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A b s t r a c t

Gi v e n a n o n- n e g a ti v e n × n m a t ri x vi e w e d a s a s e t of di s t a n c e s b e t w e e n n p oi nt s, w e c o n si d e r t h e
p r o p e r t y t e s ti n g p r o bl e m of d e ci di n g if i t i s a m e t ri c. We al s o c o n si d e r t h e s a m e p r o bl e m f o r t w o s p e ci al
cl a s s e s of m e t ri c s — t r e e m e t ri c s a n d ul t r a m e t ri c s. F o r g e n e r al m e t ri c s, o u r p a p e r i s t h e fi r s t t o c o n si d e r
t h e s e q u e s ti o n s. We p r o v e a n u p p e r b o u n d of O ( n 2 / 3 / ε 4 / 3 ) o n t h e q u e r y c o m pl e xi t y f o r t hi s p r o bl e m.
O u r al g o ri t h m i s si m pl e, b u t t h e a n al y si s r e q ui r e s g r e a t c a r e i n b o u n di n g t h e v a ri a n c e o n t h e n u m b e r of
vi ol a ti n g t ri a n gl e s i n a s a m pl e. W h e n ε i s a sl o wl y d e c r e a si n g f u n c ti o n of n ( r a t h e r t h a n a c o n s t a nt, a s

i s s t a n d a r d ), w e p r o v e a l o w e r b o u n d of m a t c hi n g d e p e n d e n c e o n n of Ω ( n 2 / 3 ), r uli n g o u t a n y p r o p e r t y

t e s t e r s wi t h o ( n 2 / 3 ) q u e r y c o m pl e xi t y u nl e s s t h ei r d e p e n d e n c e o n 1 / ε i s s u p e r- p ol y n o mi al.
N e x t, w e t u r n t o t r e e m e t ri c s a n d ul t r a m e t ri c s. W hil e t h e r e w e r e k n o w n u p p e r a n d l o w e r b o u n d s, w e

c o n si d e r a bl y i m p r o v e t h e s e b o u n d s s h o wi n g e s s e nti all y ti g ht b o u n d s of Õ ( 1 / ε ) o n t h e s a m pl e c o m pl e xi t y.

We al s o s h o w a l o w e r b o u n d of Ω ( 1 / ε 4 / 3 ) o n t h e q u e r y c o m pl e xi t y. O u r u p p e r b o u n d s a r e d e ri v e d b y d oi n g
a m o r e c a r ef ul a n al y si s of a n a t u r al, si m pl e al g o ri t h m. F o r t h e l o w e r b o u n d s, w e c o n s t r u c t di s t ri b u ti o n s
o n N O i n s t a n c e s, w h e r e i t i s h a r d t o fi n d a wi t n e s s s h o wi n g t h a t t h e s e a r e n o t ul t r a m e t ri c s.

∗ U ni v e r si t y of P e n n s yl v a ni a.
† Si m o n s I n s ti t u t e, U C B e r k el e y ( o n l e a v e f r o m t h e U ni v e r si t y of P e n n s yl v a ni a ).
‡ U ni v e r si t y of P e n n s yl v a ni a.
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1 I n t r o d u c ti o n

Fi nit e m etri c s p a c e s i s a ri c h t o pi c at t h e i nt er s e cti o n of c o m bi n at ori c s, al g orit h m s, a n d g e o m etr y ( s e e [ 2 4 ,
2 5 , 2 1 ], a m o n g m a n y ot h er w or k s, f or g e n er al o v er vi e w s). I n a d diti o n t o t h eir i ntri n si c i nt er e st, a str o n g
m oti v ati o n f or st u d yi n g m etri c s p a c e s fr o m t h e t h e or eti c al c o m p ut er s ci e n c e p er s p e cti v e i s t h at a m etri c
s p a c e, or m etri c f or s h ort, d e fi n e s a q u a ntit ati v e m e a s ur e of di s si mil arit y. O n c e a m etri c o v er t h e o bj e ct s,
or p oi nt s, i s d e fi n e d, o n e c a n d e si g n al g orit h m s t o fi n d t h e m o st si mil ar o bj e ct s, p artiti o n t h e o bj e ct s, a n d
cl u st er t h e o bj e ct s. F or m all y, a m etri c s p a c e o n t h e gr o u n d s et [ n ] i s s p e ci fi e d b y a di s si mil arit y f u n cti o n
d : [n ] × [n ] → ❘ ≥ 0 w hi c h s ati s fi e s t hr e e a xi o m s (i) t h e f u n cti o n i s s y m m etri c, s o d (i, j ) = d ( j, i ), (ii) it i s
n o n- n e g ati v e wit h d ( i, j ) = 0 if a n d o nl y if i = j , a n d (iii) it s ati s fi e s t h e tri a n gl e i n e q u alit y: A f u n cti o n
d : [n ] × [n ] → ❘ ≥ 0 s ati s fi e s t h e tri a n gl e i n e q u alit y if a n d o nl y if ∀ i, j, k ∈ [n ], d (i, k) ≤ d (i, j ) + d (j, k ).

P r o p e rt y t e sti n g [7 , 2 8 ] i s a n at ur al al g orit h mi c fr a m e w or k f or st u d yi n g w h et h er t h e gi v e n m atri x c o n stit ut e s a
m etri c. H er e, w e c o n si d er r a n d o mi z e d ε -t e sti n g al g orit h m s t h at r e c ei v e bl a c k- b o x q u er y a c c e s s t o a n u n k n o w n
a n d ar bitr ar y n × n m atri x M . T h e g o al i s t o m a k e a s f e w q u eri e s a s p o s si bl e t o t h e e ntri e s of t h e m atri x
w hil e d e ci di n g w h et h er it s e ntri e s e n c o d e a f u n cti o n d w hi c h i s a m etri c or i s ε -f ar fr o m a m etri c ( m e a ni n g
t h at a n y m etri c d ′ : [n ] × [n ] → ❘ ≥ 0 di ff er s o n at l e a st ε -fr a cti o n of t h e n 2 i n p ut s). We r e m ar k t h at “ε -f ar n e s s ”
h er e, w hi c h i s t h e m o st n at ur al fr o m a pr o p ert y t e sti n g p er s p e cti v e, pr o vi d e s a n ℓ 0 - di st a n c e g u ar a nt e e, w hi c h
h a s s e e n a r e c e nt s ur g e of i nt er e st i n a p pr o xi m ati o n al g orit h m s [ 2 0 , 1 1 , 1 2 , 2 2 ]. O ur w or k gi v e s u p p er a n d
l o w er b o u n d s o n v ari o u s m etri c t e sti n g pr o bl e m s a n d c a n b e u s e d a s a s u bli n e a r -ti m e pr e pr o c e s si n g st e p, or
q ui c k “ s a nit y c h e c k, ” t o t h e m or e e x p e n si v e p ol y n o mi al-ti m e a p pr o xi m ati o n al g orit h m s.

A s w e d et ail i n S u b s e cti o n 1. 2, t h er e ar e a n u m b er of pri or w or k s t h at st u d y fi nit e m etri c s fr o m a pr o p ert y
t e sti n g p er s p e cti v e. D e s pit e t h e br o a d i nt er e st, t hi s w or k i s t h e fir st t o a d dr e s s w h at i s ar g u a bl y t h e m o st b a si c
m etri c t e sti n g q u e sti o n — c a n fi nit e m etri c s b e e ffi ci e ntl y t e st e d ? O ur m ai n al g orit h mi c r e s ult i s a n o n- a d a pti v e
m etri c t e sti n g al g orit h m t h at m a k e s O (n 2 / 3 / ε 4 / 3 ) q u eri e s. A s i s c o m m o n i n pr o p ert y t e sti n g, t h e al g orit h m i s
str ai g htf or w ar d a n d pr o c e e d s b y e x e c uti n g t w o c h e c k s:

1. It r a n d o ml y s el e ct s a s u b s et of O ( 1/ ε ) p oi nt s fr o m [ n ] a n d a s u b s et of O (n 2 / 3 / ε 1 / 3 ) p air s fr o m [ n ] × [n ],
a n d c h e c k s w h et h er t h e tri a n gl e f or m e d b y a p oi nt a n d p air vi ol at e s t h e tri a n gl e i n e q u alit y.

2. It s a m pl e s a r a n d o m s et of O (n 1 / 3 / ε 2 / 3 ) m a n y p oi nt s a n d c h e c k s w h et h er t h er e ar e t hr e e p oi nt s i n t hi s
s et t h at vi ol at e t h e tri a n gl e i n e q u alit y.

E v er y m etri c s p a c e will tri vi all y p a s s t h e a b o v e t e st s si n c e t h er e ar e n o vi ol ati o n s of t h e tri a n gl e i n e q u alit y.
T h e i nt er e sti n g a s p e ct of o ur a n al y si s, w hi c h c o n stit ut e s t h e m aj orit y of t h e t e c h ni c al w or k, e st a bli s h e s t h at if
n o vi ol ati o n s of t h e tri a n gl e i n e q u alit y ar e o b s er v e d wit h pr o b a bilit y 1 / 3, t h e f u n cti o n d : [n ] × [n ] → ❘ ≥ 0 i s
( al m o st) a m etri c. F urt h er m or e, w e s h o w t h at a l o w er b o u n d e st a bli s hi n g t h at ( u nl e s s t h e d e p e n d e n c e o n ε
b e c o m e s s u p er- p ol y n o mi al) a d e p e n d e n c e o n n 2 / 3 i s n e e d e d f or n o n- a d a pti v e al g orit h m s wit h o n e- si d e d err or.

N e xt, w e t ur n o ur att e nti o n t o t h e s p e ci fi c cl a s s e s of tr e e m etri c s a n d ultr a m etri c s. T h e s e w er e fir st st u di e d b y
P ar n a s a n d R o n [ 2 7 ] fr o m t h e pr o p ert y t e sti n g p er s p e cti v e a n d al s o r e c ei v e d r e c e nt att e nti o n fr o m t h e a b o v e-
m e nti o n e d w or k s o n a p pr o xi m ati o n al g orit h m s. Tr e e m etri c s ( al s o k n o w n a s a d diti v e m etri c s) a n d ultr a m etri c s
ar e s p e ci fi c s u b- cl a s s e s of m etri c s p a c e s t h at m a y b e r e pr e s e nt e d wit h p o siti v el y- w ei g ht e d tr e e s. P oi nt s i n
t h e m etri c c orr e s p o n d t o n o d e s i n a tr e e a n d di st a n c e s ar e m e a s ur e d b y t h e l e n gt h s of p at h s ( s e e S e cti o n 2
f or t h eir f or m al d e fi niti o n). I n t h eir w or k, [2 7 ] gi v e a n al g orit h m w hi c h s a m pl e s O ( 1 / ε 3 ) r a n d o m p oi nt s a n d
q u eri e s all p air wi s e f u n cti o n e v al u ati o n s ( u si n g O ( 1 / ε 6 ) q u eri e s) t o ε -t e st tr e e m etri c s a n d ultr a m etri c s. We
i m pr o v e u p o n t h eir d e p e n d e n c e i n t h e f oll o wi n g w a y: w e s h o w t h at, f or b ot h tr e e m etri c s a n d ultr a m etri c s, it
s u ffi c e s t o t a k e Õ ( 1 / ε ) s a m pl e s a n d q u er y all Õ ( 1 / ε 2 ) p air wi s e e v al u ati o n s. F urt h er m or e, w e s h o w a s a m pl e
c o m pl e xit y l o w er b o u n d of Ω( 1 / ε ) (i. e., t e sti n g al g orit h m s m u st i nt er a ct wit h at l e a st t h e s e m a n y p oi nt s),
a n d a Ω( 1 / ε 4 / 3 ) l o w er b o u n d o n t h e q u er y c o m pl e xit y. H e n c e, o ur al g orit h m s ar e s a m pl e- o pti m al ( u p t o
p ol yl o g ( 1 / ε ) f a ct or s), a n d t h e Ω( 1 / ε 4 / 3 ) q u er y l o w er b o u n d r ul e s o ut w h at i s oft e n t h e “ b e st c a s e ” s c e n ari o
i n pr o p ert y t e sti n g, w hi c h i s a n Θ( 1/ ε )- q u er y t e st er.

C o p y ri g h t © 2 0 2 5 b y S I A M
U n a u t h o ri z e d r e p r o d u c ti o n of t hi s a r ti cl e i s p r o hi bi t e d4 0 4

Do
wn

lo
ad

ed
 0

6/
08

/2
5 
to

 1
51

.1
97

.3
.8

4 .
 

Re
di

st
ri

bu
ti

on
 s

ub
je

ct
 t

o 
SI

A
M 
li

ce
ns

e 
or
 c

op
yr

ig
ht
; 

se
e 

ht
tp

s:
//

ep
ub

s.
si

a
m.

or
g/
te

r
ms

-p
ri

va
cy



1. 1   O u r C o n t ri b u ti o n s

T e s ti n g M e t ri c s. A s m e nti o n e d a b o v e, o ur w or k i s t h e fir st t o pr o v e u p p er a n d l o w er b o u n d s o n t h e q u er y
c o m pl e xit y of pr o p ert y t e sti n g of m etri c s p a c e s. We pr o vi d e t hr e e ( n o n- a d a pti v e) t e sti n g al g orit h m s f or t e sti n g
m etri c s, tr e e m etri c s, a n d ultr a m etri c s, al o n g wit h l o w er b o u n d s w hi c h s h o w t h at o ur r e s ult s ar e (i n c ert ai n
r e gi m e s) t h e b e st p o s si bl e. We b e gi n b y st ati n g o ur m ai n al g orit h mi c t h e or e m, w hi c h gi v e s a n al g orit h m f or
t e sti n g m etri c s u si n g O (n 2 / 3 / ε 4 / 3 ) q u eri e s.

T h e o r e m 1. 1. ( T e s ti n g M e t ri c s — U p p e r B o u n d ) F o r a n y l a r g e e n o u g h n ∈ ◆ a n d a n y ε ∈ ( 0, 1) , t h e r e
e xi st s a r a n d o mi z e d al g o rit h m t h at r e c ei v e s q u e r y a c c e s s t o a n u n k n o w n m at ri x M ∈ ❘ n × n a n d m a k e s
O (n 2 / 3 / ε 4 / 3 ) q u e ri e s wit h t h e f oll o wi n g g u a r a nt e e:

• If M d e fi n e s a m et ri c s p a c e o n [n ], t h e al g o rit h m o ut p ut s “ a c c e pt ” wit h p r o b a bilit y 1 .

• If M i s ε -f a r f r o m b ei n g b ei n g a m et ri c, t h e n t h e al g o rit h m o ut p ut s “ r ej e ct ” wit h p r o b a bilit y at l e a st 2 / 3 .

F u rt h e r m o r e, t h e al g o rit h m i s n o n- a d a pti v e (i. e., q u e ri e s m a d e d o n ot d e p e n d o n a n s w e r s t o p ri o r q u e ri e s ).

T h e al g orit h m t h at pr o v e s T h e or e m 1. 1 i s e s p e ci all y a p p e ali n g fr o m a str u ct ur al p er s p e cti v e d u e t o it s
si m pli cit y. B y e x e c uti n g o nl y t w o t y p e s of c h e c k s a n d o nl y O (n 2 / 3 / ε 4 / 3 ) q u eri e s, t h e al g orit h m g u ar a nt e e s
t h at a n y m atri x t h at p a s s e s t h e t e st i s ε - cl o s e t o a m etri c wit h hi g h pr o b a bilit y. O ur s e c o n d r e s ult s h o w s t h at
t h e d e p e n d e n c e o n t h e n u m b er of p oi nt s m u st b e n 2 / 3 u nl e s s o n e i s willi n g t o i n c ur s u p er- p ol y n o mi al f a ct or s
i n ε .

T h e o r e m 1. 2. ( T e s ti n g M e t ri c s — L o w e r B o u n d ) F o r a n y l a r g e e n o u g h n ∈ ◆ , l et ε = n − ν ( n ) w h e r e
ν (n ) = ( l o g l o g l o g n + 4) / l o g l o g n . A n y n o n- a d a pti v e, o n e- si d e d al g o rit h m w hi c h c a n ε -t e st w h et h e r a m at ri x
M ∈ ❘ n × n e n c o d e s a m et ri c m u st m a k e Ω( n 2 / 3 + 2 ν ( n ) / 3 ) q u e ri e s.

T h e l o w er b o u n d i m pli e s t h at, u nl e s s t h e d e p e n d e n c e o n ε bl o w s u p a n d b e c o m e s s u p er- p ol y n o mi al (i n
p arti c ul ar, at l e a st ( 1 / ε ) Ω ( 1 / ν ( n ) ) , t h e n a d e p e n d e n c e of n 2 / 3 i s u n a v oi d a bl e. I n ot h er w or d s, o n e c a n n ot
h o p e f or a n al g orit h m w h o s e c o m pl e xit y i s O (n .6 5 / ε c ) f or a n y fi x e d c o n st a nt c > 0. T h e pr o of st e m s fr o m a
c o n n e cti o n b et w e e n t e sti n g m etri c s p a c e s a n d tri a n gl e-fr e e n e s s t e sti n g; w e will c o n str u ct m atri c e s M ∈ ❘ n × n ,
w hi c h m a s q u er a d e a s m etri c s t o l o w- q u er y al g orit h m s, b y utili zi n g c ert ai n B e hr e n d gr a p h s t h at h a v e pr e vi o u sl y
a p p e ar e d f or pr o vi n g l o w er b o u n d s o n t e sti n g tri a n gl e-fr e e n e s s i n gr a p h s [ 2 , 1 ]. T h at w or k, i n S e cti o n 6, s h o w s
a r e d u cti o n fr o m o n e- si d e d tri a n gl e-fr e e n e s s t e st er s t o t w o- si d e d tri a n gl e fr e e n e s s t e st er s, w hi c h w e b eli e v e
a p pli e s m ut ati s m ut a n di s, s o Ω( n 2 / 3 + 2 ν ( n ) / ε ) q u eri e s ar e n e c e s s ar y f or t w o- si d e d n o n- a d a pti v e m etri c t e sti n g
al g orit h m s a s w ell.

We r e m ar k t h at t h e c o n n e cti o n b et w e e n tri a n gl e-fr e e n e s s t e sti n g a n d m etri c t e sti n g i s u s ef ul f or l o w er b o u n d s,
b ut n ot f or o ur u p p er b o u n d s. A s w e will di s c u s s, o ur pr o of of T h e or e m 1. 1 r eli e s o n c ert ai n pr o p erti e s of
m etri c s t h at d o n ot h a v e a dir e ct a n al o g i n gr a p h s.

Tr e e M e t ri c s a n d Ul t r a m e t ri c s. We n o w st at e t h e m ai n r e s ult s f or t e sti n g tr e e m etri c s a n d ultr a m etri c s.
A s m e nti o n e d, o ur w or k s i m pr o v e o n t h e al g orit h m s of [ 2 7 ] b y i m pr o vi n g t h e s a m pl e c o m pl e xit y fr o m O ( 1/ ε 3 )
t o Õ ( 1 / ε ), a n d t h e q u er y c o m pl e xit y fr o m O ( 1 / ε 6 ) t o Õ ( 1 / ε 2 ). O ur l o w er b o u n d s e st a bli s h t h e f oll o wi n g
t w o a s p e ct s: (i) o ur al g orit h m s ar e s a m pl e o pti m al, m e a ni n g a n y ε -t e sti n g m u st e v al u at e di st a n c e s t o Ω( 1 / ε )
m a n y p oi nt s, a n d (ii) o n e c a n n ot h o p e f or t h e “ b e st c a s e ” s c e n ari o of a O ( 1/ ε )- q u er y t e st er.

T h e o r e m 1. 3. ( T e s ti n g T r e e M e t ri c s a n d U l t r a m e t ri c s — U p p e r b o u n d ) F o r a n y l a r g e e n o u g h
n ∈ ◆ a n d a n y ε > 0 , t h e r e e xi st s a r a n d o mi z e d al g o rit h m t h at r e c ei v e s q u e r y a c c e s s t o a n u n k n o w n
m at ri x M ∈ ❘ n × n , u si n g Õ ( 1 / ε ) s a m pl e s a n d Õ ( 1 / ε 2 ) q u e ri e s, a n d h a s t h e f oll o wi n g g u a r a nt e e:

C o p y ri g h t © 2 0 2 5 b y S I A M
U n a u t h o ri z e d r e p r o d u c ti o n of t hi s a r ti cl e i s p r o hi bi t e d4 0 5

Do
wn

lo
ad

ed
 0

6/
08

/2
5 
to

 1
51

.1
97

.3
.8

4 .
 

Re
di

st
ri

bu
ti

on
 s

ub
je

ct
 t

o 
SI

A
M 
li

ce
ns

e 
or
 c

op
yr

ig
ht
; 

se
e 

ht
tp

s:
//

ep
ub

s.
si

a
m.

or
g/
te

r
ms

-p
ri

va
cy



• If M d e fi n e s a t r e e m et ri c ( o r ult r a m et ri c ) o n [n ], t h e al g o rit h m al w a y s o ut p ut s “ a c c e pt. ”

• If M i s ε -f a r f r o m b ei n g a t r e e m et ri c ( o r ult r a m et ri c ) o n [n ], t h e al g o rit h m o ut p ut s “ r ej e ct ” wit h
p r o b a bilit y at l e a st 2 / 3 .

F u rt h e r m o r e, t h e al g o rit h m i s n o n- a d a pti v e.

O ur al g orit h m i s e x a ctl y t h e s a m e a s t h e al g orit h m of [ 2 7 ], a n d t h e i m pr o v e m e nt li e s s ol el y i n t h e a n al y si s.
T h e al g orit h m t a k e s Õ ( 1 / ε ) s a m pl e s a n d q u eri e s all p air wi s e e v al u ati o n s u si n g Õ ( 1 / ε 2 ) q u eri e s. We s h o w
t h at, if t h er e ar e n o vi ol ati o n s t o tr e e m etri c s ( or ultr a m etri c s) i n a s a m pl e of si z e Õ ( 1 / ε ) wit h pr o b a bilit y at
l e a st 1/ 3, t h e n M i s ε - cl o s e t o a tr e e m etri c ( or ultr a m etri c).

T h e o r e m 1. 4. ( T e s ti n g T r e e M e t ri c s a n d U l t r a m e t ri c s — L o w e r b o u n d ) F o r a n y l a r g e e n o u g h
n ∈ ◆ a n d ε ∈ ( 0 , 1) , a n y n o n- a d a pti v e al g o rit h m w hi c h c a n ε -t e st w h et h e r a m at ri x M ∈ ❘ n × n i s a
t r e e m et ri c ( o r ult r a m et ri c ) m u st u s e Ω( 1 / ε ) s a m pl e s a n d at l e a st Ω( 1 / ε 4 / 3 ) q u e ri e s.

1. 2   R el a t e d W o r k T h er e ar e a n u m b er of w or k s o n s u bli n e ar al g orit h m s f or m etri c s p a c e s. T h e m o st
r el e v a nt t o t hi s w or k i s [ 2 7 ] w h o, a m o n g ot h er r e s ult s, g a v e pr o p ert y t e sti n g al g orit h m s f or tr e e m etri c s a n d
ultr a m etri c s u si n g O ( 1 / ε 3 ) s a m pl e s a n d O ( 1 / ε 6 ) q u eri e s. M or e g e n er all y vi e wi n g m etri c s a s a pr o p ert y of
n × n m atri c e s, t h er e h a s b e e n a r e c e nt li n e- of- w or k o n t e sti n g of m atri x pr o p erti e s [ 1 9 , 8 , 4 , 9 , 5 ] ( s e e, al s o
C h a pt er 8 i n t h e t e xt b o o k [ 1 0 ]). T h e w or k s of [2 3 , 2 6 ] st u d y pr o p ert y t e sti n g of p oi nt s i n a m etri c, w h er e t h e
al g orit h m r e c ei v e s q u er y a c c e s s t o a di st a n c e or a cl e, a n d t h e pr o xi mit y p ar a m et er ε i s wit h r e s p e ct t o t h e
n u m b er of p oi nt s w hi c h m u st b e m o di fi e d; t h e pr o p erti e s of i nt er e st ar e di m e n si o n alit y a n d e m b e d d a bilit y
i nt o ot h er m etri c s. Pr o p ert y t e sti n g b y a c c e s si n g v e ct or s dir e ctl y (f or e x a m pl e, w h e n t h e m etri c i s E u cli d e a n)
h a s al s o b e e n st u di e d [ 1 7 , 1 4 ], a n d m or e g e n er all y, t h er e h a v e b e e n v ari o u s s u bli n e ar al g orit h m s i n t h e s e
s etti n g s [ 1 3 , 3 , 1 5 , 1 6 ].

A r e c e nt li n e of w or k i n a p pr o xi m ati o n al g orit h m s, u n d er t h e n a m e “ m etri c vi ol ati o n di st a n c e, ” fi n d s t h e
( a p pr o xi m at el y) m o st si mil ar m etri c ( wit h r e s p e ct t o t h e ℓ 0 - di st a n c e) i n p ol y n o mi al ti m e [ 2 0 , 1 1 , 1 2 , 2 2 ].
T h er e, t h e ℓ 0 - di st a n c e i s t h e n u m b er of e ntri e s of d : [n ] × [n ] → ❘ ≥ 0 w hi c h ar e c h a n g e d, c oi n ci di n g wit h t h e
pr o xi mit y p ar a m et er ε st u di e d i n pr o p ert y t e sti n g. F or e x a m pl e, t h e c urr e nt b e st al g orit h m [ 1 1 ] r u n s i n O (n 3 )
ti m e a n d pr o d u c e s a m etri c s p a c e w hi c h i s a O (l o g n )- m ulti pli c ati v e f a ct or f urt h er t h a n t h e cl o s e st m etri c.
I n c o ntr a st, pr o p ert y t e sti n g i s m u c h m or e e ffi ci e nt b ut o nl y pr o vi d e s a p pr o xi m at e d e ci si o n s. H e n c e, o ur
pr o p ert y t e sti n g al g orit h m s ( b ot h f or g e n er al m etri c s, a s w ell a s tr e e m etri c s or ultr a m etri c s) c o ul d b e u s e d a s
a pr e pr o c e s si n g st e p —if a pr o p ert y t e st er d e cl ar e s a s u p p o s e d di st a n c e- m atri x i s alr e a d y t o o f ar fr o m a m etri c
( or tr e e or ultr a m etri c), t h er e m a y b e n o u s e i n m or e e x p e n si v e a p pr o xi m ati o n al g orit h m s.

1. 3   T e c h ni c al O v e r vi e w

M e t ri c T e s ti n g U p p e r B o u n d. O ur st arti n g p oi nt i s t h at, a n y m atri x M w hi c h i s ε -f ar fr o m b ei n g a
m etri c m u st c o nt ai n Ω( ε n 2 ) tri a n gl e s of t hr e e p oi nt s { i, j, k} w h o s e p air wi s e di st a n c e s vi ol at e t h e tri a n gl e
i n e q u alit y ( L e m m a 3. 1). T h e s e s o- c all e d “ vi ol ati n g tri a n gl e s, ” d e n ot e d b y t h e c oll e cti o n T , ar e e vi d e n c e t h at
M i s n ot a m etri c, a n d o ur al g orit h m’ s g o al i s t o q u er y all t hr e e e ntri e s of at l e a st o n e vi ol ati n g tri a n gl e if
t h e y e xi st. T hi s alr e a d y s u g g e st s a n O (n 2 / 3 )- q u er y t e st er ( a s s u m e, f or t hi s o v er vi e w, t h at ε = Ω( 1)) si n c e t h e
e x p e ct e d n u m b er of tri a n gl e s fr o m T c o nt ai n e d wit hi n a s a m pl e i 1 , . . . , i s ∼ [n ] i s

|T | · P r [ a fi x e d tri a n gl e i s a m o n g s r a n d o m p oi nt s] = Ω( ε n 2 ) · Ω
s 3

n 3
,

w hi c h i s a l ar g e c o n st a nt w h e n t h e si z e s a m pl e s i s Θ(n 1 / 3 ), a n d l e a d s t o a n O (n 2 / 3 ) q u er y c o m pl e xit y. T h e
c h all e n g e i s u p p er b o u n di n g t h e v ari a n c e of t hi s r a n d o m v ari a bl e. F or e x a m pl e, if all vi ol ati n g tri a n gl e s ar e
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i n ci d e nt o n a si n gl e v ert e x or o n O (n ) p air s of v erti c e s, s a m pli n g t h e s e r e q uir e s Ω( n ) q u eri e s. O ur a n al y si s
will r ul e o ut s u c h c a s e s b y s h o wi n g m atri c e s M , wit h t h e s e tri a n gl e c o n fi g ur ati o n s, ar e cl o s e t o a m etri c ( e v e n
if t h er e ar e m a n y vi ol ati n g tri a n gl e s). F urt h er m or e, w e s h o w t h at a s l o n g a s M i s ε -f ar fr o m b ei n g a m etri c,
o n e of t w o t hi n g s h a p p e n s:

• Eit h er t h er e ar e Ω( ε n ) p oi nt s, e a c h of w hi c h p arti ci p at e s i n Ω( n 4 / 3 ) vi ol ati n g tri a n gl e s, or

• T h er e e xi st s a str u ct ur e d s et of Ω( ε n 2 ) vi ol ati n g tri a n gl e s T̃ w h e r e e a c h p oi nt p arti ci p at e s i n at m o st
O (n 4 / 3 ) tri a n gl e s, a n d e a c h p air of p oi nt s i n at m o st O (n 2 / 3 ) tri a n gl e s.

I n t h e fir st c a s e, w e r u n o ur fir st al g orit h mi c c h e c k: s a m pl e O ( 1 / ε ) p oi nt s a n d c h e c k t h e tri a n gl e i n e q u alit y
a g ai n st O (n 2 / 3 ) r a n d o m p air s ( w hi c h g u ar a nt e e s o n e of t h e Ω( ε n ) p oi nt s a n d c orr e s p o n di n g Ω( n 4 / 3 ) p air s i s
s a m pl e d, s e e L e m m a 3. 2). Pr o vi n g t h e s e c o n d c a s e i s m or e c h all e n gi n g ( L e m m a 3. 4), b ut o n c e w e d o, t h e
b o u n d s o n t h e n u m b er of p arti ci p ati n g tri a n gl e s o n p oi nt s a n d p air s of p oi nt s h el p u s pr o v e a n a d e q u at e
b o u n d o n t h e v ari a n c e of t h e n u m b er of vi ol ati n g tri a n gl e s “ c a u g ht ” b y a r a n d o m O (n 1 / 3 )- si z e s a m pl e ( s e e
Cl ai m 3. 1).

T h e s e c o n d c a s e, L e m m a 3. 4, pr o c e e d s i n t h e f oll o wi n g w a y. S u p p o s e M i s ε -f ar fr o m b ei n g a m etri c a n d
l et T b e t h e vi ol ati n g tri a n gl e s. If o (ε n ) p oi nt s p arti ci p at e i n m or e t h a n Ω( n 4 / 3 ) vi ol ati n g tri a n gl e s, w e m a y
“ fi x ” all s u c h p oi nt s — w e c h a n g e all O (n ) e ntri e s i n ci d e nt t o e a c h of t h e s e p oi nt s f or a t ot al of o (ε n 2 ) e ntri e s
( L e m m a 3. 5). Aft er t h e s e c h a n g e s, t h e n e w m atri x M ′ i s still ε / 2-f ar fr o m a m etri c, b ut e a c h p oi nt n o w
p arti ci p at e s i n O (n 4 / 3 ) vi ol ati n g tri a n gl e s. We t h e n a d dr e s s t h e p air s of p oi nt s ( c orr e s p o n di n g t o e ntri e s i n
M ′) t h at p arti ci p at e i n t o o m a n y, Ω( n 2 / 3 ), vi ol ati n g tri a n gl e s. We s h o w t h at t h er e ar e o ( ε n 2 ) s u c h p air s
si n c e e a c h p oi nt p arti ci p at e s i n f e w vi ol ati n g tri a n gl e s ( L e m m a 3. 6), b ut w e m a y n ot b e a bl e t o “ fi x ” t h e s e
e ntri e s — n ot e t h at t h er e ar e n − 2 ot h er p oi nt s w h o s e di st a n c e s c o n str ai n t h at of t h e p air, a n d t h e s e c o n str ai nt s
m a y b e irr e c o n cil a bl e b y c h a n gi n g o nl y o n e e ntr y.

