
Adaptively-Secure Big-Key Identity-Based Encryption

Jeffrey Champion
UT Austin

jchampion@utexas.edu

Brent Waters
UT Austin and NTT Research
bwaters@cs.utexas.edu

David J. Wu
UT Austin

dwu4@cs.utexas.edu

Abstract

Key-exfiltration attacks on cryptographic keys are a significant threat to computer security. One pro-
posed defense against such attacks is big-key cryptography which seeks to make cryptographic secrets so
large that it is infeasible for an adversary to exfiltrate the key (without being detected). However, this also
introduces an inconvenience to the user whomust now store the large key on all of their different devices.
The work of Döttling, Garg, Sekar and Wang (TCC 2022) introduces an elegant solution to this problem
in the form of big-key identity-based encryption (IBE). Here, there is a large master secret key, but very
short identity keys. The user can now store the large master secret key as her long-term key, and can pro-
vision each of her devices with short ephemeral identity keys (say, corresponding to the current date). In
this way, the long-term secret key is protected by conventional big-key cryptography, while the user only
needs to distribute short ephemeral keys to their different devices. Döttling et al. introduce and construct
big-key IBE from standard pairing-based assumptions. However, their scheme only satisfies selective secu-
rity where the adversary has to declare its challenge set of identities at the beginning of the security game.
The more natural notion of security is adaptive security where the user can adaptively choose which
identities it wants to challenge after seeing the public parameters (and part of the master secret key).

In this work, we give the first adaptively-secure construction of big-key IBE from standard crypto-
graphic assumptions. Our first construction relies on indistinguishability obfuscation (and one-way func-
tions), while our second construction relies on witness encryption forNP together with standard pairing-
based assumptions (i.e., the SXDH assumption). To prove adaptive security, we show how to implement
the classic dual-system methodology with indistinguishability obfuscation as well as witness encryption.

1 Introduction

Security breaches are increasingly common today, and one of the highest-value targets in a security breach

are the cryptographic keys residing on a user’s system. Once an adversary successfully recovers a user’s

secret cryptographic key, they gain the ability to decrypt all of the user’s potentially sensitive data and can

even impersonate the user to other clients. This problem is further aggravated when using more advanced

encryption systems such as identity-based encryption (IBE) [BF01, Coc01] where a central authority holds on

to a long-term secret key. Such systems introduce a single point of failure and if the central authority’s single

long-term secret key is compromised, then the adversary breaks security for all of the users in the system.

Cryptography in the bounded retrievalmodel. One proposal tomitigate the threat of a key-exfiltration

attack is to make it difficult or infeasible for the adversary to exfiltrate the secret key. This has motivated

the “bounded-storage model” and the concept of “big-key” cryptography [Dzi06, CLW06, CDD+07, ADW09,

ADN+10, BKR16, MW20, DGSW22]. Here, the idea is to make the cryptographic keys sufficiently large that

key exfiltration becomes infeasible to an adversary that only has a bounded amount of storage. In practice,

1

the bounded storage might translate to an adversary being able to retrieve a bounded number of bits from

a compromised system before the adversary is detected and its access removed.

A number of works have studied constructions of big-key public-key encryption in the bounded storage

model [ADN+10, MW20]. In these settings, the goal is to have a large secret key (which is hard to exfiltrate)

and a short public key. Moreover, the honest user should not incur the penalty of having to manipulate a large

cryptographic key. In particular, encryption and decryption should both be fast; in the case of decryption,

the idea is that the decryption algorithm only needs random access to a few ciphertext-dependent bits of the

secret key to decrypt. The main security requirement is semantic security (for a fresh ciphertext) should hold

even if the adversary gets arbitrary bounded leakage on the large secret key. As discussed in [DGSW22], a

major disadvantage of this model is the fact that the large secret key has to be replicated to each of the user’s

devices. This can impose significant storage burdens for each device that needs a copy of the secret key.

IBE with incompressible master secret key. Döttling, Garg, Sekar, and Wang [DGSW22] propose an

elegant solution to the problem of needing to replicate the large secret key to each device owned by the user.

They introduce the notion of a big-key IBE scheme where there is a long incompressible master secret key,

but short identity keys. Recall first that in an IBE scheme, both secret keys and ciphertexts are associated

with an identity id and decryption succeeds (i.e., recovers the plaintext associated with the ciphertext) if

the identities associated with the ciphertext matches that of the decryption key. In the setting envisioned

by [DGSW22], the long-term key would be the large master secret key for the IBE scheme. Each ciphertext in

the system would be encrypted to an identity that identifies a particular time window (e.g., the current date).

Users would provision each of their devices with the identity keys for the time intervals of interest. These

ephemeral keys are identity keys and thus, are short. Moreover, if an identity key is compromised, it only

compromises the security of messages tagged with that particular time window. In a sense, the individual

identity keys in the system are viewed as short ephemeral keys while the long-term key is the large master

secret key for the IBE scheme. Importantly, in this model, the user only needs to store one copy of the

long-term master secret key; each of the user’s devices would only need to store ephemeral identity keys.

The challenge: adaptive security. In the same work, Döttling et al. [DGSW22] showed how to construct

a big-key IBE scheme from standard assumptions on groups with bilinear maps. One limitation of their

system is it only provides selective security. Namely, the adversary in the IBE security game must pre-declare

the set of identities it wants to target at the beginning of the security game (before it sees the public key

of the scheme or makes key-generation queries). This is in contrast to the more natural notion of adaptive

(or full) security where the adversary can adaptively choose which identities it wants to target after it sees

the public parameters as well as its choice of leakage on the master secret key. Their work leaves open

the question of constructing a big-key IBE scheme with adaptive security.

This work. In this work, we give two constructions of adaptively-secure big-key IBE schemes from

standard assumptions. Our first construction relies on indistinguishability obfuscation [BGI+01, GGH+13]

(and one-way functions) while our second construction relies on witness encryption [GGSW13] for NP

in conjunction with standard pairing-based assumptions. To prove adaptive security of our scheme, we rely

on a dual-system proof [Wat09, LW10]. The intricacies of carrying out this dual system proof strategy (see

Section 1.1) is a key reason why our approach relies on considerably stronger machinery (either indistin-

guishability obfuscation or witness encryption) compared to the previous selectively-secure construction.

Along the way, we also highlight some issues in the previous definitions and analysis of big-key IBE; we

provide a more detailed discussion of these definitional issues in Section 3.

2

1.1 Technical Overview

In this section, we provide a general overview of our main constructions of adaptively-secure big-key IBE

from indistinguishability obfuscation and from witness encryption.

Identity-based encryption. We start by recalling the syntax of a standard identity-based encryption

(IBE) scheme [BF01, Coc01]:

• Setup: The setup algorithm in an IBE scheme generates the public parameters pp and the master

secret key msk for the scheme.

• Key generation: The key-generation algorithm takes the master secret key msk and an identity id,

and outputs a secret key skid for the particular identity.

• Encryption: The encryption algorithm takes the public parameters pp, an identity id, and a message

<, and outputs a ciphertext ct.

• Decryption: The decryption algorithm takes a ciphertext ct (associated with an identity id and

message<) together with a secret key skid′ (associated with an identity id′) and either outputs the

message< if id = id′ or ⊥ if id ≠ id′.

The semantic security requirement for an IBE scheme states that the adversary should not be able to

distinguish between an encryption of<0 from an encryption of<1 for any challenge identity id for which

it does not have the corresponding secret key.

Big-key IBE. In a big-key IBE scheme [DGSW22], the correctness requirement is the same as for vanilla

IBE. However, the security requirement is modified to give the adversary (bounded) leakage on the master

secret key:

• In the big-key security game, the adversary can specify any efficiently-computable leakage function

5 (with output length at most ℓ) and learn 5 (msk). The output length ℓ ≥ 0 is the leakage parameter

for the scheme.

• Next, instead of a single challenge identity, the adversary specifies a set of : challenge identities J .

To win, the adversary must break semantic security for all identities within the challenge set J .

Here, the parameter : is a function of the security parameter _ and the leakage length ℓ . In the

adaptive security game, we allow the adversary to choose the set of identities J after it receives the

public parameters, the leakage on msk, and after it makes key-generation queries on identities of

its choosing (with the stipulation that the adversary does not make a key-generation query on any

identity in the challenge set J).

The adversary’s task is necessarily harder in the big-key IBE security game compared to the vanilla IBE secu-

rity game because the adversary must break semantic security of : identities rather than 1. This is inherent

because the leakage function the adversary chooses can allow it to learn the secret keys for a handful of iden-

tities. The work of [DGSW22] consider the setting where : = ℓ+1; namely, if the adversary gets ℓ bits of leak-

age about the master secret key, then it wins only if it breaks semantic security on at least : = ℓ +1 identities.

In addition, for big-key IBE, we require that the running times of the key-generation, encryption, and

decryption algorithms to be efficient and run in time that is poly(_, log ℓ) on a RAM machine. Notably,

3

while the length of the master secret key msk can (and necessarily) must grow with the leakage parameter

ℓ , the key-generation algorithm should only read a few bits of msk to generate an identity key.

In this work, we will focus on the simpler setting where the length of the public parameters can also

grow with the leakage size ℓ . However, we maintain the requirement that the encryption and decryption

algorithms only need to read poly(_, log ℓ) bits of the long public key. Döttling et al. [DGSW22] showed how

to use a non-interactive secure computation (NISC) scheme to generically transform a big-key IBE scheme

with large public parameters (but fast encryption and decryption) into one with short public parameters. As

we show in Appendix A, this transformation still preserves adaptive security. Thus, for the remainder of this

overview (and throughout this work), we focus on the simpler setting of big-key IBE with long public keys.

The [DGSW22] approach. We begin with a brief description of the approach from [DGSW22]. Their

scheme relies on a puncturable pseudo-entropy function (PEF). A PEF [BHK11] is a functionwhose outputs at

certain inputs are statistically unpredictable even given leakage on the key to the PEF. Thework of [DGSW22]

show how to construct a PEF where the key consists of a large number of blocks : = (:1, . . . , :#) and

moreover, the PEF supports local evaluation where the value of the PEF at an input G only depends on a

small (and random-looking) subset of blocks of the secret key. Their construction then operates as follows:

• The master secret key consists of the PEF key : = (:1, . . . , :#) and the public parameters consist of

commitments pp = (21, . . . , 2#) to the blocks of the secret key.

• The secret key skid for an identity id consists of the evaluation of the ~ = PEF(:, id) together with a

non-interactive zero-knowledge (NIZK) proof that ~ was correctly computed with respect to the com-

mitted key pp = (21, . . . , 2#). For this to be succinct, it is critical that the PEF is locally-computable

(i.e., the output of PEF(:, id) only depend on :8 for some 8 ∈ �id ⊂ [#], where |�id | ≪ #).

• An encryption of a message to an identity id is essentially a witness encryption1 of the message< for

the relation that essentially checks that the decrypter possesses a valid NIZK proof that~ = PEF(:, id)

with respect to the (subset of) committed keys 28 for 8 ∈ �id. Here, the work of [DGSW22] shows that

a special witness encryption scheme tailored for NIZK proofs on committed values [BL20] suffices,

which can in turn be instantiated by standard pairing-based assumptions.

The proof of selective security then proceeds along the following lines:

• First, the identity keys consist of zero-knowledge proofs of openings to the commitments 28 . Thus,

they hide the values of the actual bits :8 in the master secret key. The only leakage on the PEF key

: is through the leakage function (applied to the master secret key msk = :).

• Next, [DGSW22] rely on puncturing. Namely, they show how to puncture the PEF key at a set of

identities J to obtain a punctured key :J . The property is that the punctured key :J can be used

to evaluate the PEF on all inputs 8 ∉ J while the values on J retain high statistical min-entropy.

The idea in the selective security proof is that the reduction algorithm will first puncture the PEF key

on the challenge set J . In this case, they can show that for every challenge set J , there will exist

at least one identity id∗ ∈ J such that the value of ~id∗ = PEF(:, id∗) is statistically unpredictable

to the adversary (even given the leakage on the PEF key). In combination with the security of the

1In a witness encryption scheme [GGSW13], one can encrypt a message < to an arbitrary NP statement G . To decrypt, one

provides a witness F for the statement G . If the witness is valid, then decryption recovers the message<. If the statement G

is false (i.e., no witness exists), then the ciphertext computationally hides the message<.

4

witness encryption, they can argue that such an adversary cannot have non-negligible advantage

breaking semantic security with respect to id∗.

The use of puncturing means the reduction algorithm needs to know the challenge identities ahead of time in

order to program them into the scheme parameters. It is unclear how to extend this approach to the adaptive

setting where the reduction algorithm does not know in advance which identities the adversary might query.

While we can envision some type of partitioning strategy [BF01, Wat05] that has been successful for

arguing adaptive security in the setting of plain IBE, it is less clear how to execute such a strategy in this

setting. In plain IBE, there is just a single challenge identity, so the idea in the partitioning proof is to

partition the identity space into two sets (,) , with the property that the reduction algorithm is able to

generate secret keys for identities id ∈ (but not for identities id ∈) . The hope then is that the adversary’s

key-generation queries fall into set (while its challenge query falls into set) . If the adversary only makes

a single challenge query, the reduction can choose (,) such that with inverse polynomial probability, all

of the key-generation queries land in (while the single challenge query lands in) . In the big-key setting,

the challenge is that the adversary now specifies a set J of challenge identities. For the adversary to be

useful, we need to set up the reduction so that an adversary that succeeds in breaking semantic security

for any identity id ∈ J in the challenge set can be used to break the computational assumption. In this

setting, we do not see a way to partition the identity space into sets (,) such that with good probability,

all of the adversary’s key-generation queries fall into (while all of the challenge queries fall into) . Thus,

proving adaptive security will require a different proof technique.

Our approach. To prove adaptive security, we take a dual-system approach [Wat09, LW10]. Implement-

ing a dual-system proof strategy will require additional machinery and as a result, our constructions either

rely on indistinguishability obfuscation or general-purpose witness encryption. We begin by describing

our basic template, which is a slimmed-down version of the construction from [DGSW22], where we no

longer have a PEF:

• The master secret key is a random bit-string of length # = poly(_, ℓ): msk = (A1, . . . , A#). The public

parameters are commitments to the bits of the master secret key: pp = (21, . . . , 2#).

• A secret key skid for an identity id is a NIZK proof of the openings to the commitments 28 for 8 ∈ �id
where the subset �id is derived from a hash function �id = H(id) on the identity. Note that the set

of indices �id is substantially smaller than # .

• To encrypt to an identity id, the encrypter prepares a program that takes as input a proof c and

checks whether c is a NIZK proof of openings to the commitments 28 for all 8 ∈ �id = H(id). If so, the

program outputs the message, and otherwise, it outputs ⊥. Decryption just corresponds to evaluating

the obfuscated program on the secret key. As we elaborate more below, the obfuscated program that

checks the NIZK proof can be implemented using either indistinguishability obfuscation or using

witness encryption.

Correctness follows immediately. Moreover, if the size of each set �id is bounded by poly(_, log ℓ), then the

scheme also supports fast key-generation, encryption, and decryption. The high-level idea underlying secu-

rity is similar to [DGSW22]. First, the identity keys consist of NIZK proofs of openings to the commitments

28 , so they hide the values of the actual bits A8 . Second, the only information the adversary gets on the

master secret key then is its ℓ bits of leakage. Next, if the hash functionH that maps identities id to indices

�id is “well-spread,” then we can hope to argue that there is at least one identity id∗ in the challenge set J

5

for which the adversary does not know most of the bits of A8 for 8 ∈ H (id
∗). In this case, the adversary will

not be able to construct a NIZK proof that it knows the openings to 28 for 8 ∈ H (id
∗). We can then hope

to rely on security of the obfuscation scheme (or witness encryption scheme) to conclude that the message

is hidden. We now show how to instantiate this basic template from indistinguishability obfuscation as

well as from witness encryption in a way that allows us to prove adaptive security.

Big-key IBE from 8O. We first describe how to instantiate the above template using indistinguishability

obfuscation in conjunction with the following primitives: (1) a plain (adaptively-secure) identity-based

encryption scheme; (2) a NIZK proof system for NP; and (3) a (one-time) dual-mode bit commitment

scheme [Nao89] (i.e., a commitment scheme where the common reference string can be sampled in one

of two computationally indistinguishable modes: one mode is statistically binding while the other is

statistically hiding). We then instantiate our template as follows:

• The master secret key msk = (A1, . . . , A#) is a random bit string: A8
r← {0, 1} . The public parameters

pp = (crsCom, crsNIZK, ppIBE, 21, . . . , 2#) for the scheme contains the common reference string crsCom
for the bit commitment scheme (in binding mode), the common reference string crsNIZK for the NIZK,

the public parameters ppIBE for the plain IBE scheme, and commitments 28 to the bits A8 . The master

secret key msk also contains the openings to the commitments f1, . . . , f# .

• The secret key for an identity id is skid = (ctIBE, c). Here,

ctIBE = IBE.Encrypt(ppIBE, id, ®Aid; denc) (1.1)

is an IBE ciphertext that encrypts the tuple of bits ®Aid = (A8)8∈�id of the secret key indexed by �id = H(id),

whereH is a (fixed) hash function that maps identities onto a set of indices. We let denc denote the en-

cryption randomness. In addition, the secret key contains a NIZK proof c that the commitments ®2id =

(28)8∈�id in pp is a valid commitment to ®Aid and that ct is an encryption of ®Aid with randomness denc. Here,

the statement in the NIZK proof is (id, ®2id, ctIBE) and the witness is (®Aid, denc, ®fid), where ®fid = (f8)8∈�id .

• To encrypt a message< to an identity id∗, the encrypter computes an obfuscation of a program % that

has the identity id∗, the message<, the common reference string crsNIZK, and the commitments ®2id∗

hard-wired inside. The program takes as input a secret key skid = (ctIBE, c) and outputs the message

if c is a valid proof for the statement (id∗, ®2id∗, ctIBE). Otherwise, the program outputs ⊥.

Proving adaptive security via a dual-system approach. As mentioned before, we leverage a dual-

system strategy [Wat09, LW10] to prove that the above scheme is adaptively secure. In a dual-system

proof, we define a sequence of hybrid experiments where we gradually replace the normal ciphertexts and

secret keys (given out in the security game) with “semi-functional” analogs. The invariant we enforce is

that normal keys can decrypt semi-functional ciphertexts and semi-functional keys can decrypt normal

ciphertexts. However, semi-functional keys are unable to decrypt semi-functional ciphertexts, and moreover,

the adversary is unable to tell whether a key or ciphertext is normal or semi-functional. In particular, this

means that it should be hard for an adversary to generate semi-functional ciphertexts on its own (if it could,

then it could trivially distinguish semi-functional keys for normal keys). In the final hybrid, all of the keys

and ciphertexts the adversary receives from the challenger are semi-functional. At this point, we can rely

on a simple statistical argument to argue that the adversary’s distinguishing advantage is negligible. We

now describe the structure of the semi-functional ciphertexts and keys in the proof:

6

• Semi-functional ciphertexts: The semi-functional ciphertext ct for a message< and identity id∗

contains an obfuscation of a modified program %∗. The program %∗ additionally contains a secret

key skid∗ and a bit string C = PRG(ℎ(®Aid∗)), where PRG is a length-doubling pseudorandom generator

(PRG) and ℎ is a universal hash function. The program %∗ takes (ctIBE, c) as input, but outputs< only

if c is a valid proof (on the statement (id∗, ®2id∗, ctIBE)) and PRG(ℎ(IBE.Decrypt(skid∗, id
∗, ctIBE))) = C .

• Semi-functional keys: The semi-functional key skid = (ctIBE, c) has a simulated proof c and more-

over, the ciphertext ctIBE is an encryption of the all-zeroes string ctIBE = IBE.Encrypt(ppIBE, id, 0; denc).

To show security, we first switch the challenge ciphertexts to be semi-functional. Then we switch each of

the keys to be semi-functional. Once all of the challenge ciphertexts and keys are semi-functional, semantic

security follows by a simple statistical argument together with security of the obfuscation scheme. We give

a sketch below:

• Switching ciphertexts to be semi-functional: To switch ciphertexts into semi-functional mode,

we appeal to 8O security. Specifically, it suffices to show that the original program % and the modified

program %∗ are functionally equivalent. This follows immediately by (statistical) soundness of the

NIZK and correctness of the IBE scheme. Specifically, statistical soundness of the NIZK means that if

the proof c verifies, then

ctIBE = IBE.Encrypt(ppIBE, id
∗, ®Aid∗).

Correctness of IBE now implies that

IBE.Decrypt(skid∗, id
∗, ctIBE) = ®Aid∗ .

In this case, the additional PRG check that %∗ performs always succeeds.

• Switching keys to semi-functional. We now switch the keys skid = (ctIBE, c) to semi-functional.

To do so, we first appeal to simulation security of the NIZK (to switch from real proofs to simulated

proofs). We then leverage semantic security of the IBE scheme to switch ctIBE from an encryption

of ®Aid to an encryption of the all-zeroes string. Note that at this point in the proof, the challenge

ciphertexts are semi-functional, and thus, simulating a challenge ciphertext for an identity id∗ requires

knowledge of skid∗ . However, the reduction algorithm can obtain these keys from the IBE challenger.

Note that this is admissible because the adversary in the big-key IBE game is not allowed to query

for a key for an identity id∗ ∈ J that appears in the challenge set J .

• Completing the proof: To finish the proof, we switch the commitments to hiding mode. This

essentially “erases” the bits A1, . . . , A# from the public parameters. At this point in the proof, the only

information on the bits A8 is contained in the leakage function onmsk via the ℓ bits of leakage. When

the challenge set J is sufficiently large, there must exist some identity id∗ ∈ J such that ®Aid∗ has

high min-entropy given the leakage. For this to work, we require that the mappingH from identities

to the indices of the master secret key has good “spread.” That is, it should be the case that the set

{®Aid}id∈J contains many distinct indices of ®A . Then, there exists some id∗ ∈ J such that ®Aid∗ has

high min-entropy. At this point, we can appeal to the leftover hash lemma [HILL99] to argue that

C = PRG(ℎ(®Aid∗)) is statistically close to C = PRG(D), where D is a random seed. By PRG security, the

string C is computationally indistinguishable from a uniform string. Since the PRG is length-doubling,

with overwhelming probability over the choice of C , it is no longer in the image of the PRG. At this

point, the additional check that %∗ performs (i.e., that PRG(ℎ(IBE.Decrypt(skid∗, id
∗, ctIBE))) = C)

7

is unsatisfiable. Correspondingly, the program %∗ outputs ⊥ on all inputs, so by 8O security, it is

computationally indistinguishable from the program that always outputs ⊥. Since this program is

independent of the message<, semantic security holds trivially.

We provide the full construction and analysis in Section 4. Thus, we obtain a simple construction of an

adaptively-secure big-key IBE scheme from indistinguishability obfuscation and one-way functions; specif-

ically, all of the underlying building blocks can be built from 8O and one-way functions [SW14, ABSV15].

Using witness encryption in place of obfuscation. If we inspect our above template for constructing

big-key IBE, we observe that the ciphertext is essentially an obfuscated program that takes as input a proof

and checks whether the proof is valid or not. Thus, similar to the approach in [DGSW22], it seems plausible

that we could also replace the obfuscated program with a witness encryption scheme [GGSW13]. In this

work, we show that this is indeed possible, but will require a more involved construction. Specifically, in

witness encryption, a user can encrypt a message< to an NP statement G ; the decryption algorithm takes

an NP witnessF for G and outputs the statement. The security requirement then says that if G is not in the

language, then the ciphertext computationally hides the associated message. Witness encryption provides

no guarantees if the statement G is in the language, even if the witness is computationally hard to find. In

our basic template above, the ciphertext always encodes a true instance (since decryption is possible), and

we rely on 8O security to (gradually) replace it with an instance that is unsatisfiable (in the final hybrid

experiment). Such a proof strategy does not work in the setting of witness encryption since it provides

no hiding properties for the underlying NP relation. Thus, substituting witness encryption in place of

indistinguishability obfuscation will require some additional tools.

Specifically, in the 8O construction, the semi-functional ciphertexts introduces an additional check that

the provided secret key skid∗ = (ctIBE, c) satisfies PRG(ℎ(IBE.Decrypt(skid∗, id
∗, ctIBE))) = C . Since this

check always passes, security of 8O ensures that the resulting program remains functionally equivalent

to a normal program. In the case of witness encryption, we do not have the flexibility to change the NP

relation associated with a challenge ciphertext, so we will have to augment the NP relation in the normal

ciphertexts to also perform this additional check. We now give an outline of our approach, focusing on

the places that differ from our 8O construction:

• The master secret key still consists of a random string A1, . . . , A#
r← {0, 1}. As before, the public

parameters include commitments 21, . . . , 2# to A1, . . . , A# , and the master secret key contains the

corresponding openings.

• The secret key for an identity id will contain a testing key skout for ®Aid (where ®Aid = (A8)8∈�id and

�id = H(id) as before). The testing key skout plays the role of the IBE ciphertext in the 8O construction.

In addition, the secret key also contains a NIZK proof (like in the 8O construction) which affirms

that skout is an encoding of ®Aid and that ®Aid are the bits associated with the commitment ®2id.

• To encrypt a message< to an identity id∗, the user first samples a random encoding ctout, and prepares

a witness encryption ciphertext for the statement (id∗, ®2id∗, ctout); for simplicity of exposition, we omit

the common reference strings for the NIZK and the bit commitments in this sketch. The witness for the

witness encryption scheme is a secret key skid = (skout, c), and the associatedNP relation first checks

the proof c is valid, and moreover, that the encoding ctout is valid with respect to the testing key skout.

The additional validity check between skout and ctout is the analog of the additional check that the semi-

functional ciphertexts performs in the earlier 8O construction. Specifically, we require the encodings satisfy

the following properties:

8

• There is a public algorithm that allows one to sample a fresh encoding. This is used during encryption

to sample ctout. The first requirement is that the testing key skout always accepts a normal encoding

(this ensures correctness).

• Next, we define the notion of a semi-functional encoding. Using a trapdoor, it is possible to sample

a semi-functional encoding ctout of a vector ®Aid. Here, the requirement is that a (normal) testing key

skout for ®Aid will always reject a semi-functional encoding of ®Aid.

We refer to these encodings as a privately-testable encoding since given a trapdoor, it is possible to generate

a (semi-functional) key to test whether an encoding is of a particular target value or not. In the security

proof, we will switch the encodings in the challenge ciphertexts (for an identity id) from normal encodings

(which can be decrypted normally) into semi-functional encodings of ®Aid. Consider now a candidate witness

(skout, c) for a challenge ciphertext:

• If the NIZK proof c verifies, then by statistical binding of the commitment scheme and statistical

soundness of the NIZK proof system, it must be the case that skout is an encoding of ®Aid.

• However, if the encoding ctout in the challenge ciphertext is a semi-functional encoding of ®Aid, then

skout will always reject ctout.

Thus, for all candidate witnesses for the statement associated with a challenge ciphertext, either the NIZK

proof fails to verify or the encoding check fails. In both cases, the relation is not satisfied, and so the

statement is false. We can now appeal to semantic security of the witness encryption scheme.

Simulating NIZK proofs. The above proof strategy critically requires on statistical soundness of the

NIZK (to ensure that if the adversary produces a valid proof c , then the associated testing key is bound

to the vector ®Aid). However, in the reduction, we still require a way to simulate proofs without knowledge

of A1, . . . , A# (to ensure that the only leakage on the bits A1, . . . , A# is from the leakage function). Essentially,

the reduction needs a way to simulate secret keys without knowledge of the randomness A1, . . . , A# and

still retain statistical soundness. We achieve this using an or-proof construction. Specifically, we introduce

an additional branch into the NIZK proof system so the proof either asserts validity of the testing key skout
(with respect to the commitments ®2id) as above, or alternatively, the prover knows a trapdoor embedded

within the CRS. In the real scheme, only the first branch will be used while in the security proof, the

reduction algorithm will simulate proofs using the simulation trapdoor.

At this point, we still need to ensure that the simulated proofs do not help the adversary break semantic

security. In particular, by switching to the or-proof, we can no longer argue that a valid proof c means

that the testing key ®Aid is correctly constructed. To get around this problem, we introduce the concept of

a split encoding. At a very high level, we include an auxiliary encoding skaux and ctaux with each secret key

and ciphertext, respectively. The ciphertext component ctaux would be embedded as part of the statement

in witness encryption while the secret key component skaux would be part of the witness. The NP relation

associated with the witness encryption scheme would then check that ctaux is valid with respect to skaux. To

preserve correctness, we require that for normally-generated encodings, the check always passes. However,

the check rejects when both ctaux and skaux are switched to semi-functional encodings. We now modify

the trapdoor branch of the or-language in the NIZK proof system to also check that the key encoding skaux
is a semi-functional encoding. In the proof, the semi-functional ciphertexts have semi-functional encodings

ctaux. This way, whenever the NIZK proof verifies, one of two properties must hold:

• The provided encoding skout is a testing key for ®Aid, which would reject the encoding ctout in the

challenge ciphertext. Thus, the witness encryption relation is not satisfied.

9

• The auxiliary encoding skaux is a semi-functional encoding, which would reject the semi-functional

ctaux in the challenge ciphertext. Once again, the witness encryption relation is not satisfied.

With these two encodings, we now have a way for the reduction algorithm to simulate key-generation

queries (without knowledge of A1, . . . , A#). Moreover, once all of the secret keys and challenge ciphertexts

are semi-functional, the associated relation is false. Semantic security then follows from security of the

witness encryption scheme. We provide the formal description of our privately-testable and split encodings

as well as our construction of big-key IBE from witness encryption in Section 5.

