] with a distinct canonical bit-vector u; € {0, 1}Meg?] (e.g.,
the bit-vector associated with the binary representation of i — 1). We construct an (n, t, g, s)-shifted multi-preimage
trapdoor sampler as follows:

« Gen(1%,1%): On input the security parameter A and the dimension ¢, the generator algorithm samples [A | B] &
Z7** and outputs crs = [A | B].
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« Expand(14,1¢, crs): On input the security parameter A, the dimension ¢, and the common reference string
crs = [A| B], where A € ZZ*™ and B € ngmrbgﬂ. Then, the expand algorithm proceeds as follows:

— Foreachi € [f],let B; = B —u] ® G. Then, define
A;=[A|B-u;®G]=[A|B;] €Z.

Let D, = [diag(As,...,Ar) [1°® G] € Zflnx([t+m).

— Let IT € {0, 1}(¢t+m)x(e+m) he the permutation matrix where

a B A B g A B, G
2
A B |G A B, | G

— Compute T’ « StructTrapGen(B,uy,...,u;) € Zymmgﬂm)x{)m

from Lemma 4.1. Define the trapdoor T € ZE[”"’) XM where

where StructTrapGen is the algorithm

Ot’mX(’m

_ -1
v [P

] c Z‘(]{’Hm)xl’m. (4.4)

The algorithm sets td = (D,, T) and outputs (A, ..., Ay, td).

« SampleMultPre(td, ty, ..., t;): On input the trapdoor td = (D,, T) and target vectors ty, ..., t, € Z7, the shifted
multi-preimage sampler defines the vector t € Zf;" to be the vertical concatenation of ty, ..., t, and outputs
(my, ..., s, —Ge) where

7T

< SamplePre(Dy, T, t, s).
e
¢

Theorem 4.7 (Shifted Multi-Preimage Trapdoor Sampler). Let n = n(A,£), ¢ = q(A,£) be arbitrary non-negative
functions wheren > A. Letm = 3n [log q] andt = m([log ¢]+1). Then foralls > (£t+m) log(¢n), Construction 4.6 is an
(n, t, q, s)-shifted multi-preimage trapdoor sampler with perfect somewhere programmability. Moreover, Construction 4.6
is transparent (Definition 4.3), supports local expansion (Definition 4.4) and has simulatable openings (Definition 4.5).
The size of the CRS output by Gen(1%,1%) is nt log g.

Proof. Take any polynomial £ = ¢£(1) and any A € N. Take any crs = [A | B] € ZZ” where A € ZgX™ and
Be ngmrbgq]. Let (A4, ..., A td) = Expand(crs). Then, td = (D,, T) where D, = [diag(A4,...,A;) |1 ®G] and T
is defined as in Eq. (4.4). By construction, A; = [A|B—u]®G] = [A|B;]. By Egs. (4.3) and (4.4) and Lemma 4.1, we have

[ A B, G
) 1 Ofmx{’m
D,T = . . C|-II-I [ T ]
I A B, | G
[ B-u]®G G G
= T/: .
B-u;®G |G G

Thus, T is a gadget trapdoor for D,. Again by Lemma 4.1, ||T’|| = 1, so |T|| = 1. We now show Construction 4.6
satisfies each of the required properties.
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Correctness. Take any set of target vectors ty, ..., t, € Zg and any (sy,..., 7, ¢) in the support of the sampler
SampleMultPre(td, ty, ..., t;). By construction, SampleMultPre first constructs t € Zf]” to be the vertical concatena-
tion of ty, ..., t,. Then it samples

T

«— SamplePre(D,, T, t, s)
e
¢

and sets ¢ = —G¢. Since D, T = I; ® G, the columns of D, span Zg”. By Theorem 3.9, this means that for all i € [¢],

Aiﬂi+Gé=ti - Aiﬂizti—GéZti+C.

Preimage distribution. Take any set of target vectors ty,...,t; € Zg and lett e Zf]” be the vertical concatenation

Oftl, ..

., t;. We now define a sequence of intermediate distributions:

Dy: Output (5ry, ..., 7, ¢) < SampleMultPre(td, ty, ..., t;). Specifically, sample (s, ..., 7, €) according to
SamplePre(D,, T, t, s) and set ¢ = —G¢.

D;: Sample (74, ..., 7, ¢) from (D;);!(t). Set ¢ = —Ge and output (7, ..., 7y, €).
D,: Sample ¢ « D7, set ¢ = —G¢, and sample 7; (A;);1(t; +¢) for each i € [£]. Output (4, ..., w4 ).

Ds: Sample ¢ < Zg and 7; — (A)7(t; +c) for each i € [£]. Output (71, ..., 7, C).

By definition, D, and D; corresponds to the two distributions in the preimage distribution property. We analyze
each adjacent pair of distributions:

First, Dy and D are statistically indistinguishable by Theorem 3.9. As argued above, T is a gadget trapdoor for
Dy and ||T|| = 1. Since t = 3n[logq], s > (£t + m) log(¢n) = (£t + m)||T|| - log(£n), we appeal to Theorem 3.9
to conclude that the statistical distance between the distribution SamplePre(D,, T, t, s) and (D;); ! (t) is at most
27" = negl(1). Thus, D, and D) are statistically indistinguishable.

Next, D; and D, are statistically indistinguishable by Lemma 3.6. To argue this, we show that with overwhelm-
ing probability over the choice of crs, all of the matrices A; output by (Ay,..., A, td) = Expand(lA, 1%, crs)
are full rank and satisfy A7°(A;) > q/4. Consider the marginal distribution of each A;. By construction,
A; =[A|B—u] ® G] where [A | B] & Z;X‘ . Thus, the marginal distribution of A; is uniform over ZZ” . By
Lemmas 3.1 and 3.5, all but a negligible fraction of matrices A € Z7** are full rank and satisfy A7°(A(A)) > q/4.
Thus, for each i € [£], with overwhelming probability over the choice of crs, the associated matrix A; is full rank.
Since ¢ = poly(4), we use a union bound to argue that with overwhelming probability over the choice of crs, for
all i € [¢], it holds that A; is full rank and A]°(A;) > g/4. Aslong as s > 4log(ft), the claim holds by Lemma 3.6.

Finally, D, and Ds are statistically indistinguishable by Lemma 3.3. In particular, when s > logm, the
distribution of ¢ = —~G¢ when ¢ «— DZ'_is statistically close to uniform.

By a hybrid argument, we conclude that with overwhelming probability over the choice of crs « Gen(1%,1%),
distributions Dy, and Ps are statistically indistinguishable, as required.

Somewhere programmable. We define the GenProg algorithm as follows:

GenProg(l’l, 1%,i,A;): On input the security parameter A, the dimension ¢, the index i € [£] and a matrix
A; = [A|B] where A € Zg™™ and B € Z;lxmrbgﬂ, output crs = [A | B+u] ® G].

We now show that GenProg satisfies the required properties. Take any polynomial £ = £(1) and index i € [£]. We
consider each property individually:
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o Take any A € N and any matrix A; = [A | B] € ZgXt. Let crs « GenProg(1%,1¢,i,A;) and consider
(A1, ..., A td) = Expand(cFs). Then s = [A | B+ u] ® G]. By definition of Expand, we now have

A=[A|(B+u ®G)-u ®G] = [A|B] = A,

« Suppose [A | B] « Gen(1%,1¢). By construction, the Gen algorithm samples [A | B] & Z;Xt. We claim
that this matches the distribution output by GenProg(1%,1,i, A;) when A; & Zy*'. If A; = [A’ | B'], then

Gen Prog(ll, 1%,i,A;) outputs [A’ | B’ + u; ® GJ, which is still distributed uniformly over Zg” . Thus, these
two distributions are identical.

We conclude that Construction 4.6 satisfies perfect somewhere programmability.

Transparent setup. The common reference string output by Gen consists of a uniform random matrix [A | B] &
ZZ“, so the scheme has a transparent setup by construction.

Local expansion. The local expansion property follows by construction of Expand. Namely, we can define
ExpandLocal(1%, crs, i) to output A; = [A | B — u ®GJ e ZZ“, where crs = [A | B].

Simulatable openings. We define the GenTD algorithm as follows:

« GenTD(1%,1%): On input the security parameter A and the dimension ¢, the trapdoor generator algorithm
samples (A, T) « TrapGen(1%, ¢, m) and B & ngmﬂog”. It sets crs = [A | B] and for each i € [¢], it sets
T; = [g] € Zflxm. Finally, it outputs (crs, Ty, . .., Ty).

We now show that GenTD satisfies mode indistinguishability and the trapdoor generation properties:

« Mode indistinguishability: Consider the distribution of (crs, Ty, ..., T,) output by GenTD(ll, 1%). By con-
struction, crs = [A | B] where (A, T) « TrapGen(1*, ¢, m) and B & Z;"mgﬂxm. Sincen > Aand m = 3n [logq],
we appeal to Theorem 3.9 to conclude that the distribution of A is statistically close to uniform. Correspondingly,

this means [A | B] is statistically close to uniform over Z;X’ . This is the distribution output by Gen(1%,1¢).

« Trapdoor generation: Take any A,¢ € N and consider (crs, Ty, ..., T;) output by GenTD(lA, 19). Let
(Ay,...,A,td) = Expand(1%4, 1%, crs). By construction, crs = [A | B] where (A, T) « TrapGen(1%, g, m)
and T; = [3] Since m > 3n[log q], by Theorem 3.9, this means AT = G. Moreover, by definition of Expand,
A; =[A| B -u; ® G]. Thus,

A,-Tl-z[A|B—u,-®G][ =AT =G.

om[logt’]xm]

Again by Theorem 3.9, ||T|| = 1 so ||T;|| = 1. Since s > (£t + m) log(¢£n), we have ||T;|| =1 < s/(tlogn). )

Marginal distribution of matrices output by the shifted multi-preimage trapdoor sampler. The somewhere
programmability requirement of a shifted multi-preimage trapdoor sampler ensures that the marginal distribution
of each A; obtained by running crs « Gen(ll, 19 and (A4,...,Aptd) = Expand(la, 1%, crs) is statistically close to
uniform. This will be useful in our applications, so we give the formal statement below:

Lemma 4.8 (Marginal Distribution of A;). Let A be a security parameter and £ be a dimension. Suppose (Gen, Expand,
SampleMultPre) is an (n, t, q, s)-shifted multi-preimage trapdoor sampler. Then, for all polynomials £ = £(1), there
exists a negligible function negl(-) such that for all indicesi € [f] and all A € N, the statistical distance between the
following distributions is negl(A):

crs «— Gen(1%,19)

. . R nxt
{A' (A, ..., Aptd) = Expand(l’l, 14, crs) } and {A’ A < Zg } :

Proof. Follows immediately by somewhere programmability. O
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5 Dual-Mode Hidden-Bits Model NIZK from LWE

In this section, we show how to use the shifted multi-preimage trapdoor sampler from Section 4 to construct a
dual-mode hidden-bits generator. Our construction improves upon the previous dual-mode hidden-bits model NIZK
of Waters [Wat24] in several key dimensions: (1) the size of the CRS in our scheme is linear in the length of the
hidden-bits string as opposed to quadratic; (2) in statistically-hiding mode, the CRS in our scheme is a common
random string as opposed to a structured reference string; (3) security relies on the LWE assumption with a polynomial
modulus-to-noise ratio as opposed to a sub-exponential one.

Dual-mode hidden-bits generator. We start by recalling the notion of a dual-mode hidden-bits generator [QRW19,
LPWW20]. In the definition, we use the statistical single-bit hiding property from [Wat24], which is sufficient for
a basic application to NIZKs for NP. The single-bit security notion is simpler to analyze, so we focus on it for ease
of exposition. In Remark 5.3, we discuss a stronger hiding definition on the hidden-bits generator that allows us to
obtain a statistical multi-theorem NIZK argument in the uniform random string model.

Definition 5.1 (Dual-Mode Hidden-Bits Generator [QRW19, LPWW20, Wat24, adapted]). A dual-mode hidden-bits
generator is a tuple of efficient algorithms IIygc = (Setup, GenBits, Verify) with the following syntax:

« Setup(1%,1¢,mode) — crs: On input the security parameter , the output length £, and mode € {binding, hiding},
the setup algorithm outputs a common reference string crs.