H er e i s w h er e t h e f a ct t h at m etri c s s p e cif y r e al- v al u e d di st a n c e s ( a s o p p o s e d t o gr a p h s, w hi c h o nl y s p e cif y
B o ol e a n v al u e s) b e c o m e s u s ef ul. S u p p o s e a p air of p oi nt s { i, j } p arti ci p at e s i n t w o vi ol ati n g tri a n gl e s, wit h
p oi nt s k 1 a n d k 2 r e s p e cti v el y, a n d f urt h er, o n e c a n n ot c h a n g e t h e di st a n c e b et w e e n ( i, j ) a n d si m ult a n e o u sl y
“ fi x ” t h e tri a n gl e s { i, j, k1 } a n d { i, j, k2 } . T h e n, w e s h o w t h at eit h er { i, k1 , k2 } or { j, k 1 , k2 } m u st al s o b e a
vi ol ati n g tri a n gl e ( Cl ai m 3. 7). T hi s i m pli e s t h at, si n c e i a n d j e a c h p arti ci p at e s i n O (n 4 / 3 ) vi ol ati n g tri a n gl e s,
t h er e m u st e xi st a s etti n g w hi c h fi x e s all b ut O (n 2 / 3 ) vi ol ati n g tri a n gl e s i n ci d e nt o n i, j ( L e m m a 3. 8). Aft er
p erf or mi n g t hi s m o di fi c ati o n, t h e r e s ulti n g m atri x M ′′ i s still ε / 4-f ar, a n d s o m u st c o nt ai n Ω( ε n 2 ) vi ol ati n g
tri a n gl e s a n d b ot h b o u n d s o n t h e n u m b er of vi ol ati n g tri a n gl e s o n p oi nt s a n d p air s of p oi nt s h ol d. T h e s e
vi ol ati n g tri a n gl e s m a y n ot e xi st i n M , si n c e t h e y m a y u s e m o di fi e d e ntri e s, b ut w e s h o w h o w t o m a p s u c h
vi ol ati n g tri a n gl e s b a c k t o vi ol ati n g tri a n gl e s t h at d o e xi st i n M . ( T h e a s s u m pti o n w a s t h at t h e m o di fi e d
p air s of p oi nt s p arti ci p at e d i n m a n y vi ol ati n g tri a n gl e s a n d s o t h er e will b e m a n y s u c h di sti n ct tri a n gl e s t o
c h o o s e fr o m.) T hi s c o m pl et e s t h e a n al y si s of t h e m etri c t e sti n g al g orit h m.

M e t ri c T e s ti n g L o w e r B o u n d. T h e l o w er b o u n d o n m etri c t e sti n g c o m e s fr o m a c o n n e cti o n t o tri a n gl e-
fr e e n e s s t e sti n g i n gr a p h s. We b a s e o ur l o w er b o u n d o n t h e c o n str u cti o n i n [ 1 ], w h o gi v e tri p artit e gr a p h s o n 3n
v erti c e s a n d Θ( n 2 − ν ( n ) ) e d g e- di sj oi nt tri a n gl e s, s o- c all e d B e hr e n d gr a p h s. O ur t a s k, w hi c h w e d o i n Cl ai m 4. 1,
i s t o a s si g n w ei g ht s t o e d g e s ( a s w ell a s n o n- e d g e s) of t h e B e hr e n d gr a p h s o t h at t h e Θ( n 2 − ν ( n ) ) tri a n gl e s ar e t h e
o nl y vi ol ati o n s t o t h e tri a n gl e i n e q u alit y. A n o n- a d a pti v e, o n e- si d e d l o w er b o u n d of Ω( n 2 / 3 + 2 ν ( n ) / 3 ) pr o c e e d s
a s f oll o w s. Fi x q q u eri e s t o e ntri e s of a ( 3 n ) × ( 3 n ) m atri x, a n d l et M d e n ot e t h e (r a n d o m) B e hr e n d- b a s e d
m atri x o bt ai n e d aft er r a n d o ml y p er m uti n g p oi nt s. I n or d er t o o b s er v e a vi ol ati o n of t h e tri a n gl e i n e q u alit y,
t h er e m u st b e a tri a n gl e f or m e d b y t h e q q u eri e s w hi c h c o nt ai n s o n e of t h e Θ( n 2 − ν ( n ) ) e d g e- di sj oi nt tri a n gl e s
of t h e B e hr e n d gr a p h. A m o n g q q u eri e s o v er p air s, t h er e c a n b e at m o st O (q 3 / 2 ) tri a n gl e s ( b e c a u s e cli q u e s
of si z e Θ(

√
q ) m a xi mi z e t h e n u m b er of tri a n gl e s wit h q e d g e s), a n d t h e pr o b a bilit y t h at a fi x e d tri a n gl e of

t h e B e hr e n d gr a p h i s m a p p e d t o a fi x e d tri a n gl e a m o n g t h e q u eri e s u n d er a r a n d o m p er m ut ati o n i s O ( 1 / n 3 ).
H e n c e, t h e pr o b a bilit y w e o b s er v e at l e a st o n e tri a n gl e i s at m o st

O (q 3 / 2 ) · O (n 2 − ν ( n ) ) · O ( 1/ n 3 ) = O (q 3 / 2 / n 1 + ν ( n ) ),
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w hi c h i s o ( 1) w h e n q i s o (n 2 / 3 + 2 ν ( n ) / 3 ). T hi s e st a bli s h e s t h e o n e- si d e d l o w er b o u n d; t o m a k e t h e l o w er b o u n d
t w o- si d e d, t h er e i s a r e d u cti o n fr o m [ 1 ] w hi c h a p pli e s f or gr a p h s, a n d r e a dil y a p pli e s i n o ur s c e n ari o a s w ell.

Tr e e M e t ri c a n d Ul t r a m e t ri c T e s ti n g U p p e r B o u n d. Te sti n g tr e e m etri c s a n d ultr a m etri c s i s si g ni fi c a ntl y
m or e e ffi ci e nt, b e c a u s e tr e e m etri c s a n d ultr a m etri c s ar e m or e c o n str ai n e d t h a n ( g e n er al) m etri c s, m a ki n g
vi ol ati o n s e a si er t o fi n d. C o n si d er ultr a m etri c s, w hi c h s ati sf y t h e f oll o wi n g str e n gt h e ni n g of t h e tri a n gl e
i n e q u alit y: f or a n y i, j, k ∈ [n ], if d (i, j ) i s t h e m a xi m u m di st a n c e a m o n g t h e t hr e e p air s, t h e n

d (i, j ) = m a x { d (i, k), d(j, k )} .

O ur a n al y si s mirr or s t h at of [ 2 7 ] ( w hi c h o bt ai n e d a O ( 1 / ε 6 ) q u er y c o m pl e xit y) a n d i n c or p or at e s o n e c h a n g e
t o o bt ai n t h e q u er y c o m pl e xit y Õ ( 1 / ε 2 ). R o u g hl y s p e a ki n g, a s et of s a m pl e d p oi nt s S w hi c h d o e s n ot c o nt ai n
a vi ol ati o n a m o n g st t h e m s el v e s i m p o s e s c o n str ai nt s o n di st a n c e s a m o n g st t h e r e m ai ni n g p oi nt s i n [ n ] \ S . F or
e x a m pl e, if j a n d k ar e t w o p oi nt s i n [ n ] \ S , a n d s o m e i ∈ S s ati s fi e s M (i, j ) ≠ M ( i, k), a n ultr a m etri c m u st
s et M ( j, k ) t o m a x { M ( i, j ) , M( i, k) } ; a vi ol ati o n o c c ur s w h e n it d o e s n ot. H e n c e, c o n si d er t h e p artiti o n of
[n ] \ S i m p o s e s b y S , w h er e t w o p oi nt s j, k ∈ [n ] \ S b el o n g t o di ff er e nt p art s if M (i, j ) ≠ M ( i, k) f or s o m e
i ∈ S ( D e fi niti o n 5. 2). A s p art s b e c o m e s m all er, t h er e ar e m or e p air s ( j, k ) i n di ff e r e nt p art s, w hi c h m a k e s
vi ol ati o n s e a si er t o fi n d. [ 2 7 ] ar g u e s ( u si n g a l o o s e ar g u m e nt w hi c h d o e s n ot o pti mi z e ε -f a ct or s) t h at a b at c h
of O ( 1 / ε ) s a m pl e s a d d e d t o S d e cr e a s e s t h e n u m b er of p air s i n t h e s a m e p art b y Ω(( ε n ) 2 ), a n d t h e a n al y si s
f oll o w s si n c e o n e c a n n ot d e cr e a s e a c o u nt of p air s ( w hi c h ar e at m o st n 2 a n d al w a y s n o n- n e g ati v e) b y Ω(( ε n ) 2 )
m or e t h a n O ( 1 / ε 2 ) ti m e s ( s e e pr o of of T h e or e m 3 i n [ 2 7 ]). We f oll o w t h e s a m e pl a n b ut s h o w t h at t h e
e x p e ct e d n u m b er of p air s i n t h e s a m e p art aft er a si n gl e s a m pl e d e cr e a s e s b y a m ulti pli c ati v e ( 1 − Ω( ε ))-f a ct or
( L e m m a 5. 5) —t h e i m pr o v e d b o u n d of O (l o g ( 1 / ε )/ ε ) s a m pl e c o m pl e xit y f oll o w s a n al o g o u sl y.

Tr e e M e t ri c a n d Ul t r a m e t ri c T e s ti n g L o w e r B o u n d We pr o v e a s a m pl e c o m pl e xit y l o w er b o u n d of
Ω( 1 / ε ) f or o n e- si d e d err or t e sti n g al g orit h m s b y c o n str u cti n g a di stri b uti o n o v er m atri c e s t h at ar e f ar fr o m
ultr a m etri c s a n d tr e e m etri c s, w h er e e a c h vi ol ati n g tri pl e c o nt ai n s o n e o ut of a s et of ε n p oi nt s, m a ki n g it
n e c e s s ar y t o s a m pl e at l e a st o n e of t h e s e v erti c e s i n or d er t o d et e ct a vi ol ati n g tri pl e.

We pr o v e a q u er y c o m pl e xit y l o w er b o u n d of Ω( 1 / ε 4 / 3 ) f or t e sti n g ultr a m etri c s, w hi c h i n t ur n i m pli e s t h e
s a m e q u er y l o w er b o u n d f or tr e e m etri c s. T hi s i s d o n e b y c o n str u cti n g a di ff er e nt di stri b uti o n w h er e w e
p artiti o n [ n ] i nt o 1/ ε gr o u p s e a c h of si z e ε n , s u c h t h at a n y vi ol ati o n i n v ol v e s all 3 p oi nt s fr o m t h e s a m e gr o u p.
We al s o pr o v e t h at t o m a xi mi z e t h e pr o b a bilit y of fi n di n g a vi ol ati o n, a t e st er i s b e st o ff m a ki n g q u eri e s o n
e v er y p air of p oi nt s i n a s uit a bl y c h o s e n s a m pl e. Fi n all y, w e s h o w t h at t o h a v e a d e c e nt pr o b a bilit y of fi n di n g
a vi ol ati o n, t h e s a m pl e si z e m u st b e Ω( 1 / ε 2 / 3 ), l e a di n g t o t h e q u er y l o w er b o u n d of Ω( 1 / ε 4 / 3 ).

2   P r eli mi n a ri e s

We u s e t h e st a n d ar d d e fi niti o n s of m etri c s, tr e e m etri c s, a n d ultr a m etri c s. I n or d er t o b e s elf- c o nt ai n e d, w e
i n cl u d e t h e s e d e fi niti o n s i n t h e a p p e n di x.

N e xt, w e r e c all t h e st a n d ar d m o d el of pr o p ert y t e sti n g w hi c h w e will u s e t hr o u g h o ut t h e p a p er. We st at e
t h e d e fi niti o n s of pr o p ert y t e sti n g a s t e sti n g pr o p erti e s of m atri c e s. A s w e will s e e, a di st a n c e f u n cti o n
d : [n ] × [n ] → ❘ ≥ 0 m a y b e e n c o d e d b y a n n × n m atri x. T hi s vi e w will b e u s ef ul, a s o ur a n al y si s will r ef er t o
“ bl o c k s ”, a n d “ bl o c k- di a g o n al ” str u ct ur e s w hi c h ar e m or e i nt uiti v e f or m atri c e s.

R e c all t h at t h e g o al of pr o p ert y t e sti n g al g orit h m s i s t o pr o vi d e v er y e ffi ci e nt, s u bli n e a r ti m e q u er y al g orit h m s
w hi c h a p pr o xi m at el y d e ci d e w h et h er a n o bj e ct s ati s fi e s a pr o p ert y or i s ε -f ar fr o m s ati sf yi n g a pr o p ert y.
T o w ar d s t h at e n d, w e c o n si d er al g orit h m s t h at t e st wit h r e s p e ct t o t h e ℓ 0 - di st a n c e w hi c h c o u nt s t h e n u m b er
of e ntri e s (i. e., c o or di n at e s) w h er e t w o m atri c e s di ff er. T hr o u g h o ut t h e p a p er, w e will e n c o d e f u n cti o n s
d : [n ] × [n ] → ❘ a s n × n m atri c e s.
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D e fi ni ti o n 2. 1. Gi v e n t w o n × n m at ri c e s, A, B ∈ ❘ n × n , l et

∥ A − B ∥ 0 =

n

i = 1

n

j = 1

1 { A i j ≠ B i j } .

W e will r ef e r t o a p r o p e rt y P of n × n m at ri c e s b y l etti n g P d e n ot e t h e s u b s et of m at ri c e s t h at s ati sf y t h e
p r o p e rt y. F o r a s u b s et P of n × n m at ri c e s a n d a n y ε > 0 , w e s a y t h at a n n × n m at ri x M i s ε -f a r f r o m P if

d ℓ 0
(M, P ) = i nf

A ∈ P
∥ M − A ∥ 0 ≥ ε n 2 .

D e fi ni ti o n 2. 2. ( P r o p e r t y T e s ti n g A l g o ri t h m f o r n × n M a t ri c e s ) F o r a n y n ∈ ◆ a n d ε > 0 , a n
ε -t e sti n g al g o rit h m w hi c h t e st s a p r o p e rt y P i s a r a n d o mi z e d al g o rit h m t h at r e c ei v e s q u e r y a c c e s s t o a n u n k n o w n
m at ri x M ∈ ❘ n × n a n d s ati s fi e s:

• C o m pl e t e n e s s : If M ∈ P , t h e al g o rit h m o ut p ut s “ a c c e pt ” wit h p r o b a bilit y at l e a st 2 / 3 .

• S o u n d n e s s : If M i s ε -f a r f r o m P , t h e al g o rit h m o ut p ut s “ r ej e ct ” wit h p r o b a bilit y at l e a st 2 / 3 .

T h e al g o rit h m i s n o n- a d a pti v e if t h e q u e ri e s m a d e d o n ot d e p e n d o n t h e a n s w e r t o p ri o r q u e ri e s (i. e., all
q u e ri e s a r e m a d e i n p a r all el ), a n d t h e al g o rit h m a c hi e v e s o n e- si d e d e r r o r if it a c c e pt s i n p ut s M ∈ P wit h
p r o b a bilit y 1 . W e d e si g n al g o rit h m s t h at m e a s u r e t h e f oll o wi n g n oti o n s of c o m pl e xit y:

• S a m pl e C o m pl e xi t y : T h e s a m pl e c o m pl e xit y of a n al g o rit h m i s t h e m a xi m u m n u m b e r of di sti n ct r o w s
o r c ol u m n s of t h e i n p ut m at ri x t h at a r e q u e ri e d b y t h e al g o rit h m.

• Q u e r y C o m pl e xi t y : T h e q u e r y c o m pl e xit y of a n al g o rit h m i s t h e m a xi m u m n u m b e r of e nt ri e s of t h e
i n p ut m at ri x t h at a r e q u e ri e d b y t h e al g o rit h m.

T h e d e fi niti o n of a m etri c r e q uir e s t h e di st a n c e f u n cti o n t o b e n o n- n e g ati v e wit h d (i, i) = 0, s y m m etri c, a n d
s ati sf y t h e tri a n gl e i n e q u alit y ( or t h e str o n g er f o ur- p oi nt- c o n diti o n a n d t hr e e- p oi nt- c o n diti o n i n m etri c s a n d
ultr a m etri c s). O ur t e st s a n d a n al y si s, w hi c h r e c ei v e a s i n p ut a n ar bitr ar y n × n m atri x, will a s s u m e t h at
t h e m atri x i s n o n- n e g ati v e, s y m m etri c, a n d z er o o nl y al o n g t h e di a g o n al. T h e r e a s o n f or t hi s a s s u m pti o n
i s t h at t h e s e c o n diti o n s m a y b e e a sil y c h e c k e d al g orit h mi c all y a n d i n c or p or at e d i nt o o ur t e sti n g al g orit h m.
F or m all y, w e st at e t h e f oll o wi n g l e m m a, w hi c h all o w s u s t o d e si g n t e sti n g al g orit h m s w hil e f o c u si n g s ol el y o n
t h e “i nt er e sti n g ” vi ol ati o n s; t h e l e m m a f oll o w s tri vi all y b y c h e c ki n g O ( 1/ ε ) r a n d o ml y c h o s e n e ntri e s.

L e m m a 2. 1. F o r n ∈ ◆ , l et P d e n ot e a n y p r o p e rt y of n × n m at ri c e s, a n d l et

C
d ef
=





M ∈ ❘ n × n :

(i ) f o r all i, j ∈ [n ], M (i, j ) = M (j, i )
(ii ) f o r all i, j ∈ [n ] wit h i ≠ j , M (i, j ) > 0
(iii ) f o r all i ∈ [n ], M (i, i) = 0





.

S u p p o s e t h e r e i s a n ε -t e sti n g al g o rit h m f o r P w hi c h a s s u m e s t h e i n p ut M ∈ C a n d u s e s q (n, ε ) q u e ri e s. T h e n,
t h e r e i s a n ε -t e sti n g al g o rit h m f o r P ∩ C u si n g O (q (n, ε )) + O ( 1/ ε ) q u e ri e s.

3   M e t ri c T e s ti n g U p p e r B o u n d: T h e o r e m 1. 1

I n t hi s s e cti o n, w e pr e s e nt a n al g orit h m f or t e sti n g g e n er al m etri c s wit h q u er y c o m pl e xit y O ( n 2 / 3 / ε 4 / 3 ),
t h er e b y pr o vi n g T h e or e m 1. 1. T hr o u g h o ut t hi s s e cti o n, w e will c o n si d er n ∈ ◆ a s t h e m ai n a s y m pt oti c
p ar a m et er, a n d l et

P = { M ∈ C : M e n c o d e s a m etri c s p a c e o v er [ n ]} .

C o p y ri g h t © 2 0 2 5 b y S I A M
U n a u t h o ri z e d r e p r o d u c ti o n of t hi s a r ti cl e i s p r o hi bi t e d4 0 9

Do
wn

lo
ad

ed
 0

6/
08

/2
5 
to

 1
51

.1
97

.3
.8

4 .
 

Re
di

st
ri

bu
ti

on
 s

ub
je

ct
 t

o 
SI

A
M 
li

ce
ns

e 
or
 c

op
yr

ig
ht
; 

se
e 

ht
tp

s:
//

ep
ub

s.
si

a
m.

or
g/
te

r
ms

-p
ri

va
cy



R e c all t h at t h e s et C c o n si st s of n × n m atri c e s w hi c h w e c all cl e a n , m e a ni n g t h at t h e y ar e s y m m etri c,
n o n- n e g ati v e, a n d z er o if a n d o nl y if o n t h e di a g o n al. T h e al g orit h m i s str ai g htf or w ar d a n d e x e c ut e s t w o t y p e s
of c h e c k s, att e m pti n g t o fi n d vi ol ati o n s of t h e tri a n gl e i n e q u alit y. We b e gi n b y st ati n g t h e d e fi niti o n w hi c h
will b e n e e d e d f or t h e a n al y si s.

D e fi ni ti o n 3. 1. A t ri a n gl e i s a s et { i, j, k} of t h r e e di sti n ct i n di c e s i, j, k ∈ [n ]. A t ri a n gl e { i, j, k} i s
vi ol ati n g f o r M ∈ C if it f o r m s a vi ol ati o n of t h e t ri a n gl e i n e q u alit y. N a m el y, aft e r r e- n a mi n g i n di c e s s o
M (i, j ) i s t h e m a xi m u m a m o n g p ai r wi s e e v al u ati o n s,

M (i, j ) > M (i, k) + M (k, j ).

L e m m a 3. 1. F o r a n y ε ∈ ( 0 , 1) , a n d a n y M ∈ C w hi c h i s ε -f a r f r o m P , t h e r e a r e at l e a st ε n 2 / 6 di sti n ct
vi ol ati n g t ri a n gl e s { i, j, k} of M .

P r o of. S e e a p p e n di x.

D e fi ni ti o n 3. 2. ( T ri a n g l e D e g r e e ) F o r M ∈ C a n d a s et of vi ol ati n g t ri a n gl e s T of M , w e l et
B (T ) = ([ n ], T ) b e t h e 3 - u nif o r m h y p e r g r a p h w h o s e h y p e r- e d g e s a r e vi ol ati n g t ri a n gl e s.

• F o r a n i n d e x i ∈ [n ], t h e v ert e x-tri a n gl e- d e gr e e , d T (i) i s t h e n u m b e r of vi ol ati n g t ri a n gl e s c o nt ai ni n g i,

d T (i) = |t ∈ T : i ∈ t| .

• F o r a p ai r ( i, j ) ∈ [n ] × [n ], t h e e d g e-tri a n gl e- d e gr e e , d T (i, j ) i s t h e n u m b e r of vi ol ati n g t ri a n gl e s
c o nt ai ni n g b ot h i a n d j ,

d T (i, j ) = |t ∈ T : i, j ∈ t| .

O ur t e st pr o c e e d s b y e x e c uti n g t w o s u b-r o uti n e s C h e c k Hi D e g r e e a n d C h e c k Vi o l a ti o n w hi c h ai m t o fi n d
a vi ol ati n g tri a n gl e. We t h e n st at e t h e t w o l e m m a s c o n c er ni n g t h e s e s u b-r o uti n e s a n d s h o w h o w t h e y i m pl y
t h e m ai n t e st er.

M e t ri c T e s ti n g Al g o ri t h m. T h e al g orit h m will ai m t o fi n d a tri a n gl e { i, j, k} w hi c h f or m s a vi ol ati o n
of t h e tri a n gl e i n e q u alit y. If it d o e s fi n d o n e, a vi ol ati o n i s a c erti fi c at e t h at t h e i n p ut m atri x i s n ot a
m etri c a n d t h e al g orit h m will o ut p ut “r ej e ct. ”

I n p u t : T h e p ar a m et er s n ∈ ◆ a n d ε ∈ ( 1 / n, 1), a s w ell a s q u er y a c c e s s t o t h e e ntri e s of a n u n k n o w n
n × n m atri x M fr o m C ( s e e L e m m a 2. 1). F or ε < 1 / n , t h e cl ai m e d c o m pl e xit y O ( n 2 / 3 / ε 4 / 3 ) b e c o m e s
O (n 2 ), s o o n e c a n r e a d t h e e ntir e m atri x.
O u t p u t : “ a c c e pt ” or “r ej e ct. ”

1. E x e c ut e C h e c k Hi D e g r e e (M, ε ). If t h e s u b-r o uti n e o ut p ut s “r ej e ct, ” t h e n o ut p ut “r ej e ct. ”

2. E x e c ut e C h e c k Vi o l a ti o n (M, ε ). If t h e s u b-r o uti n e o ut p ut s “r ej e ct, ” t h e n o ut p ut “r ej e ct. ”

3. If n eit h er s u b-r o uti n e h a s o ut p ut “r ej e ct, ” t h e n o ut p ut “ a c c e pt. ”
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T h e C h e c k Hi D e g r e e S u b- r o u ti n e.

I n p u t : T h e p ar a m et er s n ∈ ◆ a n d ε ∈ ( 1 / n, 1), a s w ell a s q u er y a c c e s s t o t h e e ntri e s of a n u n k n o w n
n × n m atri x M ∈ C .
O u t p u t : “ a c c e pt ” or “r ej e ct. ”

1. F or u = O ( 1 / ε ), t a k e u r a n d o m s a m pl e s i 1 , . . . , i u ∼ [n ] dr a w n i n d e p e n d e ntl y.   F or s =
O (n 2 / 3 / ε 1 / 3 ), t a k e s r a n d o m s a m pl e p air s ( j 1 , k 1 ) . . . , (j s , k s ) ∼ [n ]2 dr a w n i n d e p e n d e ntl y. Q u er y
M (i ℓ , j t ), M(i ℓ , k t ), M(j t , k t ) f or all ℓ ∈ [u ], t ∈ [s ].

2. If t h er e e xi st s a tri a n gl e a m o n g t h e s a m pl e d i n di c e s { i ℓ , j t , k t } w hi c h i s a vi ol ati n g tri a n gl e i n M ,
o ut p ut “r ej e ct. ” Ot h er wi s e, o ut p ut “ a c c e pt. ”

T h e C h e c k Vi ol a ti o n S u b- r o u ti n e.

I n p u t : T h e p ar a m et er s n ∈ ◆ a n d ε ∈ ( 1 / n, 1), a s w ell a s q u er y a c c e s s t o t h e e ntri e s of a n u n k n o w n
n × n m atri x M ∈ C .
O u t p u t : “ a c c e pt ” or “r ej e ct. ”

1. F or s = O (n 1 / 3 / ε 2 / 3 ), t a k e s r a n d o m s a m pl e s i 1 , . . . , i s ∼ [n ] dr a w n i n d e p e n d e ntl y. Q u er y M (i ℓ , i k )
f or all ℓ, k ∈ [s ].

2. If t h er e e xi st s a tri a n gl e a m o n g t h e s a m pl e d i n di c e s { i ℓ , i k , i h } w hi c h i s a vi ol ati n g tri a n gl e i n M ,
o ut p ut “r ej e ct. ” Ot h er wi s e, o ut p ut “ a c c e pt. ”

L e m m a 3. 2. ( C h e c k Hi D e g r e e L e m m a ) F o r n ∈ ◆ a n d ε ∈ ( 1 / n, 1) , t h e r e e xi st s a r a n d o mi z e d al g o rit h m,
C h e c k Hi D e g r e e , w hi c h r e c ei v e s a s i n p ut a n n × n m at ri x M ∈ C a n d a p a r a m et e r ε a n d h a s t h e f oll o wi n g
g u a r a nt e e s:

• If M ∈ P , C h e c k Hi D e g r e e (M, ε ) al w a y s o ut p ut s “ a c c e pt. ”

• L etti n g T b e t h e s et of vi ol ati n g t ri a n gl e s of M , if t h e r e a r e at l e a st ε n / 4 i n di c e s i ∈ [n ] s u c h t h at
d T (i) ≥ ε 1 / 3 n 4 / 3 / 1 6 , C h e c k Hi D e g r e e (M, ε ) o ut p ut s “ r ej e ct ” wit h p r o b a bilit y at l e a st 5 / 6 .

T h e al g o rit h m i s n o n- a d a pti v e, t a ki n g O ( 1/ ε + n 2 / 3 / ε 1 / 3 ) s a m pl e s a n d u si n g O (n 2 / 3 / ε 4 / 3 ) q u e ri e s.

P r o of. S e e a p p e n di x.

L e m m a 3. 3. ( C h e c k Vi o l a ti o n L e m m a ) F o r n ∈ ◆ a n d ε ∈ ( 1 / n, 1) , t h e r e e xi st s a r a n d o mi z e d al g o rit h m,
C h e c k Vi o l a ti o n , w hi c h r e c ei v e s a s i n p ut a n n × n m at ri x M ∈ C a n d a p a r a m et e r ε a n d h a s t h e f oll o wi n g
g u a r a nt e e s:

• If M ∈ P , C h e c k Vi o l a ti o n (M, ε ) al w a y s o ut p ut s “ a c c e pt. ”

• L etti n g T b e t h e s et of vi ol ati n g t ri a n gl e s of M , if M i s ε -f a r f r o m P a n d t h e s et of i n di c e s i ∈ [n ] wit h
d T (i) ≥ ε 1 / 3 n 4 / 3 / 1 6 h a s si z e at m o st ε n / 4 , t h e s u b- r o uti n e o ut p ut s “ r ej e ct ” wit h p r o b a bilit y at l e a st 5 / 6 .

T h e al g o rit h m i s n o n- a d a pti v e, t a ki n g O (n 1 / 3 / ε 2 / 3 ) s a m pl e s a n d u si n g O (n 2 / 3 / ε 4 / 3 ) q u e ri e s.

P r o of. [ Pr o of of T h e or e m 1. 1 A s s u mi n g L e m m a 3. 3] S e e a p p e n di x.
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3. 1   C h e c k Vi ol a ti o n S u b- r o u ti n e: P r o of of L e m m a 3. 3 N ot e t h at t h e s u b-r o uti n e C h e c k Vi o l a ti o n
o nl y o ut p ut s “r ej e ct ” w h e n it o b s er v e s a vi ol ati n g tri a n gl e. T h er ef or e, it i s e a s y t o e st a bli s h t h e fir st c o n diti o n
of L e m m a 3. 3, a s t h er e ar e n o vi ol ati n g tri a n gl e s w h e n e v er M ∈ P . It r e m ai n s t o pr o v e t h at, w h e n e v er M i s
ε -f ar fr o m P a n d at m o st ε n / 4 i n di c e s i ∈ [n ] h a v e d T (i) ≥ ε 1 / 3 n 4 / 3 / 1 6, t h e s u b-r o uti n e fi n d s a vi ol ati o n wit h
pr o b a bilit y at l e a st 5 / 6.

D e fi ni ti o n 3. 3. F o r M ∈ C a n d a n y s u b s et T̃ ⊆ T of vi ol ati n g t ri a n gl e s of M , t h e r a n d o m v a ri a bl e X ( T̃ ) ≥ 0
i s gi v e n b y

X ( T̃ ) =

t ∈ T̃

1 { t ⊂ { i 1 , . . . , i s } } .

w h e r e i 1 , . . . , i s ∼ [n ] a r e i n di c e s s a m pl e d f r o m C h e c k Vi o l a ti o n .

C l ai m 3. 1. F o r a n y c oll e cti o n of t ri a n gl e s T̃ , t h e e x p e ct ati o n of X ( T̃ ) i s b o u n d e d b y

E
i 1 ,...,i s

X ( T̃ ) ≥ Ω
|T̃ | · s 3

n 3
,

w h e n e v e r 3 ≤ s ≪ n . M o r e o v e r, t h e v a ri a n c e of t h e r a n d o m v a ri a bl e i s b o u n d e d b y

V a r
i 1 ,...,i s

X ( T̃ ) <∼ E
i 1 ,...,i s

X ( T̃ ) +





i ∈ [n ]

d T̃ (i) 2



 ·
s 5

n 5
+





i ≠ j

d T̃ (i, j ) 2



 ·
s 4

n 4
,

w h e r e t h e s e c o n d t e r m c o u nt s p ai r s of t ri a n gl e s t, t ′ ∈ T̃ w hi c h i nt e r s e ct at a si n gl e v e rt e x, a n d t h e t hi r d t e r m
c o u nt s t h e n u m b e r of p ai r s of t ri a n gl e s t, t ′ ∈ T̃ w hi c h i nt e r s e ct at t w o v e rti c e s.

P r o of. B y li n e arit y of e x p e ct ati o n,

E
i 1 ,...,i s

X ( T̃ ) ≥ | T̃ |
1 ≤ k 1 < k 2 < k 3 ≤ s

3! · P r
i k 1

= 1 , i k 2
= 2 , i k 3

= 3
a n d o c c ur u ni q u el y

≥ | T̃ | ·
s

3
· 3! ·

1

n 3
1 −

3

n

s − 3

= Ω
|T̃ | · s 3

n 3
.

O n t h e ot h er h a n d,

V a r
i 1 ,...,i s

X ( T̃ ) = E
i 1 ,...,i s










t ∈ T̃

1 { t ⊂ { i 1 , . . . , i s } }





2



 − E

i 1 ,...,i s





t ∈ T̃

1 { t ⊂ { i 1 , . . . , i s } }





2

<∼ E
i 1 ,...,i s

X ( T̃ ) +





i ∈ [n ]

d T̃ (i) 2



 ·
s 5

n 5
+





i ≠ j

d T̃ (i, j ) 2



 ·
s 4

n 4
.

Si n c e X ( T̃ ) c o u nt s t h e n u m b er of vi ol ati n g tri a n gl e s fr o m T̃ i n cl u d e d i n t h e r a n d o m s a m pl e i 1 , . . . , i s , if
X ( T̃ ) > 0, t h e n t h e al g orit h m h a s s a m pl e d a vi ol ati n g tri a n gl e. O n c e it m a k e s all p air wi s e q u eri e s, it will
fi n d t h e vi ol ati n g tri a n gl e a n d o ut p ut “r ej e ct. ” T h e a n al y si s will fi n d a s u b s et T̃ of vi ol ati n g tri a n gl e s s u c h
t h at t h e r a n d o m v ari a bl e X ( T̃ ) i s n o n- z er o wit h hi g h c o n st a nt pr o b a bilit y, w hi c h i n di c at e s t h at t h e r a n d o m
s a m pl e c o nt ai n s at l e a st o n e vi ol ati n g tri a n gl e. M or e s p e ci fi c all y, t h e g o al i s t o fi n d a n a p pr o pri at e s et of
vi ol ati n g tri a n gl e s T̃ s u c h t h at t h e e x p e ct ati o n of X ( T̃ ) i s l ar g e w hil e t h e v ari a n c e i s s m all. H e n c e, t h e T̃ u s e d
i n t h e a n al y si s h a s l ar g e c ar di n alit y, a n d b ot h v ert e x-tri a n gl e- d e gr e e a n d e d g e-tri a n gl e- d e gr e e of t h e i n di c e s
d e fi n e d o v er T̃ a r e b o u n d e d.
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L e m m a 3. 4. L et M ∈ C b e ε -f a r f r o m P a n d l et T d e n ot e t h e s et of all vi ol ati n g t ri a n gl e s of M . S u p p o s e
t h at t h e s et of i n di c e s i ∈ [n ] s u c h t h at d T (i) ≥ ε 1 / 3 n 4 / 3 / 1 6 h a s si z e at m o st ε n / 4 . T h e n, t h e r e e xi st s a s u b s et
T̃ of vi ol ati n g t ri a n gl e s of M s ati sf yi n g

• |T̃ | ≥ Ω( ε n 2 ),

• F o r e v e r y i n d e x i ∈ [n ], dT̃ (i) ≤ O (ε 1 / 3 n 4 / 3 ),

• f o r e v e r y p ai r of i n di c e s (i, j ) ∈ [n ] × [n ], d T̃ (i, j ) ≤ O (n 2 / 3 / ε 1 / 3 ).

