
The Pennsylvania State University

The Graduate School

ALGORITHMS FOR ABELIAN SURFACES OVER FINITE FIELDS AND

THEIR APPLICATIONS TO CRYPTOGRAPHY

A Dissertation in

Mathematics

by

Hao-Wei Chu

© 2021 Hao-Wei Chu

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2021



The dissertation of Hao-Wei Chu was reviewed and approved by the following:

Kirsten Eisenträger

Professor of Mathematics

Francis R. Pentz and Helen M. Pentz Professor of Science

Dissertation Advisor

Chair of Committee

Jack Huizenga

Associate Professor of Mathematics

Wen-Ching Winnie Li

Distinguished Professor of Mathematics

Martin Fürer

Professor of Computer Science and Engineering

Alexei Novikov

Professor of Mathematics

Director of Graduate Studies

ii



Abstract

This dissertation investigates two types of abelian surfaces: superspecial abelian surfaces
over finite fields and abelian surfaces over number fields with complex multiplication. We
generalize theorems for elliptic curves to these surfaces, and discuss their applications in
cryptography.

In the first part, by extending Page’s algorithm in 2014, we give a probabilistic algo-
rithm that solves principal ideal problems over matrix algebras over quaternion algebras
in subexponential time in the size of the ideal and the determinant of the quaternion
algebra. We also discuss their applications to cryptography protocols based on isogenies
on superspecial abelian surfaces.

In the second part, we discuss a p-adic algorithm which computes the Igusa class poly-
nomial of a quartic CM field, which encodes abelian surfaces with complex multiplication
by the field. We discuss potential improvements to the canonical lifting algorithm by Carls
and Lubicz in 2009, which is the core of the p-adic algorithm. Applying the improvement,
we computed examples for p = 5 and 7. We also analyze the computational complexity for
the entire p-adic algorithm.

iii



Table of Contents

List of Figures vii

Acknowledgements viii

Chapter 1
Introduction 1
1.1 Isogeny-Based Cryptosystems on Abelian Surfaces . . . . . . . . . . . . . . . 2
1.2 Finding CM Abelian Surfaces via the p-Adic Approach . . . . . . . . . . . . 4

Chapter 2
Principal Ideal Generator Problems over Matrix Rings of Quaternion Algebras 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Isogeny-based cryptosystems . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Superspecial abelian surfaces and matrix rings over quaternion alge-

bras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 General theory of central simple algebras . . . . . . . . . . . . . . . . 10
2.2.2 Quaternion algebras and supersingular elliptic curves . . . . . . . . 13
2.2.3 Central simple algebras and superspecial abelian varieties . . . . . . 14
2.2.4 Lattices over a local field and Bruhat-Tits buildings . . . . . . . . . . 18

2.3 The Principal Ideal Generator Algorithm . . . . . . . . . . . . . . . . . . . . 21
2.4 The Global Reductions of Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 The G-reduction structure . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 The GReduce process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 The local reduction process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1 The compatibility between ideals and lattices actions . . . . . . . . . 27
2.5.2 The `-reduction structure: the definition . . . . . . . . . . . . . . . . . 28
2.5.3 Computing the `-reduction structure: finding the filtration of ideals

and lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.4 Finding transitive actions in the chamber . . . . . . . . . . . . . . . . 31

iv



2.5.4.1 Computing the `-reduction structure: finding transitive
actions on [P0] . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.4.2 Finding a transitive action on [P1] and beyond . . . . . . . . 35
2.5.5 The LReduce algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Putting everything together: the validity and the complexity analysis . . . . 42
2.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7.1 The smoothing process and the global reduction . . . . . . . . . . . . 45
2.7.2 The local reduction and the Bruhat-Tits building . . . . . . . . . . . . 46

2.8 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 3
Computing Igusa Polynomials via p-Adic Methods 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 The case of genus 1: CM elliptic curves and Hilbert class polynomials 51
3.1.2 The case of genus 2: CM hyperelliptic Jacobians and Igusa class

polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.1 Moduli of Abelian Surfaces and Moduli of Hyperelliptic Curves . . . 56

3.2.1.1 Principally Polarized Abelian and Jacobian Varieties; The
Moduli Problem . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1.2 The Igusa Invariants . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.1.3 The Igusa Class Polynomial . . . . . . . . . . . . . . . . . . 58

3.2.2 The Theory of CM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2.1 CM elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2.2 CM abelian varieties . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.3 Canonical Lifting of Hyperelliptic Curves . . . . . . . . . . . . . . . . 62
3.2.4 Theta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 The Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 Finding a Hyperelliptic Curve over a Finite Field with CM by a Maximal

Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 Finding suitable finite field . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.2 Finding a hyperelliptic Jacobian with the correct endomorphism

algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.3 Finding a hyperelliptic Jacobian with the correct endomorphism ring 71
3.4.4 Discussing some potential improvements . . . . . . . . . . . . . . . . 71

3.5 Computing the Canonical Lift of a Hyperelliptic Jacobian over a Finite Field 72
3.5.1 Computing the 2-theta Null Points over Fpr . . . . . . . . . . . . . . . 72
3.5.2 Computing the 2p-theta Null Points over Fpr . . . . . . . . . . . . . . 75

3.5.2.1 Setting up the equations . . . . . . . . . . . . . . . . . . . . 75
3.5.2.2 Computing the 2p-theta null point with our modifications . 77

3.5.3 Computing the 2p-theta Null Points over Qpr . . . . . . . . . . . . . . 79

v



3.6 Recovering the Igusa Class Polynomials from the Canonical Lift . . . . . . . 80
3.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7.1 Example 1: Q
(√
−2 +

√
2
)

. . . . . . . . . . . . . . . . . . . . . . . . 82

3.7.2 Example 2: Q
(√
−30 +

√
96
)

. . . . . . . . . . . . . . . . . . . . . . 85
3.8 The Complexity Analysis of the Main Algorithm . . . . . . . . . . . . . . . . 87

3.8.1 Issues on Curve Finding . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.8.1.1 Finding the Underlying Finite Field . . . . . . . . . . . . . . 88
3.8.1.2 Finding a Curve over Given Finite Field via Computing

Endomorphism Rings . . . . . . . . . . . . . . . . . . . . . . 90
3.8.2 From 2-theta Null Points to 2p-theta Null Points . . . . . . . . . . . . 92
3.8.3 From 2p-theta Null Points over Finite Fields to 2p-theta Null Points

over Local Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.8.4 Recovering Igusa Class Polynomials . . . . . . . . . . . . . . . . . . . 97

3.8.4.1 Using the Actions of Ideal Classes [a] ∈ Cl(K) . . . . . . . . 97
3.8.4.2 Using the LLL algorithm to Find Minimal Polynomials . . 98

3.9 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix
A Proposal of a Signature

Scheme in Genus 2 102
1 A sketch of Galbraith et al.’s signature scheme for supersingular elliptic

curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2 A generalization to genus 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 107

vi



List of Figures

2.1 The traversal of the Bruhat-Tits building of for ` = 2, as in Algorithm 2.5.18. 40

3.1 Grouping 2p-theta null points . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



Acknowledgements

First, I would like to offer my deepest appreciation and respect to my thesis advisor,
Professor Kirsten Eisenträger, for all her patient guidance throughout my Ph. D. study, for
her challenges when I got frivolous, for her empowerment when I faltered, and for all her
care during the pandemic, when all the world just collapsed in a sudden. Without her help,
I might not stay sane, let alone starting a thesis.

Second, I would like to thank the committee members of this dissertation, including
Professor Winnie Wen-Ching Li, Professor Jach Huizenga, and Professor Martin Fürer, for
all their input and challenges to the dissertation and the defenses. I would also like to
thank the mathematics department staff, Allyson Borger, for keeping everything handled
and seamlessly smooth, including directing me to the LATEXtemplate of this thesis, so that I
can keep our concern outside our study minimal.

Next, I would like to thank my academy brother, Caleb Springer, for organizing the
study groups in the math department, and for being a good role model as a scholar. I
would also like to thank Chien-Hua Chen and other number theory graduate students and
all my roommates and friends, for illuminating my life at Penn State.

Also, I would like to thank everyone who taught me math. In particular, I thank
Professor Jing Yu, for showing me both his affinity and self-discipline while being one
of the leading mathematicians in Taiwan, and Professor Chia-Fu Yu, for showing me the
humbleness and hardworking, and for directing me to supersingular abelian varieties.

Finally, I would like to thank my parents, for maintaining a cozy home while support-
ing me to pursue my dream; and my little sister, for all the sweet conversations and nice
pieces of career advice, and for taking care of my family while I am not at home.

Hao-Wei Chu is partially supported by National Science Foundation grants CNS-
1617802 and CNS-2001470 during his Ph. D. program at Penn State and the writing of the
dissertation. The findings and views of this dissertation do not necessarily reflect the views
of the National Science Foundation.

viii



Chapter 1 |
Introduction

In the thesis, we will be giving algorithms for computational problems arising from abelian

surfaces, and discuss the connections between these computational problems and cryptog-

raphy.

Elliptic curves over finite fields play an important role in public-key cryptography.

There are two types of elliptic curves, ordinary elliptic curves, and supersingular elliptic

curves. We can characterize these two types using their endomorphism rings EndFp
(E)

over the algebraic closure: The endomorphism ring of an ordinary elliptic curve is an

order of an imaginary quadratic field; while the endomorphism ring of a supersingular

elliptic curve is an order in a definite quaternion algebra. It is also possible to classify them

according to their p-torsion, denoted E[p].
Both ordinary and supersingular elliptic curves have been studied in the public-

cryptographic system: The classical computational hardness of the discrete log problem on

ordinary elliptic curves has been the keystone of the elliptic curve Diffie-Hellman (ECDH)

and many other protocols. On the other hand, there are several problems related to su-

persingular elliptic curves which are believed to be computationally hard even assuming

the quantum computers, such as finding isogenies between supersingular curves of prime

power degree and computing the endomorphism ring of a general supersingular curve. For

instance, the SIDH algorithm in [DJP14] relies on the isogeny problem, and the algorithm

proposed by Galbraith et al. in [GPS19] used the endomorphism problem of supersingular

elliptic curves to construct a signature scheme.

It is natural to ask for a higher-dimensional analog of isogeny-based cryptography,

which stimulated numerous analogous questions to be asked on higher-dimensional

abelian varieties. In this thesis, we will be discussing abelian varieties of dimension g = 2,

and in this case, every simple abelian variety is geometrically isomorphic to the Jacobian

1



variety of a hyperelliptic curve. For abelian varieties of dimension > 1, it is no longer true

that they are either ordinary or supersingular. We call an abelian variety A of dimension g
ordinary, if A[p] = (Z/pZ)g. We call A supersingular if A is geometrically isogenous to a

product of supersingular elliptic curves, and a supersingular abelian variety A is said to be

superspecial if it is isomorphic to a product of supersingular elliptic curves.

This thesis investigates the generalization of cryptographic primitives to abelian sur-

faces for both the ordinary and superspecial cases. After a brief overview of the classifica-

tions and endomorphism rings of abelian surfaces, We will focus on algorithms that are

essential to these generalizations. In Chapter 3, we will describe and analyze an algorithm

for the principal ideal problem over a central simple algebra. We will also discuss why

the principal ideal problem plays an important role in generalizing the signature scheme

proposed by Galbraith et al. in [GPS19, Chapter 4]. In Chapter 4, we will discuss improve-

ments and implementation aspects of the p-adic method in computing the Igusa class

polynomials, the dimension 2 analog of Hilbert class polynomials.

1.1 Isogeny-Based Cryptosystems on Abelian Surfaces

In public-key cryptography, most protocols depend on some underlying computationally

hard problem. In the case of protocols using supersingular elliptic curves, the underlying

problem is typically one of the following:

• (Finding isogeny path) Let E, E′ be two supersingular elliptic curves over a finite

field Fq, find an isogeny from E to E′ which has a smooth degree, such as the hash

function in [CGL08] and the Diffie-Hellman key exchange scheme in [DJP14].

• (Computing the endomorphism ring) Let E be a supersingular elliptic curve over a

finite field. Compute a Z-basis of End(E).

We are particularly interested in protocols involving supersingular elliptic curves and

their endomorphism rings, such as the signature scheme by Galbraith et al. in [GPS19].

For a supersingular elliptic curve E0 over Fp, we know that E0 has a model over Fp2 .

Furthermore, take O0 := EndFp(E0)
. Then O0 is a maximal order of the quaternion algebra

Bp,∞, where [Bp,∞ : Q] = 4 and is ramified exactly at p and infinity.

