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Abstract

Key-exfiltration attacks on cryptographic keys are a significant threat to computer security. One pro-
posed defense against such attacks is big-key cryptography which seeks to make cryptographic secrets so
large that it is infeasible for an adversary to exfiltrate the key (without being detected). However, this also
introduces an inconvenience to the user who must now store the large key on all of their different devices.
The work of Déttling, Garg, Sekar and Wang (TCC 2022) introduces an elegant solution to this problem
in the form of big-key identity-based encryption (IBE). Here, there is a large master secret key, but very
short identity keys. The user can now store the large master secret key as her long-term key, and can pro-
vision each of her devices with short ephemeral identity keys (say, corresponding to the current date). In
this way, the long-term secret key is protected by conventional big-key cryptography, while the user only
needs to distribute short ephemeral keys to their different devices. Dottling et al. introduce and construct
big-key IBE from standard pairing-based assumptions. However, their scheme only satisfies selective secu-
rity where the adversary has to declare its challenge set of identities at the beginning of the security game.
The more natural notion of security is adaptive security where the user can adaptively choose which
identities it wants to challenge after seeing the public parameters (and part of the master secret key).

In this work, we give the first adaptively-secure construction of big-key IBE from standard crypto-
graphic assumptions. Our first construction relies on indistinguishability obfuscation (and one-way func-
tions), while our second construction relies on witness encryption for NP together with standard pairing-
based assumptions (i.e., the SXDH assumption). To prove adaptive security, we show how to implement
the classic dual-system methodology with indistinguishability obfuscation as well as witness encryption.

1 Introduction

Security breaches are increasingly common today, and one of the highest-value targets in a security breach
are the cryptographic keys residing on a user’s system. Once an adversary successfully recovers a user’s
secret cryptographic key, they gain the ability to decrypt all of the user’s potentially sensitive data and can
even impersonate the user to other clients. This problem is further aggravated when using more advanced
encryption systems such as identity-based encryption (IBE) [BF01, Coc01] where a central authority holds on
to along-term secret key. Such systems introduce a single point of failure and if the central authority’s single
long-term secret key is compromised, then the adversary breaks security for all of the users in the system.

Cryptography in the bounded retrieval model. One proposal to mitigate the threat of a key-exfiltration
attack is to make it difficult or infeasible for the adversary to exfiltrate the secret key. This has motivated
the “bounded-storage model” and the concept of “big-key” cryptography [Dzi06, CLW06, CDD*07, ADWO09,
ADNT10, BKR16, MW 20, DGSW22]. Here, the idea is to make the cryptographic keys sufficiently large that
key exfiltration becomes infeasible to an adversary that only has a bounded amount of storage. In practice,



the bounded storage might translate to an adversary being able to retrieve a bounded number of bits from
a compromised system before the adversary is detected and its access removed.

A number of works have studied constructions of big-key public-key encryption in the bounded storage
model [ADN*10, MW20]. In these settings, the goal is to have a large secret key (which is hard to exfiltrate)
and a short public key. Moreover, the honest user should not incur the penalty of having to manipulate a large
cryptographic key. In particular, encryption and decryption should both be fast; in the case of decryption,
the idea is that the decryption algorithm only needs random access to a few ciphertext-dependent bits of the
secret key to decrypt. The main security requirement is semantic security (for a fresh ciphertext) should hold
even if the adversary gets arbitrary bounded leakage on the large secret key. As discussed in [DGSW22], a
major disadvantage of this model is the fact that the large secret key has to be replicated to each of the user’s
devices. This can impose significant storage burdens for each device that needs a copy of the secret key.

IBE with incompressible master secret key. Dottling, Garg, Sekar, and Wang [DGSW22] propose an
elegant solution to the problem of needing to replicate the large secret key to each device owned by the user.
They introduce the notion of a big-key IBE scheme where there is a long incompressible master secret key,
but short identity keys. Recall first that in an IBE scheme, both secret keys and ciphertexts are associated
with an identity id and decryption succeeds (i.e., recovers the plaintext associated with the ciphertext) if
the identities associated with the ciphertext matches that of the decryption key. In the setting envisioned
by [DGSW22], the long-term key would be the large master secret key for the IBE scheme. Each ciphertext in
the system would be encrypted to an identity that identifies a particular time window (e.g., the current date).
Users would provision each of their devices with the identity keys for the time intervals of interest. These
ephemeral keys are identity keys and thus, are short. Moreover, if an identity key is compromised, it only
compromises the security of messages tagged with that particular time window. In a sense, the individual
identity keys in the system are viewed as short ephemeral keys while the long-term key is the large master
secret key for the IBE scheme. Importantly, in this model, the user only needs to store one copy of the
long-term master secret key; each of the user’s devices would only need to store ephemeral identity keys.

The challenge: adaptive security. In the same work, Déttling et al. [DGSW22] showed how to construct
a big-key IBE scheme from standard assumptions on groups with bilinear maps. One limitation of their
system is it only provides selective security. Namely, the adversary in the IBE security game must pre-declare
the set of identities it wants to target at the beginning of the security game (before it sees the public key
of the scheme or makes key-generation queries). This is in contrast to the more natural notion of adaptive
(or full) security where the adversary can adaptively choose which identities it wants to target after it sees
the public parameters as well as its choice of leakage on the master secret key. Their work leaves open
the question of constructing a big-key IBE scheme with adaptive security.

This work. In this work, we give two constructions of adaptively-secure big-key IBE schemes from
standard assumptions. Our first construction relies on indistinguishability obfuscation [BGI"01, GGH*13]
(and one-way functions) while our second construction relies on witness encryption [GGSW13] for NP
in conjunction with standard pairing-based assumptions. To prove adaptive security of our scheme, we rely
on a dual-system proof [Wat09, LW10]. The intricacies of carrying out this dual system proof strategy (see
Section 1.1) is a key reason why our approach relies on considerably stronger machinery (either indistin-
guishability obfuscation or witness encryption) compared to the previous selectively-secure construction.
Along the way, we also highlight some issues in the previous definitions and analysis of big-key IBE; we
provide a more detailed discussion of these definitional issues in Section 3.



1.1 Technical Overview

In this section, we provide a general overview of our main constructions of adaptively-secure big-key IBE
from indistinguishability obfuscation and from witness encryption.

Identity-based encryption. We start by recalling the syntax of a standard identity-based encryption
(IBE) scheme [BF01, Coc01]:

+ Setup: The setup algorithm in an IBE scheme generates the public parameters pp and the master
secret key msk for the scheme.

+ Key generation: The key-generation algorithm takes the master secret key msk and an identity id,
and outputs a secret key sk;q for the particular identity.

« Encryption: The encryption algorithm takes the public parameters pp, an identity id, and a message
m, and outputs a ciphertext ct.

+ Decryption: The decryption algorithm takes a ciphertext ct (associated with an identity id and
message m) together with a secret key sk;y (associated with an identity id") and either outputs the
message m if id = id” or L if id # id".

The semantic security requirement for an IBE scheme states that the adversary should not be able to
distinguish between an encryption of my from an encryption of m; for any challenge identity id for which
it does not have the corresponding secret key.

Big-key IBE. In a big-key IBE scheme [DGSW22], the correctness requirement is the same as for vanilla
IBE. However, the security requirement is modified to give the adversary (bounded) leakage on the master
secret key:

« In the big-key security game, the adversary can specify any efficiently-computable leakage function
f (with output length at most ¢) and learn f(msk). The output length £ > 0 is the leakage parameter
for the scheme.

« Next, instead of a single challenge identity, the adversary specifies a set of k challenge identities .
To win, the adversary must break semantic security for all identities within the challenge set 7.
Here, the parameter k is a function of the security parameter A and the leakage length ¢. In the
adaptive security game, we allow the adversary to choose the set of identities J after it receives the
public parameters, the leakage on msk, and after it makes key-generation queries on identities of
its choosing (with the stipulation that the adversary does not make a key-generation query on any
identity in the challenge set 7).

The adversary’s task is necessarily harder in the big-key IBE security game compared to the vanilla IBE secu-
rity game because the adversary must break semantic security of k identities rather than 1. This is inherent
because the leakage function the adversary chooses can allow it to learn the secret keys for a handful of iden-
tities. The work of [DGSW22] consider the setting where k = £+1; namely, if the adversary gets ¢ bits of leak-
age about the master secret key, then it wins only if it breaks semantic security on at least k = £+ 1 identities.

In addition, for big-key IBE, we require that the running times of the key-generation, encryption, and
decryption algorithms to be efficient and run in time that is poly(4,log ¢) on a RAM machine. Notably,



while the length of the master secret key msk can (and necessarily) must grow with the leakage parameter
¢, the key-generation algorithm should only read a few bits of msk to generate an identity key.

In this work, we will focus on the simpler setting where the length of the public parameters can also
grow with the leakage size . However, we maintain the requirement that the encryption and decryption
algorithms only need to read poly (4, log £) bits of the long public key. Déttling et al. [DGSW22] showed how
to use a non-interactive secure computation (NISC) scheme to generically transform a big-key IBE scheme
with large public parameters (but fast encryption and decryption) into one with short public parameters. As
we show in Appendix A, this transformation still preserves adaptive security. Thus, for the remainder of this
overview (and throughout this work), we focus on the simpler setting of big-key IBE with long public keys.

The [DGSW22] approach. We begin with a brief description of the approach from [DGSW22]. Their
scheme relies on a puncturable pseudo-entropy function (PEF). A PEF [BHK11] is a function whose outputs at
certain inputs are statistically unpredictable even given leakage on the key to the PEF. The work of [DGSW22]
show how to construct a PEF where the key consists of a large number of blocks k = (ki,...,ky) and
moreover, the PEF supports local evaluation where the value of the PEF at an input x only depends on a
small (and random-looking) subset of blocks of the secret key. Their construction then operates as follows:

« The master secret key consists of the PEF key k = (ky, ..., kx) and the public parameters consist of
commitments pp = (cy, ..., cny) to the blocks of the secret key.

« The secret key sk;q for an identity id consists of the evaluation of the y = PEF(k, id) together with a
non-interactive zero-knowledge (NIZK) proof that y was correctly computed with respect to the com-
mitted key pp = (c1, . .., cn). For this to be succinct, it is critical that the PEF is locally-computable
(i.e., the output of PEF(k, id) only depend on k; for some i € liy C [N], where |Ij4| < N).

« An encryption of a message to an identity id is essentially a witness encryption’ of the message m for
the relation that essentially checks that the decrypter possesses a valid NIZK proof that y = PEF(k, id)
with respect to the (subset of) committed keys ¢; for i € I;4. Here, the work of [DGSW22] shows that
a special witness encryption scheme tailored for NIZK proofs on committed values [BL20] suffices,
which can in turn be instantiated by standard pairing-based assumptions.

The proof of selective security then proceeds along the following lines:

« First, the identity keys consist of zero-knowledge proofs of openings to the commitments c;. Thus,
they hide the values of the actual bits k; in the master secret key. The only leakage on the PEF key
k is through the leakage function (applied to the master secret key msk = k).

« Next, [DGSW22] rely on puncturing. Namely, they show how to puncture the PEF key at a set of
identities J to obtain a punctured key k 5. The property is that the punctured key k 5 can be used
to evaluate the PEF on all inputs i ¢ 7 while the values on J retain high statistical min-entropy.
The idea in the selective security proof is that the reduction algorithm will first puncture the PEF key
on the challenge set . In this case, they can show that for every challenge set 7, there will exist
at least one identity id* € J such that the value of y;4+ = PEF(k, id") is statistically unpredictable
to the adversary (even given the leakage on the PEF key). In combination with the security of the

In a witness encryption scheme [GGSW13], one can encrypt a message m to an arbitrary NP statement x. To decrypt, one
provides a witness w for the statement x. If the witness is valid, then decryption recovers the message m. If the statement x
is false (i.e., no witness exists), then the ciphertext computationally hides the message m.



witness encryption, they can argue that such an adversary cannot have non-negligible advantage
breaking semantic security with respect to id".

The use of puncturing means the reduction algorithm needs to know the challenge identities ahead of time in
order to program them into the scheme parameters. It is unclear how to extend this approach to the adaptive
setting where the reduction algorithm does not know in advance which identities the adversary might query.

While we can envision some type of partitioning strategy [BF01, Wat05] that has been successful for
arguing adaptive security in the setting of plain IBE, it is less clear how to execute such a strategy in this
setting. In plain IBE, there is just a single challenge identity, so the idea in the partitioning proof is to
partition the identity space into two sets S, T, with the property that the reduction algorithm is able to
generate secret keys for identities id € S but not for identities id € T. The hope then is that the adversary’s
key-generation queries fall into set S while its challenge query falls into set T. If the adversary only makes
a single challenge query, the reduction can choose S, T such that with inverse polynomial probability, all
of the key-generation queries land in S while the single challenge query lands in T. In the big-key setting,
the challenge is that the adversary now specifies a set J of challenge identities. For the adversary to be
useful, we need to set up the reduction so that an adversary that succeeds in breaking semantic security
for any identity id € J in the challenge set can be used to break the computational assumption. In this
setting, we do not see a way to partition the identity space into sets S, T such that with good probability,
all of the adversary’s key-generation queries fall into S while all of the challenge queries fall into T. Thus,
proving adaptive security will require a different proof technique.

Our approach. To prove adaptive security, we take a dual-system approach [Wat09, LW10]. Implement-
ing a dual-system proof strategy will require additional machinery and as a result, our constructions either
rely on indistinguishability obfuscation or general-purpose witness encryption. We begin by describing
our basic template, which is a slimmed-down version of the construction from [DGSW22], where we no
longer have a PEF:

« The master secret key is a random bit-string of length N = poly(A, £): msk = (ry,...,rn). The public
parameters are commitments to the bits of the master secret key: pp = (cy,. .., cn).

« A secret key skiq for an identity id is a NIZK proof of the openings to the commitments ¢; for i € Iig
where the subset I,4 is derived from a hash function Iy = H(id) on the identity. Note that the set
of indices Iq is substantially smaller than N.

+ To encrypt to an identity id, the encrypter prepares a program that takes as input a proof 7 and
checks whether 7 is a NIZK proof of openings to the commitments c; for all i € I,y = H (id). If so, the
program outputs the message, and otherwise, it outputs L. Decryption just corresponds to evaluating
the obfuscated program on the secret key. As we elaborate more below, the obfuscated program that
checks the NIZK proof can be implemented using either indistinguishability obfuscation or using
witness encryption.

Correctness follows immediately. Moreover, if the size of each set I;4 is bounded by poly (4, log ¢), then the
scheme also supports fast key-generation, encryption, and decryption. The high-level idea underlying secu-
rity is similar to [DGSW22]. First, the identity keys consist of NIZK proofs of openings to the commitments
¢, so they hide the values of the actual bits r;. Second, the only information the adversary gets on the
master secret key then is its ¢ bits of leakage. Next, if the hash function H that maps identities id to indices
Iiq is “well-spread,” then we can hope to argue that there is at least one identity id" in the challenge set



for which the adversary does not know most of the bits of r; for i € H (id*). In this case, the adversary will
not be able to construct a NIZK proof that it knows the openings to c; for i € H(id*). We can then hope
to rely on security of the obfuscation scheme (or witness encryption scheme) to conclude that the message
is hidden. We now show how to instantiate this basic template from indistinguishability obfuscation as
well as from witness encryption in a way that allows us to prove adaptive security.

Big-key IBE from iO. We first describe how to instantiate the above template using indistinguishability
obfuscation in conjunction with the following primitives: (1) a plain (adaptively-secure) identity-based
encryption scheme; (2) a NIZK proof system for NP; and (3) a (one-time) dual-mode bit commitment
scheme [Naog89] (i.e., a commitment scheme where the common reference string can be sampled in one
of two computationally indistinguishable modes: one mode is statistically binding while the other is
statistically hiding). We then instantiate our template as follows:

« The master secret key msk = (ry,...,ry) is a random bit string: r; <~ {0, 1}. The public parameters
pp = (crscoms CrsNizks PPiges €1, - - - » ¢n) for the scheme contains the common reference string crscom
for the bit commitment scheme (in binding mode), the common reference string crsyzg for the NIZK,
the public parameters pp,s¢ for the plain IBE scheme, and commitments c; to the bits r;. The master
secret key msk also contains the openings to the commitments oy, ..., on.

« The secret key for an identity id is skig = (ctigg, 7). Here,

ctige = IBE.Encrypt(pp;gg id, Fid; Penc) (1.1)

is an IBE ciphertext that encrypts the tuple of bits 7iq = (r;);er, of the secret key indexed by Iiy = H (id),
where H is a (fixed) hash function that maps identities onto a set of indices. We let pe,c denote the en-
cryption randomness. In addition, the secret key contains a NIZK proof 7 that the commitments ¢;q =
(¢i)ier, in pp is a valid commitment to 7iq and that ct is an encryption of 7iq with randomness penc. Here,
the statement in the NIZK proofis (id, Ciq, ct;ge) and the witness is (Fid, penc, 0id), Where 6iq = (07)icr,-

« To encrypt a message m to an identity id*, the encrypter computes an obfuscation of a program P that
has the identity id*, the message m, the common reference string crsyjzk, and the commitments ¢iq+
hard-wired inside. The program takes as input a secret key skig = (ctigg, ) and outputs the message
if 7 is a valid proof for the statement (id*, ¢;g+, ct;gg). Otherwise, the program outputs L.

Proving adaptive security via a dual-system approach. As mentioned before, we leverage a dual-
system strategy [Wat09, LW10] to prove that the above scheme is adaptively secure. In a dual-system
proof, we define a sequence of hybrid experiments where we gradually replace the normal ciphertexts and
secret keys (given out in the security game) with “semi-functional” analogs. The invariant we enforce is
that normal keys can decrypt semi-functional ciphertexts and semi-functional keys can decrypt normal
ciphertexts. However, semi-functional keys are unable to decrypt semi-functional ciphertexts, and moreover,
the adversary is unable to tell whether a key or ciphertext is normal or semi-functional. In particular, this
means that it should be hard for an adversary to generate semi-functional ciphertexts on its own (if it could,
then it could trivially distinguish semi-functional keys for normal keys). In the final hybrid, all of the keys
and ciphertexts the adversary receives from the challenger are semi-functional. At this point, we can rely
on a simple statistical argument to argue that the adversary’s distinguishing advantage is negligible. We
now describe the structure of the semi-functional ciphertexts and keys in the proof:



« Semi-functional ciphertexts: The semi-functional ciphertext ct for a message m and identity id”*
contains an obfuscation of a modified program P*. The program P* additionally contains a secret
key skiq- and a bit string t = PRG(h(F,4+)), where PRG is a length-doubling pseudorandom generator
(PRG) and h is a universal hash function. The program P* takes (ct|gg, 7r) as input, but outputs m only
if 7 is a valid proof (on the statement (id*, ¢;¢+, ct|pg)) and PRG(h(IBE.Decrypt(skiq-, id*, ctige))) = t.

« Semi-functional keys: The semi-functional key skiq = (ct|gE, r) has a simulated proof 7 and more-
over, the ciphertext ct|gg is an encryption of the all-zeroes string ctjge = IBE.Encrypt(pp,gg. id, 05 penc)-

To show security, we first switch the challenge ciphertexts to be semi-functional. Then we switch each of
the keys to be semi-functional. Once all of the challenge ciphertexts and keys are semi-functional, semantic
security follows by a simple statistical argument together with security of the obfuscation scheme. We give
a sketch below:

« Switching ciphertexts to be semi-functional: To switch ciphertexts into semi-functional mode,
we appeal to iO security. Specifically, it suffices to show that the original program P and the modified
program P* are functionally equivalent. This follows immediately by (statistical) soundness of the
NIZK and correctness of the IBE scheme. Specifically, statistical soundness of the NIZK means that if
the proof r verifies, then

ctipe = IBE.Encrypt(pp;ge, id", Fig*)-

Correctness of IBE now implies that
IBE.Decrypt(skig+, id", ctigg) = Fig-.
In this case, the additional PRG check that P* performs always succeeds.

« Switching keys to semi-functional. We now switch the keys skig = (ct|gg, ) to semi-functional.
To do so, we first appeal to simulation security of the NIZK (to switch from real proofs to simulated
proofs). We then leverage semantic security of the IBE scheme to switch ctjgg from an encryption
of 7,4 to an encryption of the all-zeroes string. Note that at this point in the proof, the challenge
ciphertexts are semi-functional, and thus, simulating a challenge ciphertext for an identity id" requires
knowledge of sk;q:. However, the reduction algorithm can obtain these keys from the IBE challenger.
Note that this is admissible because the adversary in the big-key IBE game is not allowed to query
for a key for an identity id* € J that appears in the challenge set J.

« Completing the proof: To finish the proof, we switch the commitments to hiding mode. This
essentially “erases” the bits r, . .., ry from the public parameters. At this point in the proof, the only
information on the bits r; is contained in the leakage function on msk via the ¢ bits of leakage. When
the challenge set 7 is sufficiently large, there must exist some identity id* € J such that 7y has
high min-entropy given the leakage. For this to work, we require that the mapping H from identities
to the indices of the master secret key has good “spread.” That is, it should be the case that the set
{Fid}ige 7 contains many distinct indices of 7. Then, there exists some id* € J such that 7ig- has
high min-entropy. At this point, we can appeal to the leftover hash lemma [HILL99] to argue that
t = PRG(h(Fiq+)) is statistically close to t = PRG(u), where u is a random seed. By PRG security, the
string t is computationally indistinguishable from a uniform string. Since the PRG is length-doubling,
with overwhelming probability over the choice of ¢, it is no longer in the image of the PRG. At this
point, the additional check that P* performs (i.e., that PRG(h(IBE.Decrypt(skiq, id", ctigg))) = t)



is unsatisfiable. Correspondingly, the program P* outputs L on all inputs, so by iO security, it is
computationally indistinguishable from the program that always outputs L. Since this program is
independent of the message m, semantic security holds trivially.

We provide the full construction and analysis in Section 4. Thus, we obtain a simple construction of an
adaptively-secure big-key IBE scheme from indistinguishability obfuscation and one-way functions; specif-
ically, all of the underlying building blocks can be built from iO and one-way functions [SW14, ABSV15].

Using witness encryption in place of obfuscation. If we inspect our above template for constructing
big-key IBE, we observe that the ciphertext is essentially an obfuscated program that takes as input a proof
and checks whether the proof is valid or not. Thus, similar to the approach in [DGSW22], it seems plausible
that we could also replace the obfuscated program with a witness encryption scheme [GGSW13]. In this
work, we show that this is indeed possible, but will require a more involved construction. Specifically, in
witness encryption, a user can encrypt a message m to an NP statement x; the decryption algorithm takes
an NP witness w for x and outputs the statement. The security requirement then says that if x is not in the
language, then the ciphertext computationally hides the associated message. Witness encryption provides
no guarantees if the statement x is in the language, even if the witness is computationally hard to find. In
our basic template above, the ciphertext always encodes a true instance (since decryption is possible), and
we rely on iO security to (gradually) replace it with an instance that is unsatisfiable (in the final hybrid
experiment). Such a proof strategy does not work in the setting of witness encryption since it provides
no hiding properties for the underlying NP relation. Thus, substituting witness encryption in place of
indistinguishability obfuscation will require some additional tools.

Specifically, in the iO construction, the semi-functional ciphertexts introduces an additional check that
the provided secret key skiq+ = (ctig, 7) satisfies PRG(h(IBE.Decrypt(skiq+, id*, ctigg))) = t. Since this
check always passes, security of iO ensures that the resulting program remains functionally equivalent
to a normal program. In the case of witness encryption, we do not have the flexibility to change the NP
relation associated with a challenge ciphertext, so we will have to augment the NP relation in the normal
ciphertexts to also perform this additional check. We now give an outline of our approach, focusing on
the places that differ from our iO construction:

« The master secret key still consists of a random string rq,...,rN & {0,1}. As before, the public
parameters include commitments cy,...,cn to ry,...,rN, and the master secret key contains the
corresponding openings.

« The secret key for an identity id will contain a testing key skoyt for 7ig (where rig = (r)ier, and
Iig = H (id) as before). The testing key sk, plays the role of the IBE ciphertext in the iO construction.
In addition, the secret key also contains a NIZK proof (like in the iO construction) which affirms
that skoyt is an encoding of 7,4 and that 74 are the bits associated with the commitment ¢q.

« To encrypt a message m to an identity id", the user first samples a random encoding ct,, and prepares
a witness encryption ciphertext for the statement (id*, ¢4+, ctout); for simplicity of exposition, we omit
the common reference strings for the NIZK and the bit commitments in this sketch. The witness for the
witness encryption scheme is a secret key skig = (skout, ), and the associated NP relation first checks
the proof « is valid, and moreover, that the encoding ctoy: is valid with respect to the testing key skoyt.

The additional validity check between skqyt and ctqyt is the analog of the additional check that the semi-
functional ciphertexts performs in the earlier iO construction. Specifically, we require the encodings satisfy
the following properties:



« There is a public algorithm that allows one to sample a fresh encoding. This is used during encryption
to sample ctqyt. The first requirement is that the testing key sko,t always accepts a normal encoding
(this ensures correctness).

+ Next, we define the notion of a semi-functional encoding. Using a trapdoor, it is possible to sample
a semi-functional encoding ct,, of a vector 7iy. Here, the requirement is that a (normal) testing key
skout for 7ig will always reject a semi-functional encoding of 7ig.

We refer to these encodings as a privately-testable encoding since given a trapdoor, it is possible to generate
a (semi-functional) key to test whether an encoding is of a particular target value or not. In the security
proof, we will switch the encodings in the challenge ciphertexts (for an identity id) from normal encodings
(which can be decrypted normally) into semi-functional encodings of 7;4. Consider now a candidate witness
(skout, ) for a challenge ciphertext:

« If the NIZK proof 7 verifies, then by statistical binding of the commitment scheme and statistical
soundness of the NIZK proof system, it must be the case that sk, is an encoding of 7iy.

« However, if the encoding cto,; in the challenge ciphertext is a semi-functional encoding of 74, then
skout Will always reject ctoyt.

Thus, for all candidate witnesses for the statement associated with a challenge ciphertext, either the NIZK
proof fails to verify or the encoding check fails. In both cases, the relation is not satisfied, and so the
statement is false. We can now appeal to semantic security of the witness encryption scheme.

Simulating NIZK proofs. The above proof strategy critically requires on statistical soundness of the
NIZK (to ensure that if the adversary produces a valid proof 7, then the associated testing key is bound
to the vector 7,4). However, in the reduction, we still require a way to simulate proofs without knowledge
of ry,...,rn (to ensure that the only leakage on the bits ry, . .., ry is from the leakage function). Essentially,
the reduction needs a way to simulate secret keys without knowledge of the randomness ry, ..., ry and
still retain statistical soundness. We achieve this using an or-proof construction. Specifically, we introduce
an additional branch into the NIZK proof system so the proof either asserts validity of the testing key skoyt
(with respect to the commitments ¢i4) as above, or alternatively, the prover knows a trapdoor embedded
within the CRS. In the real scheme, only the first branch will be used while in the security proof, the
reduction algorithm will simulate proofs using the simulation trapdoor.

At this point, we still need to ensure that the simulated proofs do not help the adversary break semantic
security. In particular, by switching to the or-proof, we can no longer argue that a valid proof 7 means
that the testing key 74 is correctly constructed. To get around this problem, we introduce the concept of
a split encoding. At a very high level, we include an auxiliary encoding skaux and ctaux with each secret key
and ciphertext, respectively. The ciphertext component ct,,x would be embedded as part of the statement
in witness encryption while the secret key component sk,,x would be part of the witness. The NP relation
associated with the witness encryption scheme would then check that ct,,y is valid with respect to sk,,x. To
preserve correctness, we require that for normally-generated encodings, the check always passes. However,
the check rejects when both ct, x and sk,,x are switched to semi-functional encodings. We now modify
the trapdoor branch of the or-language in the NIZK proof system to also check that the key encoding skayx
is a semi-functional encoding. In the proof, the semi-functional ciphertexts have semi-functional encodings
ctaux- This way, whenever the NIZK proof verifies, one of two properties must hold:

« The provided encoding skoyt is a testing key for 7,4, which would reject the encoding ct,y in the
challenge ciphertext. Thus, the witness encryption relation is not satisfied.