P r o of. [ Pr o of of L e m m a 3. 3 a s s u mi n g L e m m a 3. 4] T h e s u b-r o uti n e C h e c k Vi o l a ti o n ( M, ε ) s a m pl e s
c · n 1 / 3 / ε 2 / 3 i n di c e s u nif or ml y at r a n d o m f or s o m e c o n st a nt c . Si n c e it i s g u ar a nt e e d t h at t h er e ar e at
l e a st Ω(ε n 2 ) vi ol ati n g tri a n gl e s i n t h e s et T̃ , Cl ai m 3. 1 i m pli e s t h e e x p e ct e d v al u e of X ( T̃ ) i s a l ar g e c o n st a nt
f or c l ar g e e n o u g h. Fr o m L e m m a 3. 4, w e d eri v e t h e f oll o wi n g t w o i n e q u aliti e s:

i ∈ [n ]

d T̃ (i) 2 ≤ O (ε 1 / 3 n 4 / 3 )
i ∈ [n ]

d T̃ (i) = O ε 1 / 3 n 4 / 3 · |T̃ | ,

( i, j ) ∈ [n ]× [n ]

d T̃ (i, j ) 2 ≤ O (n 2 / 3 / ε 1 / 3 )
( i, j ) ∈ [n ]× [n ]

d T̃ (i, j ) = O n 2 / 3 / ε 1 / 3 · |T̃ | .

C o n si d er (f or t h e s a k e of a n al y si s) r e p e ati n g t h e a b o v e r a n d o mi z e d tri al f or X ( T̃ ) f o r k i n d e p e n d e nt it er ati o n s,
l etti n g X 1 ( T̃ ) , . . . , X k ( T̃ ) d e n ot e t h e o ut c o m e s of k i n d e p e n d e nt tri al s. T h e n, t a ki n g t h e a v er a g e a n d a p pl yi n g
C h e b y s h e v’ s i n e q u alit y,

P r
1

k

k

ℓ = 1

X ℓ ( T̃ ) = 0 ≤
V a r [X ( T̃ )]

k · E [X ( T̃ )] 2
<∼

E [X ( T̃ )]

k · E [X ( T̃ )] 2
+

ε 1 / 3 n 4 / 3 · |T̃ | · s 5

n 5

k · E [X ( T̃ )] 2
+

n 2 / 3 / ε 1 / 3 · |T̃ | · s 4

n 4

k · E [X ( T̃ )] 2

= O
n 3

k · |T̃ | · s 3
+ O

ε 1 / 3 n 7 / 3

k · |T̃ | · s
+ O

n 8 / 3

ε 1 / 3 · k · |T̃ | · s 2
,

w hi c h c a n b e m a d e a n ar bitr aril y s m all c o n st a nt w h e n |T̃ | = Ω( ε n 2 ), s = O (n 1 / 3 / ε 2 / 3 ) a n d k = O ( 1). N oti c e
t h at t h e s e c o n d a n d t h e t hir d t er m s ar e t h e b ottl e- n e c k.

3. 2   Fi n di n g A G o o d S u b s e t of Vi ol a ti n g Tri a n gl e s: P r o of of L e m m a 3. 4

L e m m a 3. 5. S u p p o s e M ∈ C a n d i s ε -f a r f r o m P a n d t h e r e a r e at m o st ε n / 4 i n di c e s i ∈ [n ] s u c h t h at t h e
v e rt e x-t ri a n gl e d e g r e e d T (i) ≥ ε 1 / 3 n 4 / 3 / 1 6 . T h e n t h e r e e xi st s a m at ri x M ′ ∈ C w hi c h i s ε / 2 -f a r f r o m P s u c h
t h at all vi ol ati n g t ri a n gl e s i n M ′ a r e al s o i n M . D e n ot e t hi s s et of vi ol ati n g t ri a n gl e s i n M ′ t o b e T ′. M o r e o v e r,
f o r all i ∈ [n ], d T ′ (i) < ε 1 / 3 n 4 / 3 / 1 6 .

P r o of. L et m ∈ ❘ b e t h e v al u e of t h e m a xi m u m e ntr y i n M , a n d l et I ⊂ [n ] b e t h e s et of i n di c e s i ∈ [n ] wit h
d T (i) ≥ ε 1 / 3 n 4 / 3 / 1 6. We c o n si d er t h e f oll o wi n g n × n m atri x M ′, w h er e w e s et M ′(i, j ) = M ( i, j ) u nl e s s,
eit h er i or j li e i n I , i n w hi c h c a s e M ′(i, j ) = m . N ot e t h at ∥ M ′ − M ∥ 0 ≤ 2 |I | · n ≤ 2 ε n 2 / 4 = ε n 2 / 2, s o
t h at M ′ i s ε / 2-f ar fr o m P . We a p pl y L e m m a 3. 1 t o M ′, w hi c h s h o w s t h at t h er e ar e at l e a st ε n 2 / 1 2 di sti n ct
vi ol ati n g tri a n gl e s { i, j, k} i n M ′. N ot e t h at, f or a n y vi ol ati n g tri a n gl e { i, j, k} i n M ′, i, j, k ar e n ot i n I
ot h er wi s e { i, j, k} i s n ot vi ol ati n g i n M ′. H e n c e, t h e di st a n c e s b et w e e n t h e s e t hr e e v erti c e s ar e n ot c h a n g e d,
s o t hi s tri a n gl e i s al s o vi ol ati n g i n M . T hi s s h o w s T ′, t h e s et of all vi ol ati n g tri a n gl e s i n M ′, i s a s u b s et of T .
T h u s, f or i /∈ I , d T ′ (i) ≤ d T (i) < ε 1 / 3 n 4 / 3 / 1 6. F or i ∈ I , n o vi ol ati n g tri a n gl e i n T ′ c o nt ai n s i, s o d T ′ (i) = 0.
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D e fi ni ti o n 3. 4. L et t h e s et of “ hi g h- d e g r e e- e d g e s ” E t o b e t h e s et of p ai r s of i n di c e s ( i, j ) s u c h t h at
d T ′ (i, j ) > 1 0 n 2 / 3 / ε 1 / 3 .

L e m m a 3. 6. F o r a n y i ∈ [n ], t h e n u m b e r of e d g e s i n E t h at c o nt ai n i i s u p p e r b o u n d e d b y ε 2 / 3 n 2 / 3 / 8 0 .
T h e r ef o r e, t h e si z e of E i s u p p e r b o u n d e d b y ε 2 / 3 n 5 / 3 / 8 0 , w hi c h i s at m o st ε n 2 / 8 0 f o r ε > 1 / n .

P r o of. N oti c e t h at d T ′ (i) = e :i ∈ e d T ′ (e ) / 2 ≥ 1 0 n 2 / 3 / ε 1 / 3 · | {e ∈ E : i ∈ e }| / 2. B y t h e b o u n d o n t h e

v ert e x-tri a n gl e- d e gr e e d e fi n e d o v er T ′ gi v e n i n L e m m a 3. 5, d T ′ (i) ≤ ε 1 / 3 n 4 / 3 / 1 6. T h u s, | {e ∈ E : i ∈ e }| ≤
ε 2 / 3 n 2 / 3 / 8 0.

D e fi ni ti o n 3. 5. ( U ni q u e t ri a n g l e s ) F o r e a c h e d g e e ∈ E , d e fi n e t h e u ni q u e t ri a n gl e s t o e t o b e t h e s u b s et

T
( u )
e ⊂ T ′ s u c h t h at e a c h t ri a n gl e i n T

( u )
e o nl y u s e s e d g e e a n d n ot hi n g el s e i n E .

L e m m a 3. 7. F o r a n y e d g e e ∈ E , |T
( u )
e | ≥ 9 n 2 / 3 / ε 1 / 3 .

P r o of. L et e d g e e = ( i, j ). Si n c e e ∈ E, e i s a hi g h- d e gr e e e d g e: d T ′ (e ) > 1 0 n 2 / 3 / ε 1 / 3 . B y L e m m a 3. 6, w e c a n
u p p er b o u n d t h e n u m b er of vi ol ati n g tri a n gl e s t h at u s e e a n d s o m e ot h er hi g h- d e gr e e e d g e ( i, v) ∈ E si n c e
f e w hi g h- d e gr e e e d g e s ar e u si n g t h e v ert e x i. Q u a ntit ati v el y, w e h a v e

{ i, j, v} ∈ T ′ : (i, v) ∈ E ≤ { i, j, v} ⊂ [n ] : (i, v) ∈ E ≤ ε 2 / 3 n 2 / 3 / 8 0 .

A n d si mil arl y f or v ert e x j , w e h a v e

{ i, j, v} ∈ T ′ : (j, v ) ∈ E ≤ { i, j, v} ⊂ [n ] : (j, v ) ∈ E ≤ ε 2 / 3 n 2 / 3 / 8 0 .

T h er ef or e, t h e vi ol ati n g tri a n gl e s t h at r e m ai n a n d o nl y u s e e d g e e c a n b e b o u n d e d b el o w.

|T ( u )
e | = { i, j, v} ∈ T ′ : (i, v), (j, v ) /∈ E ≥ d T ′ (i, j ) − ε 2 / 3 n 2 / 3 / 4 0 ≥ 9 n 2 / 3 / ε 1 / 3 .

N oti c e t h at L e m m a 3. 5 a b o v e g u ar a nt e e s t h e e xi st e n c e of a s u b s et T ′ ⊂ T of vi ol ati n g tri a n gl e s s u c h t h at t h e
v ert e x-tri a n gl e- d e gr e e d e fi n e d o v er T ′ at e a c h v ert e x i s b o u n d e d a b o v e. T h e c o n str u cti o n of T ′ i s t hr o u g h
m o dif yi n g all e ntri e s, or e d g e s, t h at pr e vi o u sl y c o nt ai n e d a hi g h- d e gr e e v ert e x. T h e f oll o wi n g l e m m a c o nti n u e s
t h e m o di fi c ati o n a n d c o n str u ct s a s u b s et of vi ol ati n g tri a n gl e s T̃ ⊂ T ′ s u c h t h at t h e e d g e-t ri a n gl e- d e g r e e
d e fi n e d o v er T̃ a t e a c h e d g e i s b o u n d e d a b o v e. T h e i d e a i s t o m o dif y all hi g h- d e gr e e e ntri e s, or e d g e s. R e c all
t h at E d e n ot e s t h e s et of hi g h- d e gr e e e d g e s.

L e m m a 3. 8. S u p p o s e m at ri x M ′ a n d t h e s et of vi ol ati n g t ri a n gl e s T ′ a r e a s d e fi n e d i n L e m m a 3. 5. T h e n
t h e r e e xi st s a m at ri x M ′′ a n d a s u b s et of vi ol ati n g t ri a n gl e s T̃ ⊂ T ′ t h at s ati sf y t h e b el o w p r o p e rti e s:

• M ′ a n d M ′′ di ff e r o n o nl y t h e e nt ri e s s p e ci fi e d i n E

• S u p p o s e T ′′ i s t h e s et of all vi ol ati n g t ri a n gl e s i n M ′′, t h e n T̃ ⊂ T ′ h a s si z e at l e a st |T ′′|

• F o r all i, j ∈ [n ], dT̃ (i, j ) ≤ 1 0 n 2 / 3 / ε 1 / 3 .

P r o of. [ Pr o of of L e m m a 3. 4 a s s u mi n g L e m m a 3. 8] B y L e m m a 3. 6, |E | ≤ ε n 2 / 8 0. M or e o v er, b y c o n str u cti o n
i n L e m m a 3. 5, M ′ a n d M di ff er o n at m o st ε n 2 / 2 e ntri e s. Si n c e M ′ a n d M ′′ di ff er o n o nl y 2 |E | ≤ ε n 2 / 4 0
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e ntri e s, M a n d M ′′ di ff er o n at m o st 2 1 ε n 2 / 4 0 e ntri e s, m e a ni n g t h at M ′′ i s 1 9ε / 4 0-f ar fr o m P . A g ai n, u si n g
L e m m a 3. 1, t h er e ar e at l e a st 1 9 ε n 2 / 2 4 0 vi ol ati n g tri a n gl e s i n M ′′. T h at i s, |T ′′| ≥ 1 9 ε n 2 / 2 4 0. L e m m a 3. 8
pr o mi s e s t h e e xi st e n c e of a s et of vi ol ati n g tri a n gl e s T̃ ⊂ T ′ wit h si z e at l e a st |T ′′| ≥ 1 9 ε n 2 / 2 4 0, a n d
d T̃ (i, j ) ≤ 1 0 n 2 / 3 / ε 1 / 3 f or all i, j ∈ [n ]. M or e o v er, L e m m a 3. 5 st at e s t h at e v er y tri a n gl e i n T ′ i s vi ol ati n g i n

M . T h u s, T̃ i s a s u b s et of vi ol ati n g tri a n gl e s i n M . L a stl y, f or a n y i n d e x i ∈ [n ], d T̃ (i) ≤ d T ′ (i) ≤ ε 1 / 3 n 4 / 3 / 1 6.

P r o of. [ Pr o of of L e m m a 3. 8] Fir st, w e s p e cif y t h e v al u e s M ′′ t a k e s o n f or e a c h e ntr y i n E ( Cl ai m 3. 2). T h e n,
w e pr o vi d e a m a p pi n g fr o m T ′′ t o a s u b s et of vi ol ati n g tri a n gl e s T̃ ⊂ T ′ i n M ′ ( Cl ai m 3. 4) a n d s h o w t h at T̃
h a s t h e cl ai m e d pr o p erti e s.

R e c all t h at a hi g h- d e gr e e e d g e i n E c orr e s p o n d s t o a n e ntr y i n M ′ t h at p arti ci p at e s i n m a n y vi ol ati n g tri a n gl e s.
T h e cl ai m b el o w ( Cl ai m 3. 2) st at e s t h at t h er e e xi st s s o m e n e w v al u e x ∈ ❘ ≥ 0 s u c h t h at, if t h e e ntr y e ∈ E of
t h e m atri x M i s c h a n g e d t o t h e n e w v al u e, t h e e ntr y p arti ci p at e s i n m u c h f e w er vi ol ati n g tri a n gl e s i n t h e n e w
m atri x. We gi v e a n ot ati o n f or fi n di n g a n e w v al u e f or a hi g h- d e gr e e e d g e. F or i n di c e s i, j, k ∈ [n ] a n d f or a n y
v al u e x ∈ R > 0 , l et I(i, j, k, x) d e n ot e t h e i n di c at or v ari a bl e i n { 0 , 1 } wit h

I(i, j, k, x) = 1 ⇐ ⇒
(i, k) /∈ E,
(j, k ) /∈ E,

x /∈ [|M ′(i, k) − M ′(j, k )|, M ′(i, k) + M ′(j, k )]
.

C l ai m 3. 2. F o r e a c h e = ( i, j ) ∈ E , w h e n e v e r d T ′ (i) a n d d T ′ (j ) a r e b ot h b o u n d e d a b o v e b y ε 1 / 3 n 4 / 3 / 1 6 , t h e r e
e xi st s a v al u e x (e ) ∈ ❘ ≥ 0 s u c h t h at

k ∈ [n ]

I(i, j, k, x(e )) ≤ ε 1 / 6 · n 2 / 3 .

A s s u mi n g Cl ai m 3. 2 ( w hi c h w e f or m all y pr o v e s h ortl y), l et

M ′′(i, j ) =
M ′(i, j )  (i, j ) /∈ E

x (e )  (i, j ) = e ∈ E
,

a s t h e s etti n g x (e ) fr o m Cl ai m 3. 2, a n d l et T ′′ d e n ot e all vi ol ati n g tri a n gl e s of M ′′.

C l ai m 3. 3. F o r e v e r y e d g e e = ( i, j ) ∈ E , l et A e b e t h e s u b s et of t ri a n gl e s i n T ′′ t h at c o nt ai n t h e e d g e e .
T h e n, d T ′ ′ (e ) = |A e | ≤ 2 ε 1 / 6 n 2 / 3 .

P r o of. F oll o wi n g Cl ai m 3. 2, w e c a n u p p er b o u n d t h e n u m b er of tri a n gl e s i n T ′′ w hi c h o nl y u s e e d g e e a n d
n ot hi n g el s e i n E. T h at i s,

{ i, j, k} ∈ T ′′ : (i, k), (j, k ) /∈ E =
k ∈ [n ]

I(i, j, k, x(e )) ≤ ε 1 / 6 n 2 / 3 .

O n t h e ot h er h a n d, f e w tri a n gl e s u s e e a n d s o m e ot h er e d g e i n E , a s i m pli e d b y L e m m a 3. 6. T h at i s,

{ i, j, k} ∈ [n ] : (i, k) or ( j, k ) ∈ E ≤ ε 2 / 3 n 2 / 3 / 4 0 .

T o g et h er, t h e s e t w o s et s of tri a n gl e s c o n si st all of A e . H e n c e, t h e e d g e-tri a n gl e d e gr e e of e o v er t h e s et T ′′ i s
u p p er b o u n d e d b y d T ′ ′ (e ) = |A e | ≤ ε 1 / 6 n 2 / 3 + ε 2 / 3 n 2 / 3 / 4 0 ≤ 2 ε 1 / 6 n 2 / 3 .

Wit h t h e s et of all vi ol ati n g tri a n gl e s T ′′ i n M ′′, w e t h e n u s e t h e b el o w h el p er l e m m a t o c o n str u ct a s u b s et of
vi ol ati n g tri a n gl e s T̃ ⊂ T ′ t h at i n h erit s t h e ni c e pr o p ert y of T ′′: t h e e d g e-tri a n gl e- d e gr e e d e fi n e d o v er T̃ f o r
e a c h e d g e e i s u p p er b o u n d e d.
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C l ai m 3. 4. F o r e a c h e = ( i, j ) ∈ E , l et A e b e t h e s u b s et of t ri a n gl e s i n T ′′ t h at c o nt ai n t h e e d g e e . T h e n,

t h e r e e xi st s a s u b s et of vi ol ati n g t ri a n gl e s B e ⊂ T
( u )
e ⊂ T ′ s u c h t h at |A e | = |B e |.

P r o of. [ Pr o of of Cl ai m 3. 4] N oti c e t h at |A e | = d T ′ ′ (e ) ≤ 2 ε 1 / 6 n 2 / 3 . B y L e m m a 3. 7, |T
( u )
e | ≥ 9 n 2 / 3 / ε 1 / 3 . T hi s

s u g g e st s t h e e xi st e n c e of B e ⊂ T
( u )
e \ A e wit h si z e |A e | ≤ 2 ε 1 / 6 n 2 / 3 .

Cl ai m 3. 4 a b o v e hi nt s o n h o w t o c o n str u ct a m a p pi n g fr o m T ′′ t o T̃ . We i niti ali z e a n e m pt y s et T̃ . Fi r st, a d d
t o T̃ all t h e tri a n gl e s i n T ′′ t h at d o n ot u s e a n y of t h e hi g h- d e gr e e e d g e s i n E . T h e n, f or e a c h e ∈ E , f oll o wi n g

Cl ai m 3. 4, fi n d t h e s u b s et B e ⊂ T
( u )
e a n d a d d B e t o T̃ . W h at w e ar e l eft t o s h o w i s t h at T̃ h a s t h e pr o p erti e s

cl ai m e d i n L e m m a 3. 8. T h at i s, |T̃ | ≥ |T ′′| a n d f or a n y e d g e ( i, j ) ∈ [n ] × [n ], dT̃ (i, j ) ≤ 1 0 n 2 / 3 / ε 1 / 3 .

C l ai m 3. 5. D e fi n e T̃ t o b e

(

e ∈ E

B e ) ∪ { { i, j, k} ∈ T ′′ : (i, j ), (j, k ), (i, k) /∈ E } .

T h e n, |T̃ | ≥ |T ′′|. F u rt h e r m o r e, T̃ ⊂ T ′.

P r o of. T h e i n e q u alit y f oll o w s fr o m t h e f a ct t h at e a c h tri a n gl e i n T ′′ c orr e s p o n d s t o at l e a st o n e u ni q u e tri a n gl e
i n T̃ . N oti c e t h at

T ′′ = (

e ∈ E

A e ) ∪ { { i, j, k} ∈ T ′′ : (i, j ), (j, k ), (i, k) /∈ E } .

T h e s et of tri a n gl e s t h at d o n ot u s e a n y hi g h- d e gr e e e d g e E i s e x a ctl y t h e s a m e i n T ′′ a n d T̃ . O n t h e ot h er
h a n d, n oti c e t h at e a c h B e i s di sj oi nt fr o m t h e s et { { i, j, k} : (i, j ) , ( j, k ) , ( i, k) /∈ E } . M or e o v er, B e a n d B e ′

ar e di sj oi nt w h e n e v er e ≠ e ′ si n c e B e i s a s u b s et of T
( u )
e . Si n c e |A e | = |B e |, f or e a c h e d g e e ∈ E t h er e i s s o m e

bij e cti v e m a p fr o m A e t o B e . T h u s, e a c h tri a n gl e i n T ′′ c orr e s p o n d s t o at l e a st o n e u ni q u e tri a n gl e i n T̃ ,
w hi c h s u g g e st s |T̃ | ≥ |T ′′|. N ot e t h at t h e i n e q u alit y m a y b e stri ct b e c a u s e A e mi g ht o v erl a p wit h A e ′ f or
e ≠ e ′, a n d it o nl y m a k e s t h e u ni o n l ar g er: |B e ∪ B e ′ | > |A e ∪ A e ′ |.

It i s cl e ar t h at e v er y tri a n gl e i n B e f or e a c h e i s i n T
( u )
e ⊂ T ′. M or e o v er, e a c h tri a n gl e i n { { i, j, k} ∈ T ′′ :

(i, j ), (j, k ), (i, k) /∈ E } h a s s a m e di st a n c e v al u e s o n all t hr e e e d g e s i n M ′ a n d M ′′. Si n c e t h e y ar e vi ol ati n g i n
M ′′, t h e y ar e al s o vi ol ati n g i n M ′, w hi c h i n di c at e s { { i, j, k} ∈ T ′′ : (i, j ), (j, k ), (i, k) /∈ E } ⊂ T ′.

C l ai m 3. 6. F o r e v e r y e d g e e = ( i, j ), d T̃ (e ) ≤ 1 0 n 2 / 3 / ε 1 / 3 .

P r o of. If e /∈ E , b y d e fi niti o n d T̃ (e ) ≤ d T ′ (e ) ≤ 1 0 n 2 / 3 / ε 1 / 3 . If e ∈ E , t h e o nl y tri a n gl e s i n T̃ t h at c o nt ai n e
ar e t h e tri a n gl e s i n B e . H e n c e, d T̃ (e ) = |B e | = |A e | = d T ′ ′ (e ) ≤ 1 0 n 2 / 3 / ε 1 / 3 .

T h e t w o a b o v e Cl ai m s c o m pl et e t h e pr o of f or L e m m a 3. 8, a n d w e ar e l eft t o s h o w t h e c orr e ct n e s s of Cl ai m 3. 2.

P r o of. [ Pr o of of Cl ai m 3. 2] T h e st at e m e nt f oll o w s fr o m t h e b el o w cl ai m.

C l ai m 3. 7. S u p p o s e f o r t h e e d g e e = ( i, j ) ∈ E a n d a n y v al u e x (e ) ∈ ( 0 , ∞ ), k ∈ [n ] I(i, j, k, x(e )) ≥ t, t h e n

eit h e r d T ′ (i) ≥ t 2 / 8 o r d T ′ (j ) ≥ t 2 / 8 .

S u p p o s e Cl ai m 3. 7 h ol d s. We t a k e t t o b e ε 1 / 6 n 2 / 3 . If f or a n y v al u e x (e ) ∈ ( 0, ∞ ), k ∈ [n ] I(i, j, k, x(e )) ≥ t =

ε 1 / 6 n 2 / 3 , t h e n w e h a v e a c o ntr a di cti o n si n c e t h e v ert e x-tri a n gl e- d e gr e e s of b ot h i a n d j d e fi n e d o v er T ′ ar e at
m o st ε 1 / 3 n 4 / 3 / 1 6. T h u s, w e ar e d o n e if t h e a b o v e cl ai m h ol d s.
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P r o of. [ Pr o of of Cl ai m 3. 7] Fir st, t h e i n di c at or v ari a bl e I( i, j, k, x( e )) e q u al s 1 if a n d o nl y if b ot h e d g e s
(i, k), (j, k ) /∈ E a n d t h e v al u e x (e ) d o e s n ot li e wit hi n t h e i nt er v al [ |M ′(i, k) − M ′(j, k )|, M ′(i, k) + M ′(j, k )].
We will t h e n s h o w t h at if f or all x (e ) ∈ ( 0, ∞ ),

k ∈ [n ]

I(i, j, k, x(e )) ≥ t,

t h e n t h er e e xi st at l e a st t 2 / 4 p air s ( k 1 , k2 ) ∈ [n ] × [n ] s u c h t h at t h e i nt er s e cti o n of i nt er v al s

[|M ′(i, k1 ) − M ′(j, k 1 )|, M ′(i, k1 ) + M ′(j, k 1 )] ∩ [|M ′(i, k2 ) − M ′(j, k 2 )|, M ′(i, k2 ) + M ′(j, k 2 )] = ∅ .

T h e st at e m e nt i s tr u e m or e g e n er all y, if t h er e i s a c oll e cti o n of m i nt er v al s I 1 , . . . , Im of t h e r e al li n e, a n d f or
all x , t h er e ar e at l e a st t i nt er v al s w hi c h d o n ot c o nt ai n x , t h e n t h er e ar e t w o s u b s et s L a n d R of at l e a st t /2
i nt er v al s w h er e l ∈ L a n d r ∈ R ar e di sj oi nt, gi vi n g u s t 2 / 4 p air s. T h e pr o of i s al g orit h mi c:

• C o n si d er s orti n g t h e i nt er v al s b y i n cr e a si n g e n d p oi nt s, a n d w e will l et x s c a n fr o m − ∞ t o ∞ a c c or di n g
t o t h e e n d p oi nt s of i nt er v al s. L et x t / 2 d e n ot e t h e e n d p oi nt of t h e t /2-t h i nt er v al a n d l et D d e n ot e t h e
s et of i nt er v al s di sj oi nt fr o m x t / 2 .

• N ot e t h at, t h er e m u st b e at m o st t /2 i nt er v al s w hi c h li e t o t h e l eft of x t / 2 , si n c e w e s c a n n e d i n i n cr e a si n g
or d er of e n d p oi nt; a n d si n c e D i s di sj oi nt, t h er e m u st b e at l e a st t − (t /2) ≥ t /2 i nt er v al s w h o s e st art i s
l ar g er t h a n x t / 2 . T h u s, w e l et L d e n ot e t h e t /2 i nt er v al s of fir st e n d p oi nt s, a n d w e l et R d e n ot e t h e
i nt er v al s i n D w h o s e st art p oi nt s c o m e aft er x t / 2 .

N o w, c o n si d er t h e i m pli c ati o n t h at t w o i nt er v al s [ |M ′(i, k1 ) − M ′(j, k 1 )|, M ′(i, k1 ) + M ′(j, k 1 )] a n d [ |M ′(i, k2 ) −
M ′(j, k 2 )|, M ′(i, k2 ) + M ′(j, k 2 )] ar e di sj oi nt, f or t w o v erti c e s k 1 , k2 . Wit h o ut l o s s of g e n er alit y, w e a s s u m e
t h at |M ′(i, k1 ) − M ′(j, k 1 )| ≤ M ′(i, k1 ) + M ′(j, k 1 ) < |M ′(i, k2 ) − M ′(j, k 2 )| ≤ M ′(i, k2 ) + M ′(j, k 2 ). T h e n,
fr o m t h e mi d dl e i n e q u alit y, it m u st b e t h e c a s e t h at eit h er M ′(i, k2 ) > M ′(i, k1 ) + M ′(j, k 1 ) + M ′(j, k 2 ) or
M ′(j, k 2 ) > M ′(i, k1 ) + M ′(j, k 1 ) + M ′(i, k2 ). I nt uiti v el y, it m e a n s t h e 4- c y cl e { i, k1 , j, k2 } i s “ vi ol ati n g ”.
S u p p o s e w e ar e i n t h e c a s e t h at M ′(i, k2 ) i s l ar g er t h a n t h e s u m of t h e ot h er t hr e e e d g e s. ( T h e ot h er
c a s e t h at M ′(j, k 2 ) i s t h e l ar g e st f oll o w s t h e s a m e a n al y si s.)  T h e n, it m u st b e t h e c a s e t h at eit h er
M ′(i, k2 ) > M ′(i, k1 ) + M ′(k 1 , k2 ) or M ′(k 1 , k2 ) > M ′(j, k 1 ) + M ′(j, k 2 ). I n t h e f or m er c a s e, e d g e ( k 1 , k2 )
f or m s a vi ol ati n g tri a n gl e wit h i n d e x i w hil e i n t h e l att er c a s e, e d g e ( k 1 , k2 ) f or m s a vi ol ati n g tri a n gl e wit h
i n d e x j .

C o m bi ni n g all t h e a b o v e ar g u m e nt s, t h er e ar e at l e a st t2 / 4 p air s of p air wi s e di sj oi nt i nt er v al s. E a c h p air
c orr e s p o n d s t o a u ni q u e e d g e ( k 1 , k2 ) f or s o m e k 1 , k2 ∈ [n ] w hi c h f or m s a vi ol ati n g tri a n gl e wit h eit h er i or j .
B y pi g e o n- h ol e t h e or e m, at l e a st t2 / 8 di sti n ct e d g e s f or m s o m e vi ol ati n g tri a n gl e s wit h eit h er i or j , i m pl yi n g
t h at d T ′ (i) ≥ t 2 / 8 or d T ′ (j ) ≥ t 2 / 8. T h e cl ai m f oll o w s.

4   M e t ri c T e s ti n g L o w e r B o u n d — T h e o r e m 1. 2

We s p e cif y a di stri b uti o n D n o w hi c h i s s u p p ort e d o n ( 3 n ) × ( 3 n ) m atri c e s t h at ar e ε -f ar fr o m b ei n g a m etri c,
w h er e ε = n − ν ( n ) , f or ν (n ) = ( l o g l o g l o g n + 4) / l o g l o g n . We s h o w t h at a n o n- a d a pti v e al g orit h m w hi c h m a k e s
o ( n 2 / 3 + 2 ν ( n ) / 3 ) q u eri e s will n ot b e a bl e t o fi n d a vi ol ati o n of t h e tri a n gl e i n e q u alit y wit h hi g h pr o b a bilit y
w h e n t h e i n p ut M ∼ D n o . T h e c o n str u cti o n f oll o w s cl o s el y t o t h e B e hr e n d gr a p h c o n str u cti o n u s e d i n [ 1 ] f or
s h o wi n g t h e h ar d n e s s of t e sti n g tri a n gl e-fr e e n e s s. I n p arti c ul ar, w e m a k e u s e of a S al e m- S p e n c er s et, w hi c h i s
a d e n s e s et of n u m b er s t h at i s fr e e of 3- arit h m eti c pr o gr e s si o n s.
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L e m m a 4. 1. ( L e m m a 4 i n [ 1 ] ) F o r a n y s u ffi ci e ntl y l a r g e n , t h e r e e xi st s a s et X ⊂ [n ] of si z e at l e a st n 1 − ν ( n ) ,
f o r ν (n ) = ( l o g l o g l o g n + 4) / l o g l o g n , s o t h at f o r all x, y, z ∈ X , x + y ≡ 2 z m o d n if a n d o nl y if x = y = z .

D e s c ri p ti o n of D n o . We d e s cri b e a si n gl e ( 3 n ) × ( 3n ) m atri x M , w hi c h w e will t h e n r a n d o mi z e b y r e- s h u ffli n g
i n di c e s i n [ 3n ]. O ur c o n str u cti o n f oll o w s cl o s el y t h at of t h e B e hr e n d gr a p h ( S e cti o n 5. 3 i n [ 1 ]), w hi c h i s a
tri p artit e gr a p h o n 3 n v erti c e s ( e a c h p art wit h n v erti c e s) a n d n |X | e d g e- di sj oi nt tri a n gl e s, w h er e s et X i s
fr o m L e m m a 4. 1. F or si m pli cit y, w e p artiti o n t h e s et of 3 n i n di c e s i nt o A , B , a n d C , e a c h of si z e n , a n d w e
will a s s o ci at e e a c h a ∈ A wit h a n u m b er i n [ n ]. H e n c e, w e r ef er t o M (a, b ) a s t h e e ntr y i n t h e m atri x M of
r o w a ∈ A a n d c ol u m n b ∈ B —t hi s c a u s e s s o m e a m bi g uit y a m o n g t h e i n di c e s, si n c e a ∈ A b ot h c orr e s p o n d s t o
a n u m b er, a n d t h e f a ct w e u s e “ a ” m e a n s w e r ef er t o t h e s u b s et of r o w s / c ol u m n s a s s o ci at e d wit h A ( si mil arl y
f or b a n d c ). We l et:

• F or a n y a ∈ A a n d b ∈ B , w e l et M ( a, b ) = M ( b, a ) = 1 if a n d o nl y if b − a ≡ x m o d n wit h x ∈ X ,
a n d w e l et M (a, b ) = M (b, a ) = 2 ot h er wi s e.