Deuring’s correspondence (see [Voi20, Theorem 42.3.2] for details) gave a bridge be-

tween isomorphism classes of such E0 and objects in quaternion algebras. Suppose we fix a

“base supersingular curve” E0 over Fp, and take O0 and Bp,∞ as above, then the mapping

2



E 7→ Hom(E, E0) defines a contravariant functor between the following categories:{
Supersingular elliptic curves over Fp,

morphisms are Fp-isogenies

}
→
{

Invertible left O0-modules, morphisms

are left O0-module homomorphisms

}

Composing the map I → OR(I) with the map above, we obtain a bijection between

Gal(Fp/Fp)-orbits of the j-invariants of supersingular elliptic curves over Fp and conju-

gacy classes of maximal orders in Bp,∞. The correspondence also provided us a pathway

between isogeny paths and one-sided ideals in Bp,∞. For instance, [KLPT14] proposed

an algorithm to find ideals with norms of the form `k for a small prime ` in one-sided

ideal classes in Bp,∞, which can be applied to find `-isogeny paths when some knowledge

regarding the endomorphism ring is given.

In the 2-dimensional case, much less is known. There is a hash function ([Tak18] and

[CDS20]) and a Diffie-Hellman key exchange algorithm ([FT19]) published recently. As we

will demonstrate in Chapter 2, the closest analogy for supersingular elliptic curves over Fp

are superspecial abelian varieties over Fp.

Given a prime p, we will fix a supersingular elliptic curve E defined over Fp and an

embedding End(E) ↪→ O ⊆ Bp,∞. It is possible to identify every superspecial abelian

surface with polarization (E2, L ) as a conjugate gΛg−1, for some g ∈ Mat2(O). And this

gives us an analogy to the endomorphism rings of supersingular elliptic curves.

To generalize the signature scheme in [GPS19] into superspecial abelian surfaces, one

of the most important ingredients needed is an analogy for the following fact: Although

finding endomorphism rings of supersingular elliptic curves is hard in general, in the

special case that an isogeny E0 → E1 is given and O0 = End(E0) is known, O1 = End(E1)

can be computed efficiently.

When generalizing this to higher dimension, it turned out that the principal ideal

problem is essential: Let Bp,∞ be the quaternion algebra and O be a maximal order of Bp,∞

as before. Suppose I ⊆ Mat2(Bp,∞) is a right Mat2(O)-order (which is known to be always

principal). How do we find a right ideal generator α of I?

We will discuss the principal ideal problem over the matrix ring over a quaternion

algebra over Q, with the idea based on [Pag14]. And our main contribution is to provide

an algorithm and analyze the complexity which yields the following theorem:

Theorem A. Suppose Bp,∞ is a quaternion algebra over Q, ramified exactly at p and ∞ for some
prime p, O be a maximal order in Bp,∞. Let I be a right Mat2(O) order.

Then, under certain heuristic assumptions, Algorithm 2.3.1 gives a probabilistic algorithm that
runs in subexponential time in p and finds the principal ideal generator of I.

3



1.2 Finding CM Abelian Surfaces via the p-Adic Approach

In the elliptic case, to obtain optimal security for the discrete log problem, we need to find

a curve E over a finite field Fq such that the number of points, |E(Fq)| is a large prime or

contains a large prime factor. In practice, there are two approaches: (1) By generating a

random curve E, computing the number of points, and repeat until a curve with suitable

order is found; or (2) Start with a suitable imaginary quadratic field K, and use the theory of

complex multiplication (CM) to find such a curve. We will consider the second approach.

Hilbert class polynomials play an important role in the classical CM theory. For an

imaginary quadratic field K, the Hilbert class polynomial is a monic polynomial whose

roots are exactly the j-invariants of elliptic curves with CM by K, i.e. the endomorphism

ring is OK. The Hilbert class polynomial has integral coefficients, and its splitting field is

the Hilbert class field of K.

For the genus 2 case, it turns out that the j-invariants of elliptic curves with CM by a

quadratic field can be replaced by the Igusa invariants (i1, i2, i3) of hyperelliptic Jacobians

with CM by a quartic field. As we will see, the associated Igusa polynomials still enjoy

some of the key properties of Hilbert class polynomials. In particular, one can recover from

the Igusa polynomials hyperelliptic Jacobians with CM by a quartic number field K and

one can construct hyperelliptic curves for use in discrete logarithm problems.

There are three major approaches to construct Igusa class polynomials: (1) the analytic

approach [Str14, ET14]; (2) the CRT approach [EL10]; and (3) the p-adic approach (see

[GHK+06] for p = 2; and [CKL08, CL09] for p = 3). Our main goal in Chapter 4 is to

investigate the possibilities of the p-adic approach.

The p-adic method for computing the Igusa class polynomial proceeds as follows:

(1) Search for an abelian surface A over a finite field Fpr such that End(A) ∼= OK; (2)

Find an abelian surface Ã over Qpr′ , the degree r′ unramified extension of Qp, such that

End(Ã) ∼= OK; (3) Recover the Igusa invariants and Igusa polynomials from Ã.

The core of the p-adic approach is step (2) above, for which we will take Ã as the

canonical lift of A (see Definition 3.2.10 for details). Since the canonical lift also lifts the

Frobenius, this leads to certain conditions that must be satisfied by the canonical lift. In

[GHK+06], Gaudry et al. gave an approach for p = 2 using Rosenhein invariants. For

p = 3, [CKL08] proposed a method using the 4-theta null points, but their method does

not generalize. In [CL09], a method for general p and any dimension g is proposed using

2n p-theta null points, but it turned out to be computationally feasible only when p = 3.

Faugére et al. discussed improvements of the Gröbner basis step in [DJP14] and gave

experimental results to compute 2p-theta null points for p = 3 or 5.

4



In Chapter 3, we will make improvements to the p-adic algorithms to compute Igusa

class polynomials and give a complexity analysis of the algorithm. The complete statements

of the theorem will be in Theorems 3.1.1 and 3.1.2. A simplified statement of the canonical

lifting (which is the key step of the algorithm) and the overall algorithm complexity can be

given as follows:

Theorem B. Let K be a quartic CM field of discriminant D. Suppose C is a hyperelliptic curve of
genus 2, defined over some finite field Fq = Fpr , such that the endomorphism ring of Jac(C) is the
maximal order OK of K. Further, assume that the 2p-theta null points of Jac(C) are defined over
Fqd . Then the canonical lifting of Jac(C) can be computed in Õ(p24p+32 + D3) operations in the
finite field Fq.

Moreover, assume that X represents the time required to determine whether a Jacobian over
Fq has CM by K. Then, using the p-adic approach, computing the Igusa polynomial takes time
complexity

Õ
(

q3 + q3/2X
4
√

D

)
+ Õ

(
p24p+32 + D3

)
+ Õ(D5).

An upper bound for X can be found in [FL08].

We also implemented our algorithm and provide examples of 5-adic and 7-adic methods.

To the knowledge of the author, only 2-adic and 3-adic examples are given in the existing

literature.

5



Chapter 2 |
Principal Ideal Generator
Problems over Matrix Rings
of Quaternion Algebras

2.1 Introduction

2.1.1 Isogeny-based cryptosystems

Public-key cryptography have gained increasing and irreplaceable importance in estab-

lishing and managing secure communication since RSA was published in late 1970’s. The

majority of such public-key cryptosystems have their security relying on some hard mathe-

matical problems, and the most widely used protocols relied on the hardness of integer

factorization and discrete logarithm problem over a specific group.

As a consequence of the invention of some quantum algorithms which undermines

the hardness of factorization and discrete logarithm problems, finding replacements for

the current public key cryptosystems has became a crucial task. In 2016, NIST initiated

a project (announced at [Nat16]) to call for proposals of quantum-resilient protocols, and

aimed for their evaluation and standardization.

Isogeny based cryptosystem had been one of the proposals sent to [Nat16]. The key

ingredient of the first isogeny based cryptography systems is the hardness of the following

problems regarding isogenies of supersingular elliptic curves.

• (Finding isogeny path) Let E, E′ be two supersingular elliptic curves over a finite

field Fq, find an isogeny from E to E′ satisfying certain condition.

• (Computing the endomorphism ring) Let E be a supersingular elliptic curve over a

6



finite field. Compute a Z-basis of End(E).

For instance, the first public key protocol which used isogenies on supersingular elliptic

curves can be dated back to the hash function proposed by Charles, Goren and Lauter

in [CGL08], which used the fact that the `-isogeny graph over isomorphism classes of

supersingular ellipic curves over Fp is an expander graph. And later in 2011, de Feo, Jao

and Plût proposed in [DJP14] the SIDH algorithm, which is a variant of Diffie-Hellman,

using 2 and 3-isogeny of supersingular elliptic curves over Fp, and the SIDH algorithm

were developed, packaged into the SIKE algorithm proposed to the NIST post-quantum

algorithm challenge. More recently, Castrtck et al. proposed CSIDH, which utilized the

isogeny grapgs on supersingular elliptic curves over the prime field Fp.

An alternative approach of using supersingular elliptic curves in crpytographic algo-

rithms is to use the hardness of computing endomorphism rings of a supersingular elliptic

curve. For instance, Galbraith et al. proposed in [GPS19] a signature algorithm which

utilizes both the hardness of computing endomorphism ring of an arbitrary supersingular

elliptic curve over the finite field Fq and the hardness of finding an isogeny path.

It is well known that supersingular elliptic curves and their isogeny graphs are deeply

connected to orders and quaternion algebras. For any prime p, we know that the endo-

morphism ring of a supersingular elliptic curve over Fp is a maximal order in Bp,∞, the

quaternion algebral over Q which ramifies exactly at p and ∞. In addition, the Deuring

correspondence gives a bijective map between isomorphism classes of supersingular ellip-

tic curves over Fp and equivalence classes of maximal orders in Bp,∞. Finding the Deuring

correspondence for a supersingular elliptic curve is in general hard and equivalent to

computing the endomorphism and finding isogeny path, as shown in [EHL+18], but when

the correspondence is provided, one can often transform problems on supersingular elliptic

curves to problems on quaternion orders. For instance, suppose that the supersingular

elliptic curves E, E′ are over Fp and correspond to the maximal orders O and O′, respec-

tively. Then finding an isogeny E→ E′ of powersmooth degree can be reduced to finding

an element of powersmooth norm in I, where I is a connecting ideal of O and O′. This

element can be found efficiently using a modified version of the algorithm of Kohel et al.

in [KLPT14].

Generalizing isogeny-based cryptographic algorithms to higher dimensional abelian

varieties has also gained more interest recently. The first idea was to use principally

polarized supersingular abelian surfaces which are Jacobians of hyperelliptic curves over

Fp, and the first dimension 2 algorithm was known to be a hash algorithm proposed by

Takashima in [Tak18]. Flynn and Ti found in [FT19] a weakness in Takashima’s algorithm

by showing the existence of short cycles and instead proposed a Diffie-Hellman protocol

7



on the (2, 2)- and (3, 3)-isogeny graphs on supersingular abelian surfaces, analogous to

SIDH. In contrast, instead of supersingular abelian surfaces (those which are isogenous

to a product of supersingular elliptic curve), Castryck and Smith narrowed the object to

superspecial (those which are isomorphic to a product of supersingular elliptic curves)

hyperelliptic Jacobians. They proposed in [CDS20] a modified hash function, which is

claimed to be immune short cycles collision attacks (compared to Takashima’s proposal

[Tak18]).

2.1.2 Superspecial abelian surfaces and matrix rings over quaternion algebras

It seems that in dimension 2, superspecial hyperelliptic Jacobians of genus 2 shared more

common properties with supersingular elliptic curves. Just to mention a few, every super-

special hyperellipic Jacobian over Fp can be defined over Fp or Fp2 , and the endomorphism

ring is a maximal order in Mat2(Bp,∞). Since Mat2(Bp,∞) satisfy the Eichler’s criterion, it

follows from strong approximation that all maximal orders in Mat2(Bp,∞) are conjugate to

each other, and the class number of the maximal orders are 1 Therefore, the class number

does not enumerate the hyperelliptic curves; instead, as described by Ibukiyama et al. in

[IKO86], taking O to be a maximal order in Bp,∞, one can consider O-lattices of rank 2, and

define an equivalence relation on the lattices. The number of principal polarizations on

such superspecial abelian surfaces is then bijective to the lattice classes. Ibukiyama et al.

gave an explicit formula to compute the number of principal polarizations of a superspecial

abelian surface and the number of superspecial hyperelliptic Jacobians in [IKO86, Theorem

3.1, 3.3] (see also Brock’s thesis in [Bro93, Theorem 3.10A]). This is a generalization to the

mass formula in the quaternion algebra case.