« GenBits(crs) — (o, 1, (71, . .., 77)): On input the common reference string crs, the generator algorithm outputs
a commitment o, a bit-string r € {0, 1}¢, and a tuple of proofs ry, . . ., 7.

« Verify(crs, 0,1, f, t) — b: On input the common reference string crs, a commitment o, an index i, a bit § € {0, 1},
and a proof 7, the verification algorithm outputs a bit b € {0, 1}.

Moreover, we require that ITypg satisfy the following properties:

« Correctness: For all A, ¢ € N, all modes mode € {binding, hiding}, and all indices i € [¢], we have that

crs « Setup(1%, 1¢, mode) :

Pr |Verify(crs, 0,4, 73, ;) =1 (o,1,(my,...,m)) < GenBits(crs) |

« Mode indistinguishability: For an adversary A, an output length ¢, and a bit b € {0, 1}, we define the
mode-indistinguishability game as follows:

1. If b = 0, the challenger sets mode = binding. If b = 1, the challenger sets mode = hiding. The challenger
samples crs «— Setup(l’l, 1%, mode) and gives (lA, 1%, crs) to A.

2. Algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

The hidden-bits generator satisfies mode indistinguishability if for all efficient adversaries A and all polynomials
¢ = £(A), there exists a negligible function negl(-) such that for all A € N,

[Pr[b’ =1:b=0] -Pr[b' =1:b=1]| =negl(d)
in the mode-indistinguishability game.

« Succinctness: There exists a fixed polynomial p(-, -) such that for all A, £ € N, all mode € {binding, hiding},
all crs in the support of Setup (14, 1¢, mode), and all commitments ¢ in the support of GenBits(crs), we have
that |o| < p(A,log?).

. Statistically binding in binding mode: For all polynomials £ = £(1), there exists a negligible function negl(-)
such that for all A € N,

(o, i, mp, 717) -

. A4l Lo _
Pr Verify(crs, 0, 1,0, m9) = 1 = Verify(crs,0,i,1,7m1) crs « Setup(1%,1°, binding) | = negl(4).
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« Single-bit statistical hiding in hiding mode: For an adversary A, an output length ¢, and a bit b € {0, 1},
we define the hiding game as follows:

1. On input the security parameter 1* and the length parameter 1¢, algorithm A outputs an index i* € [].

2. The challenger samples crs « Setup(1%, 14, hiding) and (o, 1, (71, . . ., 7)) < GenBits(crs). If b = 0, the
challenger sets 8 = r;=. If b = 1, it samples 8 & {0,1}.

3. The challenger gives (crs, o, {(i, 7, ;) } - » f) to A.
4. Algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

The hidden-bits generator satisfies statistical hiding in hiding mode if for all (computationally-unbounded)
adversaries A and all polynomials ¢ = £(1), there exists a negligible function negl(-) such that for all A € N,

|Pr[b"=1:b=0] —Pr[b’ =1:b=1]| =negl(d)
in the hiding game.

Theorem 5.2 (NIZKs from Hidden-Bits Generators [FLS90, QRW19, LPWW20, Wat24]). If there exists a dual-mode
hidden-bits generator, then there exists a dual-mode NIZK for NP.

Remark 5.3 (Multi-Theorem Zero-Knowledge). The works of [FLS90, QRW19, LPWW20, Wat24] show that Def-
inition 5.1 implies a dual-mode NIZK that satisfies single-theorem zero-knowledge (in hiding mode). To achieve
multi-theorem zero-knowledge where the adversary is allowed to see multiple proofs (either real or simulated) on
adaptively-chosen statements, the work of [FLS90] describes an elegant and generic transformation using “or-proofs”
(which only relies on one-way functions). Thus, the NIZK obtained via Theorem 5.2 also satisfies multi-theorem
zero-knowledge. A caveat of the [FLS90] transformation though is that it does not preserve statistical zero-knowledge
in the common random string model. Namely, even if we started with a dual-mode NIZK for NP with a common
random string in hiding mode (e.g., Construction 5.4), the resulting dual-mode multi-theorem NIZK would require
a structured reference string in both modes.

The concurrent work of [BCD*25] show how to obtain a single-theorem to multi-theorem transformation that
preserves statistical zero-knowledge in the common random string model. Like the classic [FLS90] framework, their
approach also takes an “or-proof” approach and uses the single-theorem NIZK to either prove membership in the
original language or knowledge of a “simulation trapdoor” In this work, we show an alternative approach that
directly implies a multi-theorem dual-mode NIZK. Namely, we take the approach from [LPWW20] which showed
that a dual-mode hidden-bits generator that satisfies a stronger simulation-based hiding notion immediately implies
a multi-theorem dual-mode NIZK with no modification whatsoever. In Appendix A, we show that our dual-mode
hidden-bits generator from Construction 5.4 satisfies this stronger requirement without any modification other than
assuming that our shifted multi-preimage trapdoor sampler has simulatable openings (Definition 4.5).* Thus, our
work directly gives a dual-mode NIZK that satisfies multi-theorem statistical zero-knowledge in the common random
string model and completely avoids the “or-proof” (and resulting non-black-box use of cryptography) needed in other
dual-mode NIZK constructions from LWE [PS19, BCD*25].

Constructing a dual-mode hidden-bits generator. We now show how to use a shifted multi-preimage trapdoor
sampler to construct a dual-mode hidden-bits model generator (Definition 4.2). We refer to Section 2.2 for an overview
of the construction. As discussed in Section 2.2, our construction shares a similar structure with the scheme of
Waters [Wat24], but differs in a few key respects:

« CRS structure: The [Wat24] construction publish structured preimages in the CRS and the commitment and
the openings are derived by computing short linear combinations of the components in the CRS. Because
the CRS contains structured preimages (in both modes), the [Wat24] construction relied on a (quadratic-size)
structured CRS in both modes. In our scheme, we replace the structured preimages in the CRS with our shifted
multi-preimage trapdoor sampler. This allows us to achieve a linear-size CRS, and moreover in hiding mode,
the CRS is a uniform random string (i.e., supports transparent setup).

*In the body, we focus on the weaker notion of single-bit hiding which is easier to argue. We defer the full simulation-based security proof to
Appendix A.
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« Binding analysis: In the [Wat24] scheme, the verification algorithm checks that the opening does not land
near a “rounding boundary” (and rejects if the opening is too close). This ensures that at every index, a given
commitment can only be opened one way. This is useful for arguing binding. In [Wat24], the modulus ¢ is
super-polynomial so the probability that an opening lands near a rounding boundary is negligible. In our
construction, we rely on a polynomial modulus g, so there is an inverse polynomial probability that GenBits
samples a commitment and a set of openings where one of the opening lands inside the rounding boundary
(and causes the verification algorithm to fail). However, since the verification algorithm is public, the GenBits
algorithm can simply resample a commitment and set of openings whenever this happens. By choosing g to be a
sufficiently-large polynomial, we ensure that each sampling attempt succeeds with at least constant probability.
After A attempts, the algorithm will sample a commitment and a set of valid openings with overwhelming
probability. Thus, we can avoid the super-polynomial modulus ¢ in the binding analysis. We also discuss an
alternative approach from [Wat24, Appendix B] and used in the concurrent work [BCD*25] in Remark 5.21.

« Hiding analysis: The [Wat24] also critically relies on a super-polynomial modulus g for the hiding analysis.
Specifically, when the CRS is sampled in hiding mode, [Wat24] first establishes that there exists small perturba-
tions that can be added to a commitment and flip the i'h output bit of the hidden-bits string, while leaving all
remaining bits unchanged. Then, using a noise smudging argument, [Wat24] argues that the adversary cannot
tell whether a commitment is “normal” or “perturbed” This suffices to show that the i bit is statistically
hidden from the view of the adversary. In our work, we take a different approach. To argue hiding, we rely
on the fact that Gaussian preimages have sufficient min-entropy and use this to extract a string of uniform
random bits. This avoids the need for noise smudging and allows us to use a polynomial modulus for the overall
construction. This in turn allows us to prove security from LWE with a polynomial modulus-to-noise ratio.

We now describe our construction.

Construction 5.4 (Dual-Mode Hidden-Bits Generator). Let A be a security parameter and ¢ be a length parameter.
Let ITsamp = (Gen, Expand, SampleMultPre) be a (n, t, g, Ssamp)-shifted multi-preimage trapdoor sampler. Let spwe =
stwe (4, £) be a Gaussian width parameter and Bmax = Bmax (4, £), Bround = Bround (4, £) be bounds. Throughout, we as-
sume that B,oyng < q/4. We construct our dual-mode hidden bits generator ITjjgg = (Setup, GenBits, Verify) as follows:

« Setup(1%,1¢, mode): On input the security parameter A, the output length ¢, and mode € {binding, hiding}, the
setup algorithm samples crssamp < Gen(l’l, 1%). Next, it computes (A4, ..., A, td) = Expand(l’l, 1¢, CISsamp)
where A; € ZZ”. Next, for each i € [£], it samples a vector v; € Zfl as follows:

- If mode = binding, it samples s; & ZZ, e — Dé,sts’ and sets v] = sTA; +e].

- If mode = hiding, it samples v; < Zf].
It outputs crs = (14, CISsamps V15 - - -5 Ve).

« GenBits(crs): On input the common reference string crs = (1%, CISsamps V1, - - -, Ve), the generator algorithm first
computes (Ay, ..., Ay td) = Expand(l’l, 1¢, Crssamp)- Then, it repeats the following procedure up to A times:
— Sample (74, ..., my, ¢) « SampleMultPre(td, 0", ...,0").

— For each i € [¢], if ||7;|| > Bmax it sets r; = L. Otherwise, compute u; = v]sr; and set r; as follows:

0 u; € [~Bround> Bround]
ri=q1 w € [I.q/2J = Brounds I_q/ZJ + Bround]
1 otherwise.

Note that the intervals [—Byound Bround] and [1q/2] — Brounds L /2] + Bround] are guaranteed to be disjoint
when Byound < q/4.

- Ifr; € {0,1} for all i € [£], then it outputs (¢, 1, (71, .., 7y)). Otherwise, if there exists an index i € [£]
where r; = L, the generator algorithm restarts the sampling procedure.
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If the sampling procedure does not succeed after A attempts, then the generator algorithm sets ¢ = L, r = 0%,
and sr; = L for all i € [£]. It outputs (c, 0, (71, ..., 7).

« Verify(crs, ¢, i, f, 7r): On input the common reference string crs = (14, CISsamps V1, - - -, V), @ commitment c, an
index i € [¢£],abit f € {0,1}, and a proof x, the verification algorithm proceeds as follows:

- Ifc = L output 1if f = 0 and 0 otherwise.
- Ifce Zg and 7 € Z;, then compute (Ay,...,Aptd) = Expand(l’l, lf,crssamp). Output 1 if
7]l < Bmax and Ajw=c and vim; € [lq/2] B~ Bround: L9/2] B+ Bround]
and 0 otherwise.
In all other cases, output 0.
Theorem 5.5 (Correctness). If [Isamp is correct, then Construction 5.4 is correct.

Proof. Takeany A, ¢ € Nand mode € {binding, hiding}. Suppose crs « Setup(l’l, 1, mode) and (¢, 1, (74, ..., /)
GenBits(crs). Then, we can write crs = (1A,crssamp, Vi,...,Vp). Let (Aq,...,Aptd) = Expand(ll, ll,crssamp). We
consider two possibilities:

« Suppose ¢ = L. By construction of GenBits, this means r = 0°. Then Verify(crs,c, i,0, ;) outputs 1 by
construction.

« Suppose ¢ € ZZ. This means the GenBits algorithm sampled (74, ..., 7, ¢) < SampleMultPre(td, 0%, ...,0").
By correctness of IIsamp, this means A;zr; = ¢ for all i € [£]. Finally, GenBits outputs c only if

””i” < Bmax and V}-”i € [l_q/zJ ¥i — Brounds LQ/ZJ ri + Bround]-
In this case, all of the verification checks pass and Verify(crs, ¢, i, r;, 7;) = 1. O

Theorem 5.6 (Mode Indistinguishability). Suppose Ilsamp satisfies somewhere programmability. Then, under the
LWE .t ,.s.we assumption, Construction 5.4 satisfies mode indistinguishability.