• F or a n y b ∈ B a n d c ∈ C , w e l et M (b, c ) = M (c, b ) = 2 if a n d o nl y if c − b ≡ x m o d n wit h x ∈ X , a n d
w e l et M (b, c ) = M (c, b ) = 3 ot h er wi s e.

• F or a n y a ∈ A a n d c ∈ C , w e l et M ( a, c ) = M ( c, a ) = 4 if a n d o nl y if c − a ≡ 2 x m o d n wit h x ∈ X
a n d M (a, c ) = M (c, a ) = 2 ot h er wi s e.

• E v er y ot h er n o n- di a g o n al e ntr y M (x, y ) = 2 a n d e v er y di a g o n al e ntr y M (x, x ) = 0.

We c o n si d er t h e f oll o wi n g i m p ort a nt pr o p erti e s of t h e c o n str u cti o n a b o v e:

C l ai m 4. 1. F o r t h e m at ri x M c o n st r u ct e d a b o v e, w e h a v e:

• S u p p o s e i, j, k a r e t h r e e i n di c e s t h at f o r m a vi ol ati n g t ri a n gl e. T h e n, u p t o a p e r m ut ati o n, M (i, j ) = 1 ,
M (j, k ) = 2, a n d M (k, i ) = 4.

• F o r t h e p e r m ut ati o n w h e r e t h e a b o v e h ol d s, t h e r e i s a si n gl e e nt r y i = a ∈ A , j = b ∈ B , a n d k = c ∈ C .

• A vi ol ati n g t ri a n gl e { a, b, c } a s a b o v e i s u ni q u el y a s s o ci at e d wit h a ∈ A a n d x ∈ X , s o t h e vi ol ati n g
t ri a n gl e c o n si st s of { a, a + x m o d n, a + 2 x m o d n } .

T h e a b o v e i m pli e s t h at 2 n |X | m o di fi c ati o n s o n t h e e nt ri e s of M a r e r e q ui r e d i n o r d e r t o r e m o v e all vi ol ati o n s
of t h e t ri a n gl e i n e q u alit y. F u rt h e r m o r e, t h e g u a r a nt e e of L e m m a 4. 1 e n s u r e s t h at t h e r e a r e e x a ctl y n |X | t ri pl e s
{ a, b, c } w hi c h vi ol at e t h e t ri a n gl e i n e q u alit y.

P r o of. [ Pr o of of Cl ai m 4. 1] Fir st, n oti c e t h at all di st a n c e s ar e { 0 , 1 , 2 , 3 , 4 } , w h er e di st a n c e s of 0 ar e s ol el y f or
M ( x, x ). T h u s, vi ol ati o n s of t h e tri a n gl e i n e q u alit y c o m e fr o m t h e p o s si bl e t u pl e s ( 1 , 1 , 3) , ( 1 , 1 , 4) , ( 1 , 2 , 4).
H o w e v er, w e n ot e t h at o n e c a n n ot h a v e vi ol ati o n s of t h e tri a n gl e i n e q u alit y of t h e f or m ( 1 , 1 , 3) or ( 1 , 1 , 4). T h e
r e a s o n i s t h at M (i, j ) = 1 o c c ur s o nl y if i n di c e s i, j c orr e s p o n d t o s o m e a ∈ A a n d b ∈ B . T h u s, if M (i, j ) = 1
a n d M (j, k ) = 1, t h e n i, j, k ar e all a m o n g A ∪ B . H o w e v er, t h e o nl y e ntri e s s et t o 3 or 4 ar e i n ci d e nt o n C .

F urt h er m or e, vi ol ati o n s of t h e f or m ( 1 , 2 , 4) ar e e x a ctl y t h o s e ari si n g fr o m t h e n |X | e d g e- di sj oi nt tri a n gl e s
{ a, b, c } s p e ci fi e d b y s o m e x ∈ X , w h er e b − a ≡ x m o d n , c − b ≡ x m o d n a n d c − a ≡ 2 x m o d n . T hi s
f oll o w s fr o m t h e f a ct t h at X i s t hr e e of l e n gt h- 3 arit h m eti c pr o gr e s si o n s. Si n c e t h e s e vi ol ati n g tri a n gl e s ar e
e d g e- di sj oi nt, e a c h e ntr y i n M i s i n v ol v e d i n at m o st o n e 3-t u pl e s vi ol ati n g t h e tri a n gl e i n e q u alit y. M or e o v er,
si n c e at l e a st o n e e ntr y i n M (i, j ), M(i, k), M(j, k ) h a s t o b e m o di fi e d f or t h e tri pl e { i, j, k} t o o b e y m etri c
pr o p ert y, w e n e e d t o m o dif y at l e a st o n e e d g e i n e a c h vi ol ati n g tri pl e. T h at i s, at l e a st n |X | e ntri e s i n M h a s
t o b e m o di fi e d f or M t o b e a m etri c. I n f a ct, e x a ctl y n |X | m o di fi c ati o n s s u ffi c e: si m pl y m o dif y all e d g e s wit h
w ei g ht 4 t o 3. T h er e ar e n |X | s u c h e d g e s i n G , w hi c h c orr e s p o n d t o 2n |X | s u c h e ntri e s i n M .
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A

B C

1

2

4

S e e Fi g ur e 4 f or a d e s cri pti o n of t h e a b o v e c o n str u cti o n, s e e al s o S e cti o n 2. 6 i n [ 2 9 ]. We l et M ∼ D n o b e
o bt ai n e d fr o m M b y r e- or d eri n g r o w s a n d c ol u m n s a c c or di n g t o a u nif or ml y r a n d o m p er m ut ati o n π . B y Y a o’ s
mi ni m a x pri n ci pl e, i n or d er t o r ul e o ut n o n- a d a pti v e al g orit h m s t h at h a v e o n e- si d e d err or (i. e., al w a y s a c c e pt
m etri c s), it s u ffi c e s t o r ul e o ut a n y d et er mi ni sti c a n d n o n- a d a pti v e al g orit h m f or fi n di n g vi ol ati n g tri a n gl e s i n
a dr a w M ∼ D n o .

L e m m a 4. 2. C o n si d e r a n y d et e r mi ni sti c n o n- a d a pti v e al g o rit h m t h at m a k e s o ( n 2 / 3 + 2 ν ( n ) / 3 ) q u e ri e s. Wit h
p r o b a bilit y at l e a st 2 / 3 o v e r t h e d r a w of M ∼ D n o , t h e r e a r e n o q u e ri e s (i, j ), (j, k ), a n d (i, k) wit h

M (i, j ) > M (i, k) + M (k, j ).

Si n c e a n y p a rti al m at ri x t h at d o e s n ot vi ol at e t h e t ri a n gl e i n e q u alit y m a y b e c o m pl et e d t o o n e w hi c h i s a
m et ri c ( b y c o n si d e ri n g t h e o b s e r v e d w ei g ht e d s u b- g r a p h a n d c o m p uti n g s h o rt e st p at h s, a s w ell a s a m a xi m u m
di st a n c e ), a n y n o n- a d a pti v e a n d o n e- si d e d al g o rit h m m u st m a k e Ω( n 2 / 3 + 2 ν ( n ) / 3 ) q u e ri e s.

P r o of. C o n si d er a d et er mi ni sti c n o n- a d a pti v e al g orit h m w hi c h q u eri e s k = o ( n 2 / 3 + 2 ν ( n ) / 3 ) e ntri e s, a n d l et
E ⊂ [n ] × [n ] b e t hi s s et of q u eri e s — u p t o a f a ct or of 2, w e m a y a s s u m e t h at t h e al g orit h m i s s y m m etri c s o
t h at it q u eri e s ( i, j ) a n d ( j, i ). T h e pr o b a bilit y t h at a vi ol ati n g tri a n gl e i s a m o n g t h e q u eri e s E , vi a a u ni o n
b o u n d, i s at m o st

a ∈ A
x ∈ X

P r
π










(π (a ), π (a + x )),
(π (a + x ), π (a + 2 x )),

(π (a ), π (a + 2 x ))





⊂ E



 ,

w h er e t h e s u m m ati o n i s o v er t h e n |X | p o s si bl e vi ol ati n g tri a n gl e s. If w e l et T (E ) d e n ot e t h e s et of tri a n gl e s
a m o n g t h e E q u eri e s, t h e a b o v e e x pr e s si o n b e c o m e s

n |X | · O
1

n 3
· |T (E )|,

si n c e t h e pr o b a bilit y t h at a n y fi x e d tri a n gl e i s m a p p e d t o a fi x e d tri a n gl e i n T (E ) u n d er π i s O ( 1 / n 3 ). Si n c e
t h e m a xi m u m n u m b er of tri a n gl e s i n |E | e d g e s i s O (|E |3 / 2 ), t h e pr o b a bilit y i s u p p er b o u n d e d b y

O
|X |

n 2
· |E |3 / 2 = O

|E |3 / 2

n 1 + ν ( n )
,

C o p y ri g h t © 2 0 2 5 b y S I A M
U n a u t h o ri z e d r e p r o d u c ti o n of t hi s a r ti cl e i s p r o hi bi t e d4 1 9

Do
wn

lo
ad

ed
 0

6/
08

/2
5 
to

 1
51

.1
97

.3
.8

4 .
 

Re
di

st
ri

bu
ti

on
 s

ub
je

ct
 t

o 
SI

A
M 
li

ce
ns

e 
or
 c

op
yr

ig
ht
; 

se
e 

ht
tp

s:
//

ep
ub

s.
si

a
m.

or
g/
te

r
ms

-p
ri

va
cy



w hi c h i s o ( 1) if |E | = o (n 2 / 3 + 2 ν ( n ) / 3 ).

5   Ul t r a m e t ri c a n d Tr e e M e t ri c T e s ti n g U p p e r B o u n d: T h e o r e m 1. 3

I n t hi s s e cti o n, w e pr e s e nt al g orit h m s f or t e sti n g ultr a m etri c s a n d tr e e m etri c s, b ot h u si n g Õ ( 1 / ε ) s a m pl e s
a n d Õ ( 1 / ε 2 ) q u eri e s, t h er e b y pr o vi n g T h e or e m 1. 3. We l et

P U = { M ∈ C , M e n c o d e s a n ultr a m etri c s p a c e o v er [ n ]} ,

P T = { M ∈ C , M e n c o d e s a tr e e m etri c s p a c e o v er [ n ]} .

5. 1   Ul t r a m e t ri c T e s ti n g U p p e r B o u n d A s p er L e m m a 2. 1, i n p ut m atri c e s M ∈ C ar e alr e a d y s y m m etri c,
n o n- n e g ati v e, a n d z er o o nl y o n t h e di a g o n al. A s i n S e cti o n 3, al g orit h m s will h a v e o n e- si d e d err or, m e a ni n g
t h at t h e t e st er’ s t a s k i s fi n di n g a c erti fi c at e t h at t h e i n p ut m atri x i s n ot i n P U . We fir st d e fi n e t h e t y p e of
vi ol ati o n t h e al g orit h m s e e k s.

D e fi ni ti o n 5. 1. ( U l t r a m e t ri c Vi o l a ti n g T ri p l e ) Gi v e n M ∈ C , t h e t ri pl e { i, j, k} i s a vi ol ati o n of
ult r a m et ri c if, aft e r r e n a mi n g s o M (i, j ) i s m a xi m u m a m o n g t h e 3 p ai r wi s e di st a n c e s,

M (i, j ) > M (i, k) a n d M (i, j ) > M (j, k ).

We pr e s e nt t h e al g orit h m f or t e sti n g ultr a m etri c s, U l t r a T e s ti n g .

Ul t r a T e s ti n g Al g o ri t h m . T h e al g orit h m ai m s t o fi n d a vi ol ati n g tri pl e of i n di c e s { i, j, k} of t h e
ultr a m etri c pr o p ert y. If a vi ol ati n g tri pl e i s f o u n d, it c o n stit ut e s a c erti fi c at e t h at t h e m atri x i s n ot
ultr a m etri c, a n d t h e al g orit h m o ut p ut s “r ej e ct ”.

I n p u t: T h e p ar a m et er s n ∈ N a n d ε ∈ ( 0 , 1), a s w ell a s q u er y a c c e s s t o t h e e ntri e s of a n u n k n o w n n × n
m atri x M fr o m C ( s e e L e m m a 2. 1).

O u t p u t: “ a c c e pt ” or “r ej e ct. ”

1. F or s = Θ( l o g( 1/ ε )/ ε ), t a k e s r a n d o m s a m pl e s i 1 , . . . , i s ∼ [n ] dr a w n i n d e p e n d e ntl y. Q u er y M (i ℓ , i k )
f or all ℓ, k ∈ [s ].

2. If t h er e e xi st s a tri pl e a m o n g t h e s a m pl e d i n di c e s { i ℓ , i k , i h } w hi c h i s a vi ol ati n g tri pl e i n M , o ut p ut
“r ej e ct. ”

L e m m a 5. 1. ( U l t r a m e t ri c T e s ti n g A l g o ri t h m L e m m a ) F o r n ∈ ◆ a n d ε ∈ ( 0 , 1) , t h e al g o rit h m
U l t r a T e s ti n g r e c ei v e s a s i n p ut a n n × n m at ri x M ∈ C a n d a p a r a m et e r ε a n d h a s t h e f oll o wi n g g u a r a nt e e s:

• If M ∈ P U , U l t r a T e s ti n g (M, ε ) al w a y s o ut p ut s “ a c c e pt. ”

• If M ∈ C i s ε -f a r f r o m P U , t h e al g o rit h m o ut p ut s “ r ej e ct ” wit h p r o b a bilit y at l e a st 2 / 3 .

T h e al g o rit h m i s n o n- a d a pti v e, t a ki n g O (l o g ( 1 / ε )/ ε ) s a m pl e s a n d u si n g O (l o g ( 1 / ε ) 2 / ε 2 ) q u e ri e s.
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5. 1. 1   Ul t r a m e t ri c T e s ti n g Al g o ri t h m: P r o of of L e m m a 5. 1 F or t h e s a k e of a n al y si s, w e will di vi d e
t h e s a m pl e s o bt ai n e d i n Li n e 1 of U l t r a T e s ti n g i nt o t w o di sti n ct gr o u p s.

• T h e fir st gr o u p c o n si st s of a s et S = { i 1 , . . . , i s / 2 } of t h e fir st O (l o g( 1/ ε )/ ε ) s a m pl e s. A s i n [ 2 7 ], w e u s e
t h e s et S t o d e fi n e a “ s k el et o n p artiti o n ” ( D e fi niti o n 3. 5 i n [ 2 7 ] a n d D e fi niti o n 5. 2 b el o w).

• T h e s e c o n d gr o u p c o n si st s of t h e r e m ai ni n g O (l o g( 1 / ε )/ ε ) s a m pl e s vi e w e d a s a s et of c o n s e c uti v e p air s,
si n c e t h e vi ol ati o n s w e fi n d ar e f or m e d b y s u c h s o m e p air s ( i ℓ , i ℓ + 1 ) vi ol ati n g a c o n str ai nt i m p o s e d b y
t h e s k el et o n p artiti o n of S i n t h e fir st gr o u p.

We b e gi n b y d e fi ni n g t h e s k el et o n p artiti o n a n d c orr e s p o n di n g e q ui v al e n c e cl a s s e s f or m e d b y a fi x e d s u b s et
S ∈ [n ]. O ur a n al y si s will tr a c k h o w t h e e q ui v al e n c e cl a s s e s e v ol v e a s t h e (r a n d o m) s et c h a n g e s wit h e a c h
s a m pl e.

D e fi ni ti o n 5. 2. ( S k e l e t o n P a r ti ti o n a n d E q ui v a l e n c e C l a s s e s ) L et M ∈ C a n d S ⊂ [n ]. W e s a y
t h at S i s c o n si st e nt if t h e |S | × |S | s u b m at ri x M |S × S e n c o d e s a n ult r a m et ri c. F o r a c o n si st e nt s et S , w e d e fi n e:

• C o n si s t e n t P oi n t s . A p oi nt j ∈ [n ] \ S i s a c o n si st e nt p oi nt if S ∪ { j } i s c o n si st e nt.

• S k el e t o n P a r ti ti o n . A s k el et o n p a rtiti o n of S i s a p a rtiti o n P 1 , . . . , Pℓ of t h e c o n si st e nt p oi nt s i n
[n ] \ S w h e r e t w o i n di c e s j, k ∈ [n ] \ S a r e i n t h e s a m e p a rt P p , o r e q ui v al e n c e cl a s s, if a n d o nl y if
M (j, i ) = M (k, i ) f o r all i ∈ S .

• S e p a r a t o r S e t . If j, k ∈ [n ] \ S a r e i n di ff e r e nt e q ui v al e n c e cl a s s e s, t h ei r s e p a r at o r s et S E P (j, k ) ⊂ S
i s gi v e n b y

S E P (j, k ) = { i ∈ S : M (i, j ) ≠ M (i, k)} .

• S e p a r a t o r C o r r u p ti o n . If j, k ∈ [n ]\ S a r e i n di ff e r e nt e q ui v al e n c e cl a s s e s, t h e p ai r ( j, k ) i s a s e p a r at o r
c o r r u pti o n if t h e r e e xi st s i ∈ S E P (j, k ) w h e r e

M (j, k ) ≠ m a x { M (i, j ), M(i, k)} .( 5. 1)

W e l et S C (M, S ) ⊂ ([n ] \ S ) × ([n ] \ S ) d e n ot e t h e s et of p ai r s w hi c h a r e s e p a r at o r c o r r u pti o n s.

D e fi niti o n 5. 2 s u g g e st s o ur a n al y si s a p pr o a c h. T h e al g orit h m will s a m pl e a s et S of i n di c e s f or t h e fir st
gr o u p —if t h e s et S i s n ot c o n si st e nt, t h er e i s a vi ol ati o n a n d w e ar e alr e a d y d o n e. A s s u m e t h at S i s c o n si st e nt.
We ai m t o s a m pl e a p air ( j , k ) i n t h e s e c o n d gr o u p f or mi n g a s e p ar at or c orr u pti o n. N ot e t h at ( 5. 1) f or m s a
vi ol ati o n of t h e ultr a m etri c pr o p ert y, s o if t hi s o c c ur s, t h e al g orit h m c a n s af el y o ut p ut “r ej e ct. ” We d e fi n e
o n e m or e t y p e of “ e a s y-t o- d et e ct ” vi ol ati o n t o t h e ultr a m etri c pr o p ert y.

D e fi ni ti o n 5. 3. ( E a s y- t o- D e t e c t C o r r u p ti o n ) F o r M ∈ C a n d a c o n si st e nt s et S ⊂ [n ], l et ( j, k ) ∈
([n ] \ S ) × ([n ] \ S ) b e i n t h e s a m e e q ui v al e n c e cl a s s. T h e p ai r ( j, k ) f o r m a n e a s y-t o- d et e ct c o r r u pti o n if t h e r e
e xi st s i ∈ S w h e r e

M (j, k ) > M (j, i ) = M (k, i ).

L et E C (M, S ) ⊂ ([n ] \ S ) × ([n ] \ S ) b e s et of e a s y-t o- d et e ct c o r r u pti o n s i n M wit h r e s p e ct t o S .

Fr o m t h e a n al y si s p er s p e cti v e, w e pr o v e t h e f oll o wi n g l e m m a, w hi c h i m pli e s t h e c orr e ct n e s s of o ur al g orit h m.
We st at e L e m m a 5. 2, a s it will dir e ctl y i m pl y L e m m a 5. 1. T h e pr o of i s a str ai g htf or w ar d c o n s e q u e n c e of t w o
l e m m a s ( L e m m a 5. 3 a n d L e m m a 5. 4), w hi c h e n c a p s ul at e s o ur i m pr o v e m e nt o v er t h e a n al y si s of [2 7 ].

L e m m a 5. 2. L et M ∈ C b e ε -f a r f r o m P U .   T h e n, wit h p r o b a bilit y at l e a st 5 / 6 o v e r t h e d r a w of
S = { i 1 , . . . , i s / 2 } ⊂ [n ] w h e r e i 1 , . . . , i s / 2 ∼ [n ] a n d s = O (l o g ( 1 / ε )/ ε ), o n e of t h e f oll o wi n g s h ol d s:
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• S i s n ot c o n si st e nt;

• T h e r e a r e at l e a st ε n / 3 2 p oi nt s i n [n ] \ S w hi c h a r e n ot c o n si st e nt wit h S ;

• |S C (M, S )| + |E C (M, S )| ≥ ε n 2 / 8 .

P r o of. [ Pr o of of L e m m a 5. 1 a s s u mi n g L e m m a 5. 2] Fir st, if M ∈ P U , U l t r a T e s ti n g n e v er o b s er v e a vi ol ati o n
a n d o ut p ut s “ a c c e pt. ” If M ∈ C i s ε -f ar fr o m P U , w e u s e L e m m a 5. 2 t o d e d u c e t h at wit h pr o b a bilit y at l e a st
5 / 6, t h e s et S = { i 1 , . . . , i s / 2 } o bt ai n e d fr o m t h e fir st s / 2 s a m pl e s i n Li n e 1 i s eit h er alr e a d y i n c o n si st e nt
(i n w hi c h c a s e a m o n g t h e e ntri e s of S , t h er e alr e a d y i s a vi ol ati o n), or it will b e c o m e e a s y t o s a m pl e a
vi ol ati o n. A s s u m e t h at S i s c o n si st e nt a n d t h at eit h er t h er e ar e ε n / 3 2 i n c o n si st e nt p oi nt s i n [ n ] \ S , or
|S C (M, S )| + |E C (M, S )| ≥ ε n 2 / 8. We t ur n t o t h e s e c o n d gr o u p of s / 2 s a m pl e s, w hi c h ar e di vi d e d i nt o p air s
(j , k ). We n ot e t h at i n or d er f or a vi ol ati o n t o b e a v oi d e d, t h e Θ( l o g( 1 / ε )/ ε ) p air s of s a m pl e s m u st all a v oi d
t h e ε n / 3 2 i n c o n si st e nt p oi nt s, a n d, at t h e s a m e ti m e, a v oi d t h e ε n 2 / 8 e ntri e s i n S C ( M, S ) a n d E C ( M, S ).
T h e pr o b a bilit y t hi s o c c ur s i s at m o st

( 1 − Ω( ε ))
Θ (l o g ( 1 / ε ) / ε )

+ ( 1 − Ω( ε ))
Θ (l o g ( 1 / ε ) / ε )

≤ 1 / 6 .

f or a n a p pr o pri at e c h oi c e of t h e c o n st a nt i n fr o nt of t h e s a m pl e si z e.

T h u s, b y u ni o n b o u n d o v er all e v e nt s, t h e pr o b a bilit y t h at t h e al g orit h m d o e s n ot fi n d a n y vi ol ati o n will b e at
m o st 1 / 3, w hi c h c o m pl et e s t h e pr o of.

We t ur n o ur att e nti o n t o pr o vi n g L e m m a 5. 2, w hi c h will f oll o w b y l o w er- b o u n di n g t h e si z e s of t h e s e p ar at or
c orr u pti o n s S C (M, S ) a n d e a s y-t o- d et e ct c orr u pti o n s E C (M, S ). I n st e a d of a n al y zi n g S C (M, S ) a n d E C (M, S )
dir e ctl y, w e will l o o k at a r el at e d q u a ntit y d e fi n e d o v er c ert ai n t y p e s of e q ui v al e n c e cl a s s e s.

D e fi ni ti o n 5. 4. ( E a s y, V e r s a ti l e, a n d A c ti v e P a r t s ) L et M ∈ C b e ε -f a r f r o m P U a n d S ⊂ [n ] b e
c o n si st e nt, a n d l et P 1 , . . . , Pℓ d e n ot e t h e s k el et o n p a rtiti o n.

• E a s y P a r t . A p a rt P ℓ i s e a s y if

P r
j ,k ∼ P ℓ

[(j , k ) ∈ E C (M, S )] ≥
1

2
.

T h at i s, at l e a st h alf of t h e e nt ri e s i n t h e s u b m at ri x M |P ℓ × P ℓ
a r e e a s y-t o- d et e ct c o r r u pti o n s.

• V e r s a til e P a r t . C o n si d e r a p a rt P ℓ wit h β n i n di c e s f o r β = Ω( 1) . W e s a y P ℓ i s v er s atil e if t h e
f oll o wi n g h ol d:

– t h e r e e xi st s a ( β n ) × ( β n ) m at ri x M ∗
P ℓ

e n c o di n g a n ult r a m et ri c w h o s e e nt ri e s a r e at m o st
mi n i ∈ S, j ∈ P l

{ M (i, j )} .

– ∥ M ∗
P ℓ

− M |P ℓ × P ℓ
∥ ≤ β · ε n 2 / 2 .

T h at i s, i nt uiti v el y, n o m o r e t h a n β · ε n 2 / 2 e nt ri e s of t h e s u b m at ri x M |P ℓ × P ℓ
n e e d t o b e m o di fi e d s o t h at

M |P ℓ × P ℓ
i s fi x e d t o b e a n ult r a m et ri c c o n si st e nt wit h S .

• A c ti v e P a r t . A p a rt P ℓ i s a cti v e if it i s n eit h e r e a s y n o r v e r s atil e. W e l et

A (M, S ) = { (j, k ) ∈ P ℓ f o r s o m e a cti v e p a rt P ℓ }

α (M, S ) = P r
j ∼ [n ]

[j ∈ P ℓ f o r s o m e a cti v e p a rt P ℓ ]
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L e m m a 5. 3. L et M ∈ C b e ε -f a r f r o m P U a n d S ⊂ [n ] b e c o n si st e nt. If |A (M, S )| ≤ ε n 2 / 8 , t h e n eit h e r t h e r e
a r e at l e a st ε n / 3 2 i n c o n si st e nt p oi nt s i n [n ] \ S , o r |S C (M, S )| + |E C (M, S )| ≥ ε n 2 / 8 .

P r o of. We pr o v e t h e c o ntr a- p o siti v e b y s h o wi n g t h at, gi v e n M b ei n g ε -f ar fr o m P U a n d a c o n si st e nt s u b s et
S ⊂ [n ] w hi c h s ati sf y (i) |A (M, S )| ≤ ε n 2 / 8, (ii) |S C (M, S ) | + |E C ( M, S )| ≤ ε n 2 / 8, a n d (iii) at m o st ε n / 3 2
i n c o n si st e nt p oi nt s i n [n ] \ S , t h er e e xi st s a n n × n m atri x ˜M ∈ P U w hi c h di ff er s fr o m M o n f e w er t h a n ε n 2

e ntri e s. T hi s i m pli e s t h at M i s ε - cl o s e t o P U , w hi c h i s a c o ntr a di cti o n. T h e m atri x ˜M i s c o n str u ct e d a s
f oll o w s:

1. F or all i, i′ ∈ S w e s et ˜M (i, i′) t o M (i, i′).

2. If j ∈ [n ] \ S i s a m o n g t h e ε n / 3 2 i n c o n si st e nt p oi nt s, w e l et ˜M (j, k ) b e s o m e ar bitr aril y l ar g e v al u e f or
all k ∈ [n ]. T hi s c orr e s p o n d s t o e ff e cti v el y r e m o vi n g j w hil e k e e pi n g a n ultr a m etri c. F or t h e p oi nt s
j ∈ [n ] \ S w hi c h ar e c o n si st e nt, s et ˜M (j, i ) t o b e M (j, i ) f or all i ∈ S .

3. F or c o n si st e nt j, k ∈ [n ] \ S l yi n g i n di ff er e nt e q ui v al e n c e cl a s s e s:

• If (j, k ) /∈ S C (M, S ), s et ˜M (j, k ) = M (j, k ).

• If (j, k ) ∈ S C (M, S ), fi n d i ∈ S E P (j, k ) a n d s et ˜M (j, k ) = m a x { M (i, j ), M(i, k)} . ( A s w e will s e e,
t h e s p e ci fi c c h oi c e of i will n ot m att er).

4. F or c o n si st e nt j, k ∈ [n ] \ S l yi n g i n t h e s a m e e q ui v al e n c e cl a s s P ℓ :

• If P ℓ i s a n E a s y P art or a n A cti v e P art, s et ˜M (j, k ) t o b e t h e mi ni m u m p o siti v e e ntr y i n M .

• If P ℓ i s a Ver s atil e P art, fi n d t h e m atri x M ∗
P ℓ

a s i n D e fi niti o n 5. 4, a n d s et ˜M (j, k ) = M ∗
P ℓ

(j, k ).

We n o w s h o w t h at ∥ ˜M − M ∥ 0 < ε n 2 a n d ˜M ∈ P U . Fir st, n ot e t h at M a n d ˜M di ff er o n at m o st

ε n

3 2
× 2 n + |S C (M, S )| +

P ℓ E a s y

|P ℓ |
2 + |A (M, S )| +

P ℓ V e r s a til e

|P ℓ | · ε n / 2

e ntri e s. N oti c e t h at, 2 |E C (M, S )| u p p er b o u n d s t h e s u m of |P ℓ |
2 o v er E a s y P art P ℓ ( si n c e e a c h E a s y P art P ℓ

h a s at l e a st h alf of it s e ntri e s i n E C (M, S ). F urt h er m or e, p art s p artiti o n c o n si st e nt p oi nt s i n [ n ] \ S , s o t h e
s u m of |P ℓ | o v er Ver s atil e p art s i s at m o st n . Fi n all y, t h e a s s u m pti o n |S C (M, S )| + |E C (M, S )| ≤ ε n 2 / 8 a s
w ell a s |A (M, S )| ≤ ε n 2 / 8 gi v e t h e d e sir e d b o u n d: ∥ ˜M − M ∥ 0 ≤ 1 5 / 1 6 · ε n 2 .

T h e r e st of t h e pr o of w hi c h s h o w s t h at ˜M ∈ P U h a s b e e n m o v e d t o t h e a p p e n di x, i n t h e i nt er e st of s p a c e. We
pr o v e ˜M ∈ P U b y c o n si d eri n g a n ar bitr ar y tri pl e { i, j, k} ⊂ [n ] a n d s h o wi n g t h at it d o e s n ot f or m a vi ol ati o n
i n ˜M .

T h e a b o v e ar g u m e nt s h o w s t h at ˜M e n c o d e s a n ultr a m etri c a n d i s ( 1 5 / 1 6 · ε )- cl o s e t o M , w hi c h l e a d s t o a
c o ntr a di cti o n. H e n c e, if |A (M, S )| ≤ ε n 2 / 8, t h e n eit h er t h er e ar e at l e a st ε n 2 / 3 2 i n c o n si st e nt p oi nt s i n [ n ] \ S
or |S C (M, S )| + |E C (M, S )| ≥ ε n 2 / 8.

L e m m a 5. 4. S u p p o s e M ∈ C i s ε -f a r f r o m P U . Wit h p r o b a bilit y at l e a st 5 / 6 , o v e r t h e d r a w of S ⊂ [n ] of si z e
Ω(l o g ( 1 / ε )/ ε ), |A (M, S )| ≤ ε n 2 / 8 .

P r o of. [ Pr o of of L e m m a 5. 2 a s s u mi n g L e m m a s 5. 4] T h e pr o of i s a str ai g htf or w ar d a p pli c ati o n of L e m m a 5. 4
a n d L e m m a 5. 3. I n p arti c ul ar, b y L e m m a 5. 4, a dr a w of S will s ati sf y |A (M, S ) | ≤ ε n 2 / 8 wit h pr o b a bilit y at
l e a st 5/ 6. T h e n, eit h er S i s i n c o n si st e nt, or w e m a y a p pl y L e m m a 5. 3, w hi c h i m pli e s eit h er t h er e ar e at l e a st
ε n / 3 2 i n di c e s w hi c h i n c ur vi ol ati o n s wit h S or |S C (M, S )| + |E C (M, S )| ≥ ε n 2 / 8.
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5. 1. 2   B o u n di n g t h e N u m b e r of A c ti v e E n t ri e s: P r o of of L e m m a 5. 4

L e m m a 5. 5. S u p p o s e M ∈ C i s ε -f a r f r o m P U a n d s u p p o s e S = { i1 , ..., ij − 1 } ⊂ [n ]. O v e r t h e r a n d o m n e s s of
t h e i n d e x i j s a m pl e d f r o m [n ], E i j

[|A (M, S ∪ { i j } )|] ≤ | A (M, S )| · e x p( − ε
1 6 ).

P r o of. [ Pr o of of L e m m a 5. 4 a s s u mi n g L e m m a 5. 5]

S u p p o s e i 1 , ..., i s ∈ [n ] ar e dr a w n i n d e p e n d e ntl y w h er e s = 1 6 l o g( 4 8 / ε ) / ε . L et S b e t hi s s et of r a n d o m
s a m pl e s. T h e n t h e l a w of t ot al e x p e ct ati o n,

l o g E
i 1 ,...,i s

[|A (M, S )|] = l o g ( E [|A (M, { i 1 , ..., i s − 1 } ∪ { i s } )|])

= l o g E E
i s

[|A (M, { i 1 , ..., i s − 1 } ∪ { i s } )||i 1 , ..., i s − 1 ]

≤ l o g E |A (M, { i 1 , ..., i s − 1 } )| · e x p( −
ε

1 6
)

= l o g E
i 1 ,...,i s − 1

[|A (M, { i 1 , ..., i s − 1 } )|] −
ε

1 6
.