Knowing the relations between superspecial abelian varieties, orders in Mat2(Bp,∞),

and O-lattices of rank 2, we are interested in the questions which translates a superspecial

hyperelliptic Jacobian of genus two to maximal orders, converts a computational problem

in hyperelliptic to a relative problem in Mat2(Mp,∞), or vice versa. Generalizing Galbraith’s

isogeny based signature algorithm is a standard example which involves many aspects of

the ingradient: We need to know how to convert an (`, `)-isogeny between superspecial

hyperelliptic Jacobians of genus two to an element in the central simple algebra Mat2(Bp,∞)

and vice versa; and we also need a Mat2(Bp,∞) analog of the powersmooth element al-

gorithm as proposed by Kohel et al. in [KLPT14]. Finding an (`, `)-isogeny with kernel

represented in the Mat2(Bp,∞) side is one of the problems involved in the generalization

process, and an algorithm for the following question turned out to be critical:

Problem 2.1.1. Let Bp,∞ be the quaternion algebra over Q, ramifying at some prime p and

infinity, and let O be a maximal order in Bp,∞, and let ` be a prime different from p. Given

8



γ̃ ∈ Mat2(O/`O), find γ ∈ γ̃ + `Mat2(O) satisfying N(γ) = `2.

And we can answer Problem 2.1.1 if there exists an efficient algorithm for the principal

ideal problem over matrix algebras over the indefinite quaternion algebra Bp,∞:

Problem 2.1.2 (Principal ideal problem). Let Bp,∞ be the quaternion algebra over Q,

ramifying at p and the infinite place, and O be a maximal order of B. Let I be a right

Mat2(O)-order (which is known to be always principal). Find a right ideal generator α of I.

Problem 2.1.2 can be viewed as a generalization of the principal ideal problem over

quaternion algebras over number fields. Let B be a quaternion algebra over a number

field K, O be a maximal order in B, and I be a maximal ideal. An algorithm for finding

a principal ideal generator can be dated back to Kirschmer and Voight in [KV10]. They

gave algorithms both for totally definite quaternion algebras (when B is ramified at all

infinite places) and indefinite quaternion algebras (when B is split at at least one infinite

place). While the algorithm runs in deterministic polynomial time in the totally definite

case, the authors were not able to provide a complexity analysis for the indefinite case.

Page gave an algorithm in [Pag14] for the indefinite case, and under on various hypotheses

on the distribution of units, class group elements, and powersmooth elements, he claimed

that the algorithm runs in subexponential time. More recently, Hoffman and Johnston

provided in [HJ20] a generic algorithm to tell whether two finitely generated modules over

a semi-simple K-algebra are isomorphic, which includes solving principal ideal problems

as a special case, however, their algorithm required some hypotheses on the algebra A,

which includes a locally free cancellation property on the division algebras contained in

A, and the property only holds for finitely many cases of quaternion algebras over Q (see

[HM06]). Therefore, our situation is incompatible to the hypotheses in [HJ20] and the

answer to Question 1.2 remains to be open.

2.1.3 Outline

In this paper, we will give an algorithm for the principal ideal generator problem over

Mat2(Bp,∞), the matrix ring of quaternion algebra over Q, ramified at p and ∞.

Theorem 2.1.3. Suppose Bp,∞ is a quaternion algebra over Q, ramified exactly at p and ∞

for some prime p, O be a maximal order in Bp,∞. Let I be a right Mat2(O) order.

Then, under Heuristics 2.4.4, 2.5.11, and 2.5.6, Algorithm 2.3.1 gives a probabilistic

algorithm which runs in subexponential time in p, and finds the principal ideal generator

of I.

9



The approach will be similar to Page’s. The algorithm will be split into a global part and

a local part. In the global part, we will rescale the ideal I so that its norm is powersmooth,

and then reduce the ideal by two-sided ideals so that we can shorten the computation in

the local part and guarantee that the output is correct after the local reduction. For the

local reduction, we need to reduce the ideal at each places dividing N(I), the reduced

norm of I. The upshot is that at each place `, there is a equivalence between right Z`-ideals

and Bruhat-Tits buildings of Q`. Therefore, when we act on the Bruhat-Tits building by a

unit a maximal order in Mat2(Bp,∞), we also have a corresponding action on the ideal side.

Therefore, reducing a filtration in the Bruhat-Tits tree also helps reducing the ideals.

The remaining of the paper is laid out as follows. We give a brief overview of the

necessary background in quaternion algebras, central simple algebras, and lattice theory

over local fields in Section 2.2. The major steps for the principal ideal generator problem is

stated in Algorithm 2.3.1 in Section 2.3. The first two major step of Algorithm 2.3.1, which

involves reducing the input ideal I by two-sided ideals, is described in Section 2.4. After

then we will need to reduce the simplified ideal I on each place dividing the norm of I,

and this involves the local theory in Section 2.5. The validity of the algorithm and the

complexity analysis is in Section 2.6, and Section 2.7 gives some experimental examples.

2.2 Background

2.2.1 General theory of central simple algebras

For more details on the topic, see [Rei03], which contains extensive theory on a central

simple algebra A over F, where F is the fraction field of a Dedekind domain R. We will give

a brief sketch of the general theory here, and then turn to two specific cases: the quaternion

algebras in Section 2.2.2, and the matrix rings over quaternion algebras, in Section 2.2.3.

Let F be a field. We say that a finitely generated F-algebra A is a central simple algebra

over F if Z(A), the center of A, is equal to F, and A contains no non-trivial two-sided

A-ideals. The degree, denoted as [A : K], will be a square n2. And the Artin-Wedderburn

theorem implies that A is isomorphic to some matrix algebra Matm(D), where n = md,

and D is a division ring over F such that [D : F] = d2.

Suppose now that F is the fraction field of a Dekekind domain OF, then we say that I is

an ideal in A if it is an OF-lattice satisfying FI = A. An order Λ is an ideal which is also a

subring of A. And we call an order Λ maximal if it is not properly contained in another

order of A. We call an ideal I a left (respectively, right) Λ-ideal, if IΛ ⊆ I (respectively,

ΛI ⊆ I). Given an ideal I, the left order of I is the order Ol(I) := {α ∈ A | xI ⊂ I} in A.

We can similarly define a right order of I. We say that the ideal I is normal if both the left

10



and right orders of I are maximal, and in this case, we call I a connecting ideal of Ol(I)
and Or(I). An we call a normal ideal I integral, if it is contained in its left order. For an

ideal I, we can define its inverse ideal I−1 = {x ∈ A | IxI ⊆ I}.
We can define the reduced norms of an ideal I, which is the ideal generated by the

reduced norms of elements in I.

For an element α ∈ A, one can define a reduced norm N(α) ∈ F and a reduce trace

Tr(α) ∈ F from the constant term and the second highest term in the reduced minimal

polynomial (see [Rei03, (9.6)]). And for an ideal I in A, the reduced norm of the ideal I is

defined as the ideal in F generated by reduced norms of elements in I. And we can also

define a reduced discriminant from an ideal I. Suppose [A : F] = n2. Then one can form

an ideal D(I) as the ideal in F generated by det(Tr(αiαj)
n2

i,j=1), where {αi}n2

i=1 ⊂ I. From

[Rei03, Corollary (25.10)], this D(I) = d(I)n for some ideal I, and we call d(I) the reduced

norm of the ideal I. It turns out that when we run through maximal orders Λ in A, the

reduced norm d(Λ) is an invariant. We call this invariant the reduced discriminant δA of

A. And one defines the absolute discriminant of A as ∆AdFδ2
A.

When the left and right order of I coincide, say to Λ, then I is said to be a two-sided

Λ-ideal.

When A is a central simple algebra over a number field or a local field, we are in

particular interested in the structure of the two-sided Λ-ideals. Let P ⊆ Λ be a two-sided

Λ-ideal. We call P prime, if for any two-sided Λ-ideals I, J, if IJ ⊆ P implies either I ⊆ P

or J ⊆ P. [Rei03, Theorem (22.4)] gives a way to characterize the two-sided Λ-ideals, by

constructing a bijection between the following:

{Two-sided prime Λp}-ideals ∼−→ {Prime ideals in F}

P ↔ p,

with the relation p = P ∩ OF, and P = Λ ∩ radΛp. Here rad is the Jacobson radical,

defined as

radΛ =
⋂

L maximal left Λ-ideal

ann(Λ/L) = {x ∈ Λ | 1− axb ∈ Λ× for all a, b ∈ Λ}.

In addition, two-sided ideals in Λ have the “prime ideal factoring” theorem similar to

the number field case: For two two-sided Λ-ideals I, J, IJ = JI, and every ideal I can be

expressed as a product of two-sided prime ideals, and such an expression is unique up to

permutation. In Page’s approach in [Pag14, SubAlgorithm 3.12] in the quaternion algebra

case and our approach in the case of matrix ring over quaternion algebra, the factorization

structure means that we can simplify a right Λ-ideal by extracting two-sided ideals, which

11



turned out to have a better understood structure.

Proposition 2.2.1. Suppose again that A is a central simple algebra over F such that

[A : F] = n2, Λ is a maximal order of A, and OF is a maximal order of F.

Let I be an integral right Λ-order in A. Suppose that as a module, I has a Z-basis

{v1, · · · , vn2}, and Λ has a Z-basis {u1, · · · , un2}. Then the smallest generating two-sided

Λ-ideal is the ideal I with {uivj}1≤i,j≤n2 as Z-basis.

The above fact is then almost immediate from the definition. First, I is indeed an ideal,

and since Ol(I) ⊇ Λ and Or(I) ⊇ Λ, it is indeed a two-sided Λ-ideal. It is the smallest

possible two-sided ideal containing I since all uivj must be such an ideal. Therefore, II−1

is an integral right Λ-ideal and is not contained in any two-sided Λ-ideal.

Now we return to one-sided ideals, and construct the class set, which is the generaliza-

tion of the class groups on a number field. Now, suppose A is a central simple algebra over

a number field F, and OF is a maximal order of F. We say that two maximal orders Λ, Λ′ of

A are conjugate, or of the same type, if there is an element α ∈ A× such that Λ′ = αΛα−1.

And suppose we fix a maximal order Λ ⊆ A. For two right (respectively, left) Λ-ideals

I and I′ of A, we say that I and I′ are equivalent if there is an element α ∈ A× such that

I = I′α (respectively, I = αI′). This gives an equivalence relation, and we can therefore

construct the ideal class set of right (respectively, left) Λ-ideals. We will be interested in the

computational problem to determine whether two right (or left) Λ-ideals are equivalent.

When one of the ideal is Λ, then the problem reduced to determining whether an ideal is

principal.

It turns out that the Eichler’s condition, which we will define below, plays a crucial

role on the nature of the ideal class problem. In brief, the Eichler’s condition indicates the

cases when the strong approximation works. It is also the situation when we can relate

one-sided ideal classes in the central simple algebra A with ideal classes in the underlying

field F.

Definition 2.2.2 (Eichler’s condition). Let A be a central simple algebra over a number

field F. We say that A satisfy Eichler’s condition over F if there is an infinite place v such

that A1
v (the norm 1 elements of A) is not compact. Equivalently, A satisfied Eichler’s

condition if A is not a definite quaternion algebra over F.

The importance for A satisfying Eichler’s condition is that the strong approximation

applies:

12



Theorem 2.2.3 (Strong approximation and its consequences). Let A be a central simple

algebra satisfying Eichler’s condition over F satisfying (A : F) = n2. Let Λ and OF be a

maximal ideal of A and F, respectively. The following hold.

(i) (Strong approximation) The image of the diagonal embedding Λ1 → A1
f is dense,

where Λ1 and A1
F, f are the subgroup of norm 1 of Λ and the subgroup of the finite

adele ring AF, f of F of norm 1, respectively.

(ii) For a prime p in F which splits in A, the map Λ1 → SLn(OF/pk) induced by comple-

tion and reduction is a surjection for any integer k.

(iii) The reduced norm map Λ× → O×F,A is surjective on the unit groups, where O×F,A is

the totally positive elements in F with respect to all infinite places in F splitting in A.

(iv) The reduced norm map induces a surjective map Cl(Λ) → ClA(OF) from the class

set to Λ to the ray class group of F with the conductor being the product of all infinite

places in F splitting in A.

Proof. See [Rei03, theorem 34.9].

A quick consequence of Theorem 2.2.7 is that if A is a central simple algebra over Q

which satisfies the Eichler’s condition, with a given maximal ideal Λ, then every one-sided

Λ-ideal is principal.

2.2.2 Quaternion algebras and supersingular elliptic curves

A standard reference of the topic is [Voi20]. Let F be a generic field of characteristic

not equal to 2. A quaternion algebra B over F is a central simple algebra satisfying

[B : F] = 4. Equivalently, B is an algebra which can be expressed in the form B =

{F + Fi + Fj + Fk | i2 = a, j2 = b, ij = −ji = k} for some a, b ∈ F×. A quaternion algebra

is either isomorphic to the matrix algebra Mat2(F) or is a division ring. For any element

α := w + xi + yj + zk, there is a unique involution ᾱ := w− xi− yj− zk, and we can define

a reduced norm N(α) = αᾱ and reduced trace Tr(α) = α + ᾱ.