Proof. Let A be an efficient adversary for the mode indistinguishability game. We being by defining a sequence of
hybrid experiments parameterized by an index i € {0, ..., f}:

+ Hyb;: In this experiment, the challenger samples crsamp Gen(1%,1°) and computes (A;, ..., A, td) =
Expand(1%, 17, crssamp)- Then, for each j € [£], it constructs the vector v; € Z; as follows:

. . R
- If j > i, sample s; < ZZ, e; «— D%’SLWE, and compute v} = s}Aj + e}.
. . R t
- If j < i, sample v; < Zq.
The challenger gives crs = (14, CI'Ssamp, V1, - - -, V¢) to A. The output of the experiment is the output of A.

We write Hyb, (A) to denote the output of an execution of Hyb; with adversary A. By construction, Hyb,(A) cor-
responds to the experiment where the challenger samples crs < Setup (1%, 1¢, binding) while Hyb,(A) corresponds
to the experiment where the challenger samples crs < Setup(1%, 1/, hiding). To complete the proof, we show that
for all i € [¢], the output distributions Hyb,_; (A) and Hyb,;(A) are computationally indistinguishable. To do so,
we introduce two intermediate hybrids:

« Hyb,,: Same as Hyb,, except the challenger samples A; <~ Z’;X[ and crsgymp < GenProg(14,1%,i, A)).
« Hyb, ,: Same as Hyb, ;, except the challenger samples v; <- ZfI
We now show that each adjacent pair of hybrid distributions are indistinguishable.

Lemma 5.7. IfTlsump is somewhere programmable, then Hyb,(A) & Hyb; , (A).
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Proof. The only difference between Hyb; and Hyb, , is the distribution of crssamp. In Hyb;, the challenger samples
crssamp < Gen(1%,1%) while in Hyb, ;, the challenger samples A; < 27" and crssamp GenProg(14,14,i, A;).
These two distributions are statistically indistinguishable by somewhere programmability. O

Lemma 5.8. Suppose Isamp is somewhere programmable. Then, under the LWE,,; g, assumption, for alli € [¢],
Hybi,l(ﬂ) £ HYbi,z(ﬂ)~

Proof. Suppose | Pr[Hyb; ; (A) = 1] — Pr[Hyb;,(A) = 1]| = (1) for some non-negligible . We use A to construct
an efficient adversary 8 for the LWE,; 4, assumption:

« On input the LWE challenge (A,u") where A € ZZ“ and u € Z;, algorithm B computes crsgmp

GenProg(1%4,1¢,i,A). Then, it computes (A, ...,A,td) = Expand(14, 1%, crsgamp). For each j € [£], the
challenger computes the vector v; as follows:

. . Ryt
- If j <, sample v; < Z,.
-Ifj=isetv;=u
. . R t T _ «TA. T
- If j > i, sample s; < Zg, ej — DZ,stE’ and compute V= sjA] +e;.
« Algorithm B gives crs = (1%, CISsamp» V1, - - -, V¢) to A and outputs whatever A outputs.

We now analyze the advantage of algorithm 8. First, the LWE challenger samples A - ZZ“ , so the distribution of
Crssamp is identical to the distribution in Hyb, ; and Hyb, ,. By somewhere programmability, we also have that A; = A.
Consider now the distribution of u:

« Suppose u' = s'A + e" where s < Zyand e « D} e Since A; = A, we have vi = u' = s'A; + €', which
matches the distribution in Hyb, ;.

« Suppose u & Zfz. Then, v; is uniform over Z;, which matches the distribution in Hyb, ,.
Algorithm B breaks LWE, ; 45, With the same non-negligible advantage ¢ and the lemma follows. O
Lemma 5.9. IfIlsamp is somewhere programmable, then Hyb, ,(A) % Hyb,,,(A).

Proof. The only difference between Hyb, , and Hyb,,, is the distribution of crssamp. In Hyb; ,, the challenger samples
A; & Zg” and crssamp < GenProg(14,1%,i, A;) whereas in Hyb,, the challenger samples crs < Gen(1%, 1°). These
two distributions are statistically indistinguishable by somewhere programmability. O

Mode indistinguishability now follows from Lemmas 5.7 to 5.9. O

Theorem 5.10 (Statistical Binding in Binding Mode). Suppose q > 4t\/IsLWEBmaX + 4B,ound- Then, Construction 5.4
is statistically binding in binding mode.

Proof. Take a security parameter A € N and any polynomial £ = £(1). Let crs < Setup(1%, 1¢, binding). We parse
crs = (ll,crssamp, Vi,...,Vp) and let (Aq,...,Aptd) = Expand(l’l, lf,crssamp). In binding mode, for all i € [¢],
v} = sjA; + e}, where e; «— D%’SLWE. By Lemma 3.2, ||e;]| < VsLwe with probability 1 — ¢ - 274, By a union bound,
with probability 1 — t£ - 274 = 1 — negl(A), the following holds:

Vie [€] : leill < VAsiwe. (5.1)
Suppose now that there exists a tuple (c, i, 7y, 7r;) where
Verify(crs, ¢, i, 0, 7tg) = 1 = Verify(crs, ¢, i, 1, 71). (5.2)
We now consider two possibilities:

« Suppose that ¢ = L. Then, by construction, Verify(crs, ¢, i, 1, 7r1) outputs 0 which contradicts Eq. (5.2).
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« Suppose ¢ € Zg. By Eq. (5.2) and construction of Verify, the following conditions also hold:
l7woll, I71|l < Bmax and  Ajmo = ¢ = Ay,
and in addition,

V;”O € [_Bround:Bround]
V;”l € [LQ/ZJ - Bround> I_q/ZJ + Bround]~

In particular, this means that
|V}(”0 - ”l)l = I.q/ZJ - 2Bround- (5-3)

Since A;jmy = A;7;, we have
vi(mo — 1) = s; (Ao — Ajmry) + e (o — 1) = e (7w — 7my).
Since || 70|, ||71 ]| < Bmax. and ||e;|| < VAs we from Eq. (5.1), we conclude that
[vi (w0 = 701)| = lef (7m0 = 1)| < 2t VAsLweBimax-
However, this contradicts Eq. (5.3) whenever g > 4t\/IsLWEBmaX + 4B,ound-

We conclude that no such tuple (c, i, 7o, 771) can exist when Eq. (5.1) holds. Since Eq. (5.1) holds with 1 — negl(1)
over the randomness of Setup, the theorem follows. O

Theorem 5.11 (Single-Bit Statistical Hiding). Suppose Ilsamp satisfies the preimage distribution property and n >

41 +2loggq, t > 3n[logql, q is prime, ¢ > 4Bround + 2, Ssamp = log t, Bmax = \/fssamp, and Broynd > q/4 — q/(8¢) +1/2.
Then, Construction 5.4 satisfies single-bit statistical hiding in hiding mode.

Proof. Let A be a distinguisher for the hiding game. We start by defining a sequence of hybrid experiments:

. Hyb(()b): This is the hiding experiment with the bit b. Specifically, the adversary (on input 1* and 1¢) starts by
outputting an index i* € [£]. The challenger then samples crs < Setup(1%, 1%, hiding). Namely, the challenger
samples Crssamp < Gen(1%,1%) and for each i € [¢], v; & Zg. It sets crs = (1’1,crssamp,v1, ...,Vp). Next, for
each d € [A], the challenger proceeds as follows:

- Sample (741, ..., 74 cq) < SampleMultPre(td, 0", ..., 0").

— For each i € [f], the challenger computes ug; = vI7g;. If [|7q;[| > Bmax, set rq; = L. Otherwise, set

0 Ugi € [_Brounds Bround]
rdi = 1 Ug; € [l_q/ZJ — Brounds I_q/ZJ +Br0und] (54)
1 otherwise.

The challenger then constructs the challenge as follows:
- Suppose for all d € [A], there exists an index i € [¢] where ry; = L. Then, the challenger sets ¢ = L and
forallie [f],r;=0and 7; = L.

— Otherwise, let d* € [A] be the first index where r4-; € {0,1} for all i € [¢]. Then the challenger sets
c=cqg-andforalli € [¢],r; =rg; and 7w; = my- ;.

5In this description, we explicitly unroll the (up to) A iterations of rejection sampling that the GenBits algorithm performs. Specifically, the
challenger samples A commitments and openings, and the output is defined to be the first instance that is successful (i.e., the first instance
that GenBits would have accepted). As such, the description here is identical to the procedure in GenBits, but is more convenient to analyze.
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Finally, if b = 0, then the challenger sets 8 = r;-. If b = 1, the challenger samples 8 < {0, 1}. The challenger
gives (crs, ¢, {(i,ri, 70;) iz, B) to A. At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which is
the output of the experiment.

Hybib): Same as Hyb((,b), except for all d € [A], the challenger changes how it samples ¢4 and 4;. Specifically,
after sampling crs as in Hyb(()b), the challenger proceeds as follows for each d € [A]:

~ Sample ¢, ¢~ Z] and for each i € [¢], sample 7, « (A);! (cy).

Ssamp

- For each i € [f], the challenger computes ug; = v 7q;. If | 74;]| > Bmax, set rg; = L. Otherwise, it sets
rq; according to Eq. (5.4).

The rest of the experiment proceeds as in Hybéb).

Hybgb): Same as Hybib), except the challenger no longer checks the norm constraint on 7r4; when computing

rq;. Specifically, after sampling crs as in Hybéb) , the challenger proceeds as follows for each d € [A]:

~ Sample cq ¢~ Z} and for each i € [¢], sample 74, < (A;); ] (ca).

Ssamp

- For each i € [f], the challenger computes ug; = v]7y; and sets ry; according to Eq. (5.4). In particular,
the challenger no longer checks if ||774;|| < Bmax-

The rest of the experiment proceeds as in Hyb(()b).

Hybgb): Same as Hybgb), except for all d € [4], the challenger samples v, ;- <~ Z,. Specifically, after sampling
crs as in Hybéb), the challenger proceeds as follows for each d € [A]:

~ Sample cq ¢~ Z} and for each i € [£], sample 74; (Ai)s‘sjmp(cd).
- For each i € [/] \ {i"}, the challenger computes ug; = v 7g;. It then samples u,; & Zg. Finally, the
challenger sets rg; according to Eq. (5.4).

The rest of the experiment proceeds as in Hyb(()b).

Hybib): Same as Hybgb), except for all d € [A], the challenger changes how it samples ry ;-. Specifically, after

(b)
0

sampling crs as in Hyb, ", the challenger proceeds as follows for each d € [1]:

~ Sample cq ¢~ Z} and for each i € [£], sample 7q; (Ai)s::mp(cd)~

- For each i € [£] \ {i"}, the challenger computes uy; = v]7g; and sets ry; according to Eq. (5.4).

- With probability (4B;ound +2)/g, the challenger samples rg; <~ {0, 1}, and with probability 1 — (4B,ound +
2)/q, the challenger sets ry;+ = L.

The rest of the experiment proceeds as in Hybgb).

Hybéb): Same as Hyb(b), except the challenger samples r;- < {0, 1} in the case for all d € [A], there exists an

index i € [¢] where ry; = L. Specifically, after sampling crs as in Hyb(()b)

for each d € [A]:

, the challenger proceeds as follows

~ Sample cq ¢~ Z} and for each i € [£], sample 7q; (Ai)s::mp(cd)~

- For each i € [£] \ {i"}, the challenger computes ug; = v]7g; and sets ry; according to Eq. (5.4).

— With probability (4Byound +2)/q, the challenger samples rq;+ ¢ {0, 1}, and with probability 1 — (4Byound +
2)/q, the challenger sets g+ = L.

The challenger then constructs the challenge as follows:
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— Suppose for all d € [A], there exists an index i € [¢] where ry; = L. Then, the challenger sets ¢ = L and
foralli € [£]\ {i"}, it sets r; = 0 and sr; = L. The challenger samples r;- < {0, 1}.

— Otherwise, let d* € [A] be the first index where r4-; € {0,1} for all i € [¢]. Then the challenger sets
c=cqgandforalli € [¢],r; =rg; and 7w; = my- ;.

Finally, if b = 0, then the challenger sets = r;=. If b = 1, the challenger samples 8 & {0,1}. The challenger
gives (crs, e {(i,ri, /) Yigi /3) to A. At the end of the game, algorithm A outputs a bit " € {0, 1}, which is
the output of the experiment.

We write Hybl@ (A) to denote the random variable corresponding to the output of an execution of hybrid Hybgb)
with adversary A. We now analyze each adjacent pair of distributions.