B y i n d u cti o n,

l o g E
i 1 ,...,i s

[|A (M, S )|] = l o g ( E [|A (M, ∅ )|]) −
ε · s

1 6
= l o g ( n 2 ) − l o g ( 4 8/ ε ) = l o g ( ε n 2 / 4 8) .

T h u s, E i 1 ,...,i s [|A (M, S ) |] = ε n 2 / 4 8 . B y M ar k o v’ s i n e q u alit y, wit h pr o b a bilit y at l e a st 5 / 6, o v er t h e dr a w of
{ i 1 , ..., i s } , A(|M, S |) ≤ ε n 2 / 8.

L e m m a 5. 6. S u p p o s e M ∈ C i s ε -f a r f r o m P U . S u p p o s e S = { i1 , ..., ij − 1 } ⊂ [n ]. O v e r t h e r a n d o m n e s s of t h e
n e xt s a m pl e d i n d e x i j , if i j i s s a m pl e d f r o m a n A cti v e P a rt P wit h si z e β n ,

E
i j

[|A (M, S ∪ { i j } )||i j ∈ P ] ≤ | A (M, S )| − β · ε n 2 / 1 6 .

P r o of. [ Pr o of of L e m m a 5. 5 a s s u mi n g L e m m a 5. 6]

L et A ( M, S ) b e t h e s et of all A cti v e P art s d e fi n e d o v er t h e s et S . S u p p o s e t h e p art P l wit h β l n p oi nt s i s
a cti v e. A p oi nt i s c h o s e n fr o m t hi s p art wit h pr o b a bilit y β l , a n d a s a r e s ult, E i j

[|A (M, S ∪ { i j } )||i j ∈ P l ] ≤
|A (M, S )| − β l · ε n 2 / 1 6. T h u s, w e h a v e t h e c o n diti o n al e x p e ct ati o n

E
i j

[|A (M, S ∪ { i j } )||i j ∈ A (M, S )] =
l:P l ∈ A ( M, S )

E
i j

[|A (M, S ∪ { i j } )||i j ∈ P l ] · P r (i j ∈ P l |i j ∈ A (M, S ))

≤ | A (M, S )| −
l:P l ∈ A ( M, S )

β l · ε n 2 / 1 6 ·
β l

k :P k ∈ A ( M, S ) β k

= |A (M, S )| −
l:P l ∈ A ( M, S ) β 2

l · ε n 2 / 1 6

l:P l ∈ A ( M, S ) β l

O n t h e ot h er h a n d, w e h a v e

|A (M, S )| =
l:P l ∈ A ( M, S )

(β l n ) 2 ,
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α (M, S ) = P r
j ∼ [n ]

[j ∈ P ℓ f or s o m e a cti v e p art P ℓ ] =
l:P l ∈ A ( M, S )

β l .

H e n c e, a s i n d e x i j i s s a m pl e d fr o m s o m e A cti v e P art, E i j
[|A ( M, S ∪ { i j } ) ||i j ∈ A ( M, S )] ≤ | A ( M, S ) | −

|A (M, S )| · ε
1 6 ·α ( M, S ) . I n g e n er al w h e n i n d e x i j i s s a m pl e d u nif or ml y at r a n d o m,

E
i j

[|A (M, S ∪ { i j } )|]

= E
i j

[|A (M, S ∪ { i j } )||i j ∈ A (M, S )] · P r (i j ∈ A (M, S ))

+ E
i j

[|A (M, S ∪ { i j } )||i j /∈ A (M, S )] · P r (i j /∈ A (M, S ))

≤ |A (M, S )| − |A (M, S )| ·
ε

1 6 · α (M, S )
· α (M, S ) + |A (M, S )| · ( 1 − α (M, S ))

= |A (M, S )| · 1 −
ε

1 6
≤ | A (M, S )| · e x p −

ε

1 6

P r o of. [ Pr o of of L e m m a 5. 6] T h e A cti v e P art P c orr e s p o n d s t o a s u b- s q u ar e- m atri x B = M |P × P of M .
C o n si d er all t h e e ntri e s i n B t h at ar e n ot i n E C ( M, S ). S u p p o s e t h e s et of v al u e s t h e s e e ntri e s t a k e o n i s
{ v 1 , v2 , ..., vk } , a n d f urt h er s u p p o s e v 1 i s t h e v al u e t h at m o st e ntri e s t a k e o n. S u p p o s e { v k + 1 , ..., vl } i s t h e
s et of v al u e s t h e e ntri e s i n E C ( M, S ) ∩ B t a k e o n. F oll o wi n g t h e d e fi niti o n of e a s y-t o- d et e ct c orr u pti o n
E C ( M, S ), a n y v al u e i n { v k + 1 , ..., vl } i s l ar g er t h a n a n y v al u e i n { v 1 , v2 , ..., vk } , s o { v 1 , ..., vl } i s a s et of
n o n-r e p etiti v e v al u e s. L et r τ t o d e n ot e t h e n u m b er of e ntri e s t a ki n g o n v al u e v τ i n t h e bl o c k m atri x B . H e n c e,

l
τ = 1 r τ = ( β n ) 2 . T h e a s s u m pti o n i n di c at e s t h at r 1 ≥ r τ , ∀ τ ∈ { 2 , ..., k} , a n d

l
τ = k + 1 r τ i s t h e n u m b er of

e a s y-t o- d et e ct- c orr u pti o n s i n B . T h at i s,

|B ∩ E C (M, S )| =

l

τ = k + 1

r τ .

Si n c e P i s a n A cti v e P art, it i s n ot a n E a s y P art. B y d e fi niti o n, n o m or e t h a n h alf of t h e e ntri e s i n B ar e i n
E C (M, S ). H e n c e,

l
τ = k + 1 r τ i s n o l ar g er t h a n (β n ) 2 / 2.

N o w, f o c u s o n t h e r o w / c ol u m n i n B t h at c orr e s p o n d s t o i n d e x i j i n P . S u p p o s e i n t h e r o w, t h er e ar e r
( i j )
l

e ntri e s w h o s e v al u e s ar e v l . T h e n, o n c e i j i s s a m pl e d, s o m e p air s of i n di c e s ar e s e p ar at e d i nt o di ff er e nt
p art s. I n p arti c ul ar, f or i n di c e s x, y ∈ P , if M (i j , x) ≠ M ( i j , y), t h e p air x, y t h at pr e vi o u sl y b ot h b el o n g e d
t o p art P n o w f all i nt o t w o di ff er e nt p art s. T h e n u m b er of s u c h p air s of i n di c e s t h at ar e s e p ar at e d i s

l
τ = 1 r

( i j )
τ (β n − r

( i j )
τ )/ 2 . O v er t h e r a n d o m n e s s of s a m pli n g a n y i n d e x i i n P , t h e e x p e ct e d n u m b er of

s e p ar at e d p air s cr e at e d i s

1

β n
i ∈ P

l

τ = 1

r ( i )
τ (β n − r ( i )

τ )/ 2 =
1

2 β n

l

τ = 1 i ∈ P

r ( i )
τ (β n − r ( i )

τ ).

N oti c e h er e t h at t h e n u m b er of s e p ar at e d p air s i s e x a ctl y t h e n u m b er of e ntri e s m o vi n g fr o m t h e bl o c k m atri x
B t o o ff- di a g o n al, a n d t h e s e e ntri e s n o l o n g er b el o n g t o A cti v e P art s. T h er ef or e, |A (M, S )| − |A (M, S ∪ { i } )|
i s at l e a st t h e n u m b er of s e p ar at e d p air s cr e at e d b y s a m pli n g a n i n d e x i ∈ P .

H e n c e, t h e g o al i s t o fi n d a l o w er b o u n d f or t h e n u m b er of s e p ar at e d p air s cr e at e d b y a n i n d e x i ∈ P . Si n c e a
p air of i n di c e s ar e s e p ar at e d if t h eir di st a n c e v al u e t o t h e s a m pl e d i n d e x i i s di ff er e nt, w e f o c u s o n t h e v al u e s
i n t h e m atri x. I m a gi n e w e h a v e a gr a p h wit h β n v erti c e s, a n d t w o v erti c e s i x , i y ar e c o n n e ct e d b y a n e d g e if
a n d o nl y if t h e e ntr y ( i x , i y ) i n B e q u al s v τ . T h e n t h er e ar e r τ / 2 e d g e s i n t hi s gr a p h, a n d t h e d e gr e e of a
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v ert e x i i s r
( i )
τ . T h u s,

i ∈ P

r ( i )
τ (β n − r ( i )

τ ) = β n ·
i ∈ P

r ( i )
τ −

i ∈ P

(r ( i )
τ ) 2 = β n · r τ −

i ∈ P

(r ( i )
τ ) 2 .

D e C a e n [ 1 8 ] gi v e s a n u p p er b o u n d o n t h e s u m of s q u ar e d d e gr e e s, t h at

i ∈ P

(r ( i )
τ ) 2 ≤ E ( 2E / (V − 1) + V − 2) ≈ r 2

τ / ( 2β n ) + r τ · β n / 2 .

O n t h e ot h er h a n d, si n c e r 1 ≥ r τ , ∀ τ ∈ { 2 , ..., k} , a n u p p er b o u n d f or
l
τ = 1 r 2

τ i s

l

τ = 1

r 2
τ ≤

l

τ = k + 1

r τ

2

+ (β n ) 2 −

l

τ = k + 1

r τ r 1 ,

w h er e, r e c all t h at, t h e q u a ntit y
l
τ = k + 1 r τ i s t h e t ot al n u m b er of e a s y-t o- d et e ct c orr u pti o n s i n B . T o s u m u p,

|A (M, S )| − |A (M, S ∪ { i } )| i s at l e a st t h e n u m b er of p air s b ei n g s e p ar at e d. O n t h e ot h er h a n d, i n e x p e ct ati o n
o v e r t h e r a n d o m n e s s of t h e s a m pl e d i n d e x i ∈ P , t h e n u m b er of p air s b ei n g s e p ar at e d i s at l e a st

1

2 β n

l

τ = 1 i ∈ P

r ( i )
τ (β n − r ( i )

τ )

≥
1

2 β n

l

τ = 1

r τ · β n −
r 2

τ

2 β n
− r τ · β n / 2

=
1

2 β n
(β n ) 3 −

1

4( β n ) 2

l

τ = 1

r 2
τ −

(β n ) 2

4

≥
(β n ) 2

4
−

1

4( β n ) 2




l

τ = k + 1

r τ

2

− r 1 ·
l

τ = k + 1

r τ



 −
r 1

4

T o f urt h er b o u n d t hi s q u a ntit y, w e c o n si d er t w o c a s e s f or t h e si z e of r 1 , i. e. t h e n u m b er of e ntri e s t a ki n g o n
v al u e v 1 .

• C A S E r 1 ≤ (β n ) 2 / 2 : F oll o wi n g t h e a s s u m pti o n t h at P i s n ot a n E a s y P art,
l
τ = k + 1 r τ , w hi c h e q u al s

|E C (M, S ) ∩ B |, s h all n ot e x c e e d |B |/ 2 = ( β n ) 2 / 2. T h u s, t h e a b o v e e x p e ct e d n u m b er of s e p ar at e d p air s
i s at l e a st (β n ) 2 / 4 − (β n ) 4 / ( 1 6(β n ) 2 ) − r 1 / 4 = 3( β n ) 2 / 1 6 − r 1 / 4. A s a c o n s e q u e n c e,

8 · |A (M, S )| − E
i
[|A (M, S ∪ { i } )||i ∈ P ] ≥ 3( β n ) 2 / 2 − 2 r 1 ≥ (β n ) 2 − r 1 .

• C A S E r 1 > (β n ) 2 / 2: N oti c e t h at
l
τ = k + 1 r τ ≤ (β n ) 2 − r 1 < (β n ) 2 / 2. I n t hi s c a s e, t h e a b o v e e x p e ct e d

n u m b er of s e p ar at e d p air s i s mi ni mi z e d w h e n
l
τ = k + 1 r τ i s 0 or (β n ) 2 − r 1 b y c o n v e xit y. A s a r e s ult,

|A (M, S )| − E i [|A (M, S ∪ { i } )||i ∈ P ] ≥ m a x { (β n ) 2 / 4 − r 1 / 4 , r1 / 2 } . A g ai n, it i m pli e s t h at

8 · |A (M, S )| − E
i
[|A (M, S ∪ { i } )||i ∈ P ] ≥ (β n ) 2 − r 1 .

N o w w e s h o w b y c o ntr a di cti o n t h at, si n c e P i s n ot a Ver s atil e P art,
l
τ = 2 r τ = ( β n ) 2 − r 1 m u st b e at l e a st

β · ε n 2 / 2.
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C l ai m 5. 1. Si n c e P i s a n A cti v e P a rt,
l
τ = 2 r τ = ( β n ) 2 − r 1 ≥ β · ε n 2 / 2 .

P r o of. S u p p o s e
l
τ = 2 r τ = ( β n ) 2 − r 1 < β · ε n 2 / 2. Cr e at e a ( β n ) × (β n ) m atri x M ∗

P w h er e di a g o n al

e ntri e s ar e 0 a n d e v er y ot h er e ntr y i s s et t o v 1 . T h e n, ∥ M ∗
P − B ∥ ≤

l
τ = 2 r τ < β · n 2 / 2. M or e o v er, M ∗

P

e n c o d e s a n ultr a m etri c. L a stl y, a s t h e v al u e v 1 i s t a k e n o n b y s o m e e ntr y M ( u, u ′) /∈ E C ( M, S ), f or a n y
i n d e x i ∈ S , M ( i, u) = M ( i, u′) ≥ M ( u, u ′) = v 1 . M or e o v er, f or a n y u ′′ ∈ P , M ( i, u) = M ( i, u′′). T h u s,
v 1 ≤ mi n i ∈ S, u ∈ P { M ( i, u) } . T h er ef or e, M ∗

P s ati s fi e s all c o n diti o n s t h at m a k e P a Ver s atil e P art. H o w e v er,

b e c a u s e P i s a n A cti v e P art, b y c o ntr a di cti o n, w e m u st h a v e
l
τ = 2 r τ = ( β n ) 2 − r 1 ≥ β · ε n 2 / 2.

A s a s u m m ar y f or t h e a b o v e ar g u m e nt s, w e h a v e

8 · |A (M, S )| − E
i
[|A (M, S ∪ { i } )||i ∈ P ] ≥ (β n ) 2 − r 1 ≥ β · ε n 2 / 2 .

5. 2   Tr e e M e t ri c T e s ti n g U p p e r B o u n d I n t hi s s e cti o n, w e fi ni s h t h e pr o of of T h e or e m 1. 3 b y pr e s e nti n g
a tr e e m etri c t e sti n g al g orit h m T r e e T e s ti n g . We fir st d e fi n e t h e t y p e of vi ol ati o n t h e al g orit h m s e e k s.

D e fi ni ti o n 5. 5. ( T r e e M e t ri c Vi o l a ti n g Q u a d r u p l e ) F o r i, j, k, l ∈ [n ], t h e q u a d r u pl e { i, j, k, l} i s a
vi ol ati o n f o r t r e e m et ri c s i n M ∈ C if, aft e r r e- n a mi n g s o M (i, j ) + M (k, l ) i s t h e m a xi m u m a m o n g t h e t h r e e
m at c hi n g s

{ M (i, j ) + M (k, l ), M(i, k) + M (j, l ), M(i, l) + M (j, k )} ,

M (i, j ) + M (k, l ) > M (i, k) + M (j, l )) a n d M (i, j ) + M (k, l ) > M (i, l) + M (j, k ).

T h e t e sti n g al g orit h m T r e e T e s ti n g b el o w i s v er y si mil ar t o t h e ultr a m etri c t e st er w e pr e s e nt e d e arli er. T h e
a n al y si s f oll o w s a n a n al o g o u s p at h.

Tr e e T e s ti n g Al g o ri t h m : T h e al g orit h m ai m s t o fi n d a vi ol ati n g q u a dr u pl e of i n di c e s { i, j, k, l} t o t h e
tr e e m etri c pr o p ert y D e fi niti o n 5. 5. If s u c h a q u a dr u pl e i s f o u n d, it c o n stit ut e s a c erti fi c at e t h at t h e
m atri x i s n ot a tr e e m etri c, a n d t h e al g orit h m o ut p ut s “r ej e ct ”.

I n p u t: T h e p ar a m et er s n ∈ N a n d ε ∈ ( 0 , 1), a s w ell a s q u er y a c c e s s t o t h e e ntri e s of a n u n k n o w n n × n
m atri x M fr o m C ( s e e L e m m a 2. 1).

O u t p u t: “ a c c e pt ” or “r ej e ct ”

1. F or s = O (l o g( 1/ ε )/ ε ), t a k e s r a n d o m s a m pl e s i 1 , . . . , i s ∼ [n ] dr a w n i n d e p e n d e ntl y. Q u er y M (i ℓ , i k )
f or all ℓ, k ∈ [s ].

2. If t h er e e xi st s a vi ol ati n g q u a dr u pl e a m o n g t h e s a m pl e d i n di c e s { i a , i b , i c , i d } , o ut p ut “r ej e ct. ”

L e m m a 5. 7. ( T r e e M e t ri c T e s ti n g A l g o ri t h m L e m m a ) F o r n ∈ ◆ a n d ε ∈ ( 0 , 1) , t h e r e e xi st s a
r a n d o mi z e d al g o rit h m, T r e e T e s ti n g , w hi c h r e c ei v e s a s i n p ut a n n × n m at ri x M ∈ C a n d a p a r a m et e r ε a n d
h a s t h e f oll o wi n g g u a r a nt e e s:

• If M ∈ P T , T r e e T e s ti n g (M, ε ) al w a y s o ut p ut s “ a c c e pt. ”
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• If M ∈ C i s ε -f a r f r o m P T , t h e al g o rit h m o ut p ut s “ r ej e ct ” wit h p r o b a bilit y at l e a st 2 / 3 .

T h e al g o rit h m i s n o n- a d a pti v e, t a ki n g O (l o g ( 1 / ε )/ ε ) s a m pl e s a n d u si n g O (l o g ( 1 / ε ) 2 / ε 2 ) q u e ri e s.

P r o of. [ Pr o of of T h e or e m 1. 3 wit h L e m m a 5. 1 a n d a s s u mi n g L e m m a 5. 7] B y L e m m a 2. 1, it s u ffi c e s t o
s h o w T h e or e m 1. 3 h ol d s f or M ∈ C . F or M ∈ P T (r e s p e cti v el y M ∈ P U ), T r e e T e s ti n g ( M, ε ) (r e s p.
U l t r a T e s ti n g ( M, ε )) o ut p ut s “ a c c e pt ” wit h pr o b a bilit y 1, s o t h e al g orit h m o ut p ut s “ a c c e pt ” if M
e n c o d e s a tr e e m etri c s p a c e (r e s p. ultr a m etri c s p a c e). If M i s ε -f ar fr o m P T (r e s p. ε -f ar fr o m P U ),
t h e T r e e T e s ti n g (M, ε ) al g orit h m (r e s p. U l t r a T e s ti n g (M, ε ) al g orit h m) o ut p ut s “r ej e ct ” wit h pr o b a bilit y
at l e a st 2 / 3. B ot h al g orit h m s ar e n o n- a d a pti v e wit h o n e- si d e d err or a n d s a m pl e c o m pl e xit y O (l o g( 1 / ε ) / ε )
a n d q u er y c o m pl e xit y O (l o g ( 1 / ε ) 2 / ε 2 ).

A g ai n, w e di vi d e t h e s a m pl e s s el e ct e d i n Li n e 1 i n T r e e T e s ti n g i nt o t w o di sti n ct gr o u p s f or a n al y si s p ur p o s e s.

• T h e fir st gr o u p c o n si st s of a s et S = { i 1 , . . . , i s / 2 } of t h e fir st O (l o g( 1/ ε )/ ε ) s a m pl e s. A g ai n, w e u s e t h e
s et S t o d e fi n e a “ s k el et o n p artiti o n ” ( D e fi niti o n 3. 5 i n [ 2 7 ] a n d D e fi niti o n 5. 6 b el o w).

• T h e s e c o n d gr o u p c o n si st s of t h e r e m ai ni n g O (l o g( 1/ ε )/ ε ) s a m pl e s, w hi c h ar e di vi d e d i nt o p air s ( i ℓ , i ℓ + 1 )
of i n di c e s. T h e vi ol ati o n s w e fi n d ar e f or m e d b y a p air ( i ℓ , i ℓ + 1 ) a m o n g t h e s e c o n d gr o u p w hi c h vi ol at e s
a c o n str ai nt i m p o s e d b y t h e s k el et o n p artiti o n of S i n t h e fir st gr o u p.

A s b ef or e, t h e fir st gr o u p of s a m pl e s S p ut s str u ct ur al c o n str ai nt s o n t h e r e m ai ni n g p oi nt s b y p artiti o ni n g
t h e m i nt o e q ui v al e n c e cl a s s e s. T h e n oti o n s of s e p ar at or c orr u pti o n s a n d e a s y-t o- d et e ct c orr u pti o n s a s w ell a s
p art s f oll o w i n a v er y si mil ar f a s hi o n.

D e fi ni ti o n 5. 6. ( S k e l e t o n P a r ti ti o n a n d E q ui v a l e n c e C l a s s e s ) L et M ∈ C a n d S ⊂ [n ]. W e s a y
t h at S i s c o n si st e nt if t h e |S | × |S | s u b m at ri x M |S × S e n c o d e s a t r e e m et ri c. F o r a c o n si st e nt s et S , w e l et:

• C o n si s t e n t P oi n t s . A p oi nt j ∈ [n ] \ S i s a c o n si st e nt p oi nt if S ∪ { j } i s c o n si st e nt.

• S k el e t o n P a r ti ti o n . A s k el et o n p a rtiti o n of S i s a p a rtiti o n P 1 , . . . , Pℓ of c o n si st e nt p oi nt s i n
[n ] \ S w h e r e t w o p oi nt s i, j ∈ [n ] \ S a r e i n t h e s a m e p a rt P ℓ , o r e q ui v al e n c e cl a s s, if a n d o nl y if
M (i, u) − M (i, v) = M (j, u ) − M (j, v ) f o r all u, v ∈ S .

• S e p a r a t o r S e t . If i, j ∈ [n ] \ S a r e i n di ff e r e nt e q ui v al e n c e cl a s s e s, t h ei r s e p a r at o r s et S E P (i, j ) ⊂ S i s
gi v e n b y

S E P (i, j ) = (u, v ) ∈ S 2 : M (i, u) − M (i, v) ≠ M (j, u ) − M (j, v ) .

• S e p a r a t o r C o r r u p ti o n . If i, j ∈ [n ] \ S a r e i n di ff e r e nt e q ui v al e n c e cl a s s e s d e fi n e d o v e r S , t h e p ai r
(i, j ) i s a s e p a r at o r c o r r u pti o n if t h e r e e xi st s (u, v ) ∈ S E P (i, j ) w h e r e

M (i, j ) + M (u, v ) ≠ m a x { M (i, u) + M (j, v ), M(i, v) + M (j, u )} .

W e l et S C (M, S ) ⊂ ([n ] \ S ) × ([n ] \ S ) d e n ot e t h e s et of p ai r s t h at a r e s e p a r at o r c o r r u pti o n s.

T h e e q u ati o n i n t h e S k el et o n P artiti o n d e fi niti o n c o n v e y s t h e f a ct s t h at, o ut of t h e t hr e e m at c hi n g s i n d u c e d b y
i, j, u, v , t h e m at c hi n g M (i, u) + M (j, v ) e q u al s t h e m at c hi n g M (i, v) + M (j, u ). I n or d er f or t h e f o ur p oi nt s t o
o b e y t h e f o ur- p oi nt c o n diti o n, w e o nl y n e e d M (i, j ) + M (u, v ) t o b e n o m or e t h a n t hi s q u a ntit y. O n t h e ot h er
h a n d, if t w o p oi nt s i, j f all i nt o di ff er e nt cl a s s e s, t h e n M ( i, j ) c a n b e d e d u c e d e x a ctl y u si n g t h e s e p ar at or

C o p y ri g h t © 2 0 2 5 b y S I A M
U n a u t h o ri z e d r e p r o d u c ti o n of t hi s a r ti cl e i s p r o hi bi t e d4 2 8

Do
wn

lo
ad

ed
 0

6/
08

/2
5 
to

 1
51

.1
97

.3
.8

4 .
 

Re
di

st
ri

bu
ti

on
 s

ub
je

ct
 t

o 
SI

A
M 
li

ce
ns

e 
or
 c

op
yr

ig
ht
; 

se
e 

ht
tp

s:
//

ep
ub

s.
si

a
m.

or
g/
te

r
ms

-p
ri

va
cy



of p air ( i, j ). T h e d e fi niti o n of S e p ar at or C orr u pti o n i n di c at e s t h at if M (i, j ) d o e s n ot e q u al t hi s d e d u ct e d
q u a ntit y f or s o m e ( u, v ) i n t h e s e p ar at or s et of ( i, j ), t h e q u a dr u pl e { i, j, u, v} i s a vi ol ati o n.

T h e i d e a f or t h e al g orit h m i s si mil ar t o t h e ultr a m etri c t e sti n g al g orit h m. If t h e fir st gr o u p of s a m pl e s S
i s n ot c o n si st e nt, t h e n t h er e i s alr e a d y a vi ol ati o n i n t h e fir st gr o u p a n d w e ar e d o n e. If S i s c o n si st e nt,
o n t h e ot h er h a n d, w e u s e S t o m a k e a s k el et o n p artiti o n o n t h e r e m ai ni n g p oi nt s. We ai m t o s a m pl e a
s e p ar at or c orr u pti o n ( i , j ) w hi c h f or m s a vi ol ati o n wit h S . T h er e i s, a s b ef or e, a n ot h er t y p e of c orr u pti o n, t h e
e a s y-t o- d et e ct c orr u pti o n.

D e fi ni ti o n 5. 7. ( E a s y- t o- D e t e c t C o r r u p ti o n ) F o r M ∈ C a n d a c o n si st e nt s et S ⊂ [n ], l et ( i, j ) ∈
([n ] \ S ) × ([n ] \ S ) b e i n t h e s a m e e q ui v al e n c e cl a s s. T h e p ai r ( i, j ) f o r m a n e a s y-t o- d et e ct c o r r u pti o n if t h e r e
e xi st s u, v ∈ S w h e r e

M (i, j ) + M (u, v ) > M (i, u) + M (j, v ) = M (i, v) + M (j, u ).

L et E C (M, S ) ⊂ ([n ] \ S ) × ([n ] \ S ) b e s et of e a s y-t o- d et e ct c o r r u pti o n s i n M wit h r e s p e ct t o S .

N o w, w e f or m ali z e t h e i d e a t h at aft er s a m pli n g S , w e ai m t o fi n d m a n y s e p ar at or c orr u pti o n s a n d e a s y-t o- d et e ct
c orr u pti o n s, w hi c h a ct a s c erti fi c at e s t h at M i s n ot a tr e e m etri c. T h e b el o w L e m m a 5. 8 i s a n e x a ct r e pli c at e of
L e m m a 5. 2 i n t h e ultr a m etri c s e cti o n. T h u s, t h e pr o of of Tr e e M etri c Te sti n g L e m m a 5. 7 a s s u mi n g L e m m a 5. 8
i s e x a ctl y a s t h e pr o of of Ultr a m etri c Te sti n g L e m m a 5. 1 u si n g L e m m a 5. 2.

L e m m a 5. 8. L et M ∈ C b e ε -f a r f r o m P T .   T h e n, wit h p r o b a bilit y at l e a st 5 / 6 o v e r t h e d r a w of
S = { i 1 , . . . , i s / 2 } ⊂ [n ] w h e r e i 1 , . . . , i s / 2 ∼ [n ] a n d s = O (l o g ( 1 / ε )/ ε ), o n e of t h e f oll o wi n g s h ol d s:

• S i s n ot c o n si st e nt;

• T h e r e a r e at l e a st ε n / 3 2 i n c o n si st e nt p oi nt s i n [n ] \ S ;

• |S C (M, S )| + |E C (M, S )| ≥ ε n 2 / 8 .

P r o of. [ Pr o of of L e m m a 5. 7 a s s u mi n g L e m m a 5. 8] T h e pr o of i s e x a ctl y t h e s a m e a s t h at of L e m m a 5. 1.

T o s h o w L e m m a 5. 8, w e r e- u s e t h e i d e a s of c at e g ori zi n g di ff er e nt p art s a n d a n al y z e t h e d y n a mi c s b et w e e n t h e
p art s.

D e fi ni ti o n 5. 8. ( E a s y, V e r s a ti l e, a n d A c ti v e P a r t s ) L et M ∈ C b e ε -f a r f r o m P T a n d S ⊂ [n ] b e
c o n si st e nt, a n d l et P 1 , . . . , Pℓ d e n ot e t h e s k el et o n p a rtiti o n.

• E a s y P a r t . A p a rt P ℓ i s e a s y if

P r
j ,k ∼ P ℓ

[(j , k ) ∈ E C (M, S )] ≥
1

2
.

• V e r s a til e P a r t . C o n si d e r a p a rt P ℓ wit h β n i n di c e s (f o r β > 0 ). W e s a y P ℓ i s v er s atil e if t h e f oll o wi n g
h ol d:

– t h e r e e xi st s a (β n ) × (β n ) m at ri x M ∗
P ℓ

s u c h t h at t h e m et ri c o n s u b s et S ∪ P ℓ d e fi n e d b y

D (i, j ) =
M (i, j ) if i o r j o r b ot h i n S

M ∗
P ℓ

(i, j ) if i, j ∈ P ℓ

i s a t r e e m et ri c
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– ∥ M ∗
P ℓ

− M |P ℓ × P ℓ
∥ ≤ β · ε n 2 / 2 .

T h at i s, i nt uiti v el y, n o m o r e t h a n β · ε n 2 / 2 e nt ri e s of t h e s u b- bl o c k- m at ri x M |P ℓ × P ℓ
n e e d t o b e m o di fi e d

s o t h at M |P ℓ × P ℓ
i s fi x e d i nt o a t r e e m et ri c c o n si st e nt wit h S .

• A c ti v e P a r t . A p a rt P ℓ i s a cti v e if it i s n eit h e r e a s y n o r v e r s atil e. W e l et

A (M, S ) = { (j, k ) ∈ P ℓ f o r s o m e a cti v e p a rt P ℓ }

α (M, S ) = P r
j ∼ [n ]

[j ∈ P ℓ f o r s o m e a cti v e p a rt P ℓ ]

L e m m a 5. 9. L et M ∈ C b e ε -f a r f r o m P T a n d S ⊂ [n ] b e c o n si st e nt. If |A (M, S )| ≤ ε n 2 / 8 , t h e n eit h e r t h e r e
a r e at l e a st ε n / 3 2 i n c o n si st e nt p oi nt s i n [n ] \ S , o r |S C (M, S )| + |E C (M, S )| ≥ ε n 2 / 8 .

P r o of. We pr o v e t h e c o ntr a- p o siti v e. T h at i s, gi v e n M ∈ C a n d a c o n si st e nt S ⊂ [n ] w hi c h s ati s fi e s (i)
|A ( M, S ) | ≤ ε n 2 / 8, (ii) |S C ( M, S ) | + |E C ( M, S ) | ≤ ε n 2 / 8, a n d (iii) at m o st ε n / 3 2 i n c o n si st e nt p oi nt s i n
[n ] \ S , t h er e e xi st s a n n × n m atri x ˜M ∈ P T t h at di ff er s fr o m M o n f e w er t h a n ε n 2 e ntri e s. T h e m atri x ˜M i s
c o n str u ct e d a s f oll o w s:

1. F or all i, i′ ∈ S w e s et ˜M (i, i′) t o M (i, i′).

2. If j ∈ [n ] \ S i s a m o n g t h e ε n / 3 2 i n c o n si st e nt p oi nt s, w e l et ˜M (j, k ) b e ar bitr aril y l ar g e f or all k ∈ [n ],
w hi c h c orr e s p o n d s t o e ff e cti v el y r e m o vi n g j w hil e k e e pi n g a n tr e e m etri c. T h e p oi nt s j ∈ [n ] \ S w hi c h
ar e c o n si st e nt h a v e ˜M (j, i ) b e s et t o M (j, i ) f or i ∈ S .

3. F or j, k ∈ [n ] \ S w hi c h ar e c o n si st e nt a n d li e i n di ff er e nt e q ui v al e n c e cl a s s e s:

• If (j, k ) /∈ S C (M, S ), s et ˜M (j, k ) = M (j, k ).

• If (j, k ) ∈ S C ( M, S ) , fi n d ( u, v ) ∈ S E P ( j, k ) a n d s et ˜M ( j, k ) = m a x { M ( i, u) + M ( j, v ) , M( i, v) +
M (j, u )} − M (u, v ). ( A s w e will s e e, t h e s p e ci fi c c h oi c e of ( u, v ) will n ot m att er).