In this paper, we are interested in quaternion algebras over number fields and their

completions. Now, suppose B is a quaternion algebra over the number field F with ring

of integers OF. At each place v of F, we say that B is ramified at v if the completion

Bv := B⊗F Fv is a division algebra; otherwise we say that B splits at v. And we say that the

quaternion algebra B is totally definite if B ramifies at all archimedean places; otherwise we

say that B is indefinite. For a quaternion algebra B, the reduced discriminant, as described

in Section 2.1, is the product of all the primes in F which are ramified in B.

13



As quaternion algebras are central simple algebras, we refer to Section 2.1 for the

definitions of orders and ideals, type sets of B and class sets of maximal orders O of B.

Next, we look at another object, supersingular elliptic curves over the closure of finite

field Fp, and discuss the connections with the quaternion algebra Bp,∞, the quaternion

algebra ramified exactly at the place p and the archimedean place. A general discussion of

the topic can be found in [Wat69].

Suppose E is an ellitic curve, defined over the algebraic closure of a finite field Fp. E is

defined to be ordinary if the p-torsion points |E[p]| = p; and is defined to be supersingular

if |E[p]| = 1. Equivalently, E is ordinary when the full endomorphism algebra End0
Fp
(E) :=

EndFp
(E)⊗Z Q is a quadratic field; and is supersingular when End0

Fp
(E) is isomorphic to

Bp,∞.

2.2.3 Central simple algebras and superspecial abelian varieties

In the case of dimension 2, we say that an abelian vaiety over the field Fp is supersingular,

if it is Fp-isogenous to a product of supersingular elliptic curves; and an abelian surface is

superspecial, if it is isomorphic to a product of supersingular elliptic curves.

It can be shown that there is only one Fp-isomorphism class of superspecial abelian

variety. Indeed, it is a result by Deligne, Ogus and Shioda that when g ≥ 2, if E1, · · · , E2g

are supersingular elliptic curves over Fp, then E1× · · · × Eg ∼= Eg+1× · · · × E2g (see [Shi79,

Theorem 3.5]). Therefore, we can choose a supersingular elliptic curve E over Fp, and

every supersingular (respectively, superspecial) abelian surface is isogenous (respectively,

isomorphic) to E2 over the algebraic closure. Consequently, later we will see that to make

sense of the isomorphism classes of superspecial abelian varieties, we need to consider the

principal polarizations as well.

We are also interested in the endomorphism ring of a supersingular or superspecial

abelian variety. It is known from [Wat69] that an abelian variety of dimension g is supersin-

gular if and only if dimQ End0
Fp
(E) = (2g)2. The problem is to find their endomorphism

rings.

Let E be a supersingular elliptic curve as above, and denote O = EndFp
(E) and

Bp,∞ = O ⊗Z Q. Then the endomorphism ring of a superspecial abelian variety is as

below:

Proposition 2.2.4. Suppose A = E2 is a superspcial abelian surface. Then EndFp
(A) =

Mat2(O), and it is embedded in End0
Fp
(A0) = Mat2(Bp,∞).

14



Proof. Indeed, this can be verified by observing that every element Ψ :=

[
ψ11 ψ12

ψ21 ψ22

]
∈

Mat2(O) gives an endomorphism Ψ : A → A, (P, Q) 7→ (ψ11(P) + ψ12(Q), ψ21(P) +
ψ22(Q)), and EndFp

(A) cannot be bigger than that since Mat2(O) is already a maximal

order in Mat2(Bp,∞) by [Rei03, Theorem (8.7)].

When the supersingular E and its endomorphism ring O is fixed, then we can also fix

the endomorphism algebra Mat2(Bp,∞). Then, when we have another superspecial abelian

surface A′, constructed from A = E2 via an isomorphism E2 → A′, then the endomorphism

ring of A′ can be characterized as below.

Proposition 2.2.5. Let E2 → A′ be a separable isogeny for some superspecial abelian

variety A′. Then EndFp
(A′) is a maximal order of EndFo

(A′) ⊗Z Q ∼= Mat2(Bp,∞), I =

Hom(A′, E2) is a linking order of EndFp
(E2) = Mat2(O) and EndFp

(A′). There exists

a generating bijection h ∈ I, so that I = EndFp
(E2)h = hEndFp

(A′), and EndFp
(A′) =

h−1EndFp
(E2)h.

In particular, if E2 → A′ is an automorphism, then we have a embedding of EndFp
(A′)⊗Z

Q in Mat2(Bp,∞) as a maximal order.

In contrast, if A is a supersingular surface which is not superspecial, the endomorphism

ring will be smaller in general: the p-part of EndFp
(A) is only a subgroup of the p-part of a

conjugate of Mat2(O). Yu-Yu computed the endomorphism ring of supersingular abelian

surfaces in [YY09, Proposition 3.2].

Indeed, this endomorphism rings of superspecial abelian varieties behaved very differ-

ently from the genus 1 case, since we know that as Mat2(B) satisfies the Eichler’s condition,

it has class number 1, see the discussion at the end of Proposition 2.2.1.

Since there is only one isomorphism of superspecial abelian variety over Fp, which is E2,

we actually need to consider the principal polarizations to form meaningful isomorphism

classes. Indeed, in [IKO86, section 2], it is shown that polarizations can be transferred

as matrices in EndFp
(E2). And we will establish a few equivalent maps between isom-

porphism classes of principally polarized superspecial abelian surfaces and isomorphism

classes in certain central simple algebra.

We first fix a supersingular elliptic curve E over Fp as before. For the abelian variety

A = E2, we denote a polarization of A by an ample divisor L. And the divisor naturally

defines an isogeny ϕL : A→ A∨ by x 7→ T∗x L− L, where A∨ is the dual abelian variety of

A, and Tx is the “translation by x” map. The degree of the divisor L is known to be the

degree of the isogeny ϕL.

15



In particular, when A = E2, there is a product polarization given by the divisor

L0 = E× {0}+ {0} × E. L0 is then a a divisor of degree 1. Then we define the following

map:

Definition 2.2.6. Denote Ends(A) to be the endomorphisms of A fixed by the Rosati in-

volution (defined with respect to the polarization L0). Denote by Pic(A) and Pic0(A)

the Picard group of A and the connected component of Pic(A) at the origin. Then

Pic(A)/Pic0(A) is the Néron-Severi group of A, which we denote by NS(A). And we have

a map
j : NS(A)

∼−→ Ends(A)

L 7→ ϕ−1
L0
◦ ϕL,

Theorem 2.2.7 ([IKO86, Corollary 2.9]). The isomorphism classes of principal polariza-

tions are bijective to{[
s r
r̄ t

]
∈ Mat2(O)

∣∣∣∣∣ s, t ∈ Z>0, st− rr̄ = 1

}/
∼,

where we call f1 ∼ f2 if and only if there is an α ∈ End(A) satisfying f1 = α† f2α, where

α† = αt corresponds to the Rosati involution of α with respect to the polarization L0.

Proof. Given principal polarized abelian varieties (A, L) and (A′, L′), we say they are

isomorphic if and only there exists an isomorphism α : A → A′ such that the diagram

below commutes:

A A′

A∨ (A′)∨

α

ϕL ϕL′

α∨

Back to our scenario, when the polarizations L1 and L2 of E2 are equivalent, there exists

an α ∈ EndFp
(E2)× satisfying ϕL2 = α∨ ◦ ϕL1 ◦ α. As ϕL0 is an isomorphism between E2

and (E2)∨, we have ϕ−1
L0

ϕL2 = (ϕ−1
L0

α∨ϕL0) ◦ (ϕ−1
L0

ϕL1) ◦ α, or j(L2) = α† ◦ j(L1) ◦ α.

The theorem then follows by fixing a supersingular elliptic curve E over Fp, taking

O = EndFp
(E) and B = O ⊗Z Q, and identifying EndFp

(E2) with Mat2(O).

Definition 2.2.8. We denote by Mat1
2(O) the matrices in Mat2(O) with reduced norm

±1, and by Mat+2 (O) the matrices satisfying the conditions in Theorem 2.2.7. For g1, g2 ∈
Mat+2 (O), g1 ∼ g2 if there exists γ ∈ Mat2(O)× satisfying γtg1γ = g2.

So far all the objects involved in the arithmetic geometry side are abelian surfaces with

a principal parametrization. For the practical purpose, we need to translate them to objects

16



which can actually be computed. In dimension 2, we know that every principally polarized

superspecial abelian surface (A = E2, L) is isomorphic either to Jac(C) for some genus

2 hyperelliptic curve C or to E1 × E2 for some elliptic curves E1, E2 ([FT19, Theorem 1]).

Therefore, combining Definitions 2.2.6, 2.2.8 and Theorem 2.2.7, we have the following

bijections between sets


Jac(C), C: superspecial

hyperellipic, genus 2 or

E1 × E2, E1, E2: supersingular elliptic


/∼

↔


principal

polarizations

of E2


/∼

↔ NS1(E2) ↔ Mat+2 (O)/∼.

(2.1)

In particular, Equation (2.1) gives a correspondence between isomorphism between

superspecial Jacobians or product of supersingular elliptic curves (the abelian variety side)

to objects in the central simple algebra Mat+2 (O) (the “endomorphism ring” side). And

we claim that this indeed provides a better generalization to the supersingular elliptic

curve case then supersingular abelian varieties. One of the reasons is, the dimension of

the supersingular locus of abelian varieties of dimension g is bg2/4c in the coarse moduli

space of abelian varieties of dimension g (see [LO98, Corollary 4.4]). Therefore, when

g ≥ 2, there are infinitely many supersingular abelian varieties over Fp. On the other hand,

on the superspecial abelian variety side, we know that all superspecial abelian varieties are

defined over Fp2 , and there are formulas which computes both the number of equivalence

classes of polarization over Fp2 and the number of equivalence classes which can be defined

over Fp, see [Ibu19]. In addition, we know that every polarized abelian variety (A = E2, L)
is isomorphic either to Jac(C) for some genus 2 hyperelliptic curve C or to E1× E2 for some

elliptic curves E1, E2 ([FT19, Theorem 1]). This enables us to compute the objects explictly.

Now, the ultimate goal is to make an analogy between the genus 1 theory and genus 2

theory by “replace the maximal orders and ideals in genus 1 by matrices in Mat+2 (O) in

genus 2”. For this, we need to generalize the `-isogeny graphs in supersingular abelian

varieties. In the elliptic curve case, we have the explicit Vélu formula, which computes

an `-isogeny in time O(`). However, in the abelian variety case, not all isogenies are easy

to compute–in some cases taking a general isogeny even makes the destination abelian

surface no longer principally polarizable. Therefore, we shall restrict to the special case:

the (`, `)-isogenies. The following Proposition demonstrates that we can also translate an

(`, `)-isogeny of principally polarized abelian surfaces to maps in equivalence classes of

Mat+(O).

17



Proposition 2.2.9 (Relation between (`, `)-isogenies and Mat+2 (O)). Let the setting be the

same as above. Suppose γ : (E2, L1)→ (E2, L2) is an (`, `)-isogeny, and g1, g2 ∈ Mat+2 (O)
are representatives of (E2, L1) and (E2, L2) in the bijection described in Theorem 2.2.7,

respectively. Then by identifying EndFp
(E2) and Mat2(O), γ ∈ Mat2(O) has reduced

norm `2 and satisfies

γtg2γ = `g1.

Proof. If the polarizations (E2, L1) and (E2, L2) are compatible with respect to the (`, `)-

isogeny γ, the following diagram is commutative:

E2 E2 E2

(E2)∨ (E2)∨

ϕL1

[`] γ

ϕL2

γ∨

Therefore, ϕL1 ◦ [`] = γ∨ ◦ ϕL2 ◦ γ, or (ϕ−1
L0

ϕL1) ◦ [`] = (ϕ−1
L0

γ∨ϕL0) ◦ (ϕ−1
L0

ϕL2) ◦ γ,

which yields to the conclusion.

At this stage, although there are still some obstructions, we have a dictionary book

which maps objects related to supersingular elliptic curves to superspecial abelian varieties,

and `-isogenies on elliptic curves corresponds to (`, `)-isogenies on abelian surfaces. By

considering the endomorphism ring, maximal orders in B becomes equivalence classes of

g ∈ Mat+2 (O); and connecting ideals I in B becomes γ ∈ Mat2(O).
We proposed to generalize the signature algorithm by Galbraith et al. to genus 2. See

Appendix 1 for a sketch and [GPS19] for more details. For the central zero-knowledge

identification scheme in genus 2, when we replace the “Isogeny to Ideal” algorithm in

[GPS19, Section 4.4], we needed the algorithm IsogenyToMatrix, which translates an

isogeny path to a matrix in Mat+2 (O). The proposed genus 2 algorithm is in Algorithm 2.1.

We see that step 17 in the algorithm can be solved if we can find a principal ideal generator

of ΓMat2(O) + pjMat2(O), hence leads to the principal ideal problem (Problem 2.1.2).