Constructing privately-testable and split encodings. In Section 6, we show how to construct the

encoding schemes we use from standard assumptions over groups. Specifically, privately-testable encodings

follow from the standard decisional Diffie-Hellman (DDH) assumption in pairing-free groups while split

encodings can be built from the symmetric external Diffie-Hellman (SXDH) assumption in asymmetric

pairing groups. Recall that the SXDH assumption essentially amounts to assuming DDH holds in both base

groups G1 and G2 of an asymmetric pairing group.

Reducing public parameter size. As described so far, our big-key IBE scheme has long public parame-

ters. Critically, the encryption algorithm only requires local access to the long public parameters. Previously,

the work of [DGSW22] showed a generic approach based on non-interactive secure computation to compile

any big-key IBE scheme with long public parameters (but where the underlying algorithm only require

local access to the public parameters) into a scheme with short public parameters. This transformation also

applies to our constructions. For completeness, we show that this transformation still preserves adaptive

security in Appendix A.

Comparison with [WW24]. The recent work of Waters and Wichs [WW24] shows how to construct

adaptively-secure attribute-based encryption from witness encryption. As part of their proof strategy, they

introduce the notion of a “functional tag system.” A functional tag system consists of function tags and

input tags, each of which has a semi-functional mode that is indistinguishable from the normal mode. Our

notion of split encoding is conceptually similar to a functional tag system, but specialized to the case of

an equality function (since we aim for IBE rather than ABE). However, for our application, we rely on a

stronger notion of mode indistinguishability (that asserts computational indistinguishability of normal tags

and semi-functional tags). For our applications, we require mode indistinguishability to hold with respect

to multiple functions and multiple input tags. The Waters-Wichs notion considers many functions, but a

single input tag. The need to simulate many input tags comes from the fact that in the big-key IBE security

game, the reduction algorithm needs to simulate multiple challenge ciphertexts (specifically, this is needed

to estimate the adversary’s success probability and determine whether it is successful or not; we refer to

Section 3 for further discussion of the advantage checking requirement). We do not see a way to generically

amplify a functional tag system where security holds against adversaries that can request a single input

tag into one that is secure against adversaries which can request multiple input tags.

2 Preliminaries

Wewrite _ to denote the security parameter. For an integer= ∈ N, we write [=] to denote the set {1, 2, . . . , 0}.

For integers 0 < 1, we use [0, 1] to denote the set of integers {0, 0 + 1, . . . , 1}. When ®G = (G1, . . . , G#) is a

vector of elements and (⊆ [#] is a set of indices, we will write ®G(to denote the ordered sub-vector (G8)8∈(.

10

For a distribution D we write G ← D to denote that G is a random draw from D. For a finite set (, we

write G r← (to denote a uniform random draw from (. When indexing a set (, we write ([8] to denote

the 8th element of ((in lexicographic order). For distributions D0,D1, we denote the statistical distance

between them by Δ(D0,D1). We use boldface letters (e.g., x) to denote vectors. We write poly(_) to denote

a fixed function that is $ (_2) for some 2 ∈ N and negl(_) to denote a function that is > (_−2) for all 2 ∈ N.

We say an event occurs with overwhelming probability if its complement occurs with negligible probability.

We say an algorithm is efficient if it runs in probabilistic polynomial time (in the length of its input).

Hoeffding’s inequality. We will use Hoeffding’s inequality to bound the sum of independent random

variables [Hoe63]:

Fact 2.1 (Hoeffding’s Inequality [Hoe63]). Let -1, . . . , -) be independent random variables where 0 ≤

-8 ≤ 1 for all 8 ∈ [)]. Let (=
∑

8∈[)] -8 and let E[(] denote the expected value of (. Then, for any : ≥ 0,

Pr[|(− E[(] | ≥):] ≤ 2−Ω ():
2) .

Min-entropy. We recall some basic definitions on min-entropy. Our definitions are adapted from those

in [DORS08]. For a (discrete) random variable - , we write H∞(-) = − log(maxG Pr[- = G]) to denote

its min-entropy. For two (possibly correlated) discrete random variables - and . , we define the average

min-entropy of- given. to beH∞(- | .) = − log(E~←. maxG Pr[- = G | . = ~]). The optimal probability

of an unbounded adversary guessing - given the correlated value . is 2−H∞ (- |.) . We now state some

useful properties on the conditional min-entropy:

Lemma 2.2 (Conditional Min-Entropy [DORS08, Lemma 2.2]). Let �, �,� be random variables and suppose

there are at most 2_ elements in the support of �. Then

H∞(� | (�,�)) ≥ H∞(�, � | �) − _ ≥ H∞(� | �) − _.

Additionally, for any X > 0, with probability at least 1 − X over the choice of 1 ← �, we have

H∞(� | � = 1) ≥ H∞(� | �) − log(1/X) .

Lemma 2.3 (Min-Entropy Splitting Lemma [DFR+07, DGSW22]). Let -1, . . . , -ℓ be a sequence of ran-

dom variables such that H∞(-1, . . . -ℓ) ≥ U . Then there exists a random variable � over [ℓ] such that

H∞(-� | �) ≥ U/ℓ − log ℓ .

Dispersers. Our construction will rely on a disperser (also known as a “one-sided extractor”). At a high

level, a disperser can be modeled as a bipartite graph with the property that that every subset of nodes of a

certain (minimal) size on the left is guaranteed to have a large number of neighbors on the right. We recall

the formal definition from [TUZ07]. First, a bipartite graph � = (!, ', �) consists of two sets of vertices

! and ' together with a set of edges �, where each edge 4 ∈ � is a pair of nodes (D, E) ∈ ! × '. For a set

(⊆ !, we write # (() ⊆ ' to denote the neighborhood of (: # (() = {E ∈ ' : ∃(D, E) ∈ � ∧ D ∈ (}. We say

� is �-left-regular if every node D ∈ ! has exactly � neighbors: |# ({D}) | = 3 for all D ∈ !.

Definition 2.4 (Disperser [TUZ07, Definition 1.3]). Let � = (!, ', �) be a bipartite graph. Then, � is a

degree-� (), Y)-disperser if� is �-left-regular and for all subsets (⊆ ! of size at least) , the neighborhood

(() has size at least (1 − Y) · |' |. A disperser is explicit if the index of the 8th neighbor of a vertex E ∈ !

can be computed in poly(log#, log�) time.

11

Fact 2.5 (Disperser [Par19, Theorem 3]). Let 2 be a universal constant, Y > 0 be any constant, and = be

a set size parameter. Let : = : (=), � = � (=), :1 = :1(=) be polynomials such that 2 log(=/Y) < : < =

and :1 ≥ : +$ (log
3(:/Y)). Then, there exists an explicit degree-� (2:1, Y)-disperser � = (!, ', �) where

� = poly(=/Y), |! | = 2= , and |' | = 2:1+Ω (log(=/Y)) .

Randomness extractors. We now recall the definition of randomness extractors (from the leftover hash

lemma).

Definition 2.6 (Strong Randomness Extractor). A function Ext : {0, 1}=×{0, 1}3 → {0, 1}< is a (:, Y)-strong

randomness extractor if for all distributions - over {0, 1}= such that H∞(-) ≥ : , it holds that

Δ

(
(B, Ext(-, B)), (*3 ,*<)

)
≤ Y,

where B r← {0, 1}3 , and *3 ,*B are the uniform distributions on {0, 1}3 , and {0, 1}< , respectively. An

extractor is explicit if it is efficiently-computable.

Lemma 2.7 (Leftover Hash Lemma [ILL89, HILL99]). Let- be a random variable with support* and suppose

H∞(-) ≥ : . Take any Y > 0 and letH be a universal hash family of size 23 and output length< = :−2 log(1/Y).

Define Ext(G, ℎ) := ℎ(G). Then Ext is a (:, Y/2)-strong extractor with seed length 3 and output length<.

Corollary 2.8 (Explicit Strong Extractor). Take any _ ∈ N. Then, there exists an explicit (_+l (log _), negl(_))-

strong randomness extractor Ext : {0, 1}poly(_) × {0, 1}poly(_) → {0, 1}_ .

Corollary 2.9 (Inner Product Extractor). Let F be a finite field and let - be a random variable with support

* = F
= . Take any Y > 0 and suppose H∞(-) ≥ : = 2 log(1/Y) + log |F|. Let (= F

= be a seed space and define

Ext(x, s) := sTx. Then Ext is a (:, Y/2)-strong extractor with seed length = log |F| and output length log |F|.

2.1 Cryptographic Primitives

In this section, we recall the main cryptographic notions we use in this work.

Definition 2.10 (Pseudorandom Generator). Let _ be a security parameter. A pseudorandom generator

with output length < = <(_) is an efficiently-computable function family PRG = {PRG_}_∈N where

PRG_ : {0, 1}
_ → {0, 1}< (_) . We say that PRG is secure if for all efficient adversaries A there exists a

negligible function negl(·) such that for all _ ∈ N:
���Pr[A(1_, PRG_ (G)) = 1 : G r← {0, 1}_] − Pr[A(1_, ~) = 1 : ~ r← {0, 1}< (_)]

��� = negl(_) .

Definition 2.11 (Pseudorandom Function). Let K = {K_}_∈N, X = {X_}_∈N, and Y = {Y_}_∈N be ensem-

bles of finite sets indexed by a security parameter _. Let PRF = {PRF_}_∈N be an efficiently-computable

collection of functions PRF_ : K_ × X_ → Y_ . We say that PRF is secure if for all efficient adversaries A

there exists a negligible function negl(·) such that for all _ ∈ N:
���Pr[APRF_ (:,·) (1_) = 1 : : r← K_] − Pr[A

5_ (·) (1_) = 1 : 5_
r← Funs[X_,Y_]]

��� = negl(_),

where Funs[X_,Y_] is the set of all functions from X_ to Y_ .

Definition 2.12 (Identity-Based Encryption [Sha84, BF01, Coc01]). An identity-based encryption (IBE)

scheme with identity space ID = {ID_}_∈N and message spaceM = {M_}_∈N is a tuple of efficient

algorithms ΠIBE = (Setup,KeyGen, Encrypt,Decrypt) with the following syntax:

12

• Setup(1_) → (pp,msk): On input the security parameter _, the setup algorithm outputs the set of

public parameters pp and a master secret key msk. We assume that pp and msk include the security

parameter 1_ .

• KeyGen(msk, id) → skid: On input the master secret key msk and an identity id ∈ ID_ , the key-

generation algorithm outputs an identity key skid. We assume the secret key skid contains the security

parameter 1_ (from msk).

• Encrypt(pp, id,<) → ct: On input the public parameters pp, an identity id ∈ ID_ , and a message

< ∈ M_ , the encryption algorithm outputs a ciphertext ct.

• Decrypt(skid, id, ct) →<: On input an identity secret key skid, an identity id ∈ ID_ , and a ciphertext

ct, the decryption algorithm outputs a message< ∈ M_ .

Moreover, ΠIBE should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N, all identities id ∈ ID_ , all (pp,msk) in the support

of Setup(1_), and all messages< ∈ M_ ,

Pr

[
Decrypt(skid, ct) =< :

skid ← KeyGen(msk, id)

ct← Encrypt(pp, id,<)

]
= 1.

• Semantic security: For a security parameter _ and a bit 1 ∈ {0, 1}, we define the (adaptive) semantic

security game between an adversary A and a challenger as follows:

– Setup: The challenger starts by sampling (pp,msk) ← Setup(1_) and gives pp to A.

– Pre-challenge queries: Algorithm A can now issue key-generation queries to the challenger.

On each key-generation query, adversary A specifies an identity id ∈ ID_ , and the challenger

replies with skid ← KeyGen(msk, id).

– Challenge: AlgorithmA outputs a challenge identity id∗ and two messages<0,<1 ∈ M_ . The

challenger replies with ct1 ← Encrypt(pp, id∗,<1).

– Post-challenge queries: Algorithm A can continue to make key-generation queries as in the

pre-challenge phase.

– Output: At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output of

the experiment.

An adversary A is admissible for the semantic security game if it does not issue a key-generation

query on the challenge identity id∗. We say ΠIBE satisfies adaptive security if for all efficient and

admissible adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

|Pr[1′ = 1 | 1 = 1] − Pr[1′ = 1 | 1 = 0] | = negl(_)

in the semantic security game.

Definition 2.13 (Indistinguishability Obfuscation [BGI+12, GGH+13]). Let C = {C_}_∈N be a family of

polynomial-size circuits and ℓC (_) be a size parameter, such that every circuit� ∈ C_ has size exactly ℓC (_).

An indistinguishability obfuscator 8O is an efficient algorithm that takes as input the security parameter

1_ , a circuit � ∈ C_ , and outputs a circuit �′. An 8O scheme should satisfy the following properties:

13

• Functionality-preserving: For all security parameters _ ∈ N, all � ∈ C_ , and all inputs G , we have

that �′(G) = � (G) where �′ ← 8O(1_,�).

• Security: For all efficient adversaries A = (Samp,A′), there exists a negligible function negl(·)

such that the following holds: if for all security parameters _ ∈ N,

Pr[∀G,�0(G) = �1(G) : (�0,�1, st) ← Samp(1_)] = 1 − negl(_)

then ���Pr[A′(st, 8O(1_,�0)) = 1] − Pr[A′(st, 8O(1_,�1)) = 1]
��� = negl(_),

where (�0,�1, st) ← Samp(1_).

Definition 2.14 (Witness Encryption [GGSW13, adapted]). LetM = {M_}_∈N be a message space. A

witness encryption scheme for an NP language L with witness relation RL is a tuple of efficient algorithms

ΠWE = (Encrypt,Decrypt) with the following syntax:

• Encrypt(1_,<, G) → ct: On input the security parameter _, a message< ∈ M_ , and an instance G for

the language L, the encryption algorithm outputs a ciphertext ct. We assume ct includes 1_ and G .

• Decrypt(ct,F) → <: On input a ciphertext ct and a witness F , the decryption algorithm outputs

a message< ∈ M_ .

Moreover, ΠWE should satisfy the following properties:

• Correctness: For all _ ∈ N, messages< ∈ M_ , and tuples (G,F) ∈ RL , it holds that

Pr[Decrypt(ct,F) =< : ct← Encrypt(1_,<, G)] = 1.

• Semantic security: For a security parameter _ and a bit 1 ∈ {0, 1} , we define the semantic security

game between an adversary A and a challenger as follows:

– On input the security parameter 1_ , algorithm A outputs a statement G and two messages

<0,<1 ∈ M_ .

– The challenger replies with ct← Encrypt(1_,<1, G).

– Algorithm A outputs a bit 1′ ∈ {0, 1} , which is the output of the experiment.

The scheme ΠWE satisfies semantic security if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all _ ∈ N,

|Pr[1′ = 1 ∧ G ∉ L | 1 = 1] − Pr[1′ = 1 ∧ G ∉ L | 1 = 0] | = negl(_)

in the semantic security game.

14

One-time dual-mode commitment. We recall the notion of a one-time dual-mode commitment, which

can be constructed from one-way functions [Nao89].

Definition 2.15 (One-Time Dual-Mode Commitment [DN02]). A one-time dual-mode commitment scheme

with input space X = {X_}_∈N is a tuple of efficient algorithms ΠCom = (Setup,Commit,Verify) with the

following syntax:

• Setup(1_,mode) → (crs, td, 2): On input the security parameter _ and mode ∈ {bind, hide}, the

setup algorithm outputs a common reference string crs. Whenmode = hide, it also outputs a trapdoor

td and commitment 2 . We assume crs and td (implicitly) contain the security parameter 1_ .

• Commit(crs, G) → (2, f): On input the common reference string crs and an input G ∈ X_ , the commit

algorithm outputs a commitment 2 and an opening f .

• Verify(crs, 2, G, f) → {0, 1}: On input the common reference string crs, a commitment 2 , a value

G ∈ X_ , and an opening f , the verification algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, ΠCom should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N, all inputs G ∈ X_ , all modes mode ∈ {bind, hide},

Pr

[
Verify(crs, 2, G, f) = 1 :

(crs, td, 2′) ← Setup(1_,mode);

(2, f) ← Commit(crs, G)

]
= 1.

• Statistically binding in binding mode: For all adversaries A, there exists a negligible function

negl(·) such that for all _ ∈ N,

Pr

[
Verify(crs, 2, G0, f0) = Verify(crs, 2, G1, f1) = 1 ∧ G0 ≠ G1 :

crs← Setup(1_, bind);

(2, G0, G1, f0, f1) ← A(crs)

]
= negl(_).

• Mode indistinguishability: For a security parameter _, a bit 1 ∈ {0, 1}, and a simulator Sopen, we

define the mode indistinguishability game between an adversary A and a challenger as follows:

1. The challenger samples crs← Setup(1_, bind) if 1 = 0 or (crs, td, 21) ← Setup(1_, hide) if 1 = 1

and gives crs to A.

2. Algorithm A outputs a value G ∈ X_ .

3. If 1 = 0 the challenger computes (20, f0) ← Commit(crs, G). If 1 = 1, the challenger computes

a simulated opening f1 ← Sopen(td, G). The challenger sends (21, f1) to A.

4. Algorithm A outputs a bit 1′ ∈ {0, 1}, which is the output of the experiment.

The scheme ΠCom satisfies mode indistinguishability if there exists an efficient simulator Sopen such

that for all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

|Pr[1′ = 1 | V = 0] − Pr[1′ = 1 | V = 1] | = negl(_)

in the mode indistinguishability game.

15

Non-interactive zero-knowledge. Next, we recall the notion of a non-interactive zero-knowledge (NIZK)

proof forNP [GMR85, BFM88]. Specifically, we consider NIZKs for the language of Boolean circuit satisfiabil-

ity whichwe define below. We also recall theweaker notion ofwitness indistinguishability, which is more con-

venient to use in some of our proofs. It is easy to see that zero-knowledge implies witness indistinguishability.

Definition 2.16 (Boolean Circuit Satisfiability). The language L of Boolean circuit satisfiability consists of

pairs (�, G) of circuits� : {0, 1}= × {0, 1}ℎ → {0, 1} and inputs G ∈ {0, 1}= such that there existsF ∈ {0, 1}ℎ

where � (G,F) = 1:

L =



(�, G) :

� : {0, 1}= × {0, 1}ℎ → {0, 1}

G ∈ {0, 1}=

∃F ∈ {0, 1}ℎ : � (G,F) = 1



.

Definition 2.17 (NIZK for NP [GMR85, BFM88]). A non-interactive zero-knowledge (NIZK) proof for

Boolean circuit satisfiability is a tuple of efficient algorithms ΠNIZK = (Setup, Prove,Verify) with the

following syntax:

• Setup(1_) → crs: On input the security parameter _ ∈ N, the setup algorithm outputs a common

reference string crs. We assume crs implicitly contains a description of the security parameter 1_ .

• Prove(crs,�, G,F) → c : On input the common reference string crs, a Boolean circuit � : {0, 1}= ×

{0, 1}ℎ → {0, 1}, a statement G ∈ {0, 1}= , and a witness F ∈ {0, 1}ℎ , the prove algorithm outputs a

proof c .

• Verify(crs,�, G, c) → 1: On input the common reference string crs, the Boolean circuit � : {0, 1}= ×

{0, 1}ℎ → {0, 1}, a statement G ∈ {0, 1}= , and a proof c , the verification algorithm outputs a bit

1 ∈ {0, 1}.

Moreover, ΠNIZK should satisfy the following properties:

• Completeness: For all _ ∈ N, all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1}, all statements

G ∈ {0, 1}= , and all witnessesF ∈ {0, 1}ℎ where � (G,F) = 1,

Pr

[
Verify(crs,�, G, c) = 1 :

crs← Setup(1_)

c ← Prove(crs,�, G,F)

]
= 1.

• Statistical soundness: For all adversaries A, there exists a negligible function negl(·) such that

for all _ ∈ N,

Pr

[
(�, G) ∉ L ∧ Verify(crs,�, G, c) = 1 :

crs← Setup(1_)

(�, G, c) ← A(crs)

]
= negl(_).

• Computational zero-knowledge: For every efficient adversaryA, there exists an efficient simulator

S = (S1,S2) and a negligible function negl(·) such that for all _ ∈ N,

���Pr
[
AO0 (crs,·,·,·) (1_, crs) = 1

]
− Pr

[
AO1 (stS,·,·,·) (1_, c̃rs) = 1

] ��� = negl(_),

where crs← Setup(1_), (c̃rs, stS) ← S1(1
_), and the oracles O0 and O1 are defined as follows:

16

– O0(crs,�, G,F): On input crs, a circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, a statement G ∈ {0, 1}= ,

and a witness F ∈ {0, 1}ℎ , the oracle outputs ⊥ if � (G,F) = 0. If � (G,F) = 1, it outputs

Prove(crs,�, G,F).

– O1(stS,�, G,F): On input the simulator state stS , a circuit� : {0, 1}= × {0, 1}ℎ → {0, 1}, a state-

ment G ∈ {0, 1}= , and a witnessF ∈ {0, 1}ℎ , the oracle outputs ⊥ if � (G,F) = 0. If � (G,F) = 1,

it outputs S2(stS,�, G).

Definition 2.18 (Computational Witness Indistinguishability). Let ΠNIZK = (Setup, Prove,Verify) be a

NIZK proof for Boolean circuit satisfiability. We say that ΠNIZK satisfies computational witness indistin-

guishability if for every efficient adversaryA, there exists a negligible function negl such that for all _ ∈ N,

���Pr
[
AO0 (crs,·,·,·,·) (1_, crs) = 1

]
− Pr

[
AO1 (crs,·,·,·,·) (1_, crs) = 1

] ��� = negl(_),

where crs← Setup(1_) and for 1 ∈ {0, 1}, the oracle O1 is defined as follows:

• O1 (crs,�, G,F0,F1): On input crs, a circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, a statement G ∈ {0, 1}= ,

and witnesses F0,F1 ∈ {0, 1}
ℎ , the oracle outputs Prove(crs,�, G,F1) if � (G,F0) = 1 = � (G,F1).

Otherwise, it outputs ⊥.

3 Big-Key Identity-Based Encryption

In this section, we give a formal definition of big-key IBE. Our definition is based on the corresponding

definition from [DGSW22], but has an important difference where we only consider inverse-polynomial

advantage thresholds rather than all non-negligible advantage thresholds. This is an important distinction

as the previous notion from [DGSW22] is unsatisfiable (see Remark 3.2). We begin by highlighting the

main difference between big-key IBE and vanilla IBE (Definition 2.12):

• In big-key IBE, we allow the adversary to specify any efficiently-computable leakage function 5 that

outputs at most ℓ bits, where ℓ is a leakage parameter. The challenger then replies with 5 (msk). In

the adaptive security experiment, the adversary chooses the challenge identities after it observes

the (arbitrary) leakage on the master secret key.

• Since the adversary is given arbitrary leakage on the master secret key, its leakage may simply encode

a secret key for the challenge identity. Thus, the usual notion of semantic security is not meaningful

in this model. Instead, the adversary must declare a set of challenge identities J . To win the game,

the adversary must be able to break semantic security for all identities id ∈ J with advantage greater

than some threshold Y.

We now provide the formal definition and then discuss how it compares with the previous definition

from [DGSW22].

Definition 3.1 (Big-Key Identity-Based Encryption [DGSW22, adapted]). A big-key identity-based encryp-

tion scheme with identity space ID = {ID_}_∈N and message spaceM = {M_}_∈N is a tuple of efficient

algorithms ΠbkIBE = (Setup,KeyGen, Encrypt,Decrypt) with the following syntax:

• Setup(1_, 1ℓ) → (pp,msk): On input the security parameter _ and the leakage parameter ℓ , the setup

algorithm outputs public parameters pp and a master secret key msk. We assume that pp and msk

include the security parameter 1_ .

17

• KeyGen(msk, id) → skid: On input the master secret key msk and an identity id ∈ ID_ , the key-

generation algorithm outputs an identity secret key skid. We assume the secret key skid contains the

security parameter 1_ (from msk).

• Encrypt(pp, id,<) → ct: On input the public parameters pp, an identity id ∈ ID_ , and a message

< ∈ M_ , the encryption algorithm outputs a ciphertext ct.

• Decrypt(skid, id, ct) →<: On input an identity secret key skid, an identity id ∈ ID_ , and a ciphertext

ct, the decryption algorithm outputs a message< ∈ M_ .

Moreover, ΠbkIBE should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N, all leakage parameters ℓ ∈ N, all identities id ∈ ID_ ,

all (pp,msk) in the support of Setup(1_, 1ℓ), and all messages< ∈ M_ ,

Pr

[
Decrypt(skid, id, ct) =< :

skid ← KeyGen(msk, id)

ct← Encrypt(pp, id,<)

]
= 1.

• Efficiency: We impose the following efficiency requirements on the scheme parameters:

– Public key size: We say that a big-key IBE scheme has short public parameters if the public

parameters pp output by Setup(1_, 1ℓ) satisfies |pp| = poly(_, log ℓ). We say the scheme has

long public parameters if |pp| = poly(_, ℓ).

– Secret key size: We require that the identity secret keys skid output by KeyGen to satisfy

|skid | = poly(_, log ℓ).

– Key-generation and encryption time: We require that KeyGen and Encrypt run in time

poly(_, log ℓ) given random access to the master secret key msk and the public parameters pp,

respectively. In other words, KeyGen only needs to read poly(_, log ℓ) bits of msk and Encrypt

only needs to read poly(_, log ℓ) bits of pp. Note that if the scheme has short public parameters

(i.e., if |pp| = poly(_, log ℓ)), then the encryption requirement is trivially satisfied.

• Adaptive security under bounded leakage: For a security parameter _, a challenge parameter

: = : (_, ℓ), and an advantage function Y = Y (_), we define the adaptive security game between an

adversary A = (A1,A2) and a challenger as follows:

– Setup: On input the security parameter, algorithmA1 starts by outputting a leakage parameter

1ℓ , which it gives to the challenger. The challenger samples (pp,msk) ← Setup(1_, 1ℓ) and

gives pp to A1.

– Pre-leakage queries: Algorithm A1 can now issue key-generation queries to the challenger.

On each key-generation query, algorithm A1 specifies an identity id ∈ ID_ and the challenger

replies with skid ← KeyGen(msk, id).

– Leakage: Algorithm A1 outputs the description of an efficiently-computable function 5 with

output length at most ℓ . The challenger replies with leak ≔ 5 (msk).

– Post-leakage queries: Algorithm A1 can continue to make key-generation queries to the

challenger.

– Challenge: Algorithm A1 outputs a set J ⊆ ID_ of size at least : = : (_, ℓ), two messages

<0,<1 ∈ M_ , and a state st.

18

– Output: The output of the adaptive security game is 1′ = 1 if

∀id ∈ J : Advid(msk, pp, st, leak) ≥ Y (_) (3.1)

and1′ = 0 otherwise. The distinguishing advantage Advid(msk, pp, st, leak) is defined as follows:

For an identity id ∈ ID_ , define the experiment Expid(msk, pp, st, leak) as follows:

∗ The challenger samples 1 r← {0, 1}, ct← Encrypt(pp, id,<1) and gives (st, id, ct) to

A2.

∗ Algorithm A2 can now issue key-generation queries to the challenger. On each

key-generation query, algorithm A2 specifies an identity id ∈ ID_ and the

challenger replies with skid ← KeyGen(msk, id).

∗ After A2 has finished making key-generation queries, it outputs a bit V ∈ {0, 1},

which is used to compute the output of the experiment as 1 if 1 = V and 0 otherwise.

The advantage Advid(msk, pp, st, leak) is then defined as

Advid(msk, pp, st, leak) =
��Pr[Expid(msk, pp, st, leak) = 1] − 1/2

�� .

We say that an algorithm A = (A1,A2) is admissible for the adaptive security game if neither A1

nor A2 makes a key-generation query on any identity id ∈ J . We say ΠbkIBE satisfies adaptive

security under bounded leakage with challenge parameter : = : (_, ℓ) if for all efficient adversaries

A = (A1,A2) and every inverse polynomial advantage function Y = 1/poly(_), there exists a

negligible function negl(·) such that for all _ ∈ N, Pr[1′ = 1] = negl(_) in the adaptive security game.

Remark 3.2 (Comparison with [DGSW22]). Beyond the extension from selective security to adaptive

security, Definition 3.1 differs from the notion in [DGSW22, Definition 3] in an important manner. The

definition in [DGSW22] says that a big-key IBE scheme satisfies (selective) security under bounded leakage

if for all efficient adversaries A = (A1,A2) and all non-negligible functions Y, there exists a negligible

function negl(·) such that for all _ ∈ N,

Pr[∀id ∈ J : Advid(msk, pp, st, leak) ≥ Y (_)] = negl(_). (3.2)

In contrast, our definition (Definition 3.1) requires the advantage threshold Y to be inverse polynomial.

While “non-negligible” and “inverse-polynomial” may seem like a small distinction, it is an important one.

Indeed, we can show that the definition is unsatisfiable if we require Eq. (3.2) to hold for all non-negligible

functions Y. To wit, suppose Y is the following piecewise function:

Y (_) =

{
1 _ is odd

0 _ is even.

Observe that Y (_) is non-negligible by construction. However, Eq. (3.2) cannot hold for any scheme with

respect to Y. This is because for every adversary A, and every even value of _ ∈ N, it holds that

Advid(msk, pp, st, leak) ≥ 0 = Y (_).

19

This means that whenever _ is even, it follows that

Pr[∀id ∈ J : Advid(msk, pp, st, leak) ≥ Y (_)] = 1.

As such, we cannot bound the probability in Eq. (3.2) by a negligible function, and Eq. (3.2) does not hold.

For this reason, the original definition from [DGSW22] is unsatisfiable. In this work, we require Y to

be an inverse polynomial function 1/poly(_), where poly(_) is a fixed polynomial. This rules out such

pathological functions.