4. F or j, k ∈ [n ] \ S w hi c h ar e c o n si st e nt a n d i n t h e s a m e e q ui v al e n c e cl a s s P ℓ :

• If P ℓ i s a n E a s y P art, fi n d a u ∈ S a n d s et ˜M (j, k ) = M (u, j ) + M (u, k ) − mi n j ′ , k ′ ∈ P ℓ
{ M (u, j ′) +

M (u, k ′)} .

• If P ℓ i s a n A cti v e P art, fi n d a u ∈ S a n d s et ˜M (j, k ) = M (u, j ) + M (u, k ) − mi n j ′ , k ′ ∈ P ℓ
{ M (u, j ′) +

M (u, k ′)} .

• If P ℓ i s a Ver s atil e P art, fi n d t h e m atri x M ∗
P ℓ

a s i n D e fi niti o n 5. 8, a n d s et ˜M (j, k ) = M ∗
P ℓ

(j, k ).

We n o w s h o w t h at ∥ ˜M − M ∥ 0 < ε n 2 . B y t h e s a m e ar g u m e nt a s i n L e m m a 5. 3 i n ultr a m etri c t e sti n g, M a n d
˜M di ff er o n at m o st

ε n

3 2
× 2 n + |S C (M, S )| +

P ℓ e a s y

|P ℓ |
2 + |A (M, S )| +

P ℓ v e r s a til e

|P ℓ | · ε n / 2 ≤ 1 5 / 1 6 · ε n 2

e ntri e s. Wit h si mil ar i d e a s a s i n L e m m a 5. 3, a n y q u a dr u pl e { i, j, k, l} d o e s n ot f or m a vi ol ati o n i n ˜M , w hi c h
m a k e s ˜M a tr e e m etri c. Si n c e M i s ε -f ar fr o m P T , w e m u st h a v e eit h er at l e a st ε n / 3 2 i n c o n si st e nt i n di c e s i n
[n ] \ S or |S C (M, S )| + |E C (M, S )| ≥ ε n 2 / 8.

L e m m a 5. 1 0. S u p p o s e M ∈ C i s ε -f a r f r o m P T . Wit h p r o b a bilit y at l e a st 5 / 6 , o v e r t h e d r a w of S ⊂ [n ] of
si z e at l e a st Ω̃ ( 1 / ε ), |A (M, S )| ≤ ε n 2 / 8 .
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P r o of. [ Pr o of of L e m m a 5. 8 a s s u mi n g L e m m a 5. 1 0] T h e pr o of i s e x a ctl y t h e s a m e a s t h e pr o of of L e m m a 5. 2.

L e m m a 5. 1 1. S u p p o s e M ∈ C i s ε -f a r f r o m P T . S u p p o s e S = { i1 , ..., ij − 1 } ⊂ [n ]. O v e r t h e r a n d o m n e s s of
t h e i n d e x i j s a m pl e d f r o m [n ], E i j

[|A (M, S ∪ { i j } )|] ≤ | A (M, S )| · e x p( − ε
1 6 ).

P r o of. [ Pr o of of L e m m a 5. 1 0 a s s u mi n g L e m m a 5. 1 1] T h e pr o of i s e x a ctl y t h e s a m e a s t h e pr o of of L e m m a 5. 4.

L e m m a 5. 1 2. S u p p o s e M ∈ C i s ε -f a r f r o m P T . S u p p o s e S ⊂ [n ]. O v e r t h e r a n d o m n e s s of t h e n e xt s a m pl e d
i n d e x i j , if i j i s s a m pl e d f r o m a n A cti v e P a rt P wit h si z e β n ,

E
i j

[|A (M, S ∪ { i j } )||i j ∈ P ] ≤ | A (M, S )| − β · ε n 2 / 1 6 .

P r o of. [ Pr o of of L e m m a 5. 1 1 a s s u mi n g L e m m a 5. 1 2] T h e pr o of i s e x a ctl y t h e s a m e a s t h e pr o of of L e m m a 5. 5.

T h e c h ai n of i m pli c ati o n s b et w e e n l e m m a s a n d t h e pr o of s of t h e l e m m a s ar e all t h e s a m e a s i n t h e ultr a m etri c
c a s e, wit h o nl y t h e pr o of of t h e l a st L e m m a 5. 1 2 b ei n g di ff er e nt. We n o w pr e s e nt t hi s pr o of.

P r o of. [ Pr o of of L e m m a 5. 1 2]

L et B b e t h e s u b- bl o c k- m atri x M |P × P r e pr e s e nti n g t h e p art P . S u p p o s e t h e (j, k ) t h e ntr y of bl o c k B gi v e s t h e
di st a n c e M (ij , ik ) b et w e e n i n di c e s ij a n d ik . We fi x a n ar bitr ar y s a m pl e d p oi nt u ∈ S a n d d e fi n e a β n × β n
m a s ki n g m atri x M A S K w h er e t h e ( j, k ) t h e ntr y of M A S K e q u al s M (u, i j ) + M (u, i k ). T h at i s,

B =












M (i1 , i1 ) M (i1 , i2 ) · · · M (i1 , iβ n )

M (i2 , i1 ) M (i2 , i2 ) · · · M (i2 , iβ n )

M (i3 , i1 ) M (i3 , i2 ) · · · M (i3 , iβ n )
...

...
...

...

M (iβ n , i1 ) M (iβ n , i2 ) · · · M (iβ n , iβ n )












,

M A S K =












M (u, i 1 ) + M (u, i 1 ) M (u, i 2 ) + M (u, i 1 ) · · · M (u, i β n ) + M (u, i 1 )

M (u, i 1 ) + M (u, i 2 ) M (u, i 2 ) + M (u, i 2 ) · · · M (u, i β n ) + M (u, i 2 )

M (u, i 1 ) + M (u, i 3 ) M (u, i 2 ) + M (u, i 3 ) · · · M (u, i β n ) + M (u, i 3 )
...

...
...

...

M (u, i 1 ) + M (u, i β n ) M (u, i 2 ) + M (u, i β n ) · · · M (u, i β n ) + M (u, i β n )












.

L e m m a 5. 6 i n t h e ultr a m etri c t e sti n g s e cti o n c o n si d er s t h e v al u e s i n t h e bl o c k m atri x B . H er e, i n st e a d, w e
c o n si d er t h e v al u e s i n t h e s q u ar e m atri x ( B − M A S K). T h e m oti v ati o n i s t h at, w h e n w e s a m pl e s o m e i n d e x
i j fr o m t h e p art P , ot h er i n di c e s i n P ar e p artiti o n e d i nt o e q ui v al e n c e cl a s s e s a c c or di n g t o t h e v al u e s i n t h e
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j t h r o w / c ol u m n of ( B − M A S K). I n p arti c ul ar, f or i n di c e s i a , ib ,

ia , ib ar e s e p ar at e d i nt o t w o e q ui v al e n c e cl a s s e s a c c or di n g t o S ∪ { i j }

⇔ ∃ w ∈ S, M (i j , ia ) + M (w, i b ) ≠ M (w, i a ) + M (i j , ib )

⇔ M (i j , ia ) + M (w, i b ) + M (u, i b ) ≠ M (w, i a ) + M (i j , ib ) + M (u, i b ) = M (w, i b ) + M (i j , ib ) + M (u, i a )

( e q u alit y f oll o w s fr o m t h e f a ct t h at i a , ib ar e i n t h e s a m e e q ui v al e n c e cl a s s u n d er S )

⇔ M (i j , ia ) + M (u, i b ) ≠ M (i j , ib ) + M (u, i a )

⇔ M (i j , ia ) − M (u, i j ) − M (u, i a ) ≠ M (i j , ib ) − M (u, i j ) − M (u, i b )

⇔ t h e (i j , ia ) a n d ( i j , ib ) e ntr y of t h e m atri x B − M A S K ar e di ff er e nt.

R e u si n g t h e ar g u m e nt i d e a of L e m m a 5. 6, a m o n g t h e e ntri e s i n B \ E C (M, S ), s u p p o s e t h e s et of t h e v al u e s
t h e s e e ntri e s t a k e o n i n ( B − M A S K ) i s V = { v 1 , v2 , ..., vk } , a n d f urt h er s u p p o s e v 1 i s t h e v al u e t h at m o st
e ntri e s t a k e o n. S u p p o s e V ′ = { v k + 1 , ..., vl } i s t h e s et of v al u e s t h e e a s y-t o- d et e ct c orr u pt e d e ntri e s i n B t a k e
o n i n t h e m atri x ( B − M A S K ). We fir st s h o w t h at a n y v al u e i n V ′ i s l ar g er t h a n a n y v al u e i n V , s o a s a r e s ult
{ v 1 , ..., vk , vk + 1 , ..., vl } i s i n d e e d a s et of n o n-r e p etiti v e v al u e s.

C l ai m 5. 2. S u p p o s e v ′ ∈ V ′ a n d v ∈ V . T h e n v ′ > v .

P r o of. S u p p o s e t h e e ntr y ( ia , ib ) i n ( B − M A S K ) t a k e s o n t h e v al u e v ′, w hi c h i m pli e s t h at M (ia , ib ) ∈ E C (M, S )
a n d v ′ = M (ia , ib ) − M (u, i a ) − M (u, i b ). S u p p o s e t h e e ntr y ( ic , id ) i n ( B − M A S K ) t a k e s o n t h e v al u e v , w hi c h
i m pli e s t h at M (ic , id ) i s n ot i n E C (M, S ). M or e o v er, v = M (ic , id ) − M (u, i c ) − M (u, i d ). Si n c e M (ia , ib ) i s
a n e a s y-t o- d et e ct c orr u pti o n, t h er e e xi st s o m e x, y ∈ S s u c h t h at M (ia , ib ) + M (x, y ) > M (ia , x) + M (ib , y).
O n t h e ot h er h a n d, a s M (ic , id ) i s n ot a n e a s y-t o- d et e ct c orr u pti o n, f or t h e p air x, y , M (ic , id ) + M (x, y ) ≤
M (ic , x) + M (id , y).

F oll o wi n g t h e a b o v e f a ct s, w e h a v e t h e i n e q u aliti e s

v ′ = M (ia , ib ) − M (u, i a ) − M (u, i b )( 5. 2)

> M (ia , x) + M (ib , y) − M (x, y ) − M (u, i a ) − M (u, i b )( 5. 3)

= M (ic , id ) + M (ia , x) + M (ib , y) − (M (x, y ) + M (ic , id )) − M (u, i a ) − M (u, i b )( 5. 4)

≥ M (ic , id ) + M (ia , x) + M (ib , y) − (M (ic , x) + M (id , y)) − M (u, i a ) − M (u, i b )( 5. 5)

= M (ic , id ) + M (ia , x) + M (ib , y) − (M (ic , x) + M (ia , u)) − (M (id , y) + M (ib , u))( 5. 6)

= M (ic , id ) + M (ia , x) + M (ib , y) − (M (ic , u) + M (ia , x)) − (M (id , u) + M (ib , y))( 5. 7)

= M (ic , id ) − M (ic , u) − M (id , u) = v,( 5. 8)

w h er e ( 2) a n d ( 4) f oll o w fr o m t h e a b o v e f a ct s o n e a s y-t o- d et e ct c orr u pti o n s, ( 6) f oll o w s fr o m t h e d e fi niti o n of
ic , id , ia , ib b ei n g i n t h e s a m e p art, a n d t h e ot h er e q u ati o n s ar e m er el y r e arr a n g e m e nt s of t er m s.

B y e x a ctl y t h e s a m e ar g u m e nt a s i n L e m m a 5. 6, if w e l et r 1 t o d e n ot e t h e n u m b er of e ntri e s t a ki n g o n v al u e
v 1 , t h e n o v er t h e r a n d o m n e s s of s a m pli n g a n i n d e x i j fr o m P , t h e e x p e ct e d n u m b er of p air s of i n di c e s i n P
t h at ar e s e p ar at e d i s at l e a st (( β n ) 2 − r 1 )/ 8. M or e o v er, |A (M, S )| − |A (M, S ∪ { i j } )| i s at l e a st t h e n u m b er
of p air s b ei n g s e p ar at e d. W h at w e l eft i n t hi s pr o of i s t o fi n d a b o u n d f or r 1 .

R e c all t h at i n L e m m a 5. 6, w e ar g u e d t h at t h er e i s a bl o c k m atri x e n c o di n g ultr a m etri c wit h all e ntri e s t a ki n g
o n v al u e v 1 . T h e s a m e ar g u m e nt a p pli e s f or (B − M A S K ). If w e s et a ( β n ) × (β n ) m atri x t o b e a n all- v 1

m atri x, t h e n aft er u n- m a s ki n g t hi s m atri x, w e o bt ai n a n e w bl o c k m atri x B ′ w hi c h i s a tr e e m etri c a n d
c o n si st e nt wit h S . N oti c e t h at t hi s m atri x o nl y di ff er s wit h B o n ( β n ) 2 − r 1 e ntri e s.

C l ai m 5. 3. Si n c e P i s a n A cti v e P a rt,
l
τ = 2 r τ = ( β n ) 2 − r 1 ≥ β · ε n 2 / 2 .
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P r o of. We pr o v e t hi s b y c o ntr a di cti o n. S u p p o s e
l
τ = 2 r τ = ( β n ) 2 − r 1 < β · ε n 2 / 2. Cr e at e a β n × β n

s q u ar e m atri x M ∗
P , w hi c h i s t h e s u m of M A S K a n d a n all- v 1 m atri x of di m e n si o n β n × β n . T h e n t h e m etri c

o n s u b s et S ∪ P d e fi n e d b y

D (i, j ) =
M (i, j )  if i or j or b ot h i n S
M ∗

P (i, j )  if i, j ∈ P

i s a tr e e m etri c. M or e o v er, ∥ M ∗
P − B ∥ ≤

l
τ = 2 r τ < β · ε n 2 / 2. T h er ef or e, M ∗

P s ati s fi e s all c o n diti o n s t h at
m a k e P a Ver s atil e P art. H o w e v er, b y a s s u m pti o n, P i s A cti v e, w hi c h l e a d s t o a c o ntr a di cti o n.

A s a s u m m ar y, w e h a v e t h e s e q u e n c e of i n e q u aliti e s

8 · |A (M, S )| − E
i j

[|A (M, S ∪ { i j } )||i j ∈ P ] ≥ (β n ) 2 − r 1 ≥ β · ε n 2 / 2 .

6   Ul t r a m e t ri c a n d Tr e e M e t ri c T e s ti n g L o w e r B o u n d — T h e o r e m 1. 4

I n t hi s s e cti o n, w e pr e s e nt t w o di stri b uti o n s D s a n d D q , b ot h s u p p ort e d o n n × n s q u ar e m atri c e s a n d ε -f ar
fr o m b ot h ultr a m etri c s a n d tr e e m etri c s. A n y t e sti n g al g orit h m t h at s a m pl e s o ( 1 / ε ) i n di c e s will n ot fi n d a n y
vi ol ati o n t o eit h er ultr a m etri c or tr e e m etri c pr o p ert y i n M ∼ D s wit h pr o b a bilit y at l e a st 2 / 3; a n y t e sti n g
al g orit h m t h at m a k e s o ( 1/ ε 4 / 3 ) q u eri e s will n ot fi n d a n y vi ol ati o n t o eit h er ultr a m etri c or tr e e m etri c pr o p ert y
i n a dr a w M ∼ D q wit h pr o b a bilit y at l e a st 2 / 3.

6. 1   S a m pl e C o m pl e xi t y L o w e r B o u n d Di s t ri b u ti o n D s

D e s c ri p ti o n of D s . We d e s cri b e a si n gl e n × n m atri x M , w hi c h w e will t h e n r a n d o mi z e b y r e- s h u ffli n g i n di c e s
i n n . Di vi d e t h e n i n di c e s i nt o t w o gr o u p s, G = { x 1 , x2 , ..., xr } , B = { y 1 , ..., ys } , w h er e |G | = r = n − ⌊ ε n ⌋
a n d |B | = s = ⌊ ε n ⌋ . S et t h e di a g o n al e ntri e s of M t o 0 a n d t h e r e m ai ni n g e ntri e s a s f oll o w s,

M (x i , xj ) = 2n, M (x i , yj ) = M (y j , xi ) = 2n + i, M (y i , yj ) = 2n, ∀ x i , xj ∈ G, y i , yj ∈ B.

C l ai m 6. 1. M at ri x M c o n st r u ct e d a s a b o v e s ati s fi e s t h e b el o w p r o p e rti e s.

• S u p p o s e t h e t ri pl e { a, b, c } i s a vi ol ati o n of ult r a m et ri c p r o p e rt y i n M . T h e n aft e r r e- n a mi n g a, b, a n d c ,
a, b ∈ G, c ∈ B .

• S u p p o s e t h e q u a d r u pl e { a, b, c, d } i s a vi ol ati o n of t h e t r e e p r o p e rt y i n M . T h e n aft e r r e- n a mi n g a, b, c,
a n d d , a, b, c ∈ G, d ∈ B .

P r o of. F or t h e fir st it e m, s u p p o s e a, b, c ∈ G , t h e n all t hr e e p air wi s e di st a n c e s e q u al 2n . If o n e i n d e x i s i n G
a n d a n ot h er t w o ar e i n B , s u p p o s e t h e i n d e x i n G i s x i f or s o m e i ∈ [r ]. T h e n t h e t hr e e p air wi s e di st a n c e s
e q u al { 2 n, 2 n + i, 2 n + i} . L a stl y, if all t hr e e i n di c e s ar e i n B , t h e n all t hr e e p air wi s e di st a n c e s e q u al 2n . N o n e
of t h e a b o v e tri pl e s ar e a vi ol ati o n of t h e ultr a m etri c pr o p ert y.

Si mil arl y, f or t h e s e c o n d it e m, if all f o ur i n di c e s ar e i n G , t h e n all t hr e e i n d u c e d m at c hi n g s e q u al 2n + 2 n .
If t w o i n di c e s ar e i n G , w hi c h w e d e n ot e a s x i , xj f or s o m e i, j ∈ [r ], a n d t w o ot h er i n di c e s i n B , t h e n t h e
t hr e e i n d u c e d m at c hi n g s e q u al 2 n + 2 n, ( 2 n + i) + ( 2 n + j ) , ( 2 n + j ) + ( 2 n + i). If o nl y o n e i n d e x i s i n G ,
w hi c h w e d e n ot e a s x i f or s o m e i ∈ [r ], a n d t hr e e ot h er i n di c e s ar e i n B , all t hr e e i n d u c e d m at c hi n g s e q u al
2 n + ( 2 n + i). L a stl y, if all f o ur i n di c e s ar e i n B , all t hr e e i n d u c e d m at c hi n g s e q u al 2n + 2 n . N o n e of t h e
a b o v e q u a dr u pl e s ar e vi ol ati o n s of t h e tr e e m etri c f o ur- p oi nt- c o n diti o n.

C o p y ri g h t © 2 0 2 5 b y S I A M
U n a u t h o ri z e d r e p r o d u c ti o n of t hi s a r ti cl e i s p r o hi bi t e d4 3 3

Do
wn

lo
ad

ed
 0

6/
08

/2
5 
to

 1
51

.1
97

.3
.8

4 .
 

Re
di

st
ri

bu
ti

on
 s

ub
je

ct
 t

o 
SI

A
M 
li

ce
ns

e 
or
 c

op
yr

ig
ht
; 

se
e 

ht
tp

s:
//

ep
ub

s.
si

a
m.

or
g/
te

r
ms

-p
ri

va
cy



C l ai m 6. 2. T h e m at ri x M i s Ω( ε )-f a r f r o m a n ult r a m et ri c a n d Ω( ε )-f a r f r o m a t r e e m et ri c.

P r o of. Fir st, t h e n × n m atri x ˜M wit h e v e r y e ntr y e q u al t o 2 n e n c o d e s a n ultr a m etri c a n d a tr e e m etri c.
M or e o v er, ∥ M − ˜M ∥ 0 = 2 ⌊ ε n ⌋ (n − ⌊ ε n ⌋ ) = Ω(ε n 2 ).

O n t h e ot h er h a n d, f or i < j ∈ [r ], l ∈ [s ], all tri pl e s of t h e f or m { x i , xj , yl } vi ol at e t h e ultr a m etri c pr o p ert y,

si n c e M ( x i , xj ) = 2 n < M ( x i , yl ) = 2 n + i < M ( x j , yl ) = 2 n + j . T h er e ar e n − ⌊ ε n ⌋
2 ⌊ ε n ⌋ = Ω( ε n 3 )

s u c h vi ol ati n g tri pl e s. E a c h p air ( x i , yl ) or ( y l , xi ) p arti ci p at e s i n n − ⌊ ε n ⌋ m a n y tri pl e s; e a c h p air ( x i , xj )
p arti ci p at e s i n ⌊ ε n ⌋ s u c h tri pl e s. S u p p o s e m atri x M ′ e n c o d e s a n ultr a m etri c a n d S ′ i s t h e s et of e ntri e s M
a n d M ′ di ff er u p o n. T h e n, all Ω( ε n 3 ) vi ol ati n g tri pl e s n e e d t o b e c o v er e d b y s o m e p air s of i n di c e s i n S ′, w hi c h
i n di c at e s ∥ M ′ − M ∥ 0 = |S ′| = Ω( ε n 2 ).

Si mil arl y, f or i, j, k ∈ [r ], l ∈ [s ], a n y q u a dr u pl e of t h e f or m (x i , xj , xk , yl ) vi ol at e s t h e f o ur- p oi nt c o n diti o n
f or tr e e m etri c pr o p ert y. T h er e ar e Ω(ε n 4 ) s u c h q u a dr u pl e s. E a c h p air ( x i , yl ) p arti ci p at e s i n at m o st Ω( n 2 )
s u c h q u a dr u pl e s, a n d e a c h p air ( x i , xj ) p arti ci p at e s i n at m o st Ω( ε n 2 ) s u c h q u a dr u pl e s. S u p p o s e m atri x
M ′′ e n c o d e s a tr e e m etri c a n d S ′′ i s t h e s et of e ntri e s M a n d M ′′ di ff er u p o n. T h e n, all Ω( ε n 4 ) vi ol ati n g
q u a dr u pl e s n e e d t o b e c o v er e d b y s o m e p air s of i n di c e s i n S ′′, w hi c h i n di c at e s ∥ M ′′ − M ∥ 0 = |S ′′| = Ω( ε n 2 ).

We l et M ∼ D s b e o bt ai n e d fr o m M b y r e- or d eri n g r o w s a n d c ol u m n s a c c or di n g t o a u nif or ml y r a n d o m
p er m ut ati o n π . B y Y a o’ s mi ni m a x pri n ci pl e, it s u ffi c e s t o r ul e o ut a n y d et er mi ni sti c ultr a m etri c t e sti n g
al g orit h m f or fi n di n g vi ol ati n g tri pl e s a n d a n y d et er mi ni sti c tr e e m etri c t e sti n g al g orit h m f or fi n di n g vi ol ati n g
q u a dr u pl e s i n a dr a w M ∼ D s .

L e m m a 6. 1. C o n si d e r a n y d et e r mi ni sti c n o n- a d a pti v e t e sti n g al g o rit h m w hi c h s a m pl e s o ( 1 / ε ) i n di c e s. Wit h
p r o b a bilit y at l e a st 2 / 3 o v e r t h e d r a w of M ∼ D s , t h e r e a r e n o i n di c e s i, j, k wit h

M (i, j ) > m a x { M (i, k), M (k, j )} ;

M o r e o v e r, wit h p r o b a bilit y at l e a st 2 / 3 o v e r t h e d r a w of M ∼ D s , t h e r e a r e n o i n di c e s i, j, k, l wit h

M (i, j ) + M (k, l ) > m a x { M (i, k) + M (j, l ), M (i, l) + M (j, k )} .

F o r p a rti al m at ri x M ′ t h at c o nt ai n s t h e p ai r wi s e di st a n c e b et w e e n e a c h p ai r of i n di c e s i n a s u b s et S ⊂ [n ]
a n d d o e s n ot vi ol at e t h e ult r a m et ri c t h r e e- p oi nt- c o n diti o n ( o r t r e e m et ri c f o u r- p oi nt- c o n diti o n ), M ′ m a y b e
c o m pl et e d t o o n e w hi c h i s a n ult r a m et ri c ( o r t r e e m et ri c ). T h u s, a n y n o n- a d a pti v e t e sti n g al g o rit h m m u st
s a m pl e Ω( 1 / ε ) i n di c e s.

P r o of. F or t h e fir st cl ai m, it s u ffi c e s t o s h o w t h at f or a n y t e sti n g al g orit h m w hi c h s a m pl e s o ( 1 / ε ) i n di c e s S ,
wit h pr o b a bilit y at l e a st 2 / 3 o v er t h e dr a w of M ∼ D s , S ∩ B = ∅ . T h e n, b y Cl ai m 6. 1, all tri pl e s i n S ar e
n ot vi ol ati o n s of t h e ultr a m etri c pr o p ert y. T h u s, t h e pr o b a bilit y t h at a vi ol ati o n of ultr a m etri c pr o p ert y i s
f o u n d a m o n g t h e i n di c e s S , b y a u ni o n b o u n d, i s at m o st

b ∈ B

P r π (π (b ) ∈ S )) = |B | ·
|S |

n
= o ( 1)

w h e n |S | = o ( 1/ ε ).

F or t h e s e c o n d cl ai m, t h e s a m e ar g u m e nt a s a b o v e h ol d s. T h at i s, b y Cl ai m 6. 1, t h e pr o b a bilit y t h at a
vi ol ati o n of tr e e m etri c pr o p ert y i s f o u n d a m o n g t h e i n di c e s S i s at m o st t h e pr o b a bilit y t h at s o m e i n d e x i n B
f all i nt o S . B y t h e s a m e u ni o n b o u n d, t hi s pr o b a bilit y i s at m o st o ( 1) w h e n |S | = o ( 1/ ε ).
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6. 2   Q u e r y C o m pl e xi t y L o w e r B o u n d Di s t ri b u ti o n D q N oti c e t h at a n y ultr a m etri c i s al s o a tr e e
m etri c. We s h o w b el o w a di stri b uti o n D q s u c h t h at a n y t e sti n g al g orit h m t h at m a k e s o ( 1 / ε 4 / 3 ) q u eri e s will
n ot fi n d a n y vi ol ati o n of t h e ultr a m etri c pr o p ert y i n a dr a w M ∼ D q wit h pr o b a bilit y at l e a st 2 / 3. T h u s, a n y
t e sti n g al g orit h m t h at m a k e s o ( 1 / ε 4 / 3 ) q u eri e s will n ot fi n d a n y vi ol ati o n of t h e tr e e m etri c pr o p ert y i n a
dr a w M ∼ D q wit h pr o b a bilit y at l e a st 2 / 3.

D e s c ri p ti o n of D q . A s b ef or e, w e d e s cri b e a si n gl e n × n m atri x M , w hi c h w e will t h e n r a n d o mi z e b y
r e- s h u ffli n g i n di c e s i n n . Fir st, l et r = ⌊ ε n ⌋ . We d e fi n e a r × r bl o c k m atri x D a n d t h e n u s e m ulti pl e bl o c k
di a g o n al m atri c e s D t o c o n str u ct M . Fir st, D i s a r a n d o mi z e d r × r m atri x wit h 0 o n t h e di a g o n al; f or
i < j ∈ [r ], s et e ntr y D (i, j ) = D (j, i ) t o b e 1 wit h pr o b a bilit y 1 / 2 a n d 2 wit h pr o b a bilit y 1 / 2. P artiti o n [ n ]
i nt o l gr o u p s of i n di c e s [ n ] = (∪ l

j = 1 I j ) ∪ R f or l = ⌊ 1 / ε ⌋ s u c h t h at e a c h gr o u p I j h a s r i n di c e s, a n d p o s si bl y a
r a m ai n d er gr o u p R wit h l e s s t h a n r i n di c e s. I n p arti c ul ar, f or j ∈ [l], I j c o nt ai n all i nt e g er s i n (( j − 1) r, j r ].
F or e a c h j ∈ [l], s a m pl e a r a n d o m r × r m atri x D j a n d s et M |I j × I j

= D j . T hi s i s e q ui v al e nt t o l etti n g l
r a n d o m bl o c k m atri c e s D j t o b e t h e bl o c k di a g o n al m atri c e s of M . S et all ot h er e ntri e s, i. e. t h e e ntri e s t h at
ar e n ot i n t h e bl o c k di a g o n al m atri c e s D j a n d t h e e ntri e s i n t h e r e m ai n d er gr o u p M |R × R , t o b e 1 0.

B el o w i s a d e m o n str ati o n of t h e m atri x M , w hi c h h a s l r a n d o m bl o c k di a g o n al m atri c e s of di m e n si o n r × r ;
t h e e ntri e s t h at ar e n ot i n t h e bl o c k di a g o n al m atri c e s ar e 1 0.

M =















D 1 ∗ ∗ · · · ∗ ∗

∗ D 2 ∗ · · · ∗ ∗

∗ ∗ D 3 · · · ∗ ∗
...

...
...

...
...

...

∗ ∗ ∗ · · · D l ∗

∗ ∗ ∗ · · · ∗ R















.

C l ai m 6. 3. T h e m at ri x D i s Ω( 1) -f a r f r o m a n ult r a m et ri c. I n c o n s e q u e n c e, t h e m at ri x M i s Ω( ε )-f a r f r o m
a n ult r a m et ri c.

P r o of. F or i n di c e s i < j < k ∈ [r ], e a c h e ntr y D ( i, j ) , D( i, k) , D( j, k ) t a k e s o n v al u e 1 wit h pr o b a bilit y 1 / 2
a n d 2 wit h pr o b a bilit y 1 / 2. O ut of 8 arr a n g e m e nt s of v al u e s t h at h a p p e n wit h e q u al pr o b a bilit y, 3 of t h e m
i n c ur a vi ol ati o n of t h e ultr a m etri c pr o p ert y. T h u s, wit h pr o b a bilit y 3 / 8 t h e tri pl e vi ol at e s t h e ultr a m etri c
pr o p ert y. I n t h e m atri x D, t h er e ar e Ω( r 3 ) s u c h vi ol ati n g tri pl e s. E a c h p air of i n di c e s p arti ci p at e s i n Ω( r )
s u c h vi ol ati n g tri pl e s. S u p p o s e t h e r × r m atri x D̃ e n c o d e s a n ultr a m etri c; f urt h er s u p p o s e E i s t h e s et of
e ntri e s D̃ a n d D di ff er o n. T h e n, e a c h vi ol ati n g tri pl e i n D n e e d s t o b e c o v er e d b y s o m e e ntr y i n E . T hi s
s u g g e st s |E | = Ω( r 2 ), s o D i s Ω( 1)-f ar fr o m ultr a m etri c.

S u p p o s e n × n m atri x ˜M e n c o d e s a n ultr a m etri c, t h e n ˜M a n d M di ff er o n Ω( r 2 ) e ntri e s o n e a c h bl o c k di a g o n al
m atri x, a n d t h er e ar e Ω( 1 / ε ) bl o c k di a g o n al m atri c e s. T hi s s h o w s t h at ∥ M − ˜M ∥ 0 ≥ Ω( ε n 2 ) f or e v er y ˜M ∈ P U .
I n f a ct, n o m or e t h a n ε n 2 e ntri e s n e e d t o b e m o di fi e d f or M t o b e a n ultr a m etri c, a s ∥ M − M ′∥ 0 ≤ ε n 2 f or
M ′ b ei n g a n × n m atri x wit h e a c h e ntr y s et t o 1 0.

C l ai m 6. 4. S u p p o s e t h e t ri pl e { a, b, c } i s a vi ol ati o n of t h e ult r a m et ri c p r o p e rt y i n M . T h e n t h r e e i n di c e s a r e
i n t h e s a m e i n d e x g r o u p I j f o r s o m e j ∈ [l].

P r o of. We pr o v e t hi s b y s h o wi n g t h e c o ntr a- p o siti v e i s tr u e. S u p p o s e l e s s t h a n 3 i n di c e s ar e i n t h e s a m e i n d e x
gr o u p I j f or a n y j ∈ [l]. T h e n o ut of t h e t hr e e di st a n c e s M (a, b ), M(a, c ), M(b, c ), at l e a st t w o of t h e m e q u al
1 0. T h e r e m ai ni n g di st a n c e i s n o l ar g er t h a n 1 0. T h u s, t h e ultr a m etri c i s n ot vi ol at e d f or { a, b, c } .

We l et M ∼ D q b e o bt ai n e d fr o m M b y r e- or d eri n g r o w s a n d c ol u m n s a c c or di n g t o a u nif or ml y r a n d o m
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p er m ut ati o n π . A g ai n, it s u ffi c e s t o r ul e o ut a n y d et er mi ni sti c ultr a m etri c t e sti n g al g orit h m f or fi n di n g
vi ol ati n g tri pl e s i n a dr a w M ∼ D s .

L e m m a 6. 2. C o n si d e r a n y d et e r mi ni sti c n o n- a d a pti v e al g o rit h m t h at m a k e s o ( 1/ ε 4 / 3 ) q u e ri e s. Wit h p r o b a bilit y
at l e a st 2 / 3 o v e r t h e d r a w of M ∼ D q , n o vi ol ati o n t o t h e ult r a m et ri c c a n b e f o u n d.

Si n c e a n y p a rti al m at ri x t h at d o e s n ot vi ol at e t h e ult r a m et ri c p r o p e rt y m a y b e c o m pl et e d t o o n e t h at i s
ult r a m et ri c, a n y n o n- a d a pti v e t e sti n g al g o rit h m m u st m a k e Ω( 1 / ε 4 / 3 ) q u e ri e s.