2.2.4 Lattices over a local field and Bruhat-Tits buildings

Let K be a non-archimedean local field whose residue field has q elements, let OK be its

ring of integers, and let π be a uniformizer of K. We first define the Bruhat-Tits building on

PGL4(K). Much of the theory can be found in [KL14].

Definition 2.2.10 (The Bruhat-Tits building on PGL4(K)). The Bruhat-Tits building is a

directed graph TK with the following structure:

18



(i) We say that twoOK-lattices P′ and P′′ are homothetic, or in the same homothety class,

if there is an α ∈ K× such that P′ = αP′′. Vertices of TK are the homothety classes of

OK-lattices of rank 4 which is embedded in K4, a fixed K-vector space of dimension 4.

(ii) We define a OK-lattice P0 which has {eK,i}4
i=1 as a basis, where eK,i ∈ K4 forms the

standard basis. The homothety class [P0] is considered as the central element of the

Bruhat-Tits building TK.

(iii) For two homothety class [P′] 6= [P′′], there is an edge [P′] → [P′′], if there are

lattices P′ and P′′ in each homothety class satisfying πP′ ⊂ P′′ ⊂ P′. Suppose that

πP′ ⊂ P′′ ⊂ P′. We further classify an edge [P′]→ [P′′] to be type 1, 2, or 3 according

to whether [P′ : P′′] is equal to q, q2, or q3.

(iv) For an ordered quadruple of vertices in TK, ([P], [P′], [P′′], [P′′′]), we say that it forms

a chamber if all the four ordered pairs [P]→ [P′], · · · , [P′′′]→ [P] are connected with

type 1 edges.

From the definition above, we know that on any vertex, there are q3 + q2 + q + 1,

(q2 + 1)(q2 + q + 1), and q3 + q2 + q + 1 out vertices of type 1, 2, 3 from that vertex,

respectively.

We can define a left GL4(K)-action on rank 4 OK-lattices as well as vertices in TK as

follows. Let g = (gij)1≤i,j≤4 ∈ GL4(K). Suppose e1, · · · e4 is a basis of a lattice P. Then g · P
is the lattice generated by ∑4

j=1 gijej, i = 1, · · · , 4. Under this setting, by rewriting the ideas

in [KL14] to the scenario of GL4(K), we can characterize the stabilizer of objects in the

Bruhat-Tits building as follows:

Proposition 2.2.11. Let TK and P0 be as in Definition 2.2.10.

(i) The action of Mat4(K) is transitive of the vertices, edges and chambers in TK.

(ii) Suppose P is a vertex in TK, with g · P0 = P for some g ∈ GL4(K). Then the stabilizer

of [P] is g(K×GL4(OK))g−1.

(iii) Let σ =


0 1 0 0

0 0 1 0

0 0 0 1

π 0 0 0

. Then [P0]→ [σ · P0] forms a type 1 edge. If [Q0]→ [Q1] = g ·

([P0]→ [σ · P0]) is an arbitrary type 1 edge, then the stabilizer of the edge [Q0]→ [Q1]

19



is g(K×E )g−1, where

E =

g ∈ GL4(OK)

∣∣∣∣∣ g ≡


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗

 (mod πGL4(OK))

 .

(iv) ([P0], [σ · P0], · · · , [σ3 · P0]) forms a chamber.

For an arbitrary chamber ([Q0], [Q1], · · · , [Q3]) = g · ([P0], [σ · P0], · · · , [σ3 · P0]), its

stabilizer is given by is g(K×B)g−1, where

B =

g ∈ GL4(OK)

∣∣∣∣∣ g ≡


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 (mod πGL4(OK))

 .

Proof. (iii) and (iv) are true since E = GL4(OK) ∩ σGL4(OK)σ
−1, and

B = GL4(OK) ∩ σGL4(OK)σ
−1 ∩ · · · ∩ σ3GL4(OK)σ

−3.

So far we know that there is an action of local objects K×GL4(OK) on a rank 4OK-lattice.

Now we also turn back to our global scenario. Again, denote B = Bp,∞ be a quaternion

algebra over Q, ramified exactly at p and ∞, O be a maximal order of B. Then we take

A = Mat2(B), and Λ = Mat2(O) be a maximal order of A. Also, denote Λ1 to be the

subgroup of Λ with reduced norm 1.

When ` 6= p is a prime splitting in the quaternion algebra B, we know that O ⊗Z Z`
∼=

Mat2(Z`) and Λ⊗Z Z`
∼= Mat4(Z`). Fix an embedding ι : Λ→ Mat4(Z`). Then for c ∈ Λ

and P a rank 4 Z`-lattice, we can define c · P = ι(c) · P. An important fact is that this action

induces a transitive action on the type 1 neighbors of [P0] in the Bruhat-Tits building TZ`

(recall that [P0] is the assigned “center” of TZ`
).

Proposition 2.2.12. Λ1, the unit norm group of Λ, acts transitively on the type 1 neighbors

of P0 in the Bruhat-Tits building TZ`
.

Proof. Since ι(Λ1) ⊆ GL4(Z`), Λ1 stabilizes the center vertex P0. Let P1 and P2 be lattices

such that [P0 : P1] = [P0 : P2] = `. We want to find c ∈ Λ1 such that c · P1 = P2.

20



Let {e1, · · · , e4} be a basis of P0. It is known that there exists bases {e′1, · · · , e′4} and

{e′′1 , · · · , e′′4} of P0 such that {e′1, · · · e′3, `e′4} is a basis of P1 and {e′′1 , · · · e′′3 , `e′′4} is a basis of

P2. Suppose g′ = (g′ij), g′′ = (g′′ij) ∈ Mat4(Z`) satisfy e′i = ∑4
j=1 g′ijej, then P2 = g′′g′−1 · P1.

Then g′′g′−1 ∈ GL4(Z`), and up to a scaling of bases we can further make g′′g′−1 ∈
SL4(Z`).

As the central simple algebra A satisfies the Eichler’s condition, we know by Theorem

3(ii) that the action of Λ1 on the neighbors of [P0] is transitive.

2.3 The Principal Ideal Generator Algorithm

In this section, we describe the major steps of the principal ideal generator algorithm. After

the algorithm, we give comments on each step, together with a pointer on where the steps

will be explained. The validity and complexity of the main algorithm will be proven in

Theorem 2.6.1 in Section 2.6.

Algorithm 2.3.1 (The main algorithm).
Input: The quaternion algebra Bp,∞ over Q which ramifies at p and ∞, a maximal order O
of Bp,∞, A = Mat2(Bp,∞), a central simple algebra over Q, and Λ = Mat2(O), a maximal

order in A. I, a right-Λ ideal.

Output: An ideal generator α ∈ I, such that I = αΛ.

(1) Search randomly for an element s ∈ I−1 such that the reduced norm of sI is B-smooth

(i.e. all prime divisors of the reduced norm are in B).

(2) (The GReduce routine.) Find a decomposition of the form f csI = JJ, where J is an

integral right Λ-ideal, J is a two-sided fractional Λ-ideal, and J is not contained in any

non-trivial two-sided integral Λ-ideal. And f ∈ Q, c ∈ Λ, which makes the reduced

norm of both sides equal to 1.

(3) (The LReduce routine) Let D be the set of prime divisors of the reduced norm of J. For

each prime ` ∈ D, perform a “local reduction at `” as follows. Find a c` ∈ Λ× such

that c` J = `r J′, where r is a non-negative integer an J′ is a right integral Λ-ideal whose

`-valuation of the reduced norm is the smallest possible. Then, replace c by c`, replace

J by J′, and replace J by `rJ.

(4) After handling all the possible local reductions, as all right Λ-ideals are principal, we

should have J = J = Λ. The elements on the left-hand side provide a principal ideal

generator for the ideal I.

Below are some brief comments of each substep and a pointer to the relevant section.

21



(1) We test elements in I−1 with small entries. Increasing the size of B speeds up this step

but slows down the following steps. This step, together with the pre-processing part of

the algorithm and initiations of parameters including the set B, will be discussed in

Section 2.4.1.

(2) This step is essentially identical to the GReduce algorithm in [Pag14]. Our GReduce

routine is a close modification of [Pag14] and will be described in Section 2.4.2.

(3) We will need the compatibility between Λ-action on the ideals and on the Bruhat-Tits

buildings. This will be discussed in Section 2.5.

(4) This step is comparatively straightforward. We will discuss this in Section 2.4, but most

of them follow from the same reason as in [Pag14, proposition 3.13].

2.4 The Global Reductions of Ideals

2.4.1 The G-reduction structure

As in the previous sections, we consider the more special case, where B = Bp,∞ is the

quaternion algebra over Q, ramified exactly at p and ∞, and O is a fixed maximal order

of B. Taking A = Mat2(B), we aim to establish a principal ideal generator algorithm

on Λ = Mat2(O). Also, we let ∆ be the discriminant of B. Under this setting, by the

consequences of strong approximation (Theorem 2.2.3), since Z has class number 1, so

does Λ, and all the right Λ-ideals are principal.

Also, similar to Buchmann’s class number algorithm in the case of number fields in

[Buc88] and Page’s principal ideal algorithm in the case of quaternion algebras in [Pag14],

we need to define a set of small primes B. We will elaborate practical considerations of

choosing B in Section 2.4.

To find the left ideal generator for a given right Λ-ideal I, it would be preferable to

reduce the ideal I to accelerate the local reduction process in Section 2.5.

More precisely, this contains two processes. First, we want the integral ideal I to be

“smooth”, which means that the prime divisors of N(I) need to be in a prescribed prime

set, so that we can pre-compute the necessary data for local reduction on these primes. We

make an ideal smooth by replacing I with I′ = sI for a suitable randomly selected s. More

details will be provided at the end of Section 2.4.1.

Second, starting from a smooth integral ideal I, since we saw in Section 2 that the

two-sided ideals in Mat2(B) are easier to handle, we want to rescale and decompose I as

the form f cI = JJ, where J and f ∈ Q are two-sided; and J and c are one-sided. The hope is

22



that the remaining unprocessed one-sided part J has a norm as simple as possible to reduce

the workload in the two-sided reduction part. To finish this, we need a pre-computed

G-reduction structure, which we will define below and give algorithms in Sections 2.4.1

and 2.4.2 to compute this.

We need the following G-reduction structure altered from [Pag14] for the reduction.

Definition 2.4.1 (G-reduction structure in A). In the A = Mat2(Bp,∞) setting, the G-

reduction structure is obtained by computing the following data:

(i) Define a set B which contains primes ` up to a number M, excluding the ramified

prime p.

(ii) Define a set X ⊂ Λ× as follows. For each prime ` ∈ B, find a element c` ∈ Λ such

that N(c`) = `.

For the data in Definition 2.4.1, the relation between the choice of B in part (i) and the

complexity of the algorithms will be discussed in Proposition 2.4.5. To generate the set X
in part (ii), the general idea is to progressively pick elements of small entries until we find

enough of them whose combination satisfies the criteria for X.

Before describing an algorithm that constructs X, we need to specify how to pick

elements of small entries. One can define a positive definite quadratic form Q : A→ R on

the central simple algebra A as Q(m) = ∑1≤i,j≤2 Nred(mij), where mij is the ij-th entry of

the 2× 2 matrix m.

Using lattice reduction algorithms, one can enumerate elements in any Z-lattice M ⊂
Mat2(B) by sorting Q(m) for m ∈ M in increasing order. From the enumeration, we have

a function NextElement(M) which returns the element in M which comes next in the

enumeration (assuming that we keep a pointer in M storing the last element enumerated).

Now, given the function NextElement, we can describe the following algorithm, which

generates the set X which has the property as in Definition 2.4.1.

Algorithm 2.4.2 (Constructing the set X in the G-reduction structure).
Input: B, a set of small prime.

Output: A set X ⊂ A×, which contains an element c` ∈ A satisfying N(c`) = ` for each

prime ` ∈ B.

1: Let E← {diag(`, `) | ` ∈ B}, X ← ∅.

2: while 〈N(E)〉 ( 〈B〉 do
3: `← the smallest prime divisor in 〈B〉\〈N(E)〉.
4: x ← LDivisibleElement(`).

5: if N(x) /∈ 〈N(E)〉 then

23



6: E← E ∪ {x}
7: end if
8: end while
9: for ` ∈ B do

10: c` ← an element in 〈E〉 with reduced norm `.

11: X ← X ∪ {c`}
12: end for
13: return X.

Algorithm 2.4.3 (The routine LDivisibleElement used in Algorithm 2.4.2).
Input: A prime `.

Output: An element x ∈ A with a small B-smooth norm divisible by `.

1: P← a right O-ideal of norm `, I ←
[
O O
P P

]
.

2: repeat
3: x ← NextElement(I)
4: until x is B-smooth

5: return x.