Advantage checking. In Definition 3.1, the output of the experiment requires checking whether Eq. (3.1)

holds or not:

∀id ∈ J : Advid(msk, pp, st, leak) ≥ Y (_),

where Y (_) is some advantage threshold. We note that in general, the exact advantage of an adversary

is not efficiently-computable. As such, the challenger in Definition 3.1 cannot necessarily efficiently de-

termine whether the adversary A is successful or not. While having an inefficient challenger is perfectly

acceptable from a definitional standpoint, it introduces new challenges in the security analysis. Namely,

given a candidate adversary A, a reduction algorithm that uses A to solve some computational problem

may not be able to determine whether A was successful or not. To address this problem, we define an

alternative version of the adaptive security game where we replace the win condition (Eq. (3.1)) with an

efficiently-checkable variant based on estimating the success probability of the adversary (Definition 3.3).2

We then show in Theorem 3.4 that a scheme satisfying our alternative security game implies a scheme that

is secure under our main definition (Definition 3.1). Then, in the remainder of this paper, we only consider

Definition 3.3 where the output of the game is efficiently-computable.

Definition 3.3 (Adaptive Advantage-Checker Security). Let ΠbkIBE be a big-key IBE scheme as in Defi-

nition 3.1. We define the following property:

• Adaptive advantage-checker security under bounded leakage: This security game is identical

to the adaptive security game in Definition 3.1 except the output of the game is 1′ = 1 if

∀id ∈ J : AdvCheckA2
(
1_, 11/Y, id,msk, pp, st, leak

)
= 1

and 1′ = 0 otherwise. The algorithm AdvCheck is defined as follows:

2We note here that this issue appears to have been glossed over in the previous work of [DGSW22] as their security proofs do

not describe how the reduction algorithm uses the adversary’s output to solve the underlying computational problem. We believe

that their analysis can be repaired by formally defining a similar intermediary game with an efficiently-computable challenger.

20

Inputs: security parameter _, advantage threshold Y ∈ (0, 1), identity id ∈ ID_ , master secret

key msk, public parameters pp, state st, string leak, and (oracle) access to an algorithm A

– Let) = _/Y2 and initialize a counterWINS← 0.

– The advantage-checker algorithm now simulates) independent executions of experiment

Expid(msk, pp, st, leak) for algorithm A.

1. Sample V r← {0, 1}.

2. Compute ct ← Encrypt(pp, id,<V), and start running algorithm A on input

(st, id, ct).

3. Whenever algorithm A makes a key-generation query on an identity id ∈ ID_ ,

compute skid ← KeyGen(msk, id) and reply to A with the identity key skid.

4. After A has finished making key-generation queries, it outputs a bit V ′ ∈ {0, 1}.

5. If V = V ′, then incrementWINS←WINS + 1.

– Output 1 if
��WINS −)

2

�� ≥ Y)
2 and 0 otherwise.

Figure 1: Function AdvCheckA
(
1_, 11/Y, id,msk, pp, st, leak

)

We say that an algorithm A = (A1,A2) is admissible for the :-adaptive advantage-checker se-

curity game if neither A1 nor A2 makes a key-generation query on any identity id ∈ J . The

scheme ΠbkIBE satisfies adaptive advantage-checker security under bounded leakage with challenge

parameter : = : (_, ℓ) if for all efficient adversaries A = (A1,A2) and every inverse polynomial

advantage function Y = 1/poly(_), there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[1′ = 1] = negl(_) in the adaptive advantage-checker security game.

Theorem 3.4 (Adaptive Security from Adaptive Advantage-Checker Security). Suppose ΠbkIBE is a big-key

IBE scheme that satisfies adaptive advantage-checker security under bounded leakage with challenge parameter

: = : (_, ℓ). Then, ΠbkIBE satisfies adaptive security under bounded leakage with the same challenge parameter: .

Proof. LetHyb0 be the adaptive security experiment from Definition 3.1 andHyb1 be the advantage checker

security experiment from Definition 3.3. For an adversary A = (A1,A2) and an advantage function Y, we

write Hyb8 (A, Y) to denote the output of Hyb8 with adversary A and advantage function Y. We now show

that for all efficient adversaries A and all inverse polynomial advantage functions Y = 1/poly(_), there

exists a negligible function negl such that for all _ ∈ N,

Pr[Hyb0(A, Y) = 1] ≤ Pr[Hyb1(A, Y) = 1] + negl(_),

which proves the claim. By construction, the only difference between Hyb0 and Hyb1 is how the output

bit 1′ ∈ {0, 1} is computed. Suppose in an execution of Hyb0 that the output bit is 1. This means that for

all id ∈ J ,

Advid(msk, pp, st, leak) ≥ Y. (3.3)

Consider the output computed according to the specification of Hyb1. The AdvCheck algorithm perfectly

simulates) executions of Expid. For each 8 ∈ [)], let -8 ∈ {0, 1} be the random variable for whether

21

algorithm A2’s output is correct (i.e., if V
′
= V) on the 8th iteration. If Eq. (3.3) holds, then

|E[-8] − 1/2| = | Pr[-8 = 1] − 1/2| ≥ Y

In Hyb1, we have WINS =
∑

8∈[)] -8 and since each -8 is identically distributed, it follows that

|E[WINS] −) /2| ≥ Y) .

By Hoeffding’s inequality (Fact 2.1),

Pr[|WINS −) /2| < Y) /2] ≤ Pr[|WINS − E[WINS] | > Y) /2] ≤ 2−Ω ()Y
2/4)

= negl(_),

since) = _/Y2. Thus, if Eq. (3.3) holds, then with probability 1 − negl(_), |WINS −) /2| ≥ Y) /2 in an

execution of AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak). In this case, AdvCheck outputs 1. By a union bound,

if Eq. (3.3) holds for all id ∈ J , then AdvCheck also outputs 1 for all id ∈ J with probability 1−|J | ·negl(_).

IfA is efficient, then the size of the challenge set J is polynomially-bounded, so we conclude that whenever

experiment Hyb0(A, Y) outputs 1, then with probability 1 − negl(_), experiment Hyb1(A, Y) also outputs

1, and the claim follows. �

Remark 3.5 (Challenge Parameter :). The challenge parameter : in Definitions 3.1 and 3.3 determines the

minimum size of the challenge set J as a function of the security parameter _ and the leakage parameter ℓ .

A larger value of : increases the difficulty for the adversary while a small value of : makes the adversary’s

job simpler. In [DGSW22], the parameter : was set to be ℓ + 1; namely, given ℓ bits of leakage, the adversary

has to compromise at least ℓ + 1 identities. In this work, we show multiple bits of leakage are necessary to

compromise any single identity key. Namely, we show how to achieve challenge parameter : = ℓ/poly(_).

4 Adaptively-Secure Big-Key IBE from Indistinguishability Obfuscation

In this section, we describe how to construct an adaptively-secure big-key IBE scheme using indistinguisha-

bility obfuscation (Definition 2.13), an adaptively-secure IBE scheme (Definition 2.12), a NIZK proof for

NP (Definition 2.17), a one-time dual-mode commitment scheme (Definition 2.15), and a pseudorandom

generator (Definition 2.10).

Expanding hash function. First, we define the notion of an “expanding” hash function, which will be

a useful building block in our constructions. At a high-level, an expanding hashing functionH : {0, 1}_ →

[#]3 maps a string G ∈ {0, 1}_ onto a set of elements (⊆ [#] of size |(| = 3 with the property that for

every collection of inputs G1, . . . , G: ∈ {0, 1}
_ , the set

⋃
8∈[:]H(G8) covers almost 3: indices of the set [#].

In the context of our big-key IBE schemes, we will subdivide the master secret key into # blocks, and the

secret key for an identity id will contain the blocks indexed byH(id). The security analysis will rely on

the fact that for any set of : identities that the adversary can possibly corrupt, there will always exist at

least one block of the master secret key that the adversary does not know. Namely, the number of blocks

of the master secret key covered by every set of : identities is always greater than the amount of leakage

the adversary is allowed on the master secret key. We now define the property formally, and show that

such a hash function can be built from a disperser (Definition 2.4 and Fact 2.5).

Definition 4.1 (Expanding Hash Function). We say a hash functionH : {0, 1}_ → [#]3 is (:, U)-expanding

if there exists an explicit and efficient algorithm for computingH(G) in poly(_, 3, log#) time, and moreover,

for every collection of exactly : inputs G1, . . . G: ∈ {0, 1}
_ , it holds that |

⋃
8∈[:]H(G8) | ≥ U: .

22

Lemma 4.2 (Expanding Hash Function). There exists a constant 2 ∈ N such that for every _ ∈ N, every

constant X ∈ (0, 1), and every polynomially-bounded function C (_) > _2 where C (_) is a power of 4, there

exists functions U = l (log _), 3 = poly(_), and a (C, U)-expanding hash functionH : {0, 1}_ → [#]3 , where

UC = (1 − X)# .

Proof. This follows immediately from Fact 2.5. Specifically, let � = (!, ', �) be the construction from

Fact 2.5 instantiated with parameters = = _, Y = X , : = (log C)/2, and :1 = 2: = log C . Then, � is a degree-�

(C, Y)-disperser where � = poly(_), |! | = 2_ and |' | = C · 2Ω (log_) . We now construct the expanding hash

functionH : {0, 1}_ → [#]3 as follows:

• Set # = |' | = C · 2Ω (log_) , U = (1 − X) · 2Ω (log_) , and 3 = � = poly(_).

• For an input G ∈ {0, 1}_ , define H(G) to be the indices of the nodes in the neighborhood of node

G ∈ � (here, we index the 2_ nodes in ! with a bit-string in {0, 1}_). Note that computing H(G)

requires time poly(_, 3, log#) since the disperser is explicit. Thus,H is efficiently-computable.

We now show the expanding property. This follows immediately from the fact that� is a disperser. Consider

any set of C inputs G1, . . . , GC . Let (= {G1, . . . , GC }. Since � is a (C, Y)-disperser, and by construction ofH ,

it follows that �� ⋃
8∈[C]H(G8)

�� = |# (() | ≥ (1 − Y) · |' | = (1 − X)# = UC,

where # (() denotes the neighborhood of (in � . To finish the proof we show the constraint on U and

that C is a valid choice in Fact 2.5. Clearly U = (1 − X) · 2Ω (log_) = l (log _) holds. It is also immediate that

choosing :1 = 2: ≥ : +$ (log3 :) is sufficient. �

Big-key IBE construction. We now give our first construction of an adaptively-secure big-key IBE

scheme.

Construction 4.3 (Big-Key IBE from 8O). Let _ ∈ N be a security parameter, ID = {ID_}_∈N be the

identity space,M = {M_}_∈N be the message space, ℓ be the leakage parameter, # = # (_, ℓ) be a key-size

parameter, and 3 = 3 (_) be an output-size parameter. Our construction relies on the following primitives:

• Let 8O be an indistinguishability obfuscation scheme. We will assume that all programs described here

(and in the proof of Theorem 4.6) are padded to the size ℓ� (_) of the largest program among them.

• Let PRG : {0, 1}_ → {0, 1}2_ be a pseudorandom generator. Note that the PRG is only used in the

security analysis and does not appear in the main construction.

• LetH : ID_ → [#]
3 be a hash function. We interpret the output elements [#]3 as an ordered list

of 3 indices in [#].

• Let ΠNIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be a NIZK proof for NP.

• Let ΠCom = (Com.Setup,Com.Commit,Com.Verify) be a one-time dual-mode commitment scheme

(Definition 2.15) with input space X = {X_}_∈N, and let ℓG = ℓG (_) be the bit-length of an input.

• Let ΠIBE = (IBE.Setup, IBE.KeyGen, IBE.Encrypt, IBE.Decrypt) be an IBE scheme with identity space

ID and message space X3 .

23

• For public parameters ppIBE, define the NP relation R[ppIBE] as follows:

Hard-wired: public parameters ppIBE
Statement: a vector of common reference strings crs

(�)
Com

indexed by a set � ⊂ N, a tuple of

commitments ®2� , ciphertext ct, identity id

Witness: strings ®A� , randomness denc, openings ®f�

Output 1 if all of the following conditions hold:

– For each 8 ∈ � , Com.Verify(crs
(8)
Com

, 28 , A8 , f8) = 1;

– IBE.Encrypt(ppIBE, id, ®A� ; denc) = ct

Otherwise, output 0.

Figure 2: Relation R[ppIBE].

Let �R [ppIBE] be the circuit computing the NP relation R[ppIBE].

We now construct our big-key IBE scheme ΠbkIBE = (Setup,KeyGen, Encrypt,Decrypt) as follows:

• Setup(1_, 1ℓ): On input the security parameter _ and the leakage parameter ℓ , the setup algorithm

proceeds as follows:

1. Sample (ppIBE,mskIBE) ← IBE.Setup(1_) and crsNIZK ← NIZK.Setup(1_).

2. For each 8 ∈ [#], sample a random string A8
r← {0, 1}ℓG . Then, sample a common reference

string crs
(8)
Com
← Com.Setup(1_, bind) and compute (28 , f8) ← Com.Commit(crs

(8)
Com

, A8).

Let ®2 = (21, . . . , 2#), ®A = (A1, . . . , A#), and ®f = (f1, . . . , f#). For a set � ⊆ [#], we write ®2� , ®A� , and ®f�
to be the respective sub-vector of indices in � . Similarly, we define crs

(�)
Com

:=
(
crs
(8)
Com

)
8∈� . Output

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2, crsNIZK, ppIBE

)
and msk = (pp, ®A, ®f). (4.1)

• KeyGen(msk, id): On input the master secret key msk (with components as in Eq. (4.1)) and an

identity id ∈ ID_ , the key generation algorithm proceeds as follows:

1. Compute � ←H(id).

2. Compute ct← IBE.Encrypt(ppIBE, id, ®A� ; denc) where denc is the encryption randomness and ®A�
is as defined in Eq. (4.1).

3. Compute c ← NIZK.Prove(crsNIZK,�R [ppIBE], (crs
(�)
Com

, ®2� , ct, id), (®A� , denc, ®f�)), where crs
(�)
Com

,

®2� , ®A� , and ®f� are as defined in Eq. (4.1).

Output the identity secret key skid = (ct, c).

• Encrypt(pp, id,<): On input the public parameters pp, an identity id ∈ ID_ and a message< ∈ M_ ,

the encryption algorithm defines the following program:

24

Hard-wired: common reference string crsNIZK, a vector of common reference strings crs
(�)
Com

indexed by a set � ⊂ N, a circuit � , a tuple of commitments ®2� , message<, identity id

Inputs: ciphertext ct, proof c

1. If NIZK.Verify
(
crsNIZK,�,

(
crs
(�)
Com

, ®2� , ct, id
)
, c

)
= 1, output<.

2. Otherwise, output ⊥.

Figure 3: Program Check-Bits
[
crsNIZK,�, crs

(�)
Com

, ®2� ,<, id
]
.

The encryption algorithm then computes � ←H(id) and the obfuscated program

�̃ ← 8O(Check-Bits[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<, id]) .

It outputs the ciphertext ct = �̃ .

• Decrypt(skid, id, ct): On input an identity secret key skid, an identity id ∈ ID_ , and a ciphertext

ct = �̃ , the decryption algorithm outputs �̃ (skid).

Theorem 4.4 (Correctness). Suppose ΠCom is correct, 8O is correct, and ΠNIZK is complete. Then, Construc-

tion 4.3 is correct.

Proof. Take any security parameter _, identity id ∈ ID_ , and message<. Let (pp,msk) ← Setup(1_, 1ℓ),

where pp =

({
crs
(8)
Com

}
8∈[#]

, ®2, crsNIZK, ppIBE

)
,msk = (pp, ®A, ®f). Let skid = (ct, c) ← KeyGen(msk, id) and

�̃ ← Encrypt(pp, id,<). Consider the output of Decrypt(skid, id, �̃):

• By construction of KeyGen and correctness of ΠCom, we have ((crs
(�)
Com

, ®2� , ct, id), (®A� , denc, f�)) ∈

R[ppIBE] and c ← NIZK.Prove(crsNIZK,�R [ppIBE], (crs
(�)
Com

, ®2� , ct, id), (®A� , denc, ®f�)).

• By construction of Encrypt and 8O correctness, �̃ is a program which outputs the message< when

the NIZK proof verifies on statement (crs
(�)
Com

, ®2� , ct, id) where ct is an input.

• By completeness of ΠNIZK, the proof c from KeyGen verifies and thus �̃ (skid) =<, as required. �

Theorem 4.5 (Efficiency). IfH runs in poly(_, log#)-time, then Construction 4.3 is efficient.

Proof. This holds by inspection and assumption onH , since our other primitives run in poly(_)-time by

definition. Furthermore, the KeyGen and Encrypt algorithms only needs to read poly(_) · 3 (_) bits of the

master secret key msk and/or the public parameters pp. The size of these quantities are independent of

the leakage parameter ℓ . �

Theorem 4.6 (Adaptive Advantage-Checker Security under Bounded Leakage). Suppose the following

conditions hold:

• The obfuscator 8O is secure.

• The hash function H is (:, U)-expanding, where (1 − [)U (_)ℓG (_) ≥ _ + l (log _) for some constant

[∈ (0, 1).

25

• The IBE scheme ΠIBE satisfies correctness and adaptive semantic security.

• The NIZK ΠNIZK satisfies statistical soundness and computational zero-knowledge.

• The one-time dual-mode commitment scheme ΠCom satisfies mode indistinguishability and statistical

binding in binding mode.

• The pseudorandom generator PRG is secure.

• There exists an explicit universal hash family Hfam of size at most 2poly(_) , where each function

ℎ : X3
_
→ {0, 1}_ has domain X3

_
and range {0, 1}_ . Moreover, the extractor Ext(G, ℎ) = ℎ(G) is a

(_ + l (log _), negl(_))-strong randomness extractor.

Then for all polynomially-bounded and sufficiently large ℓ = ℓ (_), Construction 4.3 is adaptively advantage-

checker secure under bounded leakage with challenge parameter : ≥ ℓ
[UℓG

.

Proof. We define a sequence of hybrid experiments, each parameterized (implicitly) by an adversary

A = (A0,A1) and an advantage threshold function Y = Y (_):

• Hyb0: This is the adaptive advantage-checker security game from Definition 3.1, which we recall

in full below:

– Setup: The challenger starts by sampling (ppIBE,mskIBE) ← IBE.Setup(1_), and crsNIZK ←

NIZK.Setup(1_). For all 8 ∈ [#], it samples a random string A8
r← {0, 1}ℓG , a CRS crs

(8)
Com
←

Com.Setup(1_, bind), and computes (28 , f8) ← Com.Commit(crs
(8)
Com

, A8). For ®2 = (21, . . . , 2#),

®A = (A1, . . . , A#), and ®f = (f1, . . . , f#), the challenger sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2, crsNIZK, ppIBE

)
and msk = (pp, ®A, ®f)

and gives pp to A.

– Pre-leakage queries: When algorithm A1 makes a query on id ∈ ID_ , the challenger com-

putes � ←H(id), ct← IBE.Encrypt(ppIBE, id, ®A� ; denc), and

c ← NIZK.Prove(crsNIZK,�R [ppIBE], (crs
(�)
Com

, ®2� , ct, id), (®A� , denc, ®f�)),

where denc is (fresh) encryption randomness. The challenger replies with skid = (ct, c).

– Leakage: After A1 outputs the description of an efficiently-computable leakage function 5 ,

the challenger replies with leak← 5 (msk).

– Post-leakage queries: The challenger responds to post-leakage key queries exactly as in the

pre-leakage phase.

– Challenge: AlgorithmA1 outputs a set J ⊆ ID_ of size : , two messages<0,<1, and a state st.

– Output: The output of Hyb0 is 1
′
= 1 if A is admissible and

∀id ∈ J : AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak) = 1, (4.2)

and 1′ = 0 otherwise. The advantage-checker algorithm AdvCheck is defined as follows:

26

Inputs: security parameter _, threshold Y ∈ (0, 1), identity id ∈ ID_ , master secret key

msk = (pp, ®A, ®f), public parameters pp =

({
crs
(8)
Com

}
8∈[#]

, ®2, crsNIZK, ppIBE

)
, state st, string

leak, and (oracle) access to an algorithm A

∗ Let) = _/Y2 and initialize a counter ← 0.

∗ The advantage-checker algorithm now simulates) independent executions of

experiment Expid(msk, pp, st, leak) for algorithm A.

1. Sample V r← {0, 1}.

2. Compute �̃ ← 8O(Check-Bits[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , id]), where

� ←H(id). Set ct = �̃ and start running algorithm A on input (st, id, ct).

3. Whenever algorithm A makes a key-generation query on an identity

id ∈ ID_ , compute � ←H(id), ct← IBE.Encrypt(ppIBE, id, ®A� ; denc), and c ←

NIZK.Prove(crsNIZK,�R [ppIBE], (crs
(�)
Com

, ®2� , ct, id), (®A� , denc, ®f�)), where denc is

(fresh) encryption randomness. Reply to A with the identity key skid = (ct, c).

4. AfterA has finished making key-generation queries, it outputs a bit V ′ ∈ {0, 1}.

5. If V = V ′, then increment ← + 1.

∗ Output 1 if ≥)
2 +

Y)
2 and 0 otherwise.

Figure 4: Function AdvCheckA (1_, 11/Y, id,msk, pp, st, leak) in Construction 4.3

• Hyb1: Same as Hyb0 except the challenger now samples ℎ r←Hfam at setup time and for each id ∈ J ,

the challenger constructs the challenge ciphertext �̃ in AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak)

using the following modified procedure:

1. The challenger samples V r← {0, 1} , computes � ← H(id), and computes the components

skid ← IBE.KeyGen(msk, id), D ← ℎ(®A�), C ← PRG(D).

2. The challenger defines the program Check-CT as follows:

Hard-wired: common reference string crsNIZK, a vector of common reference strings

crs
(�)
Com

indexed by a set � ⊂ N, a circuit � , a tuple of commitments ®2� , message<, identity

secret key skid, identity id, seed ℎ, bit-string C

Inputs: ciphertext ct, proof c

Output< if the following hold and ⊥ otherwise:

– NIZK.Verify(crsNIZK,�, (crs
(�)
Com

, ®2� , ct, id), c) = 1; and

– PRG(ℎ(IBE.Decrypt(skid, id, ct))) = C .

Figure 5: Program Check-CT[crsNIZK,�, crs
(�)
Com

, ®2� ,<, skid, id, ℎ, C].

Finally, it sets �̃ ← 8O(Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , skid, id, ℎ, C]).

The remainder of AdvCheck proceeds as in Hyb0. We refer to these ciphertexts as semi-functional

27

ciphertexts.

• Hyb2: Same asHyb1 except the challenger simulates the NIZK proofs when answering key-generation

queries. Specifically, let S = (S1,S2) be the zero-knowledge simulator associated with ΠNIZK. The

experiment now proceeds as follows:

– Setup: The challenger now samples (crsNIZK, stS) ← S1(1
_).

– Key-generation queries: Whenever A1 makes a key-generation query (in the pre-leakage

or the post-leakage phase) orA2 makes a key-generation query (in AdvCheckA2) on id ∈ ID_ ,

the challenger now constructs the NIZK proof c as c ← S2(stS,�R [ppIBE], (crs
(�)
Com

, ®2� , ct, id)).

• Hyb3: Same asHyb2 except the challenger samples the commitment CRS in hidingmode and simulates

the commitments and openings:

– Setup: For all 8 ∈ [#], the challenger now samples the commitment components (crs
(8)
Com

, 28 , f8)

as
(
crs
(8)
Com

, td
(8)
Com

, 28
)
← Com.Setup(1_, hide), f8 ← Sopen(td

(8)
Com

, A8).

• Hyb4: Same as Hyb3 except the challenger changes the distribution of secret keys when answering

key-generation queries:

– Key-generation queries: Whenever A1 makes a key-generation query (in the pre-leakage

or the post-leakage phase) orA2 makes a key-generation query (in AdvCheckA2) on id ∈ ID_ ,

the challenger now computes ct as ct← IBE.Encrypt(ppIBE, id, 0
3ℓG ; denc).

We refer to these keys as semi-functional keys.

• Hyb5: Same as Hyb4 except for all id ∈ J , the challenger samples D r← {0, 1}_ at the counter

initialization step in the procedure AdvCheck(id) and uses it to construct all challenge ciphertexts

in AdvCheck(id). Moreover, the output of this experiment is 1′ = 1 if A is admissible and

∃id ∈ J : AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak) = 1, (4.3)

and 1′ = 0 otherwise. In other words, Eq. (4.3) replaces Eq. (4.2) as the condition that determines the

output of experiment.

• Hyb6: Same as Hyb5 except for all id ∈ J the challenger samples C r← {0, 1}2_ at the counter

initialization step in the procedure AdvCheck(id).

• Hyb7: Same as Hyb6 except for all id ∈ J the challenger constructs the challenge ciphertext �̃ as

�̃ ← 8O(Bot) in the procedure AdvCheck(id), where Bot is a program that outputs ⊥ on all inputs.

For convenience, we will refer to AdvCheckA (1_, 11/Y, id,msk, pp, st, leak) as AdvCheck(id) when the non-

id parameters are fixed in a given context. For an adversary A = (A1,A2), we write Hyb8 (A, Y) to denote

the output ofHyb8 with adversaryA and inner threshold function Y. Our goal is to show that for all efficient

adversaries A and all inverse polynomial functions Y = 1/poly(_), Pr[Hyb0(A, Y) = 1] = negl(_). We now

analyze each pair of adjacent experiments:

Lemma 4.7. Suppose 8O satisfies indistinguishability obfuscation security, ΠNIZK satisfies statistical soundness,

ΠCom satisfies statistical binding in binding mode, and ΠIBE satisfies correctness. Then, for all efficient and

28

admissible adversaries A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function

negl(·) such that for all _ ∈ N,

Pr[Hyb1(A, Y) = 1] ≥ Pr[Hyb0(A, Y) = 1] − negl(_).

Proof. We define a sequence of intermediate hybrids:

• Hyb0,1,0: Same as Hyb0. In particular, the challenge ciphertexts in the procedure AdvCheck(id) are

sampled as �̃ ← 8O(Check-Bits[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , id]), where � ←H(id).

• Hyb0,8, 9 : Same as Hyb0 except for all (8
′, 9 ′) such that 8′ < 8 or 8′ = 8, 9 ′ ≤ 9 , the challenger sets

id = J [8′], and samples the challenge ciphertext in the 9 ′th execution of Expid in AdvCheck as

�̃ ← 8O(Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , skid, id, ℎ, C]),

where V r← {0, 1}, � ← H(id), skid ← IBE.KeyGen(msk, id), D ← ℎ(®A�), C ← PRG(D) as in Hyb1.

Note that Hyb0,:,) is the same as Hyb1 and that Hyb0,8,) is the same as Hyb0,8+1,0 for 8 ∈ [: − 1].

We now appeal to the conditions in Lemma 4.7 to show that for all 8 ∈ [:], 9 ∈ [)] we show that Hyb0,8, 9
and Hyb0,8, 9−1 are computationally indistinguishable.

Claim 4.8. Suppose the conditions in Lemma 4.7 hold. Then for all 8 ∈ [:], 9 ∈ [)], all efficient and admissible

adversaries A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such

that for all _ ∈ N,

Pr[Hyb0,8, 9 (A, Y) = 1] ≥ Pr[Hyb0,8, 9−1(A, Y) = 1] − negl(_).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb0,8, 9 and Hyb0,8, 9−1 with non-

negligible probability X . We use A to construct an algorithm B that breaks 8O security:

1. Algorithm B runs the setup, leakage, challenge, key-generation phases as in Hyb0 with A. In

particular:

(a) Algorithm B starts by sampling ℎ r← Hfam, (ppIBE,mskIBE) ← IBE.Setup(1_), and crsNIZK ←

NIZK.Setup(1_). For all 8 ∈ [#], algorithm B samples the components A8
r← {0, 1}ℓG , crs

(8)
Com
←

Com.Setup(1_, bind), and computes (28 , f8) ← Com.Commit(crsCom, A8). Algorithm B sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2, crsNIZK, ppIBE

)
and msk = (pp, ®A, ®f)

and gives pp to A. The components ®2, ®A , and ®f are derived as in Eq. (4.1).

(b) When algorithm A makes a key-generation query on id ∈ ID_ , algorithm B computes the

plain IBE ciphertext ct← IBE.Encrypt(ppIBE, id, A� ; denc) and the proof

c ← NIZK.Prove(crsNIZK,�R [ppIBE], (crs
(�)
Com

, 2� , ct, id), (A� , denc, f�)),

where denc is (fresh) encryption randomness and � ← H(id). Algorithm B replies with

skid = (ct, c).

(c) When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies

with leak← 5 (msk). In the challenge phase, algorithmA outputsJ ⊆ ID_ of size: , messages

<0,<1, and a state st.

29

2. For all (8′, 9 ′) such that 8′ < 8 or 8′ = 8, 9 ′ < 9 , algorithm B computes � ←H(J [8′]), D ← ℎ(®A�), C ←

PRG(D) and samples V r← {0, 1}, skJ[8′] ← IBE.KeyGen(msk,J [8′]). Algorithm B computes the

challenge ciphertext in the 9 ′th execution of ExpJ[8
′] in AdvCheck(J [8′]) as

�̃ ← 8O(Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, 2� ,<V , skJ[8′],J [8
′], B, C]) .

3. For the 9 th execution of ExpJ[8] in AdvCheck(J [8]), algorithm B samples the components V r←

{0, 1}, � ←H(J [8]), skJ[8] ← IBE.KeyGen(msk,J [8]), D ← ℎ(®A�), C ← PRG(D). Algorithm B sets

�0 = Check-Bits[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V ,J [8]]

and

�1 = Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , skJ[8],J [8], B, C] .

Algorithm B submits (�0,�1) to the 8O challenger, gets back program % , and uses % as the challenge

ciphertext in this execution.

4. In the remaining executions of Expid in procedure AdvCheck(id), algorithm B samples challenge

ciphertexts as �̃ ← 8O(Check-Bits[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , id]) for V
r← {0, 1}, � ←H(id).

