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Abstract

This dissertation investigates two types of abelian surfaces: superspecial abelian surfaces
over finite fields and abelian surfaces over number fields with complex multiplication. We
generalize theorems for elliptic curves to these surfaces, and discuss their applications in

cryptography.

In the first part, by extending Page’s algorithm in 2014, we give a probabilistic algo-
rithm that solves principal ideal problems over matrix algebras over quaternion algebras
in subexponential time in the size of the ideal and the determinant of the quaternion
algebra. We also discuss their applications to cryptography protocols based on isogenies
on superspecial abelian surfaces.

In the second part, we discuss a p-adic algorithm which computes the Igusa class poly-
nomial of a quartic CM field, which encodes abelian surfaces with complex multiplication
by the field. We discuss potential improvements to the canonical lifting algorithm by Carls
and Lubicz in 2009, which is the core of the p-adic algorithm. Applying the improvement,
we computed examples for p = 5 and 7. We also analyze the computational complexity for
the entire p-adic algorithm.
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Chapter 1
Introduction

In the thesis, we will be giving algorithms for computational problems arising from abelian

surfaces, and discuss the connections between these computational problems and cryptog-

raphy.

Elliptic curves over finite fields play an important role in public-key cryptography.
There are two types of elliptic curves, ordinary elliptic curves, and supersingular elliptic
curves. We can characterize these two types using their endomorphism rings EndE(E )
over the algebraic closure: The endomorphism ring of an ordinary elliptic curve is an
order of an imaginary quadratic field; while the endomorphism ring of a supersingular
elliptic curve is an order in a definite quaternion algebra. It is also possible to classify them
according to their p-torsion, denoted E[p].

Both ordinary and supersingular elliptic curves have been studied in the public-
cryptographic system: The classical computational hardness of the discrete log problem on
ordinary elliptic curves has been the keystone of the elliptic curve Diffie-Hellman (ECDH)
and many other protocols. On the other hand, there are several problems related to su-
persingular elliptic curves which are believed to be computationally hard even assuming
the quantum computers, such as finding isogenies between supersingular curves of prime
power degree and computing the endomorphism ring of a general supersingular curve. For
instance, the SIDH algorithm in [DJP14] relies on the isogeny problem, and the algorithm
proposed by Galbraith et al. in [GPS19] used the endomorphism problem of supersingular
elliptic curves to construct a signature scheme.

It is natural to ask for a higher-dimensional analog of isogeny-based cryptography,
which stimulated numerous analogous questions to be asked on higher-dimensional
abelian varieties. In this thesis, we will be discussing abelian varieties of dimension g = 2,

and in this case, every simple abelian variety is geometrically isomorphic to the Jacobian



variety of a hyperelliptic curve. For abelian varieties of dimension > 1, it is no longer true
that they are either ordinary or supersingular. We call an abelian variety A of dimension g
ordinary, if A[p] = (Z/pZ)3. We call A supersingular if A is geometrically isogenous to a
product of supersingular elliptic curves, and a supersingular abelian variety A is said to be
superspecial if it is isomorphic to a product of supersingular elliptic curves.

This thesis investigates the generalization of cryptographic primitives to abelian sur-
faces for both the ordinary and superspecial cases. After a brief overview of the classifica-
tions and endomorphism rings of abelian surfaces, We will focus on algorithms that are
essential to these generalizations. In Chapter 3, we will describe and analyze an algorithm
for the principal ideal problem over a central simple algebra. We will also discuss why
the principal ideal problem plays an important role in generalizing the signature scheme
proposed by Galbraith et al. in [GPS19, Chapter 4]. In Chapter 4, we will discuss improve-
ments and implementation aspects of the p-adic method in computing the Igusa class
polynomials, the dimension 2 analog of Hilbert class polynomials.

1.1 Isogeny-Based Cryptosystems on Abelian Surfaces

In public-key cryptography, most protocols depend on some underlying computationally
hard problem. In the case of protocols using supersingular elliptic curves, the underlying

problem is typically one of the following;:

* (Finding isogeny path) Let E, E’ be two supersingular elliptic curves over a finite
field IF,, find an isogeny from E to E’ which has a smooth degree, such as the hash
function in [CGLO8] and the Diffie-Hellman key exchange scheme in [DJP14].

¢ (Computing the endomorphism ring) Let E be a supersingular elliptic curve over a
finite field. Compute a Z-basis of End(E).

We are particularly interested in protocols involving supersingular elliptic curves and
their endomorphism rings, such as the signature scheme by Galbraith et al. in [GPS19].

For a supersingular elliptic curve E over ]ITP, we know that Ey has a model over ]sz.
Furthermore, take O := EndIF—p( Eo)- Then Oy is a maximal order of the quaternion algebra
By e, Where [B, o, : Q] = 4 and is ramified exactly at p and infinity.

Deuring’s correspondence (see [V0i20, Theorem 42.3.2] for details) gave a bridge be-
tween isomorphism classes of such Ej and objects in quaternion algebras. Suppose we fix a

“base supersingular curve” Ey over IITP, and take Op and B, « as above, then the mapping



E — Hom(E, Ey) defines a contravariant functor between the following categories:

Supersingular elliptic curves over [F,,, Invertible left Op-modules, morphisms
p g P ZA QN p

morphisms are IF-isogenies are left Op-module homomorphisms

Composing the map I — Og(I) with the map above, we obtain a bijection between
Gal(FF, /TF,)-orbits of the j-invariants of supersingular elliptic curves over IF, and conju-
gacy classes of maximal orders in B . The correspondence also provided us a pathway
between isogeny paths and one-sided ideals in By . For instance, [KLPT14] proposed
an algorithm to find ideals with norms of the form ¢* for a small prime £ in one-sided
ideal classes in By,, which can be applied to find /-isogeny paths when some knowledge
regarding the endomorphism ring is given.

In the 2-dimensional case, much less is known. There is a hash function ([Tak18] and
[CDS20]) and a Diffie-Hellman key exchange algorithm ([FT19]) published recently. As we
will demonstrate in Chapter 2, the closest analogy for supersingular elliptic curves over FF,,
are superspecial abelian varieties over IF,,.

Given a prime p, we will fix a supersingular elliptic curve E defined over IF, and an
embedding End(E) < O C By . It is possible to identify every superspecial abelian
surface with polarization (E2, %) as a conjugate gAg~!, for some g € Maty(O). And this
gives us an analogy to the endomorphism rings of supersingular elliptic curves.

To generalize the signature scheme in [GPS19] into superspecial abelian surfaces, one
of the most important ingredients needed is an analogy for the following fact: Although
finding endomorphism rings of supersingular elliptic curves is hard in general, in the
special case that an isogeny Ey — E is given and Oy = End(Ey) is known, O; = End(E;)
can be computed efficiently.

When generalizing this to higher dimension, it turned out that the principal ideal
problem is essential: Let B« be the quaternion algebra and O be a maximal order of By
as before. Suppose I C Mat;(B),) is a right Mat (O)-order (which is known to be always
principal). How do we find a right ideal generator « of I?

We will discuss the principal ideal problem over the matrix ring over a quaternion
algebra over Q, with the idea based on [Pagl4]. And our main contribution is to provide
an algorithm and analyze the complexity which yields the following theorem:

Theorem A. Suppose By, is a quaternion algebra over Q, ramified exactly at p and oo for some
prime p, O be a maximal order in By . Let I be a right Maty (QO) order.

Then, under certain heuristic assumptions, Algorithm 2.3.1 gives a probabilistic algorithm that
runs in subexponential time in p and finds the principal ideal generator of 1.



1.2 Finding CM Abelian Surfaces via the p-Adic Approach

In the elliptic case, to obtain optimal security for the discrete log problem, we need to find
a curve E over a finite field IF, such that the number of points, |E(IF,)| is a large prime or
contains a large prime factor. In practice, there are two approaches: (1) By generating a
random curve E, computing the number of points, and repeat until a curve with suitable
order is found; or (2) Start with a suitable imaginary quadratic field K, and use the theory of
complex multiplication (CM) to find such a curve. We will consider the second approach.

Hilbert class polynomials play an important role in the classical CM theory. For an
imaginary quadratic field K, the Hilbert class polynomial is a monic polynomial whose
roots are exactly the j-invariants of elliptic curves with CM by K, i.e. the endomorphism
ring is Ok. The Hilbert class polynomial has integral coefficients, and its splitting field is
the Hilbert class field of K.

For the genus 2 case, it turns out that the j-invariants of elliptic curves with CM by a
quaderatic field can be replaced by the Igusa invariants (i1, iz, i3) of hyperelliptic Jacobians
with CM by a quartic field. As we will see, the associated Igusa polynomials still enjoy
some of the key properties of Hilbert class polynomials. In particular, one can recover from
the Igusa polynomials hyperelliptic Jacobians with CM by a quartic number field K and
one can construct hyperelliptic curves for use in discrete logarithm problems.

There are three major approaches to construct Igusa class polynomials: (1) the analytic
approach [Str14, ET14]; (2) the CRT approach [EL10]; and (3) the p-adic approach (see
[GHK™06] for p = 2; and [CKL08, CL09] for p = 3). Our main goal in Chapter 4 is to
investigate the possibilities of the p-adic approach.

The p-adic method for computing the Igusa class polynomial proceeds as follows:
(1) Search for an abelian surface A over a finite field IF,r such that End(A) = Ok; (2)
Find an abelian surface A over Q ' the degree r’ unramified extension of Qy, such that
End(A) = Ok; (3) Recover the Igusa invariants and Igusa polynomials from A.

The core of the p-adic approach is step (2) above, for which we will take A as the
canonical lift of A (see Definition 3.2.10 for details). Since the canonical lift also lifts the
Frobenius, this leads to certain conditions that must be satisfied by the canonical lift. In
[GHK06], Gaudry et al. gave an approach for p = 2 using Rosenhein invariants. For
p = 3, [CKL08] proposed a method using the 4-theta null points, but their method does
not generalize. In [CL09], a method for general p and any dimension g is proposed using
2"p-theta null points, but it turned out to be computationally feasible only when p = 3.
Faugére et al. discussed improvements of the Grobner basis step in [DJP14] and gave

experimental results to compute 2p-theta null points for p = 3 or 5.



In Chapter 3, we will make improvements to the p-adic algorithms to compute Igusa
class polynomials and give a complexity analysis of the algorithm. The complete statements
of the theorem will be in Theorems 3.1.1 and 3.1.2. A simplified statement of the canonical
lifting (which is the key step of the algorithm) and the overall algorithm complexity can be

given as follows:

Theorem B. Let K be a quartic CM field of discriminant D. Suppose C is a hyperelliptic curve of
genus 2, defined over some finite field F; = Fr, such that the endomorphism ring of Jac(C) is the
maximal order Ok of K. Further, assume that the 2p-theta null points of Jac(C) are defined over
IFs. Then the canonical lifting of Jac(C) can be computed in O(p*** 32 + D3) operations in the
finite field IF,.

Moreover, assume that X represents the time required to determine whether a Jacobian over
IF; has CM by K. Then, using the p-adic approach, computing the Igusa polynomial takes time
complexity

3., 3/2
~ (7 +q7°X x (L 24p+32 3 X (15
O< 75 >+O<p +D*) +0(D).

An upper bound for X can be found in [FLOS].
We also implemented our algorithm and provide examples of 5-adic and 7-adic methods.

To the knowledge of the author, only 2-adic and 3-adic examples are given in the existing

literature.



Chapter 2

Principal Ideal Generator
Problems over Matrix Rings
of Quaternion Algebras

2.1 Introduction

2.1.1 Isogeny-based cryptosystems

Public-key cryptography have gained increasing and irreplaceable importance in estab-
lishing and managing secure communication since RSA was published in late 1970’s. The
majority of such public-key cryptosystems have their security relying on some hard mathe-
matical problems, and the most widely used protocols relied on the hardness of integer
factorization and discrete logarithm problem over a specific group.

As a consequence of the invention of some quantum algorithms which undermines
the hardness of factorization and discrete logarithm problems, finding replacements for
the current public key cryptosystems has became a crucial task. In 2016, NIST initiated
a project (announced at [Nat16]) to call for proposals of quantum-resilient protocols, and
aimed for their evaluation and standardization.

Isogeny based cryptosystem had been one of the proposals sent to [Nat16]. The key
ingredient of the first isogeny based cryptography systems is the hardness of the following

problems regarding isogenies of supersingular elliptic curves.

e (Finding isogeny path) Let E, E’ be two supersingular elliptic curves over a finite

field IF,, find an isogeny from E to E’ satisfying certain condition.
q geny ymg

¢ (Computing the endomorphism ring) Let E be a supersingular elliptic curve over a



finite field. Compute a Z-basis of End(E).

For instance, the first public key protocol which used isogenies on supersingular elliptic
curves can be dated back to the hash function proposed by Charles, Goren and Lauter
in [CGLO08], which used the fact that the /-isogeny graph over isomorphism classes of
supersingular ellipic curves over F, is an expander graph. And later in 2011, de Feo, Jao
and Plat proposed in [DJP14] the SIDH algorithm, which is a variant of Diffie-Hellman,
using 2 and 3-isogeny of supersingular elliptic curves over IF, and the SIDH algorithm
were developed, packaged into the SIKE algorithm proposed to the NIST post-quantum
algorithm challenge. More recently, Castrtck et al. proposed CSIDH, which utilized the
isogeny grapgs on supersingular elliptic curves over the prime field IF.

An alternative approach of using supersingular elliptic curves in crpytographic algo-
rithms is to use the hardness of computing endomorphism rings of a supersingular elliptic
curve. For instance, Galbraith et al. proposed in [GPS19] a signature algorithm which
utilizes both the hardness of computing endomorphism ring of an arbitrary supersingular
elliptic curve over the finite field IF;, and the hardness of finding an isogeny path.

It is well known that supersingular elliptic curves and their isogeny graphs are deeply
connected to orders and quaternion algebras. For any prime p, we know that the endo-
morphism ring of a supersingular elliptic curve over FF,, is a maximal order in By, the
quaternion algebral over Q which ramifies exactly at p and co. In addition, the Deuring
correspondence gives a bijective map between isomorphism classes of supersingular ellip-
tic curves over IF, and equivalence classes of maximal orders in By «. Finding the Deuring
correspondence for a supersingular elliptic curve is in general hard and equivalent to
computing the endomorphism and finding isogeny path, as shown in [EHL 18], but when
the correspondence is provided, one can often transform problems on supersingular elliptic
curves to problems on quaternion orders. For instance, suppose that the supersingular
elliptic curves E, E’ are over F, and correspond to the maximal orders O and ', respec-
tively. Then finding an isogeny E — E’ of powersmooth degree can be reduced to finding
an element of powersmooth norm in I, where I is a connecting ideal of O and O'. This
element can be found efficiently using a modified version of the algorithm of Kohel et al.
in [KLPT14].

Generalizing isogeny-based cryptographic algorithms to higher dimensional abelian
varieties has also gained more interest recently. The first idea was to use principally
polarized supersingular abelian surfaces which are Jacobians of hyperelliptic curves over
F,, and the first dimension 2 algorithm was known to be a hash algorithm proposed by
Takashima in [Tak18]. Flynn and Ti found in [FT19] a weakness in Takashima’s algorithm
by showing the existence of short cycles and instead proposed a Diffie-Hellman protocol

7



on the (2,2)- and (3, 3)-isogeny graphs on supersingular abelian surfaces, analogous to
SIDH. In contrast, instead of supersingular abelian surfaces (those which are isogenous
to a product of supersingular elliptic curve), Castryck and Smith narrowed the object to
superspecial (those which are isomorphic to a product of supersingular elliptic curves)
hyperelliptic Jacobians. They proposed in [CDS20] a modified hash function, which is
claimed to be immune short cycles collision attacks (compared to Takashima’s proposal
[Tak18]).

2.1.2 Superspecial abelian surfaces and matrix rings over quaternion algebras

It seems that in dimension 2, superspecial hyperelliptic Jacobians of genus 2 shared more
common properties with supersingular elliptic curves. Just to mention a few, every super-
special hyperellipic Jacobian over IF, can be defined over IF,, or IF >, and the endomorphism
ring is a maximal order in Mat; (B, ). Since Mat, (B),«) satisfy the Eichler’s criterion, it
follows from strong approximation that all maximal orders in Mat,(B),«) are conjugate to
each other, and the class number of the maximal orders are 1 Therefore, the class number
does not enumerate the hyperelliptic curves; instead, as described by Ibukiyama et al. in
[IKO86], taking O to be a maximal order in By, «, one can consider O-lattices of rank 2, and
define an equivalence relation on the lattices. The number of principal polarizations on
such superspecial abelian surfaces is then bijective to the lattice classes. Ibukiyama et al.
gave an explicit formula to compute the number of principal polarizations of a superspecial
abelian surface and the number of superspecial hyperelliptic Jacobians in [IKO86, Theorem
3.1, 3.3] (see also Brock’s thesis in [Bro93, Theorem 3.10A]). This is a generalization to the
mass formula in the quaternion algebra case.

Knowing the relations between superspecial abelian varieties, orders in Maty (B, ),
and O-lattices of rank 2, we are interested in the questions which translates a superspecial
hyperelliptic Jacobian of genus two to maximal orders, converts a computational problem
in hyperelliptic to a relative problem in Mat, (M, ), or vice versa. Generalizing Galbraith’s
isogeny based signature algorithm is a standard example which involves many aspects of
the ingradient: We need to know how to convert an (¢, /)-isogeny between superspecial
hyperelliptic Jacobians of genus two to an element in the central simple algebra Mat,(B},c)
and vice versa; and we also need a Mat; (B, ) analog of the powersmooth element al-
gorithm as proposed by Kohel et al. in [KLPT14]. Finding an (¢, {)-isogeny with kernel
represented in the Mat (B, ) side is one of the problems involved in the generalization

process, and an algorithm for the following question turned out to be critical:

Problem 2.1.1. Let B, be the quaternion algebra over Q, ramifying at some prime p and

infinity, and let O be a maximal order in By, «, and let £ be a prime different from p. Given

8



4 € Matp(O/£0), find y € ¥ + (Maty(O) satisfying N(y) = £2.

And we can answer Problem 2.1.1 if there exists an efficient algorithm for the principal

ideal problem over matrix algebras over the indefinite quaternion algebra By, c:

Problem 2.1.2 (Principal ideal problem). Let B, be the quaternion algebra over Q,
ramifying at p and the infinite place, and O be a maximal order of B. Let I be a right

Mat, (O)-order (which is known to be always principal). Find a right ideal generator « of I.

Problem 2.1.2 can be viewed as a generalization of the principal ideal problem over
quaternion algebras over number fields. Let B be a quaternion algebra over a number
field K, O be a maximal order in B, and I be a maximal ideal. An algorithm for finding
a principal ideal generator can be dated back to Kirschmer and Voight in [KV10]. They
gave algorithms both for totally definite quaternion algebras (when B is ramified at all
infinite places) and indefinite quaternion algebras (when B is split at at least one infinite
place). While the algorithm runs in deterministic polynomial time in the totally definite
case, the authors were not able to provide a complexity analysis for the indefinite case.
Page gave an algorithm in [Pag14] for the indefinite case, and under on various hypotheses
on the distribution of units, class group elements, and powersmooth elements, he claimed
that the algorithm runs in subexponential time. More recently, Hoffman and Johnston
provided in [H]20] a generic algorithm to tell whether two finitely generated modules over
a semi-simple K-algebra are isomorphic, which includes solving principal ideal problems
as a special case, however, their algorithm required some hypotheses on the algebra A,
which includes a locally free cancellation property on the division algebras contained in
A, and the property only holds for finitely many cases of quaternion algebras over Q (see
[HMO6]). Therefore, our situation is incompatible to the hypotheses in [H]J20] and the

answer to Question 1.2 remains to be open.

2.1.3 Outline

In this paper, we will give an algorithm for the principal ideal generator problem over

Maty (B, ), the matrix ring of quaternion algebra over Q, ramified at p and co.

Theorem 2.1.3. Suppose B, « is a quaternion algebra over Q, ramified exactly at p and co
for some prime p, O be a maximal order in B, . Let I be a right Mat,(O) order.

Then, under Heuristics 2.4.4, 2.5.11, and 2.5.6, Algorithm 2.3.1 gives a probabilistic
algorithm which runs in subexponential time in p, and finds the principal ideal generator
of I.



The approach will be similar to Page’s. The algorithm will be split into a global part and
a local part. In the global part, we will rescale the ideal I so that its norm is powersmooth,
and then reduce the ideal by two-sided ideals so that we can shorten the computation in
the local part and guarantee that the output is correct after the local reduction. For the
local reduction, we need to reduce the ideal at each places dividing N(I), the reduced
norm of I. The upshot is that at each place /, there is a equivalence between right Z,-ideals
and Bruhat-Tits buildings of Q,. Therefore, when we act on the Bruhat-Tits building by a
unit a maximal order in Mat; (B, ), we also have a corresponding action on the ideal side.
Therefore, reducing a filtration in the Bruhat-Tits tree also helps reducing the ideals.

The remaining of the paper is laid out as follows. We give a brief overview of the
necessary background in quaternion algebras, central simple algebras, and lattice theory
over local fields in Section 2.2. The major steps for the principal ideal generator problem is
stated in Algorithm 2.3.1 in Section 2.3. The first two major step of Algorithm 2.3.1, which
involves reducing the input ideal I by two-sided ideals, is described in Section 2.4. After
then we will need to reduce the simplified ideal I on each place dividing the norm of I,
and this involves the local theory in Section 2.5. The validity of the algorithm and the

complexity analysis is in Section 2.6, and Section 2.7 gives some experimental examples.

2.2 Background

2.2.1 General theory of central simple algebras

For more details on the topic, see [Rei03], which contains extensive theory on a central
simple algebra A over F, where F is the fraction field of a Dedekind domain R. We will give
a brief sketch of the general theory here, and then turn to two specific cases: the quaternion
algebras in Section 2.2.2, and the matrix rings over quaternion algebras, in Section 2.2.3.

Let F be a field. We say that a finitely generated F-algebra A is a central simple algebra
over F if Z(A), the center of A, is equal to F, and A contains no non-trivial two-sided
A-ideals. The degree, denoted as [A : K], will be a square n?. And the Artin-Wedderburn
theorem implies that A is isomorphic to some matrix algebra Mat,, (D), where n = mad,
and D is a division ring over F such that [D : F] = d?.

Suppose now that F is the fraction field of a Dekekind domain Of, then we say that I is
an ideal in A if it is an Op-lattice satisfying FI = A. An order A is an ideal which is also a
subring of A. And we call an order A maximal if it is not properly contained in another
order of A. We call an ideal I a left (respectively, right) A-ideal, if IA C I (respectively,
AI C I). Given an ideal I, the left order of I is the order O;(I) := {a € A | xI C I} in A.
We can similarly define a right order of I. We say that the ideal I is normal if both the left
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and right orders of I are maximal, and in this case, we call I a connecting ideal of O;(I)
and O,(I). An we call a normal ideal I integral, if it is contained in its left order. For an
ideal I, we can define its inverse ideal [ ' = {x € A | IxI C I}.

We can define the reduced norms of an ideal I, which is the ideal generated by the
reduced norms of elements in I.

For an element & € A, one can define a reduced norm N(«a) € F and a reduce trace
Tr(a) € F from the constant term and the second highest term in the reduced minimal
polynomial (see [Rei03, (9.6)]). And for an ideal I in A, the reduced norm of the ideal I is
defined as the ideal in F generated by reduced norms of elements in I. And we can also
define a reduced discriminant from an ideal I. Suppose [A : F] = n?. Then one can form
an ideal D(I) as the ideal in F generated by det(Tr(ociocj)ﬁzl), where {txi}ﬁl C I. From
[Rei03, Corollary (25.10)], this D(I) = d(I)" for some ideal I, and we call d(I) the reduced
norm of the ideal I. It turns out that when we run through maximal orders A in A, the
reduced norm d(A) is an invariant. We call this invariant the reduced discriminant 64 of
A. And one defines the absolute discriminant of A as Asd péi.

When the left and right order of J coincide, say to A, then J is said to be a two-sided
A-ideal.

When A is a central simple algebra over a number field or a local field, we are in
particular interested in the structure of the two-sided A-ideals. Let 8 C A be a two-sided
A-ideal. We call °B8 prime, if for any two-sided A-ideals J, J, if 33 C P implies either J C ‘B
or J C *B. [Rei03, Theorem (22.4)] gives a way to characterize the two-sided A-ideals, by
constructing a bijection between the following:

{Two-sided prime A,}-ideals = {Prime ideals in F}

B < p,

with the relation p = PN Of, and P = A NradA,. Here rad is the Jacobson radical,

defined as

radA = N ann(A/L) ={x € A|1—axbe A" foralla,b € A}.

L maximal left A-ideal

In addition, two-sided ideals in A have the “prime ideal factoring” theorem similar to
the number field case: For two two-sided A-ideals J,J, 33 = JJ, and every ideal J can be
expressed as a product of two-sided prime ideals, and such an expression is unique up to
permutation. In Page’s approach in [Pagl4, SubAlgorithm 3.12] in the quaternion algebra
case and our approach in the case of matrix ring over quaternion algebra, the factorization

structure means that we can simplify a right A-ideal by extracting two-sided ideals, which

11



turned out to have a better understood structure.

Proposition 2.2.1. Suppose again that A is a central simple algebra over F such that
[A : F] = n?, A is a maximal order of A, and Of is a maximal order of F.

Let I be an integral right A-order in A. Suppose that as a module, I has a Z-basis
{v1,---,v,2}, and A has a Z-basis {uy,- - - ,u,2}. Then the smallest generating two-sided
A-ideal is the ideal J with {u;0;}1<; j<,» as Z-basis.

The above fact is then almost immediate from the definition. First, J is indeed an ideal,
and since O;(J) 2 A and O,(J) D A, itis indeed a two-sided A-ideal. It is the smallest
possible two-sided ideal containing I since all u;v; must be such an ideal. Therefore, IZ -1

is an integral right A-ideal and is not contained in any two-sided A-ideal.

Now we return to one-sided ideals, and construct the class set, which is the generaliza-
tion of the class groups on a number field. Now, suppose A is a central simple algebra over
anumber field F, and Or is a maximal order of F. We say that two maximal orders A, A’ of
A are conjugate, or of the same type, if there is an element « € A* such that A’ = aAa~1.
And suppose we fix a maximal order A C A. For two right (respectively, left) A-ideals
Iand I’ of A, we say that I and I’ are equivalent if there is an element « € A* such that
I = I'a (respectively, I = al’). This gives an equivalence relation, and we can therefore
construct the ideal class set of right (respectively, left) A-ideals. We will be interested in the
computational problem to determine whether two right (or left) A-ideals are equivalent.
When one of the ideal is A, then the problem reduced to determining whether an ideal is
principal.

It turns out that the Eichler’s condition, which we will define below, plays a crucial
role on the nature of the ideal class problem. In brief, the Eichler’s condition indicates the
cases when the strong approximation works. It is also the situation when we can relate
one-sided ideal classes in the central simple algebra A with ideal classes in the underlying
field F.

Definition 2.2.2 (Eichler’s condition). Let A be a central simple algebra over a number
field F. We say that A satisfy Eichler’s condition over F if there is an infinite place v such
that Al (the norm 1 elements of A) is not compact. Equivalently, A satisfied Eichler’s

condition if A is not a definite quaternion algebra over F.

The importance for A satisfying Eichler’s condition is that the strong approximation

applies:
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Theorem 2.2.3 (Strong approximation and its consequences). Let A be a central simple
algebra satisfying Eichler’s condition over F satisfying (A : F) = n%. Let A and Op be a
maximal ideal of A and F, respectively. The following hold.

(i) (Strong approximation) The image of the diagonal embedding A! — A} is dense,

where Al and A}, 7 are the subgroup of norm 1 of A and the subgroup of the finite

adele ring Af f of F of norm 1, respectively.

(ii) For a prime p in F which splits in A, the map A! — SL,(Or/p¥) induced by comple-

tion and reduction is a surjection for any integer k.

(iii) The reduced norm map A* — Of , is surjective on the unit groups, where Of , is
the totally positive elements in F with respect to all infinite places in F splitting in A.

(iv) The reduced norm map induces a surjective map CI(A) — Cls(Or) from the class
set to A to the ray class group of F with the conductor being the product of all infinite
places in F splitting in A.

Proof. See [Rei03, theorem 34.9]. O

A quick consequence of Theorem 2.2.7 is that if A is a central simple algebra over Q
which satisfies the Eichler’s condition, with a given maximal ideal A, then every one-sided

A-ideal is principal.

2.2.2 Quaternion algebras and supersingular elliptic curves

A standard reference of the topic is [Voi20]. Let F be a generic field of characteristic
not equal to 2. A quaternion algebra B over F is a central simple algebra satisfying
[B : F] = 4. Equivalently, B is an algebra which can be expressed in the form B =
{F+Fi+Fj+Fk|i®=a,j> =b,ij = —ji = k} for some a,b € F*. A quaternion algebra
is either isomorphic to the matrix algebra Mat, (F) or is a division ring. For any element
« := w + xi + yj + zk, there is a unique involution & := w — xi — yj — zk, and we can define
a reduced norm N(«a) = a& and reduced trace Tr(a) = a + a.

In this paper, we are interested in quaternion algebras over number fields and their
completions. Now, suppose B is a quaternion algebra over the number field F with ring
of integers Or. At each place v of F, we say that B is ramified at v if the completion
B, := B ®r F, is a division algebra; otherwise we say that B splits at v. And we say that the
quaternion algebra B is totally definite if B ramifies at all archimedean places; otherwise we
say that B is indefinite. For a quaternion algebra B, the reduced discriminant, as described

in Section 2.1, is the product of all the primes in F which are ramified in B.
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As quaternion algebras are central simple algebras, we refer to Section 2.1 for the
definitions of orders and ideals, type sets of B and class sets of maximal orders O of B.

Next, we look at another object, supersingular elliptic curves over the closure of finite
field IF,, and discuss the connections with the quaternion algebra By, «, the quaternion
algebra ramified exactly at the place p and the archimedean place. A general discussion of
the topic can be found in [Wat69].

Suppose E is an ellitic curve, defined over the algebraic closure of a finite field IF. E is
defined to be ordinary if the p-torsion points |E[p]| = p; and is defined to be supersingular
if |E[p]| = 1. Equivalently, E is ordinary when the full endomorphism algebra End?F—p(E) =
EndE(E ) ®z Q is a quadratic field; and is supersingular when End]%—p(E ) is isomorphic to

By co-

2.2.3 Central simple algebras and superspecial abelian varieties

In the case of dimension 2, we say that an abelian vaiety over the field IF, is supersingular,
if it is IF-isogenous to a product of supersingular elliptic curves; and an abelian surface is
superspecial, if it is isomorphic to a product of supersingular elliptic curves.