Heuristic 2.4.4. Define L(x) := exp(
√

ln x ln ln x). Suppose B is chosen to contain all

the splitting primes with norm less than L(∆). We make the following assumptions on

Algorithm 2.4.2.

(a) Given a lattice L, in a central simple algebra A′ over Q with discriminant ∆′ with Λ′ a

maximal order in it, and let c > 0 be a constant. We denote t as the smallest integer

such that L ⊆ t−1Λ′, and define N = t−n[t−1Λ′ : L]1/n (N is the reduced norm when L
is a Λ′-ideal). Then there exists a constant α > 0 such that when η ∈ L is any element

with reduced norm less than NL(∆′)O(1) in L, the probability that the reduced norm of

η is B-smooth is at least L(∆′)−α+o(1).

(b) There is a constant ε, independent of the central simple algebra and the input ideal

I, such that if E ⊆ Mat2(B) is a set such that [〈B〉 : 〈N(E)〉] is finite, then each call of

LDivisibleElement in step 4 in Algorithm 2.4.2 generates an output x ∈ Mat2(B) such

that N(x) is not generated by 〈N(E)〉 with probability at least ε.

Part (a) of the heuristic is widely used in the NextElement procedure described in the

rest of the paper. It is a reasonable because it can be thought of as a generalization of

formula (1.16) in [Gra08], which describes the probability of L(x)-smooth numbers below

x Part (b) of the heuristic involves the uniform distribution statements. It is natural in the

24



sense that if we draw a random smooth element in 〈B〉, we will expect it to be randomly

distributed in the cosets of 〈B〉/〈N(E)〉.

Proposition 2.4.5. Assuming Heuristic 2.4.4 in addition. Algorithm 2.4.2 returns with

X satisfying the conditions in Definition 2.4.1(ii) and terminates probabilistically in time

L(∆O(1)).

Proof. From the description of Definition 2.4.1, we know that it suffices to find a subset

E ∈ A× such that 〈N(E)〉 = 〈B〉. Indeed, if such E is found, for each ` ∈ B, we can just

generate c` from E such that N(c`) = `, as in steps 9 to 12 in the algorithm.

We know that if the loop between step 2 and 8 terminates, then we have 〈N(E)〉 = 〈B〉.
So the question is whether it terminates. After step 1, we know that [〈B〉 : 〈N(E)〉] = 4|B|,

which is finite. Therefore, we only need finitely many essential updates of the set E between

steps 5 and 7. And since the reduced norm map: Λ→ Z is surjective, the set E exists and

the algorithm terminates. We shall show the complexity of the termination time based on

Heuristic 2.4.4.

Now we make an estimate on the time complexity. We will first discuss the number of

times LDivisibleElement is invoked, then discuss the complexity of LDivisibleElement

routine in Algorithm 2.4.3.

The major part of the algorithm is the loop from step 2 to 8. As we assumed at Heuristics

2.4.4, the size of B is L(∆)O(1)/ ln L(∆)O(1) = L(∆)O(1), from the prime number theorem.

At the first time the algorithm enters step 2, [〈B〉 : 〈N(E)〉] = 4L(∆)O(1)
. And each time

when step 8 is entered and E is updated, the index [〈B〉 : 〈N(E)〉] is at least halved, so step

8 is executed log2 4L(∆)O(1)
= L(∆)O(1) times. And, from Heuristics 2.4.4, we know that each

random x generated by LDivisibleElement, from Heuristics 2.4.4, there is a possibility

ε = O(1) that N(x) 6= 〈N(E)〉, so the number of times LDivisibleElement is invoked is

also O(1)L(∆)O(1) = L(∆)O(1).

It remains to discuss the complexity of LDivisibleElement routine in Algorithm 2.4.3,

which involves finding a B-smooth element by invoking the NextElement routine. By

Heuristic 2.4.4(a), it takes in average L(∆)O(1) iterations to find a smooth element. Therefore,

the complexity of LDivisibeElement is also L(∆)O(1). By taking product, the main loop

between step 2 and step 8 is of time complexity L(∆)O(1).

Finally, step 10 only involves using the relations in N(E) to simplify the elements in

E using linear algebra, so the time should be polynomial in the size of the basis, that is

|B| = L(∆)O(1)). Combining all the steps, the entire algorithm terminates in L(∆)O(1).

25



2.4.2 The GReduce process

Given a general right Λ-ideal I, we need to first reduce it to a B-smooth ideal by rescaling to

I′ = sI. It is usually preferable that the s we find have smaller entries, in the sense that Q(s)
is kept small. For this, one can take the naive approach, by invoking s = NextElement(I−1)

in Section 2.4.1 by a number of times, until one obtain a B-smooth integral ideal of the

form sI. From now on, we can assume that the input ideal I is B-smooth.

Now we will describe the GReduce algorithm, which utilizes the G-reduction structure

to simplify the structure of the input ideal. It also “extracts” two-sided ideals, in the sense

that when we apply all the `-reduction steps in Section 4, we will get the principal ideal

generator (this will be justified in Theorem 2.6.1 in Section 2.6).

Algorithm 2.4.6 (The GReduce routine).
Input: An integral B-smooth right Λ-ideal I and a pre-computed G-reduction structure.

Output: A decomposition f cI = JJ, where f ∈ Q×, c ∈ A×, J is an integral right Λ-ideal

not containing any proper two-sided integral ideals, and J is a two-sided fraction Λ-ideal.

Furthermore, N( f cI) = 1.

1: Compute and factorize N(I). Assume that it is ∏`∈B `
−e` .

2: Suppose c` is the element in X which corresponds to ` ∈ B. Set c ← ∏`∈B ce` (mod 4)
`

and f ← ∏`∈B cbe`/4c
` . Set J ← cI.

3: Let J be the two-sided Λ-ideal generated by J, and J ← JJ−1.

4: return f , c, J, J.

Proposition 2.4.7. When the input in Algorithm 2.4.6 is a B-smooth ideal with B chosen

as in Heuristic 2.4.4, the outputs of Algorithm 2.4.6 are valid and return deterministically

in time L(∆)O(1).

Proof. After step 2, since N( f ) = f 4, it is clear that N( f cI) = N( f )N(c)N(I) = 1. After

step 3, we have cI = JJ, and since J is the smallest two-sided Λ-ideal containing cI,

J = cIJ−1 is does not contain a proper two-sided Λ-ideal and is integral.

For the complexity, since N(I) is B-smooth, finding the factorization in step 1 only

involves trial divisions by elements in B, which is of size O(L(∆)O(1)/ ln(L(∆)O(1)) =

O(L(∆)O(1)). Denote the number of prime divisors (with multiplicities) by Ω(N(I)), which

can be bounded by log2 N(I), then the divisions we need to try in step 1 is O(ln N(I) +
L(∆)O(1)). Step 2 is immediate from the output of Algorithm 2.4.2, and step 3 only involves

a lattice basis generation on the generating set {l j}l∈Λ,j∈J , which is polynomial time.

Therefore, step 1 dominates the algorithm and takes O(ln N(I) + L(∆)O(1)) in time.

26



2.5 The local reduction process

The goal of this section is to establish the LReduce algorithm as described in the main

Algorithm 2.3.1, which solves the following question, which plays an important role in

reducing the `-adic part of an ideal:

Problem 2.5.1 (LReduce). Let I be a right Λ-ideal, and ` 6= p be a prime splitting in B.

Find an element γ` ∈ A×, r a non-negative integer, and J another right Λ-ideal, such that

γ` I = `r J, and v`(N(J)), the valuation at ` of the reduced norm of J, is between 0 and 3.

We will propose an algorithm that generalizes Page’s approach in [Pag14] to matrices

of quaternions. The upshot of the algorithm for the local reduction process is the fact that

the Bruhat-Tits building TZ`
on rank 4 Z` lattices have a compatible Λ`-action on the right

Mat4(Z`)-ideal classes.

The main idea is to use the equivalence between the action of A× on Z`-lattices of rank

4 and the action of A× on right Λ`-ideals. The isomorphism classes of rank 4 Z`-lattices

and their inclusion relations can be encoded as Bruhat-Tits buildings, and we discussed

the theory and the Mat4(Z`)-actions on the buildings in Section 2.2.4.

2.5.1 The compatibility between ideals and lattices actions

Now let B be a quaternion algebra over Q, and A = Mat2(B). Suppose O is a maximal

order of B, and Λ = Mat2(O). We know that Λ is a maximal order of A (see Section 2.2.3).

Let ` be a prime in Q which splits in A. We denote A` := A⊗Q Q` and similarly Λ` to

be the completion of A and Λ at `, respectively. As discussed in Section 2.2, we fixed an

embedding ι : Λ→ Mat4(Z`), which extends to an isomorphism ι` : A`
∼−→ Mat4(Q`). We

will identify A` = Mat2(B)` with Mat4(Q`) without mentioning the isomorphism ι` for

brevity, if there is no confusion.

The traversal of the Bruhat-Tits buildings such as TZ`
plays a central role in our local

reduction algorithm. In this subsection, we introduce the fact that in the local theory,

there is a one-to-one correspondence between vertices in the Bruhat-Tits building (that is,

homothety classes of Z`-lattices of rank 4) and the right Mat4(Z`)-ideals modulo two-sided

ideals. In addition, we can define a left action of elements in GL4(Z`) on both objects, and

the action is equivalent on the vertices of the Bruhat-Tits building and the ideals. We will

use the theory we set up here to demonstrate in Section 2.5.5 that, when we simplify the

lattice, we are also simplifying the corresponding ideal.

Proposition 2.5.2. Every right Λ`-ideal is principal.

Proof. See [Rei03, Theorem 18.7(ii)]. Note that this is true even if ` does not split in A.

27



There is a natural action of A×` on right Λ`-ideals. Let c ∈ A×` and I be such an ideal.

Then we simply take c · I = cI. Back to our scenario, where A = Mat2(B). Since our fixed

embedding φ2 : Λ→ Mat4(Z`) extends to an isomorphism φ2,` : A`
∼−→ Mat4(Q`), we can

also define a natural action of GL4(Q`) on right Λ`
∼= Mat4(Z`)-ideals.

On the other hand, as described in Section 2.2.4, we have an action of GL4(Z`) on

lattices P ⊆ Q4
` , so that when g ∈ GL4(Z`) and P = 〈ei〉4i=1, g · P = 〈g · ei〉4i=1. This action

induces an action of GL4(Z`) to TZ`
.

In addition, there is a correspondence between Mat4(Z`)-ideals and full lattices in

Q4
` , by sending gI to g · P0. Among all the maps being set up, we have the following key

observation.

Proposition 2.5.3. Suppose ` splits in A. The map g · P0 7→ g ·Λ` is bijective and equiv-

ariant between vertices in TZ`
and right-Λ` ideals modulo two-sided Λ`-ideals, under the

action of GL4(Q`) on the Bruhat-Tits building TZ`
and the action of A`

∼= GL4(Q`) on

right-Λ` ideals as described after Proposition 2.5.2.

Proof. The equivariance is clear, since α · (g · P0) is mapped to α · (g ·Λ`) by definition. It

remains to prove the bijection.

For any g ∈ GL4(Q`), the stabilizer of the lattice g · P0 is given by Proposition 2.2.11 (ii),

which is g(Q×` GL4(Z`))g−1.

On the other hand, we want to find the stabilizer of the right Λ`-ideal Ig := ι−1
` (g)Λ`.

We know that α · Ig = Ig if and only if αg−1Λ` = g−1Λ`, or gαg−1 ∈ Λ×` . On the other

hand, by [Rei03, Theorem 19.3], any two-sided Mat4(Z`)-ideal in Mat4(Q`) is generated by

rad(Mat4(Z`)) = `Mat4(Z`). Therefore, considering Ig as an ideal class of right Λ`-ideal

modulo a two-sided Λ`-ideal, the stabilizer is g(`ZGL4(Z`))g−1 = g(Q×` GL4(Z`))g−1.

The bijection follows because the stabilizers are the same.

2.5.2 The `-reduction structure: the definition

Throughout the remaining of Section 2.5, let B = Bp,∞ be a quaternion algebra over Q with

discriminant ∆ = p, O be a maximal order in B, A = Mat2(B), and Λ = Mat2(O). And let

` 6= p be a prime splitting in B. We have constructed in Section 2.2.4 a Bruhat-Tits building

TZ`
of rank 4 Z`-lattices, together with the standard lattice P0 which is considered as the

center of TZ`
, as in Definition 2.2.10(ii). Also, we fix the embedding ι : A→ Mat4(Q`).

Now we aim for an explicit method to simplify both the paths in the Bruhat-Tits building

and the ideals, for which we will show later in Section 2.5.5 how to use it to answer Problem

2.5.1. More concretely, it is a consequence of Proposition 2.5.3 that a path containing a

chamber in a Bruhat-Tits building corresponds to a right Λ-ideal which contains as a factor

28



a two-sided ideal of norm `4, which turns out to be `Mat4(Z`). Therefore, to extract the

factor `r on the ideal side, the aim is to reduce a path in the Bruhat-Tits building and make

them into cycles along a chamber. And for that, we need a pre-computed `-reduction

structure (as described in Definition 2.5.4) for each splitting prime ` of interest.