Lemma 5.12. Suppose Ilsamp satisfies the preimage distribution property. Then, for all b € {0, 1}, Hyb(()b) (A) 2
Hyb" (A).

Proof. For each j € {0, ..., A}, we define an intermediate hybrid as follows:

. Hyb(()?: Same as Hyb(b), except for all d < j, the challenger samples (743, ..., 44, ¢g) according to the proce-
dure in Hybib). For all d > j, the challenger samples (741, ..., 74, ¢4) according to the procedure in Hyb(b).

By construction, Hybgf)) (A) = Hyb(()b) (A) and Hyb(b) (A) = Hyb(b) (A). We now argue that for every j € [1],

the statistical distance between Hyb(g?_l(ﬂ) and Hyb(h) (A) is negl(A). The only difference between these two
distributions is the distribution of (71, ..., 7, ;). Wlth overwhelming probability over the choice of crssymp, these
two distributions are statistically indistinguishable by the preimage distribution property of IIsamp. O

Lemma 5.13. Supposen > A, t > 2nlogq, Ssamp 2> logt, and Bmax 2 \/fssamp. Then, for allb € {0, 1}, Hybib) (A) £
Hybs” (A)
YD, -

Proof. These experiments are identical unless in an execution of Hyb(b), there exists an index d € [A] and i € [£]

where ||74;]| > Bmax- In Hybib), the challenger samples 7 ; < (A;);! (cg). By Lemma 4.8, the marginal distribution

Ssamp
of A; in Hybib) is statistically close to uniform. Since ¢ > 2nlogq, Ssamp = logt, and Bmax = \/fssamp, by Lemma 3.2,
with overwhelming probability over the choice of 74, it holds that |74 ;|| < Bmax. By a union bound over all d € [A]

and i € [¢], we conclude that with overwhelming probability, in an execution of Hybﬁb), it holds that ||74;|| < Bmax
for alld € [A] and i € [£]. In this case, the output of Hybib) and Hyb;b) is the same. O

Lemma 5.14. Suppose n > 4A + 2logq, t > 2nloggq, q is prime, and ss;mp = logt. Then, for all b € {0,1},
b b
Hyb{" (A) £ Hyb\" (A).

Proof. For each j € {0, ..., A}, we define an intermediate hybrid as follows:

. Hybg?: Same as Hyb;b), except for all d < j, the challenger samples ug;+ <~ Z,. For all d > j, the challenger

. b
sets ug+ = VL. 7q;+ as in Hybg ),

By construction, Hybé,bo) (A) = Hyb§b> (A) and Hybgl;) (A) = Hybgb) (A). We argue that for all j € [A], the statis-

tical distance between Hybg )_1 and Hybgz) is negl(A). The only difference between these two distributions is the

distribution of u; ;<. We show that these two distributions are statistically indistinguishable.

« By Lemma 4.8, the marginal distribution of A;+ in Hybgb.)_1 and Hybgb.) is statistically close to uniform over ZZX‘ .

e In Hyb(b) and Hyb(J) the challenger samples 7 ;+ < (A )Ssa (cq). Since t > 2nlog q and ssamp > logt, we
appeal to Lemma 3.8 to conclude that with overwhelming probablhty over the choice of Aj+,

Heo(mj+) 2 n/2 > 21 +loggq.
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« In Hybé?f1 and Hybg’j), the challenger samples v;» ¢ Z‘tl' By the leftover hash lemma (Lemma 3.7), the
statistical distance between the distributions

T R t R t R
{(Vi*»vi*”j,i*) PV e Zq} and {(Vi*,uj,i*) Vi & Lo Ujir Zq}

()

is at most 27 = negl(A). The distribution in the left-hand side corresponds to Hyb,_; while the one on the

right-hand side corresponds to Hybg?.

We conclude that for all j € [4], the distributions Hybg’bj)_l(.?l) and Hybé’bj) are statistically indistinguishable. The
lemma now follows by a hybrid argument. O

Lemma 5.15. Ifq > 4Biound + 2, then for allb € {0, 1}, Hybéb) (A) = Hybib) (A).

Proof. The distributions Hybgb) (A) and Hybib) (A) are identically distributed as long as ¢ > 4Byound + 2. In this case,
the intervals [—Brounds Bround] and [ q/2] — Brounds L4/2] + Bround] are disjoint and each has size 2B,ound + 1. The two
experiments only differ in how they compute rg;+ for d € [A]. We show that these two procedures are distributed
identically for each d € [A].

e In Hybgb), the challenger samples ug;+ < Zq4 and then sets rg; = 0 if ug;+ € [~Brounds Bround]. Over the
randomness of ug;-, this happens with probability (2Byound + 1)/q. Alternatively, it sets rg;- = 1if ug;e €
[Lg/2] — Bround> L /2] + Bround]. This also happens with probability (2Byound + 1) /g over the randomness of ug ;-
Finally, if neither event holds, which occurs with probability 1—(4Bound+2)/¢, then the challenger sets ry ;» = L.

e In Hyb(b), rq; = 0 with probability (1/2) - (4Bround + 2)/q = (2Bround + 1)/q, which matches the probability
in Hybéb) . The challenger sets rg;+ = 1 with the same probability. Finally, the challenger sets rg;» = L with
probability 1 — (4Bound + 2)/q, which is identical to the behavior in Hybgb).

We conclude that the distribution of r4;- is identical in the two experiments for all d € [A]. Correspondingly, the
outputs of these two experiments are identically distributed. O

Lemma 5.16. Supposen > 4A+2loggq, t > 2nloggq, q is prime, Ssamp > logt, and Bround = q/4 — q/(8¢) — 1/2. Then,
forallb € {0,1}, Hyb'"” (A) £ Hyb\" (A).

Proof. Hybib) and Hybgb) are identical experiments unless for all d € [A], there exists an index i € [£] wherery; = L.
We show that this event happens with negligible probability. To analyze the probability of this event, we first define
the following sequence of distributions and argue that each adjacent pair is statistically indistinguishable:

« Dy: This is the distribution of 4 ; in Hybim and Hybéb). Namely, the distribution samples crssamp < Gen(1%,1%),
(Aq,...,Aptd) = Expand(ll, 1¢, CrSsamp), and vy, ..., vy & Zg. Then for each d € [1], it samples ¢4 ZZ. For
eachd € [A] and i € [¢] \ {i*}, it samples my; < (Ai)s_salmp(cd), sets ug; = visq;, and sets ry; according to
Eq. (5.4). Finally, with probability (4Bound + 2)/q, sample rq;+ < {0, 1} and with probability 1 — (4Byound +2) /¢,
set 74+ = L. The outputis (r11,..., 7163 TA1---»TAe)-

« D;: In this distribution, for all d € [A] and i € [£] \ {i*}, sample uy; < Z4 and set rq; according to Eq. (5.4).
Then, with probability (4Bound + 2)/q, sample ry;» <~ {0,1} and with probability 1 — (4Bound + 2)/q, set
ra; = L. The outputis (riq, ..., 16 .. s TA1 - s FA)-

« D,: In this distribution, for all d € [A] and i € [¢], sample ry; < {0, 1} and with probability 1 — (4Byound +2)/q.
set rg; = L. The outputis (ry1, ..., 716« TAL - - -5 FAp)-

We start by showing that distributions 9, and 9, are statistically indistinguishable. Formally, we analyze the
distribution Dy:
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« Since crsgamp Gen(14,1%) and (A4, ..., A, td) = Expand(crssamp), we appeal to Lemma 4.8 to conclude that
the marginal distribution of each A; is statistically close to uniform over ZZXt. We declare A; € ZZX[ to be
“good” if the property in Lemma 3.8 holds: namely, A; is good if for all y € Z, the distribution (A;), almp (y) has
min-entropy at least n/2. Since t > 2nlog q and ssamp > log t, all but a negl(n) fraction of A;’s are “good”. Since
the marginal distribution of each A; is statistically close to uniform over ZZ” , it follows that each A; is good
with probability 1 — negl(n). By a union bound (and since ¢ = poly (1)), we conclude that with overwhelming
probability, all of the A; are good.

« If A; is good for all i € [¢], this means that He(74;) > n/2 > 21 +logq for all d € [A] and i € [¢], where
7a; — (Al (ca).

Ssamp
« By Lemma 3.7, the following pair of distributions are statistically indistinguishable for all i € [£]:
~ Samplev; ¢ Z{. Foreachd € [A], sample cg ¢ Z} and 74; (A,-)s‘salmp (cq). Output (v;, Vs, ..., V7).
- Sample v; & Z{,. For each d € [A], sample ug & Zg. Output (vi,ugj, ..., uy;).
Since this holds for all i € [£] and ¢ = poly(1), we conclude that the joint distribution of (ug;)(de[],ie[e]) in Do

and D, is statistically indistinguishable. Since both distributions derive r4; from u,4; using the same procedure,
we conclude that D, and D; are statistically indistinguishable.

Next, D; and D, are identical distributions. Namely, if ug; < Zg, then rg; = 0 with probability (2Bound + 1)/,
rq; = 1 with probability (2Bound +1)/q, and rg; = L with probability 1 — (4Byound + 2)/q. By a hybrid argument, we
conclude that Dy and D, are statistically indistinguishable.

Consider now the probability that in an execution of Hybib) and Hybéb), it happens that for all d € [A], there
exists an index i € [¢] where ry; = L. For a tuple (r1,1,...,71...,7d1,-.-,742) and an index d € [1], we define the
event Bad, to be the event that there exists i € [#] where ry; = 1. By a union bound, we have for all d € [1],

- (4Br0und + 2) 1 1
Pr[Badg : (rai)de[aLicle) < D2l < § 17 PPound 79 o E %=
iel¢] q ie[f]

when Bround > q/4 — q/(8¢) — 1/2. By definition of D,, we moreover have that

Pr /\ Badg : (uai)ae(a)ic[e) — D1| = l_[ Pr[Badg : (uai)ae(a)ic[e) < D2l = -
de(] de[A]

Finally, since D, and D are statistically indistinguishable, there exists a negligible function negl(-) where

1
Pr /\ Bady : (udi)de[arice) < Do| < Pr /\ Bady : (uai)dc(alic[e] < D2 | + negl(}) = a7t negl(4).
de[A] de[A]

()
5

Thus, in an execution of Hybib) and Hyb."’, the probability that for all d € [A], there exists an index i € [¢] where

rq; = L is at most 27 + negl(1). Thus, with overwhelming probability, the adversary’s view in Hybf}b) and Hybéb)
is identical. The lemma follows. O

Lemma 5.17. It holds that Hyb\" (A) = Hyb" (A).

Proof. In Hybgo), the challenger sets f = r;» whereas in Hybél), the challenger samples < {0, 1}. We argue that
the distribution of r;+ in Hybgo) is uniformly random (and independent of all other quantities in the adversary’s view).

Consider an execution of Hybéo). We consider two cases:

« Suppose for all d € [A], there exists an index i € [¢£] where ry; = L. In this case, the challenger samples
R
ri- — {0,1}.
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+ Otherwise, let d* € [A] be the smallest index where rg-; € {0,1} for all i € [¢]. Then, the challenger sets
rie = rge . In Hybéo), the challenger either sets r4- ;+ = L or samples rg+ ;+ < {0, 1}. Since 4 ;+ # L, this means
the challenger must have sampled ry- ;+ < {0,1}.

Finally, none of the other components in the adversary’s view depend on the value of ry4- ;«. As such, we conclude

that the distribution of r;+ in Hybéo) is uniform and independent of all other quantities in the adversary’s view. Thus,
the distribution of f in the two experiments is identical. O

Combining Lemmas 5.12 to 5.17, we conclude that Hyb(()o) & Hyb(l), which completes the proof. O

Theorem 5.18 (Succinctness). Ifnlogq = poly(A,log¢), then Construction 5.4 is succinct.

Proof. The size of the commitment ¢ output by GenBits in Construction 5.4 is either an element of Z§ or L. Thus,
we can describe c¢ by a string of length nlog g + 1. If nlog g = poly(4,log £), then succinctness holds. O

Parameter instantiation. Let A be a security parameter and let ¢ be the length of the hidden-bits string. We now
provide one possible instantiation of the parameters in Construction 5.4 to satisfy Theorems 5.5, 5.6, 5.10 and 5.11.
In the following, we assume that ¢ < 24, so logt < A.