+ The auxiliary encoding sk,yx is a semi-functional encoding, which would reject the semi-functional
ctaux in the challenge ciphertext. Once again, the witness encryption relation is not satisfied.

With these two encodings, we now have a way for the reduction algorithm to simulate key-generation
queries (without knowledge of r1, .. ., rn). Moreover, once all of the secret keys and challenge ciphertexts
are semi-functional, the associated relation is false. Semantic security then follows from security of the
witness encryption scheme. We provide the formal description of our privately-testable and split encodings
as well as our construction of big-key IBE from witness encryption in Section 5.

Constructing privately-testable and split encodings. In Section 6, we show how to construct the
encoding schemes we use from standard assumptions over groups. Specifically, privately-testable encodings
follow from the standard decisional Diffie-Hellman (DDH) assumption in pairing-free groups while split
encodings can be built from the symmetric external Diffie-Hellman (SXDH) assumption in asymmetric
pairing groups. Recall that the SXDH assumption essentially amounts to assuming DDH holds in both base
groups G; and G, of an asymmetric pairing group.

Reducing public parameter size. As described so far, our big-key IBE scheme has long public parame-
ters. Critically, the encryption algorithm only requires local access to the long public parameters. Previously,
the work of [DGSW22] showed a generic approach based on non-interactive secure computation to compile
any big-key IBE scheme with long public parameters (but where the underlying algorithm only require
local access to the public parameters) into a scheme with short public parameters. This transformation also
applies to our constructions. For completeness, we show that this transformation still preserves adaptive
security in Appendix A.

Comparison with [WW24]. The recent work of Waters and Wichs [WW24] shows how to construct
adaptively-secure attribute-based encryption from witness encryption. As part of their proof strategy, they
introduce the notion of a “functional tag system.” A functional tag system consists of function tags and
input tags, each of which has a semi-functional mode that is indistinguishable from the normal mode. Our
notion of split encoding is conceptually similar to a functional tag system, but specialized to the case of
an equality function (since we aim for IBE rather than ABE). However, for our application, we rely on a
stronger notion of mode indistinguishability (that asserts computational indistinguishability of normal tags
and semi-functional tags). For our applications, we require mode indistinguishability to hold with respect
to multiple functions and multiple input tags. The Waters-Wichs notion considers many functions, but a
single input tag. The need to simulate many input tags comes from the fact that in the big-key IBE security
game, the reduction algorithm needs to simulate multiple challenge ciphertexts (specifically, this is needed
to estimate the adversary’s success probability and determine whether it is successful or not; we refer to
Section 3 for further discussion of the advantage checking requirement). We do not see a way to generically
amplify a functional tag system where security holds against adversaries that can request a single input
tag into one that is secure against adversaries which can request multiple input tags.

2 Preliminaries

We write A to denote the security parameter. For an integer n € N, we write [n] to denote the set {1,2,...,a}.
For integers a < b, we use [a, b] to denote the set of integers {a,a+ 1,...,b}. When X = (x1,...,xn) isa
vector of elements and S C [N] is a set of indices, we will write Xs to denote the ordered sub-vector (x;);cs.
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For a distribution D we write x < D to denote that x is a random draw from D. For a finite set S, we
write x <~ S to denote a uniform random draw from S. When indexing a set S, we write S[i] to denote
the it element of S (in lexicographic order). For distributions 9y, D;, we denote the statistical distance
between them by A(Dy, D;). We use boldface letters (e.g., x) to denote vectors. We write poly(A) to denote
a fixed function that is O(A€) for some ¢ € N and negl(1) to denote a function that is 0(17¢) for all ¢ € N.
We say an event occurs with overwhelming probability if its complement occurs with negligible probability.
We say an algorithm is efficient if it runs in probabilistic polynomial time (in the length of its input).

Hoeffding’s inequality. We will use Hoeffding’s inequality to bound the sum of independent random
variables [Hoe63]:

Fact 2.1 (Hoeffding’s Inequality [Hoe63]). Let Xj, ..., Xt be independent random variables where 0 <
Xi < 1forallie [T]. LetS = };c[r) Xi and let E[S] denote the expected value of S. Then, for any k > 0,

Pr[|S — E[S]] > Tk] < 27Tk,

Min-entropy. We recall some basic definitions on min-entropy. Our definitions are adapted from those
in [DORS08]. For a (discrete) random variable X, we write Ho (X) = —log(max, Pr[X = x]) to denote
its min-entropy. For two (possibly correlated) discrete random variables X and Y, we define the average
min-entropy of X given Y to be Hoo (X | Y) = —log(Eyy max, Pr[X = x | Y = y]). The optimal probability
of an unbounded adversary guessing X given the correlated value Y is 27H=(XIY) We now state some
useful properties on the conditional min-entropy:

Lemma 2.2 (Conditional Min-Entropy [DORS08, Lemma 2.2]). Let A, B, C be random variables and suppose
there are at most 2" elements in the support of B. Then

Ho(A | (B,C)) 2 Hoo(AB|C)-A>Hu(A|C) - A
Additionally, for any § > 0, with probability at least 1 — & over the choice of b < B, we have

Lemma 2.3 (Min-Entropy Splitting Lemma [DFR*07, DGSW22]). Let Xi,...,X, be a sequence of ran-
dom variables such that Ho (X1, ...Xy) = «. Then there exists a random variable C over [£] such that
Hoo(Xc | C) = a/t —logt.

Dispersers. Our construction will rely on a disperser (also known as a “one-sided extractor”). At a high
level, a disperser can be modeled as a bipartite graph with the property that that every subset of nodes of a
certain (minimal) size on the left is guaranteed to have a large number of neighbors on the right. We recall
the formal definition from [TUZO07]. First, a bipartite graph G = (L, R, E) consists of two sets of vertices
L and R together with a set of edges E, where each edge e € E is a pair of nodes (u,0) € L X R. For a set
S C L, we write N(S) C R to denote the neighborhood of S: N(S) = {v € R: 3(u,v) € E A u € S}. We say
G is D-left-regular if every node u € L has exactly D neighbors: [N({u})| = d for allu € L.

Definition 2.4 (Disperser [TUZ07, Definition 1.3]). Let G = (L, R, E) be a bipartite graph. Then, G is a
degree-D (T, ¢)-disperser if G is D-left-regular and for all subsets S C L of size at least T, the neighborhood
N(S) has size at least (1 — ¢) - |R|. A disperser is explicit if the index of the i" neighbor of a vertex v € L
can be computed in poly(log N, log D) time.
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Fact 2.5 (Disperser [Par19, Theorem 3]). Let ¢ be a universal constant, ¢ > 0 be any constant, and n be
a set size parameter. Let k = k(n), D = D(n), k; = k1(n) be polynomials such that clog(n/¢) < k < n
and k; > k + O(log®(k/¢)). Then, there exists an explicit degree-D (21, ¢)-disperser G = (L, R, E) where
D = poly(n/e), |L| = 2", and |R| = 2ki+@ee(n/e)),

Randomness extractors. We now recall the definition of randomness extractors (from the leftover hash
lemma).

Definition 2.6 (Strong Randomness Extractor). A function Ext: {0,1}"x{0,1}¢ — {0,1}™ is a (k, ¢)-strong
randomness extractor if for all distributions X over {0, 1}" such that Ho,(X) > k, it holds that

A((s, Ext(X, s)), (Uy, Um)) <e

where s < {0, 1}d, and Uy, Us are the uniform distributions on {0, 1}d, and {0, 1}™, respectively. An
extractor is explicit if it is efficiently-computable.

Lemma 2.7 (Leftover Hash Lemma [ILL89, HILL99]). Let X be a random variable with support U and suppose
Hoo(X) > k. Takeanye > 0 and let H be a universal hash family of size 2¢ and output lengthm = k—2log(1/¢).
Define Ext(x, h) := h(x). Then Ext is a (k, e/2)-strong extractor with seed length d and output length m.

Corollary 2.8 (Explicit Strong Extractor). Takeany A € N. Then, there exists an explicit (A+«w(log A), negl(1))-
strong randomness extractor Ext: {0, 1}P°YA) x {0, 1}PoYD) — (0, 1}4,

Corollary 2.9 (Inner Product Extractor). Let F be a finite field and let X be a random variable with support
U = F". Take any ¢ > 0 and suppose Hoo (X) > k = 2log(1/¢) + log |F|. Let S = F" be a seed space and define
Ext(x,s) := s'x. Then Ext is a (k, /2)-strong extractor with seed length nlog |F| and output length log |F|.

2.1 Cryptographic Primitives

In this section, we recall the main cryptographic notions we use in this work.

Definition 2.10 (Pseudorandom Generator). Let A be a security parameter. A pseudorandom generator
with output length m = m(A) is an efficiently-computable function family PRG = {PRG,}, <y where
PRG,: {0,1}* — {0,1}™}. We say that PRG is secure if for all efficient adversaries A there exists a
negligible function negl(-) such that for all 1 € N:

Pr[A(1*, PRG,(x)) =1:x & {0,1}*] =Pr[A(1},y) = 1:y & {0,1}"D]| = negl(1).

Definition 2.11 (Pseudorandom Function). Let K = {K} 1, X = {Xaihien, and Y = {Y) }1en be ensem-
bles of finite sets indexed by a security parameter A. Let PRF = {PRF}, <y be an efficiently-computable
collection of functions PRF,: K X X; — Y). We say that PRF is secure if for all efficient adversaries A
there exists a negligible function negl(-) such that for all A € N:

PrATRFAEI) (1) = 1k & K] - Pr[ AR (11) = 1 fi & Funs[Xy, Ya]]| = negl(A),

where Funs[ X}, Y,] is the set of all functions from X to Y.

Definition 2.12 (Identity-Based Encryption [Sha84, BF01, Coc01]). An identity-based encryption (IBE)
scheme with identity space 7D = {7 D, },y and message space M = { M}, is a tuple of efficient
algorithms ITjgg = (Setup, KeyGen, Encrypt, Decrypt) with the following syntax:
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« Setup(1*) — (pp, msk): On input the security parameter ], the setup algorithm outputs the set of
public parameters pp and a master secret key msk. We assume that pp and msk include the security
parameter 14

« KeyGen(msk,id) — skig: On input the master secret key msk and an identity id € 7 D),, the key-
generation algorithm outputs an identity key sk;q. We assume the secret key sk;q contains the security
parameter 1* (from msk).

« Encrypt(pp, id, m) — ct: On input the public parameters pp, an identity id € 7 D),, and a message
m € M, the encryption algorithm outputs a ciphertext ct.

« Decrypt(skiq, id, ct) — m: On input an identity secret key skiq, an identity id € 7 D,, and a ciphertext
ct, the decryption algorithm outputs a message m € M,.

Moreover, ITjge should satisfy the following properties:

« Correctness: For all security parameters A € N, all identities id € 7 D), all (pp, msk) in the support
of Setup(1*), and all messages m € M,

skiq < KeyGen(msk,id) | _

Pr|Decrypt(skig,ct) =m: ~ ° Encrypt(pp,id,m) |~

» Semantic security: For a security parameter A and a bit b € {0, 1}, we define the (adaptive) semantic
security game between an adversary A and a challenger as follows:

- Setup: The challenger starts by sampling (pp, msk) < Setup(1%) and gives pp to A.

— Pre-challenge queries: Algorithm A can now issue key-generation queries to the challenger.
On each key-generation query, adversary A specifies an identity id € 7 D,, and the challenger
replies with skiy « KeyGen(msk, id).

- Challenge: Algorithm A outputs a challenge identity id* and two messages mg, m; € M. The
challenger replies with ct, « Encrypt(pp,id*, mp).

- Post-challenge queries: Algorithm (A can continue to make key-generation queries as in the
pre-challenge phase.

— Output: At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which is the output of
the experiment.

An adversary A is admissible for the semantic security game if it does not issue a key-generation
query on the challenge identity id*. We say IIjg satisfies adaptive security if for all efficient and
admissible adversaries A, there exists a negligible function negl(-) such that for all A € N,

|Pr[b’ =1|b=1] —Pr[b’ = 1| b =0]| = negl(A)
in the semantic security game.

Definition 2.13 (Indistinguishability Obfuscation [BGI*12, GGH"13]). Let C = {C)},en be a family of
polynomial-size circuits and £¢ (1) be a size parameter, such that every circuit C € C) has size exactly £¢(1).
An indistinguishability obfuscator iO is an efficient algorithm that takes as input the security parameter
14, a circuit C € Cy, and outputs a circuit C’. An iOQ scheme should satisfy the following properties:
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« Functionality-preserving: For all security parameters A € N, all C € C), and all inputs x, we have
that C’(x) = C(x) where C’ « iO(1%,C).

« Security: For all efficient adversaries A = (Samp, A’), there exists a negligible function negl(-)
such that the following holds: if for all security parameters A € N,

Pr[Vx, Co(x) = C1(x) : (Co, Cy, st) «— Samp(11)] = 1 — negl(1)

then
Pr[A’(st, iO(l’l, Co)) = 1] — Pr[ A’ (st, iO(lA, C1)) = 1]| = negl(4),

where (Co, Cy, st) < Samp(1%).

Definition 2.14 (Witness Encryption [GGSW13, adapted]). Let M = { M} en be a message space. A
witness encryption scheme for an NP language £ with witness relation R ¢ is a tuple of efficient algorithms
ITwe = (Encrypt, Decrypt) with the following syntax:

« Encrypt(1*, m, x) — ct: On input the security parameter A, a message m € M, and an instance x for
the language £, the encryption algorithm outputs a ciphertext ct. We assume ct includes 1* and x.

« Decrypt(ct,w) — m: On input a ciphertext ct and a witness w, the decryption algorithm outputs
a message m € M.

Moreover, Iy should satisfy the following properties:

« Correctness: For all 1 € N, messages m € M, and tuples (x, w) € R, it holds that

Pr[Decrypt(ct,w) = m : ct « Encrypt(ll, m,x)] = 1.
« Semantic security: For a security parameter A and a bit b € {0, 1}, we define the semantic security
game between an adversary A and a challenger as follows:

- On input the security parameter 1%, algorithm A outputs a statement x and two messages
mo, m; € M.

- The challenger replies with ct « Encrypt(1*4, my, x).
- Algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

The scheme Il satisfies semantic security if for all efficient adversaries A, there exists a negligible
function negl(-) such that forall 1 € N,

Pr[b'=1Ax¢ L]|b=1]-Pr[b'=1Ax¢ L|b=0]| =negl(A)

in the semantic security game.
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One-time dual-mode commitment. We recall the notion of a one-time dual-mode commitment, which
can be constructed from one-way functions [Nao89].

Definition 2.15 (One-Time Dual-Mode Commitment [DN02]). A one-time dual-mode commitment scheme
with input space X = {X)}, ¢y is a tuple of efficient algorithms ITcom = (Setup, Commit, Verify) with the
following syntax:

« Setup(1%, mode) — (crs,td,c): On input the security parameter A and mode € {bind, hide}, the
setup algorithm outputs a common reference string crs. When mode = hide, it also outputs a trapdoor
td and commitment ¢. We assume crs and td (implicitly) contain the security parameter 1%.

« Commit(crs,x) — (¢, 0): On input the common reference string crs and an input x € X, the commit
algorithm outputs a commitment ¢ and an opening o.

« Verify(crs,c,x,0) — {0,1}: On input the common reference string crs, a commitment c, a value
x € X}, and an opening o, the verification algorithm outputs a bit b € {0, 1}.

Moreover, IIcom should satisfy the following properties:

« Correctness: For all security parameters A € N, all inputs x € X}, all modes mode € {bind, hide},

’ A .
Pr [Verify(crs, x0)=1: (crs,td, ¢’) « Setup (1%, mode); ] _ 1

(¢,0) « Commit(crs, x)

« Statistically binding in binding mode: For all adversaries A, there exists a negligible function
negl(-) such that for all 1 € N,

crs « Setup(1%, bind);
(¢, x0, x1, 09, 01) — A(crs)

Pr [Verify(crs, ¢, o, 09) = Verify(crs,c,x1,01) = 1 Axp # x1 ¢ } = negl(4).

+ Mode indistinguishability: For a security parameter A, a bit b € {0, 1}, and a simulator Sopen, We
define the mode indistinguishability game between an adversary A and a challenger as follows:

1. The challenger samples crs < Setup (1%, bind) if b = 0 or (crs, td, ¢;) < Setup(1%, hide) if b = 1
and gives crs to A.

2. Algorithm A outputs a value x € Xj.

3. If b = 0 the challenger computes (¢, 0p) <= Commit(crs, x). If b = 1, the challenger computes
a simulated opening 07 <= Sypen(td, x). The challenger sends (¢, 03) to A.

4. Algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

The scheme Ilcom satisfies mode indistinguishability if there exists an efficient simulator Sopen such
that for all efficient adversaries A, there exists a negligible function negl(-) such that forall A € N,

[Pr[b’=1]f=0] —Pr[b' =1 =1]| = negl(})

in the mode indistinguishability game.
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Non-interactive zero-knowledge. Next, we recall the notion of a non-interactive zero-knowledge (NIZK)
proof for NP [GMR85, BFM88]. Specifically, we consider NIZKs for the language of Boolean circuit satisfiabil-
ity which we define below. We also recall the weaker notion of witness indistinguishability, which is more con-
venient to use in some of our proofs. It is easy to see that zero-knowledge implies witness indistinguishability.

Definition 2.16 (Boolean Circuit Satisfiability). The language £ of Boolean circuit satisfiability consists of
pairs (C, x) of circuits C: {0,1}" x {0,1}" — {0,1} and inputs x € {0, 1}" such that there exists w € {0, 1}"
where C(x,w) = 1:
C: {0,1}" x {0,1}* — {0,1}
L=3(Cx): x €{0,1}"
Jw e {0,1}": C(x,w) =1

Definition 2.17 (NIZK for NP [GMR85, BFM88]). A non-interactive zero-knowledge (NIZK) proof for
Boolean circuit satisfiability is a tuple of efficient algorithms IIy;zx = (Setup, Prove, Verify) with the
following syntax:

« Setup(1*) — crs: On input the security parameter A € N, the setup algorithm outputs a common
reference string crs. We assume crs implicitly contains a description of the security parameter 14,

+ Prove(crs,C,x,w) — m: On input the common reference string crs, a Boolean circuit C: {0, 1}" X
{0,1}* — {0, 1}, a statement x € {0,1}", and a witness w € {0, 1}", the prove algorithm outputs a
proof 7.

« Verify(crs, C, x, r) — b: On input the common reference string crs, the Boolean circuit C: {0, 1}" X
{0,1}" — {0,1}, a statement x € {0,1}", and a proof 7, the verification algorithm outputs a bit
b e {0,1}.

Moreover, Iz should satisfy the following properties:

« Completeness: For all 1 € N, all Boolean circuits C: {0,1}" x {0,1}" — {0, 1}, all statements
x € {0,1}", and all witnesses w € {0, 1}" where C(x, w) = 1,

A
Pr [Verify(crs, Cox,m)=1: crs — Setup(1”) ] =1.

7 < Prove(crs, C, x, w)

« Statistical soundness: For all adversaries (A, there exists a negligible function negl(-) such that
forall A € N,

crs « Setup(1%)

Pr (C,x,m) «— Alcrs)

(C,x) ¢ L A Verify(crs,C,x,m) =1:

} = negl(1).

« Computational zero-knowledge: For every efficient adversary A, there exists an efficient simulator
S = (81, 8;) and a negligible function negl(-) such that for all A € N,

|Pr [ﬂo"(crs""")(l’l,crs) = 1] - Pr [ﬂol(Sts""")(l’l, crs) = 1” = negl(4),

where crs « Setup(1%), (s, stg) « S;(1%), and the oracles Oy and O, are defined as follows:
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- Oy(crs, C, x, w): On input crs, a circuit C: {0,1}" x {0,1}* — {0, 1}, a statement x € {0,1}",
and a witness w € {0,1}", the oracle outputs L if C(x,w) = 0. If C(x,w) = 1, it outputs
Prove(crs, C, x, w).

- O4(sts, C,x,w): On input the simulator state stg, a circuit C: {0,1}" x {0, 1} — {0, 1}, a state-
ment x € {0,1}", and a witness w € {0, 1}", the oracle outputs L if C(x, w) = 0. If C(x, w) = 1,
it outputs S, (sts, C, x).

Definition 2.18 (Computational Witness Indistinguishability). Let IIn;zx = (Setup, Prove, Verify) be a
NIZK proof for Boolean circuit satisfiability. We say that IIyzk satisfies computational witness indistin-
guishability if for every efficient adversary A, there exists a negligible function negl such that for all A € N,

‘PI‘ [&1[0"(“5""",')(1’1,crs) — 1] —Pr [ﬂ()l(crs,,.).,-)(l/liCrs) — 1” — negl(/l),

where crs « Setup(l") and for b € {0, 1}, the oracle Oy, is defined as follows:

« Op(crs, C, x, wy, wq): On input crs, a circuit C: {0,1}" x {0, 1}h — {0,1}, a statement x € {0,1}",
and witnesses wo, w; € {0,1}", the oracle outputs Prove(crs, C, x, wp) if C(x,wo) = 1 = C(x, wy).
Otherwise, it outputs L.

3 Big-Key Identity-Based Encryption

In this section, we give a formal definition of big-key IBE. Our definition is based on the corresponding
definition from [DGSW22], but has an important difference where we only consider inverse-polynomial
advantage thresholds rather than all non-negligible advantage thresholds. This is an important distinction
as the previous notion from [DGSW22] is unsatisfiable (see Remark 3.2). We begin by highlighting the
main difference between big-key IBE and vanilla IBE (Definition 2.12):

« In big-key IBE, we allow the adversary to specify any efficiently-computable leakage function f that
outputs at most ¢ bits, where ¢ is a leakage parameter. The challenger then replies with f(msk). In
the adaptive security experiment, the adversary chooses the challenge identities after it observes
the (arbitrary) leakage on the master secret key.

« Since the adversary is given arbitrary leakage on the master secret key, its leakage may simply encode
a secret key for the challenge identity. Thus, the usual notion of semantic security is not meaningful
in this model. Instead, the adversary must declare a set of challenge identities J. To win the game,

the adversary must be able to break semantic security for all identities id € J with advantage greater
than some threshold ¢.

We now provide the formal definition and then discuss how it compares with the previous definition
from [DGSW22].

Definition 3.1 (Big-Key Identity-Based Encryption [DGSW22, adapted]). A big-key identity-based encryp-
tion scheme with identity space 7D = {7 D, },c; and message space M = { M}, is a tuple of efficient
algorithms Iy e = (Setup, KeyGen, Encrypt, Decrypt) with the following syntax:

« Setup(1%,1¢) — (pp, msk): On input the security parameter A and the leakage parameter ¢, the setup
algorithm outputs public parameters pp and a master secret key msk. We assume that pp and msk
include the security parameter 1%.
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« KeyGen(msk,id) — skjq: On input the master secret key msk and an identity id € 7 D,, the key-
generation algorithm outputs an identity secret key sk;q. We assume the secret key skiq contains the
security parameter 1% (from msk).

« Encrypt(pp,id, m) — ct: On input the public parameters pp, an identity id € 79D, and a message
m € M,, the encryption algorithm outputs a ciphertext ct.

« Decrypt(skiq, id, ct) — m: On input an identity secret key skiq, an identity id € 7 D,, and a ciphertext
ct, the decryption algorithm outputs a message m € M,.

Moreover, Il e should satisfy the following properties:

+ Correctness: For all security parameters A € N, all leakage parameters ¢ € N, all identities id € 7 D),
all (pp, msk) in the support of Setup (14, 1¢), and all messages m € M,

skia < KeyGen(msk,id) | _

Pr | Decrypt(skiq, id, ct) = m : ct — Encrypt(pp,id,m) |

« Efficiency: We impose the following efficiency requirements on the scheme parameters:

Public key size: We say that a big-key IBE scheme has short public parameters if the public
parameters pp output by Setup(1%, 1°) satisfies |pp| = poly(A, log £). We say the scheme has
long public parameters if |pp| = poly(4, £).

Secret key size: We require that the identity secret keys skiq output by KeyGen to satisty
Iskig| = poly(A,log ¢).

Key-generation and encryption time: We require that KeyGen and Encrypt run in time
poly(A,log ¢) given random access to the master secret key msk and the public parameters pp,
respectively. In other words, KeyGen only needs to read poly(4, log £) bits of msk and Encrypt
only needs to read poly (A, log ¢) bits of pp. Note that if the scheme has short public parameters
(i.e., if [pp| = poly(4,log ¢)), then the encryption requirement is trivially satisfied.

« Adaptive security under bounded leakage: For a security parameter A, a challenge parameter
k = k(A,¢), and an advantage function ¢ = ¢(1), we define the adaptive security game between an
adversary A = (A;, A;) and a challenger as follows:

Setup: On input the security parameter, algorithm A; starts by outputting a leakage parameter
1¢, which it gives to the challenger. The challenger samples (pp, msk) « Setup(1%,1¢) and
gives pp to A;.

Pre-leakage queries: Algorithm A; can now issue key-generation queries to the challenger.
On each key-generation query, algorithm (A; specifies an identity id € 79, and the challenger
replies with skiq < KeyGen(msk, id).

Leakage: Algorithm A; outputs the description of an efficiently-computable function f with
output length at most ¢. The challenger replies with leak = f(msk).

Post-leakage queries: Algorithm A; can continue to make key-generation queries to the
challenger.

Challenge: Algorithm (A; outputs a set J € 7D, of size at least k = k(4, £), two messages
mo, m; € M,, and a state st.
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— Output: The output of the adaptive security game is b’ = 1 if
Vid € J : Advd(msk, pp, st, leak) > (1) (3.1)

and b’ = 0 otherwise. The distinguishing advantage Adv'd (msk, pp, st, leak) is defined as follows:

For an identity id € 7 D, define the experiment Exp'®(msk, pp, st, leak) as follows:

+ The challenger samples b <~ {0, 1}, ct < Encrypt(pp, id, mp) and gives (st, id, ct) to
As.

« Algorithm A, can now issue key-generation queries to the challenger. On each
key-generation query, algorithm A, specifies an identity id € 79, and the
challenger replies with skiq <« KeyGen(msk, id).

« After A, has finished making key-generation queries, it outputs a bit § € {0, 1},
which is used to compute the output of the experiment as 1 if b = f and 0 otherwise.

The advantage Adv'd(msk, pp, st, leak) is then defined as

Adv'd (msk, pp, st, leak) = |Pr[Expid(msk, pp, st, leak) = b] — 1/2|.

We say that an algorithm A = (A;, A;) is admissible for the adaptive security game if neither A,
nor A, makes a key-generation query on any identity id € J. We say Il ke satisfies adaptive
security under bounded leakage with challenge parameter k = k(4, ¢) if for all efficient adversaries
A = (A, A;) and every inverse polynomial advantage function ¢ = 1/poly(A), there exists a
negligible function negl(-) such that for all A € N, Pr[b’ = 1] = negl(1) in the adaptive security game.

Remark 3.2 (Comparison with [DGSW22]). Beyond the extension from selective security to adaptive
security, Definition 3.1 differs from the notion in [DGSW22, Definition 3] in an important manner. The
definition in [DGSW22] says that a big-key IBE scheme satisfies (selective) security under bounded leakage
if for all efficient adversaries A = (A, Az) and all non-negligible functions ¢, there exists a negligible
function negl(-) such that for all A € N,

Pr[Vid € J : Advd(msk, pp, st, leak) > £(1)] = negl(}). (3.2)

In contrast, our definition (Definition 3.1) requires the advantage threshold ¢ to be inverse polynomial.
While “non-negligible” and “inverse-polynomial” may seem like a small distinction, it is an important one.
Indeed, we can show that the definition is unsatisfiable if we require Eq. (3.2) to hold for all non-negligible
functions e. To wit, suppose ¢ is the following piecewise function:

1 Aisodd
5(/1)={ iso

0 Aiseven.

Observe that £(A) is non-negligible by construction. However, Eq. (3.2) cannot hold for any scheme with
respect to ¢. This is because for every adversary A, and every even value of A € N, it holds that

Advid(msk, pp, st, leak) > 0 = £(4).
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This means that whenever A is even, it follows that
Pr[Vid € J : Advd(msk, pp, st, leak) > ¢(1)] = 1.