Algorithm B outputs whatever the experiment outputs.

If % ← 8O(�0), algorithmB simulatesHyb0,8, 9−1(A, Y). If % ← 8O(�1), algorithmB simulatesHyb0,8, 9 (A, Y).

All that remains is to show that (�0,�1) are functionally equivalent with overwhelming probability. In

particular, it suffices to show that

NIZK.Verify(crsNIZK,�R [ppIBE], (crs
(�)
Com

, ®2� , ct, id), c) = 1 =⇒ IBE.Decrypt(skid, id, ct) = A�

with 1 − negl(_) probability over the choice of pp, where � ← H(id), skid ← IBE.KeyGen(msk, id). This

is sufficient since PRG and Ext are deterministic. By NIZK verification and statistical soundness, it must be

that the statement (crs
(�)
Com

, ®2� , ct, id) is true with overwhelming probability over the choice of crsNIZK. By

statistical binding, it also must be the case that ®2� opens to only ®A� except with negligible probability over

the choice of crs
(�)
Com

since R[ppIBE] checks that the commitments verify. Since ®A� must be the corresponding

component of the witness for the statement to be true, ct must be an encryption of ®A� . By plain IBE

correctness, we have IBE.Decrypt(skid, id, ct) = ®A� , as desired. Since functional equivalence is satisfied,

algorithm B breaks 8O security with advantage X . �

Since Hyb0,8,) is identical to Hyb0,8+1,0 for 8 ∈ [: − 1], the lemma follows from Claim 4.8 and a standard

hybrid argument. �

Lemma 4.9. Suppose ΠNIZK satisfies computational zero-knowledge. Then, for all efficient and admissible

adversaries A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such

that for all _ ∈ N,

Pr[Hyb2(A, Y) = 1] ≥ Pr[Hyb1(A, Y) = 1] − negl(_).

Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb1 and Hyb2 with non-negligible

probability X . We use A to construct an algorithm B that breaks computational zero-knowledge:

30

1. At the beginning of the game, algorithm B gets (1_, crsNIZK) from the ZK challenger. Algorithm

B samples ℎ r← Hfam and (ppIBE,mskIBE) ← IBE.Setup(1_). For all 8 ∈ [#], algorithm B samples

A8
r← {0, 1}ℓG , crs

(8)
Com
← Com.Setup(1_, bind), and computes (28 , f8) ← Com.Commit(crsCom, A8).

Algorithm B sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2, crsNIZK, ppIBE

)
and msk = (pp, ®A, ®f)

and gives pp to A. The components ®2, ®A , and ®f are derived as in Eq. (4.1).

2. When algorithmA makes a key-generation query on id ∈ ID_ , algorithm B computes the plain IBE

ciphertext ct ← IBE.Encrypt(ppIBE, id, ®A� ; denc) for � ← H(id) and randomness denc. Algorithm B

then queries the proof oracle in the ZK game with input (�R [ppIBE], (crs
(�)
Com

, ®2� , ct, id), (®A� , denc, ®f�))

and gets back c . Algorithm B gives (ct, c) to algorithm A.

3. Algorithm B runs the remainder of the experiment as in Hyb1 with algorithm A:

(a) When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies

with leak = 5 (msk). In the challenge phase, algorithm A outputs J ⊆ ID_ of size at least : ,

messages<0,<1, and a state st.

(b) For all id ∈ J , the algorithm B constructs the challenge ciphertext �̃ in the procedure

AdvCheck(id) as

�̃ ← 8O(Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , skid, id, ℎ, C])

where V r← {0, 1}, � ← H(id), skid ← IBE.KeyGen(msk, id), D ← ℎ(®A�), C ← PRG(D). Algo-

rithm B outputs the output of the experiment.

If the CRS is generated using NIZK.Setup and the proofs are sampled according to NIZK.Prove, then algo-

rithm B simulates Hyb1(A, Y). On the other hand, if the CRS and proofs are generated using the simulator

S, then algorithm B simulates the Hyb2(A, Y). Thus, algorithm B breaks computational zero-knowledge

with advantage X . �

Lemma 4.10. Suppose ΠCom satisfies mode indistinguishability. Then, for all admissible adversaries A and

inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[Hyb3(A, Y) = 1] ≥ Pr[Hyb2(A, Y) = 1] − negl(_) .

Proof. We start by defining a sequence of intermediate hybrid experiments:

• Hyb2,0: Same as Hyb2. In particular, the components (crs
(8)
Com

, td
(8)
Com

, 28 , f8)8∈[#] in the setup phase

are sampled as

crs
(8)
Com
← Com.Setup(1_, bind), (28 , f8) ← Com.Commit(crs

(8)
Com

, A8).

• Hyb2,8 : Same asHyb2,0 except for all 9 ≤ 8 the challenger samples the components (crs
(9)
Com

, td
(9)
Com

, 2 9 , f 9)

as
(
crs
(9)
Com

, td
(9)
Com

, 2 9
)
← Com.Setup(1_, hide) and f 9 ← Sopen(td

(9)
Com

, A 9). The commitments and

openings for 9 > 8 are sampled as in Hyb2,0. Note that Hyb2,# is the same as Hyb3.

31

We now appeal to equivocation of ΠCom to show that for all 8 ∈ [#], the statistical distance between

Hyb2,8−1 and Hyb2,8 is negligible.

Claim 4.11. Suppose ΠCom satisfies mode indistinguishability. Then, for all 8 ∈ [#], admissible adversariesA,

and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[Hyb2,8 (A, Y) = 1] ≥ Pr[Hyb2,8−1(A, Y) = 1] − negl(_).

Proof. Suppose there exists an adversary A that distinguishes Hyb2,8−1 and Hyb2,8 with non-negligible

probability X . We use A to construct an algorithm B that breaks mode indistinguishability:

1. At the beginning of the game, algorithm B gets crs
(8)
Com

from the mode indistinguishability challenger.

Algorithm B samples ℎ r← Hfam, (ppIBE,mskIBE) ← IBE.Setup(1_), and (crsNIZK, stS) ← S1(1
_).

For all 9 ∈ [#], algorithm B samples A 9
r← {0, 1}ℓG . For 9 < 8 , algorithm B computes

(
crs
(9)
Com

, td
(9)
Com

, 2 9
)
← Com.Setup(1_, hide), f 9 ← Sopen(td

(9)
Com

, A 9).

Algorithm B submits A8 to the mode indistinguishability challenger to get (28 , f8). For 9 > 8 , algorithm

B computes crs
(9)
Com
← Com.Setup(1_, bind), (2 9 , f 9) ← Com.Commit(crs

(9)
Com

, A 9). Algorithm B sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2, crsNIZK, ppIBE

)
and msk = (pp, ®A, ®f)

and gives pp to A. The components ®2, ®A , and ®f are derived as in Eq. (4.1).

2. Algorithm B runs the remainder of the experiment as in Hyb2 with algorithm A:

(a) When algorithm A makes a key-generation query on id ∈ ID_ , algorithm B computes

ct← IBE.Encrypt(ppIBE, id, ®A� ; denc) and c ← S2(stS,�R [ppIBE], (crs
(�)
Com

, ®2� , ct, id)),

where denc is (fresh) encryption randomness and � ← H(id). Algorithm B gives (ct, c) to

algorithm A.

(b) When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies

with leak = 5 (msk). In the challenge phase, algorithm A outputs J ⊆ ID_ of size at least : ,

messages<0,<1, and a state st.

(c) For all id ∈ J , the algorithm B constructs the challenge ciphertext �̃ in the procedure

AdvCheck(id) as

�̃ ← 8O(Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , skid, id, ℎ, C])

where V r← {0, 1}, � ← H(id), skid ← IBE.KeyGen(msk, id), D ← ℎ(®A�), C ← PRG(D). Algo-

rithm B outputs the output of the experiment.

If components are in hiding mode and simulated, algorithm B simulates the Hyb2,8−1(A, Y). If components

are in binding mode and computed normally, algorithm B simulates the Hyb2,8 (A, Y). Thus, algorithm B

breaks mode indistinguishability with advantage X . �

The lemma now follows from Claim 4.11 and a standard hybrid argument. �

32

Lemma 4.12. Suppose ΠIBE satisfies adaptive semantic security. Then, for all efficient and admissible adver-

saries A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such that

for all _ ∈ N,

Pr[Hyb4(A, Y) = 1] ≥ Pr[Hyb3(A, Y) = 1] − negl(_).

Proof. Suppose A distinguishes the hybrids and makes at most & total key queries in an experiment. We

start by defining a sequence of intermediate hybrid experiments:

• Hyb3,0: Same as Hyb3. In particular, the ct component for all key-generation queries is computed

as ct← IBE.Encrypt(ppIBE, id, A� ; denc), where � ←H(id).

• Hyb3,8 : Same as Hyb3,0 except for all 9 ≤ 8 the ct component for the 9 th key-generation query is

computed as ct ← IBE.Encrypt(ppIBE, id, 0
3ℓG ; denc), where � ← H(id). For queries 9 > 8 , the ct

component is computed as in Hyb3,0. Note that Hyb3,& is the same as Hyb4.

We now appeal to adaptive semantic security of ΠIBE to show that for all 8 ∈ [&], Hyb3,8−1 and Hyb3,8 are

computationally indistinguishable.

Claim 4.13. Suppose ΠIBE satisfies adaptive semantic security. Then, for all 8 ∈ [&], efficient and admissible

adversaries A, and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such

that for all _ ∈ N,

Pr[Hyb3,8 (A, Y) = 1] ≥ Pr[Hyb3,8−1(A, Y) = 1] − negl(_).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb3,8−1 and Hyb3,8 with non-

negligible advantage X . We useA to construct an algorithmB that breaks adaptive semantic security ofΠIBE:

1. At the beginning of the game, B gets ppIBE from the plain IBE challenger. Algorithm B samples

ℎ
r←Hfam and (crsNIZK, stS) ← S1(1

_). For all 8 ∈ [#], algorithm B samples a random string A8
r←

{0, 1}ℓG , a tuple
(
crs
(8)
Com

, td
(8)
Com

, 28
)
← Com.Setup(1_, hide), and computes f8 ← Sopen(td

(8)
Com

, A8).

Algorithm B sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2, crsNIZK, ppIBE

)
and msk = (pp, ®A, ®f)

and gives pp to A. The components ®2, ®A , and ®f are derived as in Eq. (4.1).

2. On the 9 th key-generation query to id9 when 9 ≠ 8 , algorithmB computes the ciphertext component as

ct ← IBE.Encrypt(ppIBE, id9 , 0
3ℓG ; denc) when 9 < 8 and ct ← IBE.Encrypt(ppIBE, id9 , ®A� ; denc) when

9 > 8 . On the 8th key-generation query, algorithm B gives (id∗ = id8 ,<0 = ®A� ,<1 = 03ℓG) to the plain

IBE challenger and gets back ct∗ which it uses as the ciphertext component of the response to the

query. Algorithm B computes all proof components as c ← S2(stS,�R [ppIBE], (crs
(�)
Com

, ®2� , ct, id)),

and answers all queries by giving (ct, c) to A.

3. When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies with

leak = 5 (msk). In the challenge phase, algorithm A outputs J ⊆ ID_ of size at least : , messages

<0,<1, and a state st.

4. For all id ∈ J , the algorithm B constructs the challenge ciphertext �̃ in the procedure AdvCheck(id)

as

�̃ ← 8O(Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , skid, id, ℎ, C])

where V r← {0, 1}, � ←H(id), D ← ℎ(®A�), C ← PRG(D), and skid is the response to a key-generation

query to the plain IBE challenger on id. Algorithm B outputs the output of the experiment.

33

Note that algorithm B is an admissible IBE adversary if algorithm A is admissible, since the challenge set

J is disjoint from the set of identities queried for key-generation. If ct∗ ← IBE.Encrypt(ppIBE, id8 , ®A� ; denc),

algorithm B simulates the challenger for Hyb3,8−1. If ct
∗ ← IBE.Encrypt(ppIBE, id8 , 0

3ℓG ; denc), algorithm B

simulates the challenger for Hyb3,8 . Thus, algorithm B breaks adaptive semantic security with advantage

X . �

The lemma now follows from Claim 4.13 and a standard hybrid argument. �

Lemma 4.14. Suppose the extractor Ext is a (_ + l (log _), negl(_))-strong extractor and the hash function

H is (:, U)-expanding, where (1 − [)UℓG ≥ _ + l (log _) for some constant [∈ (0, 1). Suppose also that

the challenge parameter : satisfies : ≥ ℓ
[UℓG

. Then, for all admissible adversaries A and inverse polynomial

functions Y = 1/poly(_), there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[Hyb5(A, Y) = 1] ≥ Pr[Hyb4(A, Y) = 1] − negl(_).

Proof. Note that the new condition for outputting 1 can only increase the probability that 1 is output. Other

than this condition, the only difference between Hyb4,Hyb5 is the distribution of the challenge ciphertexts

in executions of AdvCheck. In particular, in for both hybrids, the challenger proceeds as follows:

• In setup, the challenger samples ℎ r←Hfam, (ppIBE,mskIBE) ← IBE.Setup(1_), and (crsNIZK, stS) ←

S1(1
_). For 8 ∈ [#], algorithm B samples A8

r← {0, 1}ℓG ,
(
crs
(8)
Com

, td
(8)
Com

, 28
)
← Com.Setup(1_, hide),

and computes f8 ← Sopen(td
(8)
Com

, A8). Algorithm B sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2, crsNIZK, ppIBE

)
and msk = (pp, ®A, ®f)

and gives pp to A. The components ®2, ®A , and ®f are derived as in Eq. (4.1).

• When algorithm A makes a key-generation query on id ∈ ID_ , the challenger computes

ct← IBE.Encrypt(ppIBE, id, 0
3ℓG ; denc) and c ← S2(stS,�R [ppIBE], (crs

(�)
Com

, ®2� , ct, id)),

where denc is (fresh) encryption randomness and � ←H(id). The challenger gives (ct, c) to algorithm

A.

For id ∈ J , the challenger constructs the challenge ciphertext in AdvCheck(id) as

ct = �̃ ← 8O(Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , skid, id, ℎ, C]),

where V r← {0, 1} , � ← H(id), skid ← IBE.KeyGen(msk, id), and C ← PRG(D). The distribution of the D

component differs between the two hybrids:

• In Hyb4, the challenger samples D ← ℎ(®A�) = Ext(®A� , ℎ).

• In Hyb5, the challenger samples a single value D ← {0, 1}_ which is reused across all of the

AdvCheck(id) iterations.

We now define the following events

• Let �id
Ext

be the event that AdvCheck(id) = 1 for D = ℎ(®A�).

34

• Let �id be the event that AdvCheck(id) = 1 for D r← {0, 1}_ .

We will appeal to security of the extractor to show that there exists id ∈ J such that

Pr[�id] ≥ Pr[�idExt] − negl(_) .

To do this, we lower bound the entropy of some or all of the bits {®AH(id) }id∈J conditioned on the tu-

ple (pp,Q, leak,J), where Q denotes the list of outputs of key-generation queries. Fix any : identities

id1, . . . , id: which belong to J . By assumption, H(id1), . . . ,H(id:) contains at least U: distinct indices

of [#], which correspond to U: · ℓG total bits of msk. Since A is independent of (pp,Q) in Hyb4 and [< 1,

we can appeal to Lemma 2.2 to get the following:

H∞({®AH(id8) }8∈[:] | pp,Q, leak) ≥ H∞({®AH(id8) }8∈[:] | pp,Q) − |leak|

≥ H∞({®AH(id8) }8∈[:]) − |leak|

= U:ℓG − [U:ℓG

= (1 − [)U:ℓG .

By Lemma 2.2, with probability 1 − 2−l (log_) = 1 − negl(_) over the fixed choice of (pp,Q, leak), we have

H∞({®AH(id8) }8∈[:]) ≥ (1 − [)U:ℓG − l (log _) .

Moreover, by Lemma 2.3, there exists a random variable D[:] over [:] such that

H∞(®A � | D[:]) ≥
(1 − [)U:ℓG − l (log _)

:
− log(:),

where � = H(idD[:]). By Lemma 2.2, we have with probability 1 − 2l (log_) = 1 − negl(_) over the choice

of 8 ← D[:] ,

H∞(®AH(id8) | D[:] = 8) ≥ H∞(®A � | D[:]) − l (log _)

Define id∗ = id8 where 8 ← D[:] . With overwhelming probability over the choice of id∗ (alternatively, over

the choice of 8), we have

H∞(®AH(id∗)) = (1 − [)UℓG − l (log _)

for fixed (pp,Q,J , leak). Here, we have used the fact that : = poly(_), so log: = $ (log _). Since

(1 − [)UℓG ≥ _ + l (log _) by assumption, we can appeal to extractor security with overwhelming proba-

bility in the (id∗)th copy of the game. This means ℎ(®AH(id∗)) is statistically close to uniform with negligible

statistical distance, so we must have

Pr[�id
∗

] ≥ Pr[�id
∗

Ext] − negl(_) .

By definition, Pr[�id
∗

Ext
] ≥ Pr[Hyb4(A, Y) = 1] and Pr[Hyb5(A, Y) = 1] ≥ Pr[�id

∗
], so the lemma follows. �

Lemma 4.15. Suppose PRG satisfies PRG security. Then, for all efficient and admissible adversaries A and

inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[Hyb6(A, Y) = 1] ≥ Pr[Hyb5(A, Y) = 1] − negl(_) .

Proof. We define a sequence of intermediate hybrids:

35

• Hyb5,0: Same as Hyb5. Notably, for each id ∈ J , the C component of the challenge ciphertext is

sampled as PRG(D) where D r← {0, 1}_ at the start of AdvCheck(id) and fixed for all ciphertexts.

• Hyb5,8 : Same as Hyb5 except for 8
′ ≤ 8 , we sample C as C ← {0, 1}2_ at the start of AdvCheck on

id = J [8′]. Note that Hyb5,: is the same as Hyb6.

We now appeal to PRG security to show that for all 8 ∈ [:] we show that Hyb5,8 and Hyb5,8−1 are compu-

tationally indistinguishable.

Claim 4.16. Suppose PRG satisfies PRG security. Then for all 8 ∈ [:], all efficient and admissible adversariesA

and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[Hyb5,8 (A, Y) = 1] ≥ Pr[Hyb5,8−1(A, Y) = 1] − negl(_).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb5,8 and Hyb5,8−1 with non-

negligible probability X . We use A to construct an algorithm B that breaks PRG security:

1. Algorithm B gets a PRG challenge C∗ ∈ {0, 1}2_ and runs the setup through challenge phases as in

Hyb5 with A:

(a) Algorithm B samples ℎ r← Hfam, (ppIBE,mskIBE) ← IBE.Setup(1_), and (crsNIZK, stS) ←

S1(1
_). For all 8 ∈ [#], algorithm B samples a string A8

r← {0, 1}ℓG , a tuple
(
crs
(8)
Com

, td
(8)
Com

, 28
)
←

Com.Setup(1_, hide), and computes f8 ← Sopen(td
(8)
Com

, A8). Algorithm B sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2, crsNIZK, ppIBE

)
and msk = (pp, ®A, ®f)

and gives pp to A. The components ®2, ®A , and ®f are derived as in Eq. (4.1).

(b) When algorithm A makes a key-generation query on id ∈ ID_ , the challenger computes

ct← IBE.Encrypt(ppIBE, id, 0
3ℓG ; denc) and c ← S2(stS,�R [ppIBE], (crs

(�)
Com

, ®2� , ct, id)),

where denc is (fresh) encryption randomness and � ← H(id). Algorithm B gives (ct, c) to

algorithm A.

(c) When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies

with leak = 5 (msk). In the challenge phase, algorithm A outputs J ⊆ ID_ of size at least : ,

messages<0,<1, and a state st.

2. For id ∈ J , the challenger constructs the challenge ciphertext in AdvCheck(id) as

ct = �̃ ← 8O(Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , skid, id, ℎ, C]),

where V r← {0, 1}, � ←H(id), skid ← IBE.KeyGen(msk, id). For all 8′ such that 8′ < 8 , algorithm B

samples C at the start of AdvCheck(J [8′]) as C r← {0, 1}2_ . For AdvCheck(J [8]), algorithm B uses

its PRG challenge C∗ as the C component. Algorithm B uses C ← PRG(D) where D r← {0, 1}_ for the C

components at the start of AdvCheck(id) for the remaining id ∈ J . Algorithm B outputs whatever

the experiment outputs.

If C = PRG(*_), algorithm B simulates Hyb5,8−1(A, Y). If C
r← {0, 1}2_ , algorithm B simulates Hyb5,8 (A, Y).

Thus, algorithm B breaks PRG security with advantage X . �

36

The lemma now follows from Claim 4.16 and a standard hybrid argument. �

Lemma 4.17. Suppose 8O satisfies indistinguishability obfuscation security. Then, for all efficient and admis-

sible adversaries A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·)

such that for all _ ∈ N,

Pr[Hyb7(A, Y) = 1] ≥ Pr[Hyb6(A, Y) = 1] − negl(_).

Proof. We define a sequence of intermediate hybrids:

• Hyb6,1,0: Same as Hyb6. Notably, for all id ∈ J the challenge ciphertext is sampled as

�̃ ← 8O(Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , skid, id, ℎ, C]),

where V r← {0, 1}, � ←H(id), skid ← IBE.KeyGen(msk, id).

• Hyb6,8, 9 : Same as Hyb6 except for all (8
′, 9 ′) such that 8′ < 8 or 8′ = 8, 9 ′ ≤ 9 , the challenge ciphertext

in the 9 ′th execution of ExpJ[8
′] in AdvCheck(J [8′]) is sampled as �̃ ← 8O(Bot). Note that Hyb6,:,)

is the same as Hyb7 and that Hyb6,8,) is the same as Hyb6,8+1,0 for 8 ∈ [: − 1].

We now appeal to 8O security to show that for all 8 ∈ [:], 9 ∈ [)] we show that Hyb6,8, 9 and Hyb6,8, 9−1 are

computationally indistinguishable.

Claim 4.18. Suppose the conditions in Lemma 4.17 hold. Then for all 8 ∈ [:], 9 ∈ [)], all efficient and

admissible adversaries A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function

negl(·) such that for all _ ∈ N,

Pr[Hyb6,8, 9 (A, Y) = 1] ≥ Pr[Hyb6,8, 9−1(A, Y) = 1] − negl(_).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb6,8, 9 and Hyb6,8, 9−1 with non-

negligible probability X . We use A to construct an algorithm B that breaks 8O security:

1. Algorithm B runs the setup through challenge phases as in Hyb5 with A:

(a) Algorithm B samples ℎ r← Hfam, (ppIBE,mskIBE) ← IBE.Setup(1_), and (crsNIZK, stS) ←

S1(1
_). For all 8 ∈ [#], algorithm B samples a string A8

r← {0, 1}ℓG , a tuple
(
crs
(8)
Com

, td
(8)
Com

, 28
)
←

Com.Setup(1_, hide), and computes f8 ← Sopen(td
(8)
Com

, A8). Algorithm B sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2, crsNIZK, ppIBE

)
and msk = (pp, ®A, ®f)

and gives pp to A. The components ®2, ®A , and ®f are derived as in Eq. (4.1).

(b) When algorithm A makes a key-generation query on id ∈ ID_ , the challenger computes

ct← IBE.Encrypt(ppIBE, id, 0
3ℓG ; denc) and c ← S2(stS,�R [ppIBE], (crs

(�)
Com

, ®2� , ct, id)),

where denc is (fresh) encryption randomness and � ← H(id). Algorithm B gives (ct, c) to

algorithm A.

(c) When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies

with leak = 5 (msk). In the challenge phase, algorithm A outputs J ⊆ ID_ of size at least : ,

messages<0,<1, and a state st.

37

2. For all (8′, 9 ′) such that 8′ < 8 or 8′ = 8, 9 ′ < 9 , algorithm B samples the challenge ciphertext in the

9 ′th execution of ExpJ[8
′] in AdvCheck as �̃ ← 8O(Bot).

3. For the 9 th execution of ExpJ[8] , algorithm B samples components V r← {0, 1}, C r← {0, 1}2_, � ←

H(J [8]), skJ[8] ← IBE.KeyGen(msk,J [8]) and sets

�0 = Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , skJ[8],J [8], ℎ, C] and �1 = Bot.

Algorithm B submits (�0,�1) to the 8O challenger and gets back program % , which is used as the

challenge ciphertext in this execution.

4. In the remaining executions of ExpJ[8
′] , algorithm B samples V r← {0, 1}, C r← {0, 1}2_, � ←

H(J [8′]), skJ[8′] ← IBE.KeyGen(msk,J [8′]) and computes the challenge ciphertext as

�̃ ← 8O(Check-CT[crsNIZK,�R [ppIBE], crs
(�)
Com

, ®2� ,<V , skJ[8′],J [8
′], ℎ, C]).

Algorithm B outputs the output of the experiment.

If % ← 8O(�0), algorithmB simulatesHyb6,8, 9−1(A, Y). If % ← 8O(�1), algorithmB simulatesHyb6,8, 9 (A, Y).

Moreover, (�0,�1) are functionally-equivalent circuits with overwhelming probability over the choice of

C . Namely, the string C r← {0, 1}2_ is contained in the image of PRG with probability at most 2_/22_ = 2−_

probability. When C is not in the image of PRG, the program Check-CT outputs ⊥ on all inputs, which

coincides with the behavior of Bot. Thus, algorithm B breaks 8O security with advantage that is negligibly

close to X . �

SinceHyb6,8,) is identical toHyb6,8+1,0 for 8 ∈ [:−1], the lemma now follows from Claim 4.18 and a standard

hybrid argument. �

Lemma 4.19. For all efficient and admissible adversaries A and inverse polynomial functions Y = 1/poly(_),

there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[Hyb7(A, Y) = 1] = negl(_) .

Proof. Since the bit 1 has been erased from the challenge ciphertexts, for all id ∈ J ,

Advid(msk, pp, st, leak) = 0. (4.4)

For each 8 ∈ [)], let -8 ∈ {0, 1} be the random variable for whether algorithm A2’s output is correct (i.e.,

if V ′ = V on the 8th iteration). Since Eq. (4.4) holds, E[-8] = Pr[-8 = 1] = 1/2. Moreover, =
∑

8∈[)] -8 and

E[] =) /2. By Hoeffding’s inequality (Fact 2.1),

Pr[−) /2 < Y) /2] ≤ Pr[| −) /2| > Y) /2] ≤ 2−Ω ()Y
2/4)

= negl(_),

since) = _/Y2. Thus, in an execution of AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak), ≥) /2 + Y) /2 with

probability negl(_). Since Eq. (4.4) holds for all id ∈ J , AdvCheck also outputs 1 for any id ∈ J with

probability at most |J | · negl(_) = negl(_), as desired. �

Combining Lemmas 4.9, 4.10, 4.12, 4.14, 4.15, 4.17 and 4.19 yields the statement by a hybrid argument. �

Combined with Theorem 3.4, this yields the following corollary:

38

Corollary 4.20 (Adaptive Security under Bounded Leakage). Suppose the conditions in Theorem 4.6 hold.

Then, Construction 4.3 is adaptively secure under bounded leakage for the same : as in Theorem 4.6.

Remark 4.21 (Leakage Rate). By the condition on : in Theorem 4.6, we have [· :UℓG ≥ ℓ for [∈ (0, 1). By

construction, the number of bits in ®A = (A1, . . . , A#) is ℓG · # . By using the hash function from Lemma 4.2,

we have that U: = (1 − X)# for any X ∈ (0, 1). Thus, [· (1 − X)#ℓG = [′ · #ℓG ≥ ℓ for any [
′ ∈ (0, 1). Since

the only private components in msk are ®A and ®f , the leakage rate is then dependent on the number of bits

in ®f compared to ®A . With the Naor commitment scheme based on one-way functions [Nao89], we obtain

leakage rate 1/$ (_) since an opening to a single bit is $ (_) bits. However, by substituting an algebraic

dual-mode commitment where the size of the opening is at most 2× the bit-length of the underlying message

(e.g., [GS08, BL20]), we can achieve leakage rate approaching 1/3, matching [DGSW22].

5 Adaptively-Secure Big-Key IBE fromWitness Encryption

In this section, we describe how to construct a big-key IBE scheme from a witness encryption scheme

(Definition 2.14), a NIZK (Definition 2.17), a dual-mode commitment scheme (Definition 2.15), and two

additional building blocks which we define below.

5.1 Split Encodings and Privately-Testable Encodings

As outlined in Section 1.1, the core building blocks for our second big-key IBE construction are split

encodings and privately-testable encodings. The main difference between these primitives is whether the

encodings can be tested publicly or privately. We formalize these notions below. Additionally, we show

how to construct these primitives from group-based assumptions in Section 6.

Definition 5.1 (Split Encoding). A split encoding scheme with tag space T = {T_}_∈N is a tuple of efficient

algorithms ΠSE = (Setup, SetupSF, Encode, EncodeSF, Test) with the following syntax:

• Setup(1_) → crs: On input the security parameter _, the setup algorithm outputs a common reference

string crs.

• SetupSF(1_) → (crs, td): On input the security parameter _, the semi-functional setup algorithm

outputs a common reference string crs and a trapdoor td.

• Encode(crs, type) → enc: On input the common reference string crs and type ∈ {0, 1} , the encode

algorithm outputs an encoding enc.

• EncodeSF(crs, td, tag, type) → enc: On input the common reference string crs, a trapdoor td, tag ∈ T_
and type ∈ {0, 1} , the semi-functional encode algorithm outputs an encoding enc.

• Test(crs, enc0, enc1) → {0, 1}: On input the common reference string crs and a pair of encodings

(enc0, enc1), the testing algorithm outputs a bit 1 ∈ {0, 1} .