« When setting parameters, we work under the assumption that g < 20}, Our final parameter instantiations
will satisfy this property. In this case, log g = O(4).

« We require that n > 41 + 2log g, so we can take n = 41+ O(1) = O(A).

« Wesett=3n[logq] - ([logf]+1) =0(13).

« We set spwg = A% for some constant § > 0, which we will set later.

« We set Samp = (£t +3n [log q1) log(¢n) = O(A*¢). We take Bax > Vtssamp = O(A1/20).

« We choose g = poly(4, £) and § such that g > 80t Vs wWEBmax +4€ = O(A%*9¢%) and the LWE,, ¢ ,s.we assumption
holds. In particular, since ¢ = poly(A, £) and £ < 2%, this means ¢ < 2°)| which satisfies our initial assumption.

« We set Bround = q/4 — q/(8¢) — 1/2.

+ Finally, we instantiate (Gen, Expand, SampleMultPre) with the (n, t, g, $samp)-shifted multi-preimage trapdoor
sampler from Theorem 4.7 (Construction 4.6).

We briefly verify that these parameters satisfy the necessary requirements:

« Theorem 5.10 requires that g > 4t Vst wEBmax + 4Bround. Since Bround = q/4 — q/(8¢) — 1/2, this is equivalent
to requiring that g/ (2¢) > 4t Vi wEBmax — 2, of equivalently, that g > 82tV AsLwEBmax — 4¢.

« All of the conditions of Theorem 5.11 are satisfied by construction. In particular, the requirement q¢ > 4B,ound +2
is always satisfied when Byound = q/4 — q/(8¢) — 1/2.

With this setting of parameters, we obtain a dual-mode hidden-bits generator with the following properties:

« CRS size: By Theorem 4.7, the size of the CRS is A + ntlog q + £t log g = ¢ - poly(4,log £). Moreover, in hiding
mode, the CRS sampling algorithm is transparent.

+ Commitment and opening size: The size of a commitment ¢ € ZJ is nlog q = poly(4,log ¢) bits. The size of
an opening 7 € Zj is tlog g = poly (A, log ¢) bits.

Finally, for all £ = poly(A), security relies on the LWE, ; ¢, assumption with a polynomial modulus-to-noise ratio
(in this case, ¢ = poly(2,£) = poly(A) and swe = A% for constant § > 0). We summarize our instantiation in the
following corollaries:

Corollary 5.19 (Dual-Mode Hidden-Bits Generator from LWE). Let A be a security parameter. Then, for all polynomials
¢ = £(A), under the LWE assumption with a polynomial modulus-to-noise ratio, there exists a dual-mode hidden-bits
generator with a CRS of size £ - poly(A,log £). Moreover, in (statistically) hiding mode, the common reference string can
be sampled using a transparent setup algorithm.
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Dual-mode NIZKs for NP. Corollary 5.19 suffices to obtain a dual-mode NIZK for NP from the plain LWE assump-
tion with a polynomial modulus-to-noise ratio. Specifically, by Theorem 5.2, it gives a computational single-theorem
NIZK proof in the structured reference string model and a statistical single-theorem NIZK argument in the uniform
random string model. Using the or-proof transformations from [FLS90, BCD*25], this can be upgraded to satisfy multi-
theorem zero-knowledge in the structured reference string model. As discussed in Remark 5.3, we can also directly
achieve multi-theorem zero-knowledge by showing that the hidden-bits generator in Construction 5.4 satisfies a
stronger simulation-based notion of security (see Appendix A). This yields an (adaptive) multi-theorem zero-knowledge
argument without any additional transformation (or using the NIZK to prove membership in a cryptographic language).

Corollary 5.20 (Dual-Mode NIZK for NP). Under the plain LWE assumption with a polynomial modulus-to-noise ratio,
there exists a dual-mode multi-theorem NIZK for NP. Specifically, there exists a computational multi-theorem NIZK proof
in the structured reference string model and a statistical multi-theorem NIZK argument in the uniform random string model.

Remark 5.21 (Handling Values Inside the Rounding Boundary). Asnoted at the beginning of Section 5, the verification
algorithm of our dual-mode NIZK checks that the opening is not close to a rounding boundary. This property is used
in the binding analysis to argue that each commitment can only be opened to (at most) one possible hidden-bits string.
When working with a polynomial modulus, there is a small, but noticeable, probability that a randomly-sampled set of
commitment and openings contains at least one opening that lands inside a rounding boundary. In Construction 5.4,
we handle this by having GenBits resample when this happens. By choosing the modulus g accordingly, we can show
that after A retries, the algorithm is successful with overwhelming probability. The previous work of [Wat24] used
a super-polynomial modulus, in which case the resampling is unnecessary because the probability of landing inside
the rounding boundary is negligible.

The work of [Wat24, Appendix B] also proposes an alternative approach where instead of resampling the commit-
ment and openings whenever an opening lands in the rounding boundary, the verification algorithm simply allows
the bit in question to be opened to an arbitrary value. This requires a more delicate binding analysis where instead
of showing that each commitment can be opened to exactly one hidden-bits string, one shows that each commitment
can only be opened to a small number of hidden-bits strings. The recent concurrent work of [BCD*25] takes this
approach in their lattice-based hidden-bits model NIZK construction.

6 Statistically-Hiding Vector Commitments from SIS

In this section, we show how to use our shifted multi-preimage trapdoor sampler to construct a statistically-hiding
vector commitment from the SIS assumption. Our vector commitment scheme supports transparent setup. Moreover,
the size of the CRS, the commitment, and the opening all scale polylogarithmically with the input dimension. This
improves upon the earlier constructions of de Castro and Peikert [dCP23], which does not support statistically-hiding
openings as well as the construction of Wee and Wu [WW23b], which required a structured common reference string
(with size quadratic in the input dimension). We start by recalling the definition of a vector commitment and then
provide our construction and analysis. We refer to Section 2.1 for a high-level overview of the construction. Our
definitions are adapted from [WW23b]:

Definition 6.1 (Vector Commitment). Let A be a security parameter and ¢ be a dimension. A vector commitment
scheme with succinct local openings over a message space M = {M ,L[} ) ren consists of a tuple of efficient algorithms
ITyc = (Setup, Commit, Open, Verify) with the following properties:

« Setup(1%, 1Y) — crs: On input the security parameter A and the vector length ¢, the setup algorithm outputs
a common reference string crs.

« Commit(crs,x) — (o, st): On input the common reference string crs and a vector x, the commit algorithm
outputs a commitment ¢ and a state st.

« Open(st, i) — m: On input a commitment state st and an index i, the open algorithm outputs an opening 7.
Note that the opening algorithm could be randomized.
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Verify(crs, 0, i, x, ) — b: On input the common reference string crs, a commitment o, an index i, a message
x, and an opening r, the verification algorithm outputs a bit b € {0, 1}.

We now define several standard properties on vector commitment schemes:

Correctness: For all polynomials ¢ = £(1), there exists a negligible function negl(-) such that for all A ¢ N
and all inputs x = (x1,...,x,) € Mﬁ{,,
crs « Setup(1%,19)
Pr | Verify(crs, 0,i,x;, 1) =1: (o,st) « Commit(crs,x) | =1 — negl(4).
7 < Open(st, i)

Succinctness: The vector commitment scheme is succinct if there exist fixed polynomials py, p; such that for all
A, £ € N, all crs in the support of Setup(ll, 1%), all vectors x € Mﬁ » all (o, st) in the support of Commit(crs, x),
and all 7 in the support of Open(st, i), we have that || = p; (A, log £) and | 7| = p;(A,log ¢).

Computational binding: We say the commitment scheme is computationally binding if for all polynomials
¢ = £(A) and all efficient adversaries A, there exists a negligible function negl(-) such that for all A € N,

Verify(crs, o, i, x, ) = 1
Pr and x # x’ and
Verify(crs, 0,5, x", 1') = 1

crs « Setup(14,1°);

(0,0, (x, 7), (x', ') — A(H 1, crs) = negl(1).

Statistical hiding: For a vector dimension ¢, an adversary A, and a simulator S = (Sp, S1), we define two
distributions Real # (4, £) and ldeal # s(A, £) as follows:

Real # (A, ¢): Ideal # 5(4,¢):

1. Sample crs « Setup(l/l, 1) and give crs to A. 1. Sample (crs, 0, st) « So(1%,19) and give crs to A.

2. Algorithm A outputs an input x € Mi o 2. Algorithm A outputs an input x € Mﬁ -

3. Compute (o, st) « Commit(crs, x) and give o to A. 3. Give o to A. ’

4. Algorithm A can adaptively query for openings. On || 4. Algorithm A can adaptively query for openings. On each
each query, it provides an index i € [¢], and the query, it provides an index i € [£], and the challenger
challenger replies with z; <~ Open(st, i). computes (7, st) « S1(st, i, x;). It replies to A with ;.

5. Algorithm A outputs a bit b € {0, 1} which is the output || 5. Algorithm A outputs a bit b € {0, 1} which is the output
of the experiment. of the experiment.

We say that the vector commitment scheme is statistically hiding if there exists an efficient simulator S =
(8o, S1) and such that for all polynomials ¢ = £(A) and all (possibly unbounded) adversaries A, there exists
a negligible function negl(-) such that for all 1 € N,

| Pr[Real # (A, £) = 1] — Pr[ldeal 4,5(4,¢) = 1]| = negl(A).

Vector commitment scheme. We now describe our vector commitment scheme. As described in Section 2.1, our
construction can be viewed as replacing the CRS in the Wee-Wu vector commitment scheme [WW23b, Construc-
tion 3.9] with the CRS for our shifted multi-preimage trapdoor sampler. Our analysis follows via a similar structure
as the analysis in [WW23b], except we now appeal to the properties of the shifted multi-preimage trapdoor sampler.
We give the full description and analysis below:

Construction 6.2 (Vector Commitment). Let A be a security parameter and ¢ be an input length parameter. Let
[Isamp = (Gen, GenTD, Expand, ExpandLocal) be a (n, ¢, g, s)-shifted multi-preimage trapdoor sampler that supports
local expansion (Definition 4.4). Let B = B(A, ) be a bound. We construct a vector commitment IIyc = (Setup,
Commit, Open, Verify) scheme over the message space M = Z, = {Zq(/l,t’) }MeN as follows:

Setup(1%,1°): On input the security parameter A and the vector dimension ¢, the setup algorithm samples
CrSsamp < Gen(14,19). It outputs the common reference string crs = (14, ¢, CISsamp)-
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« Commit(crs,x): On input the common reference string crs = (ll, £, crssamp) and a vector x € Zf], the

commit algorithm computes (Ay,...,Aptd) = Expand(ll, lf,crssamp). Then it samples (sy, ..., mp,c) —
SampleMultPre(td, x;ey, ..., x,e;) where e; = [1,0,...,0]" € ZZ is the first standard basis vector. It outputs
the commitment ¢ € Z;’ and the state st = (7y,..., 7,).

« Open(st,i): On input the state st = (74, ..., ;) and the index i € [¢], the opening algorithm outputs 7; € Z;‘

« Verify(crs, ¢, i,x, 7r): On input the common reference string crs = (14, £,CrSsamp), @ commitment ¢ € Z,
an index i € [f], a message x € Zg, and an opening 7 € Ztt]’ the verification algorithm computes A; =

ExpandLocal(1%, CrSsamp, 1) and outputs 1if |z]| < B and A;7 = ¢ + xe;.

Theorem 6.3 (Correctness). Suppose Ilsmp satisfies correctness and the preimage distribution property. If s > logt
and B > \/ts, then Construction 6.2 is correct.

Proof. Take any polynomial £ = £(1) and any x € Zf]. Let crs < Setup(14, 1), (¢, st) « Commit(crs,x), and 7; «
Open(st,i). Parse crs = (14, ¢, Crssamp)- Let (Ayq, ..., Aptd) = Expand(l", 1¢, CrSsamp)- By construction, the commit
algorithm samples (774, ..., 7, ¢) < SampleMultPre(td, x;ey, ..., x,e;). Consider the value of Verify(crs, ¢, i, x;, 7r;).

+ By correctness of ITsamp, Aj7; = ¢ + x;e;. It suffices to argue that ||7;]| < B.