It can be shown that there is only one F,-isomorphism class of superspecial abelian
variety. Indeed, it is a result by Deligne, Ogus and Shioda that when ¢ > 2,if Ey, - - - , Eog
are supersingular elliptic curves over I[Tp, then Ey X -+ X Eg = Eg 11 X - - - X Epg (see [Shi79,
Theorem 3.5]). Therefore, we can choose a supersingular elliptic curve E over ), and
every supersingular (respectively, superspecial) abelian surface is isogenous (respectively,
isomorphic) to E? over the algebraic closure. Consequently, later we will see that to make
sense of the isomorphism classes of superspecial abelian varieties, we need to consider the
principal polarizations as well.

We are also interested in the endomorphism ring of a supersingular or superspecial
abelian variety. It is known from [Wat69] that an abelian variety of dimension g is supersin-
gular if and only if dimg End?F—p(E) = (2¢)?. The problem is to find their endomorphism
rings.

Let E be a supersingular elliptic curve as above, and denote O = EndE(E) and
B]g,oo = O ®z Q. Then the endomorphism ring of a superspecial abelian variety is as

below:

Proposition 2.2.4. Suppose A = E? is a superspcial abelian surface. Then End]F—p(A) =
Mat;(O), and it is embedded in End?F—p(Ao) = Maty(Bp,e).
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Proof. Indeed, this can be verified by observing that every element ¥ := [1/]11 1’1)12] €

Y21 P
Mat,(O) gives an endomorphism ¥ : A — A, (P,Q) — (¢11(P) + 912(Q), Y21 (P) +

P2 (Q)), and EndE(A) cannot be bigger than that since Mat,(O) is already a maximal
order in Mat(By,) by [Rei03, Theorem (8.7)]. O

When the supersingular E and its endomorphism ring O is fixed, then we can also fix
the endomorphism algebra Mat; (B}, ). Then, when we have another superspecial abelian
surface A, constructed from A = E? via an isomorphism E? — A/, then the endomorphism

ring of A’ can be characterized as below.

Proposition 2.2.5. Let E2 — A’ be a separable isogeny for some superspecial abelian
variety A’. Then EndE(A’ ) is a maximal order of Endg-(A") ®z Q = Maty(Bpe), [ =
Hom(A’, E?) is a linking order of EndE(Ez) = Mat;(O) and EndE(A’ ). There exists
a generating bijection i € I, so that [ = EndE(Ez)h = hEndE(A’ ), and EndE(A’ ) =
hilEndE(Ez)h.

In particular, if E* — A’is an automorphism, then we have a embedding of Endg (A') ®z
Q in Maty(B),«) as a maximal order.

In contrast, if A is a supersingular surface which is not superspecial, the endomorphism
ring will be smaller in general: the p-part of Endg_(A) is only a subgroup of the p-part of a
conjugate of Mat;(O). Yu-Yu computed the endomorphism ring of supersingular abelian
surfaces in [YY09, Proposition 3.2].

Indeed, this endomorphism rings of superspecial abelian varieties behaved very differ-
ently from the genus 1 case, since we know that as Mat, (B) satisfies the Eichler’s condition,
it has class number 1, see the discussion at the end of Proposition 2.2.1.

Since there is only one isomorphism of superspecial abelian variety over I[Tp, which is E?,
we actually need to consider the principal polarizations to form meaningful isomorphism
classes. Indeed, in [IKO86, section 2], it is shown that polarizations can be transferred
as matrices in EndE(EZ). And we will establish a few equivalent maps between isom-
porphism classes of principally polarized superspecial abelian surfaces and isomorphism
classes in certain central simple algebra.

We first fix a supersingular elliptic curve E over IF, as before. For the abelian variety
A = E2, we denote a polarization of A by an ample divisor L. And the divisor naturally
defines an isogeny ¢ : A — AY by x — TiL — L, where A" is the dual abelian variety of
A, and T, is the “translation by x” map. The degree of the divisor L is known to be the
degree of the isogeny ¢ .
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In particular, when A = E?, there is a product polarization given by the divisor
Lo = E x {0} + {0} x E. Ly is then a a divisor of degree 1. Then we define the following

map:

Definition 2.2.6. Denote End’(A) to be the endomorphisms of A fixed by the Rosati in-
volution (defined with respect to the polarization Ly). Denote by Pic(A) and Pic’(A)
the Picard group of A and the connected component of Pic(A) at the origin. Then
Pic(A)/Pic’(A) is the Néron-Severi group of A, which we denote by NS(A). And we have

a map
j:NS(A) = End’(A)

L gplogr,

Theorem 2.2.7 ([IKO86, Corollary 2.9]). The isomorphism classes of principal polariza-
tions are bijective to

{F :] € Maty(O) s,t€Z>O,st—rT’:1}/~,
7

where we call fi ~ f, if and only if there is an & € End(A) satisfying fi = a' foa, where
1.

ot = &' corresponds to the Rosati involution of & with respect to the polarization Ly.

Proof. Given principal polarized abelian varieties (A, L) and (A’,L’), we say they are
isomorphic if and only there exists an isomorphism a : A — A’ such that the diagram

below commutes:
AL A

o

A\/ <D(T (A/)V

Back to our scenario, when the polarizations L and L, of E? are equivalent, there exists
ana € EndE(Ez) * satisfying @1, = a" o ¢r, o a. As @y, is an isomorphism between E?
and (E?)Y, we have ¢; '¢1, = (¢r'a"¢1,) o (¢, ¢1,) o, or j(Lo) = &' 0 j(Lq) o ar.

The theorem then follows by fixing a supersingular elliptic curve E over I, taking
0= EndE(E) and B = O ®z Q, and identifying EndE(Ez) with Maty(O). O

Definition 2.2.8. We denote by Mat}(O) the matrices in Mat,(©) with reduced norm
+1, and by Mat; (O) the matrices satisfying the conditions in Theorem 2.2.7. For g1, 42 €
Mat; (O), g1 ~ g2 if there exists v € Maty(O)* satisfying 7' g1y = £».

So far all the objects involved in the arithmetic geometry side are abelian surfaces with

a principal parametrization. For the practical purpose, we need to translate them to objects
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which can actually be computed. In dimension 2, we know that every principally polarized
superspecial abelian surface (A = E2, L) is isomorphic either to Jac(C) for some genus
2 hyperelliptic curve C or to E; X E; for some elliptic curves Ej, E; ([FT19, Theorem 1]).
Therefore, combining Definitions 2.2.6, 2.2.8 and Theorem 2.2.7, we have the following
bijections between sets

Jac(C), C: superspecial principal
hyperellipic, genus 2 or <> { polarizations
E; x Ey, Eq, Ep: supersingular elliptic /e of E? ™ 21)

< NSY(E?)  « Matj (0),.~.

In particular, Equation (2.1) gives a correspondence between isomorphism between
superspecial Jacobians or product of supersingular elliptic curves (the abelian variety side)
to objects in the central simple algebra Mat; (O) (the “endomorphism ring” side). And
we claim that this indeed provides a better generalization to the supersingular elliptic
curve case then supersingular abelian varieties. One of the reasons is, the dimension of
the supersingular locus of abelian varieties of dimension g is | ¢?/4] in the coarse moduli
space of abelian varieties of dimension g (see [LO98, Corollary 4.4]). Therefore, when
g > 2, there are infinitely many supersingular abelian varieties over IF,. On the other hand,
on the superspecial abelian variety side, we know that all superspecial abelian varieties are
defined over FF,, and there are formulas which computes both the number of equivalence
classes of polarization over IF,» and the number of equivalence classes which can be defined
over IFp, see [Ibul9]. In addition, we know that every polarized abelian variety (A= E?, L)
is isomorphic either to Jac(C) for some genus 2 hyperelliptic curve C or to E; x E; for some
elliptic curves Ej, E ([FT19, Theorem 1]). This enables us to compute the objects explictly.

Now, the ultimate goal is to make an analogy between the genus 1 theory and genus 2
theory by “replace the maximal orders and ideals in genus 1 by matrices in Mat; (O) in
genus 2”. For this, we need to generalize the /-isogeny graphs in supersingular abelian
varieties. In the elliptic curve case, we have the explicit Vélu formula, which computes
an /-isogeny in time O(¢). However, in the abelian variety case, not all isogenies are easy
to compute—in some cases taking a general isogeny even makes the destination abelian
surface no longer principally polarizable. Therefore, we shall restrict to the special case:
the (¢, )-isogenies. The following Proposition demonstrates that we can also translate an
(¢, ¢)-isogeny of principally polarized abelian surfaces to maps in equivalence classes of
Mat™*(0).
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Proposition 2.2.9 (Relation between (¢, )-isogenies and Mat; (O)). Let the setting be the
same as above. Suppose 7 : (E?,L1) — (E?,L,) is an (¢, £)-isogeny, and g1, g» € Matj (O)
are representatives of (E?,L;) and (E?, L) in the bijection described in Theorem 2.2.7,
respectively. Then by identifying End]F—p(Ez) and Mat;(O), v € Maty(O) has reduced

norm /2 and satisfies

T g2y = €g1.

Proof. 1f the polarizations (E2, L1) and (E?, L,) are compatible with respect to the (¢, ()-

isogeny 7, the following diagram is commutative:

EZ €] EZ i EZ

q)Lll l(PLz

(EZ ) V # (EZ) \
Therefore, gr, o [(] = 7Y o g1, 07, or (¢ ¢1,) o (0] = (917" ¢r,) © (@1, 9r.) 0,
which yields to the conclusion. O

At this stage, although there are still some obstructions, we have a dictionary book
which maps objects related to supersingular elliptic curves to superspecial abelian varieties,
and (-isogenies on elliptic curves corresponds to (¢, £)-isogenies on abelian surfaces. By
considering the endomorphism ring, maximal orders in B becomes equivalence classes of
¢ € Matj (O); and connecting ideals I in B becomes y € Mat,(O).

We proposed to generalize the signature algorithm by Galbraith et al. to genus 2. See
Appendix 1 for a sketch and [GPS19] for more details. For the central zero-knowledge
identification scheme in genus 2, when we replace the “Isogeny to Ideal” algorithm in
[GPS19, Section 4.4], we needed the algorithm IsogenyToMatrix, which translates an
isogeny path to a matrix in Mat; (O). The proposed genus 2 algorithm is in Algorithm 2.1.
We see that step 17 in the algorithm can be solved if we can find a principal ideal generator
of T'Mat,(O) + pjMaty(O), hence leads to the principal ideal problem (Problem 2.1.2).

2.2.4 Lattices over a local field and Bruhat-Tits buildings

Let K be a non-archimedean local field whose residue field has g elements, let O be its
ring of integers, and let 7t be a uniformizer of K. We first define the Bruhat-Tits building on
PGL4(K). Much of the theory can be found in [KL14].

Definition 2.2.10 (The Bruhat-Tits building on PGL4(K)). The Bruhat-Tits building is a
directed graph 7Tk with the following structure:
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(i) We say that two Ok-lattices P’ and P” are homothetic, or in the same homothety class,
if there is an w € K* such that P’ = aP”. Vertices of Tk are the homothety classes of
Ok-lattices of rank 4 which is embedded in K*, a fixed K-vector space of dimension 4.

(ii) We define a Ok-lattice Py which has {ex;}?_; as a basis, where ex; € K* forms the
standard basis. The homothety class [P] is considered as the central element of the
Bruhat-Tits building 7k.

(iii) For two homothety class [P’'] # [P”], there is an edge [P'] — [P”], if there are
lattices P’ and P” in each homothety class satisfying 7P’ C P” C P’. Suppose that
P’ C P" C P'. We further classify an edge [P'] — [P"] to be type 1, 2, or 3 according
to whether [P’ : P"'] is equal to g, 4%, or ¢°.

(iv) For an ordered quadruple of vertices in 7k, ([P], [P’], [P"], [P""]), we say that it forms
a chamber if all the four ordered pairs [P] — [P],- -, [P"'] — [P] are connected with

type 1 edges.

From the definition above, we know that on any vertex, there are ¢° + 4> +¢q + 1,
(4> +1)(g>+q+1), and ¢°> + ¢*> + g + 1 out vertices of type 1, 2, 3 from that vertex,
respectively.

We can define a left GL4(K)-action on rank 4 Ok-lattices as well as vertices in Tk as
follows. Let ¢ = (gij)1<i,j<4 € GL4(K). Suppose ey, - - - 4 is a basis of a lattice P. Then g - P
is the lattice generated by 2;-1:1 gijej, 1 = 1,--- 4. Under this setting, by rewriting the ideas
in [KL14] to the scenario of GL4(K), we can characterize the stabilizer of objects in the

Bruhat-Tits building as follows:
Proposition 2.2.11. Let 7x and P, be as in Definition 2.2.10.
(i) The action of Maty(K) is transitive of the vertices, edges and chambers in 7k.

(ii) Suppose P is a vertex in Tk, with g - Py = P for some g € GL4(K). Then the stabilizer
of [P]is g(K*GL4(Ok))g ™.

0100
0 010

(iii) Leto = 000 1l Then [Py] — [0 - Py] forms a type 1 edge. If [Qo] — [Q1] = ¢~
7T 0 0 0

([Po] = [0 - Py]) is an arbitrary type 1 edge, then the stabilizer of the edge [Qo] — [Q1]
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is ¢(K*&)g ™1, where

*
*
*
*

*
*
*
*

& = ge GL4(OK) g= . (mod 7'L'GL4(OK))

*
*

(e}
(eI S
*

(iv) ([Po],[c - R, -+, [0® - Py]) forms a chamber.

For an arbitrary chamber ([Qo], [Q1],- -+ ,[Q3]) = g ([Po], [+ Po], - -+, [0 - Py)), its
stabilizer is given by is ¢(K* %)¢~!, where

ko ok ok ok
0 *x %
B = gc GL4(OK) g= (mod 7(GL4(OK))
0 0 % x
0 0 0 =

Proof. (iii) and (iv) are true since & = GL4(Ok) N oGL4(Ok)o !, and
B = GL4(OK) N O’GL4(OK)(771 N---N 0’3GL4(OK)(773.

O]

So far we know that there is an action of local objects K*GL4(Ox) on a rank 4 Ok-lattice.
Now we also turn back to our global scenario. Again, denote B = B« be a quaternion
algebra over Q, ramified exactly at p and co, O be a maximal order of B. Then we take
A = Maty(B), and A = Mat;(O) be a maximal order of A. Also, denote A! to be the
subgroup of A with reduced norm 1.

When ¢ # p is a prime splitting in the quaternion algebra B, we know that O ®7z Z, =
Maty(Zy) and A ®z Z; = Maty(Z,). Fix an embedding : : A — Maty(Z,). Then forc € A
and P a rank 4 Z-lattice, we can define ¢ - P = ((c) - P. An important fact is that this action
induces a transitive action on the type 1 neighbors of [P] in the Bruhat-Tits building 7z,
(recall that [Py is the assigned “center” of 7z,).

Proposition 2.2.12. A!, the unit norm group of A, acts transitively on the type 1 neighbors
of Py in the Bruhat-Tits building 7z, .

Proof. Since ((A') C GL4(Z,), A! stabilizes the center vertex Py. Let P; and P, be lattices
such that [Py : P;] = [Py : P;] = £. We want to find ¢ € A! such thatc- P = P,.
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Let {e1,--- ,e4} be a basis of Py. It is known that there exists bases {e},--- ,¢e,} and
{ef,---,e]} of Py such that {e], - - - €}, le; } is a basis of P; and {ef, - - - €4, le} } is a basis of
P,. Suppose g’ = (g,‘j),g” = (g,’]/) € Maty(Z,) satisfy e} = ?:1 ggjej, then P, = ¢"'¢~! - Py.
Then g"¢'~! € GL4(Z;), and up to a scaling of bases we can further make g"¢’~! €
SL4(Zy).

As the central simple algebra A satisfies the Eichler’s condition, we know by Theorem
3(ii) that the action of A! on the neighbors of [P] is transitive. O

2.3 The Principal Ideal Generator Algorithm

In this section, we describe the major steps of the principal ideal generator algorithm. After
the algorithm, we give comments on each step, together with a pointer on where the steps
will be explained. The validity and complexity of the main algorithm will be proven in
Theorem 2.6.1 in Section 2.6.

Algorithm 2.3.1 (The main algorithm).

Input: The quaternion algebra B, « over Q which ramifies at p and co, a maximal order O
of By, A = Maty (B, ), a central simple algebra over Q, and A = Mat(0), a maximal
order in A. I, a right-A ideal.

Output: An ideal generator « € I, such that [ = aA.

(1) Search randomly for an element s € ! such that the reduced norm of sI is B-smooth

(i.e. all prime divisors of the reduced norm are in B).

(2) (The GReduce routine.) Find a decomposition of the form fcsI = |3, where | is an
integral right A-ideal, J is a two-sided fractional A-ideal, and ] is not contained in any
non-trivial two-sided integral A-ideal. And f € Q, ¢ € A, which makes the reduced
norm of both sides equal to 1.

(3) (The LReduce routine) Let D be the set of prime divisors of the reduced norm of |. For
each prime ¢ € D, perform a “local reduction at ¢” as follows. Find a ¢, € A* such
that cy] = ¢']', where r is a non-negative integer an |’ is a right integral A-ideal whose
{-valuation of the reduced norm is the smallest possible. Then, replace c by c,, replace
J by J', and replace J by ¢'3J.

(4) After handling all the possible local reductions, as all right A-ideals are principal, we
should have | = J = A. The elements on the left-hand side provide a principal ideal
generator for the ideal I.

Below are some brief comments of each substep and a pointer to the relevant section.
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(1) We test elements in I~! with small entries. Increasing the size of B speeds up this step
but slows down the following steps. This step, together with the pre-processing part of
the algorithm and initiations of parameters including the set 13, will be discussed in
Section 2.4.1.

(2) This step is essentially identical to the GReduce algorithm in [Pagl4]. Our GReduce

routine is a close modification of [Pag14] and will be described in Section 2.4.2.

(3) We will need the compatibility between A-action on the ideals and on the Bruhat-Tits
buildings. This will be discussed in Section 2.5.

(4) This step is comparatively straightforward. We will discuss this in Section 2.4, but most
of them follow from the same reason as in [Pag14, proposition 3.13].

2.4 The Global Reductions of Ideals

2.4.1 The G-reduction structure

As in the previous sections, we consider the more special case, where B = B, « is the
quaternion algebra over Q, ramified exactly at p and co, and O is a fixed maximal order
of B. Taking A = Maty(B), we aim to establish a principal ideal generator algorithm
on A = Maty(0O). Also, we let A be the discriminant of B. Under this setting, by the
consequences of strong approximation (Theorem 2.2.3), since Z has class number 1, so
does A, and all the right A-ideals are principal.

Also, similar to Buchmann’s class number algorithm in the case of number fields in
[Buc88] and Page’s principal ideal algorithm in the case of quaternion algebras in [Pag14],
we need to define a set of small primes . We will elaborate practical considerations of
choosing B in Section 2.4.

To find the left ideal generator for a given right A-ideal I, it would be preferable to
reduce the ideal I to accelerate the local reduction process in Section 2.5.

More precisely, this contains two processes. First, we want the integral ideal I to be
“smooth”, which means that the prime divisors of N(I) need to be in a prescribed prime
set, so that we can pre-compute the necessary data for local reduction on these primes. We
make an ideal smooth by replacing I with I’ = sI for a suitable randomly selected s. More
details will be provided at the end of Section 2.4.1.

Second, starting from a smooth integral ideal I, since we saw in Section 2 that the
two-sided ideals in Mat, (B) are easier to handle, we want to rescale and decompose I as
the form fcl = JJ, where Jand f € Q are two-sided; and | and c are one-sided. The hope is
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that the remaining unprocessed one-sided part | has a norm as simple as possible to reduce
the workload in the two-sided reduction part. To finish this, we need a pre-computed
G-reduction structure, which we will define below and give algorithms in Sections 2.4.1
and 2.4.2 to compute this.

We need the following G-reduction structure altered from [Pag14] for the reduction.

Definition 2.4.1 (G-reduction structure in A). In the A = Matz(Bp,oo) setting, the G-
reduction structure is obtained by computing the following data:

(i) Define a set B which contains primes ¢ up to a number M, excluding the ramified
prime p.

(ii) Define a set X C A* as follows. For each prime ¢ € B, find a element ¢y € A such
that N(cy) = £.

For the data in Definition 2.4.1, the relation between the choice of B in part (i) and the
complexity of the algorithms will be discussed in Proposition 2.4.5. To generate the set X
in part (ii), the general idea is to progressively pick elements of small entries until we find
enough of them whose combination satisfies the criteria for X.

Before describing an algorithm that constructs X, we need to specify how to pick
elements of small entries. One can define a positive definite quadratic form Q : A — R on
the central simple algebra A as Q(m) = Y1<ij<2 Nred(m;;), where m;; is the ij-th entry of
the 2 x 2 matrix m.

Using lattice reduction algorithms, one can enumerate elements in any Z-lattice M C
Mat, (B) by sorting Q(m) for m € M in increasing order. From the enumeration, we have
a function NextElement(M) which returns the element in M which comes next in the
enumeration (assuming that we keep a pointer in M storing the last element enumerated).

Now, given the function NextElement, we can describe the following algorithm, which

generates the set X which has the property as in Definition 2.4.1.

Algorithm 2.4.2 (Constructing the set X in the G-reduction structure).
Input: 3, a set of small prime.
Output: A set X C A*, which contains an element ¢, € A satisfying N(c;) = ¢ for each
prime ¢ € B.
1: Let E < {diag(¢,¢) | ¢ € B}, X + @.
2: while (N(E)) C (B) do
3: ¢ < the smallest prime divisor in (B)\(N(E)).
4: X < LDivisibleElement (/).
5. if N(x) ¢ (N(E)) then
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6 E < EU{x}

7: end if

8: end while

9: for/ € B do

10: ¢y < an element in (E) with reduced norm /.
11: X+ XU{cr}

12: end for

13: return X.

Algorithm 2.4.3 (The routine LDivisibleElement used in Algorithm 2.4.2).
Input: A prime /.
Output: An element x € A with a small B-smooth norm divisible by £.

1: B < aright O-ideal of norm ¢, I <+ [O O] .
UL

2: repeat

3 x < NextElement(I)
4: until x is B-smooth
5

: return x.

Heuristic 2.4.4. Define L(x) := exp(VInxInlnx). Suppose B is chosen to contain all
the splitting primes with norm less than L(A). We make the following assumptions on
Algorithm 2.4.2.

(a) Given a lattice £, in a central simple algebra A’ over Q with discriminant A’ with A’ a
maximal order in it, and let c > 0 be a constant. We denote t as the smallest integer
such that £ C t7'A’, and define N = t [t ' A’ : L]'/" (N is the reduced norm when L
is a A’-ideal). Then there exists a constant « > 0 such that when # € £ is any element
with reduced norm less than NL(A')°() in £, the probability that the reduced norm of
11 is B-smooth is at least L(A")~%+0(1),

(b) There is a constant €, independent of the central simple algebra and the input ideal
I, such that if E C Mat,(B) is a set such that [(B) : (N(E))] is finite, then each call of
LDivisibleElement in step 4 in Algorithm 2.4.2 generates an output x € Mat,(B) such
that N(x) is not generated by (N(E)) with probability at least €.

Part (a) of the heuristic is widely used in the NextElement procedure described in the
rest of the paper. It is a reasonable because it can be thought of as a generalization of
formula (1.16) in [Gra08], which describes the probability of L(x)-smooth numbers below

x Part (b) of the heuristic involves the uniform distribution statements. It is natural in the
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sense that if we draw a random smooth element in (B), we will expect it to be randomly
distributed in the cosets of (B)/(N(E)).

Proposition 2.4.5. Assuming Heuristic 2.4.4 in addition. Algorithm 2.4.2 returns with
X satisfying the conditions in Definition 2.4.1(ii) and terminates probabilistically in time
L(ACM),

Proof. From the description of Definition 2.4.1, we know that it suffices to find a subset
E € A* such that (N(E)) = (B). Indeed, if such E is found, for each ¢ € B, we can just
generate ¢, from E such that N(¢;) = /¢, as in steps 9 to 12 in the algorithm.

We know that if the loop between step 2 and 8 terminates, then we have (N(E)) = (B).
So the question is whether it terminates. After step 1, we know that [(B) : (N(E))] = 48,
which is finite. Therefore, we only need finitely many essential updates of the set E between
steps 5 and 7. And since the reduced norm map: A — Z is surjective, the set E exists and
the algorithm terminates. We shall show the complexity of the termination time based on
Heuristic 2.4.4.

Now we make an estimate on the time complexity. We will first discuss the number of
times LDivisibleElement is invoked, then discuss the complexity of LDivisibleElement
routine in Algorithm 2.4.3.

The major part of the algorithm is the loop from step 2 to 8. As we assumed at Heuristics
2.4.4, the size of Bis L(A)°MW /InL(A)°M) = L(A)°(), from the prime number theorem.
At the first time the algorithm enters step 2, [(B) : (N(E))] = 4L And each time
when step 8 is entered and E is updated, the index [(B) : (N(E))] is at least halved, so step
8 is executed log, 4L(8)°0 L(A)O(l) times. And, from Heuristics 2.4.4, we know that each
random x generated by LDivisibleElement, from Heuristics 2.4.4, there is a possibility
e = O(1) that N(x) # (N(E)), so the number of times LDivisibleElement is invoked is
also O(1)L(A)°M) = L(A)°M),

It remains to discuss the complexity of LDivisibleElement routine in Algorithm 2.4.3,
which involves finding a B-smooth element by invoking the NextElement routine. By
Heuristic 2.4.4(a), it takes in average L (A)O(l) iterations to find a smooth element. Therefore,
the complexity of LDivisibeElement is also L(A)°(). By taking product, the main loop
between step 2 and step 8 is of time complexity L(A)°().

Finally, step 10 only involves using the relations in N(E) to simplify the elements in
E using linear algebra, so the time should be polynomial in the size of the basis, that is
|B| = L(A)°M). Combining all the steps, the entire algorithm terminates in L(A)°(). [
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2.4.2 The GReduce process

Given a general right A-ideal I, we need to first reduce it to a B-smooth ideal by rescaling to
I’ = sI. Ttis usually preferable that the s we find have smaller entries, in the sense that Q(s)
is kept small. For this, one can take the naive approach, by invoking s = NextElement (I~ !)
in Section 2.4.1 by a number of times, until one obtain a B-smooth integral ideal of the

form sI. From now on, we can assume that the input ideal I is B-smooth.

Now we will describe the GReduce algorithm, which utilizes the G-reduction structure
to simplify the structure of the input ideal. It also “extracts” two-sided ideals, in the sense
that when we apply all the /-reduction steps in Section 4, we will get the principal ideal
generator (this will be justified in Theorem 2.6.1 in Section 2.6).

Algorithm 2.4.6 (The GReduce routine).

Input: An integral B-smooth right A-ideal I and a pre-computed G-reduction structure.
Output: A decomposition fcl = JJ, where f € Q*,c € A*, ] is an integral right A-ideal
not containing any proper two-sided integral ideals, and J is a two-sided fraction A-ideal.
Furthermore, N(fcI) = 1.

1: Compute and factorize N(I). Assume that itis [T,cz ¢ .

2: Suppose ¢/ is the element in X which corresponds to ¢ € B. Set ¢ +— [[yep ¢} (mod 4)
and f < [Tjep c}e‘/ﬂ. Set J + cl.

3: Let J be the two-sided A-ideal generated by J, and | < JJ -1

4: return f,c, ], J.

Proposition 2.4.7. When the input in Algorithm 2.4.6 is a B-smooth ideal with B chosen
as in Heuristic 2.4.4, the outputs of Algorithm 2.4.6 are valid and return deterministically
in time L(A)°(),

Proof. After step 2, since N(f) = f*,itis clear that N(fcI) = N(f)N(c)N(I) = 1. After
step 3, we have cI = JJ, and since J is the smallest two-sided A-ideal containing cI,
J = cI3~! is does not contain a proper two-sided A-ideal and is integral.

For the complexity, since N(I) is B-smooth, finding the factorization in step 1 only
involves trial divisions by elements in B, which is of size O(L(A)°V /In(L(A)°M) =
O(L(A)°M). Denote the number of prime divisors (with multiplicities) by Q(N(I)), which
can be bounded by log, N(I), then the divisions we need to try in step 1is O(In N(I) +
L(A)OM), Step 2 is immediate from the output of Algorithm 2.4.2, and step 3 only involves
a lattice basis generation on the generating set {lj};ca jcj, which is polynomial time.
Therefore, step 1 dominates the algorithm and takes O(In N(I) + L(A)°W) in time. [
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2.5 The local reduction process

The goal of this section is to establish the LReduce algorithm as described in the main
Algorithm 2.3.1, which solves the following question, which plays an important role in

reducing the /-adic part of an ideal:

Problem 2.5.1 (LReduce). Let I be a right A-ideal, and ¢ # p be a prime splitting in B.
Find an element 7y, € A*, r a non-negative integer, and | another right A-ideal, such that
vel = £'], and v, (N(J])), the valuation at ¢ of the reduced norm of J, is between 0 and 3.

We will propose an algorithm that generalizes Page’s approach in [Pag14] to matrices
of quaternions. The upshot of the algorithm for the local reduction process is the fact that
the Bruhat-Tits building 7z, on rank 4 Z, lattices have a compatible A -action on the right
Maty(Z,)-ideal classes.

The main idea is to use the equivalence between the action of A* on Z,-lattices of rank
4 and the action of A* on right Ay-ideals. The isomorphism classes of rank 4 Z,-lattices
and their inclusion relations can be encoded as Bruhat-Tits buildings, and we discussed
the theory and the Maty(Z,)-actions on the buildings in Section 2.2.4.

2.5.1 The compatibility between ideals and lattices actions

Now let B be a quaternion algebra over Q, and A = Mat,(B). Suppose O is a maximal
order of B, and A = Mat,(O). We know that A is a maximal order of A (see Section 2.2.3).
Let ¢ be a prime in Q which splits in A. We denote A, := A ®q Q, and similarly Ay to
be the completion of A and A at /, respectively. As discussed in Section 2.2, we fixed an
embedding 1 : A — Maty(Z,), which extends to an isomorphism ¢, : A, = Mat,(Q;). We
will identify Ay = Maty(B), with Maty(Qy) without mentioning the isomorphism ¢, for
brevity, if there is no confusion.

The traversal of the Bruhat-Tits buildings such as 7z, plays a central role in our local
reduction algorithm. In this subsection, we introduce the fact that in the local theory,
there is a one-to-one correspondence between vertices in the Bruhat-Tits building (that is,
homothety classes of Z-lattices of rank 4) and the right Maty(Z,)-ideals modulo two-sided
ideals. In addition, we can define a left action of elements in GL4(Z,) on both objects, and
the action is equivalent on the vertices of the Bruhat-Tits building and the ideals. We will
use the theory we set up here to demonstrate in Section 2.5.5 that, when we simplify the

lattice, we are also simplifying the corresponding ideal.
Proposition 2.5.2. Every right A-ideal is principal.