Our goal is to build up an extension of Page’s method, which is for principal ideal

problem over quaternion algebra. The main difference in the local side is that in quaternion

algebra, completions of ideals will be ideals over Mat2(Z`), which corresponds to a Bruhat-

Tits tree. Compared to the Bruhat-Tits tree, we need the higher dimension analog, the

Bruhat-Tits building, which is no longer a directed graph, and the building expanded in

size much faster than the Bruhat-Tits tree as the prime ` grows. Such a difference results in

the necessity to modify the definition of the `-reduction structure.

Definition 2.5.4. Let ` 6= p as above. The `-reduction structure for Λ = Mat2(O) consists

of the following data.

(i) A filtration of right Λ-ideals `Λ ( M3 ( M2 ( M1 ( Λ, maximal orders Λ0 = Λ,

and Λi = Ol(Mi) for i = 1, 2, 3. `-adic generating global element gi of Mi, such that

in the `-adic completion, (Mi)` = (gi)`Λ. A chamber ([P0], [P1], [P2], [P3]) satisfying

[Pi : Pi+1] = ` for i = 0, 1, 2, and [Pi] is the stabilizer of Λ×i .

(ii) For each i = 0, 1, 2, 3: for each type 1 out-neighbor [Q] of [Pi], an element cQ ∈ Λ×i
such that cQ · [Q] = [Pi+1]. (Here we denote [P4] = [`P0] for convenience).

The next step is to compute a `-reduction structure. We first describe how to compute

the data in part (i) in Algorithm 2.5.5 in Section 2.5.3. Algorithms for part (ii) will be

discussed in Section 2.5.4. And we will show in Section 2.5.5 how to use the `-reduction

structure to complete the local reduction in Problem 2.5.1.

2.5.3 Computing the `-reduction structure: finding the filtration of ideals and
lattices

Here we will show how to compute the `-reduction structure described in Definition

2.5.4(i).

Algorithm 2.5.5 (Maximal ideal decomposition of `Λ).
Input: Λ = Mat2(O), ` 6= p be a splitting prime. φ1 : B ↪→ Mat2(Q`), and φ2 : Mat2(B) ↪→
Mat4(Ql) is the embedding compatible to φ1.

Output: Ideals {Mi}3
i=1, maximal orders {Λi}3

i=1, and the chamber ([P0], [P1], [P2], [P3]).

1: P← a right O-ideal of norm `.

29



2: M1 ←
[
O O
P P

]
, M2 ←

[
O O
`O `O

]
, M3 ←

[
P P

`O `O

]
.

3: g1 ← LadicGlobalGenerator(M1, `), g2 ←
[

1 0

0 `

]
,

g3 ← LadicGlobalGenerator(M3, `).

. The routine LadicGlobalGenerator will be described in Algorithm 2.5.16.

4: O′ ← LeftOrder(P).

5: Λ1 ←
[
O P−1

P O′

]
, Λ2 ←

[
O `−1O
`O O

]
, Λ3 ←

[
O′ `−1P

`P−1 O

]
.

6: µ1 ← φ2(g1), µ2 ← φ2(g2), µ3 ← φ2(g3).

7: P1 ← µ1P0, P2 ← µ2P0, P3 ← µ3P0.

8: return {Mi}3
i=1, {Λi}3

i=1, ([P0], [P1], [P2], [P3]).

To ensure the algorithm terminates in expected time, we will need the following

uniform distribution assumption.

Heuristic 2.5.6. Let I be a right Mat4(Q`)-ideal, and v`(N(I)) = `N . Then there is a

constant ε, independent of the central simple algebra and the input ideal I, such that the

map I → F`, defined as the composition of the map I → Z`, x → `−N N(x) and the residue

map, sends any element to zero with probability at least ε.

The assumption makes sense since we are indeed expecting a stronger statement, saying

that the map I → F` should send I to all ` elements in F` with equal probability.

Proposition 2.5.7. Algorithm 2.5.5 generates the correct outputs, probabilistically in poly-

nomial time in the bit length of ∆, under heursitic 2.5.6.

Proof. After step 2, Mi clearly gives a filtration as Z-modules between Λ and `Λ. Noticing

that P are right O-ideals, it can be readily checked that Miα ⊆ Mi for all i’s and all α ∈ Λ,

therefore Or(Mi) contains Λ and hence is Λ, from the maximality of Λ. For step 5, one

can also check directly that Λi Mi ⊂ Mi. And since Λi are maximal orders (which follows

from [Rei03, corollary 27.6]), Λi is the right order of Mi. Finally, for step 7, the ideals M̃i

generated by φ2(Mi) gives a filtration from Mat4(Z`) to `Mat4(Z`), and by comparing

the norms, we see that the `-adic generating global elements gi are mapped by φ2 to µi,

which are ideal generators of M̃i. From the compatibility in Section 2.5.1, we know that the

lattices Pi satisfies the index and stabilizer properties as in Definition 2.5.4.

For the complexity, since most of Algorithm 2.5.5 only involves direct assignments and

standard algorithms in quaternion algebra (finding left orders and inverse ideals), which

are all polynomial time in ∆. The only non-standard part is the LadicGlobalGenerator

30



routine, which will be described in Algorithm 2.5.16 in Section 2.5.5, involved in step

3. From Heuristic 2.5.6, we assume that the probability exiting the loop in steps 2 to

4 in Algorithm 2.5.16 is ε, which is a constant. Therefore, LadicGlobalGenerator also

terminates in polynomial time in ∆, which implies the entire algorithm is also polynomial

time in ∆.

2.5.4 Finding transitive actions in the chamber

In Section 2.5.2, we defined in Definition 2.5.4 the data contained in the `-reduction

structure and gave an algorithm computing part (i) in Algorithm 2.5.5. Now we will focus

on part (ii) of the definition. We see that finding a transitive action on [P0] is simpler than

that on [Pi] for i = 1, · · · , 3, since the underlying left order Λ has a simpler form. An

algorithm is described in Algorithm 2.5.9 in Section 2.5.4.1. For the rest of the transitive

actions, we need a reduction to the [P0] case, where the details are described in Algorithm

2.5.14 in Section 2.5.4.2.

2.5.4.1 Computing the `-reduction structure: finding transitive actions on [P0]

To find a transitive action, we need a convenient way to describe the lattices and their

neighbors. The neighbors of a lattice can be described by its kernel. With such an idea, it

turns out that out-neighbors of type 1 edges of [P0] (or any other lattice) is bijective to the

3-dimensional projective space P3(F`) over the finite field F`.

More precisely, suppose P′ is a lattice such that [P0 : P′] = `. Let g ∈ Mat4(Z`) be a

basis of P′, i.e., g · P0 = P′. Let γ ∈ Mat4(F`) be the image of g. Define τ ∈ F4
` as a column

vector satisfying γt · τ = 0. Since such a τ is unique up to a multiplication in F×` , τ induces

an element in P3(F`).

Now we represented out vertices of [P0] as elements in P3(F`) in the form of column

vectors. Therefore, when Γ = Mat4(F`), Mat4(Z`), or Λ, there is a natural mapping

Γ→ Mat4(F`) so that Γ acts on P3(F`) by left multiplication. The following lemma relates

actions on the out edges of [P0] and actions on P3(F`).

Lemma 2.5.8. Let α ∈ Λ×`
∼= GL4(Z`). Then the action of α on P3(F`) as the left mul-

tiplication of α̃ on the column vector in F4
` (here α̃ is the reduction of α to GL4(F`)) is

equivalent to the action of α∗ on the type-1 out-neighbors of [P0], where α∗ := (α−1)t is the

contragradient of α.

Proof. Following the notations above, we first show that the bijection from the sublattices

of [P0] to P3(F`) is well-defined. Given a sublattice P′ such that [P0 : P′] = `, the choice of

g ∈ Mat4(Z`) is equivalent to the choice of a basis of P0, and it is up to a right multiplication

31



on GL4(Z`). After the reduction of g, γ ∈ Mat4(F`) is unique up to a right reduction of

GL4(Fp) and have rank 3. Therefore τ is also uniquely defined up to a multiplication of

F×p .

Now, assume α ∈ Mat4(Z`). Since (α1α2)∗ = α∗1α∗2 and (α−1
1 )∗ = (α∗1)

−1, we only need

to prove that when P′ is a sublattice of P0 of index ` and g ∈ Mat4(Z`), τ ∈ F4
` correspond

to P′, then ατ is mapped to α∗ · P′. This is true since (α∗g)t(ατ) = gt(α∗)tατ = gtτ = 0.

We will now use Lemma 2.5.8 to find a transitive action on P3(F`). An important

feature is, it is hard in general (at least subexponential time in terms of the discriminant of

the quaternion algebra) to find a general unit in Λ, but there are subgroups in Λ = Mat2(O)
where reduced norm are easy to compute and unit elements are easy to find: SL2(Z) and

H := {α ∈ A | α = α∗}, the Hermitian matrices. We will prove in Proposition 2.5.12 that

SL2(Z) and H generates a transitive action on the index ` sublattices of [P0].

Algorithm 2.5.9 (The routine TransitiveAction([P], [P0]), which finds transitive actions

on type 1 out-neighbors of [P0]).
Input: P, a sublattice of P0 such that [P0 : P] = `. Maps ϕ1 : B → Mat2(F`), ϕ2 :

Mat2(B) → Mat4(F`) and pullback functions ϕ−1
1 , ϕ−1

2 which returns elements in B and

Mat2(B), respectively, which has the smallest entries (in the sense that the quadratic form

Q, as described in Section 2.4.1, is minimized) among the inverse image .

Output: A global element g ∈ Λ× such that g · P = diag(1, 1, 1, `) · P0, where diag means

the diagonal matrix with the prescribed entries.

1: g← Id.

2: τ ← SubLatticeToP3(P). . So τ is the column vector in F4
p derived from the bijection.

3: if τ[1]× τ[4] = τ[2]× τ[3] then
. This is the case when we cannot find a g of the form sh, where s ∈ SL2(Z) and

h ∈ H.

. Instead, we attempt to find g of the form h2s1h1, where s1 ∈ SL2(Z), h1, h2 ∈ H.

4: repeat
5: h1 ← RandomElement(H), η1 ← ϕ2(h1)

6: until (η∗1 τ)[1]× (η∗1 τ)[4] 6= (η∗1 τ)[2]× (η∗1 τ)[3]

7: h1 ← HermitianPullback(η1), g← h1, τ ← η∗1 · τ.

8: end if

9: σ1 ←
[
−τ[4] τ[2]

−cτ[3] cτ[1]

]
, where c ∈ F` satisfies det(σ1) = 1.

. After the action by σ1, τ will take the form [∗ 0 0 ∗]t.
10: s1 ← SL2Pullback(σ∗1 ), τ ← σ1 · τ, g← s1 · g. . SL2Pullback returns a pullback s1 in

SL2(Z).

32



11: η2 ←


1 −τ[4]−1τ[1]

1

τ[4]−1τ[1] u
u

, where u ∈ F` satisfies det(η2) = 1.

. After the action by η2, τ will take the desired form [0 0 0 ∗]t.
12: h2 ← HermitianPullback(η∗2 ). . HermitianPullback returns a pullback of ϕ2 in

H ⊆ Λ.

13: τ ← η2 · τ, g← h2 · g.

14: return g.

Remark 2.5.10. We sketch how the pullback routines SL2Pullback and HermitianPullback

are obtained. We know that for s′ ∈ Mat2(Z), the reduced norm of s′ in Mat2(B)
is simply det(s′)2, SL2Pullback(σ) simply finds a matrix in σ + `Mat2(Z) with deter-

minant 1 and the entries are the smallest possible. Similarly, for a Hermitian matrix

h′ =

[
a q
q̄ d

]
∈ H, we have N(h′) = (N(q) − ad)2, where N(q) is the reduced norm

of q ∈ B. So HermitianPullback(η) simply pulls back η to Mat2(B) using the pullback

function φ2, and then adjust the pullback by `Λ to ensure unit reduced norm.

To ensure that Algorithm 2.5.9 terminates in expect time, we will hope that the process

of left multiplying by η1 have some uniform distribution property. We will formulate them

below.

Heuristic 2.5.11. There is an constant ε, independent of the central simple algebra A and

the input ideal I, satisfying the following property. Let τ = [τ1 τ2 τ3 τ4]
t ∈ F4

` satisfy

τ1τ4 = τ2τ3, and σ =


1 0 a b
0 1 c d
d −b u 0

−c a 0 u

 ∈ GL4(F`) be a randomly chosen matrix. And let

µ = [µ1 µ2 µ3 µ4]
t be στ. Then µ1µ4 − µ2µ3 equals to zero with probability at least ε.