As such, we cannot bound the probability in Eq. (3.2) by a negligible function, and Eq. (3.2) does not hold.
For this reason, the original definition from [DGSW22] is unsatisfiable. In this work, we require ¢ to
be an inverse polynomial function 1/poly(1), where poly(A) is a fixed polynomial. This rules out such
pathological functions.

Advantage checking. In Definition 3.1, the output of the experiment requires checking whether Eq. (3.1)
holds or not: .
Vid € J : Advd (msk, pp, st, leak) > (1),

where (1) is some advantage threshold. We note that in general, the exact advantage of an adversary
is not efficiently-computable. As such, the challenger in Definition 3.1 cannot necessarily efficiently de-
termine whether the adversary A is successful or not. While having an inefficient challenger is perfectly
acceptable from a definitional standpoint, it introduces new challenges in the security analysis. Namely,
given a candidate adversary (A, a reduction algorithm that uses A to solve some computational problem
may not be able to determine whether A was successful or not. To address this problem, we define an
alternative version of the adaptive security game where we replace the win condition (Eq. (3.1)) with an
efficiently-checkable variant based on estimating the success probability of the adversary (Definition 3.3).?
We then show in Theorem 3.4 that a scheme satisfying our alternative security game implies a scheme that
is secure under our main definition (Definition 3.1). Then, in the remainder of this paper, we only consider
Definition 3.3 where the output of the game is efficiently-computable.

Definition 3.3 (Adaptive Advantage-Checker Security). Let Il s be a big-key IBE scheme as in Defi-
nition 3.1. We define the following property:

+ Adaptive advantage-checker security under bounded leakage: This security game is identical
to the adaptive security game in Definition 3.1 except the output of the game is b" = 1 if

Vid e g - AdeheckﬂZ(lA, 1% id, msk, pp, st, leak) = 1

and b" = 0 otherwise. The algorithm AdvCheck is defined as follows:

2We note here that this issue appears to have been glossed over in the previous work of [DGSW22] as their security proofs do
not describe how the reduction algorithm uses the adversary’s output to solve the underlying computational problem. We believe
that their analysis can be repaired by formally defining a similar intermediary game with an efficiently-computable challenger.
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Inputs: security parameter A, advantage threshold ¢ € (0, 1), identity id € 7 D,, master secret
key msk, public parameters pp, state st, string leak, and (oracle) access to an algorithm A

— Let T = 1/¢? and initialize a counter WINS « 0.

— The advantage-checker algorithm now simulates T independent executions of experiment
Exp'd (msk, pp, st, leak) for algorithm A.
1. Sample B & {0, 1}.

2. Compute ct <« Encrypt(pp,id, mg), and start running algorithm A on input
(st, id, ct).

3. Whenever algorithm A makes a key-generation query on an identity id € 7D,,
compute skiq < KeyGen(msk, id) and reply to A with the identity key skiq.

4. After A has finished making key-generation queries, it outputs a bit §’ € {0, 1}.
5. If § = f’, then increment WINS «— WINS + 1.

— Output 1if |WINS - %’ > % and 0 otherwise.

Figure 1: Function Adeheckﬂ(l)‘, 1Y€ id, msk, pp; st, Ieak)

We say that an algorithm A = (A;, A,) is admissible for the k-adaptive advantage-checker se-
curity game if neither A; nor A, makes a key-generation query on any identity id € . The
scheme ITypE satisfies adaptive advantage-checker security under bounded leakage with challenge
parameter k = k(A, ¢) if for all efficient adversaries A = (A, A;) and every inverse polynomial
advantage function € = 1/poly(4), there exists a negligible function negl(-) such that for all A € N,
Pr[b’ = 1] = negl(}) in the adaptive advantage-checker security game.

Theorem 3.4 (Adaptive Security from Adaptive Advantage-Checker Security). Suppose Ilpge is a big-key
IBE scheme that satisfies adaptive advantage-checker security under bounded leakage with challenge parameter
k = k(A, £). Then, Iy ge satisfies adaptive security under bounded leakage with the same challenge parameterk.

Proof. Let Hyb, be the adaptive security experiment from Definition 3.1 and Hyb, be the advantage checker
security experiment from Definition 3.3. For an adversary A = (A;, A;) and an advantage function ¢, we
write Hyb, (A, ¢) to denote the output of Hyb; with adversary A and advantage function e. We now show
that for all efficient adversaries A and all inverse polynomial advantage functions ¢ = 1/poly(A), there
exists a negligible function negl such that for all A € N,

Pr[Hyb,(A, ¢) = 1] < Pr[Hyb,(A, ¢) = 1] + negl(1),

which proves the claim. By construction, the only difference between Hyb, and Hyb, is how the output
bit b € {0, 1} is computed. Suppose in an execution of Hyb, that the output bit is 1. This means that for
allid € 7,

Advid(msk, pp, st, leak) > «. (3.3)

Consider the output computed according to the specification of Hyb,. The AdvCheck algorithm perfectly
simulates T executions of Exp'd. For each i € [T], let X; € {0,1} be the random variable for whether
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algorithm Aj’s output is correct (i.e., if f” = B) on the i" iteration. If Eq. (3.3) holds, then
[E[X;] —1/2| = |Pr[X; =1] —1/2| > ¢
In Hyb,, we have WINS = };c[7) X; and since each X; is identically distributed, it follows that
[E[WINS] —T/2| > ¢T.
By Hoeffding’s inequality (Fact 2.1),
Pr[|WINS — T/2| < eT/2] < Pr[|WINS — E[WINS]| > £T/2] < 27 2T¢/%) = negl(2),

since T = A/¢%. Thus, if Eq. (3.3) holds, then with probability 1 — negl(1), [WINS — T/2| > ¢T/2 in an
execution of AdvCheck™ (1’1, 1Y¢id, msk, pp, st, leak). In this case, AdvCheck outputs 1. By a union bound,
if Eq. (3.3) holds for all id € 7, then AdvCheck also outputs 1 for all id € J with probability 1—|J|-negl(A).
If A is efficient, then the size of the challenge set . is polynomially-bounded, so we conclude that whenever
experiment Hyb, (A, ¢) outputs 1, then with probability 1 — negl(1), experiment Hyb, (A, ¢) also outputs
1, and the claim follows. O

Remark 3.5 (Challenge Parameter k). The challenge parameter k in Definitions 3.1 and 3.3 determines the
minimum size of the challenge set J as a function of the security parameter A and the leakage parameter ¢.
A larger value of k increases the difficulty for the adversary while a small value of k makes the adversary’s
job simpler. In [DGSW22], the parameter k was set to be £+ 1; namely, given £ bits of leakage, the adversary
has to compromise at least £ + 1 identities. In this work, we show multiple bits of leakage are necessary to
compromise any single identity key. Namely, we show how to achieve challenge parameter k = ¢/poly(7).

4 Adaptively-Secure Big-Key IBE from Indistinguishability Obfuscation

In this section, we describe how to construct an adaptively-secure big-key IBE scheme using indistinguisha-
bility obfuscation (Definition 2.13), an adaptively-secure IBE scheme (Definition 2.12), a NIZK proof for
NP (Definition 2.17), a one-time dual-mode commitment scheme (Definition 2.15), and a pseudorandom
generator (Definition 2.10).

Expanding hash function. First, we define the notion of an “expanding” hash function, which will be
a useful building block in our constructions. At a high-level, an expanding hashing function H: {0,1}* —
[N1]¢ maps a string x € {0,1}* onto a set of elements S C [N] of size |S| = d with the property that for
every collection of inputs xy, ..., xx € {0,1}%, the set Uierk) H (xi) covers almost dk indices of the set [N].
In the context of our big-key IBE schemes, we will subdivide the master secret key into N blocks, and the
secret key for an identity id will contain the blocks indexed by H (id). The security analysis will rely on
the fact that for any set of k identities that the adversary can possibly corrupt, there will always exist at
least one block of the master secret key that the adversary does not know. Namely, the number of blocks
of the master secret key covered by every set of k identities is always greater than the amount of leakage
the adversary is allowed on the master secret key. We now define the property formally, and show that
such a hash function can be built from a disperser (Definition 2.4 and Fact 2.5).

Definition 4.1 (Expanding Hash Function). We say a hash function H : {0,1}* — [N]¢is (k, &)-expanding
if there exists an explicit and efficient algorithm for computing H (x) in poly(4, d,log N) time, and moreover,
for every collection of exactly k inputs x1, ... x; € {0, 1}/, it holds that | | iepk] H(xi)| = ak.
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Lemma 4.2 (Expanding Hash Function). There exists a constant ¢ € N such that for every A € N, every
constant § € (0, 1), and every polynomially-bounded function t(1) > A° where t(A) is a power of 4, there
exists functions a = w(log 1), d = poly(1), and a (t, a)-expanding hash function H: {0,1}* — [N]%, where
at = (1-6)N.

Proof. This follows immediately from Fact 2.5. Specifically, let G = (L, R, E) be the construction from
Fact 2.5 instantiated with parameters n = A, ¢ = §, k = (logt)/2, and k; = 2k = logt. Then, G is a degree-D
(t, ¢)-disperser where D = poly(2), |L| = 2* and |R| = t - 22(°8) We now construct the expanding hash
function H: {0,1}* — [N]¢ as follows:

e Set N = R =t - 290084 o = (1 - §) - 2%0ed) ‘and d = D = poly(}).

« For an input x € {0,1}*, define H (x) to be the indices of the nodes in the neighborhood of node
x € G (here, we index the 2! nodes in L with a bit-string in {0, 1}*). Note that computing H (x)
requires time poly(4, d,log N) since the disperser is explicit. Thus, H is efficiently-computable.

We now show the expanding property. This follows immediately from the fact that G is a disperser. Consider
any set of t inputs xy,...,x;. Let S = {x1,...,x;}. Since G is a (¢, ¢)-disperser, and by construction of H,
it follows that

|Usetn HG)| = IN(S) 2 (1-¢) - [R| = (1~ )N = at,

where N(S) denotes the neighborhood of S in G. To finish the proof we show the constraint on @ and
that ¢ is a valid choice in Fact 2.5. Clearly a = (1 — §) - 2°1°81) = ((log 1) holds. It is also immediate that
choosing k; = 2k > k + O(log” k) is sufficient. O

Big-key IBE construction. We now give our first construction of an adaptively-secure big-key IBE
scheme.

Construction 4.3 (Big-Key IBE from iO). Let A € N be a security parameter, 7D = {7 D, })cn be the
identity space, M = { M} en be the message space, ¢ be the leakage parameter, N = N (4, £) be a key-size
parameter, and d = d(A) be an output-size parameter. Our construction relies on the following primitives:

+ Let iO be an indistinguishability obfuscation scheme. We will assume that all programs described here
(and in the proof of Theorem 4.6) are padded to the size £-(A) of the largest program among them.

« Let PRG: {0,1}* — {0,1}** be a pseudorandom generator. Note that the PRG is only used in the
security analysis and does not appear in the main construction.

o Let H: TD; — [N]? be a hash function. We interpret the output elements [N]? as an ordered list
of d indices in [N].

+ Let IInizk = (NIZK.Setup, NIZK.Prove, NIZK.Verify) be a NIZK proof for NP.

« Let IIcom = (Com.Setup, Com.Commit, Com.Verify) be a one-time dual-mode commitment scheme
(Definition 2.15) with input space X = {X } 1w, and let £, = £, (A) be the bit-length of an input.

« LetIIjge = (IBE.Setup, IBE.KeyGen, IBE.Encrypt, IBE.Decrypt) be an IBE scheme with identity space
T D and message space X.
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« For public parameters pp g, define the NP relation R[pp,s¢] as follows:

Hard-wired: public parameters pp,s¢

Statement: a vector of common reference strings crsgo)m indexed by a set I C N, a tuple of
commitments ¢y, ciphertext ct, identity id
Witness: strings 7, randomness penc, Openings o7
Output 1 if all of the following conditions hold:
— Foreachi €1, Com.Verify(crs(Ci) ,
RN om
- IBE.Encrypt(ppgg, id, 71; Penc) = ct

Cinti,07) = 1;

Otherwise, output 0.

Figure 2: Relation R[ppge]-
Let Cg[pp,ge] be the circuit computing the NP relation R[ppge]-
We now construct our big-key IBE scheme ITpyge = (Setup, KeyGen, Encrypt, Decrypt) as follows:

« Setup(1%,1¢): On input the security parameter A and the leakage parameter ¢, the setup algorithm
proceeds as follows:

1. Sample (ppgg, mskigg) < IBE.Setup(l’l) and crsnjzk < NIZK.Setup(l’l).

2. For each i € [N], sample a random string r; <~ {0, 1}*. Then, sample a common reference

string crs(clgm «— Com.Setup(1%, bind) and compute (c;, 0;) « Com.Commit(crs(Cio)m, ri).

Let¢=(ci,...,en), ¥ =(r1,...,rN),and & = (o4,...,0n). For aset I C [N], we write ¢y, 1, and o7

to be the respective sub-vector of indices in I. Similarly, we define crsgo)m = (crs((:ig m)l. ;- Output

pp = ({Crs(clgm ie[N]’E’CrSNIZK’ pp,BE) and msk = (pp,7,0). (4.1)

« KeyGen(msk,id): On input the master secret key msk (with components as in Eq. (4.1)) and an
identity id € 7 9,, the key generation algorithm proceeds as follows:

1. Compute I « H(id).

2. Compute ct « IBE.Encrypt(ppgg, id, 71; Penc) Where penc is the encryption randomness and 7;
is as defined in Eq. (4.1).

€))

3. Compute 7 « NIZK.Prove(crsnizk, Cr[ppigels (crs(clgm, cr, ct, id), (71, penc, 1)), Where crs./_,

¢r, 71, and o7 are as defined in Eq. (4.1).
Output the identity secret key skiq = (ct, 7).

+ Encrypt(pp, id, m): On input the public parameters pp, an identity id € 79D, and a message m € M,
the encryption algorithm defines the following program:
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O]

Hard-wired: common reference string crsyizk, a vector of common reference strings crs¢

indexed by a set I C N, a circuit C, a tuple of commitments ¢, message m, identity id
Inputs: ciphertext ct, proof 7

1. If NIZK.Verify (crsnizk, C, (crs(CIO)m, ¢r,ct,id), 7) = 1, output m.
2. Otherwise, output L.

Figure 3: Program Check-Bits [crleZK, C, crs?

Com CIs s id].

The encryption algorithm then computes I « H (id) and the obfuscated program

C « iO(Check-Bits[crsnizk, CR[pp,BE],crsggm,ZI, m,id]).

It outputs the ciphertext ct = C.

« Decrypt(skig, id, ct): On input an identity secret key skig, an identity id € 7D,, and a ciphertext
ct = C, the decryption algorithm outputs C(skiq).

Theorem 4.4 (Correctness). Suppose Ilcom is correct, iO is correct, and Ilnizk is complete. Then, Construc-
tion 4.3 is correct.

Proof. Take any security parameter A, identity id € 7 D, and message m. Let (pp, msk) « Setup(1%,19),

where pp = ({crs(clgm ie[N],E,crsNIZK, pp|BE) ,msk = (pp,7, ). Let skiq = (ct, 1) « KeyGen(msk,id) and

C « Encrypt(pp, id, m). Consider the output of Decrypt(skig, id, C):

+ By construction of KeyGen and correctness of IIcom, we have ((crsgo)m, ¢, ct, id), (71, Pencs 01)) €

R[ppse] and 7 « NIZK.Prove(crsnizk, Cr [ppigels (crs(clo)m,EI, ct,id), (71, penc, 01))-

+ By construction of Encrypt and iO correctness, Cisa program which outputs the message m when

the NIZK proof verifies on statement (crs(l)

Com €15 €L, id) where ct is an input.

« By completeness of Iy zk, the proof 7 from KeyGen verifies and thus C(skiq) = m, as required. O
Theorem 4.5 (Efficiency). If H runs in poly(A,log N)-time, then Construction 4.3 is efficient.

Proof. This holds by inspection and assumption on H, since our other primitives run in poly(A)-time by
definition. Furthermore, the KeyGen and Encrypt algorithms only needs to read poly(4) - d(A) bits of the
master secret key msk and/or the public parameters pp. The size of these quantities are independent of
the leakage parameter ¢. O

Theorem 4.6 (Adaptive Advantage-Checker Security under Bounded Leakage). Suppose the following
conditions hold:

« The obfuscator iO is secure.
« The hash function H is (k, a)-expanding, where (1 — n)a(A)tx(1) > A + w(log A) for some constant
n e (0,1).
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+ The IBE scheme I1gg satisfies correctness and adaptive semantic security.
« The NIZK TlNizk satisfies statistical soundness and computational zero-knowledge.

« The one-time dual-mode commitment scheme Ilcom satisfies mode indistinguishability and statistical
binding in binding mode.

 The pseudorandom generator PRG is secure.

« There exists an explicit universal hash family He,m of size at most 2P°YY) | where each function
h: Xf — {0,1}* has domain Xf and range {0,1}*. Moreover, the extractor Ext(x,h) = h(x) is a
(A + w(log A), negl(A))-strong randomness extractor.

Then for all polynomially-bounded and sufficiently large ¢ = £(1), Construction 4.3 is adaptively advantage-
checker secure under bounded leakage with challenge parameter k > —L—.

naty

Proof. We define a sequence of hybrid experiments, each parameterized (implicitly) by an adversary
A = (Ap, Ay) and an advantage threshold function ¢ = £(A):

+ Hyb,: This is the adaptive advantage-checker security game from Definition 3.1, which we recall
in full below:

- Setup: The challenger starts by sampling (pp,gg, mskipe) < IBE.Setup(1%), and crsyjzi

NIZK.Setup(1*). For all i € [N], it samples a random string r; & {0,1}%, a CRS crs(C’gm —
(@)

Com’ ri)' FOr E = (Cl; . ';CN)’

Com.Setup(1%, bind), and computes (c;, 0;) < Com.Commit(crs
r=(ry,...,rn),and 6 = (01, ..., 0n), the challenger sets

pp = ({crsggm ie[N]’E’CrS’\“ZK’ PP[BE) and msk = (pp,7,7)
and gives pp to A.

- Pre-leakage queries: When algorithm A; makes a query on id € 7 9,, the challenger com-
putes I « H(id), ct « IBE.Encrypt(ppgg, id, 71; Penc), and

7« NIZK.Prove(crsnizk, Crppigel, (crs(CIO)m, ¢r, ct, id), (71, Pencs 61))s

where penc is (fresh) encryption randomness. The challenger replies with skig = (ct, 7).

— Leakage: After A; outputs the description of an efficiently-computable leakage function f,
the challenger replies with leak « f(msk).

— Post-leakage queries: The challenger responds to post-leakage key queries exactly as in the
pre-leakage phase.

— Challenge: Algorithm A; outputs aset J C I D, of size k, two messages my, my, and a state st.
- Output: The output of Hyb, is b" = 1 if A is admissible and

Vid € J : Adeheckﬂz(lﬂ, 1Y€ id, msk, pp, st, leak) = 1, (4.2)

and b’ = 0 otherwise. The advantage-checker algorithm AdvCheck is defined as follows:
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Inputs: security parameter A, threshold ¢ € (0, 1), identity id € 7 D,, master secret key
msk = (pp, 7, ), public parameters pp = ({crs((:igm ie[N]’ C, CISNIZK» pp|BE), state st, string

leak, and (oracle) access to an algorithm A

« Let T = A/¢? and initialize a counter K « 0.

+ The advantage-checker algorithm now simulates T independent executions of
experiment Exp'd(msk, pp, st, leak) for algorithm A.
1. Sample B & {0,1}.
2. Compute C « iO(Check-Bits[crsnizk, Cr [ppigel, crsgo)m, ¢, mg,id]), where
I « H(id). Set ct = C and start running algorithm A on input (st, id, ct).

3. Whenever algorithm A makes a key-generation query on an identity
id € 7D,, compute I «— H(id), ct « IBE.Encrypt(pp,gg, id, 715 Penc), and 7 «

NIZK.Prove(crsnizk, Cr [ppigels (crs(CIO)m, ¢r, ct, id), (71, Pencs 07)), Where penc is
(fresh) encryption randomness. Reply to A with the identity key skig = (ct, 7).

4. After A has finished making key-generation queries, it outputs a bit ” € {0, 1}.
5. If B = f’, then increment K « K + 1.

+ Output 1ifK > % + % and 0 otherwise.

Figure 4: Function Adeheckﬂ(l’l, 1Y¢id, msk, pp; st, leak) in Construction 4.3

» Hyb;: Same as Hyb, except the challenger now samples / & Hr,pm at setup time and for each id € 7,
the challenger constructs the challenge ciphertext C in Adeheckﬂz(l/l, 1Y/¢ id, msk, pp; st, leak)
using the following modified procedure:

1. The challenger samples § ¢~ {0,1}, computes I « 9 (id), and computes the components
skiq « IBE.KeyGen(msk,id),u < h(7}),t < PRG(u).

2. The challenger defines the program Check-CT as follows:

Hard-wired: common reference string crsyjzg, a vector of common reference strings

crs(clgm indexed by a set I C N, a circuit C, a tuple of commitments ¢;, message m, identity

secret key skiq, identity id, seed h, bit-string ¢
Inputs: ciphertext ct, proof 7=
Output m if the following hold and L otherwise:
— NIZK.Verify(crsnizk, G, (crsm ¢r,ct,id), 7) = 1; and

Com’

- PRG(h(IBE.Decrypt(skig, id, ct))) = t.

Figure 5: Program Check-CT[crsnizk, C, crsgg

Finally, it sets C — iO(Check-CT[crsnizk, Crppigels crs(CIO)m, cr, mg, skid, id, h, t]).

o €1 m, skig, id, A, t].

The remainder of AdvCheck proceeds as in Hyb,. We refer to these ciphertexts as semi-functional
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ciphertexts.

Hyb,: Same as Hyb, except the challenger simulates the NIZK proofs when answering key-generation
queries. Specifically, let S = (83, S2) be the zero-knowledge simulator associated with IIy;zk. The
experiment now proceeds as follows:

— Setup: The challenger now samples (crsyzi, sts) « Si(17).

- Key-generation queries: Whenever ‘A; makes a key-generation query (in the pre-leakage
or the post-leakage phase) or A, makes a key-generation query (in AdvCheck”™) on id € 7D;,
the challenger now constructs the NIZK proof 7 as 7 « S, (sts, Cr[ppigel. (crs”) ,Cr, ct,id)).

Com

Hyb,: Same as Hyb, except the challenger samples the commitment CRS in hiding mode and simulates
the commitments and openings:

(®

— Setup: For all i € [N], the challenger now samples the commitment components (crsc_ .

as (crs(i) td?) ci) — Com.Setup (14, hide), o; « Sopen(td(i) ri).

Com’ " “Com’ Com’

Ci, Ui)

Hyb,: Same as Hyb, except the challenger changes the distribution of secret keys when answering
key-generation queries:

- Key-generation queries: Whenever A; makes a key-generation query (in the pre-leakage
or the post-leakage phase) or A, makes a key-generation query (in AdvCheck”™) on id € 7D;,
the challenger now computes ct as ct < IBE.Encrypt(pp;ae, id, 095 pene).

We refer to these keys as semi-functional keys.

Hyby: Same as Hyb, except for all id € J, the challenger samples u < {0,1}" at the counter
initialization step in the procedure AdvCheck(id) and uses it to construct all challenge ciphertexts
in AdvCheck(id). Moreover, the output of this experiment is b’ = 1 if A is admissible and

did e 7 : AdeheckﬂZ(l’l, 1€ id, msk, pp; st, leak) = 1, (4.3)

and b’ = 0 otherwise. In other words, Eq. (4.3) replaces Eq. (4.2) as the condition that determines the
output of experiment.

Hyb,: Same as Hyb, except for all id € J the challenger samples ¢ <~ {0,1}** at the counter
initialization step in the procedure AdvCheck(id).

Hyb,: Same as Hyb, except for all id € J the challenger constructs the challenge ciphertext C as
C « iO(Bot) in the procedure AdvCheck(id), where Bot is a program that outputs L on all inputs.

For convenience, we will refer to Adeheckﬂ(IA, 1Y/¢ id, msk, pp; st, leak) as AdvCheck(id) when the non-
id parameters are fixed in a given context. For an adversary A = (A, A;), we write Hyb, (A, ¢) to denote
the output of Hyb; with adversary A and inner threshold function ¢. Our goal is to show that for all efficient
adversaries A and all inverse polynomial functions ¢ = 1/poly (1), Pr[Hyb (A, ¢) = 1] = negl(1). We now
analyze each pair of adjacent experiments:

Lemma 4.7. Suppose iO satisfies indistinguishability obfuscation security, IInizk satisfies statistical soundness,
Icom satisfies statistical binding in binding mode, and I1\gg satisfies correctness. Then, for all efficient and
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admissible adversaries A and inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function

negl(-) such that forall A € N,
Pr[Hyb, (A, ¢) = 1] > Pr[Hyb,(A, ¢) = 1] — negl(4).
Proof. We define a sequence of intermediate hybrids:

« Hybygo: Same as Hyb,. In particular, the challenge ciphertexts in the procedure AdvCheck(id) are
cr, mg, id]), where I « H (id).

sampled as C «— iO(Check-Bits[crsnizk, Cr[ppigels crs(CIO)m,

« Hyby; ;; Same as Hyb,, except for all (i’, j’) such that i" < iori’ =i j° < j, the challenger sets

id = J[i’], and samples the challenge ciphertext in the j'™ execution of Exp'd in AdvCheck as

C «— iO(Check-CT[crsnizk, Crppigels crs?

Com’

¢, mg, skig, id, b, t]),

where g & {0,1},1 « H(id),skiq < IBE.KeyGen(msk,id),u « h(7;),t < PRG(u) as in Hyb,.
Note that Hyby, 7 is the same as Hyb, and that Hyb,; 1 is the same as Hyb,;,, , for i € [k — 1].

We now appeal to the conditions in Lemma 4.7 to show that for all i € [k], j € [T] we show that Hyb,
and Hyb, ; ._, are computationally indistinguishable.

0.i,j
0.i,j
Claim 4.8. Suppose the conditions in Lemma 4.7 hold. Then for alli € [k], j € [T], all efficient and admissible
adversaries A and inverse polynomial functions e = 1/poly(A), there exists a negligible function negl(-) such
that forall A € N,

Pr[Hyb,; ;(A, ) = 1] = Pr[Hyby; ;_,(A, ) = 1] — negl(A).

0,i,j
Proof. Suppose there exists an efficient adversary A that distinguishes Hyb, ; ; and Hyb,; ;_; with non-
negligible probability §. We use A to construct an algorithm B that breaks iO security:

1. Algorithm B runs the setup, leakage, challenge, key-generation phases as in Hyb, with A. In
particular:

(a) Algorithm B starts by sampling h <~ Hiam, (ppige> Mskige) IBE.Setup(l’l), and crsyizk <

NIZK.Setup(1%). For all i € [N], algorithm B samples the components r; & {0, 1}, crs(cigm —

Com.Setup (1%, bind), and computes (c;, 0;) < Com.Commit(crscom, ;). Algorithm B sets

PP = ({Crs(cigm ie[N]’E’CrS’\“ZK’ PP[BE) and msk = (pp,7,7)
and gives pp to A. The components ¢, 7, and ¢ are derived as in Eq. (4.1).

(b) When algorithm A makes a key-generation query on id € 7 9,, algorithm B computes the
plain IBE ciphertext ct « IBE.Encrypt(pp,ag. id, 71; penc) and the proof

7 < NIZK.Prove(crsnizk, Cr[ppigel, (crsgo)m, cr, ct, id), (71, Penc> 01))s
where penc is (fresh) encryption randomness and I « H(id). Algorithm B replies with
skig = (ct, 7).