Proof. See [Rei03, Theorem 18.7(ii)]. Note that this is true even if £ does not splitin A. [
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There is a natural action of A/ on right As-ideals. Let c € A/ and I be such an ideal.
Then we simply take ¢ - I = cI. Back to our scenario, where A = Mat,(B). Since our fixed
embedding ¢, : A — Maty(Z,) extends to an isomorphism ¢ ; : Ay — Mats(Q;), we can
also define a natural action of GL4(Qy) on right Ay = Maty(Z,)-ideals.

On the other hand, as described in Section 2.2.4, we have an action of GL4(Z,) on
lattices P C Q7, so that when ¢ € GL4(Z,) and P = (¢;)}_;, g+ P = (g - ¢;)*_;. This action
induces an action of GL4(Zy) to 7z,.

In addition, there is a correspondence between Mat,(Z;)-ideals and full lattices in
Q7}, by sending gI to g - Py. Among all the maps being set up, we have the following key

observation.

Proposition 2.5.3. Suppose ¢ splits in A. The map g - Py — g - /A, is bijective and equiv-
ariant between vertices in 7z, and right-A, ideals modulo two-sided A-ideals, under the
action of GL4(Qy) on the Bruhat-Tits building 7z, and the action of A; = GL4(Qy) on
right-A, ideals as described after Proposition 2.5.2.

Proof. The equivariance is clear, since a - (g - Py) is mapped to « - (g - Ay) by definition. It
remains to prove the bijection.

For any g € GL4(Qy), the stabilizer of the lattice g - Py is given by Proposition 2.2.11 (ii),
which is g(Q; GL4(Z,))g .

On the other hand, we want to find the stabilizer of the right A-ideal I, := Lzl (8)Ay.
We know that o - I, = I, if and only if ag~'Ay = g7'Ay, or gag™! € A). On the other
hand, by [Rei03, Theorem 19.3], any two-sided Mats(Z,)-ideal in Mat4(Qy) is generated by
rad(Maty(Z,)) = (Maty4(Z;). Therefore, considering I, as an ideal class of right A-ideal
modulo a two-sided A-ideal, the stabilizer is §({4GL4(Z,))g ' = g(Q;GL4(Z;))g "

The bijection follows because the stabilizers are the same. O

2.5.2 The /-reduction structure: the definition

Throughout the remaining of Section 2.5, let B = By, « be a quaternion algebra over Q with
discriminant A = p, O be a maximal order in B, A = Mat,(B), and A = Mat,(O). And let
¢ # p be a prime splitting in B. We have constructed in Section 2.2.4 a Bruhat-Tits building
Tz, of rank 4 Z -lattices, together with the standard lattice Py which is considered as the
center of 7z,, as in Definition 2.2.10(ii). Also, we fix the embedding 1 : A — Mats(Qy).
Now we aim for an explicit method to simplify both the paths in the Bruhat-Tits building
and the ideals, for which we will show later in Section 2.5.5 how to use it to answer Problem
2.5.1. More concretely, it is a consequence of Proposition 2.5.3 that a path containing a

chamber in a Bruhat-Tits building corresponds to a right A-ideal which contains as a factor
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a two-sided ideal of norm ¢, which turns out to be (Maty(Zy). Therefore, to extract the
factor ¢" on the ideal side, the aim is to reduce a path in the Bruhat-Tits building and make
them into cycles along a chamber. And for that, we need a pre-computed /¢-reduction
structure (as described in Definition 2.5.4) for each splitting prime ¢ of interest.

Our goal is to build up an extension of Page’s method, which is for principal ideal
problem over quaternion algebra. The main difference in the local side is that in quaternion
algebra, completions of ideals will be ideals over Mat,(Z,), which corresponds to a Bruhat-
Tits tree. Compared to the Bruhat-Tits tree, we need the higher dimension analog, the
Bruhat-Tits building, which is no longer a directed graph, and the building expanded in
size much faster than the Bruhat-Tits tree as the prime ¢ grows. Such a difference results in
the necessity to modify the definition of the /-reduction structure.

Definition 2.5.4. Let ¢ # p as above. The ¢-reduction structure for A = Mat,(O) consists
of the following data.

(i) A filtration of right A-ideals /A C M3z C My C M; C A, maximal orders Ag = A,
and A; = O;(M;) fori = 1,2,3. (-adic generating global element g; of M;, such that
in the (-adic completion, (M;); = (gi)¢/A. A chamber ([Py], [P1], [P2], [P3]) satisfying
[P; : Piyq] = £ fori =0,1,2,and [P;] is the stabilizer of A*.

(ii) For eachi = 0,1,2,3: for each type 1 out-neighbor [Q] of [P;], an element cg € A
such that cg - [Q] = [Pi41]. (Here we denote [Py] = [¢Py] for convenience).

The next step is to compute a ¢-reduction structure. We first describe how to compute
the data in part (i) in Algorithm 2.5.5 in Section 2.5.3. Algorithms for part (ii) will be
discussed in Section 2.5.4. And we will show in Section 2.5.5 how to use the /-reduction

structure to complete the local reduction in Problem 2.5.1.

2.5.3 Computing the /-reduction structure: finding the filtration of ideals and
lattices

Here we will show how to compute the /-reduction structure described in Definition
2.5.4(i).

Algorithm 2.5.5 (Maximal ideal decomposition of /A).
Input: A = Maty(O), ¢ # p be a splitting prime. ¢; : B — Mat,(Qy), and ¢, : Maty(B) —
Mat,(Q;) is the embedding compatible to ¢1.
Output: Ideals {M;}?_,, maximal orders {A;}?_,, and the chamber ([Py], [P1], [P2], [P5]).
1: P < aright O-ideal of norm /.
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2:M1<—[O O],Mﬂ—lo O],M3<—[m ‘B]_
B P

O 10O O 10
10
3: g1 < LadicGlobalGenerator(Ml,ﬁ), &2 0 ¢l

g3 < LadicGlobalGenerator(Ms, ().
> The routine LadicGlobalGenerator will be described in Algorithm 2.5.16.
4: O < Left0Order(P).
5: A [O ‘33_1],A2<_ [O 6‘1(9],A3<_ [ o g_lm].
B O 0 O op~t o
6: p1 <= 2(81), H2 < $2(82), 3 < $2(83)-
7: Py < 1Py, Py < 2Py, Pz < u3Py.
8 return {M;}7,, {A}2,, ([Po], [P1], [P2], [P3]).

i=1/

To ensure the algorithm terminates in expected time, we will need the following

uniform distribution assumption.

Heuristic 2.5.6. Let I be a right Mat,(Qy)-ideal, and v,(N(I)) = ¢N. Then there is a
constant €, independent of the central simple algebra and the input ideal I, such that the
map I — IFy, defined as the composition of the map I — Z,, x — ¢~NN(x) and the residue

map, sends any element to zero with probability at least e.

The assumption makes sense since we are indeed expecting a stronger statement, saying

that the map I — IF; should send I to all £ elements in IF, with equal probability.

Proposition 2.5.7. Algorithm 2.5.5 generates the correct outputs, probabilistically in poly-

nomial time in the bit length of A, under heursitic 2.5.6.

Proof. After step 2, M; clearly gives a filtration as Z-modules between A and ¢/A. Noticing
that B are right O-ideals, it can be readily checked that M;a C M; forall i'sand all« € A,
therefore O,(M;) contains A and hence is A, from the maximality of A. For step 5, one
can also check directly that A;M; C M;. And since A; are maximal orders (which follows
from [Rei03, corollary 27.6]), A, is the right order of M;. Finally, for step 7, the ideals M;
generated by ¢»(M;) gives a filtration from Maty(Z,) to /Mats(Z,), and by comparing
the norms, we see that the /-adic generating global elements g; are mapped by ¢» to y;,
which are ideal generators of M;. From the compatibility in Section 2.5.1, we know that the
lattices P; satisfies the index and stabilizer properties as in Definition 2.5.4.

For the complexity, since most of Algorithm 2.5.5 only involves direct assignments and
standard algorithms in quaternion algebra (finding left orders and inverse ideals), which

are all polynomial time in A. The only non-standard part is the LadicGlobalGenerator
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routine, which will be described in Algorithm 2.5.16 in Section 2.5.5, involved in step
3. From Heuristic 2.5.6, we assume that the probability exiting the loop in steps 2 to
4 in Algorithm 2.5.16 is €, which is a constant. Therefore, LadicGlobalGenerator also
terminates in polynomial time in A, which implies the entire algorithm is also polynomial
time in A. O

2.5.4 Finding transitive actions in the chamber

In Section 2.5.2, we defined in Definition 2.5.4 the data contained in the ¢-reduction
structure and gave an algorithm computing part (i) in Algorithm 2.5.5. Now we will focus
on part (ii) of the definition. We see that finding a transitive action on [Py] is simpler than
that on [P;] fori = 1,---,3, since the underlying left order A has a simpler form. An
algorithm is described in Algorithm 2.5.9 in Section 2.5.4.1. For the rest of the transitive
actions, we need a reduction to the [Py] case, where the details are described in Algorithm
2.5.14 in Section 2.5.4.2.

2.54.1 Computing the /-reduction structure: finding transitive actions on [P]

To find a transitive action, we need a convenient way to describe the lattices and their
neighbors. The neighbors of a lattice can be described by its kernel. With such an idea, it
turns out that out-neighbors of type 1 edges of [Py] (or any other lattice) is bijective to the
3-dimensional projective space IP3(IF,) over the finite field IF,.

More precisely, suppose P’ is a lattice such that [P : P'] = ¢. Let ¢ € Maty(Z;) be a
basis of P/, i.e., g- Py = P'. Let v € Maty(IF;) be the image of g. Define T € IF% as a column
vector satisfying ' - T = 0. Since such a 7 is unique up to a multiplication in IF, T induces
an element in IP3(TF,).

Now we represented out vertices of [Py] as elements in IP?(IF,) in the form of column
vectors. Therefore, when I' = Maty(IF;), Maty(Z,), or A, there is a natural mapping
I' — Maty(IF;) so that T acts on IP3(F,) by left multiplication. The following lemma relates
actions on the out edges of [Py] and actions on IP3(TF,).

Lemma 2.58. Leta € A = GL4(Z,). Then the action of « on P3(IF;) as the left mul-
tiplication of & on the column vector in IFj (here & is the reduction of a to GL4(IF)) is
equivalent to the action of a* on the type-1 out-neighbors of [Py], where a* := (a~1)! is the

contragradient of «.

Proof. Following the notations above, we first show that the bijection from the sublattices
of [Py] to IP3(IF,) is well-defined. Given a sublattice P’ such that [Py : P'] = , the choice of
g € Maty(Z,) is equivalent to the choice of a basis of Py, and it is up to a right multiplication
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on GL4(Z,). After the reduction of g, v € Maty(IF/) is unique up to a right reduction of
GL4(FFp) and have rank 3. Therefore 7 is also uniquely defined up to a multiplication of
F.

P

Now, assume & € Maty(Z,). Since (a1a2)* = ajas and (a;')* = (af) 7!

, we only need
to prove that when P’ is a sublattice of P of index ¢ and ¢ € Maty(Z,), T € F} correspond
to P/, then T is mapped to a* - P'. This is true since (a*g)!(a7) = ¢'(a*)laT =gt =0. O

We will now use Lemma 2.5.8 to find a transitive action on IP*(IF,). An important
feature is, it is hard in general (at least subexponential time in terms of the discriminant of
the quaternion algebra) to find a general unit in A, but there are subgroups in A = Mat, (O)
where reduced norm are easy to compute and unit elements are easy to find: SL,(Z) and
H:= {a € A |« = a*}, the Hermitian matrices. We will prove in Proposition 2.5.12 that

SL,(Z) and H generates a transitive action on the index ¢ sublattices of [P].

Algorithm 2.5.9 (The routine TransitiveAction([P], [Py]), which finds transitive actions
on type 1 out-neighbors of [Py]).
Input: P, a sublattice of Py such that [Py : P] = {. Maps ¢; : B — Maty,(F;), ¢ :
Mat,(B) — Maty(F,) and pullback functions ¢; ', ¢, * which returns elements in B and
Mat, (B), respectively, which has the smallest entries (in the sense that the quadratic form
Q, as described in Section 2.4.1, is minimized) among the inverse image .
Output: A global element ¢ € A* such that ¢ - P = diag(1,1,1,¢) - Py, where diag means
the diagonal matrix with the prescribed entries.
1. g« Id.
2: T < SubLatticeToP3(P). > So 7 is the column vector in ]F‘;7 derived from the bijection.
3. if T[1] x t[4] = 7[2] x T[3] then
> This is the case when we cannot find a g of the form sh, where s € SL,(Z) and
h e H.
> Instead, we attempt to find g of the form hysihy, where sy € SLy(Z), hy, hy € H.

4: repeat

5: hy < RandomElement (H), 177 < ¢2(h1)

6 until (77 7)[1] x (3 7)[4] # (777)[2] x (77)[3]

7: hi < HermitianPullback(#1), § < M1, T < 4] - T.

8: end if
—1/4 2

9: 01 4 72 , where ¢ € F, satisfies det(o7) = 1.
—c7[3] c1[1]

> After the action by o1, T will take the form [* 0 0 *]".
10: 51 ¢ SL2Pullback(cy), T <— 01T, g 51+ §. > SL2Pullback returns a pullback s; in
SLy(Z).
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11: 1y < , where u € Fy satisfies det(7,) = 1.
T[4]717[1] u
u
> After the action by 77, T will take the desired form [0 0 0 x]’.
12: hy < HermitianPullback(#;). > HermitianPullback returns a pullback of ¢; in
H CA.

13: T<12-T,8 ha- g

14: return g.

Remark 2.5.10. We sketch how the pullback routines SL2Pullback and HermitianPullback
are obtained. We know that for s’ € Mat,(Z), the reduced norm of s’ in Mat,(B)

is simply det(s’)?, SL2Pullback(c) simply finds a matrix in o + /Maty(Z) with deter-

minant 1 and the entries are the smallest possible. Similarly, for a Hermitian matrix

W= [Li Z] € H, we have N(i/) = (N(q) — ad)?, where N(q) is the reduced norm

q
of g € B. So HermitianPullback(z) simply pulls back 7 to Mat,(B) using the pullback
function ¢, and then adjust the pullback by /A to ensure unit reduced norm.

To ensure that Algorithm 2.5.9 terminates in expect time, we will hope that the process
of left multiplying by #; have some uniform distribution property. We will formulate them

below.

Heuristic 2.5.11. There is an constant €, independent of the central simple algebra A and

the input ideal I, satisfying the following property. Let T = [11 T» 73 &)’ € F} satisfy

1 0 a b
0 1 ¢ d .
7Ty = TT3,and 0 = J . 0 € GL4(FF/) be a randomly chosen matrix. And let
—b u

—c a 0 u
# = [p1 p2 us pa)' be ot. Then pyps — pops equals to zero with probability at least €.

Proposition 2.5.12. Algorithm 2.5.9 terminates with the correct output, probabilistically
in polynomial time in the bit length of A, assuming Heuristic 2.5.11.

Proof. First, we need to show that the loop between line 4 and line 7 terminates. After
the map ¢, : Maty(B) — Maty(IF,), a Hermitian matrix in i € Mat,(B) with unit norm

t 0 a b
. . 0 t ¢ d
will be mapped to a matrix in Mats(IF;) of the form n = ¢, (h) = p . ol and
—b u
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det(n) = (tu — ad + bc)? = 1. The following statecment can be checked by splitting into
cases and checking directly: forall T = [11 ©» T3 1)t satisfying 7174 = ™13, there exists
at least a matrix 5 of the above form so that 17 - [71 & 7 w|" = [p1 p2 ps pal’ satisfies
Hipa # pap3, which ensures the termination of the loop. (Indeed, we expected that a
randomly chosen 7 gives approximately a probability 1 — 1/¢ to have pjpy # popu3 and
terminates the loop.)

After step 8, wehave 7T = [1 T2 T3 1)t satisfying 7174 # T213. On step 9, consider o as

—T 0 ™ 0

0 —T 0 T

an element in SLy(Z), ¢2(01) = . It is an immediate check that

—CT3 0 T
0 —c3 0 ¢
det(g2(01)) = 1 and @2(07) - T is of the form [+ 0 0 *]'. Therefore, the pullback to SL,(Z)
exists, and we get an unit s; in A* with the same action.
Finally, when 14 # 0, the matrix 7, in step 11 gives a column vector of the form [00 0 *]!
after the action on 7. And from Lemma 2.5.8, we know that embedding to Mats(Z,), 175
sends the corresponding sublattice to diag(1,1,1, ¢) . For the validity of the Hermitian

t 0 a b
g . . . 0 t ¢ d .
pullback, if i is a Hermitian matrix, then ¢y (h) is of the form . 0 with
—b u
—c a 0 u
u 0 —-d ¢
b —
contragradient ! . Ou . Although there is no straightforward formula for
—a —cC
-b —d 0 t

the pullback of the contragradient given h, we know from the explicit form that it is still a
pullback from a unit norm Hermitian matrix in H. Therefore, the entire algorithm can be
computed, terminates, and gives the correct output.

We will postpone the complexity statement and prove it in the more general situation

in Proposition 2.5.13. O

At this point, we established Algorithm 2.5.9, which allows us to compute the transitive
units as described in Definition 2.5.4(ii) for i = 0. Let [Q] be a neighborhood of [Py], we can
construct the routine TransitiveAction([Q], [Py]), which computes an global unit cq € A*
such that ¢ - [Q] = [Py] as follows. We input Q and [P;] to Algorithm 2.5.9, and suppose
the outputs are go and gp,, respectively. Then the routine TransitiveAction([Q], [Po])
returns g1§11 30-
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2.5.4.2 Finding a transitive action on [P;] and beyond

We described an algorithm in Section 2.5.4.1 to generate a transitive action on neighbors of
[Po]. And as we will see in Section 2.5.5, we also need to generate a transitive action on
neighbors of other elements in the chamber, namely [P;], [P,], and [P3]. The strategy we
take is to translate the problems back to finding transitive action on neighbors of [P].

As in Definition 2.5.4, we let A; = O;(M;) be the maximal order in the ¢-reduction
structure, g; € Maty(B) be an ¢-adic generating global element of M;, so that (M;), =
(gi)¢eA. And although we do not know how to compute this, we denote by §; € M;
a left generator of the ideal M;. In other words, M; = ;A and A; = $;Ag; 1. Asin the
previous sections, we also need to fix embeddings ¢ : B — Mat,(Qy) and ¢, : Maty(B) —

Maty(Qy), but we omit them when there is no confusion in the notation.

Proposition 2.5.13. Consider the Eichler order A’ := gi’lAi giNA C A. Then finding a
transitive action of A’ on [P;] can be reduced to finding a transitive action of A on [P].

Proof. Let T := §;'g;. Then we know that T € A and A’ = 7" !ATN A by definition.
Suppose P is a lattice such that [P; : P] = /. This means that there exists a y € Maty(Z,)
such that vy(y) = 1and P = g; - u - Py. Suppose that g = g;¢’¢; ! for some g’ € A’. From
the definition, we know that ¢ € A; and ¢’ € A. Then we claim that such g acts transitively
on the type 1 neighbors of [P;]. Indeed, we have g - P = g;¢’g; ' giuPy = gig'1Po. Compare
with Lemma 2.5.8, we see that the action of g;¢’¢; * on P is equivalent to the action of g’ on
u - Py, which is a neighbor of Py.

We will then prove that A’ (which is a subset of A) contains sufficiently many units
so that g;A’g; ! generates a transitive action on neighbors of [P], or equivalently, A’x
generates a transitive action on neighbors of [Py]. Even stronger, we will prove that A’
contains sufficiently many elements in SL,(Z) and Hermitian matrices (denoted by H
again) which induces either transitive action.

We know that as Z-modules, A/ A" = @, A,/ Aj,, where p runs through all finite places
in Z. Therefore, the index [A : A’] can be obtained by multiply all the indices [Ap : Aj].
We also know that the normalizer Ny, (A;), defined as {0 € A} | oA = Ay}, is QA
From the definitions of g; and §;, we know that v,(N(g;)) = v,(N(§i)), s0 T = &, 'gi € A}
and falls in N4, (A/). This implies that A}, = (T 'ATNA), = (T 'AT), N A, = Ay
Therefore, ¢ 1 [A : A].

Now, suppose n = [A : A']. As1 € A/, A’ O Z + nA. From the proof of Proposition
2.5.12, given any lattice Py such that [P : Py] = ¢, there exist elements 07 € SLy(Z)/{SL,(Z)
and 11,12 € H/{H, such that whenever s; € 01 +{5,(Z) and h; € n;+(¢H,i = 1,2 are
units in A, (hps1hy)* - P = diag(1,1,1,£) - Py. Since ¢ { n, by Chinese remainder theorem, is
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is possible to choose s1, k1 and h; such that they are units in A’. O

The consequence of Proposition 2.5.13 is that we can tweak the structure of Algorithm
2.5.9 to construct an algorithm to generate transitive action on neighborhoods of [P;] for

i = 1,2 and 3. We describe the algorithm as below.

Algorithm 2.5.14 (Translating the problem of finding the transitive action on A; on the
out-edges of [P;] to the problem of finding the transitive action on A’ C A to [P;]).
Input: All the local data as described in Definition 2.5.4. i € {1,2,3}. P, a sublattice of P;
such that [P; : P] = . Maps ¢1 : B — Maty(IFy), ¢» : Maty(B) — Maty(F,) and pullback
functions ¢; !, ¢, ! which returns the element in B and Mat,(B), respectively in the inverse
image which has the smallest entries (in the sense that the quadratic form Q, as described
in Section 3.1, is minimized) among the inverse image.
Output: A global element g € A such that g - P = g; - diag(1,1,1,¢)P.
1. g < 1Id.
2: § < SubLatticeToP3(g; 'P).
> 1 is the column vector in IF?, corresponding to the sublattice g;- L. P of Py of
index /.
3 A+ g 'AigiNA,and n < [A: A).
4: if P[1] x Y[4] = ¥[2] x P[3] then
> This is the case when we cannot find a g of the form sh, where s € SL,(Z) and
h e H.
> Instead, we try to find a g of the from hyshy, where s € SLy(Z), and hy, by € H.
5: repeat
6: hy < RandomElementModN(H, n)) 11 < @2(h)
> RandomElementModN(H, 1)) gives a Hermitian element of the form
diag(1,1) + nA.
7. until (779)[1] x (779)[4] # (779)[2] % (779)[3]
& g, Y-
9: end if
0 o [ —yl4]  p[2]

—cyp[3] cy[l]
11: 51 — SL2PullbackModN(oy, 1), i <= 01 -, g < 51- 3.

> SL2PullbackModN gives a pullback in s; € SL,(Z) of 0y, congruent to diag(1,1)

] , where ¢ € F, satisfies det(cq) = 1.

mod n.
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1 —¢[4] 7 (1]

1
12: 17y < , where u € F satisfies det(r,) = 1.

YAyl u
u
13: hy < HermitianPullbackModN(#;,n).

> Gives a pullback hy € H of 7, which is in diag(1,1) + nA.
14: Y<m-p, g hy-g.
15: return g1 - g - gl’l.

Proposition 2.5.15. Algorithm 2.5.14 terminates with the correct output, probabilistically

in polynomial time in A, assuming Heuristic 2.5.11.

Proof. We have already shown in Proposition 2.5.13 that for each i € {1,2,3}, the action of
Qi gi_l on P is equivalent to the action of g’ on gi_lP, which is a neighbor of Py, and this
proves the validity of steps 2 and 15. We also verified in Proposition 2.5.13 that A’ contains
enough units to generate the transitive action on neighbors of [Py]. This guarantees the
existence of the pullbacks in steps 8, 11, and 13. Finally, since the choice of matices 71,
oy and 7, in steps 6, 10 and 12 are the same as those in Algorithm 2.5.9, we know from
Proposition 2.5.12 that the composition of actions of hy,5s1, and hy will bring the lattice
g; 'Pback to diag(1,1,1,¢)P.

For the complexity part, since Algorithm 2.5.9 is simpler than Algorithm 2.5.14, we
will only check the later one. The first two steps are trivial, and step 3 involves a lattice
basis computation, which is polynomial time in A. For the loop in steps 4 to 9, from
the assumption in Heuristic 2.5.11, we know that it involves O(1) calls to step 6, so it is
probabilistically polynomial time.

The rest of the algorithm involves constantly many finite fields and integral arithmetic

and Chinese remainder theorems, and they are all deterministic polynomial time. O

Now, we can finish up the routine TransitiveAction([Q], [P]) fori € {1,2,3}, which
inputs [Q], a type 1 out neighbor of [P;], and outputs a global unit cg € A satisfying
co - [Q] = [Pi+1]. We proceed by invoking alrogithm 2.5.14 twice, taking Q and P;q as

inputs. Suppose the outputs are gg and gp,,,, then the routine TransitiveAction([Q], [P;])

+17

returns gl;iL 30-

2.5.5 The LReduce algorithm

Up to this point, we should have all components of the /-reduction structure prepared,
as described in Definition 2.5.4. We can finally describe Algorithm 2.5.18, which utilizes

the /-reduction data to traverse the Bruhat-Tits building. This is where we are using the
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compatibility in Section 2.5.1: a filtration of lattices in Z, corresponds to a filtration of right
Maty(Z,)-ideals, and the lattice action is equivalent to the ideal actions. So if we act on
the lattice P by v € Maty(Z,) such that the filtration of P consists of chambers in the
Bruhat-Tits building, the action by <y on the corresponding ideal I, namely, yI will have
two-sided ideal factors, which must be ¢".

Since we need to exploit the correspondence between ideals and lattices, the first step
is to map the given right A-ideal I to the corresponding Z-lattice of rank 4. Indeed, if
we know an element A € I such that I, = AA; = AMaty(Z,), then we can correspond the
ideal I with the lattice Ay - Py. We call such an element A a ¢-adic generating global element.

Therefore, our first task is to find a /-adic generating global element for the given
right-A ideal I. This can be achieved by the following probabilistic algorithm.

Algorithm 2.5.16 (The LadicGlobalGenerator routine: computing a /-adic generating
global element).
Input: An right A-ideal I. A splitting prime ideal £ in Q.
Output: A /-generating global element A.
1 A«0
while v,(N(A)) # v,(N(I)) do
3: A < NextElement(I). > See Section 3.1 for the routine NextElement.
4: end while

N

5. return A.

Validity of Algorithm 2.5.16. From [Rei03, Theorem 24.2(a)], we know that N(I), = N(I),
and both of them will be the same as min.c; N(c). Therefore, if v,(N(A)) = vy(N(I))
holds, A is the ¢-adic generating global element of I. Heuristically, a randomly chosen A
has probability 1 — 1/ to attain the minimal valuation an become an ¢-adic generating
global element (we stated this in Heuristic 2.5.6). Therefore, for any € > 0, the probabilistic
approach terminates in O(1) iterations in the loop with probability 1 — e. O

Remark 2.5.17. Page has a deterministic algorithm in the quaternion algebra case, using

a generalized Euclid’s algorithm on the matrix ring Mat, (OF /p¥).

Now we are ready to explain the LReduce algorithm. First, we will write down the
algorithm as Algorithm 2.5.18, then we will illustrate how to simplify the lattice to reduce
it as cycles in the Bruhat-Tits building. Finally, the validity is proven in Proposition 2.5.19.

Algorithm 2.5.18 (The LReduce routine).
Input: An integral right A-ideal I, a prime ¢ # p, splitting in B, the /-reduction structure

as described in Definition 2.5.4.
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Output: An element 7, € A, a non-negative integer 7, a right A-ideal ], such that
veI = ¢"Jm, and v;(N(])), the ¢-adic valuation of the reduced norm of the ideal J, is
between 0 and 3.
Typ< 1,7+ 0,d < vy(N(I)), ] < L
2: A < LadicGlobalGenerator (I, £), Qj - A - Py.
3: Compute a filtration of Z,-lattices Py = Lo D L1 D --- D Ly = Qy, so that for each
0<i<d-—1,[Li:Litq] =2
4: whiled > 3 do
> Outer loop of the traversal of Bruhat-Tits building.
> Will try to make as many chambers as possible.
5: fori =0to3do
> The inner loop of the traversal.
> For every four actions applied on the loop, a chamber will be formed on the

filtration.
6 ci < TransitiveAction(Lg;it1,P). >Soc; € A satisfies ¢; - Lyriiy1 = Pip1.
7: Laytito < Ci - Laptito, -+, Lapya < Ci - Lapia-
8 end for
9 Yo & cacaciCoYy, ¥ -1+ 1,d —d—4, ] < 071y, ).

10: Ly < et Lay,- -~ /L4r+d — 0t L4r+d-
11: end while
12: return vy, 7, J.

Here we explain how Algorithm 2.5.18 traverses the Bruhat-Tits building. Figure 2.1
illustrates an example when ¢ = 2, that is, the Bruhat-Tits tree of rank 4 Q,-lattices.

We first describe the general setting for Figure 2.1. The Bruhat-Tits building is an
infinite graph, but we only show the part around the center [Py] for simplicity. The vertices
of the building are the homothety classes, and we represent them as matrices, with column
vectors representing a basis of a lattice inside the homothety class. The matrices are written
in the nodes in Figure 2.1. The central homothety class of the Bruhat-Tits building, as
defined in Definition 2.2.10, is the bold red node. The fixed chamber, ([Py], [P1], [P2], [Ps]),
in the Bruhat-Tits building as required in Definition 2.5.4(a) is the cycle with red edges in
Figure 2.1. In addition to Figure 2.1, all the vertices which are of distance 1 from the origin
(which are the heads of the blue arrows) and a part of the vertices which are of distance
from the origin (which are the heads of the green arrows) are drawn.

Suppose we are given an ideal as an input in Algorithm 2.5.18. The first step is to find
the corresponding Z,-lattice and a filtration of the lattice, which gives a path, as drawn

in bold black edges in figure 2.1(a). In this example, the filtration has length d = 6, and
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(©) (d)

Figure 2.1: The traversal of the Bruhat-Tits building of for ¢ = 2, as in Algorithm 2.5.18.
(a) The filtration of the lattice (in bold black edges) and the Bruhat-Tits building. The
central lattice [Py] is in bold red, and the chamber ([P}, [P1], [P2], [Ps]) is the red loop.
(b) The reduction after the first iteration in step 5 in Algorithm 2.5.18. The black bold
path shows the updated filtration. (c) The reduction after the second iteration. (d) The
reduction after the third and the fourth iterations.
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supposeitis Pp = Lo D Ly --- D Le.