« Since IIsamp satisfies the preimage distribution property, the distribution of (71,..., 7, c) is statistically close
to the distribution obtained by sampling ¢ <- Zg and mr; — (Aj);'(xie; +c) foralli € [£].

+ By Lemma 4.8, the marginal distribution of A; is statistically close to uniform. Since s > log ¢, by Lemma 3.2,
it holds that ||s;|| < Vts < B with overwhelming probability.

Finally, the local expansion property (Definition 4.4) ensures that ExpandLocal(1%, CrSsamp, 1) = A;. The above analysis
shows that A;m; = ¢+ x;e; and ||sr;]| < B, so Verify outputs 1 with overwhelming probability. m}

Theorem 6.4 (Computational Binding). Suppose Ilsamp satisfies somewhere programmability. Then, under the
SIS;-1,1,q.28 assumption, Construction 6.2 is computationally binding.

Proof. Take any polynomial ¢ = £(1) and any efficient adversary A for the computational binding game. We begin
by defining a sequence of hybrid experiments:

+ Hyby: This is the real binding experiment:

— The challenger begins by sampling crssamp < Gen(1%,1¢) and gives crs = (14, ¢, CrSsamp) to A.

- Algorithm A outputs a commitment ¢ € Z]}, an index i € [¢] and two pairs (x, &) and (x’, "), where
x,x" € My, and m, ' € Zf].

— The challenger then computes A; = ExpandLocal(1%, CrSsamp, i) and outputs 1if x # x', |||, [|#’|| < B,
and ¢ = A;r — xe; = A’ — x’eq. Otherwise, the challenger outputs 0.

« Hyb,: Same as Hyb,, except at the beginning of the game, the challenger samples an index i* <~ [¢]. The
output of the experiment is 1 if the conditions in Hyb, hold and i = i*.

« Hyb,: Same as Hyb,, except the challenger samples A;+ <~ Zg” and crsg,mp < Gen Prog(14, 1%, 1", A;).

We write Hyb, (A) to denote the random variable corresponding to the output of an execution of Hyb; with adversary
A. We now analyze each pair of adjacent experiments:

Lemma 6.5. It holds that Pr[Hyb,(A) = 1] = ¢ - Pr[Hyb, (A)].

Proof. The only difference between these two experiments is the additional condition that i* = i in Hyb,. Since the

adversary’s view in Hyb, is independent of i* (and in fact, the challenger can sample i* after the adversary outputs i),
the probability that Hyb, (A) = 1 is exactly 1/¢ - Pr[Hyby(A) = 1]. The claim follows. O
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Lemma 6.6. IfTlsamp is somewhere programmable, then Hyb, (A) & Hyb, (A).

Proof. The only difference between these two experiments is the distribution of crs. These two distributions are
statistically indistinguishable by somewhere programmability of Isamp O

Lemma 6.7. Suppose Ilsamp satisfies somewhere programmability and local expansion. Then, under the SIS,_1 1428
assumption, there exists a negligible function negl(-) such that for all A € N, Pr[Hyb,(A) = 1] = negl(1).

Proof. Suppose Pr[Hyb, = 1] > ¢(A) for some non-negligible e. We use A to construct an adversary 8 for the SIS
assumption:

(n—1)xt
Zq

« On input an SIS challenge matrix A € , algorithm B samples i* - [¢] and a < Z{. It sets A;- = al | e

ZZ”. Next, algorithm 8 samples crsgamp GenProg(l’l, 1%,i*, A;+) and gives crs = (1’1, £, Crsgamp) to A.
« Algorithm A outputs a commitment c, an index i, and two pairs (x, ) and (x’, z”). Algorithm B outputs 7 — 7’

Since the SIS challenger samples A & Zé"_l)“, the distribution of A;+ is uniform over ZZ” . Thus, algorithm 8
perfectly simulates an execution of Hyb, for A. Thus, with probability ¢, algorithm A outputs ¢ € Z7, i = i”,
x,x" € My, and m, nt’ € ZfI where

’

x#x and ||x|,||7'|| B and c=Aym—xe; =A;pn’ —xe;.

Here, we have implicitly used the fact that the (i*)™ matrix output by ExpandLocal(1%, i, crs) is A;+, which is guar-

anteed by somewhere programmability of IIs,mp and the local expansion property (Definition 4.4). This means

, x—x'
Ap(m— ') = (x = x')e; = [0 ] (6.1)
Since x # x’, we conclude that & — 7’ # 0. Since A+ = ‘X ], Eq. (6.1) now implies that A(x — ') = 0", Thus
7t — 7’ is a non-trivial SIS solution. Finally, || 7||, ||7’|| < B, so || — 7’| < 2B and algorithm B succeeds in breaking
SIS with the same advantage e. O

Combining Lemmas 6.5 to 6.7, we conclude that Pr[Hyb,(A) = 1] < £ - negl(A). Since ¢ = poly(1), computational
binding holds. O

Theorem 6.8 (Statistical Hiding). Suppose IIsamp supports simulatable openings (Definition 4.5) and moreover, that
n > A and q is prime. Then Construction 6.2 satisfies statistical hiding.

Proof. Since Ilsamp supports simulatable openings, let GenTD be the trapdoor generator algorithm. We construct an
efficient simulator S = (S, S1) as follows:

« Sy(1%4,1%): On input the security parameter A and the vector dimension ¢, the simulator setup algorithm first
samples (crssamp, T1, ..., Tp) < GenTD(14,1¢). Next, it samples ¢ & Zg. The simulator also initializes an
empty dictionary D to keep track of indices and openings. Finally, it outputs the common reference string
crs = (11, £, CrSsamp), the commitment c, and the simulation state st = (1’1, 1¢, CrSsamp, &, T1, ..., Tg, D).

« S(st, i, x;): On input the simulation state st = (11, 1¢, CrSsamp, G, T1, ..., Ty, D), an index i € [¢], and an input
x; € M), the simulator first checks if there is a mapping (i — ;) in D. If so, it replies with ;. Otherwise,
the simulator computes A; « ExpandLocal(l’l,crssamp, i) and samples 7; « SamplePre(A;, T;, x;e; + c).
It adds the mapping (i — ;) to D and outputs the opening n; together with the updated state st =
(IA, 1¢, CrSsamp> & T1, ..., Tp, D).

We now show that this simulator S satisfies the statistical hiding definition. Take any (possibly unbounded) adversary
A. We proceed via a hybrid argument:

+ Hyb,: This is the distribution Real # (4, £). Specifically, in this experiment, the challenger proceeds as follows:

33



The challenger samples crssymp < Gen(1%,1%) and gives crs = (14, ¢, CrSsamp) to A.

— Algorithm A outputs a vector x and the challenger computes (¢, st) <= Commit(crs, x). Specifically, the
challenger first computes (Ay, ..., A td) = Expand(lﬁ, 1¢, Crssamp)- Then it samples (4, ..., 7, €)
SampleMultPre(td, x;ey, . . ., x¢€1). The challenger responds to A with the commitment c.

Whenever the adversary requests an opening on an index i € [£], the challenger replies with ;.

At the end of the game, algorithm A outputs a bit b € {0, 1} which is the output of the experiment.
Hyb,: Same as Hyb,, except the challenger changes how it samples the commitment and the openings:

— The challenger samples crssamp < Gen(1%,1%) and gives crs = (14, ¢, CrSsamp) to A.
- Algorithm A outputs a vector x. The challenger responds to A with the commitment ¢ <- Zg. Then, the
challenger computes (Ay, ..., Ay, td) = Expand(1%, 1¢, Crssamp) and for each i € [£], 7; «— (A;); ! (x;e1+0).

— The rest of the experiment proceeds as in Hyb,,.
Hyb,: Same as Hyb,, except the challenger changes how it samples the common reference string:

— The challenger samples (crsgamp, T4, .. ., T,) « GenTD(1%, 17) and gives crs = (14, ¢, CrSsamp) to A.
- Algorithm A outputs a vector x. The challenger responds to A with the commitment ¢ - Zg. Then, the
challenger computes (Ay, ..., Ay, td) = Expand(14, 1¢, crssamp) and for each i € [€], r; « (A;); " (xje1+c).

— The rest of the experiment proceeds as in Hyb,,.
Hyb,: Same as Hyb,, except the challenger changes how it constructs the openings:

— The challenger samples (crssamp, T1, ..., Ty) < GenTD(lA, 1%) and gives crs = (IA, £, Crsgamp) to A.

- Algorithm A outputs a vector x. The challenger responds to A with the commitment ¢ - Zgq. Then,

the challenger computes (Ay,..., A, td) = Expand(ll, lf,crssamp) and for each i € [f], it samples
7t; < SamplePre(A;, T;, x;je; + ¢, s).

— The rest of the experiment proceeds as in Hyb,.
Hyb,: Same as Hyb,, except the challenger changes how it computes A;:

~ The challenger samples (crssamp, T1, ..., T¢) GenTD(14,1¢) and gives crs = (14, ¢, CrSsamp) to A.

— Algorithm A outputs a vector x. The challenger responds to A with the commitment ¢ <- Zg. For each
i € [£], the challenger computes A; = Expand Local(lk, CrSsamp, 1) and sr; «— SamplePre(A;, T;, x;e; +c, s).

— The rest of the experiment proceeds as in Hyb,,.

Hyb.: Same as Hyb,, except the challenger samples s; only when the adversary requests an opening on index
i€[f]:

The challenger samples (crssamp, T, ..., T¢) < GenTD(1%, 1¢) and gives crs = (14, ¢, Crssamp) to A. The
challenger also initializes an (empty) dictionary D to keep track of indices and openings.

Algorithm A outputs a vector x. The challenger responds to A with the commitment ¢ <- Zg.

— Whenever the adversary requests an opening on an index i € [£], the challenger first checks if there
is a mapping (i +— ;) in D. If so, it replies with 7;. Otherwise, the challenger computes A; =
ExpandLocal(1%, CrSsamp, 1) and samples sr; < SamplePre(A;, T;, x;eq +c, s). It adds the mapping (i + ;)
to D and gives 7; to A.

At the end of the game, algorithm A outputs a bit b € {0, 1} which is the output of the experiment.

This is the experiment ldeal 4, 5(A,?).
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We write Hyb, (A, S) to denote the random variable (indexed implicitly by the security parameter 1) corresponding
to the output of Hyb; with adversary A and simulator S. We now analyze each pair of hybrid experiments:

Lemma 6.9. Suppose Ils,mp satisfies the preimage distribution property. Then Hyb (A, S) X Hyb, (A, S).

Proof. By the preimage sampling property, with overwhelming probability over the choice of crssamp, the distribution
of (,1,..., 7, c) output by SampleMultPre(td, x1e, ..., xpe1) is statistically close to the distribution obtained by
sampling ¢ « Zg and m; «— (Ai);'(xie; +c) for all i € [£]. Thus, Hyb,(A,S) and Hyb, (A, S) are statistically
indistinguishable. O

Lemma 6.10. Suppose Iamp has simulatable openings. Then, Hyb, (A, S) & Hyb,(A, S).

Proof. By definition of mode indistinguishability (Definition 4.5), the distributions of crss,mp output by Gen(14,1%)
and GenTD(1%, 1°) are statistically indistinguishable. O

Lemma 6.11. Suppose samp has simulatable openings. Then, Hyb, (A, S) & Hyb,(A, S).

Proof. By the trapdoor generation property (Definition 4.5), we have that A;T; = G and moreover, that ||T;|| <
s/(tlogn). By Theorem 3.9, this means the distribution of 7; « SamplePre(A;, T}, x;e; + ¢, s) is statistically close
to sampling 7r; < (A;); ' (x;e; + ¢). This holds for all i € [¢]. Since £ = poly(A), we conclude that Hyb, (A, S) and
Hyb, (A, S) are statistically indistinguishable by a hybrid argument. O

Lemma 6.12. Suppose ExpandLocal is a correct local-expansion procedure. Then, Hyb, (A, S) = Hyb,(A, S).
Proof. Immediate by correctness of the local expansion procedure (Definition 4.4). O
Lemma 6.13. It holds that Hyb, (A, S) = Hyb: (A, S).

Proof. The only difference between these experiments is the order in which the challenger samples different com-
ponents. As such, the output of these two experiments is identically distributed. O

Statistical hiding now follows by combining Lemmas 6.9 to 6.13. O

Theorem 6.14 (Succinctness). Suppose nlogq < poly(A,log¢) and tlogq < poly(A,log¢). Then Construction 6.2 is
succinct.