(c) When algorithm A outputs an efficiently-computable leakage function f, algorithm 8 replies
with leak «— f(msk). In the challenge phase, algorithm A outputs J C 7 D, of size k, messages
mg, my, and a state st.
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2. Forall (', j/) such that i’ < iori’ =i, j’ < j, algorithm B computes I « H (T [i']),u < h(F[),t «—
PRG(u) and samples ff < {0, 1}, sk gy < IBE.KeyGen(msk, J [i']). Algorithm B computes the
challenge ciphertext in the j execution of Exp7 "'l in AdvCheck(J[i']) as

C «— iO(Check-CT[crsnizk; qu[pp[BE],crs(CIO)m,cj, m'g,skj[,-,],j[i’],s, t]).

3. For the j™ execution of Expll in AdvCheck(J[i]), algorithm B samples the components § &
{0,1},1 — H(J[i]), sk g1;) < IBE.KeyGen(msk, T [i]),u < h(7;),t < PRG(u). Algorithm B sets

Co = Check-Bits[crsnizk, CR[meE],crsgﬁm,Eb mpg, J [i]]

and
C1 = Check-CT[crsnizk, CR[PPIBE],crs(CIO)m,?I, mg, sk g1, I [i], s, t].

Algorithm 8 submits (Cy, C;) to the iO challenger, gets back program P, and uses P as the challenge
ciphertext in this execution.

4. In the remaining executions of Exp'¢ in procedure AdvCheck(id), algorithm B samples challenge
ciphertexts as C « iO(Check-Bits[crsnizk, Crlppigels crsd) ¢r, mg, id]) for B & 40,1}, 1 « H(id).

I
Com’
Algorithm B outputs whatever the experiment outputs.

IfP « iO(Co), algorithm B simulates Hyb, ; ;_; (A, ). If P « iO(Cy), algorithm B simulates Hyb,; ;(A, ¢).
All that remains is to show that (Cop, C;) are functionally equivalent with overwhelming probability. In
particular, it suffices to show that

NIZK.Verify(crsnizk, Cr [ppigels (crsgo)m,EI, ct,id), ) =1 = IBE.Decrypt(skiq,id,ct) =r;

with 1 — negl(A) probability over the choice of pp, where I «— H(id), skiq < IBE.KeyGen(msk, id). This
is sufficient since PRG and Ext are deterministic. By NIZK verification and statistical soundness, it must be
that the statement (crsggm, ¢r, ct, id) is true with overwhelming probability over the choice of crsyizk. By
statistical binding, it also must be the case that ¢; opens to only 7 except with negligible probability over
go)m since R[pp,ge] checks that the commitments verify. Since 7; must be the corresponding
component of the witness for the statement to be true, ct must be an encryption of 7;. By plain IBE
correctness, we have IBE.Decrypt(skig, id, ct) = 7, as desired. Since functional equivalence is satisfied,

algorithm B breaks iO security with advantage 8. ]

the choice of crs

Since Hyb ; 1 is identical to Hyb ;,, , for i € [k — 1], the lemma follows from Claim 4.8 and a standard
hybrid argument. O

Lemma 4.9. Suppose IlNizk satisfies computational zero-knowledge. Then, for all efficient and admissible
adversaries A and inverse polynomial functions e = 1/poly (), there exists a negligible function negl(-) such
that forall A € N,

Pr[Hyb,(A, ¢) = 1] > Pr[Hyb,(A, ¢) = 1] — negl(4).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb, and Hyb, with non-negligible
probability §. We use A to construct an algorithm B that breaks computational zero-knowledge:
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1. At the beginning of the game, algorithm B gets (1%, crsnizk) from the ZK challenger. Algorithm
B samples h & Heym and (ppgp. mskise) < IBE.Setup(1%). For all i € [N], algorithm B samples
ri & {0,1}%, crs((:lgm « Com.Setup(1%, bind), and computes (c;, 5;) < Com.Commit(crscom, ;).

Algorithm 8 sets

pp = ({crs(cigm ie[N],E,crstK, PPlBE) and msk = (PP, 7, 5)

and gives pp to A. The components ¢, 7, and ¢ are derived as in Eq. (4.1).

2. When algorithm (A makes a key-generation query on id € 7 D,, algorithm B computes the plain IBE
ciphertext ct « IBE.Encrypt(pp,gg. id, 71; penc) for I «— H (id) and randomness penc. Algorithm B
then queries the proof oracle in the ZK game with input (Cr[ppgel, (crsgo)m, ¢r, ct, id), (71, penc> 01))
and gets back z. Algorithm 8B gives (ct, x) to algorithm A.

3. Algorithm 8 runs the remainder of the experiment as in Hyb, with algorithm A:

(a) When algorithm A outputs an efficiently-computable leakage function f, algorithm B replies
with leak = f(msk). In the challenge phase, algorithm A outputs J C 7 D, of size at least k,
messages mg, My, and a state st.

(b) For all id € 7, the algorithm B constructs the challenge ciphertext C in the procedure
AdvCheck(id) as

C — iO(Check-CT[crsnizk, Cr[ppigels crs?

Com’ EI; mﬁ: Skida ld: h> t])

where f & {0,1},1 « H(id),skiq < IBE.KeyGen(msk,id),u < h(¥;),t < PRG(u). Algo-
rithm B outputs the output of the experiment.

If the CRS is generated using NIZK.Setup and the proofs are sampled according to NIZK.Prove, then algo-
rithm B simulates Hyb, (A, ¢). On the other hand, if the CRS and proofs are generated using the simulator
S, then algorithm B simulates the Hyb, (A, ¢). Thus, algorithm 8 breaks computational zero-knowledge
with advantage 9. O

Lemma 4.10. Suppose I, satisfies mode indistinguishability. Then, for all admissible adversaries A and
inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function negl(-) such that forall A € N,

Pr[Hyb,(A, ¢) = 1] > Pr[Hyb,(A, ¢) = 1] — negl(A).

Proof. We start by defining a sequence of intermediate hybrid experiments:

« Hyb, : Same as Hyb,. In particular, the components (crs._,td:.

¢i» 0i)ie[N] in the setup phase
are sampled as

0 Com.Setup(l’l, bind), (¢;, ;) « Com.Commit(crsggm,ri).

CrSeom
« Hyb, ;: Same as Hyb, ; except forall j < ithe challenger samples the components (crs(cjgm, td(C{))m, cj,0j)
as (crs(cjgm,td(cf;)m,cj) « Com.Setup(1%, hide) and o; « Sopen (td(cf;)m,rj). The commitments and

openings for j > i are sampled as in Hyb, ;. Note that Hyb, y is the same as Hyb,.
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We now appeal to equivocation of Ilcom to show that for all i € [N], the statistical distance between
Hyb,; , and Hyb, ; is negligible.

Claim 4.11. Suppose llcom satisfies mode indistinguishability. Then, for alli € [N], admissible adversaries A,
and inverse polynomial functionse = 1/poly(A), there exists a negligible function negl(-) such that forallA € N,

Pr[Hyb, (A, ¢) = 1] > Pr[Hyb,; (A, ¢) = 1] — negl(1).

Proof. Suppose there exists an adversary A that distinguishes Hyb,; ; and Hyb, ; with non-negligible
probability §. We use A to construct an algorithm B that breaks mode indistinguishability:

1. At the beginning of the game, algorithm 8B gets crs(cig ., from the mode indistinguishability challenger.
Algorithm B samples h ¢ Hym, (ppige> mskige) < lBE.Setup(lA), and (crsnizk, sts) «— Sp(14).
For all j € [N], algorithm B samples r; <~ {0, 1}*. For j < i, algorithm B computes

(crs) 1)

()
crsCom’ Com? d

¢j) « Com.Setup(l’l, hide), o < Sopen(tdg > 77)-

Algorithm 8 submits r; to the mode indistinguishability challenger to get (c;, 0;). For j > i, algorithm
() '

Com & Com.Setup(1%, bind), (cj,0j) < Com.Commit(crsgo)m, rj). Algorithm B sets

B computes crs

pp = ({crsggm}iew],acrsN|ZK, pp[BE) and msk = (pp,7,3)

and gives pp to A. The components ¢, 7, and ¢ are derived as in Eq. (4.1).
2. Algorithm B runs the remainder of the experiment as in Hyb, with algorithm A:

(a) When algorithm A makes a key-generation query on id € 7 9D,, algorithm B computes

ct « IBE.Encrypt(ppgg, id, 715 Penc) and 7 «— S, (sts, Cr[ppigel, (crs(I) cr, ct,id)),

Com’

where penc is (fresh) encryption randomness and I « H(id). Algorithm B gives (ct, x) to
algorithm A.

(b) When algorithm A outputs an efficiently-computable leakage function f, algorithm 8 replies
with leak = f(msk). In the challenge phase, algorithm A outputs J C 7 D, of size at least k,
messages my, My, and a state st.

(c) For all id € g, the algorithm B constructs the challenge ciphertext C in the procedure
AdvCheck(id) as

C — iO(Check-CT[crsnizk, Crppigels crs(clgm, cr, mg, skiq, id, h, t])

where f & {0,1},1 « H(id),skiq < IBE.KeyGen(msk,id),u < h(¥;),t < PRG(u). Algo-
rithm B outputs the output of the experiment.

If components are in hiding mode and simulated, algorithm 8 simulates the Hyb, ; (A, ¢). If components
are in binding mode and computed normally, algorithm 8B simulates the Hyb, ;(A, ¢). Thus, algorithm 8
breaks mode indistinguishability with advantage . O

The lemma now follows from Claim 4.11 and a standard hybrid argument. m]
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Lemma 4.12. Suppose Il g satisfies adaptive semantic security. Then, for all efficient and admissible adver-
saries A and inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function negl(-) such that
forallA € N,

Pr[Hyb,(A, ¢) = 1] > Pr[Hyb;(A, ¢) = 1] — negl(4).

Proof. Suppose A distinguishes the hybrids and makes at most Q total key queries in an experiment. We
start by defining a sequence of intermediate hybrid experiments:

« Hyb, ;: Same as Hyb,. In particular, the ct component for all key-generation queries is computed
as ct « IBE.Encrypt(ppgg, id, 71; Penc), where I «— H (id).

« Hyb,;: Same as Hyb, ; except for all j < i the ct component for the j™ key-generation query is
computed as ct « IBE.Encrypt(pp,ge, id, 09 penc), where I « H(id). For queries j > i, the ct
component is computed as in Hyb, ;. Note that Hyb, , is the same as Hyb,.

We now appeal to adaptive semantic security of Iljge to show that for all i € [Q], Hyb;; ;, and Hyb, ; are
computationally indistinguishable.

Claim 4.13. Suppose Il|gg satisfies adaptive semantic security. Then, for alli € [Q], efficient and admissible
adversaries A, and inverse polynomial functions ¢ = 1/poly (1), there exists a negligible function negl(-) such
that forall A € N,

Pr[Hyb, ;(A,¢) = 1] > Pr[Hybs; (A, ) = 1] — negl(A).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb,; ; and Hyb,; with non-
negligible advantage . We use A to construct an algorithm B that breaks adaptive semantic security of IT|g:

1. At the beginning of the game, 8 gets pp,g from the plain IBE challenger. Algorithm B samples
h & Heam and (crsnizk, sts) «— 81(11). For all i € [N], algorithm B samples a random string r; <~
{0,1}%, a tuple (crs(clgm,tdggm,ci) — Com.Setup(l’l, hide), and computes ¢; « Sopen(td(clgm,r,-).

Algorithm 8 sets

pp = ({Cfsggm ie[N] G CTSNIZK: pplBE) and msk = (pp,7,J)
and gives pp to A. The components ¢, 7, and ¢ are derived as in Eq. (4.1).

2. Onthe j key-generation query to id; when j # i, algorithm B computes the ciphertext component as
ct « IBE.Encrypt(ppge idj,Od"x;penc) when j < i and ct « IBE.Encrypt(ppgg, id}, 71; penc) When
j > i. On the i" key-generation query, algorithm B gives (id* = id;, mg = 7, m; = 0%) to the plain
IBE challenger and gets back ct* which it uses as the ciphertext component of the response to the
query. Algorithm B computes all proof components as 7 < Sz(sts, Cr[ppigels (crs(clo)m, ¢r, ct,id)),
and answers all queries by giving (ct, 7) to A.

3. When algorithm A outputs an efficiently-computable leakage function f, algorithm B replies with
leak = f(msk). In the challenge phase, algorithm A outputs J C 7D, of size at least k, messages
mo, my, and a state st.

4. Forallid € 7, the algorithm 8 constructs the challenge ciphertext C in the procedure AdvCheck(id)
as
C — iO(Check-CT[crsnizk, Cr[ppigels crsgo)m, c, mg, skiq, id, h, t])

where f & {0,1},1 « H(id),u < h(¥;),t < PRG(u), and sk;q is the response to a key-generation
query to the plain IBE challenger on id. Algorithm 8 outputs the output of the experiment.
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Note that algorithm 8 is an admissible IBE adversary if algorithm A is admissible, since the challenge set
J is disjoint from the set of identities queried for key-generation. If ct* « IBE.Encrypt(ppgg, idis 715 Penc)
algorithm B simulates the challenger for Hyb, ; ;. If ct* «— IBE.Encrypt(pp g id;, 0%, penc), algorithm B
simulates the challenger for Hyb, ;. Thus, algorithm 8 breaks adaptive semantic security with advantage
J. |

The lemma now follows from Claim 4.13 and a standard hybrid argument. m]

Lemma 4.14. Suppose the extractor Ext is a (1 + w(log 1), negl(1))-strong extractor and the hash function
H is (k, @)-expanding, where (1 — n)aty > A+ w(logA) for some constant n € (0,1). Suppose also that
the challenge parameter k satisfies k > Wfo Then, for all admissible adversaries A and inverse polynomial
functions ¢ = 1/poly(A), there exists a negligible function negl(-) such that forall A € N,

Pr[Hybs (A, ¢) = 1] > Pr[Hyb,(A, ¢) = 1] — negl(4).

Proof. Note that the new condition for outputting 1 can only increase the probability that 1 is output. Other
than this condition, the only difference between Hyb,, Hyb, is the distribution of the challenge ciphertexts
in executions of AdvCheck. In particular, in for both hybrids, the challenger proceeds as follows:

« In setup, the challenger samples h <~ Hiam, (ppigp> mskige) lBE.Setup(lA), and (crsnizk, sts) <
S;(1%). For i € [N], algorithm B samples r; & {0, 1}%, (crs(clgm,td(l) ci) — Com.Setup(1%, hide),

Com?
and computes 0; < Sopen (tdggm, r;). Algorithm 8B sets

pp=({cfsgm ie[N]’E’CrSMZK’pPIBE) and - msk = (pp, 7, 5)

and gives pp to A. The components ¢, 7, and ¢ are derived as in Eq. (4.1).

+ When algorithm A makes a key-generation query on id € 7 D), the challenger computes
ct < IBE.Encrypt(ppgg. id, 0%, penc) and 7 «— S,(sts, Crlppigels (crs(CIO)m, ¢, ct,id)),

where penc is (fresh) encryption randomness and I «— H (id). The challenger gives (ct, ) to algorithm
A.

For id € 7, the challenger constructs the challenge ciphertext in AdvCheck(id) as
ct=C « iO(Check-CT[crsnizk, Cr[ppigels crs(clo)m, cr, mg, skiq, id, h, t]),

where f & {0,1}, I « H(id), skig < IBE.KeyGen(msk, id), and ¢t « PRG(u). The distribution of the u
component differs between the two hybrids:

« In Hyb,, the challenger samples u « h(r;) = Ext(7, h).

« In Hyb,, the challenger samples a single value u « {0,1}* which is reused across all of the
AdvCheck(id) iterations.

We now define the following events

« Let EM

b be the event that AdvCheck(id) = 1 for u = h(7}).
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« Let E'd be the event that AdvCheck(id) = 1 for u & {0, 1}*.

We will appeal to security of the extractor to show that there exists id € J such that
Pr[E] > Pr[E ] — negl(1).

To do this, we lower bound the entropy of some or all of the bits {?ﬂ(id)}ide 7 conditioned on the tu-
ple (pp, @, leak, J), where Q denotes the list of outputs of key-generation queries. Fix any k identities
idy, ..., id; which belong to J. By assumption, H (id,), ..., H (idx) contains at least ak distinct indices
of [N], which correspond to ak - ¢ total bits of msk. Since r is independent of (pp, Q) in Hyb, and < 1,
we can appeal to Lemma 2.2 to get the following:

Heo ({F(idy) Yiefk) | PP, Q. leak) > Hoo ({Fi(id;) bie[x] | PP, Q) — [leak]
> Heo ({Fx(id;) Yie[k]) — |leak]
= akty — nakéy
= (1 - n)akéy.

By Lemma 2.2, with probability 1 — 27°(1°64) = 1 — negl(1) over the fixed choice of (pp, Q, leak), we have
Hoo ({F(idy) Yie[k]) 2 (1 = n)akéy — o(log ).
Moreover, by Lemma 2.3, there exists a random variable D over [k] such that

(1 —n)akty — w(log) B
k

Hoo(7] | D[k]) > log(k),

where ] = H(idp,,). By Lemma 2.2, we have with probability 1 — 2@(0gd) = 1 _ negl(A) over the choice
of i «— Dixy,
Heo (Fr(idy) | Dik) = 1) 2 Hoo(Fy | D) — w0(log A)

Define id" = id; where i <= Dyx]. With overwhelming probability over the choice of id* (alternatively, over
the choice of i), we have

Hoo (Fa((ia)) = (1 = n)aty — w(log A)

for fixed (pp, Q, J,leak). Here, we have used the fact that k = poly(4), so logk = O(logl). Since
(1 -n)aty = A+ w(logA) by assumption, we can appeal to extractor security with overwhelming proba-
bility in the ( id*)th copy of the game. This means h(74+)) is statistically close to uniform with negligible
statistical distance, so we must have

Pr(EY] > Pr(EM | - negl(A).
By definition, Pr[E{EdX*t] > Pr[Hyb,(A, ¢) = 1] and Pr[Hybs (A, ¢) = 1] > Pr[E9"], so the lemma follows. O

Lemma 4.15. Suppose PRG satisfies PRG security. Then, for all efficient and admissible adversaries A and
inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function negl(-) such that forall A € N,

Pr[Hyb (A, ¢) = 1] > Pr[Hybs (A, ¢) = 1] — negl(4).

Proof. We define a sequence of intermediate hybrids:
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« Hyb; ;: Same as Hybs. Notably, for each id € J, the t component of the challenge ciphertext is
sampled as PRG (u) where u & {0, 1}* at the start of AdvCheck(id) and fixed for all ciphertexts.

« Hybs;: Same as Hyby except for i’ < i, we sample t as t < {0, 1}%! at the start of AdvCheck on
id = J[i']. Note that Hybs ; is the same as Hyb.

We now appeal to PRG security to show that for all i € [k] we show that Hybs ; and Hyb,; , are compu-
tationally indistinguishable.

Claim 4.16. Suppose PRG satisfies PRG security. Then for alli € [k], all efficient and admissible adversaries A
and inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function negl(-) such that forall A € N,

Pr[Hyby (A, ¢) = 1] > Pr[Hybs; (A, ) = 1] — negl(A).

Proof. Suppose there exists an efficient adversary A that distinguishes Hybs; and Hyb,; ; with non-
negligible probability §. We use A to construct an algorithm 8 that breaks PRG security:

1. Algorithm B gets a PRG challenge t* € {0, 1}** and runs the setup through challenge phases as in
Hyb, with A:

(a) Algorithm B samples h < Heam, (ppigp> mskige) IBE.Setup(l’l), and (crsnizk, sts) «
S;(1%). Forall i € [N], algorithm B samples a string r; < {0, 1}*, a tuple (crs(clgm,td(clgm, ci) «
(@)

Com.Setup(lA, hide), and computes 0; < Sopen(td, . 7i). Algorithm B sets

PP = ({crsggm ie[N]’E’CrS’\“ZK’ PP[BE) and msk = (pp,7,5)
and gives pp to A. The components ¢, 7, and ¢ are derived as in Eq. (4.1).

(b) When algorithm A makes a key-generation query on id € 7 D), the challenger computes

ct < IBE.Encrypt(ppgg. id, 0% penc) and 7 «— Sy(st, Crlppigels (crs(I) ¢, ct, id)),

Com’
where penc is (fresh) encryption randomness and I « H(id). Algorithm B gives (ct, ) to
algorithm A.

(c) When algorithm A outputs an efficiently-computable leakage function f, algorithm 8 replies
with leak = f(msk). In the challenge phase, algorithm A outputs J C 7 D, of size at least k,
messages my, My, and a state st.

2. For id € 7, the challenger constructs the challenge ciphertext in AdvCheck(id) as
ct=C « iO(Check-CT[crsnizk, qu[pme],crs(CIgm,EI, mg, skiq, id, b, t]),

where 8 & {0,1},1 « H(id), skiq < IBE.KeyGen(msk, id). For all i’ such that i’ < i, algorithm B
samples t at the start of AdvCheck(J[i’]) as t & {0, 1}**. For AdvCheck(J[i]), algorithm B uses
its PRG challenge t* as the t component. Algorithm B uses t « PRG(u) where u & {0, 1} for the ¢
components at the start of AdvCheck(id) for the remaining id € J. Algorithm 8 outputs whatever
the experiment outputs.

If t = PRG(U,), algorithm B simulates Hybs; (A, ¢). If t & {0,1}?4, algorithm B simulates Hybs ; (A, €).
Thus, algorithm 5 breaks PRG security with advantage &. O
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The lemma now follows from Claim 4.16 and a standard hybrid argument. ]

Lemma 4.17. Suppose iO satisfies indistinguishability obfuscation security. Then, for all efficient and admis-

sible adversaries A and inverse polynomial functions e = 1/poly(A), there exists a negligible function negl(-)
such that for all A € N,

Pr[Hyb, (A, ¢) = 1] > Pr[Hyb (A, ¢) = 1] — negl(4).
Proof. We define a sequence of intermediate hybrids:

« Hyby , o: Same as Hyb,. Notably, for all id € J the challenge ciphertext is sampled as

C «— iO(Check-CT[crsnizk, Cr[ppigels crs(clo)m, ¢y, mg, skiq, id, h, t]),
where f & {0,1},1 « H(id), skiq < IBE.KeyGen(msk, id).

» Hybg; ;: Same as Hyby except for all (i/, j*) such that i’ < iori’ =1i,j’ < j, the challenge ciphertext

in the j'™ execution of Exp71"] in AdvCheck(J[i']) is sampled as C « iO(Bot). Note that Hybg s 1
is the same as Hyb, and that Hyb ; ; is the same as Hyb ;,, , fori € [k —1].

We now appeal to iO security to show that for all i € [k], j € [T] we show that Hyb ; ; and Hyb

; | are
computationally indistinguishable.

6,i,j—

Claim 4.18. Suppose the conditions in Lemma 4.17 hold. Then for alli € [k],j € [T], all efficient and

admissible adversaries A and inverse polynomial functions ¢ = 1/poly(X), there exists a negligible function
negl(-) such that forall A € N,

Pr[Hyby; ;(A, &) = 1] = Pr[Hybg; ;_;(A, ) = 1] — negl(A).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb ; ; and Hybg ; ;_; with non-
negligible probability §. We use A to construct an algorithm B that breaks iO security:

1. Algorithm 8 runs the setup through challenge phases as in Hyb, with ‘A:

(a) Algorithm B samples h & Heam, (ppiges Mskipe) «— IBE.Setup(1%), and (crsnizk, sts) «
81(1’1). For all i € [N], algorithm B samples a string r; < {0, 1}, a tuple (crs(clgm,td(clgm, c,-) —

Com.Setup(lA, hide), and computes o; « open(td(i) r;). Algorithm 8B sets

Com’
pp = ({crsggm ie[N]’E’CrS’\“ZK’ PP[BE) and msk = (pp,7,5)

and gives pp to A. The components ¢, 7, and ¢ are derived as in Eq. (4.1).

(b) When algorithm A makes a key-generation query on id € 7 D), the challenger computes

ct « IBE.Encrypt(ppgg. id, Od[x;penc) and 7 < Sz(sts, Cr[ppigel, (crs(I) ¢r, ct, id)),

Com’

where penc is (fresh) encryption randomness and I « H(id). Algorithm B gives (ct, ) to
algorithm A.

(c) When algorithm A outputs an efficiently-computable leakage function f, algorithm 8 replies

with leak = f(msk). In the challenge phase, algorithm A outputs J C 7 D, of size at least k,
messages my, mi, and a state st.
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2. Forall (’,j’) suchthati’ <iori’ =1, j’ < J, algorithm B samples the challenge ciphertext in the
j'™ execution of Epr“/J in AdvCheck as C « iO(Bot).

3. For the jth execution of Exp:][i], algorithm B samples components < {0,1},t < {0, I}ZA,I —
H(T[i]), skg1i) < IBE.KeyGen(msk, T [i]) and sets

Co = Check-CT[crsN|z|<,qu[pp,BE],crs(CI())m,EI, mg, sk 71, J [il, h, t] and C; = Bot.

Algorithm 8 submits (Co, C;) to the iO challenger and gets back program P, which is used as the
challenge ciphertext in this execution.

4. In the remaining executions of Expj[i/], algorithm B samples & {0,1},t & o, 1}2’1,1 —
H(T[i']), sk g7 < IBE.KeyGen(msk, J [i’]) and computes the challenge ciphertext as

C — iO(Check—CT[crsN|ZK,CR[pp,BE],crsggm,EI, mﬁ,skj[i/],j[i'],h, t]).

Algorithm B outputs the output of the experiment.

IfP « iO(Cy), algorithm B simulates Hyby ; ;_, (A, ¢). If P « iO(C,), algorithm B simulates Hyby ; (A, ¢).
Moreover, (Co, C1) are functionally-equivalent circuits with overwhelming probability over the choice of
t. Namely, the string t & {0, 1} is contained in the image of PRG with probability at most 24 /224 = 274
probability. When ¢ is not in the image of PRG, the program Check-CT outputs L on all inputs, which
coincides with the behavior of Bot. Thus, algorithm 8 breaks iO security with advantage that is negligibly
close to d. O

Since Hyby ; 7 is identical to Hyby ;. ; for i € [k—1], the lemma now follows from Claim 4.18 and a standard
hybrid argument. o

Lemma 4.19. For all efficient and admissible adversaries A and inverse polynomial functions ¢ = 1/poly(4),
there exists a negligible function negl(-) such that for all A € N,

Pr[Hyb, (A, ¢) = 1] = negl(A).
Proof. Since the bit b has been erased from the challenge ciphertexts, for all id € 7,
Adv'(msk, pp, st, leak) = 0. (4.9)

For each i € [T], let X; € {0, 1} be the random variable for whether algorithm A;’s output is correct (i.e.,
if B’ = f on the i'™ iteration). Since Eq. (4.4) holds, E[X;] = Pr[X; = 1] = 1/2. Moreover, K = 2ic[r) Xi and
E[K] = T/2. By Hoeffding’s inequality (Fact 2.1),

Pr[K — T/2 < €T/2] < Pr[|K — T/2| > eT/2] < 27 2T€/%) = negl(2),

since T = A/e?. Thus, in an execution of Adeheckﬂz(ll, 1V/¢ id, msk, pp; st,leak), K > T/2 + €T /2 with
probability negl(4). Since Eq. (4.4) holds for all id € J, AdvCheck also outputs 1 for any id € J with
probability at most | J| - negl(1) = negl(A), as desired. O

Combining Lemmas 4.9, 4.10, 4.12, 4.14, 4.15, 4.17 and 4.19 yields the statement by a hybrid argument. O

Combined with Theorem 3.4, this yields the following corollary:
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Corollary 4.20 (Adaptive Security under Bounded Leakage). Suppose the conditions in Theorem 4.6 hold.
Then, Construction 4.3 is adaptively secure under bounded leakage for the same k as in Theorem 4.6.