Moreover, ΠSE should satisfy the following properties:

• Tester correctness: For all _ ∈ N and tag ∈ T_ , all (crs, td) in the support of SetupSF(1_), all enc0
in the support of EncodeSF(crs, td, tag, 0) and all enc1 in the support of EncodeSF(crs, td, tag, 1),

Pr[Test(crs, enc0, enc1) = 1] = 1.

39

Additionally, there exists a negligible function negl(·) such that

Pr


Test(crs, enc0, enc1) = 1 :

crs← Setup(1_)

enc0 ← Encode(crs, 0)

enc1 ← Encode(crs, 1)


= negl(_).

• Mode indistinguishability: For a security parameter _ and a bit 1 ∈ {0, 1} , we define the mode

indistinguishability game between an adversary A and a challenger as follows:

1. The challenger samples crs ← Setup(1_) if 1 = 0 and (crs, td) ← SetupSF(1_) if 1 = 1. The

challenger gives crs to A.

2. Algorithm A can now issue encoding queries to the challenger. On each such query, adversary

A specifies tag ∈ T_ and type ∈ {0, 1} . If 1 = 0, the challenger replies with Encode(crs, type).

If 1 = 1, the challenger replies with EncodeSF(crs, td, tag, type).

3. At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1} , which is the output of the

experiment.

An adversaryA is admissible for the mode indistinguishability game if it does not issue two encoding

queries on the same tag with different types. We say ΠSE satisfies mode indistinguishability if for all

efficient and admissible adversariesA, there exists a negligible function negl(·) such that for all _ ∈ N,

|Pr[1′ = 1|1 = 1] − Pr[1′ = 1|1 = 0] | = negl(_)

in the mode indistinguishability security game.

Definition 5.2 (Privately-Testable Encoding). A privately testable encoding with input space X = {X_}_∈N
is a tuple of efficient algorithms ΠPTE = (Setup, SetupSF, SampSF, Encode, EncodeSF, Test) with the follow-

ing syntax:

• Setup(1_) → crs: On input the security parameter _, the setup algorithm outputs a common reference

string crs.

• SetupSF(1_) → (crs, td): On input the security parameter _, the semi-functional setup algorithm

outputs a common reference string crs and a trapdoor td.

• Samp(1_) → D: On input the security parameter _, the sample algorithm outputs a string D.

• SampSF(td, G) → tdG : On input a trapdoor td and an input G ∈ X_ , the semi-functional sampling

algorithm outputs a trapdoor tdG .

• Encode(crs, G) → enc: On input the common reference string crs and an inputG ∈ X_ , the encode

algorithm outputs an encoding enc.

• EncodeSF(crs) → enc: On input the common reference string crs, the semi-functional encode

algorithm outputs an encoding enc.

• Test(crs, enc, B) → {0, 1}: On input the common reference string crs, an encoding enc, and a string

B , the testing algorithm outputs a bit 1 ∈ {0, 1} .

Moreover, ΠPTE should satisfy the following properties:

40

• Tester correctness: For all _ ∈ N, all (crs, td) in the support of SetupSF(1_), all inputs G ∈ X_ , and

all encodings enc in the support of Encode(crs, G),

Pr
[
Test(crs, enc, tdG) = 1 : tdG ← SampSF(td, G)

]
= 1.

In addition, there exists a negligible function negl(·) such that

Pr


Test(crs, enc, D) = 1 :

crs← Setup(1_);

enc← Encode(crs, G);

D ← Samp(1_)


= negl(_) .

• Mode indistinguishability: For a security parameter _ and a bit 1 ∈ {0, 1} , we define the mode

indistinguishability game between an adversary A and a challenger as follows:

1. The challenger samples crs ← Setup(1_) if 1 = 0 and (crs, td) ← SetupSF(1_) if 1 = 1. The

challenger gives crs to A.

2. Algorithm A can now issue encoding queries to the challenger. On each query, the adversary

A specifies an input G ∈ X_ . If 1 = 0, the challenger replies with Encode(crs, G). If 1 = 1, the

challenger replies with EncodeSF(crs).

3. At the end of the game, algorithm A outputs a bit 1′ ∈ {0, 1} , which is the output of the

experiment.

We say ΠPTE satisfies mode indistinguishability if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all _ ∈ N,

|Pr[1′ = 1|1 = 1] − Pr[1′ = 1|1 = 0] | = negl(_)

in the mode indistinguishability security game.

• :-Trapdoor indistinguishability: Let - be a random variable taking on values in X_ . Suppose

H∞(-) ≥ : . Then, the following distributions are statistically indistinguishable:

{
(crs, tdG) :

(crs, td) ← SetupSF(1_)

G ← -, tdG ← SampSF(td, G)

}
and

{
(crs, D) :

(crs, td) ← SetupSF(1_)

D ← Samp(1_)

}

5.2 Constructing Big-Key IBE from Witness Encryption

We now describe our big-key IBE scheme based on (plain) witness encryption:

Construction 5.3 (Big-Key IBE from Witness Encryption). Let _ ∈ N be a security parameter, ID =

{ID_}_∈N be the identity space,M = {M_}_∈N be the message space, ℓ be a fixed leakage parameter,

= # (_, ℓ) be a key-size parameter, and 3 = 3 (_) be an output size parameter. Our construction relies

on the following primitives:

• Let ΠWE = (WE.Encrypt,WE.Decrypt) be a witness encryption scheme with message spaceM and

relation RWE (with corresponding language LWE), which is defined as follows:

41

Statement: common reference strings crsNIZK, crsSE, crsPTE, a vector of common reference strings

crs
(�)
Com

indexed by a set � ⊂ N, circuit � , a tuple of commitments ®2� , a trapdoor commitment 2g ,

an identity id, a split encoding ctout, and a privately-testable encoding ctaux
Witness: a split encoding skout, a privately-testable encoding skaux, and a proof c

Output 1 if all of the following conditions hold:

– NIZK.Verify
(
crsNIZK,�,

(
crs
(�)
Com

, ®2� , 2g , skout, skaux, id
)
, c

)
= 1.

– PTE.Test(crsPTE, skout, ctout) = 0.

– SE.Test(crsSE, skaux, ctaux) = 0.

Otherwise, output 0.

Figure 6: Relation RWE.

• Let H : ID_ → [#]
3 be a hash function that can be computed in time poly(_, log#) and let the

output in [#]3 be interpreted as a set of 3 indices of [#].

• Let ΠCom = (Com.Setup,Com.Commit,Com.Verify) be a one-time dual-mode commitment scheme

(Definition 2.15) with input space X = {X_}_∈N, and let ℓG = ℓG (_) be the bit-length of an input. Let(
Scom,Sopen

)
be the simulator associated with the commitment scheme.

• Let ΠSE = (SE.Setup, SE.SetupSF, SE.Encode, SE.EncodeSF, SE.Test) be a split encoding scheme with

tag space ID.

• Let ΠPTE = PTE.(Setup, SetupSF, Samp, SampSF, Encode, EncodeSF, Test) be a privately-testable en-

coding scheme with input space XPTE = {X3
_
}_∈N.

• Let ΠNIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be a NIZK for NP.

• For common reference strings crsSE, crsPTE, define the NP relation R[crsSE, crsPTE] as follows:

Hard-wired: common reference strings crsSE, crsPTE, crs
(g)
Com

Statement: a vector of common reference string crs
(�)
Com

indexed by a set � ⊂ N, commitments ®2� ,

2g , encoding skout, encoding skaux, identity id

Witness: ®A� , randomness Bout, Baux, openings ®f� , fg , trapdoor tdSE

Output 1 if either of the following conditions hold:

– skout = PTE.Encode(crsPTE, ®A� ; Bout) and for each 8 ∈ � , Com.Verify(crs
(8)
Com

, 28 , A8 , f8) = 1.

– skaux = SE.EncodeSF(crsSE, tdSE, id, 0; Baux) and Com.Verify
(
crs
(g)
Com

, 2g , tdSE, fg
)
= 1.

Otherwise, output 0.

Figure 7: Relation R[crsSE, crsPTE, crs
(g)
Com
] .

We now construct our big-key IBE scheme ΠbkIBE = (Setup,KeyGen, Encrypt,Decrypt) as follows:

42

• Setup(1_, 1ℓ): On input the security parameter _, the setup algorithm proceeds as follows:

1. Sample crsSE ← SE.Setup(1_), crsPTE ← PTE.Setup(1_), crsNIZK ← NIZK.Setup(1_).

2. For all 8 ∈ [#], sample

A8
r← X_

(
crs
(8)
Com

, td
(8)
Com

, 28
)
← Com.Setup(1_, hide)

f8 ← Sopen
(
td
(8)
Com

, A8
)
.

3. Finally, sample
(
crs
(g)
Com

, td
(g)
Com

, 2g
)
← Com.Setup(1_, hide).

Let ®2 = (21, . . . , 2#), ®A = (A1, . . . , A#) and ®f = (f1, . . . , f#). Output the public parameters

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2 , crsNIZK , crsSE , crsPTE , crs
(g)
Com

, 2g

)
(5.1)

and the master secret key msk = (pp, ®A, ®f). For a set � ⊆ [#], we write ®2� , ®A� , and ®f� to denote the

respective sub-vector of indices in � . Similarly, we define crs
(�)
Com

:=
(
crs
(8)
Com

)
8∈� .

• KeyGen(msk, id): On input the master secret key msk = (pp, ®A, ®f) (with pp parsed according to

Eq. (5.1)) and an identity id ∈ ID_ , the key generation algorithm proceeds as follows:

1. Compute � ←H(id).

2. Compute skout ← PTE.Encode(crsPTE, ®A� ; Bout), where Bout is the encoding randomness.

3. Sample skaux ← SE.Encode(crsSE, 0).

4. Computec ← NIZK.Prove
(
crsNIZK,�,

(
crs
(�)
Com

, ®2� , 2g , skout, skaux, id
)
,
(
®A� , Bout,⊥, ®f� ,⊥,⊥

))
, where

� is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] from Fig. 7.

Output the identity secret key skid = (skout, skaux, c).

• Encrypt(pp, id,<): On input the public parameters pp (parsed as in Eq. (5.1)), an identity id ∈ ID_

and a message<, the encryption algorithm does the following:

1. Compute � ←H(id), sample ctout ← PTE.Samp(1_), ctaux ← SE.Encode(crsSE, 1).

2. Compute ct ← WE.Encrypt(1_,<, (®crs,�, crs
(�)
Com

, ®2� , 2g , id, ctout, ctaux)), where � is the circuit

that computes R[crsSE, crsPTE, crs
(g)
Com
] from Fig. 7 and ®crs = (crsNIZK, crsSE, crsPTE).

Output the ciphertext ct.

• Decrypt(skid, id, ct): On input an identity secret key skid, an identity id ∈ ID_ , and a ciphertext ct,

the decryption algorithm outputsWE.Decrypt(ct, skid).

Theorem 5.4 (Correctness). Suppose ΠSE satisfies tester correctness, ΠPTE satisfies tester correctness, ΠNIZK

satisfies completeness, ΠWE satisfies correctness, and ΠCom satisfies correctness. Then, Construction 5.3 is correct.

Proof. Take any security parameter _, identity id ∈ ID_ , and message<. Let (pp,msk) ← Setup(1_, 1ℓ),

where

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2 , crsNIZK , crsSE , crsPTE , crs
(g)
Com

, 2g

)

and msk = (pp, ®A, ®f). Let skid = (skout, skaux, c) ← KeyGen(msk, id) and ct ← Encrypt(pp, id,<). Con-

sider the output of the algorithm Decrypt(skid, id, ct):

43

• By construction of KeyGen and correctness of ΠCom, we have

((crs
(�)
Com

, ®2� , 2g , skout, skaux, id), (®A� , Bout,⊥, ®f� ,⊥,⊥)) ∈ R[crsSE, crsPTE, crs
(g)
Com
],

and c ← NIZK.Prove(crsNIZK,�, (crs
(�)
Com

, ®2� , 2g , skout, skaux, id), (®A� , Bout,⊥, ®f� ,⊥,⊥)).

• By construction of Encrypt and correctness of ΠWE, WE.Decrypt(ct, skid) =< if

((®crs,�, crs
(�)
Com

, ®2� , 2g , id, ctout, ctaux), (skid)) ∈ RWE,

where � ← H(id), ctout ← PTE.Samp(1_), ctaux ← SE.Encode(crsSE, 1), � is the circuit that com-

putes R[crsSE, crsPTE, crs
(g)
Com
] from Fig. 7, and ®crs = (crsNIZK, crsSE, crsPTE).

• By completeness of ΠNIZK, the proof c verifies, and by tester correctness for ΠSE and ΠPTE, with

overwhelming probability over the choice of crsPTE and crsSE,

PTE.Test(crsPTE, skout, ctout) = 0

SE.Test(crsSE, skaux, ctaux) = 0.

Thus WE.Decrypt(ct, skid) =< with overwhelming probability, as required. �

Theorem 5.5 (Efficiency). IfH runs in poly(_, log#)-time, then Construction 5.3 is efficient.

Proof. This holds by inspection and assumption on H , since the other primitives are all efficient, and

thus, run in poly(_)-time by definition. Furthermore, the KeyGen and Encrypt algorithms only require

poly(_) · 3 (_) bits of msk or pp, which is independent of the leakage parameter ℓ . �

Theorem 5.6 (Adaptive Advantage-Checker Security under Bounded Leakage). Suppose the following

conditions hold:

• The witness encryption scheme ΠWE satisfies semantic security.

• The hash functionH is (:, U)-expanding where U (_) = l (log _).

• The split encoding ΠSE satisfies mode indistinguishability and tester correctness.

• The privately testable encoding ΠPTE satisfies tester correctness, (l (log _) · ℓG)-trapdoor indistinguisha-

bility, and mode indistinguishability.

• The NIZK ΠNIZK satisfies statistical soundness and computational witness indistinguishability.

• The one-time dual-mode commitment scheme ΠCom satisfies mode indistinguishability and statistical

binding in binding mode.

Then for all polynomially-bounded ℓ = ℓ (_), Construction 5.3 is adaptively advantage-checker secure under

bounded leakage for challenge parameter : ≥ ℓ
[UℓG

, where [∈ (0, 1) is a constant.

Proof. We define a sequence of hybrid experiments, each parameterized (implicitly) by an (admissible)

adversary A = (A1,A2) and an advantage threshold function Y = Y (_):

• Hyb0: This is the adaptive advantage-checker security game from Definition 3.1, which we recall

in full below:

44

– Setup: The challenger runs crsSE ← SE.Setup(1_), crsPTE ← PTE.Setup(1_), crsNIZK ←

NIZK.Setup(1_). For all 8 ∈ [#], it samples A8
r← X_,

(
crs
(8)
Com

, td
(8)
Com

, 28
)
← Com.Setup(1_, hide)

and computesf8 ← Sopen
(
td
(8)
Com

, A8
)
. It also samples

(
crs
(g)
Com

, td
(g)
Com

, 2g
)
← Com.Setup(1_, hide),

and sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2 , crsNIZK , crsSE , crsPTE , crs
(g)
Com

, 2g

)

and msk = (pp, ®A, ®f). The challenger gives pp to A1.

– Pre-leakage queries: When A1 makes a query on an identity id ∈ ID_ , the challenger

proceeds as follows:

∗ It computes � ← H(id) and encoding keys skout ← PTE.Encode(crsPTE, ®A� ; Bout) and

skaux ← SE.Encode(crsSE, 0).

∗ Next, it construct the NIZK proof

c ← NIZK.Prove(crsNIZK,�, (crs
(�)
Com

, ®2� , 2g , skout, skaux, id), (®A� , Bout,⊥, ®f� ,⊥,⊥)),

where � is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] from Fig. 7.

The challenger replies with skid = (skout, skaux, c).

– Leakage: After A1 outputs the description of an efficiently-computable leakage function 5 ,

the challenger replies with leak← 5 (msk).

– Post-leakage queries: The challenger responds to post-leakage key queries exactly as in the

pre-leakage phase.

– Challenge: Algorithm A1 outputs a set J ⊆ ID_ of size ≥ : , two messages<0,<1, and a

state st.

– Output: The output of Hyb0 is 1
′
= 1 if

∀id ∈ J : AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak) = 1, (5.2)

and 1′ = 0 otherwise. The advantage-checker algorithm AdvCheck is defined as follows:

45

Inputs: security parameter _, threshold Y ∈ (0, 1), identity id ∈ ID_ , master secret key

msk = (A, f1, . . . f#), public parameters pp (parsed as in Eq. (5.1)), state st, string leak, and

(oracle) access to an algorithm A

∗ Let) = _/Y2 and initialize a counterWINS← 0.

∗ The advantage-checker algorithm now simulates) independent executions of experiment

Expid(msk, pp, st, leak) for algorithm A.

1. Sample V r← {0, 1}.

2. Compute � ←H(id), ctout ← PTE.Samp(1_), ctaux ← SE.Encode(crsSE, 1).

3. Compute ct ← WE.Encrypt
(
1_,<V ,

(
®crs,�, crs

(�)
Com

, ®2� , 2g , id, ctout, ctaux
))
, where

� is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] from Fig. 7, and

®crs = (crsNIZK, crsSE, crsPTE).

4. Whenever algorithmAmakes a key-generation query on an identity id ∈ ID_ , com-

pute � ←H(id), skout ← PTE.Encode(crsPTE, ®A� ; Bout), skaux ← SE.Encode(crsSE, 0),

and

c ← NIZK.Prove
(
crsNIZK,�,

(
crs
(�)
Com

, ®2� , 2g , skout, skaux, id
)
,
(
®A� , Bout,⊥, ®f� ,⊥,⊥

))
,

where � is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] from Fig. 7. The

challenger replies to A with identity key skid = (skout, skaux, c).

5. After A has finished making key-generation queries, it outputs a bit V ′ ∈ {0, 1}.

6. If V = V ′, then incrementWINS←WINS + 1.

∗ Output 1 if WINS ≥)
2 +

Y)
2 and 0 otherwise.

Figure 8: Function AdvCheckA (1_, 11/Y, id,msk, pp, st, leak) for Construction 5.3.

• Hyb1: Same as Hyb0, except the challenger changes the split encoding to semi-functional mode:

– Setup: The challenger now samples (crsSE, tdSE) ← SE.SetupSF(1_).

– Key-generation queries: Whenever A1 makes a key-generation query (in the pre-leakage or

the post-leakage phase) orA2 makes a key-generation query (in AdvCheckA2) on id ∈ ID_ , the

challenger computes skaux ← SE.EncodeSF(crsSE, tdSE, id, 0; Baux), where Baux is the encoding

randomness.

– Output: In the AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak) procedure, the challenger now com-

putes ctaux ← SE.EncodeSF(crsSE, tdSE, id, 1) when constructing the challenge ciphertext ct.

• Hyb2: Same asHyb1 except the challenger answers key-generation querieswith thewitness (Baux, fg , td):

– Setup: The challenger now computes fg ← Sopen
(
td
(g)
Com

, tdSE
)
.3

3Here, we assume that we can interpret tdSE as elements of the input space X_ . Note that this is without loss of generality since

we can always take the binary representation of tdSE and commit bit-by-bit.

46

– Key-generation queries: Whenever A1 makes a key-generation query (in the pre-leakage

or the post-leakage phase) orA2 makes a key-generation query (in AdvCheckA2) on id ∈ ID_ ,

the challenger now constructs the NIZK proof c as

c ← NIZK.Prove
(
crsNIZK,�,

(
crs
(�)
Com

, ®2� , 2g , skout, skaux, id), (⊥,⊥, Baux,⊥, fg , tdSE
))
.

• Hyb3: Same as Hyb2 except the challenger changes the privately-testable encoding to semi-functional

mode:

– Setup: The challenger now samples (crsPTE, tdPTE) ← PTE.SetupSF(1_).

– Key-generation queries: Whenever A1 makes a key-generation query (in the pre-leakage

or the post-leakage phase) orA2 makes a key-generation query (in AdvCheckA2) on id ∈ ID_ ,

the challenger samples skout ← PTE.EncodeSF(crsPTE).

• Hyb4: Same asHyb3 except during the output phase, for each challenge identity id ∈ J , the challenger

computes

ct
(id)
out ← PTE.SampSF

(
tdPTE, ®AH(id)

)
.

When computing the advantage-checker algorithm AdvCheck for the identity id ∈ J , the challenger

uses ct
(id)
out in place of ctout in all) iterations. In other words, for each identity id ∈ J , the chal-

lenger now uses the same ctout := ct
(id)
out in the) executions of AdvCheck for id. In addition, in this

experiment, AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak) outputs 1 if

WINS ≥
)

2
+
Y)

16

and 0 otherwise. Finally, the output of this experiment is 1′ = 1 only if

∃id ∈ J : AdvCheckA2
(
1_, 11/Y, id,msk, pp, st, leak

)
= 1. (5.3)

• Hyb5: Same as Hyb4 except the challenger samples the commitment CRS in binding mode and

constructs the commitments and openings without the simulation algorithms:

– Setup: The challenge now computes the quantities
(
crs
(8)
Com

, 28 , f8
)
as

crs
(8)
Com
← Com.Setup(1_, bind) and (28 , f8) ← Com.Commit(crsCom, A8)

for all 8 ∈ [#] and
(
crs
(g)
Com

, 2g , fg
)
as

crs
(g)
Com
← Com.Setup(1_, bind) and (2g , fg) ← Com.Commit(crsCom, tdSE) .

• Hyb6: Same as Hyb5 except the challenge constructs the challenge ciphertext ct in the procedure

AdvCheckA2 as ct←WE.Encrypt
(
1_, 0,

(
®crs,�, crs

(�)
Com

, ®2� , 2g , id, ctout, ctaux
))
.

For convenience, we will refer to AdvCheckA (1_, 11/Y, id,msk, pp, st, leak) as AdvCheck(id) when the non-

id parameters are fixed in a given context. For an adversary A = (A1,A2), we write Hyb8 (A, Y) to denote

the output ofHyb8 with adversaryA and inner threshold function Y. Our goal is to show that for all efficient

adversaries A and all inverse polynomial functions Y = 1/poly(_), Pr[Hyb0(A, Y) = 1] = negl(_). We now

analyze each pair of adjacent experiments:

47

Lemma 5.7. Suppose ΠSE satisfies mode indistinguishability. Then, for all efficient and admissible adversaries

A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such that for all

_ ∈ N,

Pr[Hyb1(A, Y) = 1] ≥ Pr[Hyb0(A, Y) = 1] − negl(_).

Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb0 and Hyb1 with non-negligible

advantage X . We use A to construct an algorithm B that breaks mode indistinguishability:

1. At the beginning of the game, algorithm B gets crsSE from the mode indistinguishability chal-

lenger. Algorithm B samples crsPTE ← PTE.Setup(1_) and crsNIZK ← NIZK.Setup(1_). For all

8 ∈ [#], algorithm B samples A8
r← X_,

(
crs
(8)
Com

, td
(8)
Com

, 28
)
← Com.Setup(1_, hide) and computes

f8 ← Sopen(td
(8)
Com

, A8). AlgorithmB also samples
(
crs
(g)
Com

, td
(g)
Com

, 2g
)
← Com.Setup(1_, hide) and sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2 , crsNIZK , crsSE , crsPTE , crs
(g)
Com

, 2g

)
and msk = (pp, ®A, ®f)

and gives pp to A.

2. When algorithm A makes a key-generation query on id ∈ ID_ , algorithm B computes skaux by

sending an encoding query (id, 0) to the mode indistinguishability challenger, and setting skaux as the

output of the query. Algorithm B computes � ←H(id), skout ← PTE.Encode(crsPTE, ®A� ; Bout), and

c ← NIZK.Prove(crsNIZK,�, (crs
(�)
Com

, ®2� , 2g , skout, skaux, id), (®A� , Bout,⊥, ®f� ,⊥,⊥)),

where � is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7). Algorithm B gives the key

skid = (skout, skaux, c) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies with

leak = 5 (msk). In the challenge phase, algorithm A outputs J ⊆ ID_ of size at least : , messages

<0,<1, and a state st.

4. For all id ∈ J and 8 ∈ [)], algorithm B computes ctaux by sending an encoding query (id, 1) to

the mode indistinguishability challenger, and setting ctaux as the output of the query. Algorithm

B computes � ←H(id), samples V r← {0, 1}, ctout ← PTE.Samp(1_), and constructs the challenge

ciphertext ct in iteration 8 of the procedure AdvCheck(id) as

ct←WE.Encrypt
(
1_,<V ,

(
®crs,�, crs

(�)
Com

, ®2� , 2g , id, ctout, ctaux
))
,

where� is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).

Algorithm B outputs the output of the experiment.

If algorithm A is admissible, then so is algorithm B since the identities correspond to the tags in ΠSE

(namely, the identities in the challenge set J are disjoint from the ones that algorithm A queried to the

key-generation oracle). If the setup and encodings are in normal mode, algorithm B simulates Hyb0(A, Y).

If the setup and encodings are in semi-functional mode, algorithm B simulatesHyb1(A, Y). Thus, algorithm

B has advantage X in the mode indistinguishability game. �

Lemma 5.8. Suppose ΠNIZK satisfies computational witness indistinguishability. Then, for all efficient and

admissible adversaries A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function

negl(·) such that for all _ ∈ N,

Pr[Hyb2(A, Y) = 1] ≥ Pr[Hyb1(A, Y) = 1] − negl(_).

48

Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb1 and Hyb2 with non-negligible

advantage X . We useA to construct an algorithm B that breaks computational witness-indistinguishability:

1. At the beginning of the game, algorithm B gets (1_, crsNIZK) from the witness indistinguishability

challenger. Algorithm B samples crsPTE ← PTE.Setup(1_) and (crsSE, tdSE) ← SE.SetupSF(1_). For

all 8 ∈ [#], algorithm B samples A8
r← X_,

(
crs
(8)
Com

, td
(8)
Com

, 28
)
← Com.Setup(1_, hide) and com-

putes f8 ← Sopen(td
(8)
Com

, A8). Algorithm B samples
(
crs
(g)
Com

, td
(g)
Com

, 2g
)
← Com.Setup(1_, hide) and

computes fg ← Sopen(td
(g)
Com

, tdSE), which is possible by assumption. Algorithm B sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2 , crsNIZK , crsSE , crsPTE , crs
(g)
Com

, 2g

)
and msk = (pp, ®A, ®f)

and gives pp to A.

2. When algorithm A makes a key-generation query on id ∈ ID_ , algorithm B computes � ←H(id),

skout ← PTE.Encode(crsPTE, ®A� ; Bout) and skaux ← SE.EncodeSF(crsSE, tdSE, id, 0; Baux), where Baux is

the encoding randomness. Algorithm B computes c by querying the proof oracle in the witness

indistinguishability game with input (�, G,F0,F1) where

G = (crs
(�)
Com

, ®2� , 2g , skout, skaux, id)

F0 = (®A� , Bout,⊥, ®f� ,⊥,⊥)

F1 = (⊥,⊥, Baux,⊥, fg , tdSE)),

where � is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7). Algorithm B gives the identity

secret key skid = (skout, skaux, c) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies with

leak = 5 (msk). In the challenge phase, algorithm A outputs J ⊆ ID_ of size at least : , messages

<0,<1, and a state st.

4. For all id ∈ J and 8 ∈ [)], algorithm B computes � ← H(id), samples V r← {0, 1}, ctout ←

PTE.Samp(1_), ctaux ← SE.EncodeSF(crsSE, tdSE, id, 1), and constructs the challenge ciphertext ct in

iteration 8 of the procedure AdvCheck(id) as

ct←WE.Encrypt
(
1_,<V ,

(
®crs,�, crs

(�)
Com

, ®2� , 2g , id, ctout, ctaux
))
,

where� is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).

Algorithm B outputs the output of the experiment.

If the challenger constructs the proofs c using witnessF0, then algorithm B perfectly simulates Hyb1. If

the challenger constructs c using witnessF1, then algorithm B perfectly simulates Hyb2. Thus, algorithm

B breaks computational witness-indistinguishability with advantage X . �

Lemma 5.9. Suppose ΠPTE satisfies mode indistinguishability. Then, for all efficient and admissible adversaries

A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such that for all

_ ∈ N,

Pr[Hyb3(A, Y) = 1] ≥ Pr[Hyb2(A, Y) = 1] − negl(_).

49

Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb2 and Hyb3 with non-negligible

probability X . We use A to construct an algorithm B that breaks mode indistinguishability:

1. At the beginning of the game, algorithm B gets crsPTE from the mode indistinguishability chal-

lenger. Algorithm B samples (crsSE, tdSE) ← SE.SetupSF(1_) and crsNIZK ← NIZK.Setup(1_). For

all 8 ∈ [#], algorithm B samples A8
r← X_,

(
crs
(8)
Com

, td
(8)
Com

, 28
)
← Com.Setup(1_, hide) and computes

f8 ← Sopen(td
(8)
Com

, A8). Algorithm B also samples
(
crs
(g)
Com

, td
(g)
Com

, 2g
)
← Com.Setup(1_, hide) and

computes fg ← Sopen(td
(g)
Com

, tdSE). Algorithm B sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2 , crsNIZK , crsSE , crsPTE , crs
(g)
Com

, 2g

)
and msk = (pp, ®A, ®f)

and gives pp to A.

2. When algorithm A makes a key-generation query on id ∈ ID_ , algorithm B computes � ←H(id)

and makes an encoding query on ®A� to the mode indistinguishability challenger to get skout. Algorithm

B computes skaux ← SE.EncodeSF(crsSE, tdSE, id, 0; Baux), where Baux is the encoding randomness, and

c ← NIZK.Prove(crsNIZK,�, (crs
(�)
Com

, ®2� , 2g , skout, skaux, id), (⊥,⊥, Baux,⊥, fg , td)),

where � is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7). Algorithm B gives the identity

secret key skid = (skout, skaux, c) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies with

leak = 5 (msk). In the challenge phase, algorithm A outputs J ⊆ ID_ of size at least : , messages

<0,<1, and a state st.