Proof. This is immediate from the assumptions. Namely, each commitment in Construction 6.2 is an element
¢ € Zg, which has size |c| = nlogg < poly(4,log?). Similarly, each opening m; € Zfi has length at most
tlogq < poly(A,log?). O

Parameter instantiations. Let A be a security parameter and ¢ be the vector dimension. We provide one possible
instantiation of the parameters in Construction 6.2 to satisfy Theorems 6.3, 6.4, 6.8 and 6.14. In the following, we
will assume that ¢ is polynomially-bounded in A (i.e., £ < A° for some constant ¢ € N).

« We set the lattice dimension to be n = A.

« Wesett =3n[logq]-([log£]+1). When setting parameters, we work under the assumption that log g < klog A
for some constant k > 0. It is easy to check that this is satisfied by our final instantiation. In this case,
t = O(Alog flog A) = O(Alog® M) since log ¢ < clog A.

« We set s = (£t + 3n [log q]) log(¢n) = O(¢£Alog® A).
« We set B = Vts = 0(¢A3/?1og* 1).

+ We choose a prime g = 2B-poly(n) where the SIS,,_1 ; 425 assumption holds. In this case, log g = O(log A+log ¢).
Since log ¢ < clog A, we can bound (log q) by (k log A) for some sufficiently-large constant k > 0, as required.

35



« We instantiate (Gen, GenTD, Expand, ExpandLocal) with the (n, t, g, s)-shifted multi-preimage trapdoor sampler
from Theorem 4.7 (Construction 4.6).

With this setting of parameters, we obtain a vector commitment scheme over Zf] with the following properties:

« CRS size: From Theorem 4.7, Construction 6.2 supports a transparent setup and the size of the CRS is
A+logt+ntlogq=0(A%log’ A).

+ Commitment size: A commitment in Construction 6.2 consists of a vector ¢ € Zg which has size nlogg =

O(Alog A).

+ Opening size: An opening in Construction 6.2 consists of a vector 7r; € Zf], which has size t log g = O(1log> A).

We summarize the instantiation in the following corollary:

Corollary 6.15 (Vector Commitments from SIS). Let A be a security parameter. Then, for all polynomials £ = £(1),
under the SIS assumption with a polynomial noise bound f = poly (A, £) and a polynomial modulus q = poly(A, £), there
exists a vector commitment scheme over Zg with a transparent CRS of size O(A? log® 1) = poly(A), commitments of size

O(Alog A) and openings of size O(Alog® A). The vector commitment is computationally binding and statistically hiding.
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A Simulation-Based Statistical Hiding

In this section, we recall the stronger simulation-based statistical hiding property on dual-mode hidden-bits generators
from [LPWW20]. In this setting, we require that there exist an efficient simulator that can simulate a commitment
together with the openings to any random string. While this definition is more complex than the single-bit statistical
hiding definition from Definition 5.1, the work of [LPWW20] shows that it directly implies adaptive multi-theorem
statistical zero-knowledge for the resulting NIZK (as opposed to single-theorem statistical zero-knowledge). This
allows us to achieve multi-theorem security without needing the “or-proof” approach from [FLS90, BCD*25] (which
requires using the underlying single-theorem NIZK to prove membership in a cryptographic language). We refer to
Remark 5.3 for more discussion. We recall the formal definition below and then show that Construction 5.4 satisfies
this stronger property (with the same parameter requirements as in Theorem 5.11).

Definition A.1 (Statistical Simulation in Hiding Mode [LPW W20, Definition 3.1, adapted]). Let IIjgc = (Setup,
GenBits, Verify) be a hidden-bits generator. For an adversary A, a simulator S = (Sy, S1), an output length £ € N,
and a bit b € {0, 1}, we define the simulation-based statistical hiding game as follows:

« If b = 0, the challenger samples crs « Setup(lﬁ, 1¢, hiding). If b = 1, the challenger samples (tds, crs) «
So(14,1%). The challenger gives crs to A.

+ Algorithm A can now issue challenge queries. On each query, the challenger proceeds as follows:

- If b = 0, the challenger computes (o, 1, (7, ...,71;)) < GenBits(crs) and gives r to A. If b = 1, the
challenger responds with r & {0, 1}%.

— Algorithm A then specifies a set I C [p].
— If b = 0, the challenger responds with (o, {(i, 7;) };¢7)- If b = 1, it responds with S; (tds, {(i, i) }iep)-

« At the end of the game, algorithm A outputs a bit b’ € {0, 1} which is the output of the experiment.

We say that IIygg satisfies statistical simulation in hiding mode if for all polynomials £ = £(1) and Q = Q(4), all
unbounded adversaries A making at most Q challenge queries, there exists an efficient simulator S = (S, S;) and

a negligible function negl(-) such that for all 1 € N,
[Pr[b’ =1:b=0] —Pr[b' =1:b=1]| = negl()

in the simulation-based statistical hiding game.
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Theorem A.2 (Dual-Mode Multi-Theorem NIZK from Hidden-Bits Generators [LPWW?20]). If there exists a dual-mode
hidden-bits generator that satisfies statistical simulation in hiding mode, then there exists a dual-mode multi-theorem
NIZK for NP. Moreover, if the CRS for the binding (resp., hiding) mode of the hidden-bits generator is a uniform random
string, then the same holds for the statistical soundness (resp., statistical multi-theorem zero-knowledge) mode of the
resulting NIZK construction.

Theorem A.3 (Statistical Simulation in Hiding Mode). Suppose Ilsam, satisfies the preimage distribution property
and that it supports simulatable openings. In addition, supposen > 41+ 2logq, t > 2nlogq, q > 4Bround + 2 is prime,
Ssamp = 10g £, Bmax 2 \/?ssamp, and Bround = q/4 — q/(8¢) — 1/2. Then, Construction 5.4 satisfies statistical simulation
in hiding mode.

Proof. Since Ilsamp supports simulatable openings, let GenTD be the trapdoor generator algorithm. We construct an
efficient simulator S = (S, S) as follows:

« Sy(1%4,1%): On input the security parameter A and the output length ¢, the simulator setup algorithm sam-
ples (crssamp, T1, ..., Tp) GenTD(lA, 1%). Then, for each i € [¢], it samples v; & Zfl and outputs the
simulated common reference string crs = (1A, CISsamps V1, - - -, V¢) along with the simulator trapdoor tds =

(Crssamp, Tls cees Tt’)

o S1(tds, {(i,7i)};er): On input the simulation trapdoor tds = (T4, ..., T,) and a collection of bits r; € {0, 1} for
i € I, the simulator algorithm proceeds as follows:
1. Compute (A, ..., A, td) « Expand(1%, 1%, crssamp)-
2. Sample ¢ < Zg.

3. Foreachi € I, and d € [A], sample m4; < SamplePre(A;, T;, ¢). The simulator now sets 7r; = g4+ ; where
d* € [A] is the smallest index where ||74 ;|| < Bmax and

Vg i € [_BroundaBround] ifr;i=0

ViTg i € [LQ/ZJ - Brounda I.q/ZJ + Bround] if ri=1.

~ o~y

If there does not exist an index d* with this property, then the simulator outputs L.
4. Output (¢, {(i, 7;) }iep)-

We now show that the simulator S satisfies the required property. Take any polynomial £ = £(1) and Q = Q(A) and let
A be an (unbounded) adversary that makes at most Q challenge queries. We define a sequence of hybrid experiments:

+ Hyb,: This is the statistical simulation experiment where b = 0. Specifically, the experiment proceeds as follows:

— First, the challenger samples crsgamp < Gen(1%,1%) and for each i € [¢], the challenger samples v; & Zfz.
It gives the common reference string crs = (14, CISsamps V1, - - -» Vo).

— When algorithm A makes its k' challenge query (where k € [Q]), the challenger proceeds as follows
for each d € [A]:°

« Sample (ﬂgfl), . .,ng;,),c((ik)) — SampleMultPre(td, 07, ...,0™).

« For each i € [£], the challenger computes ufikl.) = VzT”L(iki)' If anikl)” > Bmax, the challenger sets
k

r;i = 1. Otherwise, it sets

k
0 u;’i) € [_Bround, Bround]
k k
r;,l.) =41 u(fl,i) € [LQ/ZJ - Bround, Lq/ZJ + Bround] (Al)
1L otherwise.

6Similar to the proof of Theorem 5.11, we explicitly unroll the A iterations of rejection sampling that the GenBits algorithm performs.
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(k )

» Suppose for all d € [A], there exists an index i € [¢] where rq; =L Then, the challenger sets

c¢® =1 and Vielf] :ri(k) =0 and ngk) =1.
Otherwise, let d* € [A] be the first index where r(k). € {0,1} for all i € [#]. Then the challenger sets

k . k k k k
) = cfi*) and Vie [{] :ri( ) = r;*’)i and n( ) = n;*’)i.

« The challenger responds to A with b = (rl(k), e, r}k)).
« After algorithm A specifies a set I C [p], the challenger responds with ¢(¥) and {(i, ﬂgk))}ie[jk].

— At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

+ Hyb,: Same as Hyb, except for all k € [Q]andd € [/1] the challenger instead samples c( ) & < Zy and for all
i € [£], the challenger samples 7r — (A; )S“mp( )

+ Hyb,: Same as Hyb, except the challenger uses the following procedure to respond to challenge queries:

— Sample c/F) & 7}y and rik) & {O l}”

— Then, for each i € [#], sample 7r — (A; )ssamp( k)) conditioned on ||7r§k)|| < Bmax and
k . k
I”( : € [~Bround Bround] if ri( = 0
. k
I ,' E [l_q/ZJ = Brounds |_CI/2_] + Bround] if r,-( ) =1

If there does not exist 71,’( in the support of (A; )swp( (k)) that satisfies the requisite condition, then the
challenger halts the experiment and outputs 0.

+ Hyb,: Same as Hyb, except the challenger uses the following procedure to respond to challenge queries:

— Sample ¢(®) & Zj and r & o, 1}¢.

— Then, for each i € [¢] and d € [1], sample 7r — (A; )smp( (k)). Then, set ﬂfk) = ﬂ(d]f)i where d* € [1]
is the smallest index where ”ﬂ;k)lH < Bmax and
. k
V é[k)l € [_BroundaBroundJ lfri( ) = 0
k . k
( ) HC]/ZJ Brounds LC]/ZJ + Bround] if Vi( = 1.

If there does not exist an index d* with this property, then after the adversary responds with I, the
challenger responds with L.

+ Hyb,: Same as Hyb, except the challenger uses GenTD to sample crsy,mp. Specifically, at the beginning of the
experiment, the challenger samples (crssamp, T1, ..., Ty) < GenTD(1%, 17).
+ Hyb,: Same as Hyb except when responding to challenge queries, the challenger now samples 71'( gy

SamplePre(A;, T;, c' ,ssamp) forallk € [Q],d € [A], and i € [£]. This is the statistical simulation experlment
where b = 1.

We write Hyb, (A) to denote the random variable corresponding to the output of an execution of Hyb; with adversary
A. We now analyze each adjacent pair of distributions.

Lemma A.4. Suppose Ilsamy, satisfies the preimage distribution property. Then, Hyb,(A) & Hyb, (A).
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Proof. This follows by the same argument as that used in the proof of Lemma 5.12. Specifically, by the preimage
distribution property, the distributions (m ® . n(k) (k)) « SampleMultPre(td, 0", ...,0") from Hyb, and the

d 1’ dzt’
distribution c((z.k) & Zg and 7r di (Al)ssamp( (k)) from Hyb, are statistically close. Since d € [A], k € [Q], and
Q = poly(A), the claim follows by a standard hybrid argument. O

Lemma A.5. Supposen > 41+ 2logq, t > 2nlogq, ¢ > 4Bround + 2 is prime, Ssamp = logt, Bmax 2 \/?ssamp, and
Bround = q/4 — q/(8¢) — 1/2. Then Hyb, (A) & Hyb,(A).

Proof. Fix any challenge query index k € [Q]. We analyze the joint distribution of (c(k), nik), ey n{(,k), rl(k), ey r{gk))
sampled using the procedure in Hyb, and the distribution sampled using the procedure in Hyb,. We will show that
these distributions are statistically indistinguishable. The claim then follows by a standard hybrid argument (since
Q = poly(4)). Consider the distribution in Hyb,. For each d € [1], we say an event E; occurs if for all indices i € [£],

it holds that rlgki) # L. We now show the following claims:

Claim A.6. In Hyb,, for all d € [A], there exists a negligible function negl(-) such that for all A € N, Pr[E4] >
1/2 — negl(A).