Remark 4.21 (Leakage Rate). By the condition on k in Theorem 4.6, we have 7 - kafy > ¢ for n € (0,1). By
construction, the number of bits in 7 = (ry,...,ry) is £ - N. By using the hash function from Lemma 4.2,
we have that ok = (1 — §)N for any 6 € (0,1). Thus, - (1 — §)N&, =1’ - Nt > € for any n’ € (0,1). Since
the only private components in msk are 7 and &, the leakage rate is then dependent on the number of bits
in ¢ compared to 7. With the Naor commitment scheme based on one-way functions [Nao89], we obtain
leakage rate 1/0O(A) since an opening to a single bit is O(4) bits. However, by substituting an algebraic
dual-mode commitment where the size of the opening is at most 2x the bit-length of the underlying message
(e.g., [GS08, BL20]), we can achieve leakage rate approaching 1/3, matching [DGSW22].

5 Adaptively-Secure Big-Key IBE from Witness Encryption

In this section, we describe how to construct a big-key IBE scheme from a witness encryption scheme
(Definition 2.14), a NIZK (Definition 2.17), a dual-mode commitment scheme (Definition 2.15), and two
additional building blocks which we define below.

5.1 Split Encodings and Privately-Testable Encodings

As outlined in Section 1.1, the core building blocks for our second big-key IBE construction are split
encodings and privately-testable encodings. The main difference between these primitives is whether the
encodings can be tested publicly or privately. We formalize these notions below. Additionally, we show
how to construct these primitives from group-based assumptions in Section 6.

Definition 5.1 (Split Encoding). A split encoding scheme with tag space 7 = {7} } 1w is a tuple of efficient
algorithms IIsg = (Setup, SetupSF, Encode, EncodeSF, Test) with the following syntax:

« Setup(1%) — crs: On input the security parameter A, the setup algorithm outputs a common reference
string crs.

« SetupSF(1*) — (crs,td): On input the security parameter A, the semi-functional setup algorithm
outputs a common reference string crs and a trapdoor td.

« Encode(crs, type) — enc: On input the common reference string crs and type € {0, 1}, the encode
algorithm outputs an encoding enc.

« EncodeSF(crs, td, tag, type) — enc: On input the common reference string crs, a trapdoor td, tag € 7}
and type € {0, 1}, the semi-functional encode algorithm outputs an encoding enc.

« Test(crs,enco, ency) — {0,1}: On input the common reference string crs and a pair of encodings
(enco, ency), the testing algorithm outputs a bit b € {0, 1}.

Moreover, ITse should satisfy the following properties:

. Tester correctness: For all A € N and tag € 73, all (crs, td) in the support of SetupSF(1%), all encg
in the support of EncodeSF(crs, td, tag, 0) and all enc; in the support of EncodeSF(crs, td, tag, 1),

Pr[Test(crs,encg,ency) = 1] = 1.
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Additionally, there exists a negligible function negl(-) such that

crs « Setup(1%)
Pr |Test(crs,enco,ency) =1: ency « Encode(crs,0) | = negl(A).
enc; < Encode(crs, 1)

« Mode indistinguishability: For a security parameter A and a bit b € {0, 1}, we define the mode
indistinguishability game between an adversary A and a challenger as follows:

1. The challenger samples crs < Setup(1%) if b = 0 and (crs, td) « SetupSF(1%) if b = 1. The
challenger gives crs to A.

2. Algorithm A can now issue encoding queries to the challenger. On each such query, adversary
A specifies tag € 7} and type € {0, 1}. If b = 0, the challenger replies with Encode(crs, type).
If b = 1, the challenger replies with EncodeSF(crs, td, tag, type).

3. At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which is the output of the
experiment.

An adversary A is admissible for the mode indistinguishability game if it does not issue two encoding
queries on the same tag with different types. We say Il satisfies mode indistinguishability if for all
efficient and admissible adversaries A, there exists a negligible function negl(-) such that forall A € N,

[Pr[b” = 1]b = 1] — Pr[b’ = 1]b = 0]| = negl(A)
in the mode indistinguishability security game.

Definition 5.2 (Privately-Testable Encoding). A privately testable encoding with input space X = {X }1en
is a tuple of efficient algorithms ITptg = (Setup, SetupSF, SampSF, Encode, EncodeSF, Test) with the follow-
ing syntax:

« Setup(1?) — crs: On input the security parameter A, the setup algorithm outputs a common reference
string crs.

« SetupSF(1*) — (crs, td): On input the security parameter A, the semi-functional setup algorithm
outputs a common reference string crs and a trapdoor td.

« Samp(1*) — u: On input the security parameter A, the sample algorithm outputs a string .

+ SampSF(td, x) — tdy: On input a trapdoor td and an input x € X}, the semi-functional sampling
algorithm outputs a trapdoor td,.

« Encode(crs,x) — enc: On input the common reference string crs and an inputx € X}, the encode
algorithm outputs an encoding enc.

« EncodeSF(crs) — enc: On input the common reference string crs, the semi-functional encode
algorithm outputs an encoding enc.

« Test(crs,enc,s) — {0,1}: On input the common reference string crs, an encoding enc, and a string
s, the testing algorithm outputs a bit b € {0, 1}.

Moreover, ITpte should satisfy the following properties:
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. Tester correctness: For all A € N, all (crs, td) in the support of SetupSF(14), all inputs x € Xj, and
all encodings enc in the support of Encode(crs, x),

Pr [Test(crs,enc, tdy) =1: tdy < SampSF(td, x) ] =1.
In addition, there exists a negligible function negl(-) such that

crs « Setup(1%);
Pr [Test(crs,enc,u) = 1: enc < Encode(crs,x); | = negl(A).
U — Samp(l’l)

+ Mode indistinguishability: For a security parameter A and a bit b € {0, 1}, we define the mode
indistinguishability game between an adversary A and a challenger as follows:

1. The challenger samples crs < Setup(1%) if b = 0 and (crs, td) « SetupSF(1%) if b = 1. The
challenger gives crs to A.

2. Algorithm A can now issue encoding queries to the challenger. On each query, the adversary
A specifies an input x € X). If b = 0, the challenger replies with Encode(crs, x). If b = 1, the
challenger replies with EncodeSF(crs).

3. At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which is the output of the
experiment.

We say Ilpre satisfies mode indistinguishability if for all efficient adversaries A, there exists a
negligible function negl(-) such that for all A € N,

[Pr[b” = 1]b = 1] — Pr[b’ = 1]b = 0]| = negl(A)
in the mode indistinguishability security game.

+ k-Trapdoor indistinguishability: Let X be a random variable taking on values in X). Suppose
Ho (X) > k. Then, the following distributions are statistically indistinguishable:

(crs,td) « SetupSF(1%)

{(Crs,tdx) : X — X, tdx «— SampSF(tCL x)

} and {(crs,u): (crs, td) « SetupSF(1%) }

u « Samp(1%)

5.2 Constructing Big-Key IBE from Witness Encryption

We now describe our big-key IBE scheme based on (plain) witness encryption:

Construction 5.3 (Big-Key IBE from Witness Encryption). Let A € N be a security parameter, 7D =
{Z D)} ren be the identity space, M = {M,} e be the message space, ¢ be a fixed leakage parameter,
N = N(A,¢) be a key-size parameter, and d = d(1) be an output size parameter. Our construction relies
on the following primitives:

+ Let IIwe = (WE.Encrypt, WE.Decrypt) be a witness encryption scheme with message space M and
relation Rwe (with corresponding language Lwe), which is defined as follows:
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Statement: common reference strings crsnizk, Crsse, CrspTe, a vector of common reference strings
N . L ] R .

crs(Co)m indexed by a set I C N, circuit C, a tuple of commitments ¢;, a trapdoor commitment c,

an identity id, a split encoding ctoyt, and a privately-testable encoding ct,yx

Witness: a split encoding skoyt, a privately-testable encoding skayx, and a proof =

Output 1 if all of the following conditions hold:

- NIZK.Verify(crsnizk, C, (crsgo)m,EI, ¢z, Skouts Skaux id), ) = 1.

— PTE.Test(crsprE, skout, ctout) = 0.
- SE.TESt(CrSSE, SkaUXs Ctaux) =0.

Otherwise, output 0.

Figure 6: Relation Ryk.

« Let H: TD; — [N]? be a hash function that can be computed in time poly(4,log N) and let the
output in [N]? be interpreted as a set of d indices of [N].

« Let IIcom = (Com.Setup, Com.Commit, Com.Verify) be a one-time dual-mode commitment scheme
(Definition 2.15) with input space X = {X }1cn, and let £, = £ (A1) be the bit-length of an input. Let
(Scom, Sopen) be the simulator associated with the commitment scheme.

« Let ITsg = (SE.Setup, SE.SetupSF, SE.Encode, SE.EncodeSF, SE.Test) be a split encoding scheme with
tag space 7 D.

+ Let ITprg = PTE.(Setup, SetupSF, Samp, SampSF, Encode, EncodeSF, Test) be a privately-testable en-
coding scheme with input space Xp1g = {Xf}AeN.

« Let IINizx = (NIZK.Setup, NIZK.Prove, NIZK.Verify) be a NIZK for NP.

« For common reference strings crssg, crsprg, define the NP relation R[crss, crspre] as follows:

()

Com
indexed by a set I C N, commitments ¢j,

Hard-wired: common reference strings crssg, crspr, crs

(I

Statement: a vector of common reference string Crseom

¢z, encoding skyyt, encoding sk,,x, identity id
Witness: 7], randomness Soyt, Saux, Openings oy, o, trapdoor tdsg

Output 1 if either of the following conditions hold:
()

- skout = PTE.Encode(crspr, 71; Sout) and for each i € I, Com.Verify(crsc, i ri, 07) = 1.

— skaux = SE.EncodeSF(crss, tdsg, id, 0; saux) and Com.Verify(crs(CTO)m,c,,tdSE,GT) =1.

Otherwise, output 0.

() ]

Figure 7: Relation R[crssg, crspre, crseom] -

We now construct our big-key IBE scheme ITpge = (Setup, KeyGen, Encrypt, Decrypt) as follows:
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« Setup(1%,1°): On input the security parameter A, the setup algorithm proceeds as follows:

1. Sample crsgg «— SE.Setup(lA), CISPTE «— PTE.Setup(l’l), CISNIZK NIZK.Setup(l’l).
2. Foralli € [N], sample

ri & X)L
() gD

Com’ ~“Com’

ci) — Com.Setup(lA, hide)

o «— Sopen (td(cigm, ri).

(CI’S

3. Finally, sample (crsé?m,tdé?m, ;) Com.Setup (1%, hide).
Let¢ = (c1,...,¢N), 7 =(r1,...,rNn) and 6 = (07, ..., on). Output the public parameters
pp = ({crs(c’gm ie[N] ° C, crsNizk , Crssg, CrSpTE , CFS(CTO)m, Cr) (5.1)

and the master secret key msk = (pp,7, 5). For a set I C [N], we write ¢f, 77, and 67 to denote the

(1) (@

respective sub-vector of indices in I. Similarly, we define crs )it
Com Com/iel

= (CI’S

« KeyGen(msk,id): On input the master secret key msk = (pp,7, ) (with pp parsed according to
Eq. (5.1)) and an identity id € 7 9),, the key generation algorithm proceeds as follows:

1. Compute I « H (id).

2. Compute skoyt «— PTE.Encode(crspr, 71; Sout), Where soyt is the encoding randomness.
3. Sample sk,,x < SE.Encode(crssg, 0).
4.

Compute 7 < NIZK.Prove(crsN|ZK, C, (crs(I)

o €1, €z, SKouts SKauxs 1d), (1, Sout, L, 67, L, 1)), where

C is the circuit that computes R|[crssg, crspre, crsg))m] from Fig. 7.
Output the identity secret key skig = (skout, SKaux, 77)-

« Encrypt(pp, id, m): On input the public parameters pp (parsed as in Eq. (5.1)), an identity id € 7 D,
and a message m, the encryption algorithm does the following:

1. Compute I « H (id), sample ctoy PTE.Samp(1%), ctaux < SE.Encode(crss, 1).
()

Com’

2. Compute ct < WE.Encrypt(1%, m, (s, C, crs
(7)

Com

Cr, €1, id, ctout, Ctauy)), where C is the circuit

that computes R |[crssg, crspre, crs.. | from Fig. 7 and crs = (crsnizk, Crssg, Crspre).

Output the ciphertext ct.

« Decrypt(skig, id, ct): On input an identity secret key skiq4, an identity id € 7 D,, and a ciphertext ct,
the decryption algorithm outputs WE.Decrypt(ct, skiq).

Theorem 5.4 (Correctness). Suppose Ilsg satisfies tester correctness, Uprg satisfies tester correctness, Tnizk
satisfies completeness, Iy satisfies correctness, and Ilcom satisfies correctness. Then, Construction 5.3 is correct.

Proof. Take any security parameter A, identity id € 7 D,, and message m. Let (pp, msk) « Setup(1%, 1),

where

= (fers® 2 o
pp = ({crsCOm}ie[N] » €, CISNIZK , CISSE, CISPTE, CISc ., Cr

and msk = (pp,7,5). Let skig = (skout> Skaux 7) < KeyGen(msk,id) and ct « Encrypt(pp,id, m). Con-
sider the output of the algorithm Decrypt(skiq, id, ct):
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+ By construction of KeyGen and correctness of Il¢cqm, we have

n = N -
((crséo)m, CI, ¢z, Skouts SKauxs 1), (F1, Souts L, 01, L, 1)) € R]crss, crspre, crs(cz)m],

and 7 < NIZK.Prove(crsyizk, C, (crs(clgm, Cr1, 1, Skouts Skauwe 1d), (71, Sout, L, o1, L, L)).

+ By construction of Encrypt and correctness of ITwg, WE.Decrypt(ct, skiq) = m if
- I - .
((Cl’S, C, Crséo)m’ Cr, Cr, id, ctout, Ctaux)a (Skid)) € Rwe,

where I « H(id), ctoys «— PTE.Samp(l’l), ctaux < SE.Encode(crssg, 1), C is the circuit that com-
(7)

com] from Fig. 7, and crs = (crsNizk, CrSsg, CrSpTe).

putes R|crssg, Crsprg, Crs

« By completeness of IInjzk, the proof 7 verifies, and by tester correctness for IIsg and Ilprg, with
overwhelming probability over the choice of crsprg and crss,

PTE.Test(crspr, skout, Ctout) = 0
SE.Test(crssg, SKauxs Ctaux) = 0.

Thus WE.Decrypt(ct, skiq) = m with overwhelming probability, as required. O
Theorem 5.5 (Efficiency). If H runs in poly(A, log N)-time, then Construction 5.3 is efficient.

Proof. This holds by inspection and assumption on H, since the other primitives are all efficient, and
thus, run in poly(1)-time by definition. Furthermore, the KeyGen and Encrypt algorithms only require
poly(4) - d(A) bits of msk or pp, which is independent of the leakage parameter ¢. O

Theorem 5.6 (Adaptive Advantage-Checker Security under Bounded Leakage). Suppose the following
conditions hold:

« The witness encryption scheme Iy satisfies semantic security.
« The hash function H is (k, @)-expanding where a(1) = w(log 1).
« The split encoding IIsg satisfies mode indistinguishability and tester correctness.

« The privately testable encoding Iprg satisfies tester correctness, (w(log A) - €)-trapdoor indistinguisha-
bility, and mode indistinguishability.

« The NIZK IlNizk satisfies statistical soundness and computational witness indistinguishability.

+ The one-time dual-mode commitment scheme Ilcom satisfies mode indistinguishability and statistical
binding in binding mode.

Then for all polynomially-bounded ¢ = £(A), Construction 5.3 is adaptively advantage-checker secure under
bounded leakage for challenge parameter k > WL& wheren € (0,1) is a constant.

Proof. We define a sequence of hybrid experiments, each parameterized (implicitly) by an (admissible)
adversary A = (A;, A,) and an advantage threshold function ¢ = ¢(4):

+ Hyb,: This is the adaptive advantage-checker security game from Definition 3.1, which we recall
in full below:
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Setup: The challenger runs crssg « SE.Setup(1%), crsprg < PTE.Setup(11), crsnizg <
NIZK.Setup(1%). Foralli € [N], it samplesr; & X, (crs(l) td® ci) — Com.Setup(1%, hide)

Com’> ~“Com’
(0 4@ ¢;) < Com.Setup (1%, hide),

and computes 0; < Sopen (td(cigm, ri). Italso samples (crsCOm, Com®

and sets
— (&) 2 ()
pp = {CrsCOm ic[N]° C, CISNiIzK » CISSE , CISpTE , CrSCom , Cr
and msk = (pp, 7, 7). The challenger gives pp to Aj.

Pre-leakage queries: When A; makes a query on an identity id € 7D,, the challenger
proceeds as follows:

« It computes I « H(id) and encoding keys skoyt < PTE.Encode(crspre, 71; Sout) and
skaux < SE.Encode(crss, 0).

» Next, it construct the NIZK proof

I

Com’ CI, Cr, Skout, Skaux; ld)a (rly Souts J—; oy, J—: J—))a

7 «— NIZK.Prove(crsnizk, C, (crs

where C is the circuit that computes R[crssg, crspre, crs(cro)m] from Fig. 7.
The challenger replies with skiq = (skout, Skaux, 77)-

Leakage: After A; outputs the description of an efficiently-computable leakage function f,
the challenger replies with leak « f(msk).

Post-leakage queries: The challenger responds to post-leakage key queries exactly as in the
pre-leakage phase.

Challenge: Algorithm A; outputs a set J € 7D, of size > k, two messages my, m;, and a
state st.

Output: The output of Hyb, is b’ = 1 if
Vid e J : AdeheckﬂZ(l’l, 11/5, id, msk, pp, st, leak) = 1, (5.2)

and b’ = 0 otherwise. The advantage-checker algorithm AdvCheck is defined as follows:
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Inputs: security parameter A, threshold ¢ € (0, 1), identity id € 7 D,, master secret key
msk = (r, 01, ... on), public parameters pp (parsed as in Eq. (5.1)), state st, string leak, and
(oracle) access to an algorithm A

« Let T = 1/¢* and initialize a counter WINS « 0.

« The advantage-checker algorithm now simulates T independent executions of experiment
Exp'd(msk, pp, st, leak) for algorithm A.

1. Sample B < {0,1}.
2. Compute I < H(id), ctoy < PTE.Samp(1%), ctaux < SE.Encode(crsgg, 1).
)]

Coms €1 €2, id, Ctoyt, Ctaux) ), Where

C is the circuit that computes R[crssg,chPTE,crs(C?m
crs = (crsizk, Crsse, Crspre).

4. Whenever algorithm A makes a key-generation query on an identity id € 7 9,, com-
pute I « H(id), skoyt < PTE.Encode(crspre, 77; Sout)> Skaux < SE.Encode(crssg, 0),
and

3. Compute ct WE.Encrypt(l’l, mg, (c?s,C,crs
] from Fig. 7, and

n « NIZK.Prove(crsniz, G, (crs(clo)m, C1, 7, skouts Skauxs id), (PL, Souts L, 07, L, L)),

where C is the circuit that computes R[crssg,chPTE,crs(C?m] from Fig. 7. The
challenger replies to A with identity key skiq = (skout, Skaux, 77)-
5. After A has finished making key-generation queries, it outputs a bit f’ € {0, 1}.

6. If = f’, then increment WINS «— WINS + 1.

» Output 1 if WINS > % + % and 0 otherwise.

Figure 8: Function Adeheckﬂ(ll, 1Y/¢ id, msk, pp, st, leak) for Construction 5.3.
+ Hyb,: Same as Hyb,, except the challenger changes the split encoding to semi-functional mode:

- Setup: The challenger now samples (crssg, tdsg) «— SE.SetupSF(174).

— Key-generation queries: Whenever ‘A; makes a key-generation query (in the pre-leakage or
the post-leakage phase) or A, makes a key-generation query (in AdvCheck”™) onid € 7 Dj, the
challenger computes sk, < SE.EncodeSF(crssg, tdsg, id, 0; sa,x), Where s,,« is the encoding
randomness.

— Output: In the AdvCheck™® (1’1, 1Y/¢ id, msk, pp, st, leak) procedure, the challenger now com-
putes ctayx <— SE.EncodeSF(crssg, tdsg, id, 1) when constructing the challenge ciphertext ct.

+ Hyb,: Same as Hyb, except the challenger answers key-generation queries with the witness (saux, o7, td):

- Setup: The challenger now computes o, < Sypen (tdm tdSE).3

Com’

3Here, we assume that we can interpret tdsg as elements of the input space X;. Note that this is without loss of generality since
we can always take the binary representation of tdgg and commit bit-by-bit.

46



- Key-generation queries: Whenever A; makes a key-generation query (in the pre-leakage
or the post-leakage phase) or A, makes a key-generation query (in AdvCheck”™) on id € 7D;,
the challenger now constructs the NIZK proof 7 as

()

Com’

T NlZK.Prove(crsN|ZK, C, (crs C1, Cz> SKouts SKaux 1d), (L, L, Sauxs Ly Oz, tdgg)).

+ Hyb,: Same as Hyb, except the challenger changes the privately-testable encoding to semi-functional
mode:

— Setup: The challenger now samples (crsprg, tdprg) PTE.SetupSF(lA).

- Key-generation queries: Whenever ‘A; makes a key-generation query (in the pre-leakage
or the post-leakage phase) or A, makes a key-generation query (in AdvCheck”™) on id € 7D;,
the challenger samples sk, < PTE.EncodeSF(crspre).

+ Hyb,: Same as Hyb, except during the output phase, for each challenge identity id € 7, the challenger

computes
(id)

out

ct «— PTE.SampSF(tdeE, ?‘H(id))-

When computing the advantage-checker algorithm AdvCheck for the identity id € 7, the challenger
uses ctc()iudt) in place of ctoy in all T iterations. In other words, for each identity id € 7, the chal-
lenger now uses the same cty,; = ct(()ift) in the T executions of AdvCheck for id. In addition, in this
experiment, Adeheckﬂz(l’l, 1Y/¢ id, msk, pp, st, leak) outputs 1 if

T T
WINS > — + —
2 16

and 0 otherwise. Finally, the output of this experiment is b’ = 1 only if

Jdide J: Adeheckﬂz(l’l, 12, id, msk, pp, st, leak) = 1. (5.3)

+ Hyb,: Same as Hyb, except the challenger samples the commitment CRS in binding mode and
constructs the commitments and openings without the simulation algorithms:
(1)

— Setup: The challenge now computes the quantities (crs¢. . c;, 07) as

(i)

Com & Com.Setup(lA, bind) and (c¢;, 0;) « Com.Commit(crscom, ri)

Crs

forall i € [N] and (crs(c?m,cf, o;) as

(7)

CrsCom

— Com.Setup(lA, bind) and (c;, 0;) < Com.Commit(crscom, tdsg).

+ Hyb,: Same as Hyb, except the challenge constructs the challenge ciphertext ct in the procedure
AdvCheck™ as ct « WE.Encrypt(l/\, 0, (crs, C, crs(C[)m, C1, Cz, id, Ctout, Ctaux))-

o

For convenience, we will refer to Adeheckﬂ(lﬂ, 1Y¢id, msk, pp, st, leak) as AdvCheck(id) when the non-
id parameters are fixed in a given context. For an adversary A = (A;, A;), we write Hyb, (A, ¢) to denote
the output of Hyb; with adversary A and inner threshold function e. Our goal is to show that for all efficient
adversaries A and all inverse polynomial functions ¢ = 1/poly(A), Pr[Hyb (A, ¢) = 1] = negl(1). We now
analyze each pair of adjacent experiments:
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Lemma 5.7. Suppose Ilsg satisfies mode indistinguishability. Then, for all efficient and admissible adversaries
A and inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function negl(-) such that for all
AEeN,

Pr[Hyb, (A, e) = 1] > Pr[Hyb,(A, ¢) = 1] — negl(4).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb, and Hyb, with non-negligible
advantage 6. We use A to construct an algorithm $ that breaks mode indistinguishability:

1. At the beginning of the game, algorithm B gets crssg from the mode indistinguishability chal-

lenger. Algorithm B samples crsprg PTE.Setup(lA) and crsyjzk NIZK.Setup(lA). For all
i € [N], algorithm B samples r; < X, (crsggm,tdggm,ci) « Com.Setup (1%, hide) and computes

(D) 4@ ¢;) < Com.Setup(1*, hide) and sets

Com’> "~ Com’

_ (1) > (7)
pp = ({crsCOm ic[N]> € CISNIZK , CISSE, CISPTE , CISco

i < Sopen (tdggm, r;). Algorithm B also samples (crs
c,) and msk = (pp,7,0)

and gives pp to A.

2. When algorithm A makes a key-generation query on id € 7 D,, algorithm B computes sk,,x by
sending an encoding query (id, 0) to the mode indistinguishability challenger, and setting sk,,x as the
output of the query. Algorithm 8 computes I « H (id), skout < PTE.Encode(crspre, 71; Sout), and

()

Com’ EI) Cr, Skout; Skaux, |d)3 (713 Sout> L» 5[; 1, J—)):

7 < NIZK.Prove(crsnizk, C, (crs

where C is the circuit that computes R|[crssg, crspre, crs(C?m] (Fig. 7). Algorithm B gives the key
skig = (skout, Skaux, ) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function f, algorithm B replies with
leak = f(msk). In the challenge phase, algorithm A outputs J C 7D, of size at least k, messages
mo, my, and a state st.

4. For allid € J and i € [T], algorithm 8B computes ct,,x by sending an encoding query (id, 1) to
the mode indistinguishability challenger, and setting ct,,x as the output of the query. Algorithm
B computes I « H(id), samples f & {0, 1}, ctoyr < PTE.Samp(1%), and constructs the challenge
ciphertext ct in iteration i of the procedure AdvCheck(id) as

O]

ct « WE.Encrypt(lA, mg, (c?s, C,crse, , €1, Cr, id, Ctout, ctaux)),

(7)

com] (Fig. 7), and crs = (crsnizk, CrSsg, CrSpTE).

where C is the circuit that computes R[crssg, crspr, crs
Algorithm B outputs the output of the experiment.

If algorithm A is admissible, then so is algorithm 5 since the identities correspond to the tags in Ilsg
(namely, the identities in the challenge set J are disjoint from the ones that algorithm A queried to the
key-generation oracle). If the setup and encodings are in normal mode, algorithm 8 simulates Hyb, (A, ¢).
If the setup and encodings are in semi-functional mode, algorithm 8 simulates Hyb, (A, ¢). Thus, algorithm
B has advantage J in the mode indistinguishability game. O

Lemma 5.8. Suppose IInizk satisfies computational witness indistinguishability. Then, for all efficient and
admissible adversaries A and inverse polynomial functions ¢ = 1/poly(X), there exists a negligible function
negl(-) such that forall A € N,

Pr[Hyb,(A, ¢) = 1] > Pr[Hyb,(A, ¢) = 1] — negl(4).
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Proof. Suppose there exists an efficient adversary (A that distinguishes Hyb, and Hyb, with non-negligible
advantage §. We use A to construct an algorithm 8 that breaks computational witness-indistinguishability:

1. At the beginning of the game, algorithm B gets (1%, crsyjzk) from the witness indistinguishability
challenger. Algorithm B samples crspre < PTE.Setup(1%) and (crss, tdsg) < SE.SetupSF(1%). For
all i € [N], algorithm B samples r; < X), (crsggm,tdggm, ci) « Com.Setup (1%, hide) and com-

(1) 4@ ¢;) < Com.Setup(1%, hide) and

putes 0; < Sopen (td((:lgm, r;). Algorithm 8B samples (crsCOm, N
tdsg), which is possible by assumption. Algorithm 8B sets

()

computes 07 ¢ Sopen(td,

— (i) = () _ - o
pp = ({crsCOm ic[N] > € CTSNIZK » CISSE , CISPTE, CISco» Cr and msk = (pp,7, o)

and gives pp to A.