4. For all id ∈ J and 8 ∈ [)], algorithm B computes � ← H(id), samples V r← {0, 1}, ctout ←

PTE.Samp(1_), ctaux ← SE.EncodeSF(crsSE, tdSE, id, 1), and constructs the challenge ciphertext ct in

iteration 8 of the procedure AdvCheck(id) as

ct←WE.Encrypt
(
1_,<V ,

(
®crs,�, crs

(�)
Com

, ®2� , 2g , id, ctout, ctaux
))
,

where� is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).

Algorithm B outputs the output of the experiment.

If the setup and encodings are in normal mode, algorithm B simulates Hyb2(A, Y). If the setup and encod-

ings are in semi-functional mode, algorithm B simulates Hyb3(A, Y). Thus, algorithm B has advantage

X in the mode indistinguishability game. �

Lemma 5.10. SupposeH is (:, U)-expanding, where U (_) = l (log _) and : ≥ ℓ
[UℓG

Suppose also that ΠPTE

satisfies (l (log _) · ℓG)-trapdoor indistinguishability. Then, for all admissible adversaries A and inverse

polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[Hyb4(A, Y) = 1] ≥
Y

4
· Pr[Hyb3(A, Y) = 1] − negl(_).

Proof. Let X = Pr[Hyb3(A, Y) = 1]. First, note that lowering the threshold forWINS to)
2 +

Y)
16 and changing

the condition for the experiment to output 1 from Eq. (5.2) to Eq. (5.3) only increases the probability that

the experiment outputs 1. Other than these changes, the only difference between Hyb3 and Hyb4 is the

distribution of ctout:

50

• In Hyb3, the challenger samples a fresh ctout ← PTE.Samp(1_) on each of the) iterations of the

advantage checker.

• In Hyb4, the challenger samples ctout ← PTE.SampSF(tdPTE, ®AH(id)) and reuses it across the) iter-

ations of the advantage checker.

We now proceed via an averaging argument. Specifically, for each 8 ∈ [)], let - id
8 ∈ {0, 1} be the indicator

random variable for whether algorithm A2’s output is correct on the 8th iteration of the advantage checker

(i.e., - id
8 = 1 if V ′ = V in the 8th iteration of AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak)) in Hyb3 (when

ctout ← PTE.Samp(1_)). Since the) iterations of the advantage-checker algorithm are independent, the

random variables - id
1 , . . . , -

id
)

are identically distributed. Let - id be the distribution of each - id
8 . We now

show the following claims:

Claim 5.11. Let A be any admissible adversary and (msk, pp, st, leak,J) be sampled as in Hyb3(A, Y). We

have:

Pr
(msk,pp,st,leak,J)

[
∀id ∈ J : Pr[- id

= 1] ≥ 1/2 + Y/4
]
≥ X − negl(_),

where the inner probability is over the randomness of an iteration of AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak).

Proof. Suppose Pr[- id
= 1] < 1/2 + Y/4 for some id ∈ J . Since - id is an indicator random variable, this

means E[- id] < 1/2 + Y/4. LetWINS =
∑

8∈[)] -
id
8 . By linearity of expectation, this means

E[WINS] =
∑

8∈[)]

E[- id] ≤
)

2
+
Y)

4
.

By Hoeffding’s inequality (Fact 2.1),

Pr[WINS −) /2 − Y) /2 > 0] ≤ Pr[|WINS −) /2 − Y) /4| > Y) /4] ≤ 2−Ω ()Y
2/16)

= a (_),

where a is some negligible function. This means that when E[- id] < 1/2 + Y/4 for some id ∈ J , the

probability thatHyb3(A, Y) = 1 is atmosta (_). Thus, if Pr[Hyb3(A, Y) = 1] = X , then it must be the case that

Pr[∀id ∈ J : E[- id] ≥ 1/2 + Y/4] ≥ X − a,

as required. �

Claim 5.12. Let �idavg be the event that fixing ctout = ct
(id)
out where ct

(id)
out ← PTE.Samp(1_) across all)

iterations of AdvCheck(id) results in an output of 1 for AdvCheck(id) when the WINS threshold is)
2 +

Y)
16 .

Then, for all id ∈ J ,

Pr
[
�idavg

]
≥
YX

4
− negl(_),

where the probability is taken over the randomness of (msk, pp, st, leak,J) in Hyb4.

Proof. Take any id ∈ J . First, we say that a ciphertext ctout in the support of PTE.Samp(1_) is “good”

if Pr[- id
= 1] ≥ 1/2 + Y/8, where the probability is conditioned on the fixed choice of ctout. Suppose

Pr[- id
= 1] ≥ 1/2 + Y/4. Then, by an averaging argument,

Pr[ctout is good : ctout ← PTE.Samp(1_)] >
Y

4
.

51

We now show that AdvCheck(id) outputs 1 with probability 1 − negl(_) whenever ctout is good and the

WINS threshold is) /2 + Y) /16. When ctout is good,

E[WINS] =
∑

8∈[)]

E[- id] =
)

2
+
Y)

8
.

By Hoeffding’s inequality (Fact 2.1),

Pr[WINS −) /2 < Y) /16] ≤ Pr[|WINS −) /2 − Y) /8| > Y) /16] ≤ 2−Ω ()Y
2/256)

= negl(_) . (5.4)

Thus, whenever ctout is good and the WINS threshold is) /2 + Y) /16, we conclude that AdvCheck(id)

outputs 1 with overwhelming probability. Next, by Claim 5.11, with probability at least X − negl(_), we

have that for all id ∈ J , Pr[- id
= 1] ≥ 1/2 + Y/4. Thus, for every id ∈ J , with probability YX/4 − negl(_),

it will be the case that Pr[- id
= 1] ≥ 1/2 + Y/4 and ctout ← PTE.Samp(1_) is good. When this is the case,

Eq. (5.4) says that the probability AdvCheck(id) outputting 0 is negligible. Thus, we conclude that

Pr
[
�idavg

]
≥ Pr

[
WINS ≥

)

2
+
Y)

16
:

Pr[- id
= 1] ≥ 1/2 + Y/4

ctout ← PTE.Samp(1_) is good

]
− negl(_)

≥
YX

4
− negl(_).

The claim follows. �

Proof of Lemma 5.10. We now return to the proof of Lemma 5.10. Let �id
td
be the event that �idavg occurs

when ctout ← PTE.SampSF(tdPTE, ®AH(id)); namely, when ctout is sampled according to the specification of

Hyb4. Note that when �
id
td
occurs for any id ∈ J , then Hyb4(A, Y) outputs 1. To argue this, we first appeal

to trapdoor indistinguishability to show that there exists an identity id ∈ J such that

Pr[�idtd] ≥ Pr[�idavg] − negl(_) .

To do so, we lower bound the entropy of the bits {®AH(id) }id∈J conditioned on the tuple (pp,Q, leak,J),

where Q is the adversary’s view from the key-generation queries. Fix any : identities id1, . . . , id: ∈ J .

SinceH is expanding,H(id1), . . . ,H(id:) contains at least U: distinct indices of [#], which correspond

to U: · ℓG total bits of msk. By construction, the bits ®A are independent of (pp,Q) in Hyb4 and [< 1. Thus,

we can appeal to Lemma 2.2 to get the following:

H∞({®AH(id8) }8∈[:] | pp,Q, leak) ≥ H∞({®AH(id8) }8∈[:] | pp,Q) − |leak|

≥ H∞({®AH(id8) }8∈[:]) − |leak|

= U:ℓG − [U:ℓG

= (1 − [)U:ℓG .

By Lemma 2.2, with probability 1 − 2−l (log_) = 1 − negl(_) over the fixed choice of (pp,Q, leak), we have

H∞({®AH(id8) }8∈[:]) ≥ (1 − [)U:ℓG − l (log _) .

Moreover, by Lemma 2.3, there exists random variable D[:] over [:] such that

H∞(®A � | D[:]) ≥
(1 − [)U:ℓG − l (log _)

:
− log(:),

52

where � = H(idD[:]). By Lemma 2.2, we have with probability 1 − 2−l (log_) = 1 − negl(_) over the choice

of 8 ← D[:] ,

H∞(®AH(id8) | D[:] = 8) ≥ H∞(A � | D[:]) − l (log _) .

Thus, with overwhelming probability over id∗ ← idD[:] , we have H∞(®AH(id∗)) = (1 − [)UℓG − l (log _) for

fixed (pp,Q,J , leak). Since UℓG = l (log _) · ℓG by assumption, we can appeal to (l (log _) · ℓG)-trapdoor

indistinguishability with overwhelming probability in the id∗ copy of the game. This means the distribution

of ctout ← PTE.SampSF(tdPTE, ®AH(id∗)) is statistically close to the distribution of ctout ← PTE.Samp(1_).

Correspondingly, this means

Pr[�id
∗

td] ≥ Pr[�id
∗

avg] − negl(_) .

By Claim 5.12, Pr[�id
∗

avg] ≥ YX/4 − negl(_). Finally, by definition of X ,

Pr[Hyb4(A, Y) = 1] ≥ Pr[�id
∗

td] ≥
YX

4
− negl(_) =

Y

4
· Pr[Hyb3(A, Y) = 1] − negl(_) . �

Lemma 5.13. Suppose ΠCom satisfies mode indistinguishability. Then, for all efficient and admissible adver-

saries A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such that

for all _ ∈ N,

Pr[Hyb5(A, Y) = 1] ≥ Pr[Hyb4(A, Y) = 1] − negl(_).

Proof. We start by defining a sequence of intermediate hybrid experiments:

• Hyb4,0: Same as Hyb4. In particular, the components (crs
(8)
Com

, 28 , f8)8∈[#] in the setup phase are

sampled as (
crs
(8)
Com

, td
(8)
Com

, 28
)
← Com.Setup(1_, hide), f8 ← Sopen(td

(8)
Com

, A8) .

Additionally,
(
crs
(g)
Com

, td
(g)
Com

, 2g
)
← Com.Setup(1_, hide), fg ← Sopen(td

(g)
Com

, tdSE).

• Hyb4,8 : Same as Hyb4,0, except for all 9 ≤ 8 the challenger samples the components (crs
(9)
Com

, 2 9 , f 9) as

crs
(9)
Com
← Com.Setup(1_, bind), (2 9 , f 9) ← Com.Commit(crs

(9)
Com

, A 9)

• Hyb4,#+1: Same as Hyb4,# except the challenger samples (crs
(g)
Com

, 2g , fg) as

crs
(g)
Com
← Com.Setup(1_, bind), (2g , fg) ← Com.Commit(crsCom, tdSE) .

This is the same as Hyb5.

We now appeal to mode indistinguishability of ΠCom to show that for all 8 ∈ [# + 1], Hyb4,8−1 and Hyb4,8
are statistically indistinguishable. We omit the proof of indistinguishability for Hyb4,# and Hyb4,#+1 since

it is analogous.

Claim 5.14. Suppose the conditions in Lemma 5.13 hold. Then, for all 8 ∈ [# +1], admissible adversariesA, and

inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[Hyb4,8 (A, Y) = 1] ≥ Pr[Hyb4,8−1(A, Y) = 1] − negl(_).

Proof. Suppose there exists an adversary A that distinguishes Hyb4,8−1 and Hyb4,8 for some 8 ∈ [#] with

non-negligible probability X . We use A to construct an algorithm B that breaks mode indistinguishability:

53

1. At the beginning of the game, algorithm B gets crs
(8)
Com

from the mode indistinguishability chal-

lenger. Algorithm B samples (crsSE, tdSE) ← SE.SetupSF(1_), (crsPTE, tdPTE) ← PTE.SetupSF(1_),

and crsNIZK ← NIZK.Setup(1_). For all 9 ∈ [#], algorithm B samples A 9
r← X_ . For 9 < 8 , algorithm

B computes regular commitments and openings

crs
(9)
Com
← Com.Setup(1_, bind), (2 9 , f 9) ← Com.Commit(crs

(9)
Com

, A 9) .

Algorithm B submits A8 to the mode indistinguishability challenger to get (28 , f8). For 9 > 8 , algorithm

B computes simulated commitments and openings

(
crs
(9)
Com

, td
(9)
Com

, 2 9
)
← Com.Setup(1_, hide), f 9 ← Sopen(td

(9)
Com

, A 9).

Algorithm B also samples
(
crs
(g)
Com

, td
(g)
Com

, 2g
)
← Com.Setup(1_, hide) and computes the simulated

opening fg ← Sopen(td
(g)
Com

, tdSE). Algorithm B sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2 , crsNIZK , crsSE , crsPTE , crs
(g)
Com

, 2g

)
and msk = (pp, ®A, ®f)

and gives pp to A.

2. When algorithm A makes a key-generation query on id ∈ ID_ , algorithm B computes � ←H(id),

skout ← PTE.EncodeSF(crsPTE), skaux ← SE.EncodeSF(crsSE, tdSE, id, 0; Baux), where Baux is the encod-

ing randomness, and

c ← NIZK.Prove(crsNIZK,�, (crs
(�)
Com

, ®2� , 2g , skout, skaux, id), (⊥,⊥, Baux,⊥, fg , td)),

where � is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7). Algorithm B gives the identity

secret key skid = (skout, skaux, c) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies with

leak = 5 (msk). In the challenge phase, algorithm A outputs J ⊆ ID_ of size at least : , messages

<0,<1, and a state st.

4. For all id ∈ J , algorithm B computes � ←H(id) and ctout ← PTE.SampSF(tdPTE, ®A�). Then, for each

8 ∈ [)], algorithm B samples V r← {0, 1} , ctaux ← SE.EncodeSF(crsSE, tdSE, id, 1), and constructs the

challenge ciphertext ct according to the specification of iteration 8 of the procedure AdvCheck(id)

in Hyb4 and Hyb5:

ct←WE.Encrypt
(
1_,<V ,

(
®crs,�, crs

(�)
Com

, ®2� , 2g , id, ctout, ctaux
))
,

where� is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).

Algorithm B outputs the output of the experiment.

If the challenger samples the CRS and the commitments in hiding mode, then algorithm B simulates

an execution of Hyb4,8−1(A, Y). Conversely, if the challenger samples the CRS and the commitments

in binding mode, algorithm B simulates an execution of Hyb4,8 (A, Y). Thus, algorithm B breaks mode

indistinguishability with advantage X . �

The lemma now follows from Claim 5.14 and a standard hybrid argument. �

54

Lemma 5.15. Suppose ΠWE satisfies semantic security, ΠSE and ΠPTE satisfy tester correctness, ΠNIZK satis-

fies statistical soundness, and ΠCom satisfies statistical binding in binding mode. Then, for all efficient and

admissible adversaries A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function

negl(·) such that for all _ ∈ N,

Pr[Hyb6(A, Y) = 1] ≥ Pr[Hyb5(A, Y) = 1] − negl(_).

Proof. We define a sequence of intermediate hybrids:

• Hyb5,1,0: Same as Hyb5. Notably, for id ∈ J and 8 ∈ [)], the challenger samples V r← {0, 1}, � ←

H(id), ctout ← PTE.SampSF(tdPTE, ®A�), ctaux ← SE.EncodeSF(crsSE, tdSE, id, 1), and computes the

challenge ciphertext in iteration 8 of AdvCheck(id) as

ct←WE.Encrypt
(
1_,<V ,

(
®crs,�, crs

(�)
Com

, ®2� , 2g , id, ctout, ctaux
))
,

where� is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).

• Hyb5,8, 9 : Same as Hyb5 except for all (8
′, 9 ′) such that 8′ < 8 or 8′ = 8, 9 ′ ≤ 9 , the challenger sam-

ples � ←H(J [8′]), ctout ← PTE.SampSF(tdPTE, ®A�), ctaux ← SE.EncodeSF(crsSE, tdSE,J [8
′], 1), and

computes the challenge ciphertext in the (9 ′)th execution of ExpJ[8
′] in AdvCheck as

ct←WE.Encrypt(1_, 0, (®crs,�, crs
(�)
Com

, 2� , 2g ,J [8
′], ctout, ctaux)),

where� is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).

Note that Hyb5,:,) is the same as Hyb6 and that Hyb5,8,) is the same as Hyb5,8+1,0 for 8 ∈ [: − 1].

We now appeal to semantic security of ΠWE to show that Hyb5,8, 9 and Hyb5,8, 9−1 are computationally

indistinguishable for all 8 ∈ [:], 9 ∈ [)].

Claim 5.16. Suppose the conditions in Lemma 5.15 hold. Then for all 8 ∈ [:], 9 ∈ [)], efficient and admissible

adversaries A, and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl(·) such

that for all _ ∈ N,

Pr[Hyb5,8, 9 (A, Y) = 1] ≥ Pr[Hyb5,8, 9−1(A, Y) = 1] − negl(_).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb5,8, 9 and Hyb5,8, 9−1 with non-

negligible advantage X . We use A to construct an algorithm B that breaks semantic security of ΠWE:

1. Algorithm B runs the setup through challenge phases as in Hyb5 with A:

(a) Algorithm B samples (crsSE, tdSE) ← SE.SetupSF(1_), (crsPTE, tdPTE) ← PTE.SetupSF(1_), and

crsNIZK ← NIZK.Setup(1_). For all 8 ∈ [#], algorithm B samples components A8
r← X_ ,

crs
(8)
Com
← Com.Setup(1_, bind) and (28 , f8) ← Com.Commit(crs

(8)
Com

, A8). Algorithm B also

samples crs
(g)
Com
← Com.Setup(1_, bind) and (2g , fg) ← Com.Commit(crsCom, tdSE). Algo-

rithm B sets

pp =

({
crs
(8)
Com

}
8∈[#]

, ®2 , crsNIZK , crsSE , crsPTE , crs
(g)
Com

, 2g

)
and msk = (pp, ®A, ®f)

and gives pp to A.

55

(b) When algorithm A makes a key-generation query on id ∈ ID_ , algorithm B computes

� ← H(id), skout ← PTE.EncodeSF(crsPTE), skaux ← SE.EncodeSF(crsSE, tdSE, id, 0; Baux),

where Baux is the encoding randomness, and

c ← NIZK.Prove(crsNIZK,�, (crs
(�)
Com

, ®2� , 2g , skout, skaux, id), (⊥,⊥, Baux,⊥, fg , td)),

where � is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7). Algorithm B gives the

identity secret key skid = (skout, skaux, c) to algorithm A.

(c) When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies

with leak = 5 (msk). In the challenge phase, algorithm A outputs J ⊆ ID_ of size at least : ,

messages<0,<1, and a state st.

2. For all (8′, 9 ′) such that 8′ < 8 or 8′ = 8, 9 ′ < 9 , algorithm B computes � ← H(J [8′]), ctout ←

PTE.SampSF(tdPTE, ®A�), ctaux ← SE.EncodeSF(crsSE, tdSE,J [8
′], 1), and constructs the challenge ci-

phertext in the 9 ′th execution of ExpJ[8
′] in AdvCheck as

ct←WE.Encrypt(1_, 0, (®crs,�, crs
(�)
Com

, 2� , 2g ,J [8
′], ctout, ctaux)),

where� is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).

3. For the 9 th execution of ExpJ[8] , algorithmB computes � ←H(J [8]), ctout ← PTE.SampSF(tdPTE, ®A�),

ctaux ← SE.EncodeSF(crsSE, tdSE,J [8], 1), and sets

G = (®crs,�, crs
(�)
Com

, ®2� , 2g ,J [8], ctout, ctaux),

where� is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).

Algorithm B samples V r← {0, 1} , sends (G,<V , 0) to the WE challenger, and uses the response ct

from the WE challenger as the challenge ciphertext in this execution.

4. In the remaining executions of ExpJ[8
′] for 8′ ≥ 8 , algorithm B samples components V r← {0, 1}, � ←

H(J [8′]), ctout ← PTE.SampSF(tdPTE, ®A�), ctaux ← SE.EncodeSF(crsSE, tdSE,J [8
′], 1), and constructs

the challenge ciphertext as

ct←WE.Encrypt(1_,<V , (®crs,�, crs
(�)
Com

, ®2� , 2g ,J [8
′], ctout, ctaux)),

where� is the circuit that computes R[crsSE, crsPTE, crs
(g)
Com
] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).

Algorithm B outputs the output of the experiment.

If ct from the WE challenger is constructed using<V , algorithm B simulates Hyb5,8, 9−1(A, Y). If ct from

the WE challenger is constructed using 0, algorithm B simulates Hyb5,8, 9 (A, Y). We now show that for

id = J [8] the statement

G = (®crs,�, crs
(�)
Com

, ®2� , 2g , id, ctout, ctaux)

sampled in Step 3 of the above reduction is a false statement with overwhelming probability. In particular,

we show that for candidate witnessF = (skout, skaux, c)

NIZK.Verify(crsNIZK,�, (crs
(�)
Com

, ®2� , 2g , skout, skaux, id), c) = 1 =⇒

PTE.Test(crsPTE, skout, ctout) = 1

or

SE.Test(crsSE, skaux, ctaux) = 1.

with 1 − negl(_) probability over the choice of pp, where � = H(id):

56

• First, ®2 is an honestly-generated commitment to ®A and 2g is an honestly-generated commitment to

tdSE. Since ΠCom is statistically binding, with overwhelming probability over the choice of crs
(�)
Com

and crs
(g)
Com

, the only valid openings for ®2� is to ®A� = ®AH(id) and 2g opens only to tdSE except with

negligible probability over the choice of crs
(�)
Com

and crs
(g)
Com

.

• SinceNIZK.Verify(crsNIZK,�, (crs
(�)
Com

, ®2� , 2g , skout, skaux, id), c) andΠNIZK is statistically sound, it must

be the case that (crs
(�)
Com

, ®2� , 2g , skout, skaux, id) is a true statement with overwhelming probability over

the choice of crsNIZK. This means that either skout = PTE.Encode(crsPTE, ®AH(id) ; Bout) or skaux =

SE.EncodeSF(crsSE, tdSE, id, 0; Baux) for some randomness Bout, Baux. We consider the two possibilities:

– Suppose skout = PTE.Encode(crsPTE, ®AH(id) ; Bout) for some Bout. Now, the reduction algorithm

samples ctout ← SampSF(tdPTE, ®AH(id)). By tester correctness of ΠPTE, this means

PTE.Test(crsPTE, skout, ctout) = 1.

– Suppose skaux = SE.EncodeSF(crsSE, tdSE, id, 0; Baux) for some Baux. Since ctaux is a Type-1 semi-

functional encoding with identity id, if skaux is a Type-0 semi-functional encoding of the same

id, we have SE.Test(crsSE, skaux, ctaux) = 1 by tester correctness of ΠSE.

We conclude that with overwhelming probability over the choice of pp, for every candidate witness

F = (skout, skaux, c) at least one of the following conditions hold:

• NIZK.Verify(crsNIZK,�, (crs
(�)
Com

, ®2� , 2g , skout, skaux, id), c) = 0;

• PTE.Test(crsPTE, skout, ctout) = 1; or

• SE.Test(crsSE, skaux, ctaux) = 1.

In particular, this means that RWE(G,F) = 0. We conclude that algorithm B breaks semantic security of

ΠWE with advantage at least X − negl(_), which is still non-negligible. �

Since Hyb5,8,) is identical to Hyb5,8+1,0 for 8 ∈ [: − 1], the lemma follows from Claim 5.16 and a standard

hybrid argument. �

Lemma 5.17. For all efficient and admissible adversaries A and inverse polynomial functions Y = 1/poly(_),

there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[Hyb6(A, Y) = 1] = negl(_) .

Proof. Take any id ∈ J . For each 8 ∈ [)], let- id
8 ∈ {0, 1} be the random variable for whether algorithmA2’s

output is correct (i.e., if V ′ = V on the 8th iteration of AdvCheck with identity id). By construction, in Hyb6,

the adversary’s view is independent of the bit V ∈ {0, 1}. Since the challenger samples V r← {0, 1} on each

iteration, the probability that the adversary’s guess V ′ = V is exactly 1/2. This means E[- id
8] = 1/2 for all 8 ∈

[)] and all id ∈ J . Moreover,WINS =
∑

8∈[)] -
id
8 and E[WINS] =) /2. By Hoeffding’s inequality (Fact 2.1),

Pr[WINS −) /2 > Y) /16] ≤ Pr[|WINS −) /2| > Y) /16] ≤ 2−Ω ()Y
2/256)

= negl(_),

since) = _/Y2. Thus, in an execution of AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak), WINS ≥) /2 + Y) /16

with negligible probability. By a union bound, AdvCheck outputs 1 for any id ∈ J with probability at most

|J | · negl(_) = negl(_) since |J | = poly(_). �

57

Security now follows by combining Lemmas 5.7 to 5.10, 5.13, 5.15 and 5.17. �

Combined with Theorem 3.4, this yields the following corollary:

Corollary 5.18 (Adaptive Security under Bounded Leakage). Suppose the conditions in Theorem 5.6 hold.

Then, Construction 5.3 is adaptively secure under bounded leakage for the same : as in Theorem 5.6.

6 Constructing Split Encodings and Privately-Testable Encodings

In this section, we construct split encodings and privately-testable encodings from SXDH in pairing groups

and DDH in pairing-free groups, respectively. We start by recalling the necessary notions for these

constructions.

Definition 6.1 (Prime-Order Group). A prime-order group generator GroupGen is an efficient algorithm

that takes as input the security parameter 1_ and outputs a description G = (G, ?, 6) of a group G with

prime order ? = 2Θ(_) and generator 6. We require the group operation in G to be efficiently computable.

We assume that the order of the group output by GroupGen is a fixed function of the security parameter _.

Definition 6.2 (Prime-Order Bilinear Group). A prime-order (asymmetric) bilinear group generator

BilinearGroupGen is an efficient algorithm that takes as input the security parameter 1_ and outputs a de-

scription G = (G1,G2,G) , ?, 61, 62, 4) of two base groups G1 and G2 with generators 61 and 62, respectively,

a target group G) , all of prime order ? = 2Θ(_) , and a non-degenerate bilinear map 4 : G1 × G2 → G) . We

require that the group operation inG1,G2,G) and the pairing operations to be efficiently computable. We as-

sume that the order of the group output by BilinearGroupGen is a fixed function of the security parameter _.

Notation. Throughout this section, we will use the implicit representation of group elements [EHK+13].

Specifically, if G = (G, ?, 6) is a prime-order group, and M is a matrix over Z? , we write [M] to denote 6M,

where exponentiation is defined component-wise. For a scalar B ∈ Z? , we write B [M] ≔ [B ·M]. When

working with an asymmetric prime-order pairing group G = (G1,G2,G) , ?, 61, 62, 4), we write [M]1 ≔ 6M1 ,

[M]2 ≔ 6M2 , and [M]) ≔ 6M
)
, whereM is a matrix over Z? and 6) = 4 (61, 62).

Definition 6.3 (Decisional Diffie-Hellman). Let GroupGen be a prime-order group generator. The deci-

sional Diffie-Hellman assumption DDH holds with respect to GroupGen if for all efficient adversaries A,

there exists a negligible function negl(·) such that for all _ ∈ N,

|Pr[A(G, [G], [~], [G~]) = 1] − Pr[A(G, [G], [~], [A]) = 1] | = negl(_),

where G ← GroupGen(1_), and G,~, A r← Z? .

Definition 6.4 (Symmetric External Diffie-Hellman). Let BilinearGroupGen be a prime-order asymmetric

bilinear group generator. The symmetric external Diffie-Hellman assumption SXDH holds with respect

to BilinearGroupGen if for all efficient adversaries A, there exists a negligible function negl(·) such that

for all _ ∈ N and all 8 ∈ {1, 2},

|Pr[A(G, [G]8 , [~]8 , [G~]8) = 1] − Pr[A(G, [G]8 , [~]8 , [A]8) = 1] | = negl(_),

where G ← BilinearGroupGen(1_), and G,~, A r← Z? . In other words, the SXDH assumption corresponds

to DDH holding in both G1 and G2.

58

Tensor decisional Diffie-Hellman. When analyzing our constructions, it will be convenient to use the

following variant of the DDH assumption. We show in Theorem 6.6 that the assumption follows generically

from plain DDH.

Definition 6.5 (Tensor Diffie-Hellman Assumption). Let GroupGen be a prime-order group generator and

let =1,<1, =2,<2 ∈ N be dimensions. The tensor Diffie-Hellman assumption TDDH=1,<1,=2,<2 holds with

respect to GroupGen if for all efficient adversaries A, there exists a negligible function negl(·) such that

for all _ ∈ N:

|Pr[A(G, [A], [B], [A ⊗ B]) = 1] − Pr[A(G, [A], [B], [C]) = 1] | = negl(_),

whereG ← GroupGen(1_),A r← Z=1×<1
? , B r← Z=2×<2

? , andC r← Z=1=2×<1<2
? . We define the TDDH=1,<1,=2,<2

assumption inG1,G2 with respect to a prime-order asymmetric bilinear group generator BilinearGroupGen

in an analogous manner (to the SXDH assumption in Definition 6.4).

Theorem 6.6 (DDH implies TDDH). Let _ ∈ N, and suppose =1,<1, =2,<2 = poly(_). Suppose that

DDH holds with respect to a prime-order group generator GroupGen. Then TDDH=1,<1,=2,<2 holds with re-

spect to GroupGen. Analogously, if SXDH holds with respect to a prime-order asymmetric group generator

BilinearGroupGen, then TDDH=1,<1,=2,<2 also holds with respect to BilinearGroupGen.

Proof. We prove the claim for GroupGen. The claim for BilinearGroupGen follows analogously (using

the fact that the SXDH assumption corresponds to the DDH assumption in G1 and G2). We now define a

sequence of hybrid distributions.

• Hyb0: (G, [A], [B], [C]) where A
r← Z=1×<1

? , B r← Z=2×<2
? , and C = A ⊗ B. We index the components

of A by a single index 8 ∈ [=1<1] (e.g., in row-major order). Specifically, we can write

A =



01 · · · 0<1

...
. . .

...

0 (=1−1) ·<1+1 · · · 0=1<1


and C =



01 · B · · · 0<1 · B
...