At the first step of the inner loop (step 5 of Algorithm 2.5.18, i = 0), we need to find an
element ¢y € AOX which sends L1 to P;. After acting ¢y on the entire filtration, we get a new
filtration Py = L D P; = L] D L} - -- D L;. The new filtration is shown in the bold path in
Figure 2.1(b).

Next, we will try to find an element in ¢; € A]", which sends L] to P,. Furthermore c;
sends the filtration to P, = L D P, = L) D LY - - - L{, as shown in the bold path of Figure
2.1(c).

Repeat the same process, and find c; € AJ,c3 € A, and act each of them on the
filtration. The filtration after action by c3 is shown in Figure 2.1(d). After a complete round
of traversal (four actions), the length of the filtration is shortened by four. And if we do
the same action of the corresponding ideal I, we claim that a two-sided factor ¢ can be
extracted from c3cpcqc0l, which consequently simplifies the ideal.

Now we shall prove the validity of the process in Proposition 2.5.19.

Proposition 2.5.19. Algorithm 2.5.18 terminates and outputs <y, 7, ] with the desired
property: v,I = {’], and it terminates probabilistically in polynomial time in the bit lengths
of A and N(I), assuming Heuristic 2.5.6.

Proof. It is clear that after an iteration in the while loop, d is decreased by 4, which is the
only place where it is altered. Therefore, the algorithm terminates with finitely many while
loops.

For the validity of the algorithm, we need to keep track of the correspondence between
right Maty(Z,)-ideals and Z, lattices of rank 4. After the setup in step 2 of Algorithm
2.5.18, we know that /Iy = Iy = AA;and Ly g = Q) = A - Py, so they are compatible
in the sense of Proposition 2.5.3. After each iteration in the while loop, since /I, and
Ly, 4 are both changed by the action of c3c3cicp, so they remain compatible throughout the
algorithm.

In each iteration of the while loop, the lattices Lo, - - - , Ly 4 remains to form a path
of type 1 edges inside the Bruhat-Tits building 7,. However, after each iteration, since
Lyyi; = P;fori =1,2,3,4, the path formed by {L;} forms a new cycle of length 4. Therefore,
after extracting an ¢ in step 10, the lattices {L;} remains to be a sublattice of Py.

And at the end of the algorithm, the distance between Py and Ly, 4 in the Bruhat-Tits
building is at most 3. From Proposition 2.5.3, there is an integral Maty(Z,)-ideal ], of
norm ¢ such that both it and I, correspond to the lattice L4, 4, and they differ by a two-
sided Maty(Z,) ideal, which is ¢"Mats(Z,) by comparing the exponents. And since 7y, is a
product of units in A; fori € {0,1,2,3}, we know that at any completion ¢’ # ¢ (including
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the ramified places), (¢"y,I)y is integral in Ay. And from the previous argument, at the
place ¢, (¢~"y,I); = Jy is also integral. Hence, ¢~ "y,I = | is also an integral ideal since it is
integral at every completion. This justifies the correctness of our output.

For the complexity, the first nontrivial step is step 2, which computes the ¢-adic generatic
global element, and takes probabilistic polynomial time under the assumption in Heuristic
2.5.6. Computing the filtration in step 3 can be implemented in probabilistic polynomial
time, for instance, by sequentially inserting elements into the lattice Q; until the filtration
is fine enough in the sense that every two neighboring lattices are of index /.

Next, we look at the loop from steps 4 to 11. The number of iteration we need depends
on vy(N(I)), which is polynomial in bit length of N(I). And in each iteration, we need two
invocations of Algorithm 2.5.14 or Algorithm 2.5.9, which is known to be polynomial from
Proposition 2.5.13. The remaining are standard lattice and ideal operations, which take
polynomial time. O

2.6 Putting everything together: the validity and the complexity

analysis

So far we have described and showed the validity and complexity of all the components
of our algorithm. Now we will combine everything together and discuss the validity and
complexity. The heuristics and complexity settings are the same as the previous sections:
for a real number x, we let L(x) be the function L(x) = exp((InxInln x)'/2). Suppose B
is the set of primes in Q which are less than L(A)°(") and not equal to p (i.e., splits in B).
Again, we list a few heuristic assumptions which are needed for the size and complexity

estimate of Theorem 2.6.1.

Theorem 2.6.1. The main algorithm (Algorithm 2.3.1) is valid and terminates probabilisti-
cally in time L (A)O(l). In addition, the output of the algorithm is a generator of I C Mat,(B)
whose bit lengths of entries are O(In(N(I)) +In(L(A))).

Proof. First we check the validity of the main algorithm. As discussed in Proposition 2.4.7,
we have a decomposition fcsl = JJ, where f € Q*, c € A, ] is aright A-ideal, and J is a
two-sided A-ideal. In addition, we know from the choice of BB and the process of making sI
B-smooth, sl is integral and the norm is not divisible by the ramifying prime. Furthermore,
we know that N(fcsI) = 1, so ] is an integral right A-ideal, whose norm is not divisible by
any ramifying prime, and N(J) € Z*4.

In step (3), after the local reduction at a place ¢ € D and all the replacements of the

ideals J and J, the equation ([T, ¢/) fcsI = JJ remains valid, and ] remains integral, while
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the replaced ideals | and J now satisfies v,(N(J)) = v,(N(J)) = 0. Therefore, at the
end of step (3), after all the primes in D are processed, we will have N(J) = 1 and inte-
gral, so ] = A. Similarly, since N(J) is enforced to be 1, and it is two-sided, J = A as
well. This means that at step (4), from the relation ([T, c/)fcsI = JJ = A, we know that
((TTyc¢) fes) ! generates I. This proves the validity of the main algorithm.

Now we verify the complexity statement. Step (1) in Algorithm 2.3.1 involves invoking
the routine NextElement to the lattice I ! repeatedly until we get a smooth element. By
Heuristic 2.4.4(a), the step is probabilistic of complexity L(A)°(). The element s € [~ as
the output of this step is of size less than N(I~1)L(A)°(), by Heuristic 2.4.4(a). Therefore,
sI, the input to step (2), will have an ideal norm of size L(A)°M). For step (2), we need
to compute the G-reduction structure, which takes time L( A)OM) from Proposition 2.4.5.
Then we need to take the GReduce routine, whose time complexity is agin bounded by
L(A)OW, by Proposition 2.4.7. Note that the output ideal | involves the “extract two-sided
ideal” step from sI, and we have N(J) divides N(sI)%, so the size of N(J) is as well of the
size L(A)OW),

Now we move to step (3), the local reduction part. If the ideal input to this step is ], then
we need to local reduction at every splitting places in D = {¢ prime | ¢ divides N(])}. D
has size w(N(J)) = O(log N(J))log(L(A)°M")), where w(N) denotes the number of prime
divisors of N. Therefore, such number of places is at most the bit length of the norm of |,
and hence it is polynomial in the bit length of A. And we know that the main part of the
local reduction consists of Algorithms 2.5.5,2.5.9,2.5.14, and 2.5.18, so by combining the
complexity arguments in Propositions 2.5.7 , 2.5.13, and 2.5.19, we know that the overall
complexity of step 3 is polynomial in the bit length of N(J), hence polynomial in the bit
length of A. Therefore, since step (4) is negligible in time, adding all four steps in the main
Algorithm 2.3.1, the total time complexity is L(A)°).

Now, we provide an estimate of the size of the entries of the output generator. What
we need to do is to go through again the main Algorithm 2.3.1, and sum up the precision
of the elements which is applied to the output.

The first step of the main algorithm is a B-smooth ideal sI. The way we search for s
is to repeatedly invoke the routine NextElement (I 1) to get s, until sI is B-smooth. As in
Heuristic 2.4.4, the probability each NextElement work is of the size 1/L(A)°(),

After step (1) of the main algorithm, we knew that the norm of s is N(I~1)L(A)°(.
Since s is chosen from the NextElement routine, it is reasonable to assume that the entries of
s are polynomial in N(s), and the bit lengths of entries of s are in O(In(N(I)) +In(L(A))).
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In step (2), we need to extract the two-sided part. Since both N(sI) and N(]) are in
O(L(A)°W), sois f = (sI)~']. So the bit length of f is O(In(L(A))).

Now we estimate the size of the units used in the local reduction step (3). The ideal we
need for local reduction is ], and we know that N(J) divides N(sI)*. Therefore, if we again
let Q(N) denote the number of prime divisors of an integer N (counting multiplicity),
then Q(N(])) < 4Q(N(I)) = O(In(L(A))). When we make ¢-reduction along all prime
divisors of N(]), it turns out that we need Q)(N(])) Bruhat-Tits traversals, which means
that we need to find Q)(N(])) units as in Algorithm 2.5.9 or 2.5.14. Since 2.5.14 is the more
complicated part and generates units of larger entries, we can assume all Q(N(])) steps
are from 2.5.14. Suppose in one of the steps, /-adic reduction is performed, and g; is an
(-adic generating global element of M;, and n = [A : A’] (see Section 4.4 for the notations),
Assume that §; is a left generator of M;, and 7 := g”;l gi, then since A’ O N(7)*A, we know
that n = [A : A’] divides N(7)*. And since we can choose §; by the NextElement routine,
and from Heuristics 2.5.6, we can expect that the 1/e; = O(1)-th shortest element among
all possible values can be a choice of the /-adic generating global element of M;. And
this implies N(7) = O(1), as well as n = O(1). And, since Algorithm 2.5.14 involves two
applications of the Chinese remainder theorem, both over modulus 7 and ¢, The size of the
matrix ¢* at step 15 will be cf? for some constant c. In addition, the size of entries of giis
also polynomial in /, and this implies that the entries of the output of Algorithm 2.5.14 are
O(ct¢), for some constants ¢ and e. Multiplying all the units together, suppose that N(]) =
[T, ¢%, then the entries of the product of all the units appearing in the local reductions will
have entries of size [T, O(c® () = O(c2NUDN(])¢) = O(N(])°W) = O(L(A)°M).

Therefore, adding the sizes of s, f, and all the units in the local step together, we
know that the size, in terms of bit length, of the entries in the principal ideal generator is
O(In(N(I)) +In(L(A))). O

2.7 Experimental results

We have implemented various steps of the algorithm in Magma. In this section, we shall
demonstrate some experimental results and show how the algorithm worked out. We will
first find an answer to Example 2.7.1, whose process is split into two sections: the global
reduction is processed in Section 7.1; and the local reduction and the Bruhat-Tits building

traversal is dealt with in Section 7.2.

Example 2.7.1. In this section and the next, we will work on the quaternion algebra B} «
over Q which ramifies at p = 11. For such a B, we can let it has a Q-basis, {1,i,],k},

where i2 = —1,j2 = —11,ij = —ji = k. The principal ideal problem we will consider is
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Maty(Bp,e). There is a maximal order O of B, o with basis {1,7, (1+/)/2, (i +k)/2}. And
as usual, we take A = Maty(Bp) and A = Mat (O).
Now we consider the right A-ideal I = 5A + aA, where

—1+4 i+ 3k —i

o = .
: 1 1 1- 1
—2-5i—3k 3—3i—3j—3k

In fact, N(«) = 10 and N(I) = 5. Whenever required, assume that the set of smooth primes
is B = {2,3,5}. The goal for this section and the next is to find a right ideal generator of
the princial ideal I.

2.7.1 The smoothing process and the global reduction

In this section, we will work out the global reduction process for Example 2.7.1, as described
in Section 2.4. Since the ideal I is already B-smooth, there is no need to rescale by a factor
s as in step (1) of Algorithm 2.3.1. Then we move through to step (2), which involves
Algorithms 2.4.2 and 2.4.6.

For Algorithm 2.4.2, we at least need to find an element c5 in Maty(B)* such that
N(c5) = 5. As in the algorithm, we randomly generate elements in A with small entries
(with respect to the quadratic form defined in Section 4) and collect B-smooth elements,
until c5 can be generated by a combination. For instance, the first few short elements we

generated are

my— |27 2Tk 3H+i—3) 3+ it gjtik —3—3i—3j— 3k
2i —3— i+ 3j— k| S+yit+ajt+sk F—%i—%ji—3k |’
—5+i+ 5] 3 i—j 0
2 2 _
my = . , My = : .
l%—gz—i-% — i J-3i+1j+ 3k * [—31 —-1-2i.

Then the reduced norm of mq, my, m3 and my are 2% -3%,22.33,2.3.5,22.3.5, respec-
tively, and then one can deduce that

203 _ 817 61 301 21 67
— 28 — 1801 — 5] T ok — T30 — 20¢ — 1) T ok
u3 | 533 77 83 , 103 49

> + 10l t ]_360k 30 T 01+151_ 0k

(5 = mlmz’lmgmll =

is an element of norm 5 as required. From Algorithm 2.4.6, we need to extract the two-sided
ideal J of | = c5 17 which is 162001 A. From here, we can get the ideal | = 16200c5 1T and

send ] to the local reduction, which we will demonstrate in the next section.
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2.7.2 The local reduction and the Bruhat-Tits building

We will demonstrate the Bruhat-Tits building traversal in this section on the same ideal
I. However, for the cs we have chosen, one need to do multiple steps of traversals on all
the primes in B since 16200 has all primes in B as divisors. For the sake of brevity, we will

demonstrate on a smaller set

~_ -1 -1
T O R R ) I
so that we only need to do local reduction of | at the prime ¢ = 5 since N(J) = 5%

Now we start the local reduction for the right ideal | on ¢ = 5. First, we need to prepare
the local reduction data, as in Algorithm 2.5.5. Get a right maximal ideal of norm ¢, from
there we write down a chamber as in the algorithm. Suppose the right O-ideal of norm 5
we generated is P = 5Z + 5iZ + ((7+j)/2)Z + ((3i + k) /2)Z. Then after the setup as in
Algorithm 2.5.5, we can construct a set of right A-ideals A 2 M; 2 M, D M3 2 (A, and
the right ideals My, My, M3, {A correspond to the Z, lattices

1 0 0O 1 0 0O 1 0 0O 5000

01 00 01 00 1 500 0500
P = P = ,P3 = ,Py =Py = ,

0 01O 0 050 0 050 0 050

0 015 0 0 0 5 0 0 0 5 0 0 0 5

respectively (the column vectors form a basis). The lattices P;, P, P; together with the
standard lattice form a chamber in the Bruhat-Tits building.

A /-adic global generator of the ideal | can be computed via Algorithm 2.5.16. A valid
one is

= [PrE-dd bk

5 +3i+t5—k —5+i+57—k
From there, we can compute the Z-lattice L4 corresponding to | and a filtration Ly = Py 2
L1 2 Ly D L3 D Ly, which are

1000 100 0 1000 1 0 0 0

350 0 3500 3500 3 5 0 0
Lgo) _ ’Lgo) _ /Lgo) _ /Lio) _

00 10 3050 3050 3.0 5 0

00 0 1 000 1 400 5 14 20 20 25

The goal is to find the correct actions to match each L; to P;,. As N(J) = 5%, we need 4 steps

for the Bruhat-Tits building traversal. We will give the intermediate results in each steps as
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below.

1. The first step. We will follow Algorithm 2.5.9. Using the correspondence from
sublattices of Py to elements in IP?(F;) as described in Section 5.4.1, L1 corresponds
to [2,1,0,0]" and P; corresponds to [0,0,4, 1]". The ideal of Algorithm 5.9 is to map
both of them to [0,0,0, 1)’

On the side of [2,1,0, O]t, we need to find two Hermitian elements in A* and an
element in SL,(Z). It turns out that in that order, the matrices

1 -3 2 p
—; 2| €H €SLy(Z),and | | ; 2 |€H
i -2 1 2

sends [2,1,0,0]" to [1,3,1,1]%, [3,0,0,1]%, and then to [0, 0,0, 3]".

We can do the same on the side of [0,0,4,1]. We can see that in that order, the

matrices

1 i 2 -1 1 Gtk
'l eH, €SLy(Z), and | -, cH
i 0 1 1 i

2
> 2

sends [0,0,4,1]" to [3,1,1,4]%, [4,0,0,4]!, and then to [0,0,0, 2]".

Finally, merging the lattices in the both sides, we get an element in A* sending Lgo)

to P;, which is

& +16i + 3j+4k 22 —5i+13j+ 9%k

—36+25i — 6j —4k —1+ %i—18j+ Bk
After the action of t1, the filtration {L;} is now sent to

0 1 0 0 0 1 0 0 0 " 1 0 0 1
1 0 0 0 1 01 0 0 1 3 1 3
Ly = [o 1 o] Lyt = [1 0 5 o] Lyt = [1 0] Lyt = [1

0 1 5 1 0 0 5 1 5 11

2. The second step. For this and the rest of the steps, we will follow Algorithm 2.5.14

o o R o
o o u o
o u o o
o
g o u o

o uo o
e}

N ooo
| N

in Section 5.4.2. We need to invoke Algorithm 2.5.16 to compute a ¢-local global
1+3i+ Lk i

LH R+ b- b B b

Note that N(g1) = 5- 32, which implies A’ 2O I + 9A. Therefore, in the Chinese

Remainder Theorem step, we need to solve congruence equations with respect to 9

and / = 5.

generator for the ideal M; first, for which we used g; =

47



Using the correspondence from sublattices of Py to elements in IP?(IF,) as described
in Section 5.4.2, g, 1L§1) corresponds to [0,3,1,0]" and g;° p, corresponds to [2,2,4,1]".

The idea of Algorithm 2.5.14 is to map both of them to [0, 0,0, 1]".
On the side of [0,3,1,0]’, since 0- 0 # 3 - 1, we need to find an element in SL,(Z) and

a Hermitian elements in A* and an element in SL,(Z). It turns out that in that order,

the matrices

[10 189

] 1 %k
€SLy(Z), and |, €H
9 —170 9049k

244

sends [0,3,1,0]" to [1,0,0,2]%, and then to [0, 0,0, 3]".

On the side of [2,2,4,1]!, we also need to find an element in SL,(Z) and a Hermitian

elements in A* and an element in SL;(Z). The matrices

oaq =9+
] € SL,(Z), and lggj i
2

[163 -9

€H
-18 1

sends [2,2,4,1]! to [4,0,0,1]%, and then to [0,0,0, 1]".

Merging the lattices in the both sides, we get an element t; € AJ* sending Lgl) to P,

which is
_ 5344;6557 + 880638981 i+ 583220271 ] _ 5592%5287]( _ 850626553 + 1246?45781- _ 198524211 ] + 43065558781 k
— S738639839 _ 337452543 + 1662520013 ; _ 1220649876k  —1381203482 + 131724635 _ 991087732 + 263U0Z | *

After the action of t,, the filtration {L;} is now sent to

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

(1) _lo 1 0 o 2) _lo 1 0 o 2) _lo 1 0 o 2 |1 1 o o
Ll o o 1 o0 ’L2 —lo 0o 5 o0 'L3 “— (o o 5 o0 'L4 —|o 5 0
0 0 1 5 0 0 0 5 5 10 5 25 30 8 55 125

. The third step. Again we will follow Algorithm 2.5.14 in Section 5.4.2. Slightly

different from the second step, the right-ideal generator of M, is known because

10
of our selected form, which is ¢» = 0 sl And since it is a generator, A’ = A.

Therefore, we do not need the Chinese Remainder Theorem for the pullback in
Algorithm 2.5.14.

Using the correspondence from sublattices of Py to elements in IP?(IF,) as described
in Section 5.4.2, g5 1L§2) corresponds to [4,3,4,1]* and g, ' P; corresponds to [4,1,0,0]".
We need to map both of them to [0, 0,0, 1]*.
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-3 4 ik
On the side of [4,3,4,1]!, we get the matrices [ € SLy(Z) and [ ‘ 2 ] €

—i—k
5 1

H sends [4,3,4,1]! to [2,0,0,1], and then to [0,0,0,1]". On the side of [4,1,0,0],

1 i -1 -1 4 ok ,
€ H, - € SLp(Z), and | . . € H sends [4,1,0,0]" to

i i—k
-7 2 ==

[3,2,3,1]f, then to [2,0,0,1]’, and then to [0,0,0, 1]".

~10—-8i &+i
40 —25i —5+3i
(2)

sending L, to P3. After the action of f3, the filtration {L;} is now sent to

X

Merging the lattices in the both sides, we get t3 = [

( 1 0 0 0 @ 1 0 0 0 ) 1 0 0 0 3 1 0 0 0

1)  fo 1 0 o 2) o 1 0 o (3) |1 5 0 o 3) o 1 0o o

Ll —fo o 1 o0 'LZ “—lo 0o 5 o0 'L3 “—lo 0o 5 o0 'L4 — 10 10 25 of"
0 0 1 5 0 0 0 5 0 0 0 5 0 0 0 5

4. The fourth (and final) step. Similar to the second step, we will need to use Al-
gorithm 2.5.16 to find an /-adic global generator for M3;. A candidate is gz =
ARTERY TS
5 343i-3+3k
rem step in Algorithm 2.5.14, we need to solve congruence equations with respect to
8and ¢ = 5.

. As N(g3) = 5%- 23, and in the Chinese Remainder Theo-

Using the correspondence from sublattices of Py to elements in IP?(IF,) as described
in Section 5.4.2, ¢, 1L§2) corresponds to (3,2,1,1]" and g5 1p, corresponds to [1,2,1,1]".

We need to map both of them to [0, 0,0, 1]*.

—127 16

7 B .
1] € SL,(Z) and [ % 8+8)

s8-8 1
sends [3,2,1,1]" to [1,0,0,1]!, and then to [0,0,0,1]*. On the side of [1,2,1,1],

129 -16 769 8-—8j
€ SL(Z) and ' J
-8 1 8+8j 1

€ H

For [3,2,1,1]!, the matrices [

] € Hsends [1,2,1,1] to [4,0,0,1]" and

then to [0,0,0,1]".

Merging the lattices in the both sides, we get ¢4 /\3X , which is

649411557 — 5393%07641' + 39070140] + 904622092]( _ 7031;9492 + 5616256121' _ 1584?2436]' _ 1777?44361{
2270519176 — 1361698372i — 266298448j + 577765196k  —649802211 + 579280672 — 14068540] — 68263256k |/

and sends Lf) to 5Py, homothetic to P.

As the Bruhat-Tits building traversal is completed, we have the relation
t4t3t2t1 (5C5_1[) = 5A,
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and can conclude that cs(tst3trt;) ™! = fn is a generator of I, where
a1 a2
an 15048643669663719885%61 | 2616398492156972754228i + SEBIBIT77299470427  _ 1177005827499222504624k
app | | —6590989077438772424 — 2171133682526182706877 ; _ 133885533857364904664] + 339925139877433277475
ay | | 611100321503819701318 — Z4774597414364195167 § 4 1778502(87129882929431] — 1551573424146696776549
axn 1609672161116642756891 1 9646154544490715747206] — 2V 22452307452016857 ; 1. 645793079716769055010k

2.8 Future directions

How far can we generate the main algorithm? It is natural to ask if we can solve the
principal ideal problem for Mat, (B), where B is a quaternion algebra over a number field
K. The strong approximation and Page’s algorithm in [Pag14] suggests us to consider the
norm ideal N(I) € Ok. We did not generate to that level since Mat (B ) is the setting
which provides us some link to applications.

In the local reduction in Section 2.5, we excluded the ramified case ¢ = p. Can we do

local reduction on a ramified prime?
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Chapter 3
Computing Igusa Polynomials
via p-Adic Methods

3.1 Introduction

3.1.1 The case of genus 1: CM elliptic curves and Hilbert class polynomials

The key step to construct the system parameter for elliptic curve cryptography is to
construct an elliptic curve E over a finite field IF;. To ensure the hardness of the underlying
discrete logarithm problem, we need the group E(IF,) to contain a subgroup of a large
prime order (ideally, we want |E(IF,)| to be a prime).

The standard approach is to pick a random curve E until we find one with |E(IF,;)|
satisfying our condition. Alternatively, one can achieve this via the complex multiplication
(CM) method.

We give a quick overview of how the CM method works in finding the system param-
eter. Suppose we start with a curve E over a number field L, such that EndQ(E ) = Ok,
where O us the maximal order of an imaginary quadratic field K. In this case, we say that
E has CM by K. Let p be a prime ideal of L with absolute norm p/. It is a well-known result
(see, for instance, [Lan87, Chapter 13, Theorem 12]) that E has ordinary reduction if and
only if p splits in the CM field K. Now, suppose that E has ordinary reduction to E over
the finite field IF; = IF ;. Let 7 be an element in Ok such that 7777 = p/. Then the Weil-p/
number of E is either 7z or —7, which implies |E(FF /)| = pf + 1+ Trg 0(m).

According to the construction above, finding a curve over a finite field with prescribed
order just boils down to choosing the parameters K, p, f, an elliptic curve over a number
field with CM by K, and then taking reduction.

For a fixed imaginary quadratic field K, the Hilbert class polynomial encodes all elliptic
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curves over number fields with CM by K. For j € Q, denote E; by an elliptic curve over Q
whose j-invariant is j. Then the Hilbert class polynomial of K is defined as

He)= 1 ()

J

It is a direct consequence of the previous discussion that an application of Hilbert class
polynomial is the construction of system parameters in the elliptic curve cryptography:. It
also has importance on the theoretical side: Indeed, Hx € Z[x], and the splitting field of
Hg in K is the Hilbert class field of K.

It is then natural to ask for the generalization for higher dimension abelian varieties. In
this chapter, our main focus will be on dimension g = 2. To construct the analog of Hilbert
class polynomials, we need the analogy of j-invariant which characterizes abelian varieties

of genus 2.

3.1.2 The case of genus 2: CM hyperelliptic Jacobians and Igusa class polyno-

mials

A CM field is a totally imaginary extension of a totally positive number field. For a quartic
CM field K, we say that an abelian surface A defined over a number field L has CM by K
if End;(A) = Ok. Here we want to construct a “class polynomial” whose roots are some
invariants that characterize abelian surfaces with CM by K.

Instead of a general abelian variety, we are more interested when the abelian variety is
isomorphic to the Jacobian variety of a hyperelliptic curve, since more operations, such as
the point addition and some isogenies can be computed explicitly in this case.

It turned out that the situation is easier in lower genus, since every principally polarized
abelian variety of dimension g < 3 is isomorphic to the Jacobian variety of an algebraic
curve ([OU73]), and in particular, every simple abelian surface is isomorphic to the Jacobian
of a hyperelliptic curve of genus 2. If we further restrict the quartic CM field K to be
primitive (here it simply means non-biquadratic), then every curve with CM by K will be
simple, and hence can be represented as a hyperelliptic Jacobian.

Therefore, it suffices to find all elliptic curves of genus 2 whose Jacobian variety has CM
by Ok. Since the coarse moduli space of genus g curves has dimension 3¢ — 3, we would
expect 3 parameters to characterize a hyperelliptic curve. There are several such choices,
but we will use the Igusa invariants in [Igu60]. Conversely, given the Igusa invariants
(i1,1p,13), given that the Jacobian variety is simple, we can use Mestre’s algorithm in

[Mes91] to recover the hyperelliptic curve.
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Using the Igusa invariants (i1, 3, i3) described above, for each CM quartic field K, one
can define three polynomials H 1, Hx 2, Hx 3, each of them is a monic polynomial whose
roots are exactly the corresponding Igusa invariant. We call these the Igusa polynomials.

Not every property from the Hilbert class polynomials generalizes to the Igusa class
polynomials. First, the Igusa polynomials are no longer of integral coefficients. They are
still of rational coefficients, and the prime divisors of the denominators are those primes
that have split Jacobians after reduction (see [Str10, Theorem 10.1]). The Igusa polynomials
no longer give information on the Hilbert class field of K; instead, from K, we can compute
a reflex field of K. And it turns out that the reflex field adjoining the Igusa invariants is a
subfield of the Hilbert class field of the reflex field. For more details on the properties, see
[Shi98] or [Spa%4].

Analogous to the genus 1 case, one construct cryptographically secure hyperelliptic
curves over finite fields via Igusa polynomials. Suppose that a quartic CM field and p, f
are chosen such that there exists a hyperelliptic Jacobian over a number field which has
CM by K and an ordinary reduction over the finite field IFP 7. Then the order of the reduced
hyperelliptic Jacobian will be Nk (7t — 1) for some 7 € Ok satisfying 77t = p/.

We will now discuss some approaches in computing the Igusa class polynomials, but
first, we shall look at the case of Hilbert class polynomials in genus 1.

Hilbert class polynomials in genus 1 and the p-adic method. Algorithms in computing
Hilbert class polynomials for imaginary quadratic fields K can be classified in the following
three categories:

1. The analytic approach. The idea is to find a set of representatives {7q },cci(x) On the
upper half-plane, compute the j-invariants j(,), and multiply the factors (x — j(7,))
to recover the Hilbert class polynomial Hg. See [Eng09] for a discussion of possible

improvements and the complexity arguments.

2. The CRT approach (see [ALV04]). The idea is to start by determining a set of rational
primes Sk, such that for each prime p € Sk, there are /1(K) isomorphism classes of an
elliptic curve over IF, with CM by K. Suppose the j-invariants are {j,, }1<j<ci(x)- Then
[1(x — jp,;) will coincide with Hg (mod p). Given that the set Sk is sufficiently large,

one can recover the Hilbert class polynomial by the Chinese Remainder Theorem.
3. The p-adic approach.

As our goal is to work on the p-adic method for higher genus, we summarize the p-adic
method in genus 1 in greater detail. This approach is described and analyzed by Broker in
[Bro08].
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To compute the Hilbert class polynomial for an imaginary quartic field K, We start by
choosing a prime p that splits completely in H, the Hilbert class field of K. Since such a
p also splits in K, Deuring’s theorem implies that elliptic curves with CM by Ok remain
ordinary upon reduction by p. Conversely, for such a p, one can find an elliptic curve over
F, with endomorphism ring Ok.

After E, is found, we need to find the "canonical lifting", denoted by E, of E,. Denote
by Ellx(IF,) and Ellg(Q) the sets of j-invariants of elliptic curves with endomorphism
rings Ok over F, and Q,, respectively. It is known that Ellx(IF,) and Ellx(Q,) are bi-
jective, which means that each E € Ellg(Q,) reduces to a E € Ellg(FF,), and it turns
out that E the canonical lifting of E. In [Br608], Broker considered the analytic space
Xk(Cp) := {j € Cp | red(j) € Ellx(IFp)}. Given an ideal I C Ok, there is an action on the
CM curves, oy : Ellg(Q,) — Ellg(Q,). Broker claimed that the map can be extend to an
analytic map pr : Xx(Cp) — Xg(C,), whose fixed points are exactly the j-invariants of the
canonical liftings, and can be computed by Newton’s method. And after one canonical
lifting of CM curve is computed, the rest of them can be computed via the action of the
class group Cl(Ok).