(k)

Proof. We will use a union bound. Fix any index i € [¢]. Consider the probability that r;’” = L. There are two cases

where this might happen:

(k)” > Bpmax; OF

k
u¢(i,i) ¢ [_Brounds round] [|_CI/2J round: Lq/ZJ + Bround]-
We analyze the probability of each of these events:

« In Hyb,, the challenger samples 7[ — (A)7 (c (k)) By Lemma 4.8, the marginal distribution of A; in Hyb,

Ssamp

is statistically close to uniform. Since t > 2nlogq, Ssamp = logt, and Bax 2 \/_ssamp, by Lemma 3.2, with

overwhelming probability over the choice of nski), it holds that ””ék,-) H < Bmax. Thus, the first event occurs
with negligible probability. ’ ’

« For the second property, we appeal to Lemma 3.8 to conclude that with overwhelming probability over the
choice of A;, .
Hw(”((i,i)) >n/2 > 21 +logg.

Since the challenger samples v; <- Zg, by the leftover hash lemma (Lemma 3.7), the marginal distribution of

(k) _ (k)

u,; =vim 4 s statistically close to uniform over Z4. Thus,

— (4Bround +2)
Pr uo(lfcl) ¢ [_Brounda round] [l_q/ZJ Brounds I_q/ZJ + Bround] w

IA

+ negl(1)

IA

1
— |
57 + negl(4),

since 4Bround + 2 > q — q/(2¢). Note that when q > 4Byound + 2, the intervals [—Byounds Bround] and [|q/2] —
Brounds 1q/2] + Bround] are disjoint and each has size 2B,ound + 1.

By a union bound, for any fixed i € [£], the probability that r((jki) = 1 is 1/(2¢) + negl(A). Since £ = poly(1), we can
appeal to a union bound to conclude that the probability that there exists an index i € [¢] where r(k) = 1 is at most

1/2 + negl(A). Correspondingly, the probability that E; occurs is at least 1 — (1/2 + negl(1)) = 1/2- negl(1). O

Claim A.7. Ford € [A], let X; be the joint distribution of( (k) ;kl), cen, nék{,), ;kl)’ .. tgk[)) in an execution in Hyb,
(which is a function of crssamp and vy, ..., ve). Then for all d € [A], the condltzonal dlstrlbution of Xy given Eg is

statistically close to the following distributlon Yy:
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« Sample c{(ik) & Zg. For eachi € [£], sample rc(iki) & {0,1}.

« Foreachi € [t], sample 7r (A,)SS;mp (c((ik)) conditioned on ””c(ikz)n < Bmax and
k k
V}-nc(i,i) € [_Bround> Bround] lfr( ) = =0
k . k
vi n; 3 € [19/2] — Bround: L4/2] + Bround] ifrys =1

If there does not exist 7r in the support of (A; )Ssam (c (k)) that satisfies the condition, then the output is L.

((k) (k) (k) (k) r(k))
dl""’ de’ dl""’ de /"

Proof. Take any d € [A]. We proceed via a hybrid argument. Specifically, we define the following distributions:

« Output (c /4

o Dy: This is the conditional distribution X; given E;. Namely, for each i € [¢], the distribution first sam-
ples c;k) ¢ Zj. Then it samples n( ) (Al)ssamp (k)” (k)

(cy (k )) conditioned on Hndi Bmax and vim,; €
[_Bround, round] [|_CI/2J Brounds LQ/ZJ + Bround] Then, it sets r( )

according to Eq. (A.1).

« D;: This distribution first samples c;k) & ZZ. Then, let R, be the conditional distribution of (rékl), .. g(lk[))
‘(ikl), e, rg(lk[)) «— R4 conditioned on the value c((ik). Then for each i € [£],

(c (k)) conditioned on anikl)H < Bmax and

given E,4. This distribution samples (r

it samples n(k) — (A)L

Seamp
VTﬂé’? € [~Bround: Brownd] if ) = o
g € [14/2] = Bround 14/2] + Bround] ifr® =1,

The output is still ( (k) ”((1],?’ e, ﬂ;ﬁ,), r((jﬁ), ., 0(/;))

e D,: Same as 2)1 except this distribution samples r(fl l.) & {0,1} for all i € [£]. In this distribution, if there does
not exist n ) in the support of (Al)ssam (c (k)) that satisfies the requisite condition, then the output is L.

First, we claim that by construction, distributions 9Dy and 9, are identical. In particular, let IT; be the conditional

distribution of (n‘(ikl), .. <k) ) given Ey4. Then, the distributions can be described as follows:
« Distribution 9, corresponds to sampling cl(ik) & Zg and then sampling (n((ikl), . .,n{(ikf)) « II; conditioned

(k) k)

d1 RERFLPY. ) «— Ry conditioned on the values of cék) and

on the value c(k). Finally, the distribution samples (r

( ‘(11:1) L (k)) Note that given n( ) , the value of rt r ) is fully determined.

« Distribution D; correspond to sampling cé )& Zg and then sampling (réﬁ), .. tgk[)) «— R, conditioned on
the value c((ik). Finally, the distribution samples (”z(z'kl)’ e, n;k[) ) « II; conditioned on the values of c((ik) and
(r©, 0

di1> 2 lae )

By definition, these are equivalent ways to sampling from the conditional distribution of X; given E,4. Thus, D, and
D are identical distributions. It suffices to argue that distributions O, and D, are statistically indistinguishable. To

do so, we analyze the distribution R, given c‘(ik) (for an arbitrary vector c‘(ik) € Zg). Fix any i € [£]. We consider the

probability that r(@ = 0 conditioned on the event E; and the choice of c<k). First, let E;; be the event that rg; # L.

( )

In this case, E; = /\le[ ¢] E4i- Moreover, since each 7,/ is sampled independently, it follows that

k k k k k k
Pr rg(l’i) =0] Eq, c; )] =Pr [r;!i) =0|Eg; c; )] =Pr [v}n( ) € [~Bounds Bround] | Eqi, ci, )]

d,i
k k
Pr [V ”((j ) [_BroundsBround] A Ed,i | C; )] (AZ)

Pr [Ed,i | c((ik)]
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where the probability in each expression is taken over the choice of 7r — (A)) ssamp( )) We now analyze the
probability of these events:

+ As in the proof of Claim A.6, the marginal distribution of A; in Hyb, is statistically close to uniform, so with
overwhelming probability over the choice of n(k) it holds that Hn((z.ki) || < Bmax-

« By the same argument as in the proof of Claim A.6 (specifically, by Lemmas 3.7 and 3.8), over the randomness

of v; & Zg, the marginal distribution of u(k) =v; Tr®) s statistically close to uniform over Z,. This means

d,i

k)

Pr [V 7r(

k 2Biound + 1
€ [_Bround,Bround] A Ed,i | C((i )] € [ "

where 1 (1) = negl() is a negligible function. Similarly, we can write

4B
-8,

4B +2
pr g o € [ e

where 82(4) = negl(A). Thus, Eq. (A.2) implies that

Y
2 2

Pr v’ k .
P (k) _ (k) r[ 'c(z' : € [ Bround,BrOUnd] A Ed,i | c; )] . .

I rdi 0 | Ed, Cd ] [ ]’
| Pr [Ed,i | C((ik)]

for some negligible function §(1) = negl(1). Moreover, conditioned on E4, we have that r{gki) € {0,1}, so the

probability that rlgki) = 1is also negligibly close to 1/2.

(k) -

« Finally, since 4 s sampled independently for all i € [£], the distribution of each r(k)

is independent.

We conclude that in distribution 9;, each r i ) is sampled independently from a distribution that is statistically close
to the uniform distribution over {0, 1}. Since £ = poly(1), we conclude that distributions D; and D, are statistically
close by a standard hybrid argument. O

Completing the proof of Lemma A.5. We now return to the proof of Lemma A.5. By Claim A.6, we conclude
that with overwhelming probability, there exists some d € [A] such that event E; occurs. Let d* € [A] be the first
such index where E4- occurs. In this case, the challenger in Hyb, sets c(k) = c(k) and for all i € [£], it sets r<k) (k)l

and 7, (k) _ (k). By Claim A.7, the conditional distribution of (c(k) n , (k), r(k) . r{fk)) when event E -
occurs is statlstlcally close to the distribution Y. This is precisely the d1str1but10n in Hyb O

Lemma A.8. Supposen > 41+ 2logq,t > 2nlogq, q > 4Biound + 2 is prime, Ssamp = logt, Bmax = \/fssamp, and
Bround > q/4 = q/(8¢) = 1/2. Then Hyb,(A) 2 Hyb;(A).

Proof. By construction, the two distributions are identical unless in an execution of Hyb,, there exists indices k € [Q]
and i € [¢] where for all d € [A], it holds that either ||| > Byax or

(k) ¢ [ round,Bround] if ri(k) =0
ﬂ(k) ¢[lq/2]-B 2| +B i) _ 4
d,i q round> LQ/ J+ round] uwr, " =1

Let Ey ; be the event that this happens. We show that for all k € [Q] and i € [¢], the event Ex; happens with negligible
probability. We follow a similar analysis as in the proof of Claim A.6:

+ In Hyb,, the challenger samples 7r — (A; )Ssamp( (k)) By Lemma 4.8, the marginal distribution of A; in Hyb,
is statistically close to uniform. Smce t > 2nlogq, Ssamp > logt, and Bmax > Vtssamp, by Lemma 3.2, with

overwhelming probability over the choice of n;kl.), it holds that ””((iki) || < Bmax-
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« Next, by Lemma 3.8, with overwhelming probability over the choice of A;,
He (m (k)) >n/2 > 2A+loggq.

Since the challenger samples v; <- Zg, by the leftover hash lemma (Lemma 3.7), the marginal distribution of

MO (k)

Ug; = Vi 4 18 statistically close to umform over Z,4. Consider now two cases:

- If rl.(k) = 0, then

B (ZBround + 1)

Pr (k) ¢ [ BroundaBround]] < + neg](/U

since 2Bround +1 > q¢/2 —q/(4¢) and ¢ > 1.
— Conversely, if rl.(k ) = 1, then by the same calculation,
q- (2Br0und + 1)
q
3
-+ 1(A).
7 T nesl(d)

IA

Pr |} ¢ [1q/2] = Bround: L4/2] + Bround +negl(2)

IA

By a union bound, the probability that ﬂ(k.) does not satisfy the required conditions is at most 3/4 + negl(A1). Since

each n( ) is sampled independently, the probablhty that for all d € [A], the vector ﬂ;"i) does not satisfy the required
condltlons is then at most ’

A
Pr[Eg;] < (Z + negl(/l)) = negl(1).

Since Q = poly(A) and ¢ = poly(4), by a union bound, the probability that there exists k € [Q] and i € [¢] where
event E; happens in an execution of Hyb, is also negligible. Correspondingly, the outputs of Hyb, and Hyb, are
statistically indistinguishable. O

Lemma A.9. Suppose Ilsamp supports simulatable openings. Then Hyb,(A) & Hyb,(A).

Proof. By mode indistinguishability (Definition 4.5) the distribution of crssymp output by crsgamp < Gen(1%,1%) and
(crssamp, T1, ..., Tp) < GenTD(14, 1) are statistically indistinguishable. The former corresponds to the distribution
of crsgamp in Hyb, while the latter corresponds to its distribution in Hyb,. The claim follows. O

Lemma A.10. Suppose Ilsum, suppose simulatable openings. Then, Hyb,(A) & Hyb,(A).

Proof. By trapdoor generation (Definition 4.5), we have that A;T; = G and moreover, that || T;|| < ssamp/(tlogn). By
Theorem 3.9, this means the distribution of n[(ikl.) « SamplePre(A;, T;, ¢k Ssamp) is statistically close to sampling

(k) — (A);] (c(k)) Since Q = poly(A) and ¢ = poly(4), Hyb,(A) and Hyb, (A) are statistically indistinguishable
by a hybrid argument O

Statistical simulation in hiding mode now follows by Lemmas A.4, A.5 and A.8 to A.10. m|

45