P r o of. S u p p o s e a t e sti n g al g orit h m s a m pl e s a s et of i n di c e s S of si z e s . T h e al g orit h m o nl y r e c o g ni z e s a
vi ol ati o n if at l e a st t hr e e i n di c e s i n S f all i nt o t h e s a m e i n d e x gr o u p I j f or s o m e j ∈ [l]. M or e o v er, if a s u b s et
U ⊂ S wit h at l e a st t hr e e i n di c e s f all i nt o t h e s a m e i n d e x gr o u p I j , t h e al g orit h m n e e d s t o m a k e q u eri e s t h at
f or m a c y cl e i n U t o r e c o g ni z e a vi ol ati o n. F or m all y w e h a v e t h e b el o w cl ai m.

C l ai m 6. 5. S u p p o s e f o r a s u b s et of i n di c e s U ⊂ [n ], E′ i s t h e s et of p ai r s w h o s e di st a n c e s a r e k n o w n a n d E ′

i s c y cl e-f r e e. T h at i s, s u p p o s e a g r a p h G ′ i s o n v e rti c e s U a n d ( a, b ) ∈ U 2 i s a n e d g e if a n d o nl y if ( a, b ) ∈ E ′,
a n d s u p p o s e G ′ i s c y cl e-f r e e. T h e n t h e k n o w n di st a n c e s h a v e n o vi ol ati o n t o ult r a m et ri c.

P r o of. D e fi n e G ′ a s pr o p o s e d i n t h e cl ai m a n d f or e a c h e d g e ( a, b ) i n G ′, s et it s w ei g ht t o b e t h e k n o w n
di st a n c e b et w e e n a, b . C o n si d er t h e p arti al m atri x M ′

|U × U w h o s e e ntri e s ar e t h e k n o w n di st a n c e s i n E ′. T h er e

e xi st s a w a y t o c o m pl et e M ′
|U × U t o a n ot h er m atri x M |U × U w hi c h e n c o d e s a n ultr a m etri c. N a m el y, fir st,

w e i d e ntif y all di s c o n n e ct e d c o m p o n e nt s i n G ′, a n d b et w e e n e a c h p air of c o m p o n e nt s, fi n d a v ert e x i n e a c h
c o m p o n e nt a n d s et t h eir e d g e w ei g ht t o b e a n ar bitr ar y p o siti v e v al u e. N o w G ′ i s a tr e e. T h e n, f or e v er y
n o n- e d g e ( a, b ) /∈ E ′, fi n d t h e u ni q u e si m pl e p at h fr o m a t o b i n t h e gr a p h G ′ a n d s et M |U × U (a, b ) t o b e t h e
w ei g ht of t h e h e a vi e st e d g e o n t h e p at h.

U p o n s a m pli n g t h e i n di c e s S , t h e t e sti n g al g orit h m m a k e s q u eri e s a m o n g a s u b s et of p air s E ⊂ S 2 . Cr e at e a
gr a p h G w h o s e v ert e x s et i s S a n d e d g e s et E . L et C ( G ) b e t h e s et of c y cl e s i n G . F or a c y cl e C ⊂ [n ], l et
I(C ) d e n ot e t h e i n di c at or v ari a bl e i n { 0 , 1 } wit h

I(C ) ⇐ ⇒
C ∈ C (G ),

∃ j ∈ [l], ∀ v ∈ C, v ∈ π (I j )

T h e n, t h e pr o b a bilit y t h at a vi ol ati o n of ultr a m etri c i s d et e ct b y t h e al g orit h m, b y a u ni o n b o u n d, i s at m o st

( 6. 9)
C ∈ C ( G )

I(C ) ≤

∞

k = 3 C ∈ C ( G ) ,
|C |= k

2 ε k − 1

w h er e t h e i n e q u alit y f oll o w s fr o m w h e n c y cl e C h a s k i n di c e s, all k i n di c e s f all i nt o t h e s a m e i n d e x gr o u p wit h
pr o b a bilit y ⌊ 1 / ε ⌋ · ⌊ ε n ⌋

k / n
k ≤ 2 ε k − 1 a s t h er e ar e Ω( 1 / ε ) i n d e x gr o u p s of ⌊ ε n ⌋ i n di c e s. A n al g orit h m ai m s t o

pi c k a q u er y gr a p h str u ct ur e t o m a xi mi z e t hi s q u a ntit y. T h e f oll o wi n g cl ai m s h o w s t h at a m o n g t h e s a m pl e d
i n di c e s S , m a ki n g a “ cli q u e-li k e ” q u er y gr a p h str u ct ur e i s o pti m al f or a t e sti n g al g orit h m.

L e m m a 6. 3. S u p p o s e a t e sti n g al g o rit h m will m a k e m q u e ri e s. T o m a xi mi z e t h e q u a ntit y 6. 9, t h e al g o rit h m
s h o ul d s el e ct s i n di c e s s u c h t h at s

2 ≥ m > s − 1
2 a n d m a k e m q u e ri e s o n t h e g r a p h wit h t h e s e s i n di c e s. T h at

i s, a g r a p h wit h m e d g e s t h at i s cl o s e st t o a cli q u e m a xi mi z e s t h e q u a ntit y.

A s s u mi n g L e m m a 6. 3, wit h m q u eri e s, t h e pr o b a bilit y t h at a vi ol ati o n t o ultr a m etri c i s d et e ct e d i s m a xi mi z e d
w h e n t h e al g orit h m s a m pl e s s i n di c e s s u c h t h at s

2 = m a n d m a k e s m q u eri e s o n t h e p air wi s e di st a n c e s. If a n
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al g orit h m s a m pl e s a s et S of o ( 1/ ε 2 / 3 ) i n di c e s a n d q u er y p air wi s e di st a n c e s, t h e n a vi ol ati o n i s d et e ct e d w h e n
t hr e e i n di c e s i n S f all i nt o t h e s a m e i n d e x gr o u p. F or e a c h tri pl e, all t hr e e i n di c e s f all i nt o t h e s a m e gr o u p
wit h pr o b a bilit y at m o st 2 ε 2 . T h u s, b y a u ni o n b o u n d, t h e pr o b a bilit y t h at t h e al g orit h m d et e ct s a vi ol ati o n
i s at m o st

i, j, k ∈ S

P r (∃ j ∈ [l], i, j, k ∈ π (I j )) ≤ o ( 1/ ε 2 ) · 2 ε 2 = o ( 1)

w h e n |S | = o ( 1 / ε 2 / 3 ). S u c h cli q u e-li k e q u er y str u ct ur e m a k e s o ( 1 / ε 4 / 3 ) q u eri e s, a n d f or a n y ot h er q u er y
str u ct ur e, b y L e m m a 6. 3, t h e pr o b a bilit y of d et e cti n g a vi ol ati o n i s n o l ar g er t h a n o ( 1). T hi s s h o w s t h at a n y
n o n- a d a pti v e t e sti n g al g orit h m m u st m a k e Ω( 1 / ε 4 / 3 ) q u eri e s t o d et e ct a vi ol ati o n of ultr a m etri c pr o p ert y
wit h hi g h pr o b a bilit y.

P r o of. [ Pr o of of L e m m a 6. 3] Gi v e n t h e c h oi c e t o m a k e m q u eri e s, a n al g orit h m w a nt s t o m a xi mi z e t h e q u a ntit y
∞
k = 3 ε k − 1 ·|C k (G )| w h er e C k (G ) d e n ot e s t h e s et of c y cl e s of l e n gt h k i n t h e q u er y gr a p h G . L et s b e a n i nt e g er

d e fi n e d a s i n t h e st at e m e nt. We st art wit h a n ar bitr ar y gr a p h G wit h s ′ > s v erti c e s a n d m e d g e s, a n d s h o w
t h at G c a n b e m o di fi e d t o G ′ wit h stri ctl y l e s s v erti c e s s u c h t h at

∞
k = 3 ε k − 1 · |C k (G ′)| >

∞
k = 3 ε k − 1 · |C k (G )|.

T hi s gr a p h m o di fi c ati o n i s d o n e b y m er gi n g t w o v erti c e s a n d a d di n g e d g e s b et w e e n n o n- a dj a c e nt v erti c e s.

Fir st, w e m o dif y G = ( V, E ) s u c h t h at it s di a m et er i s at m o st 2. S u p p o s e i niti all y t h e di a m et er of G i s l ar g er
t h a n 2. T h e n, t h er e e xi st s t w o n o n- a dj a c e nt v erti c e s x, y s u c h t h at t h e n ei g h b or of x , d e n ot e d b y N x (G ), i s
di sj oi nt fr o m t h at of y , N y (G ). Cr e at e a n e w gr a p h G ′ o n t h e v ert e x s et ( V ∪ { z } ) \ { x, y } a n d a n e d g e s et E ′ :

E ′ = { (u, v ) : ( u, v ) ∈ E, u, v /∈ { x, y } } ∪ { (v, z ) : ( v, x ) ∈ E } ∪ { (v, z ) : ( v, y ) ∈ E } .

T h e f oll o wi n g st at e m e nt s h ol d:

• F or C ∈ C (G ), if x, y /∈ C , C ∈ C (G ′).

• F or C ∈ C (G ), if |C ∩ { x, y }| = 1, C ∈ C (G ′). T h at i s, a n y c y cl e i n G t h at o nl y c o nt ai n s o n e of x, y still
r e m ai n s i n G ′.

• F or C ∈ C (G ),if x, y ∈ C , t h e n C m u st b e of t h e f or m { x → v 1 → · · · → v i → y → u 1 → · · · → u j → x }
w h er e v 1 ≠ v i , u 1 ≠ u j . T h u s, t h e c y cl e s C 1 = { z → v 1 → · · · → v i → z } a n d C 2 = { z → u 1 → · · · →
u i → z } ar e i n C (G ′) a n d |C 1 | < |C | a n d |C 2 | < |C |.

T h er ef or e,
∞
k = 3 ε k − 1 · |C k (G ′)| >

∞
k = 3 ε k − 1 · |C k (G )|.

H e n c e, s u p p o s e t h at G = ( V, E ) i s a gr a p h wit h s ′ v erti c e s wit h di a m et er at m o st 2. Si n c e s ′ > s w h er e i nt e g er

s s ati s fi e s s
2 ≥ m , w e m u st h a v e t h at at l e a st s ′

2 − m ≥ s ′

2 − s ′ − 1
2 = s ′ − 1 p air s of v erti c e s ar e n o n- a dj a c e nt

i n G . T h at i s, G h a s at l e a st s ′ − 1 n o n- e d g e s. S u p p o s e ( x, y ) /∈ E , a n d s u p p o s e |N x (G ) ∩ N y (G )| = ν . N oti c e
t h at ν > 0 a s di a m (G ) ≤ 2. C o n si d er t h e e ff e ct of a d di n g a n e d g e ( x, y ) i nt o t h e gr a p h a s w ell a s t h e e ff e ct of
m er gi n g t h e p air of v erti c e s ( x, y ) i nt o a si n gl e v ert e x z .

C r e a t e e d g e (x, y ): D e fi n e G ′′ t o b e a gr a p h o n v ert e x s et V a n d e d g e s et E ∪ { ( x, y ) } .   T h e n
| C( G ′′)| > | C( G ) |. I n p arti c ul ar, w e g ai n ν n e w tri a n gl e s fr o m t h e ν c o m m o n n ei g h b or s of x, y ∈ G .
T h at i s, |C 3 (G ′′)| = |C 3 (G )| + ν s o | C(G ′′)| ≥ | C(G )| + ν .

M e r g e v e r ti c e s (x, y ): D e fi n e G ′′ t o b e a gr a p h o n v ert e x s et ( V ∪ { z } ) \ { x, y } a n d e d g e s et E ′′, w h er e

E ′′ = { (u, v ) : ( u, v ) ∈ E, u, v /∈ { x, y } } ∪ { (v, z ) : ( v, x ) ∈ E } ∪ { (v, z ) : ( v, y ) ∈ E } .

F or C ∈ C (G ) a n d |C ∩ { x, y }| ≤ 1 , C ∈ C (G ′′); f or C ∈ C (G ), x, y ∈ C , a n d |C | ≥ 5, C c orr e s p o n d s t o
at l e a st o n e c y cl e C̃ ∈ C ( G ′′) w h er e |C̃ | < 5. F or C ∈ C ( G ), x, y ∈ C , a n d |C | = 4, C i s of t h e f or m
{ x → v → y → u → x } . S u c h c y cl e s ar e v a ni s hi n g d u e t o t h e m er g e of (x, y ). M or e o v er, f or tri a n gl e s of
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t h e f or m { x, u, v } , { y, u, v } ∈ C 3 (G ) f or s o m e u, v ∈ V , { z, u, v } ∈ C 3 (G ′′): aft er t h e m er g e, t w o tri a n gl e s
b e c o m e o n e. T h e s e t y p e s of tri a n gl e s ar e t h e o nl y a ff e ct e d o n e s. M or e o v er, si n c e |N x (G ) ∩ N y (G )| = ν ,
|E ′′| = |E | − ν . I n s u m m ar y, a m o n g t h e ν c o m m o n n ei g h b or s i n N x (G ) ∩ N y (G ), if p p air s of t h e m
ar e a dj a c e nt, t h e n m er gi n g ( x, y ) c a u s e s p tri a n gl e s v a ni s hi n g, ν

2 c y cl e s of l e n gt h 4 v a ni s hi n g, b ut t h e
n u m b er of e d g e s d e cr e a s e b y ν .

N o w w e will s h o w h o w t o cr e at e G ′ b a s e o n G t o i n cr e a s e t h e o bj e cti v e f u n cti o n. S u p p o s e t h e s et of n o n- e d g e s
i n G i s

(x 1 , y1 ), . . . , (x α , yα ), ∀ i ∈ [α ], xi , yi ∈ V, (x i , yi ) /∈ E.

R e c all t h at α ≥ s ′ − 1. E a c h p air ( x i , yi ) /∈ E i s a s s o ci at e d wit h t w o q u a ntiti e s

ν i : = |N x i (G ) ∩ N y i (G )|,

p i : = | {(u, v ) ∈ E : u, v ∈ (N x i (G ) ∩ N y i (G ))}| .

T h at i s, ν i i s t h e n u m b er of c o m m o n n ei g h b or s of x i , yi , a n d p i i s t h e n u m b er of p air s of c o m m o n n ei g h b or s
t h at ar e a dj a c e nt. N oti c e t h at p α ≤ ν α

2 . We a s s u m e t h e p air s of n o n- e d g e s ar e s ort e d i n t h e w a y t h at
ν 1 ≥ ν 2 ≥ · · · ≥ ν α . T h e c o n str u cti o n of G ′ i s d o n e b y m er gi n g a si n gl e p air (x α , yα ) a n d a d di n g e d g e s t o
s o m e of t h e pr e vi o u s n o n- a dj a c e nt p air s.

B y t h e pr e vi o u s c a s e a n al y si s, m er gi n g ( x α , yα ) i nt o o n e si n gl e n e w v ert e x z c a u s e s p α tri a n gl e s a n d ν α

2
c y cl e s of l e n gt h 4 v a ni s hi n g; b ut w e al s o s p ar e s ν α e d g e s t h at c a n b e a d d e d t o el s e w h er e i n t h e gr a p h. L et
G ′′ = ( V ′′, E′′) d e n ot e t h e n e w gr a p h wit h x α , yα m er g e d i nt o a n e w v ert e x x . (G ′′ i s d e fi n e d f or m all y i n
Cl ai m 6. 6 b el o w.) T h e n |C 3 (G ′′)| ≥ |C 3 (G )| − p α ≥ | C 3 (G )| − ν α

2 a n d |C 4 (G ′′)| ≥ |C 4 (G )| − ν α

2 . M or e o v er,
f or j > 4, |C j (G

′′)| ≥ |C j (G )|. I n t er m s of t h e n u m b er of e d g e s, |E ′′| = |E | − ν α .

A n at ur al n e xt st e p i s t o cr e at e ν α e d g e s b et w e e n s o m e of t h e n o n- e d g e s ( x 1 , y1 ), . . . , (x α − 1 , yα − 1 ) a n d m a k e
s o m e of t h e m a dj a c e nt. H o w e v er, n ot e t h at a b y- pr o d u ct of m er gi n g ( x α , yα ) i nt o a n e w si n gl e v ert e x z
i n G ′′ i s t h at, s o m e of t h e n o n- e d g e s (x 1 , y1 ), . . . , ( x α − 1 , yα − 1 ) ∈ G b e c o m e a dj a c e nt i n G ′′. C o n si d er t h e
p o s si bl e s c e n ari o w h er e t w o n o n- e d g e s ( x i , yi ) a n d ( x α , yα ) i n G s h ar e o n e s a m e e n d p oi nt x i = x α a n d t h e
p air ( y α , yi ) ∈ E i s a dj a c e nt i n G . T h u s, t h e n o n- e d g e (x i , yi ) = ( x α , yi ) ∈ G c orr e s p o n d s t o ( z, y i ) ∈ G ′′

w h e n m er gi n g x α a n d y α a s a n e w v ert e x z ∈ G ′′. I n t hi s c a s e, it m a k e s n o s e n s e t o u s e t h e ν α - e d g e- b u d g et t o
cr e at e a n e d g e b et w e e n ( x i , yi ) i n G ′′, a s t h e v ert e x x i = x α c orr e s p o n d s t o z i n G ′′ w hi c h i s alr e a d y a dj a c e nt
t o y i . B el o w, w e gi v e a n u p p er b o u n d o n t h e d e cr e a s e i n t h e n o n- e d g e s aft er t h e m er g e.

C l ai m 6. 6. D e fi n e G ′′ t o b e a g r a p h o n v e rt e x s et V ′′ = ( V ∪ { z } ) \ { x α , yα } a n d e d g e s et E ′′ w h e r e

E ′′ = { (u, v ) : ( u, v ) ∈ E, u, v /∈ { x α , yα } } ∪ { (v, z ) : (v, x α ) ∈ E } ∪ { (v, z ) : ( v, y α ) ∈ E } .

T h e n t h e r e a r e at l e a st ν α n o n- e d g e s i n G ′′.

P r o of. S u p p o s e n o n- e d g e ( x i , yi ) /∈ E i n G b e c o m e s a dj a c e nt i n E ′′. T h e n w e m u st b e i n o n e of t h e b el o w
t w o c a s e s

x i = x α a n d ( y α , yi ) ∈ E or y i = y α a n d ( x α , xi ) ∈ E .

C o n si d er t h e f or m er c a s e.  Si n c e ( y α , yi ) ∈ E , y i w a s n ot a dj a c e nt t o x α = x i a s ( x i , yi ) /∈ E .
T h at i s, y i ∈ N y α (G ) \ N x α (G ). T h u s, | {( y α , yi ) ∈ E : y i ∈ V }| ≤ | N y α (G ) \ N x α (G ) |. Si mil arl y,
| {( x α , xi ) ∈ E : x i ∈ V }| ≤ | N x α (G ) \ N y α (G ) |. I n s u m m ar y, | {( x i , yi ) /∈ E, ( x i , yi ) ∈ E ′′}| ≤
|N y α

(G ) \ N x α
(G )| + |N x α

(G ) \ N y α
(G )| ≤ s ′ − 2 − ν α . T h er e ar e α − 1 n o n- e d g e s ( i1 , j1 ), . . . , (iα − 1 , jα − 1 ) i n

G . T h u s, i n G ′′, t h er e ar e at l e a st α − 1 − (s ′ − 2 − ν α ) = α − s ′ + 1 + ν α ≥ ν α n o n- a dj a c e nt p air s.

T h e a b o v e ar g u m e nt s h o w s t h at t h er e ar e still at l e a st ν α p air s of v erti c e s i n G ′ t h at r e m ai n t o b e n o n- a dj a c e nt,
a n d t h e ν α s p ar e e d g e s c a n b e a d d e d t o ν α of t h e n o n- a dj a c e nt p air s. Aft er r e n a mi n g, l et t h e s e ν α n o n- a dj a c e nt
p air s b e

E ( N A ) = { (x i , yi ) /∈ E ′′ : i ∈ [ν α ], xi , yi ∈ V ′′} .

C o p y ri g h t © 2 0 2 5 b y S I A M
U n a u t h o ri z e d r e p r o d u c ti o n of t hi s a r ti cl e i s p r o hi bi t e d4 3 8

Do
wn

lo
ad

ed
 0

6/
08

/2
5 
to

 1
51

.1
97

.3
.8

4 .
 

Re
di

st
ri

bu
ti

on
 s

ub
je

ct
 t

o 
SI

A
M 
li

ce
ns

e 
or
 c

op
yr

ig
ht
; 

se
e 

ht
tp

s:
//

ep
ub

s.
si

a
m.

or
g/
te

r
ms

-p
ri

va
cy



D e fi n e gr a p h G ′ o n t h e v ert e x s et V ′ = V ′′ = ( V ∪ { z } ) \ { x α , yα } a n d e d g e s et E ′ :

E ′ = { (u, v ) : ( u, v ) ∈ E, u, v /∈ { x α , yα } } ∪ { (v, z ) : (v, x α ) ∈ E }

∪ { (v, z ) : (v, y α ) ∈ E } ∪ { (x, y ) : ( x, y ) ∈ E ( N A ) } .

N oti c e t h at, f or e a c h n e w e d g e ( x i , yi ) ∈ E ( N A ) , N x i
(G ′) ∩ N y i

(G ′) = ((( N x i
(G ) ∩ N y i

(G ))) \ { x, y } ) ∪ { z } if
eit h er x or y ∈ (N x i

(G ) ∩ N y i
(G )); if x, y /∈ (N x i

(G ) ∩ N y i
(G )), t h e n N x i

(G ′) ∩ N y i
(G ′) = N x i

(G ) ∩ N y i
(G ).

I n b ot h c a s e s, |N x i (G
′) ∩ N y i (G

′)| ≥ ν α − 1. A s a c o n s e q u e n c e, f or e a c h s u c h p air ( x i , yi ) ∈ E ( N A ) , a d di n g
t hi s e d g e i n G ′ cr e at e s at l e a st ν α − 1 n e w tri a n gl e s i n G ′. I n t ot al, a d di n g ν α s p ar e e d g e s cr e at e s at l e a st
ν α · ( ν α − 1) n e w tri a n gl e s. T h u s, |C 3 (G ′)| ≥ |C 3 (G ′′)| + ν α · ( ν α − 1) a n d t h e n u m b er of c y cl e s wit h l ar g er
l e n gt h c a n o nl y i n cr e a s e.

I n s u m m ar y, fr o m gr a p h G t o G ′′, w e h a v e

|C 3 (G ′′)| ≥ |C 3 (G )| − ν α (ν α − 1) 2 ,

|C 4 (G ′′)| ≥ |C 4 (G )| − ν α (ν α − 1) 2 ,

|C j (G
′′)| ≥ |C j (G )|, ∀ j > 4 ,

|E ′′| = |E | − ν α .

Fr o m gr a p h G ′′ t o G ′, w e h a v e

|C 3 (G ′)| ≥ |C 3 (G ′′)| + ν α · (ν α − 1) ,

|C j (G
′)| ≥ |C j (G

′′)|, ∀ j ≥ 4 ,

|E ′| = |E ′′| + ν α .

T h u s, |C 3 (G ′)| ≥ |C 3 (G )| + ν α

2 , |C 4 (G ′)| ≥ |C 4 (G )| − ν α

2 , |C j (G
′)| ≥ |C j (G )| f or all j > 4 a n d t h e n u m b er

of l ar g er c y cl e s i n G ′ i s at l e a st t h at of G . R e c all t h at ν α > 0. T hi s s h o w s t h at, wit h t h e s a m e n u m b er of
e d g e s m ,

∞
k = 3 ε k − 1 · |C k (G ′)| >

∞
k = 3 ε k − 1 · |C k (G )|.

A c k n o wl e d g e m e n t

Eri k W ai n g art e n w o ul d li k e t o t h a n k t h e s u p p ort fr o m t h e N ati o n al S ci e n c e F o u n d ati o n ( N S F) u n d er Gr a nt
N o. C C F- 2 3 3 7 9 9 3.
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[ 3] Mi h ai B ă d oi u, A r t u r C z u m aj, Pi o t r I n d y k, a n d C h ri s ti a n S o hl e r, F a cilit y l o c ati o n i n s u bli n e a r ti m e , i n P r o c e e di n g s

of t h e 3 2 n d I nt e r n a ti o n al C oll o q ui u m o n A u t o m a t a, L a n g u a g e s, a n d P r o g r a m mi n g (I C A L P ’ 2 0 0 5 ), 2 0 0 5.
[ 4] Ai n e s h B a k s hi, N a dii a C h e p u r k o, a n d R aj e s h J a y a r a m, Te sti n g p o siti v e s e mi- d e fi nit e n e s s vi a r a n d o m s u b m at ri c e s ,

i n P r o c e e di n g s of t h e 6 1 s t A n n u al I E E E S y m p o si u m o n F o u n d a ti o n s of C o m p u t e r S ci e n c e ( F O C S ’ 2 0 2 0 ), 2 0 2 0.
[ 5] R aj a r s hi B h a t t a c h a rj e e, G r e g o r y D e x t e r, P e t r o s D ri n e a s, C a m e r o n M u s c o, a n d A r c h a n R a y, S u bli n e a r ti m e

ei g e n v al u e a p p r o xi m ati o n vi a r a n d o m s a m pli n g , Al g o ri t h mi c a, 8 6: 1 7 6 4 – 1 8 2 9 ( 2 0 2 4 ).
[ 6] J o n B e ntl e y, M ulti di m e n si o n al bi n a r y s e a r c h t r e e s u s e d f o r a s s o ci ati v e s e a r c hi n g , C o m m u ni c a ti o n s of t h e A C M,

1 8 ( 9 ): 5 0 9 – 5 1 7 ( 1 9 7 5 ).
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[ 7] M a n u el Bl u m, Mi c h a el L u b y, a n d R o ni t t R u bi nf el d, S elf-t e sti n g / c o r r e cti n g wit h a p pli c ati o n s t o n u m e ri c al p r o bl e m s ,
J o u r n al of C o m p u t e r a n d S y s t e m S ci e n c e s, 4 7 ( 3 ): 5 4 9 – 5 9 5 ( 1 9 9 3 ).

[ 8] M a ri a- Fl o ri n a B al c a n, Yi Li, D a vi d P. W o o d r u ff, a n d H o n g y a n g Z h a n g, T e sti n g m at ri x r a n k, o pti m all y , i n
P r o c e e di n g s of t h e 3 0 t h A C M- SI A M S y m p o si u m o n Di s c r e t e Al g o ri t h m s ( S O D A ’ 2 0 1 9 ), 2 0 1 9.

[ 9] N a d e r H. B s h o u t y, O n p r o p e rt y t e sti n g of t h e bi n a r y r a n k , i n P r o c e e di n g s of t h e 4 8 t h I nt e r n a ti o n al S y m p o si u m
o n M a t h e m a ti c al F o u n d a ti o n s of C o m p u t e r S ci e n c e ( M F C S ’ 2 0 2 3 ), 2 0 2 3.

[ 1 0] A r n a b B h a t t a c h a r y y a a n d Y ui c hi Y o s hi d a, P r o p e rt y Te sti n g: P r o bl e m s a n d Te c h ni q u e s , S p ri n g e r Si n g a p o r e, 2 0 2 2.
[ 1 1] Vi n c e nt C o h e n- A d d a d, C h e n gli n F a n, E ui w o o n g L e e, a n d A r n a u d d e M e s m a y, Fitti n g m et ri c a n d ult r a m et ri c s

wit h mi ni m u m di s a g r e e m e nt s , i n P r o c e e di n g s of t h e 6 3 r d A n n u al I E E E S y m p o si u m o n F o u n d a ti o n s of C o m p u t e r
S ci e n c e ( F O C S ’ 2 0 2 2 ), 2 0 2 2.

[ 1 2] M o s e s C h a ri k a r a n d R ui q u a n G a o, I m p r o v e d a p p r o xi m ati o n s f o r ult r a m et ri c vi ol ati o n di st a n c e , i n P r o c e e di n g s of
t h e 3 4 t h A C M- SI A M S y m p o si u m o n Di s c r e t e Al g o ri t h m s ( S O D A ’ 2 0 2 3 ), 2 0 2 3.

[ 1 3] B e r n a r d C h a z ell e, Di n g Li u, a n d A v n e r M a g e n, S u bli n e a r g e o m et ri c al g o rit h m s , i n P r o c e e di n g s of t h e 3 5 t h A C M
S y m p o si u m o n t h e T h e o r y of C o m p u ti n g ( S T O C ’ 2 0 0 3 ), 2 0 0 3.

[ 1 4] A r t u r C z u m aj a n d C h ri s ti a n S o hl e r, P r o p e rt y t e sti n g wit h g e o m et ri c q u e ri e s , i n P r o c e e di n g s of t h e 9 t h E u r o p e a n
S y m p o si u m o n Al g o ri t h m s ( E S A ’ 2 0 0 1 ), 2 0 0 1.

[ 1 5] A r t u r C z u m aj a n d C h ri s ti a n S o hl e r, E sti m ati n g t h e w ei g ht of m et ri c mi ni m u m s p a n ni n g t r e e s i n s u bli n e a r ti m e ,
SI A M J o u r n al o n C o m p u ti n g, 3 9 ( 3 ): 9 0 4 – 9 2 2 ( 2 0 0 9 ).

[ 1 6] A r t u r C z u m aj a n d C h ri s ti a n S o hl e r, S u bli n e a r ti m e a p p r o xi m ati o n of t h e c o st of a m et ri c k- n e a r e st n ei g h b o r
g r a p h , i n P r o c e e di n g s of t h e 3 1 s t A C M- SI A M S y m p o si u m o n Di s c r e t e Al g o ri t h m s ( S O D A ’ 2 0 2 0 ), 2 0 2 0.

[ 1 7] A r t u r C z u m aj, C h ri s ti a n S o hl e r, a n d M a r ti n Zi e gl e r, P r o p e rt y t e sti n g i n c o m p ut ati o n al g e o m et r y , i n P r o c e e di n g s
of t h e 8 t h E u r o p e a n S y m p o si u m o n Al g o ri t h m s ( E S A ’ 2 0 0 0 ), 2 0 0 0.

[ 1 8] D o mi ni q u e d e C a e n, A n u p p e r b o u n d o n t h e s u m of s q u a r e s of d e g r e e s i n a g r a p h , Di s c r e t e M a t h e m a ti c s,
1 8 5 ( 1 ): 2 4 5 – 2 4 8 ( 1 9 9 8 ).

[ 1 9] El d a r Fi s c h e r a n d Il a n N e w m a n, T e sti n g of m at ri x p r o p e rti e s , i n P r o c e e di n g s of t h e 3 3 r d A C M S y m p o si u m o n
t h e T h e o r y of C o m p u ti n g ( S T O C ’ 2 0 0 1 ), 2 0 0 1.

[ 2 0] C h e n gli n F a n, B e nj a mi n R ai c h el, a n d G r e g o r y v a n B u s ki r k, M et ri c vi ol ati o n di st a n c e: h a r d n e s s a n d a p p r o xi m ati o n ,
i n P r o c e e di n g s of t h e 2 9 t h A C M- SI A M S y m p o si u m o n Di s c r e t e Al g o ri t h m s ( S O D A ’ 2 0 1 8 ), 2 0 1 8.

[ 2 1] Pi o t r I n d y k, Ji řı́ M a t o u š e k, a n d A n a s t a si o s Si di r o p o ul o s, L o w- di st o rti o n e m b e d di n g s of fi nit e m et ri c s p a c e s , i n
H a n d b o o k of Di s c r e t e a n d C o m p u t a ti o n al G e o m e t r y, C h a p m a n a n d H all / C R C, 2 0 1 7.

[ 2 2] E v a n g el o s Ki p o u ri di s, Fitti n g t r e e m et ri c s wit h mi ni m u m di s a g r e e m e nt s , i n P r o c e e di n g s of t h e 3 1 s t E u r o p e a n
S y m p o si u m o n Al g o ri t h m s ( E S A ’ 2 0 2 3 ), 2 0 2 3.

[ 2 3] R o b e r t K r a u t h g a m e r a n d O ri S a s s o n, P r o p e rt y t e sti n g of d at a di m e n si o n alit y , i n P r o c e e di n g s of t h e 1 4 t h
A C M- SI A M S y m p o si u m o n Di s c r e t e Al g o ri t h m s ( S O D A ’ 2 0 0 3 ), 2 0 0 3.

[ 2 4] N a t h a n Li ni al, Fi nit e m et ri c s p a c e s: c o m bi n at o ri c s, g e o m et r y, al g o rit h m s , i n P r o c e e di n g s of t h e 1 8 t h A C M
S y m p o si u m o n C o m p u t a ti o n al G e o m e t r y ( S o C G ’ 2 0 0 2 ), 2 0 0 2.