Igusa class polynomials in genus 2 and the p-adic method.
All the three approaches in the genus 1 case had been tried out in genus 2. They are:

1. The analytic approach. The first analytic algorithm with a complete analysis of
complexity can be dated back to Streng in [Str14]. For a given quartic CM field K,
the idea is to first give a list of complex abelian surfaces with CM by K. They will be
given by the complex lattice A, = C?/®(a), where a is an ideal in O and @ is a CM
type. Via the analytic theta functions, one can recover the Igusa invariants. And after
compute the Igusa invariant through all the isomorphism classes, one can recover
the Igusa class polynomial via the LLL algorithm. Improvements are proposed by
Enge and Thomé in [ET14].

2. The CRT approach, first proposed by Eisentraeger and Lauter in [EL10]. The idea is
similar: Find primes p such that there are sufficiently many hyperelliptic Jacobians
defined over IF), and find all such hyperelliptic curves, reconstruct Hy (mod p),
and use CRT to recover the Igusa polynomials. See also [BGL11] for some suggested

improvements using correspondences on Siegel modular varieties.

3. The p-adic method.

Our main goal in Chapter 4 is to investigate the possibilities of the p-adic approach. The

standard approach of using the p-adic method to compute the Igusa class polynomial of a
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CM field K proceeds as follows: (1) Search for an ordinary abelian surface A over a finite
field IF,r so that A has CM by K; (2) Find the canonical lifting A of A. More explicitly, we
are in search for an abelian surface A over d Q , such that End(A) = End(A), where the
field of definition of A the degree 1’ unramified extension of Q,, such that End(A) = O;
(3) Recover the Igusa invariants and Igusa polynomials from A.

It turns out that the critical step of the p-adic approach is step (2) above, for which we
will take A as the canonical lift of A (see Definition 3.2.10 for details). Since the canonical
lift also lifts the p-power Frobenius to itself, this leads to the condition that the p-power
Frobenius have to lift to the canonical lift A, which will be a (p, p)-isogeny. This is the
main obstruction to generalize the p-adic method to genus 2 since it is in general hard to
describe the correspondence of (p, p)-isogenies on the moduli space of higher-dimensional
abelian varieties.

In [GHK™06], Gaudry et al. gave an approach for p = 2 on Rosenhein invariants. For
p = 3, [CKL08] proposed a method using the 4-theta null points, but their method does
not generate. For a general method, [CL09] proposed a method for general p and any di-
mension g using 2" p-theta null points, but it turned out to be feasible in practice only when
p = 3 since computing 2" p-theta null points involves the invocation of computationally
heavy Grobner basis algorithms. Faugére et al. discussed improvements of the Grobner
basis step in [DJP14] and gave experimental results to compute 2p-theta null points for
p=3orb.

3.1.3 Outline

Our main contribution to this topic is to follow the algorithmic structure in Section 3.3, we
provided improvements on various steps. While it was only practical in the past literature,
such as [GHK"06] and [CKLO08] to apply the p-adic method to compute the Igusa class
polynomial when p = 2,3, we were able to run examples, under our improvements, up to
p = 5. The central ingredient of the p-adic method is the canonical lifting of a hyperelliptic
Jacobian over a finite field to a hyperelliptic Jacobian over an unramified extension of a
p-adic field. Our main contribution is the improvements that support Theorem 3.1.1 for

canonical lifts and Theorem 3.1.2 for the entire Igusa polynomial algorithm.

Theorem 3.1.1. Let K be a quartic CM field and Ky be the real subfield of K. Suppose that
the discriminant of K and Ky are D3D; and Dy, respectively. Suppose a hyperelliptic curve
C of genus 2, defined over some finite field IF; = IF,r is given, such that the endomorphism
ring of Jac(C) is the maximal order Ok of K.

Assume that the 2p-theta null point of Jac(C) is in the finite field extension F 4. If w is

the exponential factor, such that multiplying two m x m matrices takes time O(m®), and u
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is the exponential factor such that multiplying two m’-bit integers is O(m'#). The canonical
lift of Jac(C) can be computed in

—1\"* y
E=0 (pg(“"("’“)“”) +0 (d?‘(p —2)! (”21) ) +0 ((DS/ZDf/Zd)“)

operations on the finite field IF,. The space complexity of the algorithm is O(p®) elements
in the finite field IF,.

Theorem 3.1.2. Let K and K, as well as all other notations, be as in Theorem 3.1.1.
Suppose in addition that X is the time complexity to verify whether an abelian variety
over a finite field has CM by K (we have X = O(g'®) if the algorithm proposed by Freeman
and Lauter in [FLO8] is used). Then the Igusa class polynomials (h 1, hk 2, hk3) can be

computed in time and space complexity

3 9 3/2
q(logq)) (q X) S
O —=%-1)+0 + 54+ 0O(DiD73).

<\/D0Dl vDoDy (DoD)

The remaining of the chapter will be organized as follows. In Section 3.2, we will

introduce the background related to CM abelian varieties and algebraic theta functions.
We will propose the main algorithm in Section 3.3, which inputs a CM quartic field and
outputs the Igusa class polynomial, and give a brief overview of the major steps. The major
steps, finding curves with the correct CM over a finite field, finding the canonical lift, and
finishing with the Igusa class polynomial, will be elaborated in Sections 3.4, 3.5, and 3.6,
respectively. We will carry out actual examples in section 3.7. The validity, computational
complexity, and other issues regarding the main algorithm will be discussed in section 3.8.

3.2 Background

3.2.1 Moduli of Abelian Surfaces and Moduli of Hyperelliptic Curves
3.2.1.1 Principally Polarized Abelian and Jacobian Varieties; The Moduli Problem

The case of moduli of Jacobian of hyperelliptic curves is described as a special case in
[CO12, Chapter 2].

Let k be an algebraically closed field. Denote by 7 1 be the moduli space of principally
polarized abelian varieties (ppav) of dimension g over k.

The main object of our interest in 2% ; are those which are Jacobians. We say C/k is
a curve of compact type if it satisfies two conditions: (i) every irreducible component is
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smooth, and (ii) The dual graph of C is a tree. A curve of compact type gives a compact
Jacobian variety J = Jac(C) which is a dimension g abelian variety (loc. cit.).

J admits a principal polarization A whose construction is described, for instance, in
Milne’s notes, [Mil08, sections 1.8, 3.6]. First fix a point P € C(k). Then there is a morphism
f": C" — J which maps (Py,---,P) — [Py +---+ P, —r - P], and the morphism f”
induces a map (") : C) — 7, where C") is the r-th symmetric power of C. Then
W’ := Im(f)) is a subvariety of C"), and we define the theta divisor ® := W8~ (this is
defined up to a translation as we vary the initial selection of P). It is shown in [loc. cit.,

Theorem 3.6.6] that the invertible sheaf £(®) defines a principal polarization:

A=A:TJ > J'= Pic%(7)

3.1
a— tL(0)® L(O)7 L G0

Here Pic’(A) C Pic(A) is the collection of invertible line bundles £ on A such that
toL @ L1 =0 € Pic(A) foralla € A.

We denote by .#, the moduli space of genus g curves of compact type. From [CO12,
Chapter 2], there is a morphism j : .#; — .o/ that sends C to j(C) = (Jac(C), A¢). Itis
known that while the genus ¢ > 2, the dimension of .#; is 3¢ — 3 while the genus <7, is
g(g+1)/2, so at genus 4 or larger, it is not reasonable to expect that every ppav comes

from a Jacobian. But at low genera we have:

Theorem 3.2.1. [Oort, Ueno [OU73]] Suppose ¢ < 3, then j(.#;) = o7 1. In other words,
every ppav of dimension 3 or less is isomorphic to a Jacobian variety of a (not necessarily

irreducible) curve of genus g. (See also [CO12, Chapter 2]).

3.2.1.2 The Igusa Invariants

The invariants are described by Igusa [Igu60]. For more details, see [Str14, Chapter 2] or
[BGL11, Chapter 2].

Let k be a field whose characteristic is not 2. Suppose we start with a hyperelliptic
curve over k of genus 2, defined by the equation y? = c(x —a;)(x —aa) - - - (x — a6), and
ay, - - - ag € k are pairwise distinct.

Let us treat 4; as an indeterminate for now. For 1 < i,j < 6, denote for brevity

(ij) = a; —a; € Zlay,--- ,a6]. There are homogeneous and symmetric Igusa-Clebsh
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invariants of degree 2, 4, 6, and 10 described as below:

L= c*) (12)*(34)*(56)%;
O15

L=t Y (12)2(23)2(31)(45)2(56)%(64)%
O1o

I = c® Y (12)2(23)2(31)%(45)2(56)%(64)(14)(25)* (36)%
Oeo

110 = C10 H(Z])Z

i<j

(3.2)

Note that the summation in (3.2) ranges over the orbits of the action of the symmetric
group S on the summands in Z[ay, - - - , a6, s0 I, I and I is a summation of 15, 10, and
60 terms, respectively. Also note that I, Iy, Is, [1p € k because of the symmetry in the

summation. Then the module space .#> has the following structure:

Theorem 3.2.2 (Igusa [Igu60]). .#; is isomorphic to Py 4610\Hio, where P 4410 is the
3-dimensional 2,4, 6, 10-weighted projective plane, and Hjj is the weighted hyperplane
generated by the weight 10 variable.

The isomorphism is given by sending a hyperelliptic curve to its Igusa-Clebsh invariants
[I: Iy Is : Tyl

When the characteristic of k is not 2, the absolute Igusa invariants (i1,1,i3) is obtained
by a regular map from IP5 4610\ Hio to the affine space A3. Different maps are being chosen
in different literature: for instance, Broker et al. used (i1, iz, 3) := (I5/ Tho, I+I3 / Iho, I I3 / o)
in [BGL11]; while Streng in [Str14] suggested (I41}/ Lo, L1/ 1o, I3/ 13,), where I} :=
(LI —3I6)/2.

In our work, we will follow Kohel’s suggestions in the Echidna library in [Koh], which
takes (i, 1p,13) = (Lals/ I, 1314/110, 1%16/110).

3.2.1.3 The Igusa Class Polynomial

Analogous to the Hilbert class polynomial in the case of genus 1, for the case of genus 2,

we can construct a triple of Igusa class polynomial as follows:

Definition 3.2.3 (Igusa class polynomial).

hn(x) = ] (x—in(C)), ne{1,2,3}, (3.3)

CGS@K

where Sp, means the isomorphism classes of hyperelliptic curves over Ox whose Jacobians
have CM by Ok.
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One thing to note is that unlike in the genus 1 case, the Igusa class invariants need not
be an algebraic integer, hence hg ,(x) is only guaranteed to be in Q[x].

There is another issue with the Igusa class polynomial. Since we are not “labeling” the
Igusa class invariants, if we denote hy = |Sp,|, the roots of the Igusa class polynomials
suggests h1*<3 triples (i1, iy,13), but only hj of them gives a curve with CM by Ok, and
we have no more efficient way to figure them out other than exhaustive search. An
improvement for this issue is suggested in [GHK™ 06, Chapter 3] and [Str14, section 2.4].
Here we let Cy, - -, Cp; be a set of representatives in 1So]-

The main ingredient of the improvement is that we need to replace the polynomials
hx > and hy 3 by some function fig » and fig 3 such that EK,n(ﬁ(Cj)) = iy(C;j) forn € {2,3}.
This can be computed by Lagrange interpolation in the case that we have all i1 (C;) distinct
(which happens most of the cases):

Ik x—zl Cl)

I
i (x) = Z HW , ne€{2,3}.
#]

Observe that Ky (i1(C;)) = Hl 14 (i1(Cj) —i1(C;)). This means that we can replace
hig n(x) with functions fig , (x), n € {2,3} with potentially smaller coefficients:

hg hg
i’\l[(,n(x) = Z ln(C]) H(X — zl(Cl)) , ne {2,3}. (34)
AU

From the triple of polynomials (kg 1, fix 2, fix 3), given iy (C;) for some j, we can obtain i, (C;)
by in(Cj) = I (i1(C)) / g1 (11 (C)).
3.2.2 The Theory of CM

The object we concern about is the CM abelian surfaces. To give a better picture of how
things are generalized, we briefly discuss the case of dimension ¢ = 1. A standard reference

for CM elliptic curves is [Sil94]; for general CM abelian varieties, see [Shi98].

3.2.2.1 CM elliptic curves

Suppose K = Q(v/D) is an imaginary quadratic field of discriminant D < 0, and O
be its maximal order. We say that an abelian variety A defined over L has CM by K if
Endf(A) = OK.
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Now we return to the elliptic curve case. Suppose E is defined over C and has CM by

K. Then one have E(C) = C/a for some integral ideal a C K. The main theorem of CM

theory implies that E can be defined over H, the Hilber class field of K. In addition, there
is a bijection

{Isomorphism classes of

} + CI(K),

CM elliptic curves

where both Gal(H/K) and CI(K) act transitively on each of the two sets. And it implies
that if we define the Hilbert class polynomial as the monic polynomial Hx whose roots are
exactly the j-invariants of the curves E with CM by K, then the splitting field of Hk is the
Hilbert class field.

For our application, we also need to know about the reduction of CM elliptic curves
over Q. Suppose K and H are as above, and E is an elliptic curve with CM by K, defined
over H. Suppose p is prime ideal in H and pNZ = (p). Assume that E has a good
reduction at p. Then from [Lan87, Chapter 13, Theorem 12], E has an ordinary reduction if

p splits in K; and has supersingular reduction if p ramifies or is inert in K.

3.2.2.2 CM abelian varieties

For the case of dimension ¢ > 1, we first need to define general CM fields and CM types.

Definition 3.2.4 (CM fields and CM types). Let K be a number field and [K : Q] = 2g. We
say that K is a CM field if K is a totally imaginary extension of a totally real number field
Ko of degree g.

A CM type of K is a collection of g embeddings: ® = {¢1,-- ,¢¢}, ¢; : K — C, such
that for every embedding ¢ : K <, exactly one of i or ¢ (the complex conjugate of ¢) is
contained in ®. ® can be viewed as a map K — C$.

Suppose K’ C K is a CM field and @’ is a CM type of K'. We say that (K, ®) is induced
from (K, ®'), if {¢'}prear = {Plx}pco. We call (K, ®) a primitive CM type if it is not
induced from a CM subfield.

For a CM type (K, ®), the reflex field of K, denoted as K*, is a CM field which is the
fixed field of {¢ | c® = ®} C Gal(Q/Q).

In particular, in the case we are interested in, when ¢ = 2, (K, ®) is non-primitive if

and only if K is biquadratic.

Definition 3.2.5 (CM abelian varieties). Let A be an abelian variety of dimension g,
defined over C. we say that A is of CM type (K, ®), if there is an ideal a of K such that
A(C) 2 C8/P(a).
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In fact, such an A always have End(A) = Ok. In addition, the abelian variety given
by the g-dimensional lattice C8 /®(a) is principally polarizable if and only if there exists a
¢ € Ok, satisfying the following condition: (1) ¢ is purely imaginary; (2) for each ¢; € P,
Im(¢;(&)) < 0; (3) Dk = aa, where D is the different of the CM field K.

Our goal is to characterize the principally polarized abelian varieties A with primitive
CM type (K, @) via algebraic objects in K. In the elliptic curve case, we corresponded CM
curves with the class group. In the general case, we need the Shimura class group of a CM
field:

Definition 3.2.6 (The Shimura class group). For a CM field K, the Shimura class group of
a CM field, denoted as €(K), is defined as

€(K) := {(a,a) | a fractional Ok-ideal, aa = (x),« € K totally positive}/ ~,

and we say (a,a) ~ (b, B) if there exists an u € K* satisfying b = ua and § = uiia. The
group law of €(K) is given by component-wise multiplication.

For a CM type (K, @), denote by S(K, ®) the set of isomorphism classes of principally
polarizable abelian variety with CM by (K, ®). Then, the best analog we can make from
the main theorem of CM of elliptic curves is the following:

Theorem 3.2.7 (See also [Shi98, Koh08, BGL11]). There exists a transitive action of €(K)
on S(K,®). Let H' be the Hilbert class field of K*, the reflex field of K. Then there exists a
group homomorphism Gal(H'/K") — ¢(K).

As Kohel pointed out in [Koh08], the homomorphism Gal(H*/K') — ¢(K) need not
be injective nor surjective. This leads to a weaker result compared to the elliptic curve case:
If A is a principally polarized abelian variety with CM type (K, ®), and suppose its Igusa
invariants are (iy,i,13), then the compositum K (iy,i5,i3) € H' ([Spa94, Theorem 5.8]),
but they do not necessarily needs to be equal.

Theorem 3.2.7 also suggests that |€(K)| = |S(K, ®)|, which could tell us the degree of
the Igusa class polynomials if we can enumerate |€(K)|. This is given by the following

theorem:

Theorem 3.2.8 ([BGL11, Theorem 3.1]). Let K be a primitive CM field with the totally real
subfield Ko. Denote by CI*(Kj) the narrow class group of Ky, and (Og,)" the group of
totally positive elements in Ok,.

Then the following sequence is exact:
1= (Og,)"/Nisk, (O5) = €(K) — CI(K) — CI* (Kg) — 1,
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where the three maps in the middle are defined by u — (Ok, u), (a, &) — a, and the norm
map, respectively.

In the case when g = 2, for a quartic CM field K, there is one CM type (up to conjugation)
when K is cyclic and Galois, and two CM types when K is non-Galois. From Theorems
3.2.7 and 3.2.8, we have the following corollary which determines the degree of the Igusa

class polynomials:

Corollary 3.2.9 ([Str14, Proposition 4.4], [BGL11, Corollary 3.3]). Let K be a primitive
quartic CM field, and denote

~[CUK)|
IC1" (Ko)|

|[CL(K)|

A= [(Og,)" /N, (OK) [C1(Ko) "

= |0k, /Ni/x, (Og ) | -

Then there are .#” and 2.4” isomorphism classes of principally polarized abelian varieties

with CM by K when K is Galois and non-Galois, respectively.

3.2.3 Canonical Lifting of Hyperelliptic Curves

Let k be a perfect field of characteristic p > 0, and let Ay be an ordinary abelian variety

over k.

Definition 3.2.10 (Canonical lifting). Given Ay as above, let W (k) be the ring of infinite
Witt vectors over k. We say that an abelian scheme A over W(k) is a canonical lifting,
if Ay = Ap and the induced homomorphism Endw(k)_gr(A) — Endy-gr(Ao) is bijective.
Here Ay := A Xy k is the change of basis.

The first important fact is that canonical lifting exists:

Theorem 3.2.11 (Lubin, Serre and Tate [LST64]; see also Messing [Mes72], theorem V.3.3, p.
172). For any ordinary abelian variety over k, there is a projective abelian W (k)-scheme A

which is the canonical lifting of Ay.

Let K = Frac(W(K)) be the fraction field. Then the geometric fiber Ax of the W(K)-
scheme A is an abelian variety over K. We also call Ak the canonical lifting of Ag. A can be
obtained by Ag via the Néron model.

The next issue is the Frobenius. The Frobenius in W(k), denoted as ¢ € Aut(W(k)), is

defined by sending each component of the Witt vector to its p-th power. We thus have the

relative Frobenius for abelian varieties on W(k) and on k.
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Proposition 3.2.12 ([Mes72, Corollary A.1.2, p. 177]). Let A be a W(k)-scheme and Aj be
an ordinary abelian variety over k such that Ay = Aj. A is a canonical lifting of Ay if and

only if the relative Frobenius Fy : Ag — A(()p M ifts to a separable isogeny F : A — A”.

3.2.4 Theta Functions

We shall look at two sides of theta functions: the analytic theta functions, which is defined
for abelian varieties defined over C; and the algebraic theta functions, which can be defined
for any abelian variety. We will also look at how they are connected.

To define the analytic theta function, let A be an abelian variety of dimension g over C.
Then A is associated to a period matrix Q) € $3, thatis, A = C8/(Z3 + QZ?). Here ¢ is
the “g-dimensional upper half-plane”, that is,

93 :={Q € Mat(g x g,C) | The imaginary part of () is positive definite}.

Definition 3.2.13 (Analytic theta functions). Letej, e, € Z8. And let] € Z. Then the

analytic theta function is defined as

€ — (e YO (g &) s 2mifn 4 &) (24 €2
0; LJ (z2,Q) := nezzgexp [m(n—f— ] ) O (n—|— i ) —|—2m<n—|— i ) (z—l— i )] .
We will need a similar construction which works on abelian varieties over any field.

We will do so by introducing algebraic theta structures. A complete treatise of this topic
can be found in the work of Mumford [Mumé66].

As usual, suppose A is an abelian variety of dimension 2 over a field k, and . is
an ample line bundle on A of degree d. Let AV := Pic’(A) be the dual abelian vari-
ety of A. Then there is a homomorphism associated to ., given by ¢» : A — AY,
x = (T2 ® L1, where T, : A — A is the "shift by x homomorphism". Now we
denote K(.Z) = ker(¢) (so that if char(k) / d, K(£) has cardinality d?), and define
G(Z):={(x,9) | x € K(ZL),¢: L = 1:%}. We can define a group structure on G(.%)
by (x,¢) - (v, 9) == (x +y, @ o ).

On the other hand, define § = (d1,6,) € Z2%, where 6 | 6,. Let Z(6) := Z/6Z x
Z /5,7 be a finite group, and Z(6)P be the Cartier dual of Z(5). We then define K(8) :=
Z(8) x Z(6)P. Note that for each .# there is a unique ¢ such that K(§) is isomorphic
to K(Z). We also define H(J) := G x Z(6) x Z(6)P equipped with the group law
(@1, x1,17) - (a2, x2,1p) == (wya2l2(x1), X1 + x2,1112). Under all these settings we can define
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theta structures as follows:

Definition 3.2.14. With notation as above, we define the theta structure as a homomor-

phism @ : H(4) — G(.¢) which makes the diagram below commutative.

0 Gk H(5) —— K(5) —— 0
H l@o l@é
0 Gk G(¥) L K(¥) — 0

Furthermore, suppose .# is symmetric (which means there exists ¢ : [-1]*.¢ = .£). We
say that ©; is symmetric if _1 0 ©5 = @5 0 D_1, where D_; : H(§) — H(J), (a,x,1) —
(v, —x, 1" ) and 6_1 : G(ZL) = G(&), (x,9) — (—x,Tp), with T, := TP Lo [-1]* o .
If both .¢ and ©; are symmetric, we call the data (A, ®s,.Z) an abelian variety with a

d-marking.

Under this setting, Mumford [Mum66] proved that the global section I'(A,.%) is an
irreducible G(.Z)-module. Together with the theta structure ©;, we will get a unique
embedding A — IP(T'(A,.#)), and the theta structure canonically defined P(T'(A,.#)) —
P(V(6))) = ]PZ’l, where V(4) is the vector space with basis Z ().

Definition 3.2.15 (Theta null point). Let (A, ©s,.Z) be a marked abelian variety. We call
the theta null point the image of ¢, the identity of A, in the projective space ]PZ_1 via the

canonical embedding described above.

Now we move to the situation about which we actually care: Let § = nl = (nl,nl),
where n = 2% and [ is a prime. For an nl-marking (4, ®.;,.%), we associate it with its

canonical theta null point (4;);_, (1)~ 1t is well known (see for example, [Mumé66]), that the

nl
coefficients (a;);. z(any ©f a theta null point have the following restrictions.

Theorem 3.2.16 (Mumford, [Mumé66]). Let (a;) iez (nl) be a theta null point, as defined
above. Then:

1. (Symmetry inherited from ©.;) Foralli € Z(nl), a; = a_;.

2. (Riemann’s relations) Let (vj, wj, x;,yy), j = 1,2 be in Z (nl)* such that the two
quadruples (v; + w1, v1 — w1, X1 + Y1, X1 — Y1) and (02 + w2, V2 — W2, X2 + Y2, X2 — Y2)
only differ by permutation. Let x € Z(2 )D Then we have

E x(t av1+taw1+t E x(s ﬂx1+sﬂy1+s: Z x(t ﬂv2+t€lw2+t Z X(s ax2+say2+s-
teZ(2) s€Z(2) teZ(2) SEZ(2)
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Another desirable property is that the equations above actually characterize the moduli

space of abelian varieties with nl-covering:

Theorem 3.2.17 ((Mum67, p. 87]). Suppose n = 2% > 8. Let .#; be the locus of theta null
points of abelian varieties with m—marking, and let //Zﬁ be the closed projective subvariety
of ]PZ_1 defined by all the equations in Theorem 3.2.16. Then .#.,; maps non-isomorphic

H—markings to different points on . ;.

~1,and ./ is an open subvariety of ./Z;.

3.3 The Main Algorithm

In this section, we describe the major steps of the principal ideal generator algorithm. After
the algorithm, we give comments on each step, together with a pointer on where the steps
will be explained. The validity of the steps of the algorithm will be discussing following
the subsections describing each step. The complexity of the algorithm will be focused on
Section

Algorithm 3.3.1 (The main algorithm).
Input: A quadratic CM field K, with the real quadratic field K.
Output: The Igusa polynomials hg ,(x), where n = 1,2, 3 of K.

(1) Search for the smallest prime power p" such that there exists a hyperelliptic curve C
defined over IF,r with End(Jac(C)) = Ok.

(2) Find a (i1,i3,13) € IFf,r such that the curve C/TF, with the Igusa invariant (i1, 1, 13) has

endomorphism ring Ok.
(3) Compute the canonical lift C/ Qpr of C.
(4) Compute the Igusa invariants (11,12,13) € Qypr of C.
Compute the minimal polynomials {hx 1, fix 2, hix 3} C Q[x] of {f1, 1,13}

(5) If all the degrees of E; equal to the expected degree, which can be computed from
K, return {ﬁ;,@,@} and terminate. Otherwise, {EIZ,E;Z,ITK;} are factors of
h1, hy, hs. Go back to step (2) and find another set of (i1, i3, 13) to find other factors.

Below are some comments and rationales for the steps in Algorithm 3.3.1, together
with pointers to the relevant sections.

(1) As we will explain in Section 3.4.1, the characteristic p depends on the splitting condi-
tion in the number field K, and the extension degree r depends on both the class group
of K and H*, the Hilbert class field of the reflex field of K.
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(2) Mestre gave an algorithm in [Mes91] to obtain a curve C from the Igusa invariants.
The remaining is a two-step check: To test if Jac(C) has CM by an order in K, one
can verify by point counting; to test if Jac(C) has CM by K, one can use the ideas of
[EL10, FLOS8, Spr19]. More will be discussed in 3.4.

(3) This is the core of the main algorithm. As will be explained in Section 3.5, we will first
extract the 2-theta null point of C from its hyperelliptic equation, then the 2p-theta
null point of C by solving the Riemann equations as in Theorem 3.2.17, Finally, to
compute the 2p-theta null point of C, one solves the Artin-Schreier equation induced

from Theorem 3.5.9.

(4) This is in Section 3.6. The Igusa invariants of C can be derived from the 2p-theta null
points by reverting step (3) above. Then the minimal polynomial can be constructed
via the LLL-algorithm, as described in [GHK™06], if the degree and an upper bound of

the coefficients of the Igusa class polynomial are known.

(5) The expected degree of the Igusa class polynomials are given by Corollary 3.2.9.

3.4 Finding a Hyperelliptic Curve over a Finite Field with CM by

a Maximal Order

This section discusses steps 1 and 2 of the main algorithm (Algorithm 3.3.1 in greater detail.
The goal is to find a hyperelliptic curve C over a finite field whose Jacobian has the correct
CM. We describe the algorithm which we implemented in Algorithm 3.4.1. Then we will
discuss the validity and give some possible improvements.

Algorithm 3.4.1 (Finding a genus 2 curve whose Jacobian is the prescribed maximal order).

Input: A quartic CM field K
Output: A finite field IF; = [F,r; a hyperelliptic curve C defined over F,, satisfying
End(Jac(C)) = Ok.
1: Find a prime p such that there exists abelian surfaces A defined over F, with End(A)
Ok.
2: For the p from step 1, find the smallest g = p" such that there exists abelian surfaces A
defined over IF; with End(A) = Ok.

3: while C is not found do

>~

4: for (il, i, i3) in IFS do

5: Set C as the hyperelliptic curve over IF, with Igusa invariants (i1, iz, i3).
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6: Discard C if End(Jac(C)) ®z Q # K.
7: Discard C if if End(Jac(C)) € Ok.

8 if C not discarded then

9 Return (p”,C).

10: end if

11: end for

12: end while

For the rest of the section, we will walk through implementation issues on the key steps
of the algorithm and demonstrate the validity of Algorithm 3.4.1. The three key steps will
be: (1) Finding a finite field where hyperelliptic Jacobian with CM over K could possibly
be found (Section 4.4.1); (2) Over the finite field, finding hyperelliptic Jacobians with the
right endomorphism algebra (Section 4.4.2); and (3) From the hyperelliptic Jacobians in the
last steps, pick the right one with the right endomorphism ring (Section 4.4.3).

3.4.1 Finding suitable finite field

Step 2 involves finding the smallest possible finite field IF; such that there are hyperelliptic
curves C defined over IF; which has CM by the maximal order Ok. The characteristic of
the field IF; will be determined by Theorem 3.4.2; and the extension degree of the finite
field will be determined by Lemma 3.4.3.

We start from the opposite side of the construction: Suppose there is a hyperelliptic
curve C of genus 2 defined over a number field L such that End(C) = O, and p is a prime
ideal in L. We are interested in the reduction of C modulo p, and in our application, we need
C reduce to a curve C whose Jacobian is ordinary. Goren gave a complete characterization
in [Gor97] on the reduction of an abelian surface over a number field, which we summarize

the relevant part as the following theorem:

Theorem 3.4.2 (Ordinary reduction of CM abelian surfaces, [Gor97, Theorems 1 and 2]).
Suppose that A is an abelian surface defined over a number field L, with CM by Ok for a
primitive quartic CM field K. Let M be the compositum of K and L. Let 3 be a prime in M,
p =P N 0Ok, and (p) = pNZ. Suppose p is unramified in K, and let A be the reduction of
A modulo xB.

(a) If K is a cyclic extension over Q, then A is ordinary and simple if and only if pOx =

p1p2p1p2, where p means the element-wise complex conjugation on p.

(b) If K is a non-Galois extension over Q, take K’ to be the Galois closure of K, and fix a
embedding K’ — Q. We have Gal(K'/Q) = D4. Choose suitable x,y € Dy such that
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Dy = (x,y : x%,y*, xyxy), K is the fixed field of x, and suppose the CM type of A is
P = {1,y}.
Under the setting above, for the reduction of A modulo B to be ordinary, one of the

following two cases have to be true:

(i) pOx = P1PyP2P 3 PxPxy P2 Py SPlits completely (here, for ¢ € Dy, we denote
pg := gp to be the action by g), the decomposition group of p; = {1}, and

POK = (Plpx) (pypxy) (pyszyz ) (py3pxy3 ) .