2. When algorithm A makes a key-generation query on id € 7 D,, algorithm B computes I « H (id),
skout < PTE.Encode(crsprE, 71; Sout) and skaux «— SE.EncodeSF(crssg, tds, id, 0; saux), where saux is
the encoding randomness. Algorithm B computes 7 by querying the proof oracle in the witness
indistinguishability game with input (C, x, wy, w1) where

(I

Com’ CI, Cr, Skouta Skaux; |d)

x = (crs
wo = (71, Sout, L, 1, L, L)

Wl = (J-s J—: saux: J—a O-Ts tdSE));

where C is the circuit that computes R|crssg, crspre, crs(cfo)m] (Fig. 7). Algorithm 8B gives the identity
secret key skig = (skout, Skaux, 7r) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function f, algorithm 8 replies with
leak = f(msk). In the challenge phase, algorithm A outputs J C 7D, of size at least k, messages
my, my, and a state st.

4. For allid € J and i € [T], algorithm B computes I « H(id), samples f < {0,1}, ctoys
PTE.Samp(l’l), Ctaux < SE.EncodeSF(crssg, tdsg, id, 1), and constructs the challenge ciphertext ct in
iteration i of the procedure AdvCheck(id) as

(0]

ct — WE.Encrypt(l’l, mg, (cts, C, CrSegms €I Cr id, Clout, Ctaux))s

where C is the circuit that computes R [crssg, crspre, crsg))m] (Fig. 7), and crs = (crsnizk, CrSsg, CISpTE)-
Algorithm B outputs the output of the experiment.

If the challenger constructs the proofs 7 using witness wy, then algorithm 8 perfectly simulates Hyb,. If
the challenger constructs 7 using witness wy, then algorithm 8 perfectly simulates Hyb,. Thus, algorithm
8B breaks computational witness-indistinguishability with advantage 6. O

Lemma 5.9. Suppose Ipre satisfies mode indistinguishability. Then, for all efficient and admissible adversaries
A and inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function negl(-) such that for all
A€eN,

Pr[Hyb,(A, ¢) = 1] > Pr[Hyb,(A, ¢) = 1] — negl(4).
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Proof. Suppose there exists an efficient adversary (A that distinguishes Hyb, and Hyb, with non-negligible
probability §. We use A to construct an algorithm 8 that breaks mode indistinguishability:

1. At the beginning of the game, algorithm B gets crsprg from the mode indistinguishability chal-

lenger. Algorithm B samples (crssg, tdsg) «— SE.SetupSF(l’l) and crsyjzg NIZK.Setup(l’l). For

(i) (1)
td

Com’ "~ Com’

r;). Algorithm B also samples (crsgo)m,td(f) cr) — Com.Setup(1%, hide) and

Com’

all i € [N], algorithm B samples r; < X), (crs ci) « Com.Setup (1%, hide) and computes

Oj < Sopen(td(i)

Com?
computes 0 <= Sopen (td(CTo)m, tdsg). Algorithm B sets

(i) = (7) = >
pp = ({crsCOm}ie[N] , €, CISNIZK » CISSE, CISPTE, CISi ', Cr and msk = (pp,7, o)

and gives pp to A.

2. When algorithm A makes a key-generation query on id € 7 D, algorithm 8B computes I «— H (id)
and makes an encoding query on 7y to the mode indistinguishability challenger to get skoyt. Algorithm
B computes sk,ux < SE.EncodeSF(crssg, tdsg, id, 0; saux), where s, is the encoding randomness, and

7« NIZK.Prove(crsnizk, C, (crs((:IO)m, 1, ¢z, Skouts SKaux, id), (L, L, Saux, L, 07, td)),

where C is the circuit that computes R[crssg, crspre, crs(c?m] (Fig. 7). Algorithm 8B gives the identity
secret key skig = (skout, Skaux, 77) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function f, algorithm 8 replies with
leak = f(msk). In the challenge phase, algorithm A outputs J C 7D, of size at least k, messages
mg, my, and a state st.

4. For allid € J and i € [T], algorithm B computes I « H(id), samples f < {0,1}, ctoys
PTE.Samp(l’l), Ctaux < SE.EncodeSF(crssg, tdsg, id, 1), and constructs the challenge ciphertext ct in
iteration i of the procedure AdvCheck(id) as

ct « WE.Encrypt(l’l, mg, (cfs, C, crs(clo)m, Cr, ¢, id, ctout, Ctaux)),

(7)

com] (Fig. 7), and crs = (crsnizks CrSsg, CrSpTE).

where C is the circuit that computes R[crss, crspre, crs
Algorithm B outputs the output of the experiment.

If the setup and encodings are in normal mode, algorithm B simulates Hyb, (A, ¢). If the setup and encod-
ings are in semi-functional mode, algorithm B simulates Hyb, (A, ¢). Thus, algorithm $ has advantage
d in the mode indistinguishability game. O

Lemma 5.10. Suppose H is (k, a)-expanding, where a(1) = w(log A) and k > Wfo Suppose also that Ipte
satisfies (w(logA) - &) -trapdoor indistinguishability. Then, for all admissible adversaries A and inverse
polynomial functions e = 1/poly (1), there exists a negligible function negl(-) such that for all A € N,

Pr[Hyb,(A, e) = 1] > = - Pr[Hyb,(A, ) = 1] — negl(A).

€
4
Proof. Let 6 = Pr[Hyb,(A, ¢) = 1]. First, note that lowering the threshold for WINS to % + % and changing
the condition for the experiment to output 1 from Eq. (5.2) to Eq. (5.3) only increases the probability that
the experiment outputs 1. Other than these changes, the only difference between Hyb, and Hyb, is the
distribution of ctyy;:
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« In Hyb,, the challenger samples a fresh ctoys < PTE.Samp(1*) on each of the T iterations of the
advantage checker.

« In Hyb,, the challenger samples ctoyt «<— PTE.SampSF(tdpre, 741(i4)) and reuses it across the T iter-
ations of the advantage checker.

We now proceed via an averaging argument. Specifically, for each i € [TT], let Xl?d € {0, 1} be the indicator
random variable for whether algorithm A,’s output is correct on the i" iteration of the advantage checker
(ie., Xl.id = 1if f/ = B in the i iteration of AdvCheck™(1%4,1/¢,id, msk, pp, st, leak)) in Hyb, (when
Ctout < PTE.Samp(1%)). Since the T iterations of the advantage-checker algorithm are independent, the
random variables X{d, .. .,Xde are identically distributed. Let X id be the distribution of each Xl?d. We now
show the following claims:

Claim 5.11. Let A be any admissible adversary and (msk, pp, st, leak, ) be sampled as in Hyb, (A, ). We
have:

Pr Vide 7 :Pr[X'9=1]>1/2+¢/4 > § — negl()),
(msk,pp,st,leak,j)[ j [ ] / / ] g( )

where the inner probability is over the randomness of an iteration ofAdeheck”d{2 (1’1, 1Y/¢id, msk, pp, st, leak).

Proof. Suppose Pr[X'¢ = 1] < 1/2 + ¢/4 for some id € J. Since X' is an indicator random variable, this
means E[X'9] < 1/2 + £/4. Let WINS = 2ie[T] Xl.id. By linearity of expectation, this means

E[WINS] = Z E[X'] < §+ )

ie[T] 4
By Hoeffding’s inequality (Fact 2.1),
Pr[WINS — T/2 — €T/2 > 0] < Pr[|WINS — T/2 — T /4| > eT/4] < 2-2T/10) = y,(}),

where v is some negligible function. This means that when E[X'] < 1/2 + £/4 for some id € J, the
probability that Hyb, (A, ¢) = 1is atmost v(A). Thus, if Pr[Hyb, (A, €) = 1] = §, then it must be the case that

Pr[Vid € J :E[X"] > 1/2+¢/4] > 6 — v,

as required. O

Claim 5.12. Let E;‘f,g be the event that fixing ctoy: = ctéiudt) where ct(()ijt) « PTE.Samp(1*) across all T

iterations of AdvCheck(id) results in an output of 1 for AdvCheck(id) when the WINS threshold is % + %.
Then, forallid € 7,

id &d
Pr [Eavg] > i negl(A),
where the probability is taken over the randomness of (msk, pp, st, leak, ') in Hyb,.

Proof. Take any id € J. First, we say that a ciphertext ctoy in the support of PTE.Samp(1%) is “good”

if Pr[X'd = 1] > 1/2 + £/8, where the probability is conditioned on the fixed choice of ctoy. Suppose
Pr[X'd = 1] > 1/2 + ¢/4. Then, by an averaging argument,

Pr[ctout is good : ctoyt PTE.Samp(l’l)] >

= m
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We now show that AdvCheck(id) outputs 1 with probability 1 — negl(1) whenever ct,,; is good and the
WINS threshold is T/2 + ¢T/16. When ctoy is good,

T T
E[WINS] = ) E[XY]=—+".
. 2 8
ie[T]
By Hoeffding’s inequality (Fact 2.1),
Pr[WINS — T/2 < €T/16] < Pr[|WINS — T/2 — eT/8| > T /16] < 2~ %(T¢"/25) = peg|(1). (5.4)

Thus, whenever cto, is good and the WINS threshold is T/2 + ¢T /16, we conclude that AdvCheck(id)
outputs 1 with overwhelming probability. Next, by Claim 5.11, with probability at least § — negl(1), we
have that for all id € J, Pr[X'd = 1] > 1/2 + ¢/4. Thus, for every id € 7, with probability £5/4 — negl(2),
it will be the case that Pr[X' = 1] > 1/2 + ¢/4 and ctoy; < PTE.Samp(1%) is good. When this is the case,
Eq. (5.4) says that the probability AdvCheck(id) outputting 0 is negligible. Thus, we conclude that

T Pr[Xd=1] >1/2+¢/4

; T
id S _
Pr [Ea"g] = Pr [WINS = 2 16" Ctout < PTE.Samp(1%) is good negl(4)

> ? — negl(4).

The claim follows. O

Proof of Lemma 5.10. We now return to the proof of Lemma 5.10. Let E;ﬂ be the event that E;‘f,g occurs
when ctoyt <= PTE.SampSF(tdpre, Fov(id )); namely, when ct, is sampled according to the specification of
Hyb,. Note that when E;g occurs for anyid € J, then Hyb,(A, ¢) outputs 1. To argue this, we first appeal

to trapdoor indistinguishability to show that there exists an identity id € J such that

Pr[E4] > Pr[EY,] — negl(}).

avg

To do so, we lower bound the entropy of the bits {7w(id)}idej conditioned on the tuple (pp, Q, leak, ),
where Q is the adversary’s view from the key-generation queries. Fix any k identities idy, ...,idx € J.
Since ‘H is expanding, H (id;), ..., H(id;) contains at least ak distinct indices of [N], which correspond
to ak - £, total bits of msk. By construction, the bits 7 are independent of (pp, Q) in Hyb, and n < 1. Thus,
we can appeal to Lemma 2.2 to get the following:

Heo ({Fr(idy) Yie[k] | PP, @ leak) > Hoo ({F(id;) bie[k] | PP, Q) — [leak|
> Hoo ({Fa(id;) Yie[x)) — |leak]
= akt, — nakéy
= (1 - n)akd,.

By Lemma 2.2, with probability 1 — 27©(1°64) = 1 — negl(1) over the fixed choice of (pp, Q, leak), we have
Heo ({Fr(idy) }iek)) = (1= m)akty — w(log A).
Moreover, by Lemma 2.3, there exists random variable D] over [k] such that

(1 —n)akty — w(log) _

Ho (77 | Dixy) 2 2

log(k),
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where ] = H(idp,,,). By Lemma 2.2, we have with probability 1 — 27®(084) = 1 _ negl(1) over the choice
of i «— Dix,
Heo (Fre(idy) | Dii) = i) = Hoo(r | Dii) — w(log h).

Thus, with overwhelming probability over id* « idp,,, we have Hoo (Fa((ia)) = (1 = n)aty — w(log A) for
fixed (pp, Q, J, leak). Since aty = w(logA) - £, by assumption, we can appeal to (w(log 1) - £,)-trapdoor
indistinguishability with overwhelming probability in the id* copy of the game. This means the distribution
of ctoyr <= PTE.SampSF(tdpre, 7(iq*)) is statistically close to the distribution of ctoy PTE.Samp(1%).
Correspondingly, this means

Pr[E] > Pr[E9 ] - negl(2).

avg

By Claim 5.12, Pr[Eid | > ¢5/4 — negl(A). Finally, by definition of 5,

Pr[Hyb,(A,¢e) = 1] > Pr[EEj;] > %3 —negl(1) = 2 -Pr[Hyb,(A, ) = 1] — negl(A). O

Lemma 5.13. Suppose Ilcom satisfies mode indistinguishability. Then, for all efficient and admissible adver-
saries A and inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function negl(-) such that
forallA e N,

Pr[Hybs(A, ¢) = 1] > Pr[Hyb,(A, ¢) = 1] — negl(4).
Proof. We start by defining a sequence of intermediate hybrid experiments:
« Hyb,,: Same as Hyb,. In particular, the components (crs(cigm, ¢i, 0i)ie[N] in the setup phase are
sampled as
(crs(l) td? ci) « Com.Setup(1%, hide), o; « Open(td(l) ri).

Com’> ~“Com’ Com’

Additionally, (crs&)m, tdgo)m,cr) — Com.Setup(lA, hide), o, « Sopen(td(c?m,tdsg).

« Hyb,;: Same as Hyb, ,, except for all j < i the challenger samples the components (crsg))m, cj,0j) as

(J)

o Com.Setup(l/l, bind), (cj, 0j) « Com.Commit(crs(j)

crs Come ri)

()
C

« Hyb, nr,;: Same as Hyb, ; except the challenger samples (crs_ ,¢;, 07) as

crsgo)m — Com.Setup(lA, bind), (¢;, 0;) < Com.Commit(crscom, tdsg).

This is the same as Hyb,.

We now appeal to mode indistinguishability of IIcom to show that for all i € [N + 1], Hyb,; ; and Hyb,;
are statistically indistinguishable. We omit the proof of indistinguishability for Hyb, 5, and Hyb, y,, since
it is analogous.

Claim 5.14. Suppose the conditions in Lemma 5.13 hold. Then, for alli € [ N+1], admissible adversaries A, and
inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function negl(-) such that forall A € N,

Pr[Hyb, ;(A,e) = 1] > Pr[Hyb,; (A, ¢) = 1] — negl(1).

Proof. Suppose there exists an adversary A that distinguishes Hyb,; ; and Hyb, ; for some i € [N] with
non-negligible probability §. We use A to construct an algorithm $ that breaks mode indistinguishability:
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1. At the beginning of the game, algorithm B gets crs(clgm from the mode indistinguishability chal-
lenger. Algorithm 8B samples (crssg, tdsg) «— SE.SetupSF(lA), (crspre, tdprg) «— PTE.SetupSF(l’l),
and crsyizx < NIZK.Setup(1%). For all j € [N], algorithm B samples rj € Xj. For j < i, algorithm
B computes regular commitments and openings

()

Com

crs — Com.Setup(1%, bind), (cj,07) « Com.Commit(crs(C];))m, rj).

Algorithm 8 submits r; to the mode indistinguishability challenger to get (c;, 0;). For j > i, algorithm
B computes simulated commitments and openings

() td(])

Com’ Com’

¢j) < Com. Setup(l’1 hide), o « Open(td(J) rj).

(CI‘S Com’

Algorithm 8 also samples (crs(r) dgo)m
do tdsg). Algorithm 8B sets

Com’

¢;) < Com.Setup(1*, hide) and computes the simulated

opening o; < Sopen(t

- (7) _ S
pp = ({crsCOm ie[N] ° C, Crsnizk , CISSg , CISPTE , CrScom » Cr and msk = (pp,7, o)

and gives pp to A.

2. When algorithm A makes a key-generation query on id € 7 9D}, algorithm B computes I < H (id),
skout < PTE.EncodeSF(crspre), skaux < SE.EncodeSF(crssg, tdsg, id, 0; saux), where s,y is the encod-
ing randomness, and

I

Com’

7 < NIZK.Prove(crsnizk, C, (crs CL, ¢z, Skouts SKaux, id), (L, L, Saux, L, 07, td)),
where C is the circuit that computes R[crssg, crspre, crs(CTO)m] (Fig. 7). Algorithm 8B gives the identity
secret key skig = (skout, Skaux, 77) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function f, algorithm 8 replies with
leak = f(msk). In the challenge phase, algorithm A outputs J C 7D, of size at least k, messages
mg, my, and a state st.

4. Forallid € [, algorithm B computes I « H (id) and ctoyt < PTE.SampSF(tdpre, 77). Then, for each
i € [T], algorithm B samples f§ <~ {0, 1}, ctaux < SE.EncodeSF(crss, tds, id, 1), and constructs the
challenge ciphertext ct according to the specification of iteration i of the procedure AdvCheck(id)
in Hyb, and Hybs:

()

ct «— WE. Encrypt(l mg, (crs C, crsg E}, ¢, id, ctout, ctaux)),

()

Com] (Fig. 7), and cfs = (crsnizk, CrSSE, CISpTE)-

where C is the circuit that computes R[crssg, crsprg, crs
Algorithm B outputs the output of the experiment.

If the challenger samples the CRS and the commitments in hiding mode, then algorithm 8 simulates
an execution of Hyb,; (A, ¢). Conversely, if the challenger samples the CRS and the commitments
in binding mode, algorithm 8 simulates an execution of Hyb4)l-(&zl, €). Thus, algorithm 8 breaks mode
indistinguishability with advantage §. ]

The lemma now follows from Claim 5.14 and a standard hybrid argument. O
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Lemma 5.15. Suppose Ilwe satisfies semantic security, Ilsg and Ilpre satisfy tester correctness, IInizk satis-
fies statistical soundness, and com satisfies statistical binding in binding mode. Then, for all efficient and
admissible adversaries A and inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function

negl(-) such that forall A € N,
Pr[Hyb( (A, e) = 1] > Pr[Hybs(A, ¢) = 1] — negl(A).
Proof. We define a sequence of intermediate hybrids:

« Hybs, : Same as Hyb,. Notably, for id € J and i € [T], the challenger samples f & {0,1),1 «
H (id), ctoyr < PTE.SampSF(tdprE, 1), Ctaux < SE.EncodeSF(crssg, tds, id, 1), and computes the
challenge ciphertext in iteration i of AdvCheck(id) as

(€]

Com’

ct WE.Encrypt(l’l, mg, (cfs, C, crs Cr, ¢, id, Ctout, Ctaux)),

(7)

where C is the circuit that computes R [crss, crspre, CrScom

] (Fig. 7), and cfs = (crsnizk, CrSsg, CrSpTE).

« Hybs; ;: Same as Hybs except for all (i’, /) such that i’ < iori’ =i, < j, the challenger sam-
ples I « H(J[i']), ctout < PTE.SampSF(tdpre, 1), ctaux <— SE.EncodeSF(crssg, tdsg, I [i’], 1), and
computes the challenge ciphertext in the (j*)" execution of Exp/1"'! in AdvCheck as

ct « WE.Encrypt(1%,0, (cfs, C, crst?) cr, ¢ J[i'], ctouts Ctaux)),

Com’

where C is the circuit that computes R [crss, crspre, crséfo)m] (Fig. 7), and crs = (crsnizk, CrSsg, CISpTE)-

Note that Hybs, 7 is the same as Hyb, and that Hyb; ; 1 is the same as Hyb, ;,,  for i € [k — 1].

We now appeal to semantic security of IIyg to show that Hyb
indistinguishable for all i € [k], j € [T].

5.0.) and Hybs)i) j-p are computationally

Claim 5.16. Suppose the conditions in Lemma 5.15 hold. Then for alli € [k], j € [T], efficient and admissible
adversaries A, and inverse polynomial functions e = 1/poly (1), there exists a negligible function negl(-) such
that forall A € N,

Pr[Hybs; ;(A, &) = 1] > Pr[Hyby; (A, ¢) = 1] — negl(4).

Proof. Suppose there exists an efficient adversary A that distinguishes Hybs ; ; and Hybs ; ;_; with non-
negligible advantage 6. We use A to construct an algorithm 8 that breaks semantic security of ITye:

1. Algorithm 8 runs the setup through challenge phases as in Hyb, with ‘A:

(a) Algorithm B samples (crssg, tdsg) < SE.SetupSF(1%), (crspre, tdpre) «— PTE.SetupSF(1%), and
CISNIZK NlZK.Setup(lA). For all i € [N], algorithm B samples components r; < Xj,
crs(clgm « Com.Setup(14, bind) and (c;, ;) « Com.Commit(crs(Cigm, ri). Algorithm B also

samples crs(cfo)rn

rithm B sets

— Com.Setup(l’l, bind) and (c;, 0;) < Com.Commit(crscom,tdsg). Algo-

()

Com

— (i) = _ - -
Pp = ({crscom}ie[N] , C, CISN|zZzK > CISSE , CISpTE , CIS Cr and msk = (pp, r, O')

and gives pp to A.
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(b) When algorithm A makes a key-generation query on id € 7D,, algorithm B computes
I « H(id), skout < PTE.EncodeSF(crspre), skaux <« SE.EncodeSF(crssg, tdsg, id, 0;sauy),
where s,,x is the encoding randomness, and

7 < NIZK.Prove(crsnizk, C, (crs(clo)m, C1, ¢z, Skouts SKaux, id), (L, L, Saux, L, 07, td)),

where C is the circuit that computes R[crssg, crspre, crs(cfo)m] (Fig. 7). Algorithm B gives the
identity secret key skiq = (skout, Skaux, 7r) to algorithm A.

(c) When algorithm A outputs an efficiently-computable leakage function f, algorithm 8 replies
with leak = f(msk). In the challenge phase, algorithm A outputs J C 7 D, of size at least k,
messages mg, my, and a state st.

2. For all (i, ") such that i’ < i or i’ = i,j° < j, algorithm B computes I «— H (T [i']), ctour <
PTE.SampSF(tdprg, 77), ctaux < SE.EncodeSF(crssg, tdsg, J[i’], 1), and constructs the challenge ci-

phertext in the j" execution of Exp7 1! in AdvCheck as

ct «— WE.Encrypt(1%,0, (cFs, C,crs(D cr ¢, T [1'], ctout Ctaux))s

Com?

where C is the circuit that computes R [crssg, crspre, crsg))m] (Fig. 7), and crs = (crsnizk, CrSsg, CISpTE)-
3. Forthe jth execution of Expj[i], algorithm B computes I <« H (T [i]), ctour < PTE.SampSF(tdpre, 77),
Ctaux < SE.EncodeSF(crssg, tdsg, I [i], 1), and sets

- n = .
x = (crs, C,crs(CO)m,cI, ¢z, J [i], ctout, Ctaux),

where C is the circuit that computes R [crssg, crspre, crsgo)m] (Fig. 7), and crs = (crsnizk, CrSsg, CISpTE)-

Algorithm B samples < {0, 1}, sends (x, mg, 0) to the WE challenger, and uses the response ct
from the WE challenger as the challenge ciphertext in this execution.

4. In the remaining executions of ExpJ 1"l for i’ > i, algorithm B samples components f & {0,1},1 «
H(T[i']), ctout < PTE.SampSF(tdpre, 77), ctaux < SE.EncodeSF(crssg, tdsg, T [i’], 1), and constructs
the challenge ciphertext as

ct «— WE.Encrypt(l’l, myg, (cts, C, crs(clo)m, cr ¢z, J[i'], ctout, Ctaux)),

where C is the circuit that computes R [crss, crspre, crs(cz)m] (Fig. 7), and crs = (crsnizk, CrSsg, CISpTE)-

Algorithm B outputs the output of the experiment.

If ct from the WE challenger is constructed using mg, algorithm 8B simulates Hybs ; ;_; (A, ¢). If ct from
the WE challenger is constructed using 0, algorithm 8 simulates Hyb. , .(A, ¢). We now show that for
id = J[i] the statement

5,i,]

)

x = (crs, C, CrSeome €I Crs id, Ctout, Ctaux)

sampled in Step 3 of the above reduction is a false statement with overwhelming probability. In particular,
we show that for candidate witness w = (skout, SKaux, )

PTE.Test(crspre, skout, Ctout) = 1
NIZK.Verify(crsnizk, C. (crse) &1, ¢z, Skout, Skaux, id), 1) = 1 = or
SE.TeSt(CrSSE, Skaux, Ctaux) =1

with 1 — negl(1) probability over the choice of pp, where I = H (id):
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« First, ¢ is an honestly-generated commitment to 7 and c; is an honestly-generated commitment to
(I
Com
and crs((jfo)m, the only valid openings for ¢; is to 7} = 7(,(1.{(;(1) and c; opens only to tdsg except with
T

Com"*

tdse. Since Iy is statistically binding, with overwhelming probability over the choice of crs

negligible probability over the choice of crsgo)m and crs

« Since NIZK.Verify(crsnizk, C, (crsggm, CL, ¢z, Skouts SKaux, 1d), ) and Iy zk is statistically sound, it must

be the case that (crs(clo)m, ¢, €z SKout» SKaux id) is a true statement with overwhelming probability over
the choice of crsyjzx. This means that either skoyt = PTE.Encode(crsPTE,FW(id);sout) or skaux =
SE.EncodeSF(crss, tdse, id, 0; saux) for some randomness soyt, Saux- We consider the two possibilities:

— Suppose skout = PTE.Encode(crspre, Fa((id); Sout) for some sy . Now, the reduction algorithm
samples ctour «— SampSF(tdpre, 7#(id) ). By tester correctness of IIpr, this means

PTE.Test(crsprE, skout, Ctout) = 1.

— Suppose skaux = SE.EncodeSF(crssg, tdsg, id, 0; saux) for some say. Since ct,yy is a Type-1 semi-
functional encoding with identity id, if skayx is a Type-0 semi-functional encoding of the same
id, we have SE.Test(crssg, Skaux, Ctaux) = 1 by tester correctness of ITg.

We conclude that with overwhelming probability over the choice of pp, for every candidate witness
w = (Skout, Skaux, 77) at least one of the following conditions hold:

. NIZK.Verify(crsN|z|<, C, (CrS(I) EI, ¢z, skout, SKau id)a 7T) = 0;

Com’
« PTE.Test(crspre, Skout, Ctout) = 1; or
o SE.Test(crssg, Skaux, Ctaux) = 1.

In particular, this means that Rywe(x, w) = 0. We conclude that algorithm B breaks semantic security of
ITwe with advantage at least § — negl(A), which is still non-negligible. o

Since Hybs ; 7 is identical to Hybs ;,, , for i € [k — 1], the lemma follows from Claim 5.16 and a standard
hybrid argument. O

Lemma 5.17. For all efficient and admissible adversaries A and inverse polynomial functions ¢ = 1/poly(A),
there exists a negligible function negl(-) such that for all A € N,

Pr[Hyb (A, ¢) = 1] = negl(A).

Proof. Takeanyid € J.Foreachi € [T],letX lid € {0, 1} be the random variable for whether algorithm A,’s
output is correct (i.e., if #” = ff on the i*" iteration of AdvCheck with identity id). By construction, in Hyb,
the adversary’s view is independent of the bit B € {0, 1}. Since the challenger samples < {0, 1} on each
iteration, the probability that the adversary’s guess ' = f is exactly 1/2. This means E[Xl.id] =1/2forallie
[T] and allid € J. Moreover, WINS = ¥}, 7y led and E[WINS] = T/2. By Hoeffding’s inequality (Fact 2.1),

Pr[WINS — T/2 > ¢T/16] < Pr[|WINS — T/2| > ¢T/16] < 2~ 2(T€'/256) = neg|(2),

since T = A/e?. Thus, in an execution of Adeheckﬂz(ll, 1Y¢ id, msk, pp; st, leak), WINS > T/2 + ¢T/16
with negligible probability. By a union bound, AdvCheck outputs 1 for any id € J with probability at most
|T | - negl(A) = negl(A) since | J| = poly(A). O
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Security now follows by combining Lemmas 5.7 to 5.10, 5.13, 5.15 and 5.17. O
Combined with Theorem 3.4, this yields the following corollary:

Corollary 5.18 (Adaptive Security under Bounded Leakage). Suppose the conditions in Theorem 5.6 hold.
Then, Construction 5.3 is adaptively secure under bounded leakage for the same k as in Theorem 5.6.

6 Constructing Split Encodings and Privately-Testable Encodings

In this section, we construct split encodings and privately-testable encodings from SXDH in pairing groups
and DDH in pairing-free groups, respectively. We start by recalling the necessary notions for these
constructions.