. . .
...

0 (=1−1) ·<1+1 · B · · · 0=1<1 · B


.

For 8 ∈ [=1<1], we write C8 := 08B.

• Hyb8 for 8 ∈ [=1<1]: Same as Hyb0 except for all 9 ≤ 8 , the challenger now samples C9
r← Z=2×<2

? .

By definition, in Hyb=1<1
, the challenger samples C8

r← Z=2×<2
@ for all 8 ∈ [=1<1], which corresponds to

the uniform case in the TDDH=1,<1,=2,<2 assumption. To complete the proof, we use DDH to argue that for

all 8 ∈ [=1<1], Hyb8 and Hyb8−1 are computationally indistinguishable.

Lemma 6.7. Suppose DDH holds with respect to GroupGen. Then, for all 8 ∈ [=1<1] and all efficient

adversaries A, there exists a negligible function negl such that for all _ ∈ N,

��Pr[Hyb8−1(A) = 1] − Pr[Hyb8 (A) = 1]
�� = negl(_).

Proof. We use the random self-reduction of DDH. Suppose there exists an efficient adversary A that

distinguishes Hyb8 and Hyb8−1 with non-negligible advantage X . We construct B that breaks DDH:

1. At the beginning of the game, algorithm B receives the DDH challenge (G, [G], [~], [I]) from its

challenger.

59

2. For all 9 ∈ [=2<2], algorithm B samples U 9 , V 9
r← Z? . Algorithm B then defines [B] ∈ G=2×<2 to be

the matrix with components [1 9] = U 9 [~] + V 9 for all 9 ∈ [=2<2] (where 9 indexes the components

of [B] in row-major order). Let [C8] be the matrix with components U 9 [I] + V 9 [G]. Finally, algorithm

B sets [08] = [G].

3. For : ∈ [=1<1] where : ≠ 8 , algorithm B samples 0:
r← Z? itself. It defines the matrix A to be the

matrix with components [01], . . . , [0=1<1].

4. Next, for : > 8 , algorithm B sets [C:] = 0: [B]. For : < 8 , algorithm B samples C:
r← Z=2<2

? .

5. Finally, algorithm B gives (G, [A], [B], [C]) to A and outputs whatever A outputs.

Clearly B is efficient if A is since =1,<1, =2,<2 = poly(_). If I = G~, then B perfectly simulates Hyb8−1
for A. If I r← Z? , then algorithm B perfectly simulates Hyb8 for A since U 9 , V 9

r← Z? . Thus B that breaks

DDH with the same advantage X . �

The theorem follows from Lemma 6.7 and a standard hybrid argument, since =1,<1 = poly(_). �

6.1 Split Encoding from SXDH

In this section, we describe how to construct a split encoding from prime-order asymmetric bilinear groups

and a pseudorandom function (Definition 2.11).

Construction 6.8 (Split Encoding from SXDH). Let _ ∈ N be a security parameter and T = {T_}_∈N be

the tag space. Our construction relies on the following primitives:

• Let BilinearGroupGen be a prime-order asymmetric bilinear group generator. Let ? = ? (_) be the

order of the group output by BilinearGroupGen.

• Let PRF : K_ × T_ → (Z
∗
?)

3 be a pseudorandom function with key space K = {K_}_∈N.

We now construct our split encoding scheme ΠSE = (Setup, SetupSF, Encode, EncodeSF, Test) as follows:

• Setup(1_): On input the security parameter _, the setup algorithm outputs the common reference

string crs = G = (G1,G2,G) , ?, 61, 62, 4) ← BilinearGroupGen(1_).

• SetupSF(1_): On input the security parameter _, the semi-functional setup algorithm outputs

crs = G = (G1,G2,G) , ?, 61, 62, 4) ← BilinearGroupGen(1_) and td =
r← K_ .

• Encode(crs, type): On input the common reference string crs = (G1,G2,G) , ?, 61, 62, 4) and type ∈

{0, 1} , the encode algorithm samples x r← (Z∗?)
2. It then outputs enctype where enc0 = [xT]1 and

enc1 = [x]2.

• EncodeSF(crs, td, tag, type): On input the common reference string crs = (G1,G2,G) , ?, 61, 62, 4),

a trapdoor td = ∈ K_ , tag ∈ T_ and type ∈ {0, 1} , the semi-functional encode algorithm first

computes (G1, G2, ~1) = PRF(, tag), ~2 = G
−1
2 (−G1~1). Let x =

[
G1
G2

]
and y =

[~1
~2

]
. Let enc0 = [x

T]1,

and enc1 = [y]2. Then, it samples B r← Z∗? and outputs B · enctype.

• Test(crs, enc0, enc1): On input the common reference string crs = (G1,G2,G) , ?, 61, 62, 4) and a pair

of encodings enc0 = [x
T]1 and enc1 = [y]2, the testing algorithm outputs 1 if [xT]1 · [y]2 = [0]) .

Theorem 6.9 (Tester Correctness). Construction 6.8 satisfies tester correctness.

60

Proof. We show each property separately:

• Take any _ ∈ N, tag ∈ T_ , and (crs, td =) in the support of SetupSF(1_). Then crs = G =

(G1,G2,G) , ?, 61, 62, 4) ← BilinearGroupGen(1_) and td =
r← K_ . Suppose enc0 is in the sup-

port of EncodeSF(crs, , tag, 0) and enc1 is in the support of EncodeSF(crs, , tag, 1). In this case

enc0 = [B0x
T]1 and enc1 = [B1y]2 where x

Ty = 0. This means [B0x
T]1 · [B1y]2 = [B0B1x

Ty]) = [0]) , so

Test(crs, enc0, enc1) outputs 1.

• Now suppose crs ← Setup(1_), enc0 ← Encode(crs, 0), enc1 ← Encode(crs, 1). In this case enc0 =

[xT]1 and enc1 = [y]2 where x, y
r← (Z∗?)

2. In this case, [xT]1 · [y]2 = [0]) if and only if xTy = 0,

which happens with probability at most 1/(? − 1) = negl(_). �

Theorem 6.10 (Mode Indistinguishability). Suppose SXDH holds with respect to BilinearGroupGen and

PRF is a secure pseudorandom function. Then, Construction 6.8 satisfies mode indistinguishability.

Proof. LetA be an efficient adversary for the mode indistinguishability game, and let& = & (_) be a bound

on the number of encoding queries algorithm A makes in the security game. We define a sequence of

hybrid experiments:

• Hyb0: This is the mode indistinguishability gamewith normal setup and encodings fromDefinition 5.1,

which we recall in full below:

1. The challenger samples crs = G ← BilinearGroupGen(1_) and gives crs to A.

2. When algorithm A makes an encoding query (tag, type), the challenger samples x r← (Z∗?)
2

and replies with enctype, where enc0 = [x
T]1 and enc1 = [x]2.

3. At the end of the game, A outputs 1′ ∈ {0, 1} , which is the output of the experiment.

• Hyb1: Same as Hyb0 except at the beginning of the game, the challenger initializes an empty table

) to keep track of the tags that the adversary has queried. Then, when the adversary makes an

encoding query (tag, type), the challenger now responds as follows:

– First, it checks if tag is present in the table) . If so, it sets (x, y) =) [tag]. Otherwise, the

challenger samples x, y r← (Z∗?)
2 and adds) [tag] = (x, y).

– Then the challenger samples B r← Z∗? and sets enc0 ← B [xT]1, enc1 ← B [y]2. It responds with

enctype.

• Hyb2: Same as Hyb1 except whenever the challenger samples y r← (Z∗?)
2 in respond to an encoding

query, it now samples x r← (Z∗?)
2, ~1

r← Z∗? , and sets ~2 = G
−1
2 (−G1~1).

• Hyb3: Same as Hyb2 except at the beginning of the experiment, the challenger samples td =
r← K_ .

Then, when answering encoding queries (tag, type), instead of sampling G1, G2, ~1
r← Z∗? , the chal-

lenger instead computes (G1, G2, ~1) = PRF(, tag). This is the mode indistinguishability game with

semi-functional setup and encodings.

We write Hyb8 (A) to denote the output of Hyb8 with adversary A.

Lemma 6.11. Suppose the SXDH holds with respect to BilinearGroupGen. Then, for all efficient adversaries

A, there exists a negligible function negl such that for all _ ∈ N,

��Pr[Hyb0(A) = 1] − Pr[Hyb1(A) = 1]
�� = negl(_) .

61

Proof. We define an intermediate hybrid Hyb′0 to be the same as Hyb1 except only the Type-0 encoding

queries are changed. We appeal to SXDH to show that both pairs (Hyb0,Hyb
′
0) and (Hyb

′
0,Hyb1) are

computationally indistinguishable. Specifically, we use the tensor decisional Diffie-Hellman assumption

(Definition 6.5), which is implied by SXDH (Theorem 6.6).

Claim 6.12. Suppose the TDDH&,1,&,2 assumption holds in G1 with respect to BilinearGroupGen. Then, for

all efficient adversaries A, there exists a negligible function negl such that for all _ ∈ N,

��Pr[Hyb0(A) = 1] − Pr[Hyb′0(A) = 1]
�� = negl(_) .

Proof. Suppose there exists an efficient adversary A that makes & Type-0 encoding queries and distin-

guishes Hyb0 and Hyb′0 with non-negligible probability X . We use A to construct an algorithm B that

breaks TDDH&,1,&,2 in G1:

1. At the beginning of the game, algorithm B gets a tuple (G, [A]1, [B]1, [C]1) from the TDDH chal-

lenger, where G = (G1,G2,G) , ?, 61, 62, 4) and A ∈ Z
&×1
? , B ∈ Z

&×2
? , and C ∈ Z

&2×2
? .

2. Algorithm B sets crs = G and sends crs to A. In addition, it sets 8 = 1, 9 = 1 and initializes a table) .

3. When algorithm A makes a Type-0 encoding query on tag, algorithm B does the following:

• If tag ∉) , algorithm algorithm B computes enc← [cT8, 9]1, where c8, 9 is the (8 (& − 1) + 9)
th row

of C. Algorithm B then sets) [tag] := 9 and 8 = 8 + 1, 9 = 9 + 1.

• If tag ∈) , algorithm B computes enc← [cT
8,) [tag]

]1. Algorithm B then sets 8 = 8 + 1.

Algorithm B responds with enc.

4. Algorithm B answers all Type-1 queries with [x]2 where x
r← (Z∗?)

2. At the end of the game,

algorithm B outputs what algorithm A outputs.

Let 01, . . . , 0& ∈ Z? be the entries of A and bT

1, . . . , b
T

&
∈ Z2? be the rows of B. If C = A ⊗ B, then cT8, 9 = 08b

T

9 .

Since ? = 2Θ(_) , with overwhelming probability over the choice of B, it holds that A ∈ (Z∗?)
&×1 and B ∈

(Z∗?)
&×2. Now, if C = A ⊗ B, algorithm B simulates the Hyb′0 challenger (where 08 is encoding randomness

on the 8th query, and bT

9 is the vector x associated with tag). If C is uniform, then algorithm B simulates the

Hyb0 challenger. Thus, algorithm B breaks TDDH&,1,&,2 with advantage that is negligibly close to X . �

Claim 6.13. Suppose the TDDH&,1,&,2 assumption holds in G2 with respect to BilinearGroupGen. Then, for

all efficient adversaries A, there exists a negligible function negl such that for all _ ∈ N,

��Pr[Hyb′0(A) = 1] − Pr[Hyb1(A) = 1]
�� = negl(_) .

Proof. Suppose there exists an efficient adversary A that makes & Type-1 encoding queries and distin-

guishes Hyb′0 and Hyb1 with non-negligible probability X . We use A to construct an algorithm B that

breaks TDDH&,1,&,2:

1. At the beginning of the game, algorithm B gets a tuple (G, [A]2, [B]2, [C]2) from the TDDH chal-

lenger, where G = (G1,G2,G) , ?, 61, 62, 4) and and A ∈ Z
&×1
? , B ∈ Z

&×2
? , and C ∈ Z

&2×2
? .

2. Algorithm B sets crs = G and sends crs toA. In addition, it sets 8 = 1, 9 = 1 and initializes tables)0,)1.

62

3. When algorithm A makes a Type-1 encoding query on tag, algorithm B does the following:

• If tag ∉)1, algorithm algorithm B computes enc ← [cT8, 9]2, where c8, 9 is the (8 (& − 1) + 9)
th

row of C. Algorithm B then sets)1 [tag] := 9 and 8 = 8 + 1, 9 = 9 + 1.

• If tag is in the table, algorithm B computes enc← [cT
8,) [tag]

]2. Algorithm B then sets 8 = 8 + 1.

Algorithm B responds with enc.

4. When algorithm A makes a Type-0 encoding query on tag, algorithm B does the following:

• If tag ∉)0, algorithm B samples x r← (Z∗?)
2, B

r← Z∗? , sets)0 [tag] := [x
T]1, and responds with

enc← B [xT]1.

• If tag is in the table, algorithm B samples B r← Z∗? and outputs enc← B ·)0 [tag].

5. At the end of the game, algorithm B outputs whatever algorithm A outputs.

Let 01, . . . , 0& ∈ Z? be the entries of A and bT

1, . . . , b
T

&
∈ Z2? be the rows of B. If C = A ⊗ B, then cT8, 9 = 08b

T

9 .

Since ? = 2Θ(_) , with overwhelming probability over the choice of B, it holds that A ∈ (Z∗?)
&×1 and B ∈

(Z∗?)
&×2. Now, ifC = A⊗B, algorithmB simulates theHyb1 challenger and ifC is uniform, algorithmB sim-

ulates the Hyb′0 challenger. Thus, algorithm B breaks TDDH&,1,&,2 with advantage negligibly close to X . �

The lemma follows from Claims 6.12 and 6.13 and a standard hybrid argument. �

Lemma 6.14. For all admissible adversaries A, Pr[Hyb1(A) = 1] = Pr[Hyb2(A) = 1].

Proof. SinceA is admissible, it does not make a Type-0 and a Type-1 encoding query on the same tag. Thus,

for any tag, algorithmA either observes a function of x only or a function of y only (but never both), where

xTy = 0. It remains to show that the marginal distribution of x and y individually is uniform over (Z∗?)
2:

• By construction x
r← (Z∗?)

2, so the marginal distribution of x is uniform.

• Consider the marginal distribution of y. First, ~1
r← Z∗? . Next, ~2 = G−12 (−G1~1), where G2

r← Z∗? .

Since G1, ~1 ∈ Z
∗
? , this means G1~1 ≠ 0, and so ~2 is uniform over Z∗? and independent of ~1.

We conclude that Hyb1 and Hyb2 are identical distributions, as required. �

Lemma 6.15. Suppose PRF is a secure pseudorandom function. Then, for all efficient adversaries A, there

exists a negligible function negl such that for all _ ∈ N,

��Pr[Hyb2(A) = 1] − Pr[Hyb3(A) = 1]
�� = negl(_) .

Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb2 and Hyb3 with non-negligible

probability X . We use A to construct B that breaks PRF security of PRF:

1. At the beginning of the game, algorithm B gets 1_ from the PRF challenger. B samples crs ←

Setup(1_) and gives crs to A.

2. When A makes an encoding query on (tag, type), B queries the PRF challenger on tag to get

(G1, G2, ~1) ∈ (Z
∗
?)

3. Algorithm B sets ~2 = G−12 (−G1~1), x =
[
G1
G2

]
, and y =

[~1
~2

]
. Finally, it sets

enc0 = [x
T]1, and enc1 = [y]2. Finally, it samples B r← Z∗? and outputs B · enctype.

63

3. At the end of the experiment, B outputs whatever A outputs.

If the challenger computes (G1, G2, ~1) = 5 (tag) where 5 is a uniform random function from T_ → (Z
∗
?)

3,

then algorithm B simulates an execution of Hyb2. If the challenger derives (G1, G2, ~1) = PRF(, tag), then

B simulates an execution of Hyb3. Thus, B breaks security of PRF with advantage X . �

Combining Lemmas 6.11, 6.14 and 6.15 yields the statement by a hybrid argument. �

6.2 Privately Testable Encoding from DDH

In this section, we describe how to construct a privately-testable encoding from prime-order pairing-free

groups.

Construction 6.16 (Privately Testable Encoding from DDH). Let _ ∈ N be a security parameter, 3 = 3 (_)

be a dimension parameter, GroupGen be a prime-order group generator. Let ? = ? (_) be the order of the

group output by GroupGen and let X = {(Z∗
? (_)
)3 }_∈N be the input space. We construct our privately

testable encoding scheme ΠPTE = (Setup, SetupSF, Samp, SampSF, Encode, EncodeSF, Test) as follows:

• Setup(1_): On input the security parameter _, the setup algorithm samples G = (G, ?, 6) ←

GroupGen(1_) and H
r← (Z∗?)

3×3 . It outputs crs = (G, [H]).

• SetupSF(1_): On input the security parameter _, the semi-functional setup algorithm samples

G = (G, ?, 6) ← GroupGen(1_) and H
r← (Z∗?)

3×3 . Then it outputs crs = (G, [H]) and td = H.

• Samp(1_): On input the security parameter _, the sampling algorithm outputs u r← (Z∗?)
3 .

• SampSF(td, v): On input a trapdoor td and a vector v ∈ (Z∗?)
3 , the trapdoor sampling algorithm

outputs tdv
r←V⊥Hv, whereV

⊥
Hv is the space of vectors orthogonal to Hv.

• Encode(crs, v): On input the common reference string crs and a vector v ∈ (Z∗?)
3 , the encode

algorithm samples B r← Z∗? and outputs B [Hv].

• EncodeSF(crs): On input the common reference string crs, the semi-functional encode algorithm

outputs [x] where x r← (Z∗?)
3 .

• Test(crs, enc, tdv) → {0, 1}: On input the common reference string crs, an encoding enc = [u], and

a vector trapdoor tdv ∈ (Z
∗
?)

3 , the testing algorithm outputs 1 if [tdT

vu] = [0] and 0 otherwise.

Theorem 6.17 (Tester Correctness). Construction 6.16 satisfies tester correctness.

Proof. We show each property separately:

• Take any _ ∈ N and any (crs, td) in the support of SetupSF(1_). Then crs = (G, [H]) where

G = (G, ?, 6). Take any input v ∈ (Z∗?)
3 and any encoding enc in the support of Encode(crs, v). This

means enc = B [Hv] for some B ∈ Z∗? . Let tdv ← SampSF(td, v). By definition, tdv is orthogonal to

Hv. This means tdv ·Hv = 0, and correspondingly, that tdv · (BHv) = 0. This means Test(crs, enc, tdv)

outputs 1, as required.

• For the second property, suppose crs ← Setup(1_), enc ← Encode(crs, v), and u ← Samp(1_). In

this case, crs = (G, [H]) and enc = B [Hv] where H r← (Z∗?)
3×3 , B r← Z∗? , and u

r← (Z∗?)
3 . Over the

random choice of u, the probability that uTHv = 0 is at most 1/(? − 1) = negl(_). Correspondingly,

Test(crs, enc, u) = 1 with negligible probability. �

64

Theorem 6.18 (Mode Indistinguishability). Suppose DDH holds with respect to GroupGen. Then, Construc-

tion 6.16 satisfies mode indistinguishability.

Proof. Suppose there exists an efficient adversary A that makes & encoding queries and wins the mode

indistinguishability game with non-negligible advantage X . We use A to construct an algorithm B that

breaks TDDH&,1,3,3 :

1. At the beginning of the game, algorithm B gets a tuple (G, [A], [B], [C]) from the TDDH challenger,

where G = (G, ?, 6) and A ∈ Z
&×1
? , B ∈ Z3×3? , and C ∈ Z

3&×3
? . Parse C as the vertical concatenation

of C1, . . . ,C& where C8 ∈ Z
3×3
? .

2. Algorithm B gives crs = (G, [B]) to A.

3. When A makes its 8th encoding query on a vector v, algorithm B replies with enc = [C8] · v.

4. At the end of the game, algorithm B outputs whatever algorithm A outputs.

First, since ? = 2Θ(_) , the uniform distribution over Z∗? is statistically indistinguishable from the uniform

distribution over Z? . Thus, the components of the CRS are correctly distributed with overwhelming prob-

ability. Let 01, . . . , 0& be the entries of A. If C = A ⊗ B, then C8 = 08B. In this case, algorithm B responds to

the encoding queries according to Encode(crs, v), where 08 is the encoding randomness. If C r← Z
3&×3
? is

uniform, then the encoding queries are implemented according to SetupSF(crs). Thus, algorithm B breaks

TDDH&,1,3,3 with the same advantage X . �

Theorem 6.19 (:-Trapdoor Indistinguishability). Let _ ∈ N be the security parameter and 3 = 3 (_) > 2

for all _. Then, Construction 6.16 satisfies (l (log _) + 2 log?)-trapdoor uniformity.

Proof. We start by showing the following consequence of the leftover hash lemma (Corollary 2.9):

Lemma 6.20. Let F be a finite field, = > 2 be an integer, Y > 0 be fixed, and (⊆ F \ {0} be a set. Suppose

- is a random variable over (= such that H∞(-) ≥ : ≥ 2 log |F| + 2 log(1/Y). Then, the statistical distance

between the following distributions is at most Y/2:

{
y

r← F=
}

and
{
y⊥

r←V⊥x : x← -
}
,

whereV⊥x is the set of vectors that are orthogonal to x.

Proof. For any x ∈ (= , we can sample y⊥ r←V⊥x by sampling ~⊥1 , . . . , ~
⊥
=−1

r← F and setting

~⊥= = −G−1=

∑

8∈[=−1]

G8~
⊥
8 .

It suffices to show that
∑=−1

8=1 G8~
⊥
8 is statistically close to uniform over F. This follows by Corollary 2.9,

with =′ = = − 1 and min-entropy : − log |F| ≥ log |F| + 2 log(1/Y) (specifically, we treat ~1, . . . , ~=−1 as the

seed for the extractor and G1, . . . , G= as the randomness source). �

Theorem 6.19 follows directly from Lemma 6.20 by taking log(1/Y) = l (log _) and = = 3 . Specifically, in

Construction 5.3, the matrix H r← (Z∗?)
3×3 sampled by Setup and SetupSF is full-rank with overwhelming

probability. In this case, if a random vector v ∈ (Z∗?)
3 has :-bits of min-entropy, the vector Hv also has

:-bits of min-entropy (over Z3?). �

65

Acknowledgments

BrentWaters is supported by NSF CNS-1908611, CNS-2318701, and a Simons Investigator award. David J.Wu

is supported by NSF CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google

Research Scholar award.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective

to adaptive security in functional encryption. In CRYPTO, pages 657–677, 2015.

[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel Wichs.

Public-key encryption in the bounded-retrieval model. In EUROCRYPT, pages 113–134, 2010.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography

in the bounded-retrieval model. In CRYPTO, pages 36–54, 2009.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In

CRYPTO, pages 213–229, 2001.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its

applications (extended abstract). In STOC, pages 103–112, 1988.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,

and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,

and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1–6:48, 2012.

[BHK11] Mark Braverman, Avinatan Hassidim, and Yael Tauman Kalai. Leaky pseudo-entropy functions.

In Innovations in Computer Science, pages 353–366, 2011.

[BKR16] Mihir Bellare, Daniel Kane, and Phillip Rogaway. Big-key symmetric encryption: Resisting

key exfiltration. In CRYPTO, pages 373–402, 2016.

[BL20] Fabrice Benhamouda and Huijia Lin. Mr NISC: multiparty reusable non-interactive secure

computation. In TCC, pages 349–378, 2020.

[CDD+07] David Cash, Yan Zong Ding, Yevgeniy Dodis, Wenke Lee, Richard J. Lipton, and Shabsi Walfish.

Intrusion-resilient key exchange in the bounded retrieval model. In TCC, pages 479–498, 2007.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni

Polychroniadou. Laconic oblivious transfer and its applications. In CRYPTO, pages 33–65, 2017.

[CLW06] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly secure password

protocols in the bounded retrieval model. In TCC, pages 225–244, 2006.

[Coc01] Clifford C. Cocks. An identity based encryption scheme based on quadratic residues. In

Cryptography and Coding, pages 360–363, 2001.

66

[DFR+07] Ivan Damgård, Serge Fehr, Renato Renner, Louis Salvail, and Christian Schaffner. A tight high-

order entropic quantum uncertainty relation with applications. In CRYPTO, pages 360–378, 2007.

[DGSW22] Nico Döttling, Sanjam Garg, Sruthi Sekar, and Mingyuan Wang. IBE with incompressible

master secret and small identity secrets. In TCC, pages 588–617, 2022.

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally compos-

able commitment schemes with constant expansion factor. In CRYPTO, pages 581–596, 2002.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to

generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[Dzi06] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In TCC, pages

207–224, 2006.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge L. Villar. An algebraic

framework for diffie-hellman assumptions. In CRYPTO, pages 129–147, 2013.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.

Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,

pages 40–49, 2013.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its

applications. In STOC, pages 467–476, 2013.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive

proof-systems (extended abstract). In STOC, pages 291–304, 1985.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In

EUROCRYPT, pages 415–432, 2008.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom

generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal

of the American Statistical Association, 58(301), 1963.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from

one-way functions (extended abstracts). In STOC, pages 12–24, 1989.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party

computation. J. Cryptol., 22(2):161–188, 2009.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully

secure HIBE with short ciphertexts. In TCC, pages 455–479, 2010.

[MW20] Tal Moran and Daniel Wichs. Incompressible encodings. In CRYPTO, pages 494–523, 2020.

[Nao89] Moni Naor. Bit commitment using pseudo-randomness. In CRYPTO, pages 128–136, 1989.

[Par19] Noam Parzanchevski. Dispersers with logarithmic entropy loss. Msc thesis, Tel-Aviv University,

2019.

67

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications.

In FOCS, pages 859–870, 2018.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53,

1984.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,

and more. In STOC, pages 475–484, 2014.

[TUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless condensers, unbalanced

expanders, and extractors. Comb., 27(2):213–240, 2007.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT,

pages 114–127, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple

assumptions. In CRYPTO, pages 619–636, 2009.

[WW24] Brent Waters and Daniel Wichs. Adaptively secure attribute-based encryption from witness

encryption. In TCC, pages 65–90, 2024.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages

160–164, 1982.

A Transforming Adaptive Big-Key IBE to have Short Public Parameters

The work of [DGSW22] provide a generic transformation that takes any big-key IBE scheme with long public

parameters (that scale with the leakage bound), but where encryption and decryption only requires local

access to the public parameters, and transforms it into a big-key IBE scheme with short public parameters.

Their approach relies on a non-interactive secure computation (NISC) scheme. In this section, we show that

the same transformation preserves adaptive security. To do so, we first modify the NISC privacy definition

to a somewhat adaptive version. Then, in Appendix B, we show that the NISC construction of [CDG+17]

indeed satisfies the stronger variant (in fact, this fact is implicit in their existing analysis).

Definition A.1 (Non-Interactive Secure Computation in the RAM Model [CDG+17, adapted]). A non-

interactive secure computation scheme in the RAM model is a tuple of efficient algorithms ΠNISC =

(Setup, EncData, EncProg,Decrypt) with the following syntax:

• Setup(1_) → crs: On input the security parameter _, the setup algorithm outputs a common reference

string crs.

• EncData(crs, �) → (dig, �̃): On input the common reference string crs and the database � , the data

encryption algorithm outputs a digest dig and a database state �̃ .

• EncProg(crs, dig, (%, G, C)) → ct: On input the common reference string crs, a digest dig, and a

program % with input G and maximum run-time C , the program encryption algorithm outputs a

ciphertext ct.

68

• Decrypt�̃ (crs, ct) → ~: On input the common reference string crs and a ciphertext ct, the decryption

algorithm outputs a string ~. Additionally, the decryption algorithm has RAM access to a database

state �̃ .

Moreover, ΠNISC should satisfy the following properties:

• Correctness: For all polynomials" = " (_), all security parameters _ ∈ N, all databases� ∈ {0, 1}" ,

and all RAM program tuples (%, G, C), it holds that

Pr[Decrypt�̃ (crs, ct) = %� (G)] = 1,

where crs← Setup(1_), (dig, �̃) ← EncData(crs, �), and ct← EncProg(crs, dig, (%, G, C)).

• Privacy: There exists an efficient algorithm SimEnc that takes as input a common reference string

crs, a digest dig, a database � , an output string ~, and a memory access pattern MemAccess, and

outputs a ciphertext ct. For a security parameter _ ∈ N and a bit 1 ∈ {0, 1} , we define the privacy

game between an adversary A and a challenger as follows:

1. On input the security parameter 1_ , algorithmA chooses a database � ∈ {0, 1}" and a program

% and a bound on the running time 1C to the challenger.

2. The challenger samples crs← Setup(1_) and (dig, �̃) ← EncData(crs, �). It gives (crs, dig, �̃)

to A.

3. A sends an input G to the challenger.

4. If 1 = 0, the challenger computes ct ← EncProg(crs, dig, (%, G, C)). If 1 = 1 the challenger

computes ct ← SimEnc(crs, dig, �,~,MemAccess), where ~ = %� (G) and MemAccess is the

memory-access pattern of %� (G). The challenger sends ct to A.

5. Algorithm A outputs a bit 1′ ∈ {0, 1} , which is the output of the experiment.

We say ΠNISC satisfies privacy if there exists a negligible function negl(·) such that for all efficient

adversaries A in the above privacy game,

|Pr[1′ = 1 | 1 = 0] − Pr[1′ = 1 | 1 = 1] | = negl(_).

In this definition, the database � , the program % , and the running time C are committed to ahead of

time. However, the input G is chosen adaptively.

• Efficiency: The length of dig output by EncData(crs, �) is a fixed polynomial in _ (independent of

|� |). The algorithm EncData runs in time" · poly(_, log"). The algorithms EncProg,Decrypt run

in time C · poly(_, log").