(i) pOxr = p1pyp,2p,s, the decomposition group of p1 = {1, xy?}, and pOg =
(plpy3)(pypy2)'

From Theorem 3.4.2, we can see that for any quartic CM field K, a necessary condition
to have a curve defined over IF,» whose Jacobian has CM by Ok is that p splits as either pp
or p1p2p1p2.

Now we will need to answer the opposite side of the question: Suppose p is a prime
that splits completely in a CM field K. We need to find the smallest finite field extension IF -
such that there exists an abelian variety A over IF,» with CM by Ok. We have the following

lemma which gives characterizes how to find such a finite field.

Lemma 3.4.3. Suppose K is a primitive quartic CM field, K # Q(¢?™/5), and p is a prime
which splits as in Theorem 3.4.2, in the sense that an abelian variety with CM by Ok
has ordinary reduction. Suppose F is a field of characteristic p such that there exists a

hyperelliptic curve over IF whose Jacobian has CM by Ok.
(a) The lower bound of the size of FF is as follows:

(i) If p splits into two conjugate primes p,p in K, and suppose p has order r in the

class group CI(K) of K, then IF contains IF .
(ii) If p splits completely into pq, 1, p2, 2 in K, and suppose pip> and py, p2 have

orders r1 and r; in CI(K), respectively, then IF contains either IF 1 or IF .

(b) The upper bound of the size of FF is as follows. Suppose K' is the reflex field of K, and
H' is the Hilbert class field of K'. Suppose that fi,- - - , f; are the inertia degrees of

prime ideals over p in H, then T is contained in IF pfi for some i.

Proof. (a) It turned out that this part of the lemma is at least implemented without proof in
Kohel’s Echidna library ([Koh]). We will prove this part for the sake of completeness.
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(b)

Suppose A is an abelian variety over IF with CM by Ok Fix an embedding of Endg(A)
in K, we will have the F-Frobenius endomorphism 7= € Ok, and from the Honda-Tate
theory, 77T = |F|. In case (i), if pOx = pp, then 7 is either in p or p. Furthermore,
if |IF| = p’, then since p does not divide 7, 77 is either in p” or p’, and by comparing
the norm, 7t is the generator of either p” or p’, which enforces both of them to be
principal ideals, and r is a multiple of the order of p in CI(K). Similarly, in case (ii),
pOxk = p1p1p2p2, T must be contained in two non-conjugate prime ideals over p, which
implies 7t is one of (p1p2)”, (p1p2)", (P1p2)”, or (p1p2)”. And this enforces the extension
degree r of F must divide the order of pip; or p1p; in CI(K).

From [Spa94, Theorem 5.8], it is known that if Aisa principally polarized abelian
variety defined over Q which has CM by K, and let (i1,12,13) be the Igusa invariants of
A, then the field K (i}, 75, 13) is contained in the Hilbert class field H*. Suppose P is a
prime ideal over p in K* (71,1, 73) of inertia degree f, then A has a ordinary reduction
over the residue field ]Fp ¢, with Igusa invariants (ij, ip, i3) in the residue field. We claim
that (iy, ip, i3) corresponds to a hyperelliptic curve C with Aut(C) = Z/2Z. In [Igu60,
section 8], all the possible Aut(C) are listed, and from [Igu60, Lemma 9], among those
possibilities, if Aut(C) contains (Z/2Z)? as a subgroup, then C has split Jacobian (i.e.
Jac(C) is isogenous to a product of elliptic curves). This cannot happen since Jac(C), as
a reduction, has CM by Ok. For the cases where (Z/2Z)? is not a subgroup of Aut(C),
Aut(C) contains an element of order 3 or 5. This implies that K is either a biquadratic
field of Q(e?™/?), which we have already excluded.

When (i1, 12, 13) € FF s corresponds to a curve satisfying Aut(C) = Z/2Z, Mestre gave
an algorithm in [Mes91] which recovers the hyperelliptic curve C from the Igusa invari-
ants, defined over the same field I ;. And we know that End(Jac(C)) End(A) = Ok
as desired.

O

3.4.2 Finding a hyperelliptic Jacobian with the correct endomorphism algebra

Now, suppose that given a primitive CM field, the finite field IF; = IF) is chosen according

to the conditions in Lemma 3.4.3. In this subsection, we will explain step 5 in Algorithm
3.4.1, which finds a curve C such that End(Jac(C)) ®z Q = K. The criteria for such C are
defined in Lemma 3.4.4, for which the case wheen q = p! is described in [EL10].

Lemma 3.4.4. Suppose K is a primitive quartic CM field and [F; = F,r is a finite field

satisfying the conditions in Lemma 3.4.3. For a curve C defined over the finite field IF;,
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denote N; = [C(IF;)[, and Nj = [Jac(C)(IFy)|. If Jac(C) has CM by Ok, there are at most 2
of 4 possible values for the pairs (N7, N2) and (Ny, Nj).

Proof. According to the proof of Lemma 3.4.3, for a fixed primitive CM field K, there are
either 2 or 4 possible T € Ok elements satisfying 77T = g, which are generators of the
prime ideals (p)” (or either (p1p2)” or (p1p2)"), depending on whether p splits into 2 or 4
primes in K. And we can compute from each possible 7t its minimal polynomial, which will
be of the form f(t) = t* + a1t + axt? + qayt + g*. Therefore, there are only 2 or 4 possible
minimal polynomials for the g-Frobenius endomorphism a Jac(C) with CM by Ok.

If Jac(C) has CM by Ok, the zeta function associated with C is

i N t’”) O BFA/) 4t af ga P 4 g
S — .
m=1 m (

Z(C,t) =e><P< 1—1t)(1—qt) (1—t)(1—qt)

Matching the t and t2-coeffiecients of the zeta functions, we get

Ni=1+ q—+ay;
1 1
EN%+ ENz2 =(1+q+¢*)+ 1 +q)a +a.
Rearranging the terms, we get N, = 1+ g% — a? + 2a,. It is clear that (N;, N») uniquely
determines (a;,a2). This means to find C such that Jac(C) has CM by Ok, it is a necessary
condition that

(IC(E)], IC(ER)]) = (1+q+a1, 1+ % — a3 +2a).

Equivalently, as we have |Jac(C)(IF;)| = N(7r — 1). Since this is the constant term of
f(t—1), we have |Jac(C)(IFy)| = 1+ g% — (1 + q)a1 + a». Again one readily checks that
(N1, Jac(C)(IF;)|) uniquely determines (a;,a;) as well, so it is also a necessary condition
that

(IC(F)], ac(C)(Fp)l) = (1+ g+ a1, 1+ g2 — (1 + q)ar + ).

In summary, given K and F;, we will obtain 2 or 4 possible Weil-§ numbers 7t and
values of (N7, N2) (or equivalently, (N1, [Jac(C)(IF,)|)), which are the necessary conditions
for |Jac(C)| to have K as the endomorphism algebra. O

To summarize what we have done so far, Algorithm 3.4.1 loops over all possible Igusa
invariants (fl, i, fg), and uses Mestre’s algorithm in [Mes91] to recover a curve C over IF,.
We have a finite set of necessary condition on the number of points (N, Ny) or (Nj, Nj)
for C. If the conditions for C is satisfied, then End (Jac(C)) ®z Q = K, and we will proceed
to the next section to see if End(Jac(C)) = Ok.
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3.4.3 Finding a hyperelliptic Jacobian with the correct endomorphism ring

Suppose C is a hyperelliptic curve such that Jac(C) corresponds to the Weil-g number
7. Then, after identifying End(Jac(C)) < Ok, 7 and 7t corresponds to the g-Frobenius
and Verschiebung endomorphism, respectively, and this implies Z [, 77] C End(Jac(C)).
Therefore, we need to determine whether [Ok : End(Jac(C))] = 1, knowing a priori that
this index divides [Ok : Z[m, 77|].

Eisentrager and Lauter discussed possible approaches to determine [Ok : End(Jac(C))] =
1 in [EL10, Section 6], with some additional assumptions such as Ky, the real subfield of K,
has class number 1. A closer discussion, with the class number requirements removed, is
in [FLOS].

The idea in [FLO8] is to find a set of generator {«;}, so that Z[m, 77{a;}] = Ok and
each a; is of the form (71¥ — 1)/ or (so + 517t + sp7t> + s371°) /£, In the former case,
(tF —1)/¢ € End(Jac(C)) is equivalent to Jac(C)[¢] being contained in FF p+; and in the latter
case, (sg + 8170 + sp7t2 + s371°) /44 € End(Jac(C)) is equivalent to sg + 8177 + sp712 + s371°
acts as a zero map on Jac(C)[¢?]. Both can be tested via probabilistic methods.

Although we will be using the implementation of endomorphism ring computation in
Echidna [Koh], which is based on the idea of [EL10] and [FL08], these algorithms could
be inefficient and even infeasible, since for each prime divisor ¢ of [Ok : Z[r, 7T|], the
complexity of the algorithm depends on the underlying field of the ¢-torsion of Jac(C)
since we need to work on the arithmetic of this field. In the worst case, the complexity can
reach O(¢q'®) ([BGL11]).

Finally, in the special case when Jac(C) has ream multiplication (RM), i.e. End(Jac(C)) N
Ko = Ok,, Springer proposed in [Spr19] a subexponential algorithm in computing Jac(C),
which gives substantial improvements especially when there are large prime factors in the
index [Ok : End(Jac(C))].

3.4.4 Discussing some potential improvements

Indeed, the triple loop in step 4 is quite hopeless when g gets moderately large (probably
around 1000). For more hope, it has been suggested that one starts from a curve such that
Jac(C) has the right endomorphism algebra. Then, for each ¢ dividing [Ok : Jac(C)], one
can attempt to take an (¢, ¢)-isogeny path until arriving at an isogenous Jacobian Jac(C’)
whose endomorphism ring is maximal at ¢ (so ¢ { [Ok : Jac(C)]). In the elliptic case, this is
possible, since the (-isogeny graph has a “volcano” structure, as stated in Kohel’s thesis
[Koh96]. However, the isogeny volcano structure no longer exists in dimension 2, since the

(¢, ¢)-isogeny graph might not even be connected. This approach is tried and discussed in
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[BGL11], and then in [RL13]. Later, in the special case when Jac(C) has maximal RM, the
(¢, £)-graph structure is better understood by Brooks, Jetchev, Wesolowski [BJW17].

3.5 Computing the Canonical Lift of a Hyperelliptic Jacobian over
a Finite Field

This is the core of the algorithm. We will split the entire procedure into three subsections.
The first part deals with computing the 2-theta null points over the finite field from the
hyperelliptic equation. This step is standard and implemented in various packages, such
as Echidna by Kohel [Koh]. The second part deals with the 2p-theta null points over IFr,
and it involves using Grobner systems to solve systems of Riemann equation. Finally, the
third part involves computing the 2p-theta null points over Q,r. This involves solving a

system of Artin-Schreier equations, and is where the canonical lift essentially happens.

3.5.1 Computing the 2-theta Null Points over IFr

Suppose that C : y*> = f(x) is a hyperelliptic curve of genus 2 defined over F,, and
pass to a finite field extension, suppose that C can be written in the Rosenhein form
C:y? = [T_;(x — &;). Then the 2-theta null points of A = Jac(C) can be computed via the

following proposition:

Proposition 3.5.1 (The implementation of Echidna [Koh]). Suppose C : y* = [To_; (x — &;)
is a hyperelliptic curve over a field of odd characteristic. Then (aq, ag1, 410, 411 ), computed
via the steps below, gives a 2-theta null point of Jac(C).

Step 1: First, calculate an intermediate vector (ugo, 101, 410, #11), where

. _\/ al—wz Dél—lX4)_ _\/(061—0(2)(&2—0(5)(063—064)_
Ugp = = ; U = ’

0¢1 - 043 061 - “5) (061 - 063)(062 - 064)(063 - 065)

(0 —as) (e — ag) (a3 — as)’

o % (w1 — ag) (2 — a5) (3 — )
10 — (

Step 2: Using the intermediate vector (1o, o1, 410, 411), we can solve the following system
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of equations to get the 2-theta null points (ago, 401, 410, 411) (here t is a constant):

(@00 + ao1 + a0 + 1111)2 = t(ugo + uo1 + 10 + u11);
(a0 — a1 + a0 — ﬂn)z = t(upo — o1 + 10 — U11);
(@00 + ag1 — a0 — 1111)‘2 = t(ugo + o1 — 10 — U11);
(agp — ap1 — a0 + ﬂn)z = t(ugo — U1 — U0 + U11).

Proof of the validity of Proposition 3.5.1. As usual, let Q, be the degree [F, : IF,] unramified
extension of Qf; Let Cq, : Y= fq,(x) be a hyperelliptic curve in Q, which reduces to C.
Denote C; := Q and fix an embedding ¢ : C; < C, we obtain a complex abelian surface
Ac = Jac(Cq,),. Assume that Ac = C?/(Z? + QZ?), for some lattice Q) with positive
definite complex part.

Let (a;;)o<ij<2 be an algebric 2-theta null point of Ac. The linkage between the algebraic
2-theta null points and the analytic theta functions are described by the following theorem

of Carls and Lubicz:

Lemma 3.5.2 ([CL09, Lemma 2.9, page 711]). Let A be an abelian scheme over Z;, en-
dowed with the theta structure (A, @2, £* 7). Also denote Z; = (Z/1Z)3. Then there
existsaAd € C, x € szp be a character of order 2 (thatis, 2> = 1 and é € Z,), such that for

1
(0' zvp“)'

Therefore, it suffices to compute the theta functions 6, [ %] (0, Q). The theta func-

any u € Zp,, we have

0

(au ®Qq C)uezzv,, = AX(“)QZT’p Uts

tions of the form 6, [4] (0, 2Q2) can be computed from the Rosenhein form via the Thomae-

Fae formula:

Theorem 3.5.3 (The Thomae formula, [Mum06, page 3.120]). Suppose C is a hyperelliptic
curve C : y* = Hff{l(x — w;) of genus g over C. Denote B := {ay,-- - ,&z411,0} be the set
of branch points. Define an abelian group Gg := {S C B | |S| is even}/ ~, where ~ is the
smallest relation satisfying S ~ S¢. The group action of G is given by o, the “exclusive or”.
One readily checks that Gp & (Z/2Z)%.

We define mappings e, : (Z/2Z)% — {+1}and ey : (Z/2Z)%€ x (Z/2Z)% — {£1}
as follows: Let ¢, € (Z/2Z)%, and ¢ = [%]t with 1,8 € (Z/2Z)3. Then e, (&) =
exp(7ti¢i¢a); and ex(¢, ) := exp(mi¢']Z), where | := 01 10g :

8

Let U be a fixed subset of B of ¢ + 1 element such that co ¢ U. For the given U, there
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is an isomorphism 5 : Gp — (Z/2Z)% satisfying the following property: Denote for
simplicity that #(S) = ns. Then for any S1,S,, T € G, ex(y7) = (—1)(ITeUl=8=1)/2 and
62(7751/7752) = (_1)\51ﬂ52|.

Under the settings above, there exists a constant ¢, such that for any S € B\{c0}, |S|

even,

0, if[SolU| #£g+1;

C,(_1)|SQU\H ieSoll (ai—a]’)*l, if‘SOu’ :g+1.
jeB\SoU\ {eo}

62[15](0, )* =

To apply the Thomae-Fay formula in our construction when g = 2, with notations the
same as Theorem 3.5.3, we can choose U = {a1, a3, a5}. After U is chosen, the isomorphism
1 is defined as constructed in [CR15, A.2]:

Plug in our choice of U and 7 and apply the Thomae-Fay formula. Note that since the
algebraic theta null point is defined in the projective space, and from Lemma 3.5.2, we can
rescale such that ugyp = 1. And for the choice of the square root in step 1 of Proposition
3.5.1, we can choose either of them, since that only affects the choice of the basis of the
period matrix Q).

At this step, we have obtained u; = 6,[9] (0, %Q)Z for each § € (Z/27Z)*. We need to
compute 6>[%](0,Q) for each u, v € (Z/2Z)?. This can be done by applying the following

duplication formula:

Lemma 3.5.4 (Duplication lemma, cf. [CL09, page 718]). For u,v € (Z/2Z)%,

o[Jloza) =3 5, el 2] 63905 [] (030)

u te(Z./22)2
Taking ¢ = 2,i = 1, we get a system of equations involving as and u; for § € (Z/2Z)?

0
u-+t

as in step 2 of Algorithm 3.5.5. As u; are computed now, taking a square root, we obtain
a system of linear equations on a5, which can be readily solved. The choice of the square
root in this stage does not matter as well, since this can be compensated by the character x
in Lemma 3.5.2.

Finally, from the functoriality of Jacobian, we know that starting from a hyperelliptic
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curve C over the finite field IF; of odd characteristics, we can compute the 2-theta null
points over the finite field via the same equations. ]

3.5.2 Computing the 2p-theta Null Points over IF

For the general direction, we will be following the p-adic method proposed by Carls and
Lubicz in [Car10, CL09].

3.5.2.1 Setting up the equations

Suppose that the 2-theta null points of an abelian variety A is given, denoted as [boo, bo1, b10, b11]-
One of the hardest part of a general p-adic lifting algorithm is to compute the 2p-theta
null point from the 2-theta null point. To be more precise, denote Z(71) = (Z/nZ)?. Given
the 2-theta null point (by),cz(2) over a finite field, we need to find the 2p-theta null point
(au) e 7(2p) satisfying the requirements as in Theorem 3.2.17, and the compatibility from

2-theta null points. We summarize the condition below.

€))] (Compat1b111ty) ago = boo, agp = bor, apo = byp, and App = b11.
(2) (Symmetry inherited from @) For alli € Z(nl), a; = a_;.

(3) (Riemann'’s relations) Let (vj, wj, X, yy), j = 1,2 be in Z(nl)* such that the two quadru-
ples (v1 + w1, v1 — w1, x1 + y1, %1 — y1) and (v + Wy, V2 — W2, X2 + Y2, X2 — Y2) only
differ by permutation. Let x € Z(2)P. Then we have

2 X ()0, 400, +t E X(S)QXﬁsayﬁs: Z X (1) Aoy 11000, +¢ Z X(S)axz+sayz+s-

teZ(2) s€Z(2) teZ(2) SEZ(2)

The naive approach is to directly feed all the equations to the Grobner basis algorithm
in Magma. In other words, to compute a 2p-theta null point, among the (2p)? entries,
the symmetry relation (2) gives us 2p? + 2 unique entries, and from the 4 entries coming
from the 2-theta null point (as in (1)), we have 2p? — 2 variables to solve from the Grébner
basis system. After plugging in the 2-theta null points in (1), the Riemann equations
in (3) are polynomials of degree at most 4. This means that after eliminating Z-linearly
dependent Riemann relations, we will have at most (% ZJ“Z) = O(p®) equations to feed to
the Grobner basis system. And in the worst-case scenario, the complexity of the Grébner
basis algorithm is exponential in the number of equations, which means that it could easily
get out of reach without some good improvements.

The naive approach is infeasible even in the case p = 3: after removing all the perceiv-

able redundancies, we still have 426 equations, and the Grobner basis algorithm ran out of
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memory.

Carls proposed an improvement in [Car10] for computing the 6-theta null points for
3-adic lifting. The idea is to separate the 16 variables we need to solve into 4 groups (see
the color codes below). And the upshot for this method is to decompose the 2p-theta null
points to p + 1 (2,2p)-theta null points lying between the 2- and 2p-theta null points.

a00 a01 a02 al3

a30 a31 a32[a33

Figure 3.1: Grouping 2p-theta null points. For this figure, p = 3. The green variable
are known from the 2-theta null points, and the other 4 colors represents variables in
different groups. Variables with white font colors does not need to be computed due to
symmetry.

Carls explicitly wrote down 4 equations that each group of 4 variables have to satisfy
(the equations are essentially the same except that the footnotes changed). However, by
running through all possible Riemann relations we actually know that we have 5 Z-linearly
independent relations. Now the Grobner basis algorithm is immediate, and resulted in 4
solutions for each of the quadruples (ag1, a0z, 31, as2), (23, 420, 413, a10), (25, 422,11, A14),
and (a1, a4, 415, a12). To combine the four groups, we simply assign them to a different
solution, so there are 4! = 24 possibilities. Note that GL(IF%) acts on the 6-theta null points,
whose orbit is |GL(IF3)|/|{+1}| = 24, so all 24 possibilities represents an equivalent 6-null
point.

And we will apply similar ideas to compute 2p-theta null points for larget p. We were
able to extend the idea on 10-theta null points (p = 5), this time grouping into 6 groups
with 8 variables each. We end up with 30 equations, and after Grobner basis reduction,
there will be 12 solutions for each variable, yielding 26. 6! solutions. However, in contrast
to the 6-theta null point case the GL(IFs) actions only give |GL(Fs)|/|[{£1}| = 240 orbit
size, so we need an extra step to test the Riemann relation to get valid 10-theta null points.

Moving one step further, for the 14-theta null points (p = 7), the same strategy gives
8 groups with 12 variables each, and then we have 114 Z-linearly independent Riemann
relations on each group. Unfortunately, we went out of memory while using the FGLM

algorithm to compute the lexicographical Grobner basis algorithm (step 4 in Algorithm
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3.5.5). Instead, we were able to find a Grobner basis using the Grobner walk algorithm as in
[CKM97], which was much slower than the FGLM algorithm. Currently we are still unable
to find an approach for p > 11 to optimize the Grobner basis reduction to a manageable
level.

We will give our revised algorithm (Algorithm 3.5.5) on computing 2p-theta null points
in the next section, and formulate conjectural propositions which supports the validity of
the algorithm.

3.5.2.2 Computing the 2p-theta null point with our modifications

The method we applied on computing 2p-theta null points using Grobner bases are de-
scribed below. The core idea for solving the Grobner basis system is similar to [FLR11,
Algorithm 6.3]. Our observations are applied in steps 1 and 2, with a final combination
phase in step 5.

Algorithm 3.5.5 (Computing the 2p-theta null point from 2-theta null point).
Input: (bij);je 0,1}, the 2-theta null point of an abelian variety A.
Output: (a;j)o<ij<2p, the 2p-theta null point of A.

1: List all possible Riemann relations related only to a;;, wherei € {0,1,---,p},and j =0
or p. Among the relations, eliminate those which are linear combinations of other Rie-
mann relations, and pass the minimal set of Riemann relations R C IF;[{a;; }o<i<p,j—0,p]
to Step 2.

2: From the set of Riemann relations R obtained from Step 1, assign the variables

(@00, @op, Ao, App) as (boo, bor, bio, b11). Now polynomials in R reduce to 2p — 2 vari-
ables. Among the 2p — 2 variables, take U = {a;; | i € {2,--- ,p —2},j € {0,p}} and
V = {a,a1p,8p-1,0,p -1, }-
Using Grobner basis algorithms for grevlex monomial ordering (such as Faugére’s
F4 [Fau99] or F5 algorithm) which prioritizes in eliminating variables in U, we ob-
tain a Grobner basis (Gi, <greviex). Gi is of the form Gy U Gy. Here Gy consists
of 2p — 6 polynomials: for each b;; € U, there is one polynomial of the form a;; —
p(aio, a1p,ap-1,0,ap-1,p). And Gy contains polynomials only in V.

3: Use the FGLM algorithm as described in [FGLM93] to change the Grobner basis
(Gv, <greviex) to the lexicographical Grobner basis (G2, <1ex)-

4: Use the Grobner basis (G2, <1ex) to solve all solutions of (ago, a0y, ap0, app). Let S be the
set containing all quadruples of such solutions of multiplicity p?. Then |S| = (p> —1)/2.

For each quadruple in S, use the partial Grobner basis Gy from Step 3 to solve for
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a;; € U. Note that each (2p — 6)-uple of solution (a;j),,eu can be grouped into (p —3) /2
quadruples, and every such quadruple is contained in S.

5: The 2p-theta null point can be written as (boo, boy, b1o, b11) plus the (p? — 1) /2 disjoint
quadruples of the form (ﬂzi,zj, A2i2j+ps 2i+p,2jr ﬂ2i+p,2j+p), and they are exactly the ele-
ments in S. Among the possible (p + 1)!((p — 1)/2)P*! possible assignments of the
quadruples, randomly search for solutions which satisfies all the Riemann relations.

6: Return any combined 2p-theta null point (a;;)o<; j<2p Which passed Step 5.
We need the following propositions for the validity of Algorithm 3.5.5:

Proposition 3.5.6. Suppose (bjj); je(o,1} is a 2-theta null point with respect to a marked

abelian variety (A, ®5,.%) (see Definition 3.2.14 for details). Let (J1,,) satisfy 2 |61 |d2.
; . <6 :

Then there exists a (J1, d2)-theta null point (”i’j’)gz’i 5, corresponding to (A, OG5y 2"

and for each l,] € {0, 1}, bl] = 8i5, /2,j6,/2

We need the case (2p, 2p) for the first half of step 2 and the case (2,2p) for the second
half of step 2. Probably need to connect the algebraic theta theory to the analytic side.

Proposition 3.5.7. Denote W = UUV, where U = {a;; |i € {2,---,p—2},j € {0,p}}
and V = {aq,a1p,ap 10,41, }, as in step 2 of Algorithm 3.5.5. The values of {ano, aop, a0, app }
and the equations in Theorems 3.2.16 involving variables in W and {aqo, aop, ap0, app }
defines a dimension 0 scheme in the affine space Ay, where (p?> — 1)/2 points have

multiplicity pz, 1 point has multiplicity p and 1 point has multiplicity 1.
And for the feasibility of step 5 in Algorithm 3.5.5, we need the following proposition.

Proposition 3.5.8. Suppose S is the set consisting of quadruples of V-coordinates of
points in the 0-dimensional scheme as in Proposition 3.5.7 which has multiplicity p? (so
from Proposition 3.5.7, |S| = (p* —1)/2). Then there are 2p-theta null points (a;;)o<i j<2p

satisfying the symmetric and Riemann relations, as well as the following properties:

(1) (a00/ 110;1/ apOI app) - (bOOI bOl/blOr bll)/ and

(2) For each pair (i,j) # (0,0) satisfying 0 < 7,j < p, the quadruple (aj, a; j+p, iy p,js Aitp,j+p)
isin S, and distince (i, j) corresponds to distinct quadruples.

These propositions are not yet solved. We believe that generalizing the Autg, Hy;-
actions as in [FLR11] is the key to these propositions and will attempt to finish this up as

future work. See [FLR11, Section 5] for more details.
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3.5.3 Computing the 2p-theta Null Points over Q-

At this stage, we have computed the 2p-theta null points (a;j)o<; <2, of an abelian variety
A defined over [Fr. Then, from [Mes72], there is a canonical lift A defined over the Witt
ring W(IF,r) = Z,r, the degree r unramified extension of Z,. Now, it suffices to compute
the 2p-theta null points (7;j)o<;,j<2p of A.

For (@;j)o<i,j<2p to be a theta null point of the canonical lifting, we will need (&;j)o<; j<2p
to reduce to (a;;)o<ij<2p, plus they have to satisfy the following theorem by Carls and
Lubicz:

Theorem 3.5.9 ([CL09, Theorem 2.1]). Suppose x,y, v, w are elements in Z/2pZ, and the
sets {x +y,x —y} and {v + pw,v — pw} are the same sets and both contained in Z/pZ.
Denote by o the p-th power Frobenius on Z,. Then there is an element w € Zj, such that

Y Gy =@ Y Aorpuliy
2€Z/2Z UEZ/2pZ

The correspondence relation in Theorem 3.5.9 together with the symmetric and Rie-
mann relations in Theorem 3.2.17 determines the 2p-theta null point of (d;;)o<ij<2p-

While theoretically it is possible to use Theorems 3.5.9 and 3.2.16 to determine (d;;)o<i,j<2p
in Q,r, computationally we can only find them up to a precision N, equivalently, find
the reductions of (;)o<ij<2p in Zy /pNZ,r. The requirement on N is that it should be
large enough to recover the Igusa class polynomials, so it is determined by the size of the
coefficients and the degree of the Igusa class polynomials, and the errors introduced by the
LLL algorithm in Section 5. We should discuss the choice of N in Section 3.8.4, which is
affected by the effectiveness of LLL algorithm in finding the shortest vectors and the size
of coefficients of the Igusa class polynomial. In short, N € O(Dg/ ZD?/ 2).

as one can proceed by the following algorithm.

Algorithm 3.5.10 ([CL09, Section 3.2], canonical lifting of an abelian surface over FFr).
Input: The 2p-theta null point (a;;)o<;j<2p € Mata,(IF,r) of an abelian surface, a prescribed
p"-adic precision N.
Output: The 2p-theta null point (&;;)o<ij<2p € Matz,(Qpr/ pNQ,r) of the canonical lifting,
up to precision N.

1: Pick up a set of 2p? — 2 non-singular equations from the Riemann relations.

2: Pick up a set of 3 non-singular equations from the correspondence relations.

3: After projectification, the 2p? + 1 equations chosen from steps 1 and 2 defines a system
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2p%+1 Zzp2+1 Z2p2+1

of equation @ : Zp, X 7, o written as

D, y) = (A Y), - fopra ().

4: Solve the equation ®(A, A”) =0 (mod pN), where o € Gal(Q, /Q,) is the Frobenius
in the totally ramified extension.

5. Return the affine version of A.

Steps 1 and 2 only involve selecting equations with coefficients in Z, and the time
complexity is negligible. For the dominating step 3, it is where the canonical lifting
takes place. Using the relation in step 3 to find the canonical lifting is indeed the higher
dimensional analog of the Newton method or the Hensel lifting.

Suppose we know at some stage the solution A in step 3 up to precision m/2. This
means that we have ®(A, A”) =0 (mod p"/2). To enhance the solution to precision 1,
we then need to solve A € de / pm/ Zde such that

@ <A +p"™2A, AT 4 pm/zAUZ) =0 (mod p").

Let Dx and Dy be (2p? + 1) x (2p? + 1) matrices whose ij-th entry is given by the x;- and

yj-parial derivatives of f;, respectively, Then from the Taylor’s expansion, we have
0=®(A, A7) + p"2Dx (A, A7)A + p"/2Dy (A, A7?)A”  (mod p™).

So, in each iteration of the canonical lifting, it suffices to solve the Artin-Schrier equation
of the form A” = AA + B, where A, B € Mat(2p2+l)><(2pzz+l) (de/p'”/zde).

To solve the Artin-Schreier equation of the form A = AA + B, lete = r/2 or r be the
minimal exponent such that (A”)¢ = A. Then one can iterate the Artin-Schrier equation:
for example, A" = (AA+ B)” = A”A” + B” = A”(AA + B) 4+ B”". From that, we can
get a linear system involving only A" = A. [LL06, Theorem 2] gave condition on when
this linear system is non-singular, which is the general case. In case we end up with a

singular linear system, we will have to randomly choose equations in steps 1 and 2 again.