[ 2 5] Ji řı́ M a t o u š e k, L e ct u r e s o n Di s c r et e G e o m et r y , v ol. 2 1 2 of G r a d u a t e Te x t s i n M a t h e m a ti c s, S p ri n g e r, 2 0 0 2.
[ 2 6] K r z y s z t of O n a k, T e sti n g p r o p e rti e s of s et s of p oi nt s i n m et ri c s p a c e s , i n P r o c e e di n g s of t h e 3 5 t h I nt e r n a ti o n al

C oll o q ui u m o n A u t o m a t a, L a n g u a g e s, a n d P r o g r a m mi n g (I C A L P ’ 2 0 0 8 ), 2 0 0 8.
[ 2 7] Mi c h al P a r n a s a n d D a n a R o n, T e sti n g m et ri c p r o p e rti e s , I nf o r m a ti o n a n d C o m p u t a ti o n, 1 8 7 ( 2 ): 1 5 5 – 1 9 5 ( 2 0 0 3 ).
[ 2 8] R o ni t t R u bi nf el d a n d M a d h u S u d a n, R o b u st c h a r a ct e ri z ati o n of p ol y n o mi al s wit h a p pli c ati o n s t o p r o g r a m t e sti n g ,

SI A M J o u r n al o n C o m p u ti n g, 2 5 ( 2 ): 2 5 2 – 2 7 1 ( 1 9 9 6 ).
[ 2 9] Y uf ei Z h a o, G r a p h T h e o r y a n d A d diti v e C o m bi n at o ri c s , C a m b ri d g e U ni v e r si t y P r e s s, 2 0 2 3.

A   D e fi ni ti o n s of M e t ri c S p a c e s

D e fi ni ti o n A. 1. ( M e t ri c S p a c e ) A m et ri c s p a c e d e fi n e d o v e r [n ] i s s p e ci fi e d b y a di st a n c e f u n cti o n
d : [n ] × [n ] → ❘ ≥ 0 w hi c h s ati s fi e s:

• d (i, j ) = 0 if a n d o nl y if i = j , a n d d (i, j ) = d (j, i ) f o r all i, j ∈ [n ].

• Tri a n gl e I n e q u ali t y : f o r all i, j, k ∈ [n ], d (i, j ) ≤ d (i, k) + d (j, k ).

F u rt h e r m o r e, if t h e o nl y c o n diti o n u n s ati s fi e d a b o v e i s t h at i ≠ j s ati s fi e s d ( i, j ) = 0, t h e n d d e fi n e s a
p s e u d o m etri c o v e r [n ].
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D e fi ni ti o n A. 2. ( T r e e M e t ri c ) A m et ri c s p a c e d : [n ] × [n ] → ❘ ≥ 0 d e fi n e s a t r e e m et ri c o v e r [n ] if t h e
f u n cti o n d m a y b e r e ali z e d i n t h e f oll o wi n g w a y:

• T h e r e i s a w ei g ht e d t r e e T = ( V, E ) wit h w ei g ht s w : E → ( 0, ∞ ) a n d a n i nj e cti o n ϕ : [n ] → V .

• T h e di st a n c e d (i, j ) i s gi v e n b y t h e l e n gt h of t h e p at h (i. e., s u m of e d g e w ei g ht s ) b et w e e n ϕ (i) a n d ϕ (j )
i n T .

A n alt e r n ati v e ( a n d e q ui v al e nt ) d e fi niti o n, d u e t o [ 6 ], i s t h at d i s a t r e e m et ri c, i n a d diti o n t o b ei n g a m et ri c,
s ati s fi e s:

d (i, j ) + d (k, ℓ ) ≤ m a x { d (i, k) + d (j, ℓ ), d(i, ℓ) + d (j, k )} f o r all i, j, k, ℓ ∈ [n ].

D e fi ni ti o n A. 3. ( U l t r a m e t ri c ) A m et ri c s p a c e d : [n ] × [n ] → ❘ ≥ 0 d e fi n e s a n ult r a m et ri c o v e r [n ] if t h e
f u n cti o n d m a y b e r e ali z e d i n t h e f oll o wi n g w a y:

• T h e r e i s a r o ot e d t r e e T = ( V, E ) wit h a r o ot r ∈ V a n d w ei g ht s w : E → ( 0, ∞ ) s u c h t h e s u m of w ei g ht s
f r o m r t o e a c h l e af i s t h e s a m e. F u rt h e r m o r e, t h e r e i s a n i nj e cti o n ϕ : [n ] → V w hi c h m a p s t o t h e l e a v e s
of t h e t r e e.

• T h e di st a n c e d (i, j ) i s gi v e n b y t h e l e n gt h of t h e p at h (i. e., s u m of e d g e w ei g ht s ) b et w e e n ϕ (i) a n d ϕ (j )
i n T .

A n alt e r n ati v e ( a n d e q ui v al e nt ) d e fi niti o n, i s t h at d d e fi n e s a n ult r a m et ri c if, i n a d diti o n t o b ei n g a m et ri c,
s ati s fi e s:

d (i, j ) ≤ m a x { d (i, k), d(j, k )} f o r all i, j, k ∈ [n ],

B   P r o of of T h e o r e m 1. 1

T h e o r e m 1. 1. ( T e s ti n g M e t ri c s — U p p e r B o u n d ) F o r a n y l a r g e e n o u g h n ∈ ◆ a n d a n y ε ∈ ( 0, 1) , t h e r e
e xi st s a r a n d o mi z e d al g o rit h m w hi c h r e c ei v e s q u e r y a c c e s s t o a n u n k n o w n m at ri x M ∈ ❘ n × n a n d m a k e s
O (n 2 / 3 / ε 4 / 3 ) q u e ri e s wit h t h e f oll o wi n g g u a r a nt e e:

• If M d e fi n e s a m et ri c s p a c e o n [n ], t h e al g o rit h m o ut p ut s “ a c c e pt ” wit h p r o b a bilit y 1 .

• If M i s ε -f a r f r o m b ei n g b ei n g a m et ri c, t h e n t h e al g o rit h m o ut p ut “ r ej e ct ” wit h p r o b a bilit y at l e a st 2 / 3 .

F u rt h e r m o r e, t h e al g o rit h m i s n o n- a d a pti v e (i. e., q u e ri e s m a d e d o n ot d e p e n d o n a n s w e r s t o p ri o r q u e ri e s ).

P r o of. B y L e m m a 2. 1, it s u ffi c e s t o s h o w t h e t h e or e m h ol d s f or M ∈ C . N ot e t h at, if ε < 1 / n , t h e cl ai m e d
c o m pl e xit y O ( n 2 / 3 / ε 4 / 3 ) i s O ( n 2 ), s o t h at w e r e a d t h e e ntir e m atri x. If 1 / ε > n , r u n t h e M etri c Te sti n g
Al g orit h m. F or M ∈ P , b ot h s u b-r o uti n e s o ut p ut “ a c c e pt ” wit h pr o b a bilit y 1, s o t h e al g orit h m o ut p ut s
“ a c c e pt ” if M e n c o d e s a m etri c s p a c e. If M i s ε -f ar fr o m P , l et T b e t h e s et of all vi ol ati n g tri a n gl e s i n M
a n d l et I = { i ∈ [n ] : d T (i) ≥ ε 1 / 3 n 4 / 3 / 1 6 } . If |I | ≥ ε n / 4, t h e n s u b-r o uti n e C h e c k Hi D e g r e e (M, ε ) o ut p ut s
“r ej e ct ” wit h pr o b a bilit y at l e a st 5 / 6. O n t h e ot h er h a n d, if |I | < ε n / 4, s u b-r o uti n e C h e c k Vi o l a ti o n (M, ε )
o ut p ut s “r ej e ct ” wit h pr o b a bilit y at l e a st 5 / 6. B y u ni o n b o u n d, t h e al g orit h m o ut p ut s “r ej e ct ” wit h pr o b a bilit y
at l e a st 2 / 3 w h e n M ∈ C i s ε -f ar fr o m P .
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C   P r o of s f r o m S e c ti o n 3 ( M e t ri c T e s ti n g U p p e r B o u n d )

L e m m a 3. 1. F o r a n y ε ∈ ( 0 , 1) , a n d a n y M ∈ C w hi c h i s ε -f a r f r o m P , t h e r e a r e at l e a st ε n 2 / 6 di sti n ct
vi ol ati n g t ri a n gl e s { i, j, k} of M .

P r o of. S u p p o s e M c o nt ai n s l e s s t h a n ε n 2 / 6 tri a n gl e s w hi c h ar e vi ol ati n g f or M . T h e n, w e s h o w h o w t o
m o dif y l e s s t h a n ε n 2 e ntri e s o n m atri x M t o g et a m atri x M ′ w hi c h e n c o d e s a m etri c s p a c e o v er [ n ]. L et
S b e t h e s u b s et of [ n ] × [n ] s u c h t h at f or all (i, j ) ∈ S , (i, j ) d o e s n ot p arti ci p at e i n a n y vi ol ati n g tri a n gl e.
T h e n, |S | > n 2 − ε n 2 si n c e a tri a n gl e { i, j, k} h a s 3 ( u n or d er e d) p air s of i n di c e s a n d h e n c e, 6 e ntri e s i n M .
C o n si d er t h e w ei g ht e d u n dir e ct e d gr a p h G o n [ n ] w hi c h a d d s e d g e s (i, j ) ∈ S wit h t h e w ei g ht M (i, j ). If G i s
di s c o n n e ct e d, a d d e d g e s of t h e m a xi m u m w ei g ht t o c o n n e ct it. We t h e n c o n si d er t h e m atri x M ′, w h er e e ntr y
M ′(i, j ) d e n ot e s t h e l e n gt h of t h e s h ort e st p at h b et w e e n i a n d j al o n g e d g e s i n G . T h e m atri x M ′ e n c o d e s a
m etri c a n d di ff er s wit h M o n l e s s t h a n ε n 2 e ntri e s.

L e m m a 3. 2. ( C h e c k Hi D e g r e e L e m m a ) F o r n ∈ ◆ a n d ε ∈ ( 1 / n, 1) , t h e r e e xi st s a r a n d o mi z e d al g o rit h m,
C h e c k Hi D e g r e e , w hi c h r e c ei v e s a s i n p ut a n n × n m at ri x M ∈ C a n d a p a r a m et e r ε a n d h a s t h e f oll o wi n g
g u a r a nt e e s:

• If M ∈ P , C h e c k Hi D e g r e e (M, ε ) al w a y s o ut p ut s “ a c c e pt. ”

• L etti n g T b e t h e s et of vi ol ati n g t ri a n gl e s of M , if t h e r e a r e at l e a st ε n / 4 i n di c e s i ∈ [n ] s u c h t h at
d T (i) ≥ ε 1 / 3 n 4 / 3 / 1 6 , C h e c k Hi D e g r e e (M, ε ) o ut p ut s “ r ej e ct ” wit h p r o b a bilit y at l e a st 5 / 6 .

T h e al g o rit h m i s n o n- a d a pti v e, t a ki n g O ( 1/ ε + n 2 / 3 / ε 1 / 3 ) s a m pl e s a n d u si n g O (n 2 / 3 / ε 4 / 3 ) q u e ri e s.

P r o of. T h e s u b-r o uti n e C h e c k Hi D e g r e e ( M, ε ) s el e ct s a r a n d o m s u b s et U ⊂ [n ] of si z e 1 2/ ε b y i n d e p e n d e ntl y
s a m pli n g fr o m [ n ], a n d r a n d o m s u b s et E ⊂ [n ] × [n ] of si z e 4 8n 2 / 3 / ε 1 / 3 b y r e p e at e dl y s a m pli n g fr o m [ n ] × [n ].
F or e a c h i n d e x i ∈ U a n d e a c h p air of i n di c e s ( j, k ) ∈ E , t h e s u b-r o uti n e c h e c k s w h et h er t h e tri a n gl e { i, j, k} i s
a vi ol ati n g tri a n gl e of M . If it i s a vi ol ati n g tri a n gl e, t h e s u b-r o uti n e o ut p ut s “r ej e ct ”. Ot h er wi s e, it o ut p ut s
“ a c c e pt ”. T h e fir st it e m f oll o w s dir e ctl y fr o m t h e pr o c e d ur e a s a n y m atri x i n P d o e s n ot c o nt ai n vi ol ati n g
tri a n gl e s. O n t h e ot h er h a n d, l et i ∈ [n ] s u c h t h at d T (i) ≥ ε 1 / 3 n 4 / 3 / 1 6 b e c all e d t h e hi g h- d e gr e e i n di c e s. I n
or d er f or t h e al g orit h m t o o ut p ut “ a c c e pt, ” it m u st a v oi d s a m pli n g a hi g h- d e gr e e i n d e x, or if it d o e s s a m pl e a
hi g h- d e gr e e i n d e x, m u st a v oi d t h e c orr e s p o n di n g ε 1 / 3 n 4 / 3 / 1 6 p air s of i n di c e s w hi c h f or m t h e vi ol ati o n. T h e
pr o b a bilit y t hi s o c c ur s i s at m o st

1 −
ε

4

1 2 / ε

+ 1 −
ε 1 / 3

1 6 n 2 / 3

4 8 n 2 / 3 / ε 1 / 3

≤ 1 / 6 .

D   P r o of f r o m S e c ti o n 5 ( Ul t r a m e t ri c a n d Tr e e M e t ri c T e s ti n g U p p e r B o u n d )

L e m m a 5. 3. L et M ∈ C b e ε -f a r f r o m P U a n d S ⊂ [n ] b e c o n si st e nt. If |A (M, S )| ≤ ε n 2 / 8 , t h e n eit h e r t h e r e
a r e at l e a st ε n / 3 2 i n c o n si st e nt p oi nt s i n [n ] \ S , o r |S C (M, S )| + |E C (M, S )| ≥ ε n 2 / 8 .

P r o of. I n S e cti o n 5, w e h a v e o utli n e d t h e pr o of of L e m m a 5. 3. I n p arti c ul ar, w e w a nt t o s h o w t h e c o ntr a-
p o siti v e of t h e st at e m e nt i s tr u e: gi v e n M ∈ C a n d a c o n si st e nt S ⊂ [n ] w hi c h s ati s fi e s |A ( M, S ) | ≤ ε n 2 / 8,
|S C ( M, S ) | + |E C ( M, S ) | ≤ ε n 2 / 8 a n d at m o st ε n / 3 2 i n c o n si st e nt p oi nt s i n [ n ] \ S , t h er e e xi st s a n n × n
m atri x ˜M ∈ P U w hi c h di ff er s fr o m M o n f e w er t h a n ε n 2 e ntri e s. T h e m atri x ˜M i s c o n str u ct e d i n S e cti o n 5
a n d it i s s h o w n t h at ∥ ˜M − M ∥ 0 < ε n 2 .

C o p y ri g h t © 2 0 2 5 b y S I A M
U n a u t h o ri z e d r e p r o d u c ti o n of t hi s a r ti cl e i s p r o hi bi t e d4 4 2

Do
wn

lo
ad

ed
 0

6/
08

/2
5 
to

 1
51

.1
97

.3
.8

4 .
 

Re
di

st
ri

bu
ti

on
 s

ub
je

ct
 t

o 
SI

A
M 
li

ce
ns

e 
or
 c

op
yr

ig
ht
; 

se
e 

ht
tp

s:
//

ep
ub

s.
si

a
m.

or
g/
te

r
ms

-p
ri

va
cy



It r e m ai n s t o s h o w t h at ˜M ∈ P U . We d o t hi s b y c o n si d eri n g a n ar bitr ar y tri pl e i, j, k ∈ [n ], a n d s h o wi n g t h at
it d o e s n ot f or m a vi ol ati o n i n ˜M . Fir st, if at l e a st o n e of t hr e e i, j or k h a d b e e n i n c o n si st e nt wit h S , t h e n
b e c a u s e w e s et di st a n c e s fr o m t hi s p oi nt t o b e ar bitr aril y l ar g e, t h e tri a n gl e i, j, k i s n o l o n g er vi ol at e d. A
s e c o n d e a s y c a s e o c c ur s w h e n all i, j, k ∈ S . I n t hi s c a s e, t h e c o n si st e n c y of S , a n d t h e f a ct ˜M |S × S = M |S × S

i m pli e s t h er e ar e n o s u c h vi ol ati o n s.

• S u p p o s e t h at i, j ∈ S a n d t h at k ∈ [n ] \ S , a n d i n a d diti o n, k w a s c o n si st e nt f or S . I n t hi s c a s e, all
p air wi s e v al u e s a m o n g { i, j, k} i n ˜M ar e e x a ctl y t h e s a m e a s t h o s e i n M . Si n c e k w a s c o n si st e nt f or S ,
t h e s et S ∪ { k } h a s n o vi ol ati o n s i n M , a n d t h u s n o vi ol ati o n s i n ˜M .

• S u p p o s e i ∈ S a n d t h at j, k ∈ [n ] \ S . We c o n si d er t w o s u b- c a s e s, a c c or di n g t o w h et h er or n ot j a n d k
b el o n g t o t h e s a m e p art.

– S u p p o s e j a n d k b el o n g t o di ff er e nt p art s. T h e n, It e m 3 c o v er s t hi s c a s e: If ( j, k ) /∈ S C (M, S ), t h e n
M ( j, k ) = m a x { M ( i′, j) , M( i′, k) } f or all i′ ∈ S , a n d h e n c e al s o f or i. Si n c e ˜M ( j, k ) = M ( j, k ),
t hi s i s n ot a vi ol ati o n. If ( j, k ) ∈ S C ( M, S ), t h e n ˜M ( j, k ) = m a x { M ( i′, j) , M( i′, k) } f or s o m e
i′ ∈ S E P ( j, k ) ( w hi c h m a y b e di ff er e nt fr o m i). We a s s u m e wit h o ut l o s s of g e n er alit y t h at
M ( i′, k) > M ( i′, j). N ot e t h at { i, i′, k} a n d { i, i′, j} ar e n ot vi ol ati n g tri pl e s i n ˜M a s t h e s e ar e
c o v er e d b y It e m D. Si n c e j, k ar e c o n si st e nt wit h S , ˜M (i′, j) = M (i′, j), ˜M (i′, k) = M (i′, k) f or all
i′ ∈ S . We will n o w s h o w t h at t h e m a xi m u m of ˜M ( j, k ), ˜M ( i, j ) a n d ˜M ( i, k) i s n ot u ni q u e, i. e.,
eit h er

(i) ˜M (j, k ) = m a x ˜M (i, j ), ˜M (i, k) or (ii) ˜M (j, k ) ≤ ˜M (i, j ) = ˜M (i, k).

∗ S u p p o s e M ( i′, i) < M ( i′, j) < M ( i′, k). Fir st, n oti c e t h at ˜M ( j, k ) = m a x { M ( i′, j) , M( i′, k) }
b y t h e s e c o n d b ull et i n It e m 3, w hi c h i s e q u al t o M ( i′, k) = ˜M ( i′, k) b y a s s u m pti o n of t hi s
c a s e. B e c a u s e { i, i′, k} i s n ot vi ol ati n g i n ˜M a n d ˜M ( i′, k) = M ( i′, k) > M ( i′, i) = ˜M ( i′, i) ,
w e m u st h a v e ˜M ( i′, k) = ˜M ( i, k). Si mil arl y, si n c e t h e tri pl e { i, i′, j} i s n ot vi ol ati n g i n ˜M
a n d ˜M (i′, j) = M (i′, j) > M (i′, i) = ˜M (i′, i), w e m u st h a v e M (i′, j) = ˜M (i′, j) = ˜M (i, j ). I n
s u m m ar y, ˜M (j, k ) = ˜M (i′, k) = ˜M (i, k). B y a s s u m pti o n, M (i′, k) > M (i′, j) = ˜M (i, j ). T h u s,
(i) h ol d s.

∗ S u p p o s e M (i′, i) = M (i′, j) < M (i′, k). B y t h e s a m e fir st st e p, ˜M (j, k ) = M (i′, k). Si n c e t h e
tri pl e { i, i′, k} i s n ot vi ol ati n g i n M a n d M (i′, k) > M (i′, i), w e m u st h a v e M (i′, k) = M (i, k).
M or e o v er, si n c e t h e tri pl e { i, i′, j} i s n ot vi ol ati n g i n M a n d M (i′, j) = M (i′, i), w e m u st h a v e
M (i′, j) ≥ M (i, j ) = ˜M (i, j ). B y a s s u m pti o n, M (i′, k) > M (i′, j), w hi c h i s at l e a st M (i, j ) =
˜M ( i, j ) . I n s u m m ar y, ˜M ( j, k ) = M (i, k) = ˜M ( i, k), a n d ˜M ( j, k ) = M (i′, k) > ˜M ( i, j ). T h u s,

(i) h ol d s.

∗ S u p p o s e M (i′, j) < M (i′, i) < M (i′, k). B y t h e s a m e fir st st e p, ˜M (j, k ) = M (i′, k). Si n c e t h e
tri pl e { i, i′, k} i s n ot vi ol ati n g i n M a n d M (i′, k) > M (i′, i), w e m u st h a v e M (i′, k) = M (i, k).
Si mil arl y, si n c e t h e tri pl e { i, i′, j} i s n ot vi ol ati n g i n M a n d M (i′, i) > M (i′, j), w e m u st h a v e
M (i′, i) = M (i, j ). I n s u m m ar y, ˜M (j, k ) = M (i′, k) = M (i, k) = ˜M (i, k), a n d b y a s s u m pti o n,
M (i′, k) > M (i′, i) w hi c h i s e q u al t o M (i, j ) = ˜M (i, j ). T h u s, (i) h ol d s.

∗ S u p p o s e M ( i′, j) < M ( i′, i) = M ( i′, k). B y t h e s a m e fir st st e p, ˜M ( j, k ) = M ( i′, k). Si n c e
t h e tri pl e { i, i′, j} i s n ot vi ol ati n g i n M a n d M (i′, i) > M (i′, j) b y a s s u m pti o n, w e m u st h a v e
M (i′, i) = M (i, j ). Si n c e t h e tri pl e { i, i′, k} i s n ot vi ol ati n g i n M a n d M (i′, k) = M (i′, i), w e
m u st h a v e M (i′, k) ≥ M (i, k). I n s u m m ar y, w e h a v e ˜M (k, j ) = M (i′, k) = M (i, j ) = ˜M (i, j ),
a n d w e h a v e M (i′, k) ≥ M (i, k) = ˜M (i, k). T h u s, (i) h ol d s.

∗ S u p p o s e M (i′, j) < M (i′, k) < M (i′, i). B y t h e s a m e fir st st e p, ˜M (j, k ) = M (i′, k). Si n c e t h e
tri pl e { i, i′, k} i s n ot vi ol ati n g i n M a n d M (i′, k) < M (i′, i), w e m u st h a v e M (i′, i) = M (i, k).
Si mil arl y, si n c e t h e tri pl e { i, i′, j} i s n ot vi ol ati n g i n M a n d M ( i′, j) < M ( i′, i) , w e m u st
h a v e M ( i′, i) = M ( i, j ). I n s u m m ar y, ˜M ( k, j ) = M ( i′, k) < M ( i′, i), w hi c h i s e q u al t o
M (i, k) = ˜M (i, k) a n d al s o e q u al t o M (i, j ) = ˜M (i, j ). T h u s, (ii) h ol d s.

T h u s { i, j, k} i s n ot vi ol ati n g i n ˜M.
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– If j a n d k b el o n g t o t h e s a m e p art P , w e d o a c a s e a n al y si s b a s e d o n t h e c at e g or y of P .

∗ S u p p o s e P i s a n E a s y P art or a n A cti v e P art i n M . T h e n ˜M ( j, k ) i s s et t o b e x . Si n c e j, k
ar e i n t h e s a m e p art, M (i′, j) = M (i′, k) f or all i′ ∈ S s o i n p arti c ul ar, M (i, j ) = M (i, k). B y
d e fi niti o n, x i s t h e mi ni m u m p o siti v e e ntr y i n M , s o M (i, j ) = M (i, k) ≥ x = ˜M (j, k ). Si n c e
j, k ar e c o n si st e nt wit h S , b y it e m 2, ˜M (i, j ) = M (i, j ) a n d ˜M (i, k) = M (i, k). T h u s, t h e tri pl e
{ i, j, k} i s n ot vi ol ati n g i n ˜M .

∗ S u p p o s e P i s a Ver s atil e P art. T h e n ˜M ( j, k ) i s s et t o b e M ∗
P (j, k ) ≤ mi n i ′ ∈ S { M ( i′, j) } ≤

M (i, j ). M or e o v er, a s j, k ar e i n t h e s a m e p art, M (i′, j) = M (i′, k) f or all i′ ∈ S , s o i n p arti c ul ar
M ( i, j ) = M ( i, k). B y s a m e r e a s o n a s a b o v e, ˜M ( i, j ) = M ( i, j ) a n d ˜M ( i, k) = M ( i, k). I n
s u m m ar y, ˜M (j, k ) ≤ ˜M (i, j ) = ˜M (i, k), s o t h e tri pl e { i, j, k} i s n ot vi ol ati n g i n ˜M .

• S u p p o s e all i, j, k ∈ [n ] \ S . We c o n si d er t hr e e s u b- c a s e s, a c c or di n g t o h o w m a n y di ff er e nt p art s t h e y
w er e i n.

– If i, j, k b el o n g e d t o t h e s a m e p art P , w e g o i nt o a c a s e a n al y si s o n t h e c at e g or y of P .

∗ S u p p o s e P i s a n E a s y P art or a n A cti v e P art i n M . T h e n ˜M (i, j ), ˜M (j, k ), ˜M (i, k) ar e all s et
t o b e x . T h u s, tri pl e { j, k, l } i s n ot vi ol ati n g i n ˜M.

∗ S u p p o s e P i s  a   Ver s atil e   P art. ˜M ( i, j ) , ˜M ( j, k ) , ˜M ( i, k)  ar e s et t o  b e
M ∗

P (i, j ) , M ∗
P (j, k ) , M ∗

P (i, k) r e s p e cti v el y.   B y d e fi niti o n of M ∗
P , t hi s s q u ar e m atri x e n-

c o d e s a n ultr a m etri c, s o t h e tri pl e { j, k, l } i s n o n- vi ol ati n g i n ˜M .

– S u p p o s e t w o of t h e i n di c e s i, j b el o n g e d t o t h e s a m e p art P a n d k b el o n g e d t o a di ff er e nt p art P ′,
t h e n t h er e e xi st s a s e p ar at or v ∈ S s u c h t h at M (v, k ) ≠ M ( v, i ) = M (v, j ). M or e o v er, a s i, j, k ar e
c o n si st e nt wit h S , w e m u st h a v e ˜M ( v, k ) = M ( v, k ), ˜M ( v, i ) = M ( v, i ), a n d ˜M ( v, j ) = M ( v, j ).
N o w c o n si d er t h e tri pl e { v, k, i } : it i s n ot vi ol ati n g i n ˜M b e c a u s e, b y t h e ar g u m e nt a b o v e,
a n y tri pl e c o nt ai ni n g a n i n d e x i n S i s n ot vi ol ati n g i n ˜M . T h u s, b e c a u s e of t h e i n e q u alit y
˜M ( v, k ) = M ( v, k ) ≠ M ( v, i ) = ˜M ( v, i ), w e m u st h a v e ˜M ( i, k) = m a x { ˜M ( v, k ) , ˜M ( v, i ) } . B y t h e

s a m e ar g u m e nt, ˜M (j, k ) = m a x { ˜M (v, j ), ˜M (v, k )} . T h u s, t h e c h ai n of e q u alit y h ol d s:

˜M (i, k) = m a x { ˜M (v, k ), ˜M (v, i )} = m a x { ˜M (v, k ), ˜M (v, j )} = ˜M (j, k ).

N o w, w e g o i nt o a c a s e a n al y si s o n t h e c at e g or y of P .

∗ S u p p o s e P i s a n E a s y P art or a n A cti v e P art. T h e n ˜M ( i, j ) i s s et t o b e x . T h er ef or e,
˜M (i, k) = ˜M (j, k ) ≥ ˜M (v, k ) b y t h e c h ai n of e q u alit y a b o v e, w hil e ˜M (v, k ) = M (v, k ) ≥ x a s

x i s t h e mi ni m u m p o siti v e e ntr y i n M . T h u s, ˜M (i, k) = ˜M (j, k ) ≥ ˜M (i, j ).

∗ S u p p o s e P i s a Ve r s atil e P art.   T h e n ˜M ( i, j ) i s s et t o b e M ∗
P (i, j ), w hi c h i s at m o st

mi n i ′ ∈ S, j ∈ P (M (i′, j)) ≤ M (v, j ) = ˜M (v, j ). T h er ef or e, ˜M (i, k) ≤ ˜M (v, j ) ≤ ˜M (j, k ) = ˜M (i, k)
b y t h e c h ai n of e q u alit y a b o v e.

All of t h e a b o v e s h o w t h at { i, j, k} ar e n ot- vi ol ati n g i n ˜M .

– S u p p o s e i, j, k b el o n g e d t o t hr e e di ff er e nt p art s P 1 , P2 , P3 r e s p e cti v el y. T h e n t h er e e xi st s a
s e p ar at or v ∈ S E P ( i, j ) ⊂ S s u c h t h at M ( v, i ) ≠ M ( v, j ). We will n o w a s s u m e, wit h o ut
l o s s of g e n er alit y, t h at M (v, i ) < M ( v, j ) ( b y r e- n a mi n g i a n d j ). B y t h e a b o v e ar g u m e nt,
{ v, i, j } c o nt ai n s o n e i n d e x i n S a n d s o i s n ot vi ol ati n g i n ˜M . M or e o v er, ˜M ( v, i ) = M ( v, i ),
˜M ( v, j ) = M ( v, j ), a n d ˜M ( v, k ) = M ( v, k ) a s i, j, k ar e c o n si st e nt wit h S . T h u s, w e m u st h a v e
˜M ( i, j ) = m a x { ˜M ( v, i ) , ˜M ( v, j ) } = M ( v, j ). N o w, w e g o i nt o a c a s e a n al y si s o n h o w M ( v, k )

c o m p ar e s wit h M (v, i ) a n d M (v, j ).

∗ S u p p o s e M ( v, k ) ≠ M ( v, i ) a n d M ( v, k ) ≠ M ( v, j ). T hi s i m pli e s ˜M ( v, k ) ≠ ˜M ( v, i ) a n d
˜M ( v, k ) ≠ ˜M ( v, j ) T h e n b e c a u s e tri pl e { v, i, k } c o nt ai n s a n i n d e x i n S , it i s n ot vi ol ati n g

i n ˜M s o w e m u st h a v e ˜M ( i, k) = m a x { ˜M ( v, k ) , ˜M ( v, i ) } = m a x { M ( v, k ) , M( v, i ) } ; si mil arl y,
tri pl e { v, j, k } i s n ot vi ol ati n g i n ˜M s o w e m u st h a v e ˜M ( k, j ) = m a x { ˜M ( v, k ) , ˜M ( v, j ) } =
m a x { M ( v, k ) , M( v, j ) } . If M ( v, k ) > M ( v, j ) , t h e n M ( v, k ) > M ( v, i ) a s w ell b y t h e
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a s s u m pti o n M (v, j ) > M (v, i ), s o ˜M (i, k) = M (v, k ) a n d ˜M (k, j ) = M (v, k ). Si n c e ˜M (i, j ) =
M ( v, j ) < M ( v, k ), t h e tri pl e { i, j, k} i s n ot vi ol ati n g i n ˜M . N o w if M ( v, k ) < M ( v, j ), t h e n
˜M (k, j ) = M (v, j ). Si n c e ˜M (i, k) = m a x { M (v, k ), M(v, i )} < M (v, j ) a n d ˜M (i, j ) = M (v, j ),

t h e tri pl e { i, j, k} i s n ot vi ol ati n g i n ˜M .

∗ S u p p o s e M (v, k ) = M (v, i ). A s M (v, i ) < M (v, j ), M (v, k ) i s l e s s t h a n M (v, j ) a s w ell. T h e s e
i m pl y ˜M (v, k ) = ˜M (v, i ) < ˜M (v, j ). T h er ef or e, a s t h e tri pl e { v, k, j } i s n ot vi ol ati n g i n ˜M , w e
m u st h a v e ˜M (k, j ) = ˜M (v, j ) = M (v, j ). M or e o v er, si n c e t h e tri pl e { v, i, k } i s n ot vi ol ati n g i n
˜M , w e m u st h a v e ˜i, k ≤ ˜M (v, k ) = ˜M (v, i ) < ˜M (v, j ) = M (v, j ). T h er ef or e, t h e tri pl e { i, j, k}

i s n ot vi ol ati n g i n ˜M .

∗ S u p p o s e M ( v, k ) = M (v, j ). A s M ( v, i ) < M ( v, j ), M ( v, k ) i s l ar g er t h a n M ( v, i ) a s w ell.
T h e s e i m pl y ˜M (v, i ) < ˜M (v, j ) = ˜M (v, k ). Si n c e t h e tri pl e { v, i, k } i s n ot vi ol ati n g i n ˜M , w e
m u st h a v e ˜M (i, k) = ˜M (v, k ) = ˜M (v, j ) = M (v, j ). Si n c e t h e tri pl e { v, j, k } i s n ot vi ol ati n g i n
˜M , w e m u st h a v e ˜M ( j, k ) ≤ ˜M ( v, j ) = M ( v, j ). T o g et h er wit h ˜M ( i, j ) = M ( v, j ) , t h e tri pl e

{ i, j, k} i s n ot vi ol ati n g i n ˜M .

I n s u m m ar y, ∥ M − ˜M ∥ 0 < ε n 2 a n d ˜M ∈ P U , w hi c h i m pli e s t h at t h e c o ntr a- p o siti v e of t h e l e m m a st at e m e nt
i s tr u e.
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