The [DGSW22] transformation. We now recall the the transformation from [DGSW22], which takes

as input a big-key IBE scheme ΠbkIBE = (Setup,KeyGen, Encrypt,Decrypt) with large public parameters

pp ∈ {0, 1}# and compiles it into one with short public parameters:

Construction A.2 (Big-Key IBE with Small Public Parameters [DGSW22]). Let _ ∈ N be a security pa-

rameter, ℓ be a fixed leakage parameter, and # = # (_, ℓ) be a key size parameter. Let ID = {ID_}_∈N
be the identity space. The construction relies on the following primitives:

69

• Let ΠIBE = (IBE.Setup, IBE.KeyGen, IBE.Encrypt, IBE.Decrypt) be a big-key IBE scheme.

• Let ΠNISC = (NISC.Setup,NISC.EncData,NISC.EncProg,NISC.Decrypt) be a NISC scheme in the

RAM model.

We construct the big-key IBE scheme ΠbkIBE = (Setup,KeyGen, Encrypt,Decrypt) as follows:

• Setup(1_, 1ℓ): On input the security parameter _, the setup algorithm proceeds as follows:

1. Sample (ppIBE,mskIBE) ← IBE.Setup(1_, 1ℓ) and crsNISC ← NISC.Setup(1_).

2. Compute (dig, p̃p) ← NISC.EncData(crsNISC, ppIBE).

Output pp = (crsNISC, dig) and msk = (mskIBE, p̃p).

• KeyGen(msk, id): On input the master secret key msk and an identity id ∈ ID_ , the key generation

algorithm computes skid ← IBE.KeyGen(mskIBE, id) and outputs (skid, p̃pid), where p̃pid is the part

of p̃p accessed by NISC.Decrypt, which depends on id.

• Encrypt(pp, id,<): On input the public parameters pp, an identity id ∈ ID_ , and a message<, the en-

cryption algorithm outputs NISC.EncProg(crsNISC, dig, (IBE.Encrypt, (id,<), C)), where IBE.Encrypt

is considered a RAM program that accesses � = ppIBE and C is a bound on its run-time.

• Decrypt(skid, id, ct): On input an identity secret key skid = (sk
′
id, p̃pid), an identity id ∈ ID_ , and a

ciphertext ct, the decryption algorithm outputs IBE.Decrypt(sk′id, id,NISC.Decrypt(crsNISC, p̃pid, ct)),

where the extra input p̃pid replaces the RAM access to p̃p.

Theorem A.3 (Correctness). Suppose ΠIBE,ΠNISC are correct. Then, Construction A.2 is correct.

Proof. Take any security parameter _, identity id ∈ ID_ , and message<. Let (pp,msk) ← Setup(1_, 1ℓ),

where pp = (crsNISC, dig),msk = (mskIBE, p̃p), (skid, p̃pid) ← KeyGen(msk, id), ct ← Encrypt(pp, id,<).

Consider the output of Decrypt(skid, id, ct):

• By construction of KeyGen, skid is an honestly generated identity key and p̃pid can replace RAM

access to p̃p.

• By construction of Encrypt, ct is an honest encryption of IBE.Encrypt on message<.

• By correctness of ΠNISC, NISC.Decrypt(crsNISC, p̃pid, ct) yields the output of IBE.Encrypt(pp, id,<),

and by correctness of ΠIBE, IBE.Decrypt(skid, id, IBE.Encrypt(pp, id,<)) = < with overwhelming

probability, as desired. �

TheoremA.4 (Adaptive Advantage-Checker Security under Bounded Leakage). Suppose for all polynomially-

bounded ℓ = ℓ (_),ΠIBE is adaptively advantage-checker secure under bounded leakage with challenge parameter

: . Suppose also that ΠNISC satisfies privacy. Then, Construction A.2 is adaptively advantage-checker secure

under bounded leakage with challenge parameter : .

Proof. We define a sequence of hybrid experiments, each parameterized (implicitly) by an adversary

A = (A0,A1) and an advantage threshold function Y = Y (_):

• Hyb0: This is the adaptive advantage-checker security game from Definition 3.1, which we recall

in full below:

70

– Setup: The challenger samples the components (ppIBE,mskIBE) ← IBE.Setup(1_, 1ℓ), crsNISC ←

NISC.Setup(1_), and It then computes (dig, p̃p) ← NISC.EncData(crs, ppIBE). It sets

pp = (crsNISC, dig) and msk = (mskIBE, p̃p)

and gives pp to A.

– Pre-leakage queries: When algorithm A1 makes a query on id ∈ ID_ , the challenger com-

putes skid ← IBE.KeyGen(mskIBE, id) and replies with (skid, p̃pid).

– Leakage: After A1 outputs the description of an efficiently-computable leakage function 5 ,

the challenger replies with leak← 5 (msk).

– Post-leakage queries: The challenger responds to post-leakage key queries exactly as in the

pre-leakage phase.

– Challenge: Algorithm A1 outputs a set J ⊆ ID_ of size ≥ : , two messages<0,<1, and a

state st.

– Output: The output of Hyb0 is 1
′
= 1 if A is admissible and

∀id ∈ J : AdvCheckA2 (1_, 11/Y, id,msk, pp, st, leak) = 1, (A.1)

and 1′ = 0 otherwise. The advantage-checker algorithm AdvCheck is defined as follows:

Inputs: security parameter _, threshold Y ∈ (0, 1), identity id ∈ ID_ , master secret key

msk = (mskIBE, p̃p), public parameters pp = (crsNISC, dig), state st, string leak, and (oracle)

access to an algorithm A

∗ Let) = _/Y2 and initialize a counterWINS← 0.

∗ The advantage-checker algorithm now simulates) independent executions of

experiment Expid(msk, pp, st, leak) for algorithm A.

1. Sample V r← {0, 1}.

2. The challenger computes

ct← NISC.EncProg(crsNISC, dig, (IBE.Encrypt, (id,<V), C)).

Run A on input (st, id, ct).

3. Whenever algorithmA makes a key-generation query on an identity id ∈ ID_ ,

the challenger computes skid ← IBE.KeyGen(mskIBE, id) and replies toA with

(skid, p̃pid).

4. AfterA has finished making key-generation queries, it outputs a bit V ′ ∈ {0, 1}.

5. If V = V ′, then incrementWINS←WINS + 1.

∗ Output 1 ifWINS ≥)
2 +

Y)
2 and 0 otherwise.

Figure 9: Function AdvCheckA (1_, 11/Y, id,msk, pp, st, leak) in Construction A.2

71

• Hyb1: Same as Hyb0, except the challenger constructs the challenge ciphertext ct in the procedure

AdvCheckA2 as ct← SimEnc(crsNISC, dig, ppIBE, ~,MemAccess), where the output ~ is computed as

~ ← IBE.Encrypt(ppIBE, id,<V) andMemAccess is the memory access pattern for IBE.Encrypt.

For an adversary A = (A1,A2), we write Hyb8 (A, Y) to denote the output of Hyb8 with adversary A and

inner threshold function Y. Our goal is to show that for all efficient adversariesA and all inverse polynomial

functions Y = 1/poly(_), Pr[Hyb0(A, Y) = 1] = negl(_). We proceed via a hybrid argument.

Lemma A.5. Suppose that ΠNISC satisfies privacy. Then, for all efficient and admissible adversaries A and

inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl such that for all _ ∈ N,

Pr[Hyb1(A, Y) = 1] ≥ Pr[Hyb0(A, Y) = 1] − negl(_).

Proof. We define a sequence of intermediate hybrids:

• Hyb0,1,0: Same as Hyb0. Notably, the challenge ciphertext is sampled as

ct← NISC.EncProg(crsNISC, dig, (IBE.Encrypt, (id,<), C)),

where components are defined as in Hyb0 in AdvCheck.

• Hyb0,8, 9 : Same as Hyb0 except for all (8
′, 9 ′) such that 8′ < 8 or 8′ = 8, 9 ′ ≤ 9 , we sample the challenge

ciphertext in the 9 ′th execution of Expid=J[8
′] in AdvCheck as

ct← SimEnc(crsNISC, dig, ppIBE, ~,MemAccess),

where~ ← IBE.Encrypt(ppIBE, id,<V) andMemAccess is the memory access pattern for the program

IBE.Encryptwhich can be computed given id. Note thatHyb0,:,) is the same asHyb1 and thatHyb0,8,)
is the same as Hyb0,8+1,0 for 8 ∈ [: − 1].

We now appeal to privacy ofΠNISC to show thatHyb0,8, 9 andHyb0,8, 9−1 are computationally indistinguishable

for all 8 ∈ [:], 9 ∈ [)].

ClaimA.6. Suppose the conditions in Lemma A.5 hold. Then for all 8 ∈ [:], 9 ∈ [)], all efficient and admissible

adversaries A and inverse polynomial functions Y = 1/poly(_), there exists a negligible function negl such

that for all _ ∈ N,

Pr[Hyb0,8, 9 (A, Y) = 1] ≥ Pr[Hyb0,8, 9−1(A, Y) = 1] − negl(_).

Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb0 and Hyb1 with non-negligible

probability X . We use A to construct algorithm B that breaks privacy of ΠNISC:

1. Algorithm B samples (ppIBE,mskIBE) ← IBE.Setup(1_, 1ℓ) and gives (ppIBE, IBE.Encrypt, C) to the

privacy challenger, where C is a bound on the run-time of IBE.Encrypt. The challenger replies with

a tuple (crsNISC, dig, p̃p).

2. Algorithm B sets pp = (crsNISC, dig) and msk = (mskIBE, p̃p) and gives pp to A.

3. When algorithmA issues a key-generation query on an identity id, algorithm B queries its challenger

to get skid ← IBE.KeyGen(mskIBE, id). Algorithm B replies to A with (skid, p̃pid), where p̃pid is

defined as in Construction A.2.

72

4. When algorithm A outputs an efficiently-computable leakage function 5 , algorithm B replies with

leak = 5 (msk). In the challenge phase, algorithm A outputs J ⊆ ID_ of size at least : , messages

<0,<1, and a state st.

5. For all (8′, 9 ′) such that 8′ < 8 or 8′ = 8, 9 ′ < 9 , algorithm B samples the challenge ciphertext in the

9 ′th execution of ExpJ[8
′] in AdvCheck as ct ← SimEnc(crsNISC, dig, ppIBE, ~,MemAccess), where

V
r← {0, 1} , ~ ← IBE.Encrypt(ppIBE,J [8

′],<V), and MemAccess is the memory access pattern for

the program IBE.Encrypt.

6. For the 9 th execution of ExpJ[8] , algorithm B samples V r← {0, 1} and sends G = (J [8],<V) to the

privacy challenger. Algorithm B uses the response ct from the privacy challenger as the challenge

ciphertext in this execution.

7. In the remaining executions of ExpJ[8
′] in iterations of AdvCheck, algorithm B computes challenge

ciphertexts as ct ← NISC.EncProg(crsNISC, dig, (IBE.Encrypt, (J [8
′],<V), C)), where V

r← {0, 1} .

Algorithm B outputs the output of the experiment.

If ct from the privacy challenger is constructed using NISC.EncProg, algorithm B simulates Hyb0,8, 9−1 for

A. If ct from the privacy challenger is constructed using SimEnc, algorithm B simulates Hyb0,8, 9 for A.

Thus, algorithm B breaks privacy of ΠNISC with advantage X , as desired. �

The lemma now follows from Claim A.6 and a standard hybrid argument. �

Lemma A.7. Suppose for all polynomially-bounded ℓ = ℓ (_), ΠIBE is :-adaptively advantage-checker secure

under bounded leakage. Then, for all efficient and admissible adversaries A and inverse polynomial functions

Y = 1/poly(_), there exists a negligible function negl such that for all _ ∈ N,

Pr[Hyb1(A, Y) = 1] = negl(_) .

Proof. Suppose there exists an efficient and admissible adversary A such that Pr[Hyb1(A, Y) = 1] = X for

some non-negligible X . We use A to construct algorithm B that breaks the :-adaptive advantage-checker

security under bounded leakage of ΠIBE:

• Setup: The challenger for ΠIBE starts by sampling (ppIBE,mskIBE) ← IBE.Setup(1_, 1ℓ) and gives

ppIBE to algorithm B. Algorithm B samples crsNISC ← NISC.Setup(1_) and computes (dig, p̃p) ←

NISC.EncData(crsNISC, ppIBE). Algorithm B gives pp = (crsNISC, dig) to A.

• Key-generation queries: When algorithm A issues a key-generation query on an identity id,

algorithm B queries its challenger to get skid ← IBE.KeyGen(mskIBE, id). Algorithm B replies to A

with (skid, p̃pid), where p̃pid is defined as in Construction A.2.

• Leakage: When algorithm A outputs the description of an efficiently-computable function 5 with

output length at most ℓ , algorithm B gives the same function to its challenger to get leak ≔ 5 (msk).

Algorithm B gives leak to A.

• Challenge: Algorithm B outputs the same set J ⊆ ID_ and messages (<0,<1) that A outputs.

• Output: When constructing a challenge ciphertext for identity id ∈ J in some iteration of AdvCheck,

algorithm B takes the challenge ciphertext ct from its challenger and computes

ct′ ← SimEnc(crsNISC, dig, ppIBE, ct,MemAccess),

73

where MemAccess can be computed given id. Algorithm B gives ct′ to A and outputs the same bit

V ′ as A.

Since algorithm B perfectly simulates the experiment for A and answers the same way, the probability

of the :-adaptive advantage-checker experiment outputting 1 is X , as desired. �

Combining Lemmas A.5 and A.7 yields the statement by a hybrid argument. �

Corollary A.8 (Adaptive Security under Bounded Leakage). Suppose the conditions in Theorem A.4 hold.

Then, Construction A.2 is adaptively secure under bounded leakage for the same : as in Theorem A.4.

Proof. Follows immediately from Theorem 3.4. �

NISC instantiations. As seen in Appendix B, the core primitive needed to build a NISC for our pur-

poses is a laconic oblivious transfer scheme. We remark that such a primitive can be constructed from

DDH [CDG+17] or LWE [QWW18], so this transform retains our instantiation statements from Section 6.

B NISC in the RAM Model with Adaptive Privacy

We show how to achieve Definition A.1 via the NISC construction of [CDG+17]. To do so, we define laconic

oblivious transfer and garbled circuits for convenience below.

Definition B.1 (Laconic Oblivious-Transfer [CDG+17]). A laconic oblivious transfer scheme is a tuple of

efficient algorithms ΠOT = (Setup,Hash, Send,Receive) with the following syntax:

• Setup(1_) → crs: On input the security parameter _, the setup algorithm outputs a common reference

string crs.

• Hash(crs, �) → (dig, �̂): On input the common reference string crs and a database � ∈ {0, 1}∗, the

hashing algorithm outputs a digest dig and a database state �̂ .

• Send(crs, dig, !,<0,<1) → ct: On input the common reference string crs, a digest dig, a database loca-

tion ! ∈ N, and a pair of messages (<0,<1) each of length _, the send algorithm outputs a ciphertext ct.

• Receive�̂ (crs, ct, !) →<: On input the common reference string crs, a ciphertext ct, and a database

location ! ∈ N, the receive algorithm outputs a message<. Additionally, the receive algorithm has

RAM access to a database state �̂ .

Moreover, ΠOT should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N, all databases � ∈ {0, 1}" (where " = poly(_)

for any polynomial poly(·)), any memory location ! ∈ ["], and any pair of messages (<0,<1) ∈

{0, 1}_ × {0, 1}_ , it holds that

Pr[Receive�̂ (crs, Send(crs, dig, !,<0,<1), !) =<� [!]] = 1,

where crs← Setup(1_) and (dig, �̂) ← Hash(crs, �).

74

• Sender privacy against semi-honest receivers: There exists an efficient algorithm OTSim that

takes as input a common reference string crs, a database � , a location !, and a message <, and

outputs a ciphertext ct. A laconic OT scheme satisfies sender privacy if for all security parameters

_ ∈ N, all databases � ∈ {0, 1}" with" = poly(_), all locations ! ∈ ["], and any pair of messages

(<0,<1) ∈ {0, 1}
_ × {0, 1}_ , it holds that the distributions

(crs, Send(crs, dig, !,<0,<1)) and (crs,OTSim(crs, �, !,<� [!]))

are computationally indistinguishable, where crs← Setup(1_) and (dig, �̂) ← Hash(crs, �).

• Efficiency: The length of dig output by Hash(crs, �) is a fixed polynomial in _, independent of |� |.

Definition B.2 (Garbled Circuits [Yao82, LP09]). A circuit garbling scheme is a tuple of efficient algorithms

ΠGC = (Garble, Eval) with the following syntax:

• Garble(1_,�, {keyF,1}F∈inp(�),1∈{0,1}) → �̃ : On input the security parameter _, a circuit � , and a set

of labels keyF,1 for all the input wiresF ∈ inp(�) and 1 ∈ {0, 1} , the garbling algorithm outputs a

garbled circuit �̃ . Here, inp(�) denotes the indices corresponding to the input wires of � .

• Eval(�̃, {keyF,GF
}F∈inp(�)) → ~: On input a garbled circuit �̃ and a garbled input {keyF,GF

}F∈inp(�)) ,

the evaluation algorithm outputs a string ~.

Moreover, ΠGC should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N, all circuits � with input length< = poly(_), all

inputs G ∈ {0, 1}< , it holds that

Pr[� (G) = Eval(�̃, {keyF,GF
}F∈inp(�))] = 1,

where �̃ ← Garble(1_,�, {keyF,1}F∈inp(�),1∈{0,1}).

• Security: There exists an efficient algorithm GCSim such that for all circuits � with input length

< = poly(_), all inputs G ∈ {0, 1}< , and uniformly-random keys {keyF,1}F∈inp(�),1∈{0,1} , it holds

that the distributions

(�̃, {keyF,GF
}F∈inp(�))) and GCSim(1_,�,~)

are computationally indistinguishable, where �̃ ← Garble(1_,�, {keyF,1}F∈inp(�),1∈{0,1}) and ~ =

� (G).

Simplified garbled circuit notation. For simplicity in the following construction, we will write Keys to

denote the list of all input labels {keyF,1}F∈inp(�),1∈{0,1} and KeysG to denote the labels {keyF,GF
}F∈inp(�))

associated with the input G .

B.1 RAM Model of Computation

We briefly define the RAM model of computation. Parts of this subsection are taken from [CDG+17]. For

our purposes, we only need to support read operations.

75

Notation. The RAM model consists of a CPU and a memory storage of size " . The CPU executes a

program that can access the memory by using read operations. In particular, for a program % with memory

of size " we denote the contents of the memory data by � ∈ {0, 1}" . Additionally, the program gets a

“short” input G ∈ {0, 1}< , which is also considered the initial state of the program. We use %� (G) to denote

the execution of % with memory contents � and input G . The program % can read from various locations

in � throughout its execution.

CPU-step circuit. We represent a RAM program % via C CPU-step circuits, each of which executes a

single CPU step. Each CPU step is denoted by:

�%
CPU(st, rData) → (st

′, !)

The circuit takes as input the current CPU state st and a bit rData. The bit rData will be read from the

memory location that was requested by the previous CPU step. The circuit outputs an updated state st′

and the next location to read from ! ∈ ["]. The sequence of locations form the memory access pattern

MemAccess = {!1, . . . , !C }.

Representing RAM computation by CPU-step circuits. The computation %� (G) starts with an initial

state st1 = G . In each step g ∈ {1, . . . , C}, the computation proceeds as follows: If g = 1, then rDatag ≔ 0;

otherwise rDatag ≔ � [!g−1]. Next it executes the CPU-step circuit �%
CPU
(stg , rDatag) = (stg+1, !g). When

g = C , stg+1 is the output of the program.

B.2 Construction of NISC in the RAM Model

In this section, we now recall the NISC construction from [CDG+17]. As noted above, we only need to

support read-only RAM machines.

Construction B.3 (NISC in the RAM Model [CDG+17, adapted]). The construction relies on the following

primitives:

• Let ΠOT = (OT.Setup,OT.Hash,OT.Send,OT.Receive) be a laconic OT scheme.

• Let ΠGC = (Garble, Eval) be a circuit garbling scheme with key length : = : (_).

We construct the NISC scheme ΠNISC = (Setup, EncData, EncProg,Decrypt) as follows:

• Setup(1_): On input the security parameter _, the setup algorithm samples crs← OT.Setup(1_) and

outputs crs.

• EncData(crs, �): On input the common reference string crs and a database � , the data encryption

algorithm computes (dig, �̂) ← OT.Hash(crs, �) and outputs (dig, �̂).

• EncProg(crs, dig, (%, G, C)): On input the common reference string crs, a digest dig, and a program

% with input G ∈ {0, 1}< and maximum run-time C , the program encryption algorithm does the

following:

1. For all g ∈ [C + 1], sample (stKeysg , dataKeysg , digKeysg) r← {0, 1} (2<+2+2 |dig |): .

76

2. For all g ∈ [C], compute �̃g
step ← Garble(1_,�step [crs, %,Keys

g+1],Keysg), where we have

Keysg = (stKeysg , dataKeysg , digKeysg) and �step [crs, %, nextKeys] is defined as follows:

Hard-wired: CRS crs, program % , keys nextKeys = (stKeys, dataKeys, digKeys)

Input: state st, data rData, digest dig

(a) Compute (st′, !) ← �%
CPU
(st, rData).

(b) Compute ct! ← OT.Send(crs, dig, !, dataKeys).

Output ((stKeysst′, ct!, digKeysdig), !)

Figure 10: Description of step circuit �step [crs, %, nextKeys].

For g = 1, embed labels digKeys1dig ,dataKeys
1
0, and stKeys1G in �̃1

step.

Output ct = ({�̃g
step}g∈[C], stKeys

C+1).

• Decrypt�̃ (crs, ct): On input the CRS crs and a ciphertext ct = ({�̃g
step}g∈[C], stKeys

C+1), the decryption

algorithm does the following:

1. Parse �̃1
step = (�̃

1
step, digLabels

1, dataLabels1, stLabels1).

2. For each g ∈ [C] in ascending order do the following:

(a) Compute (-, !) ← Eval(�̃g
step, (stLabels

g , dataLabelsg , digLabelsg)).

(b) Parse - = (stLabelsg+1, ct!, digLabels
g+1) and compute

dataLabelsg+1 ← OT.Receive�̃ (crs, ct!, !).

Output ~ by using stKeysC+1 to decode stLabelsC+1.

Theorem B.4 (Correctness). Suppose ΠGC and ΠOT satisfy correctness. Then, Construction B.3 is correct.

Proof. Take any security parameter _ ∈ N, database � ∈ {0, 1}" , and RAM program tuple (%, G, C). Let

crs ← Setup(1_), (dig, �̂) ← EncData(crs, �), and ct ← EncProg(crs, dig, (%, G, C)). When evaluating

Decrypt�̂ (crs, ct), ΠGC correctness ensures that each step outputs the correct labels for the next step, while

ΠOT correctness ensures that the correct data labels are retrieved. At the end of this evaluation process,

the keys given in ct can decode the final state of the CPU-step circuit, which is ~ = %� (G). �

Theorem B.5 (Privacy). Suppose ΠOT satisfies sender privacy and ΠGC is secure. Then, Construction B.3 is

private.

Proof. We first define the simulator SimEnc. On input the common reference string crs, a digest dig, a

database � , an output string ~, and a memory access patternMemAccess = {!1, . . . , !C }, the simulator does

the following:

1. Sample hard-wired keys (stKeysC+1, dataKeysC+1, digKeysC+1) r← {0, 1} (2<+2+2 |dig |): for �step and

set output labels to stLabelsC+1 ← stKeysC+1~ , dataLabelsC+1 ← dataKeysC+1
� [!C] , digLabels

C+1 ←

digKeysC+1dig .

77

2. For g = C, C − 1, . . . , 1, proceed as follows:

(a) Compute ct!g ← OTSim(crs, �, !g , dataLabelsg+1) and set- ← (stLabelsg+1, ct!g , digLabels
g+1).

(b) Compute (�̃g
step, stLabels

g , dataLabelsg , digLabelsg) ← GCSim(1_,�step, (-, !
g)).

Output ct = ({�̃g
step}g∈[C], stKeys

C+1).

To show SimEnc indeed satisfies privacy, we define a sequence of hybrid experiments:

• Hyb28 : This is the privacy game from Definition A.1, with the following modified ct generation

procedure in Step 4:

1. Execute %� (G) to obtainMemAccess = {!1, . . . , !C } and set ~ ← stC+1. Additionally, compute

rDatag at the beginning of step g for g ∈ [C + 1].

2. For g = C + 1 down to 8 + 1, sample (stKeysg , dataKeysg , digKeysg) r← {0, 1} (2<+2+2 |dig |): .

3. For g = C down to 8 + 1, compute �̃g
step ← Garble(1_,�step [crs, %,Keys

g+1],Keysg), where we

have Keysg = (stKeysg , dataKeysg , digKeysg) and�step is defined as in Fig. 10. Set stLabels
8+1 ←

stKeys8+1
st8+1

, dataLabels8+1 ← dataKeys8+1
rData8+1

, and digLabels8+1 ← digKeys8+1dig .

4. For g = 8 down to 1, proceed as follows:

(a) Compute the ciphertext ct!g ← OTSim(crs, �, !g , dataLabelsg+1) and set the tuple - ←

(stLabelsg+1, ct!g , digLabels
g+1).

(b) Compute (�̃g
step, stLabels

g , dataLabelsg , digLabelsg) ← GCSim(1_,�step, (-, !
g)).

Embed digLabels1, dataLabels1, stLabels1 in �̃1
step.

Output ct = ({�̃g
step}g∈[C], stKeys

C+1).

• Hyb28+1: Same as Hyb28 except

(�̃8+1
step, stLabels

8+1, dataLabels8+1, digLabels8+1) ← GCSim(1_,�step, ((stKeys
8+2
st8+2

, ct!8+1 , digKeys
8+2
dig), !

8+1)),

where ct!8+1 ← OT.Send(crs, dig, !8+1, dataKeys8+2) and (stKeys8+2, dataKeys8+2, digKeys8+2) are the

input keys to �̃8+2
step.

Note that Hyb0 is the privacy game with EncProg used to generate the challenge ciphertext, and Hyb2C is

the privacy game with SimEnc used to generate the challenge ciphertext. We will appeal to security of ΠGC

to show that Hyb28 and Hyb28+1 are computationally indistinguishable for all 8 ∈ [0, C − 1]. We will then

appeal to sender privacy of ΠOT to show that Hyb28+1 and Hyb28+2 are computationally indistinguishable

for all 8 ∈ [0, C − 1].

Lemma B.6. Suppose ΠGC satisfies security. Then, for all 8 ∈ [0, C −1],Hyb28 andHyb28+1 are computationally

indistinguishable.

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb28 and Hyb28+1 with non-

negligible probability X . We use A to construct B that breaks security of ΠGC:

1. At the beginning of the game, B gets � ∈ {0, 1}" and (%, C) from A. Algorithm B samples

crs← Setup(1_), computes (dig, �̃) ← EncData(crs, �), and gives (crs, dig, �̃) to A.

78

2. Given input G from A, algorithm B runs the ct generation procedure as in Hyb28 , except the compo-

nents (�̃8+1
step, stLabels

8+1, dataLabels8+1, digLabels8+1) are generated by sending �step [crs, %,Keys
8+2]

and input (st8+1, rData8+1, dig) to the garbled circuit challenger and using the response.

3. Algorithm B gives ct to A and outputs whatever A outputs.

If (�̃8+1
step, stLabels

8+1, dataLabels8+1, digLabels8+1) from the garbled circuit challenger are generated honestly,

B simulates Hyb28 for A. If the components from the garbled circuit challenger are generated via GCSim,

B simulates Hyb28+1 for A. Thus, B breaks security of ΠGC with advantage X , as desired. �

Lemma B.7. Suppose ΠOT satisfies sender privacy. Then, for all 8 ∈ [0, C − 1], Hyb28+1 and Hyb28+2 are

computationally indistinguishable.

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb28+1 and Hyb28+2 with non-

negligible probability X . We use A to construct B that breaks sender privacy of ΠOT:

1. At the beginning of the game, algorithm B gets � ∈ {0, 1}" and (%, C) from A.

2. For g = C +1 down to 8 +2, algorithm B samples (stKeysg , dataKeysg , digKeysg) r← {0, 1} (2<+2+2 |dig |): .

Algorithm B also samples !8+1 r← ["] and sends (�, !8+1, (<0,<1) = dataKeys8+2) to the sender

privacy challenger to get back (crs, ct!8+1). Algorithm B computes (dig, �̃) ← EncData(crs, �) and

sends (crs, dig, �̃) to A.

3. Given input G from algorithm A, algorithm B executes %� (G) to obtain MemAccess and check if

!8+1 matches the 8 + 1th entry ofMemAccess. If the entries do not match, B outputs ⊥. Otherwise, B

runs the ct generation as in Hyb28+2 with the crs, ct!8+1 , and (stKeys
g , dataKeysg , digKeysg)g∈[8+2,C+1]

components as above.

4. B gives ct to A and outputs whatever A outputs.

If the tuple (crs, ct!8+1) from the sender privacy challenger is generated honestly, B simulates Hyb28+1 for

A when it does not abort. If (crs, ct!8+1) is generated with OTSim, B simulates Hyb28+2 for A when it does

not abort. Thus, B breaks sender privacy of ΠOT with advantage X conditioned on the guess for !8+1 being

correct. Since !8+1 is sampled uniformly and is independent of A’s view, B breaks sender privacy with

advantage at least X/" , which is still non-negligible since" = poly(_). �

Combining Lemmas B.6 and B.7 yields the statement by a hybrid argument. �

Theorem B.8 (Efficiency). Suppose ΠOT satisfies efficiency. Then, Construction B.3 is efficient.

Proof. Follows immediately from the efficiency of ΠOT. �

79