3.6 Recovering the Igusa Class Polynomials from the Canonical
Lift

At this stage, we have the theta coefficients of an abelian variety A defined over Q,r which

has CM by Ok, and the theta coefficients has a sufficient precision N. In this step, we
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will recover factors of the Igusa class polynomials for the quartic CM field K. This can be
achieved by the following steps:

(1) Compute the Igusa invariants (71,1, 13) of the abelian variety with the 2p-theta null

points (;j)o<i,j<2p, Up to precision N

(2) Use the LLL algorithm to compute the minimal polynomials {EIZ, hAKTZ, EI:;,} of each
Igusa coefficient. See Algorithm 3.6.1.

(3) Check if the degrees of EIZ are as expected. If not, find another abelian variety over

F,r and go through the canonical lifting.

For step (1), starting from the 2p-theta null points of the canonical lifting A, we can
pick (oo, dop, dpo, dpp) to obtain the 2-theta null points. Then, by reverting the steps in
Proposition 3.5.1, we can get the Rosenhein invariants of a hyperelliptic curve C such that
A = Jac(C). Then we can obtain the Igusa invariants (i1,12,13) from the equation of C.

For step (2), we can apply LLL-algorithm to find the minimal polynomial of the Igusa

invariants, as stated in Algorithm 3.6.1.

Algorithm 3.6.1 (Recovering Igusa class polynomials from Igusa invariants, [GHK™ 06,
Section 4.2]).

Input: A local field extension Zpd / Z.,, with Z y-basis {wo = 1,wq,--- ,wy_1}, an Igusa
invariant € Z,./ pN 7, with precision N, the expected degree s of the Igusa class
polynomial

Output: The minimal polynomial f(x) = Y5_, m;x' of .
A
1: Compute the (s +d + 1) x d matrix M = [ Ny ] , where A = (a;;) € Mat(Z,s +1,d),
pla
where aj; is in [0, pV) and satisfies

0
L =agowo+ -+ agd—1W4—1,

1
I =ajowo+ -+ ag1W41,

= as,0Wo + -+ s d—1W4q—1,

when reduced to Z,/ pNZ,,.

2: Let A be the left kernel of M. Use LLL to compute the shortest vector of A. Suppose it
is[momy -+ mg—ep -+ —€4.1]

3: Return f(x) = Y5_omx'.
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Note that while the approach is seen in [GHK'06], a similar minimal polynomial
algorithm in the complex analytic setting can be found in [Str14]. The precision N is the
same as the one used in Section 3.5.3, which is of size O(Dg/ ZD:{’/ 2). We will establish the

validity of the algorithm as well as the estimation of N in Section 3.8.4.

3.7 Examples

We will present two examples, which finds the Igusa class polynomials of the cyclic number
field Q(v —2 + ﬂ), including a canonical lift over [Fy; as well as the non-Galois number
field Q(v/ —30 + 1/96), including a canonical lift over Fs. The examples are computed by
Magma v2.25 on a Intel(R) Core(TM) i9-9980HK CPU with 1.3GB RAM.

3.71 Example 1: Q (\/ —2+ \/E)

Todo: When finished, break down the bullet points...

1. We denote K = Q <\/ -2+ \ﬁ) By testing small primes, we can immediately
see that p = 7 splits completely in K, which implies that there exists hyperelliptic
Jacobians defined over F; with CM by Ok.

2. We can compute that for a hyperelliptic curve C/IF7, if we denote by nc and n; the
number of points of C and Jac(C) over Fy, then Jac(C) has CM by Ok only when
(nc,ny) = (4,28) or (12,92).

3. We run through all possible Igusa invariants (i1, i, i3) € IF%, we can see that
C:y?* =3x04+3° +5x* +x° + 6x° +2x + 6

has the right orders. And then we pass to the endomorphism algorithm by [Koh], we
verify that Jac(C) does have CM by the maximal order Ok.

4. Then, we need to compute the canonical lift of C. The first step is to compute its
14-theta null point. We need to start by computing the Rosenhein form of C and
deduct the 2-theta null point from there. It turns out that, over the field extension
F7[t]/ (% + 6T + 3) = Fp, C is isomorphic to C' : y> = x(x — 1)(x — 3)(x — 5)(x —
7). From the explicit formulas in Proposition 3.5.1, we get the following 2-theta null
point, defined in F[c]/ (02 + T7) = Fou:

bOO b01 _ 38 + 27 120 + 19
[bm b11] B ™00 +3 1Hg4 118
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5. Now we are at the most computationally heavy part-computing the 14-theta null
point (ﬂl’]’)ogi,]'<14. From the symmetric relation a;; = a_; _;, essentially we still need
to determine the value of 100 coordinates (including those inherited from the 2-theta
null points).

To trim down the computational complexity of the Grobner basis algorithm, as
discussed in Algorithm 3.5.5, we shall regroup the 2p? — 2 variables into p + 1 groups,
each consisting of variables which forms a (2,2p)-theta structure and satisfies the
same set of Riemann relation equations. For example, one of the groups consists
of the 12 variables (ai]-)]é?’g p—1- As in step 2 of Algorithm 3.5.5, we applied the F4
algorithm to compute the first Grobner basis in the grevlex order, and to boost
the computation of Grobner basis, we priortize on eliminating the 8 variables U =
{an0, a27,- - -, asp, as7} and get equations on V = {ayg, 417, aeo, a¢7 }. The first Grobner
basis computation took about 26 seconds to finish, and returned a basis with 695
polynomials: 8 of them are only of degree 1 with respect to the variables in U, and

the other 687 of them are solely on variables in V.

6. With the equations on V, to solve them, we will compute the second Grobner ba-
sis, now on the lexicographical lex order. Typically we use the FGLM algorithm
[FGLM93], however, as it slightly went beyond the memory limit with the Magma
implementation, we have to take the Grobner walk algorithm. The second Grobner
basis computation took about 70 minutes on our platform. On the Grébner basis, the
last polynomial is univariate on bg; of degree 1184, consisting of (p> —1)/2 = 24
roots of multiplicity p?> = 49, 1 root of multiplicity p = 7 and 1 trivial root 0 of
multiplicity 1.

Solving for the 24 roots, we can recover 24 solution sets for a¢;. All the roots will be
in the field Fu[v]/ (v® + 70 + 7'2) 2 F,12. And from this we can sequentially solve
the equations in the Grobner basis, and apply all the GL, (IF7) actions, we see that the

24 quadruples of variables

{th, e ,6]24} = { a10, 417, 460, 467), (430, 437, 440, A47), (50, A7, A20, A27), (1176,1171,1106,ﬂ01), (1174, az3, Ao, A03),

az, azs, Aoz, 05), (412, 419, 86,12, 465), (436, 43,13, A48, A41), (5,10, 453, A24, A211), (@14, 41,11, 06,10, 063 ),

(

(

(ﬂ3,1zr ass, 042, ﬂ49), (ﬂ5er 5,13, 28, 421 )/ (ll16/ 1,13, 468, 61 )/ (1134/ a3,11, 14,10, 1143), (ﬂ52, as9,4a2,12, ﬂzs)/
(1118, 11,66, ﬂ6,13)r (!13,10,1133, 44, 04,11 ), (115,12, 55,422, 029), (111,10, 13,064, 6,11 ), (1132, a39, 04,12, 1145),
(

ass, as1, 426, 42,13), (1,12, 15, A62, 469, (A38,a31, 446, 34,13 ), (54, 35,11, 42,10, 423 ) }

in a 14-theta null point will be bijectively matched to the set of values {61, - - - , 624},
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which are:

(Yo 44,0, 0 + 18,100 + 77),

(00 + 102 + (120 + )W + 100 45, (60 + 102 + (50 + 77 v + o + 4, (2 39 73,2

Bo+10,770 +1,40 + 12,700 + 12),
0+ 120,18, tto 4 14, B0 + 7%,

19 46

4 t7+‘r

T4 l7+T

717 o+ T

T2 o+ T

5 z7+‘r

33

2

20,2 42 19 14

+
Ve +
Ve +
W24 3 (10

00+ 8w+ 8, (10 + )2 + (P + ) + o+ 10, (B0 + )2 + (0 + 0 4+ Mo+ 4, (¢! ¢7+T)v + (P41t

7)v?
%)
)
21,2
%)
2 4 (00 + ) + 0+ 10, (to 4

Bl
43 (742 30,2 4 (13
v
ol

T [7+T

29

o+ W+ (R0 + )+ ™8, (R 4 2 Bo+ B+ o+ 10, (50 + 0N + (Po+ ) + o + 4, (PBo + PN + (PPlo + 72

12

2

B0+ 132 4 (P00 +6)v + 0 + ¥, (o + 7 19 730

+ (o + 8w+ 20+ 79,0002 + (Mo + P+ 0 + 7%,

o+ W+ (V0 + )+ 4o +6, (700 + 2 + (P + 0 + 30 + 2, (50 + TP + (B0 + B+ 00 + 78, (B
23

1

8o 4 )2

26
10

o7 )1/2+(‘r38¢7+721)1/+T10¢7+5,(317+738)1/ + @o+ W+ o+ ™, (Pr + P2 4 (B + Py Mo 4 70,7502 4 (P20 4 7!

2 41(37 39 19 2

00 4+ 42)02 4 (1% + )+ 700 + 5, (50 + 22 + (60 + 1) + lo+ T

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(<!
(
(
(
(
(
(
(
(
(
(o + )W + (R0 + ™y + ™80+ 719, (Vo + o
(
(
(
(
(
(
(
(
(e

2o+ 84+ 80+ 8, (Po+ )2+ (P + w4 o+ 38, (700 + T2 4 (Mo 4+ 70w+ 120 + T, (180 + 7182 + (B

+ (7
(<
(
(te+ )W+ 0o+, (Do + PN + (0 + ) + 00 + 1, 20 + )2 + (Bo+ )+ o+ 712, (P + 712 + (o + P+ 50 + 10),
(
(

™o+ 8?4 (Po+ 2

V24 (0 + )+ 40 +6, (o + N2 4+ (P00 + )W+ 30+ 2, (Yo + O + (Po+ )+ 00 + 18, (P o+ )P + (Po + 7!

2o+ 002 + (Ro+ PO+ Mo+, B + (00 + P+ P+ 1Y),

o+ 7802 4 (o + P+ ™o+ 110, (B0 + )2 + (700 + P 4+ 00 4 4, (B0 + )2 + (00 + ) 4+ P04 4, (40 + 1PN + (P04 T2 4+ o + 8,
0+ 2 + (V00 +3)v+ 0 + 7%, (B0 + 7P + (Po + )+ 20 + 12, 1% 002 + (280 + )W + 70 + 10, (%00 + 7002 + (150 + ) + 50 4+ 70),
o+ N 4 (Po+ )+ 40 +6,(Clo+ 2002 + (B + v + 30 + 2, (o + N2 4 (70 + P + 100 + 738, (Mo + T + (1o + 70 + 7100 7)),

Bo+ o+, (P + B0 + (o + P+ 0+, (40 + TN + (R0 + P+ o+ 72, (o + W + (Po+ v+ 50+ 1°),

3o+ 5)v+ Vo414,

™20 45w+ 0+, (o + 20 + (Po + )+ 20+ 710, 40 + (R0 + T+ 7o+ 7, (o + 42 + (o + PO + P 4+ 10),

hy + %0 +13),

V24 (Mo + )+ 400 + 1%, (Lo + )02 + (B0 + )+ Do+ 0, (0 + )2 4 (P0 + ™ + 0 + 38),
Vv 4150 +1°),

+ (%0 + ™) + 0 + 74, (170 4 )W + (120 + T+ POo + T, (20 + )2 + (T80 + )y + 0 4+ 78),
(00 + )02 + (Plo+ )y + B0 + %),
B0+ 1302 4 (Bo+ 2+ 8, (10 + )2 4 (P + )+ o 470, (60 + T + (0 + T + ™o + 4, (TP + 702 + (Yo + ™)+ 0 1+ 1),

y+ 00 + %),
P+ W+ (Vo + 0w o+ 70, (o + PN+ (Mo + P+ 00+ 1, (0 + 30 4 (Mo + P+ o+ 112, (P + 2002 + (o + v 450 +70),

Oy + 100 4+ 720,
200 + 7V 4 (o + )W+ T80+ 18, (o + NP+ (o + )+ o+ 18, (Po+ 14002+ (P o+ )+ 220+ 5, (P20 + )P 4 (to + 3w + T o + 1),
o+ )02+ (Po+ 2w+ + 8, (10 + )2 + (B + Py + 0 + 8, (B0 + 00 + (B0 + 70w + 120 + 0, (0 + NP + (Vo + 6 + T o + 70,
Hy 4+ 20+ 1Y),
o+ 22 + (%0 + 7w+ Mo+ 1, 92 + (V0 + P + 20 + 7))

We took random testing to find a correct match. It took us about 1.08 million trials

until a valid 14-theta null point is found, which took about 5 minutes. In the correct

combination, (g1, - - - ,g24) is mapped to

(624,05, 03, 06,014, 07, 013, 019, 023, 020, 010, 012, 09, 021, 022, 04, 03, 01, 617, 613, 016, 02, 015, 611).

respectively. And we can assemble the 14-theta null point from the mapping.

7. After the 14-theta null point over ;12 is computed, we need to pass to Algorithm
3.5.10 to compute the lifted theta null point over Qy[t]/ (t'2 + 28 + 57 + 3t° + 2> +
4t* + 5t2 + 3) = Qyn, the degree 12 unramified extension of Q. As described in
Algorithm 3.5.10, we will need to find 96 Riemann equations from Theorem 3.2.17

and 3 correspondence equations from Theorem 3.5.9 which forms a non-singular

system of Artin-Schreier equation in the 99-dimensional projective space over Q.

After testing, we know that N = 32 7-adic digits precision is sufficient to recover

the Igusa polynomials after the LLL-reduction in Algorithm 3.6.1. The canonical

lift step took about 122 seconds. And after sampling, the lifted 2-theta null point in
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Q712 /732Q712 is (ﬁoo, ﬁ07, ﬁ70, ﬁ77), where

dgp =1,

Gy = 430209963233516739343827684t11 — 263038941687584699200369049+° + 73511422140243742538030143¢°
— 482917741485237891852802839t% + 65362187750410345640190640¢7 + 3879441821205497068691987821°
+ 537884498732469939141763739t> + 12960073191765693126840517t* + 279311473845499276425640053¢°
+ 398664681377083153281231992¢2 + 458708656158401987705625398+ + 126708230087604433229111745,

Gy = —200019157013160998614803282¢'1 + 25556357848259533128762971+'° — 508706914512636967017762957+°
— 241002713401785217617038092+3 — 512802758811656154351955312¢” — 98060247716320446097033663t°
— 1405766474831195728479297661° — 26068841307144617446180861t* — 472922291241081750675627331 >
+ 161291271265340183894296957> — 318424673281497759260444088t — 531872481349200705504981357,

7y = —169532528779527646088988256+1 + 52408226493947413864394952t10 — 2915582676570770352232351+°
+ 149253476431052829230311408t% — 52265793708418708953963327417 + 146885636140666855930472454t°
— 484807571865515135169724303+° + 211935525808214294590925139* — 409632555841931027499097093+3
+ 3557711272089835475532002511> — 418526467847341521551028766¢ — 474600739522272172687113429.

8. From the lifted 2-theta null point, we can recover in the order the Rosenhein in-
variants, the lifted hyperelliptic curve C, and the Igusa invariants. From the class
numbers, we expect that the degree of the Igusa class polynomials should be of
degree 1 (so there exists a hyperelliptic Jacobian defined over Q with CM by Ok).
Using the LLL-algorithm, we can get the minimal polynomials of the Igusa invariants,

and in this case, they coincide with the modified Igusa class polynomial (here N = 1):
[ir — 150660, i N — 28343520, i N — 9762768.

The result suggests that the hyperelliptic Jacobian with CM by Ok should have the
Igusa invariants (150660, 28343520, 9762768). Magma suggests that such a hyperellip-
tic curve can be defined by the equation y?> = —x® — 3x* + 2x® 4+ 6x> — 3x — 1. This
is isomorphic to the curve suggested in [vW99, Table 1].

3.7.2 Example 2: Q < —30+ v 96)
Todo: When finished, break down the bullet points...

1. We denote K = Q (\/ —30+ \/%) By testing small primes, we found from the
splitting of p = 5 in K that, there exists hyperelliptic Jacobians defined over F . with

2. We know that for a hyperelliptic curve C/[Fs., if we denote by nc and n; the number
of points of C and Jac(C) over [F7, then Jac(C) has CM by Ok only when (n¢,nj) =
(16,417), (24,571), (28, 675) or (36,937).
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3. We run through all possible Igusa invariants (i, iy,i3) € F[t]/(T? + 4T +2) IF%,
among a couple of possible choices, we can see that

C:y* =15 + % + %% + 2x + 77
has the Jacobian with CM by Ok.

4. Then, we need to compute the canonical lift of C. The first step is to compute its
10-theta null point. We need to start by computing the Rosenhein form of C and
deduct the 2-theta null point from there. It turns out that the equation of C splits into
linear factors in the field extension FFzi2, which is the smallest field the Rosenhein

invariants and the 2-theta null point lie in.

5. The next step is to compute the 10-theta null point (al']')()gi,]'<10, which involves solving
52 coordinates. Same as the previous example, we regroup the 2p? — 2 unknown
variables into p + 1 groups of 2(p — 1) variables. The F4 algorithm involved in step 2
of Algorithm 3.5.5 took about 10.5 seconds to compute a Grobner basis of 2(p — 1)
variables in the grevlex ordering. After that, to solve for the equations, as in step 3
of Algorithm 3.5.5, we applied the FGLM algorithm to convert the Grober basis to
the lex ordering. The FGLM algorithm took about 17.4 seconds to finish. For the
final 1ex ordered Grobner basis, the final generator is univariate in a45 of degree 306,
with 12 roots of multiplicity 52. Those 12 roots will contribute to the coordinates of
the 10-theta null point. We compute the 12 roots, which fall in the extension field [Fx,
and found a match as in step 5 of Algorithm 3.5.5 almost immediately. Combining
all the steps involving computing the 10-theta null point, it took us about 29 seconds

in total.

6. After the 10-theta null point over s is computed, we need to pass to Algorithm
3.5.10 to compute the lifted theta null point over Qsz, the degree 24 unramified
extension of Q5. As described in Algorithm 3.5.10, we will need to find 48 Riemann
equations from Theorem 3.2.17 and 3 correspondence equations from Theorem 3.5.9
which forms a non-singular system of Artin-Schreier equation in the 51-dimensional
projective space over Qsq4. After testing, we know that N = 512 5-adic digits precision
is sufficient to recover the Igusa polynomials after the LLL-reduction. The canonical
lift step is the bottleneck and it took about 73 minutes to run through Algorithm
3.5.10.

7. From the lifted 2-theta null point, we can recover sequentially the Rosenhein invari-

ants, the lifted hyperelliptic curve C, and the Igusa invariants (fl, i, 173). From the
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class numbers, we expect that the degree of the Igusa class polynomials should be
of degree 8. After applying the LLL-algorithm, we get in approximately 0.5 sec-
onds that the irreducible factors of the modified Igusa polynomials of (fl, I, fg) are
{hk1, k2, I3} where

hyga(ir) = 750060079829211'? +71 363]5652374776988208i¥ - ]030597414397029893260]966932161{7 + 370]973379798300931500885745954289]7761'?
+ 117713156242099751981636423013536938500810241"11 + 379788558415335857863386892741701297861487715696641‘]3
+ 5689997770411931 614866839697636283986506928068055859201'% + 16710294186848614749610039434006818631272417866171825520641
+ 1496012174486894469574556219042078936215763686245616397058048,
}@(il) = (71585017927877749603446642208118977601'{ + 23327413057463058973733242059612989670157056i?
- 2040289838531044739300074750979686774291780646860801‘? - 94069356\64067223956\78412813864742417548601906:3909608898561"11
— 13761131200868929683180911839274872099973664771161569616946216961";’
- 451591524995301367779730516218868866509285907410803162550000479764481%
— 286700825560000743960177900521203172924538850289879742237456151164223488i
— 425373012874781458920326282347378676489080575865775132997262689800414035968) / 455091634811,
}@(il) = (76621510601498418936962943217543072721'{ + 1134846412435746207123606097126846317328072321‘5’
- 2306289158690614751776608966(:397775419613098426575361'15 - 33560050799027478230163192004713741880742037509183478128641"11
— 503519858199237225348586329920"":548l215794485001375860\’510666465281’:13
- 1620568627430432130542291433301193088288772902092157545868832686243841'%
— 1033943674551756199532413554306073025439559921449347040173926615858151424iy
— 1490807520255004937134090495011492053026157649536998766997011914281427402752) / 5006007982921.

Check out Section 3.2.1.3 for the definition. For an i; satisfying hg1(i1) = 0, for
n = 2,3, the corresponding i, can be computed by h/K\n (i1)/hgq(in)-

Since the degrees of the factors of the modified Igusa class polynomials fits the degree
of the expected degree, we know that they are indeed the Igusa class polynomials.

3.8 The Complexity Analysis of the Main Algorithm

In this section, we will break down the main steps of the component algorithms in Sections
3.4, 3.5, and 3.6. By combining the complexity of each component, we will obtain the
complexity statements in Theorem 3.1.1 and 3.1.2.

Before we start, we define two complexity constants that will be used throughout our

analysis.

Definition 3.8.1. We define the following two constants, w and u, which measure the

effectiveness of the implementations on basic objects.

(1) p is the complexity constant so that multiplying two n-bit integers takes O(n") bit
operations, and so that multiplying two elements in [F« takes O(n*) arithmetics on IF,,

(so it is 2 for schoolbook multiplication, and log, 3 for the Karatsuba algorithm, etc).

(2) w is the complexity constant for multiplying two n x n matrices (so it will be 3 for

schoolbook multiplication, log, 7 for the Strassen algorithm, etc).
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3.8.1 Issues on Curve Finding

The goal for this step is, given a primitive quartic CM field K, compute a finite field
IF, = F,y and a principally polarized abelian variety A over IF; satisfying End(A) = Ok.
The algorithm in this step is described below.

We will use the following notations. For the principal quartic CM field K, let K be
its reflex field, L be the algebraic closure, and let Ky and Kg be the real quadratic subfield
of K and K, respectively. Also, let Dy = A(Kp) be the discriminant of the real quadratic
field, and let D; be the number satisfying A(K) = D3D;. The ultimate goal is to find the
asymptotic complexity of finding the Igusa class polynomial via the p-adic method in
terms of Dy and D;.

3.8.1.1 Finding the Underlying Finite Field

In this subsection, we will analyze step 2 in Algorithm 3.4.1. The complexity itself is
negligible; instead, we need to estimate the size of the finite field IF; = IF,r, as it is one of

the most important parameters in the entire algorithm.

In practice, consider a principally polarized abelian surface A over Q,, such that
End(A) = Ok, we need its reduction A — A to F, to be ordinary. Among all possible
g = p’, we need g to be as small as possible to speed up the searching of principal polar-
ized abelian surfaces; and we also need p to be small, like the Grobner basis approach to

compute 2p-theta null points seems to be unfeasible as p grows.

By the Cebotarev density theorem, case (a) occurs with probability 1/8; and case (b)
occurs with probability 1/4. So roughly 3/8 of the primes satisfies the splitting conditions,
which is compatible with preliminary experiments. As all we need is the splitting condi-

tion described above, if we assume Heuristic 3.8.2 below, the average chosen p will be O(1).

Heuristic 3.8.2. For a fixed prime p, the probability that p divides A(K) = DyD; does not

depend on the size of the discriminant of K.

Alternatively, assuming GRH, we can also potentially give some upper bound ar-
guments. For instance, [LO77] gave a upper bound on the smallest prime which splits
completely in a number field: if p is the smallest such prime, there exists a efficiently com-
putable constant ¢ satisfying p < c(logA(K))? = c(log(O(D3D;)))?. For newer results,
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see [GMP19]. Our application allows some cases that the prime does not need to split
completely, so the upper bound could be decreased.

After the characteristic of the finite field, p is decided, we need to decide the degree of
extension g = p’. Then by [Koh], we can use Lemma 3.4.3 to choose .

To estimate the minimal 7, the heuristic is that given an r dividing #(K), the class number
of K, the probability that IF - is the smallest possible extension equals the probability that a
random element in CI(K) has order r. Preliminary experiment results show that it should
be true for at least most of the non-abelian cases, but there are counterexamples for cyclic

cases:

Example 3.8.3. Let K = Qlx]/(x* + 41x% + 164) be a cyclic extension of Q. The real
subfield of K has discriminant Dy = 41. It is readily computed that CI(K) = Z/2Z x
Z./27Z, so arandom element in CI(K) has a 1/4 chance to have order 1 and a 3/4 chance to
have order 2. However, experimental results showed that the probabilities that ¥ = 1 and
r =2areboth 1/2.

More work needs to be done to characterize the situations like Example 2. However,
under the following heuristic assumption, we can assert that for the average case, r =
O(h(K)).

Heuristic 3.8.4. For a fixed quartic CM field K. When varying through all admissible p
(such that ordinary abelian surfaces over F, with CM by Ok exists) and varying through
all prime ideals p over p, the ideal class [p] € Cl(K) distributes uniformly in a subgroup G
of C1(K) with a small index.

Another issue is that we want to deal with the class number #(K). We may simply
treat it as a parameter since it also plays an important role as the degree of the Igusa class

polynomial, Alternatively, we can also try to bound it in terms of Dy and D;.

Denote 1~ (K) := |Cl(K)|/|CI(Kp)| the relative class number. Louboutin gave a bound
in [Lou03], saying that i~ (K) = O(y/DoD1). For the class number of the real quadratic
field Ko, Le provided a bound in [Le94], saying that #(K) = O(y/Dy). Combining these,
we will have h(K) = O(y/D2D1). However, to obtain a better average bounds on r, we

want to have the structure of C1(K) as well. We collect our results in the following lemma.
Lemma 3.8.5. In Algorithm 3.4.1, under Heuristics 3.8.2 and 3.8.4 and GRH:

1. In average, p is in O(1), and r is in O(h(K)). If we estimate /(K) in terms of Dy and
Dy, thenr = O(y/D3Dy).
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2. For the worst case, p = log(O(D3D;)), and r = O(h(K)) = O(1/D3Dy).

However, since p and r are the most important parameters in the algorithm, in the rest

of the chapter, we will avoid using rough estimates as in Lemma 3.8.5.

3.8.1.2 Finding a Curve over Given Finite Field via Computing Endomorphism Rings

For the remaining subsection, we will put aside the estimates of § = p” and find complexity
estimates using g as a parameter. Finding a suitable hyperelliptic Jacobian consists of
looping over steps 5, 6, and 7 in Algorithm 3.4.1. Our complexity estimation follows the
ideas in [BGL11], except that we are working over the extension field IF;, while [BGL11]

put stronger restrictions on the splitting of p so that they can work over the prime field |F.

We first analyze the complexities of step 5. The first goal is to estimate the number of
iterations we need to make in the for loop. Before step 5, there will be g¢°> = p3 possible
curves, since we can run through all isomorphism classes of principally polarized hyper-
elliptic Jacobians of genus 2 by running through the Igusa or G2 tuples defined over IF,.
After step 6, there will be |€(K)| Jacobians remaining, where ¢(K) is the Shimura class
group of K, and the size can be computed via Corollary 3.2.9. From the corollary, the size
of |€(K)| is a constant times 1~ (K) = O(v/DyD1). Intuitively, on average one needs to test
O(q%/+/DoDy) hyperelliptic curves before one obtains one with the correct endomorphism

ring.

For the complexity of looping over step 5, one needs to apply Mestre’s algorithm. For
the explicit formulas involved, see [LY11, Appendix A.2]. Note that the complexity here

should be absorbed by looping over step 6, where we will describe next.

For step 6, we need to compute the endomorphism algebra for a given Jacobian curve,
and this is essentially the same as computing [Jac(C)[IFy]| and [Jac(C)[IF]|, or equivalently
the characteristic polynomial of the Frobenius. We can use the theory as described in [JW15].
Suppose A = Jac(C) be a principally polarized abelian surface over [F; of dimension 2. By
the method of Pila, it takes O((logg)?) time to compute the characteristic polynomial of
the Frobenius. Multiplying by 4> /+/DoD1, the average number of the curve we need to

consider in step 1, we obtain the following Lemma:

Lemma 3.8.6. Taking the number of loops into account, the time complexity for steps 5
and 6 in Algorithm 3.4.1 are

O(q°(logq)’//DoD1).
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Now we estimate the running time for step 7. One key factor is the number of candidate
curves that passed through step 6, so we need to look at 6 in more detail. The Frobenius
polynomial we computed in step 6 will be of the form x* + s1x% + (s2 +2¢)x% — gs1x + ¢%. 51
and s; are related to the number of F;-points on the curve C and on the Jacobian A = Jac(C)

via the following formula:

5= COEp)| g - 1;
o= S )P 29 1

There are several known bounds on the values s; and s;:
Proposition 3.8.7 (JW15]). Letg,s; and s, be defined as above.

1. (The Weil bound) |s1| < 4,/7, and |sy| < 4.

2. (The Ruck bound) s7 —4s, > 0, and s, +4g > 2[s1|,/7.

In addition, we make the following assumption (more experiments need to justify the
validity):

Heuristic 3.8.8. (s1,s,) distributes uniformly within the region described by the Weil and
Ruck bounds.

Since there are only 1 or two (s1,s2) pairs which leads to the correct endomorphism
algebra, the chance that a random abelian surface passes through step 1 is O(g7%/2), and
on average, the number of curves entering step 2 will be O(¢4%/%/+/DoDy).

Remark 3.8.9. A more careful approach to compute the number of curves passing through
step 1 given in [BGL11]. The key idea is to note that if End(A) ®q Z = K has the correct
endomorphism algebra, then we know that Z[r,77] C End(A) C Og. The alternate
method is then to find all possible orders for End(A) bounding between Z[r, 77| and Ok,

and then estimate the class number for all the intermediate orders.

For the complexity in looping over step 7, the bottleneck is the complexity of comput-
ing endomorphism rings. The more classical method by Freeman and Lauter in [FL08]
has complexity O((logq)'®); and the more recent method proposed [Bis15, Spr19] has

complexity
> 2v/3+0(1)

1 0
L [2] (q)z\/’g+ 1) = exp (x/logq-loglogq

The following Lemma integrates Lemma 3.8.6, Heuristic 3.8.8, and the complexity of

endomorphism rings computation as described above:
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Lemma 3.8.10. Assuming Heuristic 3.8.8, and denote by X the complexity of endomor-
phism ring computation algorithm (So X = (logg)'® in Freeman-Lauter [FL08], and
X = L[1/2](g)?"? in Bisson [Bis15]). The complexity of step 2 as a whole (counting loops)

(e ) o (Vo)

The bottleneck is still the g3 term in step 6. If we cannot cut that down the lifting

1S

method would turn out to be infeasible as long as g reaches a certain value.