Definition 6.1 (Prime-Order Group). A prime-order group generator GroupGen is an efficient algorithm
that takes as input the security parameter 1* and outputs a description G = (G, p, g) of a group G with
prime order p = 29} and generator g. We require the group operation in G to be efficiently computable.
We assume that the order of the group output by GroupGen is a fixed function of the security parameter A.

Definition 6.2 (Prime-Order Bilinear Group). A prime-order (asymmetric) bilinear group generator
BilinearGroupGen is an efficient algorithm that takes as input the security parameter 1* and outputs a de-
scription G = (G, G2, Gr, p, 91, g2, ) of two base groups G; and G, with generators g; and g,, respectively,
a target group Gr, all of prime order p = 2°), and a non-degenerate bilinear map e: G; X G, — Gr. We
require that the group operation in G4, G, G and the pairing operations to be efficiently computable. We as-
sume that the order of the group output by BilinearGroupGen is a fixed function of the security parameter A.

Notation. Throughout this section, we will use the implicit representation of group elements [EHK"13].
Specifically, if G = (G, p, g) is a prime-order group, and M is a matrix over Z,, we write [M] to denote gM,
where exponentiation is defined component-wise. For a scalar s € Z,,, we write s[M] = [s - M]. When
working with an asymmetric prime-order pairing group G = (Gy, Ga, Gr, p, g1, g2, €), we write [M]; = gM,
[M], = 912\4, and [M]r = gl}d, where M is a matrix over Z, and gr = e(g1, g2).

Definition 6.3 (Decisional Diffie-Hellman). Let GroupGen be a prime-order group generator. The deci-
sional Diffie-Hellman assumption DDH holds with respect to GroupGen if for all efficient adversaries A,
there exists a negligible function negl(-) such that for all A € N,

[Pr[A(G, [x], [y], [xy]) = 1] - Pr[A(G, [x], [y], [r]) = 1]| = negl(2),
where G « Groquen(l’l), and x,y,r & Zp.

Definition 6.4 (Symmetric External Diffie-Hellman). Let BilinearGroupGen be a prime-order asymmetric
bilinear group generator. The symmetric external Diffie-Hellman assumption SXDH holds with respect
to BilinearGroupGen if for all efficient adversaries (A, there exists a negligible function negl(-) such that

forall A € Nand all i € {1, 2},

[Pr[A(G, [x]i: [yli [xyli) = 1] = Pr[A(G, [x]i. [y]i. [r]i) = 1]| = negl(4),

where G «— BiIinearGroquen(lA), and x,y, r & Zp. In other words, the SXDH assumption corresponds
to DDH holding in both G; and G,.
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Tensor decisional Diffie-Hellman. When analyzing our constructions, it will be convenient to use the
following variant of the DDH assumption. We show in Theorem 6.6 that the assumption follows generically
from plain DDH.

Definition 6.5 (Tensor Diffie-Hellman Assumption). Let GroupGen be a prime-order group generator and
let ny, my, ny, my € N be dimensions. The tensor Diffie-Hellman assumption TDDHp, 1, n,.m, holds with
respect to GroupGen if for all efficient adversaries (A, there exists a negligible function negl(-) such that
forall A € N:

[Pr[A(G. [Al. [B], [A® B]) = 1] - Pr[A(G, [A], [B], [C]) = 1]| = negl(4),

where G «— GroupGen(1%), A & Z7>™ B & Z72*™ and C & Z'"*™ ™ We define the TDDHp, i, my.m,
assumption in G;, G, with respect to a prime-order asymmetric bilinear group generator BilinearGroupGen
in an analogous manner (to the SXDH assumption in Definition 6.4).

Theorem 6.6 (DDH implies TDDH). Let A € N, and suppose ny, my, ny, my = poly(d). Suppose that
DDH holds with respect to a prime-order group generator GroupGen. Then TDDH,, m,.n,.m, holds with re-
spect to GroupGen. Analogously, if SXDH holds with respect to a prime-order asymmetric group generator
BilinearGroupGen, then TDDHp,, 1, n,.m, also holds with respect to BilinearGroupGen.

Proof. We prove the claim for GroupGen. The claim for BilinearGroupGen follows analogously (using
the fact that the SXDH assumption corresponds to the DDH assumption in G; and G,). We now define a
sequence of hybrid distributions.

« Hyb,: (G, [A], [B], [C]) where A & Zleml, B& ZZszz’ and C = A ® B. We index the components
of A by a single index i € [nym;] (e.g., in row-major order). Specifically, we can write

al PEEEEY aml al . B PECEEY am .
A= : : and C=
a(n1—1)~m1+1 e an1m1 a(n1—1)~m1+1 . B e anlml . B

For i € [nym,], we write C; := a;B.

« Hyb, for i € [nym]: Same as Hyb, except for all j < i, the challenger now samples C; <- Zgzxmz.

By definition, in Hyb,, , . the challenger samples C; ¢~ Zg?*™ for all i € [nym;], which corresponds to

the uniform case in the TDDH,;, 1, n,,m, assumption. To complete the proof, we use DDH to argue that for
all i € [nym;], Hyb; and Hyb,_, are computationally indistinguishable.

Lemma 6.7. Suppose DDH holds with respect to GroupGen. Then, for all i € [nym]| and all efficient
adversaries A, there exists a negligible function negl such that for all A € N,

|Pr[Hybi_1(ﬂ) = 1] = Pr[Hyb,(A) = 1]| = negl(4).

Proof. We use the random self-reduction of DDH. Suppose there exists an efficient adversary A that
distinguishes Hyb, and Hyb,_, with non-negligible advantage §. We construct 8 that breaks DDH:

1. At the beginning of the game, algorithm 8 receives the DDH challenge (G, [x], [y], [z]) from its
challenger.
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2. For all j € [nymy], algorithm B samples a;, f; < Z,. Algorithm B then defines [B] € G""™ to be
the matrix with components [b;] = a;[y] + p; for all j € [nym;] (Where j indexes the components
of [B] in row-major order). Let [C;] be the matrix with components a;[z] + ;[x]. Finally, algorithm
B sets [a;] = [x].

3. For k € [nym;] where k # i, algorithm B samples a; <~ Z, itself. It defines the matrix A to be the
matrix with components [a1], ..., [an,m,]-

4. Next, for k > i, algorithm B sets [Ci] = ax[B]. For k < i, algorithm B samples Cy ¢ Z,*™.
5. Finally, algorithm B gives (G, [A], [B], [C]) to A and outputs whatever A outputs.

Clearly 8 is efficient if A is since ny, my, ny, my = poly(4). If z = xy, then B perfectly simulates Hyb,_,
for A. If z & Z,,, then algorithm B perfectly simulates Hyb, for A since «;, f; < Z,. Thus B that breaks
DDH with the same advantage 6. O

The theorem follows from Lemma 6.7 and a standard hybrid argument, since ny, m; = poly(4). O

6.1 Split Encoding from SXDH

In this section, we describe how to construct a split encoding from prime-order asymmetric bilinear groups
and a pseudorandom function (Definition 2.11).

Construction 6.8 (Split Encoding from SXDH). Let A € N be a security parameter and 7 = {7} } 1c be
the tag space. Our construction relies on the following primitives:

+ Let BilinearGroupGen be a prime-order asymmetric bilinear group generator. Let p = p(1) be the
order of the group output by BilinearGroupGen.

e Let PRF: K; X 71 — (Z}’;)3 be a pseudorandom function with key space K = {K }1en-
We now construct our split encoding scheme IIsg = (Setup, SetupSF, Encode, EncodeSF, Test) as follows:

« Setup(1*): On input the security parameter J, the setup algorithm outputs the common reference
string crs = G = (Gy, Gy, Gr, p, 91, g2, €) — BilinearGroquen(lA).

« SetupSF(1%): On input the security parameter A, the semi-functional setup algorithm outputs
crs = G = (Gy, Gy, Gr, p, g1, g2, €) < BilinearGroupGen(1%) and td = K & K.

« Encode(crs, type): On input the common reference string crs = (G, Gz, Gr, p, g1, g2, €) and type €
{0,1}, the encode algorithm samples x < (Z}‘,)z. It then outputs encyype Where ency = [x]; and
ency = [x]s.

« EncodeSF(crs, td, tag, type): On input the common reference string crs = (Gy, Gs, Gr, p, 91, g2, €),
a trapdoor td = K € K, tag € 7, and type € {0, 1}, the semi-functional encode algorithm first
computes (x1, X2, y1) = PRF(K, tag), y» = x; '(—x1y1). Let x = [iﬁ;] andy = [Z;] Let ency = [x"]1,
and enc; = [y],. Then, it samples s <- Z; and outputs s - enciype.

« Test(crs, ency, ency): On input the common reference string crs = (G4, G,, G, p, 91, g2, €) and a pair
of encodings ency = [x"]; and enc; = [y],, the testing algorithm outputs 1 if [x"]; - [y], = [0]7.

Theorem 6.9 (Tester Correctness). Construction 6.8 satisfies tester correctness.
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Proof. We show each property separately:

. Take any A € N, tag € 7y, and (crs,td = K) in the support of SetupSF(1*). Then crs = G =
(G1,Gy, Gr, p, g1, g2, €) « BilinearGroupGen(1%) and td = K & %,. Suppose ency is in the sup-
port of EncodeSF(crs, K, tag, 0) and enc; is in the support of EncodeSF(crs, K, tag, 1). In this case
ency = [sox']; and enc; = [s1y], where x"y = 0. This means [sox"]; - [s1¥]2 = [sos1X"y]T = [0] T, so
Test(crs, ency, ency) outputs 1.

« Now suppose crs < Setup(1%), ency < Encode(crs, 0), enc; < Encode(crs, 1). In this case ency =
[x"]; and enc; = [y]; where x,y < (Z;)Z. In this case, [x"]; - [y]z = [0]7 if and only if xy = 0,
which happens with probability at most 1/(p — 1) = negl(A). O

Theorem 6.10 (Mode Indistinguishability). Suppose SXDH holds with respect to BilinearGroupGen and
PRF is a secure pseudorandom function. Then, Construction 6.8 satisfies mode indistinguishability.

Proof. Let A be an efficient adversary for the mode indistinguishability game, and let Q = Q(A) be a bound
on the number of encoding queries algorithm A makes in the security game. We define a sequence of
hybrid experiments:

+ Hyb,: This is the mode indistinguishability game with normal setup and encodings from Definition 5.1,
which we recall in full below:
1. The challenger samples crs = G < BilinearGroupGen(1%) and gives crs to A.

2. When algorithm A makes an encoding query (tag, type), the challenger samples x < (Z;‘,)2
and replies with encyype, where ency = [x']; and enc; = [x],.

3. At the end of the game, A outputs b’ € {0, 1}, which is the output of the experiment.
+ Hyb,: Same as Hyb, except at the beginning of the game, the challenger initializes an empty table

T to keep track of the tags that the adversary has queried. Then, when the adversary makes an
encoding query (tag, type), the challenger now responds as follows:

— First, it checks if tag is present in the table T. If so, it sets (x,y) = T[tag]. Otherwise, the
challenger samples x,y < (Z;)2 and adds T[tag] = (x,y).
- Then the challenger samples s <- Zj, and sets ency < s[x'];, enc; < s[y],. It responds with

€NCtype-

« Hyb,: Same as Hyb, except whenever the challenger samples y - (Z}‘,)2 in respond to an encoding
query, it now samples x <~ (Z;;)z, y; & Zy,, and sets y, = x, H(=x141).

« Hyb,: Same as Hyb, except at the beginning of the experiment, the challenger samples td = K <~ K.
Then, when answering encoding queries (tag, type), instead of sampling x;, x5, y; < Zy,, the chal-
lenger instead computes (xy, x2, ;) = PRF(K, tag). This is the mode indistinguishability game with
semi-functional setup and encodings.

We write Hyb,(A) to denote the output of Hyb, with adversary A.

Lemma 6.11. Suppose the SXDH holds with respect to BilinearGroupGen. Then, for all efficient adversaries
A, there exists a negligible function negl such that for all A € N,

[Pr[Hyb, (A) = 1] — Pr[Hyb, (A) = 1]| = negl(1).
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Proof. We define an intermediate hybrid Hyb; to be the same as Hyb, except only the Type-0 encoding
queries are changed. We appeal to SXDH to show that both pairs (Hyb,, Hyby) and (Hybg, Hyb,) are
computationally indistinguishable. Specifically, we use the tensor decisional Diffie-Hellman assumption
(Definition 6.5), which is implied by SXDH (Theorem 6.6).

Claim 6.12. Suppose the TDDHg 1,02 assumption holds in G; with respect to BilinearGroupGen. Then, for
all efficient adversaries A, there exists a negligible function negl such that for all A € N,

’Pr[HybO(ﬂ) = 1] — Pr[Hyby(A) = 1]’ = negl(A).

Proof. Suppose there exists an efficient adversary A that makes Q Type-0 encoding queries and distin-

guishes Hyb, and Hybj with non-negligible probability 5. We use A to construct an algorithm 8 that
breaks TDDHg 1,02 in Gy:

1. At the beginning of the game, algorithm B gets a tuple (G, [A]1, [B]1, [C]1) from the TDDH chal-
lenger, where G = (Gy, Gy, Gr, p, g1, g2, €) and A € Z;,QXI, B e ngz, and C € Zg 2,

2. Algorithm 8 sets crs = G and sends crs to A. In addition, it sets i = 1, j = 1 and initializes a table T.
3. When algorithm A makes a Type-0 encoding query on tag, algorithm 8 does the following:
« Iftag ¢ T, algorithm algorithm 8B computes enc « [C;,j]l’ where ¢; j is the (i(Q — 1) + )M row

of C. Algorithm B then sets T[tag] :==jandi=i+1,j=j+1.

» Iftag € T, algorithm B computes enc « [clT.)T ]1. Algorithm 8B then sets i = i + 1.

[tag]
Algorithm 8 responds with enc.

4. Algorithm B answers all Type-1 queries with [x], where x < (Z;)z. At the end of the game,
algorithm 8B outputs what algorithm A outputs.

Let ay,...,ap € Z, be the entries of A and b}, ..., bTQ € Zf, be the rows of B. If C = A ® B, then cj = a,-b}.
Since p = 29| with overwhelming probability over the choice of B, it holds that A € (Z;)Q><1 and B €
(Z;;)QXZ. Now, if C = A ® B, algorithm B simulates the Hyb;, challenger (where g; is encoding randomness

on the i" query, and b} is the vector x associated with tag). If C is uniform, then algorithm 8 simulates the
Hyb, challenger. Thus, algorithm 8 breaks TDDHg ; o> with advantage that is negligibly close to §. O

Claim 6.13. Suppose the TDDHg 1,02 assumption holds in G, with respect to BilinearGroupGen. Then, for
all efficient adversaries A, there exists a negligible function negl such that for all A € N,

’Pr[Hyb{)(ﬂ) = 1] = Pr[Hyb,(A) = 1]’ = negl(A).
Proof. Suppose there exists an efficient adversary A that makes Q Type-1 encoding queries and distin-
guishes Hyb| and Hyb, with non-negligible probability §. We use A to construct an algorithm B that
breaks TDDHg 1,0,

1. At the beginning of the game, algorithm B gets a tuple (G, [A]2, [B]2, [C]2) from the TDDH chal-
2
lenger, where G = (G1, Gy, Gr, p, 91,92, €) and and A € Z§X1, B e ngz, and C € Zg 2

2. Algorithm B sets crs = G and sends crs to A. In addition, it sets i = 1, j = 1 and initializes tables Ty, T;.
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3. When algorithm A makes a Type-1 encoding query on tag, algorithm 8 does the following:

« If tag ¢ Ty, algorithm algorithm B computes enc « [C})j]g, where c; j is the (i(Q — 1) + ks

row of C. Algorithm B then sets Ty [tag] ;== jandi=i+1,j=j+1.

- If tag is in the table, algorithm B computes enc « [c] . 2. Algorithm B then sets i =i + 1.

[tag]]
Algorithm 8 responds with enc.
4. When algorithm A makes a Type-0 encoding query on tag, algorithm 8 does the following:

. Iftag ¢ Ty, algorithm B samples x < (Z;,)Z, s & Zy,, sets Ty[tag] := [x"]1, and responds with
enc « s[x'];.

« If tag is in the table, algorithm B samples s <- Zj, and outputs enc « s - Ty [tag].
5. At the end of the game, algorithm 8 outputs whatever algorithm A outputs.

Let ay,...,ap € Z, be the entries of A and b}, ..., bb € Zf, be the rows of B. If C = A ® B, then c},j = a,-b}.
Since p = 29D with overwhelming probability over the choice of B, it holds that A € (Z;‘,)QXl and B €

(Z;‘,)QXZ. Now, if C = A®B, algorithm 8 simulates the Hyb, challenger and if C is uniform, algorithm 8 sim-
ulates the Hyb; challenger. Thus, algorithm B breaks TDDHg 1 ¢ 2 with advantage negligibly close to §. O

The lemma follows from Claims 6.12 and 6.13 and a standard hybrid argument. m]
Lemma 6.14. For all admissible adversaries A, Pr[Hyb, (A) = 1] = Pr[Hyb,(A) = 1].

Proof. Since A is admissible, it does not make a Type-0 and a Type-1 encoding query on the same tag. Thus,
for any tag, algorithm A either observes a function of x only or a function of y only (but never both), where
x'y = 0. It remains to show that the marginal distribution of x and y individually is uniform over (Z;)Z:

« By construction x - (Z;;)z, so the marginal distribution of x is uniform.

« Consider the marginal distribution of y. First, y; ¢~ Z;. Next, yo = x, ' (=x191), where x, & Zj,.
Since x1,y; € Z;;, this means x;y; # 0, and so y, is uniform over Z;‘, and independent of y;.

We conclude that Hyb, and Hyb, are identical distributions, as required. O

Lemma 6.15. Suppose PRF is a secure pseudorandom function. Then, for all efficient adversaries A, there
exists a negligible function neg| such that for all A € N,

’Pr[Hybz(&Z{) = 1] = Pr[Hyb,(A) = 1]’ = negl(4).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb, and Hyb, with non-negligible
probability §. We use A to construct B that breaks PRF security of PRF:

1. At the beginning of the game, algorithm B gets 1* from the PRF challenger. B samples crs «
Setup(1*) and gives crs to A.

2. When A makes an encoding query on (tag, type), 8 queries the PRF challenger on tag to get
(x1,X2,y1) € (Z3)*. Algorithm B sets y, = x; ' (—x1y1), x = [3} ], and y = [}, ]. Finally, it sets
ency = [x];, and enc; = [y],. Finally, it samples s ¢~ Z;, and outputs s - enciype.
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3. At the end of the experiment, 8 outputs whatever A outputs.

If the challenger computes (x1, x2, y1) = f(tag) where f is a uniform random function from 7; — (Z;)3,
then algorithm 8 simulates an execution of Hyb,. If the challenger derives (x1, x3, y1) = PRF(K, tag), then
8B simulates an execution of Hyb,. Thus, 8 breaks security of PRF with advantage 6. O

Combining Lemmas 6.11, 6.14 and 6.15 yields the statement by a hybrid argument. O

6.2 Privately Testable Encoding from DDH

In this section, we describe how to construct a privately-testable encoding from prime-order pairing-free
groups.

Construction 6.16 (Privately Testable Encoding from DDH). Let A € N be a security parameter, d = d(1)
be a dimension parameter, GroupGen be a prime-order group generator. Let p = p(A) be the order of the
group output by GroupGen and let X = {(Z;( A))d} 1en be the input space. We construct our privately
testable encoding scheme ITptg = (Setup, SetupSF, Samp, SampSF, Encode, EncodeSF, Test) as follows:

« Setup(1%): On input the security parameter A, the setup algorithm samples G = (G,p,g) «
GroupGen(1*) and H & (Z;)dx‘i. It outputs crs = (G, [H)).

« SetupSF(1%): On input the security parameter A, the semi-functional setup algorithm samples
G = (G, p,g) < GroupGen(1*) and H & (Z;)dXd. Then it outputs crs = (G, [H]) and td = H.

« Samp(1*): On input the security parameter A, the sampling algorithm outputs u & (Z}‘;)d.

« SampSF(td,v): On input a trapdoor td and a vector v € (Z;‘,)d, the trapdoor sampling algorithm
outputs td, ¢ Vi,» where Vi, is the space of vectors orthogonal to Hv.

« Encode(crs,v): On input the common reference string crs and a vector v € (Z;;)d, the encode
algorithm samples s <~ Z,, and outputs s[Hv].

« EncodeSF(crs): On input the common reference string crs, the semi-functional encode algorithm
outputs [x] where x < (Z}“,)d.

« Test(crs,enc, tdy) — {0, 1}: On input the common reference string crs, an encoding enc = [u], and
a vector trapdoor tdy € (Z;)d, the testing algorithm outputs 1 if [td{u] = [0] and 0 otherwise.

Theorem 6.17 (Tester Correctness). Construction 6.16 satisfies tester correctness.
Proof. We show each property separately:

« Take any A € N and any (crs,td) in the support of SetupSF(1%). Then crs = (G, [H]) where
G = (G, p, g). Take any input v € (Z;)d and any encoding enc in the support of Encode(crs, v). This
means enc = s[Hv] for some s € Z. Let tdy «<— SampSF(td, v). By definition, tdy is orthogonal to
Hv. This means tdy - Hv = 0, and correspondingly, that tdy - (sHv) = 0. This means Test(crs, enc, tdy)
outputs 1, as required.

« For the second property, suppose crs < Setup(1%), enc « Encode(crs, v), and u « Samp(1%). In
this case, crs = (G, [H]) and enc = s|[Hv] where H & (Z;)dXd, s & Z,,and u & (Z;)d. Over the
random choice of u, the probability that u"THv = 0 is at most 1/(p — 1) = negl(1). Correspondingly,
Test(crs, enc,u) = 1 with negligible probability. ]
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Theorem 6.18 (Mode Indistinguishability). Suppose DDH holds with respect to GroupGen. Then, Construc-
tion 6.16 satisfies mode indistinguishability.

Proof. Suppose there exists an efficient adversary (A that makes Q encoding queries and wins the mode
indistinguishability game with non-negligible advantage §. We use A to construct an algorithm 8 that
breaks TDDHg 1 4.4

1. At the beginning of the game, algorithm B gets a tuple (G, [A], [B], [C]) from the TDDH challenger,
where G = (G, p,g) and A € Z}gﬂ, Be ng‘j, and C € ZZQXd. Parse C as the vertical concatenation
of Cy,...,Co where C; € ZZXd.

2. Algorithm 8B gives crs = (G, [B]) to A.
3. When A makes its i" encoding query on a vector v, algorithm 8 replies with enc = [C;] - v.
4. At the end of the game, algorithm 8 outputs whatever algorithm A outputs.

First, since p = 221, the uniform distribution over Zy, is statistically indistinguishable from the uniform
distribution over Z,. Thus, the components of the CRS are correctly distributed with overwhelming prob-
ability. Let ay, . .., ag be the entries of A. If C = A ® B, then C; = a;B. In this case, algorithm 8 responds to
the encoding queries according to Encode(crs, v), where a; is the encoding randomness. If C <~ ZZQXd is
uniform, then the encoding queries are implemented according to SetupSF(crs). Thus, algorithm $ breaks

TDDHg 1,44 With the same advantage 6. ]

Theorem 6.19 (k-Trapdoor Indistinguishability). Let A € N be the security parameter and d = d(A) > 2
for all A. Then, Construction 6.16 satisfies (w(log A) + 2 log p)-trapdoor uniformity.

Proof. We start by showing the following consequence of the leftover hash lemma (Corollary 2.9):

Lemma 6.20. Let F be a finite field, n > 2 be an integer, ¢ > 0 be fixed, and S C F \ {0} be a set. Suppose
X is a random variable over S™ such that Ho(X) > k > 2log|F| + 2log(1/¢). Then, the statistical distance
between the following distributions is at most €/2:

{y(LF"} and {yl&(vxl:)u—x},

where V' is the set of vectors that are orthogonal to x.

Proof. For any x € S", we can sample y* < VZ by sampling y7, ...,y , < F and setting
yr = x> xy)
i€e[n—1]

It suffices to show that 37! x;y; is statistically close to uniform over F. This follows by Corollary 2.9,
with n’ = n — 1 and min-entropy k — log |F| > log |F| + 2log(1/¢) (specifically, we treat yy, ..., y,—1 as the
seed for the extractor and x4, .. ., x,, as the randomness source). m]

Theorem 6.19 follows directly from Lemma 6.20 by taking log(1/¢) = w(log A) and n = d. Specifically, in
Construction 5.3, the matrix H ¢~ (Z;;)dXd sampled by Setup and SetupSF is full-rank with overwhelming

probability. In this case, if a random vector v € (Z;)d has k-bits of min-entropy, the vector Hv also has

k-bits of min-entropy (over Zg). ]
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A Transforming Adaptive Big-Key IBE to have Short Public Parameters

The work of [DGSW22] provide a generic transformation that takes any big-key IBE scheme with long public
parameters (that scale with the leakage bound), but where encryption and decryption only requires local
access to the public parameters, and transforms it into a big-key IBE scheme with short public parameters.
Their approach relies on a non-interactive secure computation (NISC) scheme. In this section, we show that
the same transformation preserves adaptive security. To do so, we first modify the NISC privacy definition
to a somewhat adaptive version. Then, in Appendix B, we show that the NISC construction of [CDG"17]
indeed satisfies the stronger variant (in fact, this fact is implicit in their existing analysis).

Definition A.1 (Non-Interactive Secure Computation in the RAM Model [CDG*17, adapted]). A non-
interactive secure computation scheme in the RAM model is a tuple of efficient algorithms IT\isc =
(Setup, EncData, EncProg, Decrypt) with the following syntax:

« Setup(1*) — crs: On input the security parameter A, the setup algorithm outputs a common reference
string crs.

« EncData(crs, D) — (dig, 5) On input the common reference string crs and the database D, the data
encryption algorithm outputs a digest dig and a database state D.

« EncProg(crs, dig, (P, x,t)) — ct: On input the common reference string crs, a digest dig, and a
program P with input x and maximum run-time ¢, the program encryption algorithm outputs a
ciphertext ct.
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. Decrypt5 (crs, ct) — y: On input the common reference string crs and a ciphertext ct, the decryption
algorithm outputs a string y. Additionally, the decryption algorithm has RAM access to a database
state D.

Moreover, IInisc should satisfy the following properties:

« Correctness: For all polynomials M = M(A), all security parameters A € N, all databases D € {0, l}M ,
and all RAM program tuples (P, x, t), it holds that

Pr[DecryptE(crs, ct) =PP(x)] =1,
where crs « Setup(1%), (dig, D) « EncData(crs, D), and ct «— EncProg(crs, dig, (P, x, t)).

« Privacy: There exists an efficient algorithm SimEnc that takes as input a common reference string
crs, a digest dig, a database D, an output string y, and a memory access pattern MemAccess, and
outputs a ciphertext ct. For a security parameter A € N and a bit b € {0, 1}, we define the privacy
game between an adversary A and a challenger as follows:

1. On input the security parameter 1%, algorithm A chooses a database D € {0, 1} and a program
P and a bound on the running time 1 to the challenger.

2. The challenger samples crs « Setup(1%) and (dig, D) « EncData(crs, D). It gives (crs, dig, D)
to A.

3. A sends an input x to the challenger.

4. If b = 0, the challenger computes ct « EncProg(crs, dig, (P, x,t)). If b = 1 the challenger
computes ct «— SimEnc(crs, dig, D, y, MemAccess), where y = PP (x) and MemAccess is the
memory-access pattern of PP (x). The challenger sends ct to A.

5. Algorithm A outputs a bit b” € {0, 1}, which is the output of the experiment.

We say Il\isc satisfies privacy if there exists a negligible function negl(-) such that for all efficient
adversaries A in the above privacy game,

IPr[p’ =1 b=0] —Pr[b’ =1 b = 1]| = negl(}).

In this definition, the database D, the program P, and the running time t are committed to ahead of
time. However, the input x is chosen adaptively.

+ Efficiency: The length of dig output by EncData(crs, D) is a fixed polynomial in A (independent of
|D|). The algorithm EncData runs in time M - poly(A, log M). The algorithms EncProg, Decrypt run
in time ¢ - poly(4, log M).

The [DGSW22] transformation. We now recall the the transformation from [DGSW22], which takes
as input a big-key IBE scheme Iy g = (Setup, KeyGen, Encrypt, Decrypt) with large public parameters
pp € {0, 1}" and compiles it into one with short public parameters:

Construction A.2 (Big-Key IBE with Small Public Parameters [DGSW22]). Let A € N be a security pa-
rameter, £ be a fixed leakage parameter, and N = N (A, £) be a key size parameter. Let 7D = {7 D)} en
be the identity space. The construction relies on the following primitives:
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« Let II;gg = (IBE.Setup, IBE.KeyGen, IBE.Encrypt, IBE.Decrypt) be a big-key IBE scheme.

« Let IInisc = (NISC.Setup, NISC.EncData, NISC.EncProg, NISC.Decrypt) be a NISC scheme in the
RAM model.

We construct the big-key IBE scheme ITpyge = (Setup, KeyGen, Encrypt, Decrypt) as follows:
« Setup(1%,1%): On input the security parameter A, the setup algorithm proceeds as follows:

1. Sample (ppgg, mskige) < IBE.Setup (14, 1¢) and crsyisc < NISC.Setup(174).
2. Compute (dig, pp) < NISC.EncData(crsnisc, ppigg)-

Output pp = (crsnisc, dig) and msk = (mskgg, pp).

« KeyGen(msk,id): On input the master secret key msk and an identity id € 7 D,, the key generation
algorithm computes skig < IBE.KeyGen(mskgE, id) and outputs (skig, pp;q), Where pp;4 is the part
of pp accessed by NISC.Decrypt, which depends on id.

« Encrypt(pp, id, m): On input the public parameters pp, an identity id € 7 D,, and a message m, the en-
cryption algorithm outputs NISC.EncProg(crsnisc, dig, (IBE.Encrypt, (id, m), t)), where IBE.Encrypt
is considered a RAM program that accesses D = pp;e and t is a bound on its run-time.

« Decrypt(skig, id, ct): On input an identity secret key skig = (ski'd, PPiq)s an identity id € 7D,, and a
ciphertext ct, the decryption algorithm outputs IBE.Decrypt(sk;, id, NISC.Decrypt(crsnisc, ppig, t)),
where the extra input pp,4 replaces the RAM access to pp.

Theorem A.3 (Correctness). Suppose Iljgg, lINisc are correct. Then, Construction A.2 is correct.

Proof. Take any security parameter A, identity id € 79,, and message m. Let (pp, msk) « Setup(1%, 1¢),
where pp = (crsnisc, dig), msk = (mskige, pp), (skid, ppiq) < KeyGen(msk, id), ct < Encrypt(pp, id, m).
Consider the output of Decrypt(skiq, id, ct):

« By construction of KeyGen, skiq is an honestly generated identity key and pp,4 can replace RAM
access to pp.

« By construction of Encrypt, ct is an honest encryption of IBE.Encrypt on message m.

« By correctness of IInisc, NISC.Decrypt(crsnisc, pp;g» ct) yields the output of IBE.Encrypt(pp, id, m),
and by correctness of ITjgg, IBE.Decrypt(skiq, id, IBE.Encrypt(pp, id, m)) = m with overwhelming
probability, as desired. O

Theorem A.4 (Adaptive Advantage-Checker Security under Bounded Leakage). Suppose for all polynomially-
bounded t = £(A), I1jgg is adaptively advantage-checker secure under bounded leakage with challenge parameter

k. Suppose also that Inisc satisfies privacy. Then, Construction A.2 is adaptively advantage-checker secure
under bounded leakage with challenge parameter k.

Proof. We define a sequence of hybrid experiments, each parameterized (implicitly) by an adversary
A = (Ap, Ay) and an advantage threshold function ¢ = £(A):

+ Hyb,: This is the adaptive advantage-checker security game from Definition 3.1, which we recall
in full below:
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Setup: The challenger samples the components (pp,gg, mskigg) < IBE.Setup (1%, 1°), crsnisc
NISC.Setup(1%), and It then computes (dig, pp) < NISC.EncData(crs, pp,gg). It sets

pp = (crsnisc, dig)  and  msk = (mskgg, pp)

and gives pp to A.

Pre-leakage queries: When algorithm A; makes a query on id € 79,, the challenger com-
putes skig < IBE.KeyGen(mskgE, id) and replies with (skiq, pp;q)-

Leakage: After A; outputs the description of an efficiently-computable leakage function f,
the challenger replies with leak « f(msk).

Post-leakage queries: The challenger responds to post-leakage key queries exactly as in the
pre-leakage phase.

Challenge: Algorithm A, outputs a set J C 7D, of size > k, two messages mg, m;, and a
state st.

Output: The output of Hyb is b’ = 1 if A is admissible and
Vid € J : Adeheckﬂz(l’l, 1Y/, id, msk, pp, st, leak) = 1, (A1)

and b’ = 0 otherwise. The advantage-checker algorithm AdvCheck is defined as follows:

Inputs: security parameter A, threshold ¢ € (0, 1), identity id € 7 D,, master secret key
msk = (mskigg, pp), public parameters pp = (crsnisc, dig), state st, string leak, and (oracle)
access to an algorithm A

« Let T = A/¢? and initialize a counter WINS « 0.

« The advantage-checker algorithm now simulates T independent executions of
experiment Exp'd(msk, pp, st, leak) for algorithm A.
1. Sample B & {0, 1}.

2. The challenger computes
ct < NISC.EncProg(crsnisc, dig, (IBE.Encrypt, (id, mp), t)).

Run A on input (st, id, ct).

3. Whenever algorithm A makes a key-generation query on an identity id € 7 D),
the challenger computes skiq < IBE.KeyGen(msk g, id) and replies to A with
(skid, PPig)-

4. After A has finished making key-generation queries, it outputs a bit ” € {0, 1}.

5. If B = f’, then increment WINS « WINS + 1.

+ Output 1 if WINS > % + % and 0 otherwise.

Figure 9: Function AdvCheck? (1’1, 1Y€ id, msk, pp; st, leak) in Construction A.2
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+ Hyb,: Same as Hyb,, except the challenger constructs the challenge ciphertext ct in the procedure
AdvCheck”™ as ct « SimEnc(crsyisc. dig, ppige. Y. MemAccess), where the output y is computed as
y < IBE.Encrypt(pp g, id, mg) and MemAccess is the memory access pattern for IBE.Encrypt.

For an adversary A = (A;, Az), we write Hyb, (A, ¢) to denote the output of Hyb, with adversary A and
inner threshold function ¢. Our goal is to show that for all efficient adversaries A and all inverse polynomial
functions e = 1/poly(1), Pr[Hyb,(A, ¢) = 1] = negl(1). We proceed via a hybrid argument.

Lemma A.5. Suppose that II\isc satisfies privacy. Then, for all efficient and admissible adversaries A and
inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function negl such that for all A € N,

Pr[Hyb, (A, ¢) = 1] > Pr[Hyb,(A, ¢) = 1] — negl(4).
Proof. We define a sequence of intermediate hybrids:

« Hyb, , : Same as Hyb,. Notably, the challenge ciphertext is sampled as
ct « NISC.EncProg(crsnisc, dig, (IBE.Encrypt, (id, m), t)),

where components are defined as in Hyb, in AdvCheck.

« Hyb,; ;: Same as Hyb, except for all (i’, j*) such that i’ < iori’ =i, j' < j, we sample the challenge

sth

ciphertext in the j''! execution of Exp'd=71"'] in AdvCheck as

ct < SimEnc(crsnisc, dig, pp ge, Y» MemAccess),

where y « IBE.Encrypt(ppg. id, mg) and MemAccess is the memory access pattern for the program
IBE.Encrypt which can be computed given id. Note that Hyb, ; 7 is the same as Hyb, and that Hyb,, ;
is the same as Hyby;,, , for i € [k —1].

We now appeal to privacy of ITyjsc to show that Hyb
foralli e [k],j e [T].

0.i,; and Hyb, ; ;_, are computationally indistinguishable
Claim A.6. Suppose the conditions in Lemma A.5 hold. Then foralli € [k], j € [T], all efficient and admissible

adversaries A and inverse polynomial functions ¢ = 1/poly(A), there exists a negligible function negl such

that forall A € N,
Pr[HybO,i,j(ﬂ, ) =1] > Pr[HybO,i’j_l(ﬂ, ) = 1] — negl(A).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb, and Hyb, with non-negligible
probability §. We use A to construct algorithm B that breaks privacy of IIy;sc:

1. Algorithm B samples (ppgg, mskie) < IBE.Setup(1%,1°) and gives (pp,g, IBE.Encrypt, t) to the
privacy challenger, where t is a bound on the run-time of IBE.Encrypt. The challenger replies with
a tuple (crsnisc, dig, pp)-

2. Algorithm B sets pp = (crsnisc, dig) and msk = (mskgg, pp) and gives pp to A.

3. When algorithm A issues a key-generation query on an identity id, algorithm 8 queries its challenger
to get skig « IBE.KeyGen(mskgg, id). Algorithm B replies to A with (skig, pp,q), where ppq4 is
defined as in Construction A.2.
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4. When algorithm A outputs an efficiently-computable leakage function f, algorithm 8 replies with
leak = f(msk). In the challenge phase, algorithm A outputs J C 7D, of size at least k, messages
mg, my, and a state st.

5. For all (i, j’) such that i’ < iori’ =i, j < j, algorithm B samples the challenge ciphertext in the
j'™ execution of Exp71"'! in AdvCheck as ct « SimEnc(crsyisc, dig, PPise> Y- MemAccess), where
B < {0,1}, y « IBE.Encrypt(ppge, J [i’], mp), and MemAccess is the memory access pattern for

the program IBE.Encrypt.

6. For the j™ execution of Expj[i], algorithm B samples B <~ {0,1} and sends x = (J[i], mg) to the
privacy challenger. Algorithm B uses the response ct from the privacy challenger as the challenge
ciphertext in this execution.

7. In the remaining executions of Exp ('] in iterations of AdvCheck, algorithm B computes challenge
ciphertexts as ct « NISC.EncProg(crsnisc, dig, (IBE.Encrypt, (J [i'], mg), 1)), where f < {0,1}.
Algorithm 8B outputs the output of the experiment.

If ct from the privacy challenger is constructed using NISC.EncProg, algorithm 8 simulates Hyb,; ;_; for

A. If ct from the privacy challenger is constructed using SimEnc, algorithm 8 simulates Hyb,,; ; for A.
Thus, algorithm B breaks privacy of IIyjsc with advantage &, as desired. O
The lemma now follows from Claim A.6 and a standard hybrid argument. m]

Lemma A.7. Suppose for all polynomially-bounded ¢ = £(A), g is k-adaptively advantage-checker secure
under bounded leakage. Then, for all efficient and admissible adversaries A and inverse polynomial functions
¢ = 1/poly(A), there exists a negligible function negl such that for all A € N,

Pr[Hyb, (A, ¢) = 1] = negl(A).

Proof. Suppose there exists an efficient and admissible adversary A such that Pr[Hyb, (A, ¢) = 1] = J for
some non-negligible 6. We use A to construct algorithm $ that breaks the k-adaptive advantage-checker
security under bounded leakage of II|g:

« Setup: The challenger for IIjg¢ starts by sampling (pp,gg, mskige) < IBE.Setup(1%,1¢) and gives
ppige to algorithm B. Algorithm B samples crsyisc < NISC.Setup(1%) and computes (dig, pp) <
NISC.EncData(crsnisc, ppjge)- Algorithm B gives pp = (crsnisc, dig) to A.

+ Key-generation queries: When algorithm A issues a key-generation query on an identity id,
algorithm B queries its challenger to get skiq < IBE.KeyGen(mskigg, id). Algorithm B replies to A
with (skid, pp;q), Where pp,4 is defined as in Construction A.2.

+ Leakage: When algorithm A outputs the description of an efficiently-computable function f with
output length at most ¢, algorithm 8 gives the same function to its challenger to get leak := f(msk).
Algorithm B gives leak to A.

« Challenge: Algorithm B outputs the same set J C 7D, and messages (mg, m;) that A outputs.

+ Output: When constructing a challenge ciphertext for identity id € J in some iteration of AdvCheck,
algorithm B takes the challenge ciphertext ct from its challenger and computes

ct’ « SimEnc(crsnisc, dig, ppige, ¢t, MemAccess),
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where MemAccess can be computed given id. Algorithm 8 gives ct’ to A and outputs the same bit

p’ as A.
Since algorithm B perfectly simulates the experiment for A and answers the same way, the probability
of the k-adaptive advantage-checker experiment outputting 1 is §, as desired. O
Combining Lemmas A.5 and A.7 yields the statement by a hybrid argument. O

Corollary A.8 (Adaptive Security under Bounded Leakage). Suppose the conditions in Theorem A.4 hold.
Then, Construction A.2 is adaptively secure under bounded leakage for the same k as in Theorem A.4.

Proof. Follows immediately from Theorem 3.4. O

NISC instantiations. As seen in Appendix B, the core primitive needed to build a NISC for our pur-
poses is a laconic oblivious transfer scheme. We remark that such a primitive can be constructed from
DDH [CDG*17] or LWE [QWW18], so this transform retains our instantiation statements from Section 6.

B NISC in the RAM Model with Adaptive Privacy

We show how to achieve Definition A.1 via the NISC construction of [CDG*17]. To do so, we define laconic
oblivious transfer and garbled circuits for convenience below.

Definition B.1 (Laconic Oblivious-Transfer [CDG*17]). A laconic oblivious transfer scheme is a tuple of
efficient algorithms ITor = (Setup, Hash, Send, Receive) with the following syntax:

« Setup(1?) — crs: On input the security parameter A, the setup algorithm outputs a common reference
string crs.

« Hash(crs, D) — (dig, 5): On input the common reference string crs and a database D € {0, 1}, the
hashing algorithm outputs a digest dig and a database state D.

« Send(crs, dig, L, mp, m;) — ct: On input the common reference string crs, a digest dig, a database loca-
tion L € N, and a pair of messages (my, m;) each of length A, the send algorithm outputs a ciphertext ct.

« Receive? (crs, ct,L) — m: On input the common reference string crs, a ciphertext ct, and a database
location L € N, the receive algorithm outputs a message m. Additionally, the receive algorithm has
RAM access to a database state D.

Moreover, I1gt should satisfy the following properties:

. Correctness: For all security parameters A € N, all databases D € {0,1}™ (where M = poly(1)
for any polynomial poly(-)), any memory location L € [M], and any pair of messages (mg, m;) €
{0, 1}* x {0, 1}, it holds that

Pr[ReceiveB(crs, Send(crs, dig, L, mg, my),L) = mp[]] = 1,

where crs « Setup(1*) and (dig, 5) «— Hash(crs, D).
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« Sender privacy against semi-honest receivers: There exists an efficient algorithm OTSim that
takes as input a common reference string crs, a database D, a location L, and a message m, and
outputs a ciphertext ct. A laconic OT scheme satisfies sender privacy if for all security parameters
A €N, all databases D € {0, 1} with M = poly(2), all locations L € [M], and any pair of messages
(mg, my) € {0, 1}’1 x {0, 1}’1, it holds that the distributions

(crs, Send(crs, dig, L, mg, my)) and (crs, OTSim(crs, D, L, mp[r}))

are computationally indistinguishable, where crs < Setup(1%) and (dig, 5) «— Hash(crs, D).
« Efficiency: The length of dig output by Hash(crs, D) is a fixed polynomial in A, independent of |D|.

Definition B.2 (Garbled Circuits [Yao82, LP09]). A circuit garbling scheme is a tuple of efficient algorithms
IIgc = (Garble, Eval) with the following syntax:

. Garble(l’l, C, {keyw’b}weinp(c)’be{o,l}) — C: On input the security parameter A, a circuit C, and a set
of labels key, , for all the input wires w € inp(C) and b € {0, 1}, the garbling algorithm outputs a

garbled circuit C. Here, inp(C) denotes the indices corresponding to the input wires of C.

. Eval(a {key ,x., }weinp(c)) — y: On input a garbled circuit Canda garbled input {key,, . }weinp(c))
the evaluation algorithm outputs a string y.

Moreover, IIgc should satisfy the following properties:

« Correctness: For all security parameters A € N, all circuits C with input length m = poly(2), all
inputs x € {0, 1}™, it holds that

Pr[c(x) = Eval(a {keyW,xw}WGinp(C))] = ls

where C « Garble(1%,C, {key . »tweinp(C).bef01})-

« Security: There exists an efficient algorithm GCSim such that for all circuits C with input length
m = poly(4), all inputs x € {0,1}™, and uniformly-random keys {key, , }weinp(c).bef01}, it holds
that the distributions B

(C.{key,,». }weinp(c))) and GCSim(1%,C, )

are computationally indistinguishable, where C «— Garble(14,C, {key,, »}weinp(C).befo1)) and y =

C(x).

Simplified garbled circuit notation. For simplicity in the following construction, we will write Keys to
denote the list of all input labels {key,, , } weinp(c).pe (0,1} and Keys, to denote the labels {key , .. }weinp(c))
associated with the input x.

B.1 RAM Model of Computation

We briefly define the RAM model of computation. Parts of this subsection are taken from [CDG"17]. For
our purposes, we only need to support read operations.

75



Notation. The RAM model consists of a CPU and a memory storage of size M. The CPU executes a
program that can access the memory by using read operations. In particular, for a program P with memory
of size M we denote the contents of the memory data by D € {0, 1}*. Additionally, the program gets a
“short” input x € {0, 1}, which is also considered the initial state of the program. We use PP (x) to denote
the execution of P with memory contents D and input x. The program P can read from various locations
in D throughout its execution.

CPU-step circuit. We represent a RAM program P via t CPU-step circuits, each of which executes a
single CPU step. Each CPU step is denoted by:

CgPU (st,rData) — (st’,L)

The circuit takes as input the current CPU state st and a bit rData. The bit rData will be read from the
memory location that was requested by the previous CPU step. The circuit outputs an updated state st’

and the next location to read from L € [M]. The sequence of locations form the memory access pattern
MemAccess = {L,...,L'}.

Representing RAM computation by CPU-step circuits. The computation PP (x) starts with an initial
state st; = x. In each step 7 € {1, ..., t}, the computation proceeds as follows: If 7 = 1, then rData” := 0;
otherwise rData’ := D[L7"!]. Next it executes the CPU-step circuit CE,  (st?, rData?) = (st™!, L7). When
T = t, st™! is the output of the program.

CPU

B.2 Construction of NISC in the RAM Model

In this section, we now recall the NISC construction from [CDG"17]. As noted above, we only need to
support read-only RAM machines.

Construction B.3 (NISC in the RAM Model [CDG"17, adapted]). The construction relies on the following
primitives:

o Let ot = (OT.Setup, OT.Hash, OT.Send, OT.Receive) be a laconic OT scheme.
« Let IIgc = (Garble, Eval) be a circuit garbling scheme with key length k = k(4).
We construct the NISC scheme IIyisc = (Setup, EncData, EncProg, Decrypt) as follows:

« Setup(1%): On input the security parameter A, the setup algorithm samples crs « OT.Setup(1*) and
outputs crs.

» EncData(crs, D): On input the common reference string crs and a database D, the data encryption
algorithm computes (dig, D) « OT.Hash(crs, D) and outputs (dig, D)

« EncProg(crs, dig, (P, x,t)): On input the common reference string crs, a digest dig, and a program
P with input x € {0, 1}’" and maximum run-time ¢, the program encryption algorithm does the
following:

1. Forall 7 € [t + 1], sample (stKeys?, dataKeys?, digKeys?) & {0, 1} (2m+2+2ldighk
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2. For all ¢ € [t], compute 5sftep — Garble(l’l, Csteplcrs, P, Keys™1], Keys?), where we have
Keys™ = (stKeys®, dataKeys", digKeys”) and Csep [crs, P, nextKeys] is defined as follows:

Hard-wired: CRS crs, program P, keys nextKeys = (stKeys, dataKeys, digKeys)
Input: state st, data rData, digest dig

(a) Compute (st’,L) « CgPU(st, rData).

(b) Compute ct; « OT.Send(crs, dig, L, dataKeys).

Output ((stKeys,, ctr, digKeysg;,), L)

Figure 10: Description of step circuit Csiep [ crs, P, nextKeys].

For 7 = 1, embed labels digKeyséig ,dataKeys;, and stKeys. in Csltep.

Output ct = ({5§tep}re[t], stKeys'*?).

. Decryptﬁ(crs, ct): On input the CRS crs and a ciphertext ct = ({5sftep},€[t], stKeys’*!), the decryption
algorithm does the following:

1. Parse CL

step = (@tep,digLabelsl, datalLabels!, stLabels!).

2. For each 7 € [t] in ascending order do the following:

(a) Compute (X,L) « Eval(CF, (stLabels?, datalLabels®, digLabels?)).

step’
(b) Parse X = (stLabels™, ct;, digLabels™') and compute

dataLabels™! « OT.Receive” (crs, ctr, L).
Output y by using stKeys’*! to decode stLabels’*".
Theorem B.4 (Correctness). Suppose Ilgc and Ilor satisfy correctness. Then, Construction B.3 is correct.

Proof. Take any security parameter A € N, database D € {0, 1}, and RAM program tuple (P, x,t). Let
crs «— SAetup(l’l), (dig, 5) «— EncData(crs, D), and ct < EncProg(crs, dig, (P,x,t)). When evaluating
Decrypt? (crs, ct), IIgc correctness ensures that each step outputs the correct labels for the next step, while
IIot correctness ensures that the correct data labels are retrieved. At the end of this evaluation process,
the keys given in ct can decode the final state of the CPU-step circuit, which is y = PP (x). O

Theorem B.5 (Privacy). Suppose ot satisfies sender privacy and llgc is secure. Then, Construction B.3 is
private.

Proof. We first define the simulator SimEnc. On input the common reference string crs, a digest dig, a
database D, an output string y, and a memory access pattern MemAccess = {L,..., L}, the simulator does
the following:

1. Sample hard-wired keys (stKeys'*!, dataKeys'"!, digKeys'*!) & {0, 1}2m+2+2ldigDk for Cg) and

set output labels to stLabels’™! « stKeysy'™, datalabels’™! « dataKeysg[lL,], digLabels™™! «

t+1

digKeysdig.
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2. Fort=t,t—1,...,1, proceed as follows:

(a) Compute ctyr « OTSim(crs, D, L7, dataLabels™!) and set X « (stLabels™?, ct; -, digLabels™").
(b) Compute (5§tep, stLabels?, datalLabels®, digLabels®) « GCSim(l’l, Cstep (X, L7)).

Output ct = ({g_ftep}re[t], stKeys’*1).
To show SimEnc indeed satisfies privacy, we define a sequence of hybrid experiments:

+ Hyb,;: This is the privacy game from Definition A.1, with the following modified ct generation
procedure in Step 4:

1. Execute PP(x) to obtain MemAccess = {L!,..., L} and set y « st’*!. Additionally, compute
rData’ at the beginning of step 7 for 7 € [t + 1].
2. For 7 = t + 1 down to i + 1, sample (stKeys”, dataKeys®, digKeys®) & {0, 1} (2m+2+2ldigh)k_

3. For 7 = t down to i + 1, compute CsTtep — Garble(1%, Csteplers, P, Keys™1'], Keys”), where we
i+1

have Keys” = (stKeys®, dataKeys’, digKeys") and Citep is defined as in Fig. 10. Set stLabels"™" «
stKeys*! | datalabels™' « dataKeys'"! and digLabels™! « digKeys"'!

sti+l? rData’*!’ dig*
4. For 7 = i down to 1, proceed as follows:

(a) Compute the ciphertext ct;r « OTSim(crs, D, L7, dataLabels™?') and set the tuple X «
(stLabels™?, cty-, digLabels™?).

(b) Compute (5§tep, stLabels”, dataLabels”, digLabels”) « GCSim(1%, Cstep (X, L7)).

Embed digLabelsl, datalabels!, stLabels! in Cgtep.

Output ct = ({thep}re[t], stKeys’*1).
+ Hyb,;,: Same as Hyb,; except

~i+1
(Cétep’

stLabels™*!, dataLabels™?, digLabelsM) — GCSim(lA, Csteps ((stKeys;r,iz,cth, digKeyséTf),Lm)),

where cty i1 < OT.Send(crs, dig, Li*!, dataKeys'™*?) and (stKeys'*?, dataKeys'*?, digKeys'**) are the

input keys to Céfezp.

Note that Hyb, is the privacy game with EncProg used to generate the challenge ciphertext, and Hyb,, is
the privacy game with SimEnc used to generate the challenge ciphertext. We will appeal to security of Ilgc
to show that Hyb,; and Hyb,, , are computationally indistinguishable for all i € [0, t — 1]. We will then
appeal to sender privacy of Ilot to show that Hyb,;,, and Hyb,,,, are computationally indistinguishable
foralli e [0, —1].

Lemma B.6. SupposeIlgc satisfies security. Then, foralli € [0,t—1], Hyb,;, and Hyb,,,, are computationally
indistinguishable.

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb,; and Hyb,; ; with non-
negligible probability §. We use A to construct B that breaks security of IIgc:

1. At the beginning of the game, 8 gets D € {0, 1} and (P,t) from A. Algorithm B samples
crs « Setup(1%), computes (dig, D) « EncData(crs, D), and gives (crs, dig, D) to A.

78



2. Given input x from (A, algorithm B runs the ct generation procedure as in Hyb,,, except the compo-

nents (Cif1  stLabels'!, dataLabels', digLabels'*!) are generated by sending Cyep [crs, P, Keys*?]

step’ i )
and input (st'*!, rData’!, dig) to the garbled circuit challenger and using the response.

3. Algorithm B gives ct to A and outputs whatever A outputs.

If (Cit}  stLabels™!, datalabels™!, digLabels™!) from the garbled circuit challenger are generated honestly,

step’
8 simulates Hyb,; for A. If the components from the garbled circuit challenger are generated via GCSim,
8B simulates Hyb,,,, for A. Thus, B breaks security of IIgc with advantage J, as desired. |

Lemma B.7. Suppose Ilot satisfies sender privacy. Then, for alli € [0,t — 1], Hyb,, , and Hyb,,,, are
computationally indistinguishable.

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb,;,, and Hyb,, , with non-
negligible probability §. We use A to construct B that breaks sender privacy of IIot:

1. At the beginning of the game, algorithm B gets D € {0, 1} and (P, t) from A.

2. For 7 = t+1 down to i +2, algorithm B samples (stKeys?, dataKeys, digkeys?) & {0, 1} (2m+2+2ldigDk
Algorithm 8 also samples L*! & [M] and sends (D, L™*', (mg, m;) = dataKeys'*?) to the sender
privacy challenger to get back (crs, ct;u1). Algorithm B computes (dig, D) « EncData(crs, D) and
sends (crs, dig, D) to A.

3. Given input x from algorithm A, algorithm B executes PP (x) to obtain MemAccess and check if
L™*! matches the i + 1 entry of MemAccess. If the entries do not match, 8 outputs L. Otherwise, 8
runs the ct generation as in Hyb,,,, with the crs, ct;i1, and (stKeys?, dataKeys®, digKeys”) ;e[42.141]
components as above.

4. B gives ct to A and outputs whatever A outputs.

If the tuple (crs, ctyi1) from the sender privacy challenger is generated honestly, 8 simulates Hyb,, , for
A when it does not abort. If (crs, ctyi+1) is generated with OTSim, B simulates Hyb,,,, for A when it does
not abort. Thus, B breaks sender privacy of [Tot with advantage & conditioned on the guess for L™*! being
correct. Since L'*! is sampled uniformly and is independent of A’s view, B breaks sender privacy with
advantage at least 6/ M, which is still non-negligible since M = poly(2). ]

Combining Lemmas B.6 and B.7 yields the statement by a hybrid argument. O
Theorem B.8 (Efficiency). Suppose Ilot satisfies efficiency. Then, Construction B.3 is efficient.

Proof. Follows immediately from the efficiency of I1or. O
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