3.8.2 From 2-theta Null Points to 2p-theta Null Points

In this section, we will estimate the complexity of steps 1 to 5 in Algorithm 3.5.5. Note that
not only the time complexity, the space complexity is also important, which is indeed the

bottleneck in our implementation.

We first analyze step 1, which involves the reduction of Riemann relations. Denote
Z(7) as the group (Z/nZ)?, and for u = (i,j) € Z(2p), let b, = b;;. And for all n = dm,
we consider Z() as a subgroup of Z(7) by the embedding (i, j) — (di, dj).

Under this notation, recall that the Riemann relations are of the following form:

Z X(t>bx+y+tbx—y+t Z X(t>bu+v+tbu—v+t:

teZ(2) teZ(2)
Y X(Obxrustbx—ure Y, X(E)bysoreby—ot,

teZ(2) teZ(2)

where x € Z(2)P is a character of Z(2), and x,y,u,v € Z(2p) are congruent to Z (7). Since
we only consider Riemann relations in IF; [{b;; } 0<i<p,j—0,,] at this stage, we really only need
to take x,y,u,v be of the form (i,0) € Z(2p). There are 2p* choices for x,y,u,v and 4

choices for x, yielding 8p* possible Riemann relations.

Among the aforementioned 2p* Riemann relations which are all degree 4 homogeneous
polynomials in F; [{b;; }o<i<p,—0,p], Wwe need to know how many of them are FF,-linearly
independent. It is only known by experiments that there are 5, 30, and 114 linearly
independent Riemann relations when p = 3,5 and 7, respectively, and in practice, it is not
yet computable for larger p due to memory constraint. However, we have the following

asymptotic estimation:

Lemma 3.8.11. For an odd prime p, there are O(p*) IF,-linearly independent Riemann
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relations in F; [{b;; }o<i<p,i=0,p]-

Proof. Fy[{bij}o<i<p,—0,p) contains 2p + 2 variables, and Riemann relations are homoge-

neous polynomials of degree 4. Let M be the set of degree 4 monomials, then |[M| =

2p+2+4-1
S

observation, each degree 4 monomial occurs in some Riemann relation, hence for any
proper subset M' C M, V N @,,cpr Fpm # {0}. Let B be a basis of V which is a col-

lection of Riemann relations. Let B(M) be the monomials involved in the elements of

. Denote by V the IF,-vector space spanned by the Riemann relations. By

B. Then we know that B(M) = M. But it is clear from the form of Riemann relations
that element in B can contain at most 32 monomials, so |[M| = |B(M)| < 32|B|. Hence
dimV = |B| > (*/°)/32 = O(p*). O

Now we give statements on the time and space complexity for step 1. The essence
for step 1 is to find a minimal spanning set of V € FY, where N = (% 4+ %) = O(p*), the
generators of V is of size 8p* = O(p*), and dim V = O(p*). While computing the minimal
spanning set of V, if Gaussian elimination is used (which seems to be the most inefficient),
the time complexity is O(p'?) and the space complexity is O(p®) entries of size O(1). If the
sparse matrix structure is used, then it is possible to reduce to O(p®) in time complexity
and O(p*) space complexity (verification needed). We conclude our current result in the

following lemma:

12y and

Lemma 3.8.12. For Step 1 in Algorithm 3.5.5, the time complexity is at most O(p
the space complexity is at most O(p®).

Now we analyze Step 2. The core content involves computing a Grébner basis under
the grevlex monomial ordering with priority. It is still hard to estimate the improvements
made by applying the priority on the variables U in Step 2, so, at this stage, we just try to
provide general arguments on Faugére’s F4/F5 algorithm. We will apply the following

Proposition, which turns out to be close enough to our scenario:

Proposition 3.8.13 ([BFS15, Proposition 1]). Let (f1,- -, fm) be a system of homogeneous
polynomials in k[x1, - - - , x,]. Then the number of operations in k required to compute a
(ﬂ—l—f—l)w

Grobner basis for a grevlex order is O <mD ) as D — oo, where D is the degree

of the ideal generated by (f1,- -, fm), and w is as in 3.8.1.

Note that besides the issue of prioritizing, our scenario still differs from Proposition
3.8.13 because after evaluating (boo, bop, byo, byp) by (a0, 401, 10, a11), the ideal generated
by the Riemann relations is no longer homogeneous. However we can still use Proposition

3.8.13 to obtin an upper bound of the time complexity by interchanging the evaluation and

93



the F4 (or F5) algorithm.

For the parameters in Proposition 3.8.13, it is immediate from Algorithm 3.5.5 and
Lemma 3.8.12 that we have n = 2p + 2 variables and m = O(p*) equations. It re-
mains to determine D, the degree of the ideal. Experimental results showed that, gener-
ically after fixing (boo, bop, bpo, bpp) = (aco,ao1,a10,a11), all the other variables will be
uniquely determined by bjy (or any other variable in U U V by symmetry). And the
unique univariate polynomial in the Grobner basis in Step 3 for by; has 1 root of mul-
tiplicity 1, 1 root of multiplicity p and (p? — 1)/2 roots of multiplicity p?>. Therefore,
D=p* (pP>—1)/2+p+1=(p—p*+2)(p+1)/2=0(p*).

Plugging all variables back into Proposition 3.8.13, we see that the time complexity for
the grevlex Grobner basis algorithm is

n+D—1\% " .
O (mD( " ) ) — O(p4p4(p4)(2p+2) ) — O(pS( (p+1)+1))'

Lemma3.8.14. For Step 2 in Algorithm 3.5.5, the time complexity is at most O (p8(«(P+1)+1))
operations in [F,.

We remark that it seems that many modifications are done beyond the scenario in

Proposition 3.8.13, so the bound above could be largely optimized.

Next, we analyze step 3, which computes the Grobner basis in the lexicographical <jex
order. Since we used Magma’s implementation on the FGLM algorithm as described on
[FGLM93], we will use the complexity arguments there, and then describe some possible

improvements.

As in Algorithm 3.5.5, we need to convert a grevlex Grobner basis (Gy, <greviex) in
4 variables to a lexicographical Grobner basis (Gz, <1ex). When the ideal generated is of
dimension 0, this can be handled by the FGLM algorithm, and we briefly summarize the
algorithm as follows. Let M = IF4[xy, - - -, x4]/ (Gy) be the dimension D IF;-vector spaces
determined by the first Grobner basis. Also, let B = {€1,--- ,ep} be the a basis of M,
where €; are monomials ordered increasingly by <greviex- For each €; € B, sequentially in
lex compute the normal form of €;x; with respect to the Grobner basis Gy for 1 <i < n.
Then we fit the coefficients of the normal form into column vectors of a matrix. When there
are linear dependencies among the column vectors, we get an element in the new Grobner

basis (G2, <1ex). We see that linear algebra plays the central role in the FGLM algorithm,
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which allows us to compute the time and space complexity. In particular, we have the
following Proposition:

Proposition 3.8.15 ([FGLM93, Theorem 5.1]). When the ground field of the polynomial
ring is a finite field, the time complexity is O(nD?) and the space complexity is O(D?),

where 7 is the number of variables and D is the degree of dimension 0 ideal.

Plugging in n = 4 and D = O(p*) (from the analysis of Step 2), we have the following

result:

Lemma 3.8.16. For Step 3 in Algorithm 3.5.5, the time complexity (number of IF; opera-

tions) is at most O(p'?), and the space complexity is at most O(p®).

Remark 3.8.17. It seems that this is the best the built-in FGLM implementation Magma
can do so far. Indeed Faugére and Mou proposed in [FM17] the sparse version of the FGLM
algorithm, which has the potential to outperform the original version in Magma. Need to

understand more about this.

Next we analyze step 4, which involves solving the (21 — 2) variables of the 2p-theta
null points from the Grobner bases (Gy, <greviex) and (G2, <1ex). The most costly step here
is to solve for the first variable by; from the first polynomial in the Grébner basis f(b;) over
its splitting field (the size of the splitting field is unknown). The polynomial f has degree
D, and contains 1, 1, and (p? — 1) /2 roots of multiplicity 1, p and p?, respectively. Hence
it is of negligible time to derive from f to the polynomial f, the square-free polynomial

whose roots are exactly those of f with multiplicity p? (hence deg f = (p> —1)/2).

Classically (see [Coh13, Section 3.4]), solving f~ over its splitting field contains two
stages. The first stage is to factor f into polynomials of the form f,, where f, is the product
of all degree r polynomials which divides f and is irreducible over IF,. The second stage is

to solve f, for each r, using the Cantor-Zassenhaus algorithm for instance.

Suppose the splitting field is a degree d extension of IF,. In stage 1, for each r | d, we
indeed have f, = gcd(f(bo1), bgyl — bo1). The complexity for this is O(r(deg f)?(logq +
deg f)) = O(rp*(logq + p?)).

The Cantor-Zassenhaus stage has complexity O((deg f)?logglogr) = O(p*logglogr).

Combining all possible 7, which ranges through divisors of d, we get the overall complexity
O(o(d)p*(logg +p*)).

At this moment, not much is known about the splitting field extension degree d, except

that when p = 3, Carls gave in [Car10] that d | 48. It is backed up by experiments that in
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most cases d is small, so both theoretically and by experiment, we can assume that Step 4
takes negligible time compared to other steps in Algorithm 3.5.5.

Finally, we analyze step 5. From step 4, we have a solution set S, which contains
(p* — 1) /2 sets of quadruples. From step 4, we also partitioned S into p + 1 groups, and
each group contains (p — 1) /2 quadruples. On the other hand, for the 2p-theta null point
(bij)o<i,j<2p, we can separate the unknown positions into (p* — 1)/2 quadruples, and the
quadruples form p + 1 groups, with each group consists of (p — 1) /2 quadruples.

We need to fill in the positions in (b;;) by the quadruples in S, by the following rules:
Each group in S has to be filled into a group in (b;;); and within a group of (b;;), when
a quadruple in (b;;) is fixed by a quadruple in S, the other (p — 3)/2 quadruples in (b;;)
are automatically fixed. Therefore, there are (p + 1)! assignments for the groups and
(p — 1)/2 assignments for the quadruples in each group, yielding (p + 1)!((p — 1) /2)#+!

assignments in total.

Among all these assignments, only |GLy(F,)|/|{£1}| = p(p — 1)*(p +1)/2 = O(p*)
of them are the desired 2p-theta null points. Since we randomly choose the assignments
and test the validity, and testing takes O(1) arithmetic in the ground field, In average
it takes O((p —2)!((p — 1) /2)P) field operations to get a valid 2p-theta null point. We

summarize the result in the following lemma.

Lemma 3.8.18. In Step 5 of Algorithm 3.5.5, suppose that the 2p-theta null point lies on

ofir- (1))

field operations on IF 4, or O (d” (p—2)! <pT—1) p) field operations of IF, to derive a valid
2p-theta null point.

[ 4, on average it takes

To summarize Algorithm 3.5.5, we see that for a general p, the bottlenecks in terms of
time complexity are Steps 2 and 5, which are exponential in p; the bottlenecks in terms
of space complexity are Steps 1 and 3, which are O(p®) (although there is a potential to

improve by applying sparse matrices).
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3.8.3 From 2p-theta Null Points over Finite Fields to 2p-theta Null Points over
Local Fields

In this section, we will look at the complexity of Algorithm 3.5.10. Carls and Lubicz
provided a complexity formula for this in [CL09, Section 4.2], which follows from the ones
in Lercier and Lubicz in [LL06, Algorithm 5.1]. Since the scenario in [LL06] is for fixed p

(there p = 2), so we need look closer to the formula.

It is not hard to see that Step 3 is dominated by the highest precision iteration, and in
that iteration, the dominating step is to solve the Artin-Schreier equation. Adapting the
analysis from [LL06, Algorithm 5.1] and substitute all operations on IF; (respectively Q,.)

to operations on [F), (respectively Q,), we get the following lemma:

Lemma 3.8.19. The complexity for Algorithm 3.5.10 is O(log(N)N*d") operations on IFp,

where:

¢ d is the extension where the 2p-theta null point lies in. When we solve the Grobner
basis system to solve the 2p-theta null point, we will potentially need to get to a
larger finite field extension. Carls in [Car10] claimed that when p = 3, the maximal
extension needed will be d = 48r, where r is the extension where the 2-theta null

point (though in most case d will be less or equal to 3r).
¢ The complexity constants y is as in Definition 3.8.1

* N is the required precision.

We note that N is affected by many factors, such as the coefficient bounds and denomi-
nator bounds of the Igusa class polynomial, and the error factor of the LLL algorithm. We
will figure out the asymptotic size of N in section 3.8.4.2.

3.8.4 Recovering Igusa Class Polynomials

For this step, the input will be the Igusa invariants (i1, i, i3) in the local field Qy, and the
output will be a factor of the Igusa polynomial, which is the minimal polynomial of the
factors. If it were the elliptic curve case, there will be two possible approaches.

3.8.4.1 Using the Actions of Ideal Classes [a] € CI(K)

This is the best method in genus 1 and suggested as an improvement for the CRT method
in the genus 2 case in the paper [BGL11]. However, it does not seem that the method can
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be applied to our scenario. First, we need the actions on abelian surfaces over Q, rather
than a finite field; and in addition, the modular polynomial of the Siegel modular variety
V(f;1) described in section 2.3 is hard to compute for larger /.

3.8.4.2 Using the LLL algorithm to Find Minimal Polynomials

We will discuss the complexity of Algorithm 3.6.1. Let €(K) be the Shimura class group,
d := [Qg : Q] be the extension degree, and N be the required precision. Also, we take s to
be the degree of the minimal polynomial of the Igusa invariants. In general, we will have
|€(K)| = s or 2s.

We first explain the validity of Algorithm 3.6.1. First, we show that there exists a

vector of the form v := [mgmy --- ms — € -+ — €4_1] in the left kernel A of M. Suppose
that f(x) = Yj_om;x' be the minimal polynomial, we have Y}_y m;a;jw; = 0 (mod p™).
Denote };_ m;a; jw; = eij foreach0 <j < d,then[momy --- ms—eg -+ —€z_1|M = 0.
And this justify that [mgmq --- ms—ep -+ —e€5-1] € A.

Next, we show that when the precision N is sufficiently large, [mgm; --- ms—eg - -+ —

€4-1) is indeed the shortest vector and can be recovered by the LLL algorithm, by proving

the following lemma:

Lemma 3.8.20. Let C be the upper bound for both the denominator and the coefficients
of the Igusa class polynomial. Suppose N is chosen so that N = logp(O(Z(SH)/ 2C224%))),
then the shortest vector provided after Step 2 of Algorithm 3.6.1 gives the correct coefficients

of the minimal polynomial.

Proof. We first estimate the norm of the vector v = [mgmy --- ms—€y --- — €4_1]. The
first s + 1 entries are from the minimal polynomial, hence bounded by C. For the last d
entries involving €, we have |¢j| < (1/pN) ¥i_g [a;jmi| < Yi_gm; < (s +1)C. Therefore,
[Ivl] = O(Csd).

We then estimate the lengths of other vectors in the left kernel A of M which are
not scalar multiples to v. Let u := [ug---uy4s] € Z%F! be such a vector. Then
¢ ouit! =0 (mod pV) for the Igusa invariant ;, which means that there exists embed-
dings g, - - ,ils € Zp of ug, - - -, us satisfying Y3_o il;i' = 0. Hence there exists a ¢ € Z,,
such that [ - - - #ls] = é[myg - - - ms]. This means that projecting ¢ into the Z/pNZ and take

the least non-negative representative in Z, we have u = cv + pNe for some e € Z7+5+1,
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We claim that the second shortest vector w should have ||w|| = O(pN/Csd). For
i=0,---,sletb;=[0,---0,pN,0,--- ,0,—a;0,- -, —a;4_1) (p" is in the (i + 1)-th entry).
Observe that the vectors by, - - - , bs together with v span the left kernel A. If we only keep
the first (s + 1)-entries, then by, - - -, bs has volume (pN)**1 = pNG+1). Joining v, then
pN v is the smallest scalar product of v which is in span(by, - - -, bs). Therefore, we know
that restricted in the first (s + 1)-entries, A has volume p™*. Since there are s — 1 linearly
independent vectors of norm pV, the norm of the second shortest vector w must have size

at least O(p" /Csd) putting the last d-entries back will only lengthen w.

There is an adjustable parameter § € (0.25,1) in the LLL algorithm, which controls the
Lovész condition and the “idealness” of the output short lattice base. Suppose we choose,
as the default of Magma, & = 0.75, then the classical result states that if 2+1)/2||v|| < ||w]|,
the first vector in the output of the LLL algorithm will be indeed v.

Therefore, given N = logp(O(Z(S“)/ 2C2524%))), we will obtain the shortest vector v

containing the coefficients of the minimal polynomial. O

The next issue is to estimate C := max{|my|,- - -, |m;|}, the maximal coefficient of the
minimal polynomial and the denominator. And suppose we have the bound on C, then we
will get a bound on N as well.

Lemma 3.8.21 ([BGL11, Section 6.4]). C = exp(O(Dg/zDi’/z)), and N = O(DS/ZD?/Z).

Proof. For the denominator (defined as the least common multiple of the denominators
of the coefficients of the Igusa class polynomial when we write it as a monic polynomial)
in the Igusa class polynomial, Streng have in [Str14] the following theorem, based on the

result of Goren and Lauter:

Theorem 3.8.22 (Streng, [Str14, Theorem 10.1]). Let K = Q(V —a + b\/ﬁ) with d = Dy,
and a < 8y/DgD;/ . Then the denominator of the Igusa class polynomial divides D =
22 D2 where i = |¢(K)],

hl

Di=| ] pt‘lf(n)(u“oig;«%)J

p<4da?
p prime

Here f(p) is 3 if p < 3 and ramifies in K, and 1 otherwise.

From Theorem 3.8.22, it is deducted in [Str10, section I1.9] that the denominator is
exp(O(Dg/ sz/ 2)). Moreover, in [Str10, section II.11], Streng also proved that the maximal
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absolute value of the monic Igusa class polynomial is also bounded by exp(O( DS’/ ZDi’/ ).
Combining both bounds we have C := max{|mg|,- - - , |ms|}.

Compare with the estimate of s, which is related to the relative class number 1~ (K),
we have s = O( Dé/ ZD%/ 2). So both occurences of s will also be absorbed. Also, since d is
also polynomial in Dy and Dy, it is also absorbed in the estimation of N. This means that
N = O(Dg/ zDi’/ 2) is dominated by the contribution of C. O

Remark 3.8.23. In [LV15], Lauter and Viray gave a sharper bound for the denominator of
the Igusa class polynomials, which used results on certain intersection formulas on Hilbert
modular surfaces. It could potentially improve the bound in Lemma 3.8.21, but as the

formula was extremely lengthy, so we decided not to address it in the lemma.

Finally, for the complexity of the LLL algorithm, [GHK*06], the L? variant of the
general LLL algorithm has the complexity O((s +d)>(s +d + N)N) and can be reduced to

O((s +d)*(s +d + N)N)

in our setting. Combining our estimates for d and N, we have the following:

Lemma 3.8.24. The complexity for using the LLL algorithm to recover a factor of the

Igusa class polynomial is O(D?D3) (in terms of Z-operations).

As we have complexity statements from all the steps now, by assembling all the parts,
we can see that the main Theorems 3.1.1 and 3.1.2 follows from Lemmas 3.8.10, 3.8.14,
3.8.18, 3.8.19, and 3.8.24.

3.9 Future directions

To reduce the complexity of Grobner basis computation so that the computation of canoni-
cal lifting works out for as many prime p as possible, we made observations in Section 3.5.3.
However, we are not yet able to rigorously justify our observations in this dissertation.
Some facts which are believed to be helpful regarding the actions of Autg, H, on valid
theta 2p-mull points are given in [FLR11]. There is still a gap to apply the actions [FLR11]
directly, since their results needed the theta level to be not divisible by p, which is not our
case. We are still working out to get a better understanding of the tools required for Section
3.5.3.

Nevertheless, as p increases, the size of the Grobner bases expand exponentially, and
the extension field degree of the 2p-theta null points also increased with a speed that is
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hard to control. Is there any correspondence relation for the p-adic canonical lifting which
does not rely on the 2p-theta null points? A positive answer to the question might lead to a
breakthrough for the p-adic method. At this moment, for p = 3, [CKLO8] found a relation
on the 4-theta null point, but we do not know anything beyond that.
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Appendix
A Proposal of a Signature
Scheme in Genus 2

In this appendix, we provide an outline of a signature scheme, which generalized the key
component of the signature scheme by Galbraith, Petit and Silva in [GPS19, Section 4] to
superspecial abelian surfaces. The goal of this appendix is to provide a connection to the

principal ideal problem with a signature scheme over superspecial ableian surfaces.

1 A sketch of Galbraith et al.’s signature scheme for supersingu-

lar elliptic curves

Galbraith’s scheme relied on the fact that the following problems are computationally hard.

Indeed, it is shown in [EHL*18] that these hard problems are equivalent.

* MaximalOrder: Given a supersingular curve E defined over FF» and a basis of the
quaternion algebra By, find a basis {B1, B2, B3, B4} € Bpeo, so that EndIF—p(E) =
Z,Bl + Zﬁz + Zﬁg, + ZIB4.

* EndomorphismRing: Given a supersingular j-invariant j € F ., output End]F—p(E(j)),
which is represented by the four rational maps E — E generating the endomorphism

ring.

¢ (-PowerIsogeny: Given a prime p and two supersingular elliptic curves Eq, E; de-
fined over F), and a small prime ¢ # p, output an (-power isogeny ¢ : Ey — E»,
where deg ¢ = /¥, represented by a chain of /-isogenies of length k.

On the other hand, Galbraith’s scheme required efficient algorithms for the following

questions. We list their problems alongside with a reference to the algorithms.
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* IsogenyPathToIdeals: Given a supersingular elliptic curve Ej and its endomor-
phism ring Oy, and an isogeny path Ey — E;, compute the endomorphism ring O
of E; and the connecting ideal of Oy and O; (see [GPS19, Section 4.4]).

¢ PowersmoothIdeal: Given a left Op-ideal I, find another left Oy-ideal |, in the same
ideal class as I, such that N(]) is powersmooth. (see [GPS19, Section 4.3], which
generalizes the result of [KLPT14]).

e IdealsTolsogenyPath: Given Ey, Oy as above, and E;, and a Oo-EndE(Ez)-ideal I,
find an isogeny path Ey — E, corresponding to I (see [GPS19, Section 4.5]).

The core of Galbraith’s signature scheme is the following zero-knowledge identification

protocol which uses the algorithm to the above questions as components:

Algorithm A.1.1 (The identification scheme in [GPS19, Figure 1]).
Settings: The prover possesses the private key, which is an isogeny ¢ : Ey — E; with deg ¢

being powersmooth. The verifier knows the public key (Eo, E;).

Goal: The prover proves to the verifer the possession of the private key, and the verifier

verifies it.

1:

10:

2

The prover starts a random walk from E; along the powersmooth isogeny graph and
generates a powersmooth isogeny ¢ : E; — E;. The prover sends E; to the verifier.
The verifier generates a random bit b and send it to the prover.
if b = 0 then
The prover sends ¢ : E; — E; to the verifier
else
The prover uses algorithm IsogenyPathToIdeals to compute EndIF—p(Eg) and the
connecting ideal I between EndE(Eo) and End]F—p(Ez).
Use the algorithm in [KLPT14] to construct an ideal | in the same left ideal class as
I, with powersmooth norm.
The prover uses algorithm IdealsToIsogenyPath to compute an alternate isogeny
n : Eg — E; corresponding to the ideal |, and send 1 : Eg — E; to the verifier.
end if
The verifier accepts the proof if the returned ¢ is indeed an isogeny E; — Ej, or the
returned 7 is indeed an isogeny Ey — E,.

A generalization to genus 2

Overview of the required routines. We need the following questions to be hard (say,

polynomial time in log p):
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* IsogenyPathToMatrix: Given An isogeny chain E(z) = Ay g Ap--- ﬂ> A,, where
each ¢; is an (¢;, ;)-isogeny for some prime ¢;. Suppose in addition that N = [T;_; ¢;
is O(log p)-powersmooth. For each 1 < i < r, find v; and g; = £;(7;') 1gi-17; ' (as
in Proposition 2.2.9).

* PowersmoothMatrix: Given g, ¢’ € Mat; (O), find a O(log p)-powersmooth N =
[T, ¢ and v € Mat,(0), T, 7" € Mat}(0O), such that N(y) = N and N(T'gt) =
7 (?t ¢'7')7y, and v represents an isogeny path which consists of e; (¢;, ¢;)-isogenies
forl1 <i<r.

* MatrixToIsogenyPath: Given a superspecial abelian surface Ag/ E, a represen-
tative g9 € Mat] (O) of A, and 7 € Maty(O), where N = N(7)'/2 is O(log p)-
powersmooth. Find 71, -y, and A; - - - A,, such that foreach 1 <i <r, N(y;) = EIZ
for some prime ¢;, ¥ = 7y, - - - 71, and 7y; represents an (¢;, {;)-isogeny A;_1 — Aj.

Here, we give a rough sketch how to set up the identification scheme. This is supposed

to be a generalization of Algorithm A.1.1.

Settings for the superspecial signature scheme. We first describe the system parameters.
Let p be a prime of the form p = 4M — 1, where M = p; - - - ps is a product of small
primes. Choose the base supersingular elliptic curve as Ey : y> = x® + Ax for some
A € > such that [Eg(F,)| = p+1and |Eo(Fj2)| = (p+ 1)2. In this case, EndE(Eo) can
be explicitly computed as a maximal order O C B, . And when Ay := Ej, EndE(Ao) can
be embedded in Mat; (B),c)-

We first propose the identification scheme, analogous to Algorithm A.1.1. In the
identification scheme, there is a prover and a verifier. The prover possesses a private key,
which is is an isogeny ¢ : Ag = E3 — A;, where  is a chain of (2,2)-isogenies, while the
public key is Ag and Aj;.

Algorithm A.2.1 (The genus 2 identification scheme, analogous to algorithm A.1.1 as in
[GPS19, Figure 1]).
Settings: The prover possesses the private key, which is an isogeny ¢ : Ag := E5 — Ay,
where ¢ is a composition of (2,2)-isogenies. The prover also precomputes and v; €
Mat}(O) and g; € Mat] (O) corresponding to A; using IsogenyPathToMatrix. The veri-
fier knows the public key A;.
Goal: The prover proves to the verifer the possession of the private key, and the verifier
verifies it.

1: The prover starts a random walk from A; along the (2,2)-isogeny graph and generates

anisogeny ¢ : Ay — Aj. The prover sends A; to the verifier.
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2: The verifier generates a random bit b and send it to the prover.

3: if b = 0 then
4: The prover sends ¢ : A; — A; to the verifier
5: else

6: The prover invokes IsogenyPathToMatrix to obtain the matrix g, € Mat; (O)
corresponding to Aj.

7: The prover invokes PowersmoothMatrix to find 7 € Maty(O) and 7,7 € Mat}(0),
such that N(y) = 3°and 3°(7'7) = 7' (?t 227')7y, and <y represents an isogeny path
7 : Agp — Ap which is a combination of e (3, 3)-isogenies.

8: The prover invokes MatrixToIsogenyPath to recover from vy the actual (3,3)-
isogeny path 7 : Ag — Az. The prover then sends 7 : Ag — A; to the verifier.

9: end if

10: The verifier accepts the proof if the returned ¢ is indeed an isogeny A; — A;, or the
returned 7 is indeed an isogeny Ay — A».

In particular, we will give a proposed algorithm for the IsogenyToMatrix problem,

which showed up in step 6 in Algorithm A.2.1.

Algorithm A.2.2 (IsogenyPathToMatrix).
Input: A supersingular elliptic curve Eq defined over IF,,, O = EndE(Eo) =21 +ZPr +

Zys + Zys, B= O ®z Q, a chain of isogenies Ay = E} LiN Al — - o, A,, where each
¢iis a (¢;, ¢;)-isogeny specified by the kernel K; := ker(¢;_1).

Output: For each 1 < i < r, the matrices 7; € Maty(O) and g; € Matz+ (O), as described in
Proposition 2.2.9.

1: Compute N = [];_; {;, and let N = [T;_; p]e.j be the prime factorization (so /; € {p;};_,)-

2: forj=1,---,sdo

3: Compute a basis {P; 1, Pj»} of Eo[p;” ].

4: Compute the Weil pairing matrix W; € Maty(Z/p;Z) with respect to the basis
{(p'P;1,0), (P57 P;2,0), (O, 5" Pi1, (O, pi' ' Pj2))} and the product
polarization.

5: Compute 0;1,0;2,0;3,04 € Mata(Z/p;Z), the action of 91, 2, 3, P4 on Eg[p;] with
respect to the basis {p? 71Pj,1, pj.j 71P]-,2}.

6: end for

7: Set ¢ = idp and g = v = id € Mat;(O).

8 fori=1,---,rdo

9: Find a basis {S;1, Si»2} of K;.

10: Suppose ¢; = p;. Solve DLP to get u1, ua, us, ug and v1, 03, v3, v4 satisfying
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Sip = m1p((Pj1,0)) + u2p((Pj2, 0)) + usp((O, Pj1)) + uap((O, Pj2)) and
Sip = 01¢((P;1,0)) +v20((Pj2,0)) + v3¢((O, Pi1)) + va¢p((O, Pj2)).

11:  Compute Tj; = y(u1(P;1,0) + uz(Pj,O) + u3(0, Pj1) + us(O, Pjp)) and
Tin = v(v1(P;1,0) + v2(Pj2,0) + v3(O, Pj 1) + v4(O, P;2)).
122 Compute I € Maty(Z/p;Z) from g, and compute W = WT.
> Use the mapping in line 5.

13: if (11 up ug ug)|Wlvq v2 v3 v4)" # 0 then
14: return error. > Implies the kernel is not isotropic.
15: end if
16: List V = {A € Maty(Z/p;Z) | rank(A) = 2, Aluy uz uz us]' = Afv1 v v3 v4)" = 0}.
17: Find A; € V and 1y; € Maty(O) such that 7; acts as A; on Ej[pj] and N(7;) = pjz-.

> If possible, choose A; and v; such that ;' = ;.
18: Compute g; = p; (7! g’yi’l, replace g by g;, and replace 7y by ;7.
19: end for

20: return {7, gi}/_;.

For what is relevant to Chapter 2, step 17 can be solved if we can find a principal ideal

generator of I'Mat; (O) + p;Mat(O).
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