Proposition 2.5.12. Algorithm 2.5.9 terminates with the correct output, probabilistically

in polynomial time in the bit length of ∆, assuming Heuristic 2.5.11.

Proof. First, we need to show that the loop between line 4 and line 7 terminates. After

the map φ2 : Mat2(B) → Mat4(F`), a Hermitian matrix in h ∈ Mat2(B) with unit norm

will be mapped to a matrix in Mat4(F`) of the form η = ϕ2(h) =


t 0 a b
0 t c d
d −b u 0

−c a 0 u

, and

33



det(η) = (tu− ad + bc)2 = 1. The following statecment can be checked by splitting into

cases and checking directly: for all τ = [τ1 τ2 τ3 τ4]
t satisfying τ1τ4 = τ2τ3, there exists

at least a matrix η of the above form so that η · [τ1 τ2 τ3 τ4]
t = [µ1 µ2 µ3 µ4]

t satisfies

µ1µ4 6= µ2µ3, which ensures the termination of the loop. (Indeed, we expected that a

randomly chosen η gives approximately a probability 1− 1/` to have µ1µ4 6= µ2µ3 and

terminates the loop.)

After step 8, we have τ = [τ1 τ2 τ3 τ4]
t satisfying τ1τ4 6= τ2τ3. On step 9, consider σ1 as

an element in SL2(Z), ϕ2(σ1) =


−τ4 0 τ2 0

0 −τ4 0 τ2

−cτ3 0 cτ1 0

0 −cτ3 0 cτ1

. It is an immediate check that

det(ϕ2(σ1)) = 1 and ϕ2(σ1) · τ is of the form [∗ 0 0 ∗]t. Therefore, the pullback to SL2(Z)

exists, and we get an unit s1 in Λ× with the same action.

Finally, when τ4 6= 0, the matrix η2 in step 11 gives a column vector of the form [0 0 0 ∗]t

after the action on τ. And from Lemma 2.5.8, we know that embedding to Mat4(Z`), η∗2
sends the corresponding sublattice to diag(1, 1, 1, `)P0. For the validity of the Hermitian

pullback, if h is a Hermitian matrix, then ϕ2(h) is of the form


t 0 a b
0 t c d
d −b u 0

−c a 0 u

 with

contragradient


u 0 −d c
0 u b −a
−a −c t 0

−b −d 0 t

. Although there is no straightforward formula for

the pullback of the contragradient given h, we know from the explicit form that it is still a

pullback from a unit norm Hermitian matrix in H. Therefore, the entire algorithm can be

computed, terminates, and gives the correct output.

We will postpone the complexity statement and prove it in the more general situation

in Proposition 2.5.13.

At this point, we established Algorithm 2.5.9, which allows us to compute the transitive

units as described in Definition 2.5.4(ii) for i = 0. Let [Q] be a neighborhood of [P0], we can

construct the routine TransitiveAction([Q], [P0]), which computes an global unit cQ ∈ Λ×

such that cQ · [Q] = [P1] as follows. We input Q and [P1] to Algorithm 2.5.9, and suppose

the outputs are gQ and gP1 , respectively. Then the routine TransitiveAction([Q], [P0])

returns g−1
P1

gQ.

34



2.5.4.2 Finding a transitive action on [P1] and beyond

We described an algorithm in Section 2.5.4.1 to generate a transitive action on neighbors of

[P0]. And as we will see in Section 2.5.5, we also need to generate a transitive action on

neighbors of other elements in the chamber, namely [P1], [P2], and [P3]. The strategy we

take is to translate the problems back to finding transitive action on neighbors of [P0].

As in Definition 2.5.4, we let Λi = Ol(Mi) be the maximal order in the `-reduction

structure, gi ∈ Mat2(B) be an `-adic generating global element of Mi, so that (Mi)` =

(gi)`Λ. And although we do not know how to compute this, we denote by g̃i ∈ Mi

a left generator of the ideal Mi. In other words, Mi = g̃iΛ and Λi = g̃iΛg̃−1
i . As in the

previous sections, we also need to fix embeddings ϕ1 : B ↪→ Mat2(Q`) and ϕ2 : Mat2(B) ↪→
Mat4(Q`), but we omit them when there is no confusion in the notation.

Proposition 2.5.13. Consider the Eichler order Λ′ := g−1
i Λigi ∩Λ ⊆ Λ. Then finding a

transitive action of Λ′× on [Pi] can be reduced to finding a transitive action of Λ on [P0].

Proof. Let τ := g̃−1
i gi. Then we know that τ ∈ Λ and Λ′ = τ−1Λτ ∩ Λ by definition.

Suppose P is a lattice such that [Pi : P] = `. This means that there exists a µ ∈ Mat4(Z`)

such that v`(µ) = 1 and P = gi · µ · P0. Suppose that g = gig′g−1
i for some g′ ∈ Λ′. From

the definition, we know that g ∈ Λi and g′ ∈ Λ. Then we claim that such g acts transitively

on the type 1 neighbors of [Pi]. Indeed, we have g · P = gig′g−1
i giµP0 = gig′µP0. Compare

with Lemma 2.5.8, we see that the action of gig′g−1
i on P is equivalent to the action of g′ on

µ · P0, which is a neighbor of P0.

We will then prove that Λ′ (which is a subset of Λ) contains sufficiently many units

so that giΛ′×g−1
i generates a transitive action on neighbors of [Pi], or equivalently, Λ′×

generates a transitive action on neighbors of [P0]. Even stronger, we will prove that Λ′

contains sufficiently many elements in SL2(Z) and Hermitian matrices (denoted by H
again) which induces either transitive action.

We know that as Z-modules, Λ/Λ′ ∼= ⊕pΛp/Λ′p, where p runs through all finite places

in Z. Therefore, the index [Λ : Λ′] can be obtained by multiply all the indices [Λp : Λ′p].

We also know that the normalizerNA`
(Λ`), defined as {σ ∈ A×` | σΛ`σ

−1 = Λ`}, is Q×` Λ×` .

From the definitions of gi and g̃i, we know that v`(N(gi)) = v`(N(g̃i)), so τ = g̃−1
i gi ∈ Λ×`

and falls in NA`
(Λ`). This implies that Λ′` = (τ−1Λτ ∩ Λ)` = (τ−1Λτ)` ∩ Λ` = Λ`.

Therefore, ` - [Λ : Λ′].

Now, suppose n = [Λ : Λ′]. As 1 ∈ Λ′, Λ′ ⊇ Z + nΛ. From the proof of Proposition

2.5.12, given any lattice P0 such that [P : P0] = `, there exist elements σ1 ∈ SL2(Z)/`SL2(Z)

and η1, η2 ∈ H/`H, such that whenever s1 ∈ σ1 + `S2(Z) and hi ∈ ηi + `H, i = 1, 2 are

units in Λ, (h2s1h1)
∗ · P = diag(1, 1, 1, `) · P0. Since ` - n, by Chinese remainder theorem, is

35



is possible to choose s1, h1 and h2 such that they are units in Λ′.

The consequence of Proposition 2.5.13 is that we can tweak the structure of Algorithm

2.5.9 to construct an algorithm to generate transitive action on neighborhoods of [Pi] for

i = 1, 2 and 3. We describe the algorithm as below.

Algorithm 2.5.14 (Translating the problem of finding the transitive action on Λi on the

out-edges of [Pi] to the problem of finding the transitive action on Λ′ ⊆ Λ to [Pi]).
Input: All the local data as described in Definition 2.5.4. i ∈ {1, 2, 3}. P, a sublattice of Pi

such that [Pi : P] = `. Maps ϕ1 : B → Mat2(F`), ϕ2 : Mat2(B) → Mat4(F`) and pullback

functions ϕ−1
1 , ϕ−1

2 which returns the element in B and Mat2(B), respectively in the inverse

image which has the smallest entries (in the sense that the quadratic form Q, as described

in Section 3.1, is minimized) among the inverse image.

Output: A global element g ∈ Λ×i such that g · P = gi · diag(1, 1, 1, `)P0.

1: g← Id.

2: ψ← SubLatticeToP3(g−1
i P).

. ψ is the column vector in F4
p corresponding to the sublattice g−1

i · P of P0 of

index `.

3: Λ′ ← g−1
i Λigi ∩Λ, and n← [Λ : Λ′].

4: if ψ[1]× ψ[4] = ψ[2]× ψ[3] then
. This is the case when we cannot find a g of the form sh, where s ∈ SL2(Z) and

h ∈ H.

. Instead, we try to find a g of the from h2sh1, where s ∈ SL2(Z), and h1, h2 ∈ H.

5: repeat
6: h1 ← RandomElementModN(H, n)) η1 ← ϕ2(h1)

. RandomElementModN(H, n)) gives a Hermitian element of the form

diag(1, 1) + nΛ.

7: until (η∗1 ψ)[1]× (η∗1 ψ)[4] 6= (η∗1 ψ)[2]× (η∗1 ψ)[3]

8: g← h1, ψ← η∗1 · ψ.

9: end if

10: σ1 ←
[
−ψ[4] ψ[2]

−cψ[3] cψ[1]

]
, where c ∈ F` satisfies det(σ1) = 1.

11: s1 ← SL2PullbackModN(σ∗1 , n), ψ← σ1 · ψ, g← s1 · g.

. SL2PullbackModN gives a pullback in s1 ∈ SL2(Z) of σ1, congruent to diag(1, 1)

mod n.

36



12: η2 ←


1 −ψ[4]−1ψ[1]

1

ψ[4]−1ψ[1] u
u

, where u ∈ F` satisfies det(η2) = 1.

13: h2 ← HermitianPullbackModN(η∗2 , n).
. Gives a pullback h2 ∈ H of η2 which is in diag(1, 1) + nΛ.

14: ψ← η2 · ψ, g← h2 · g.

15: return g1 · g · g−1
1 .

Proposition 2.5.15. Algorithm 2.5.14 terminates with the correct output, probabilistically

in polynomial time in ∆, assuming Heuristic 2.5.11.

Proof. We have already shown in Proposition 2.5.13 that for each i ∈ {1, 2, 3}, the action of

gig′g−1
i on P is equivalent to the action of g′ on g−1

i P, which is a neighbor of P0, and this

proves the validity of steps 2 and 15. We also verified in Proposition 2.5.13 that Λ′ contains

enough units to generate the transitive action on neighbors of [P0]. This guarantees the

existence of the pullbacks in steps 8, 11, and 13. Finally, since the choice of matices η1,

σ1 and η2 in steps 6, 10 and 12 are the same as those in Algorithm 2.5.9, we know from

Proposition 2.5.12 that the composition of actions of h1, s1, and h2 will bring the lattice

g−1
i P back to diag(1, 1, 1, `)P0.

For the complexity part, since Algorithm 2.5.9 is simpler than Algorithm 2.5.14, we

will only check the later one. The first two steps are trivial, and step 3 involves a lattice

basis computation, which is polynomial time in ∆. For the loop in steps 4 to 9, from

the assumption in Heuristic 2.5.11, we know that it involves O(1) calls to step 6, so it is

probabilistically polynomial time.

The rest of the algorithm involves constantly many finite fields and integral arithmetic

and Chinese remainder theorems, and they are all deterministic polynomial time.

Now, we can finish up the routine TransitiveAction([Q], [Pi]) for i ∈ {1, 2, 3}, which

inputs [Q], a type 1 out neighbor of [Pi], and outputs a global unit cQ ∈ Λ×i satisfying

cQ · [Q] = [Pi+1]. We proceed by invoking alrogithm 2.5.14 twice, taking Q and Pi+1 as

inputs. Suppose the outputs are gQ and gPi+1 , then the routine TransitiveAction([Q], [Pi])

returns g−1
Pi+1

gQ.

2.5.5 The LReduce algorithm

Up to this point, we should have all components of the `-reduction structure prepared,

as described in Definition 2.5.4. We can finally describe Algorithm 2.5.18, which utilizes

the `-reduction data to traverse the Bruhat-Tits building. This is where we are using the

37



compatibility in Section 2.5.1: a filtration of lattices in Z` corresponds to a filtration of right

Mat4(Z`)-ideals, and the lattice action is equivalent to the ideal actions. So if we act on

the lattice P by γ ∈ Mat4(Z`) such that the filtration of γP consists of chambers in the

Bruhat-Tits building, the action by γ on the corresponding ideal I, namely, γI will have

two-sided ideal factors, which must be `r.

Since we need to exploit the correspondence between ideals and lattices, the first step

is to map the given right Λ-ideal I to the corresponding Z`-lattice of rank 4. Indeed, if

we know an element λ ∈ I such that I` = λΛ` = λMat4(Z`), then we can correspond the

ideal I with the lattice λ` · P0. We call such an element λ a `-adic generating global element.

Therefore, our first task is to find a `-adic generating global element for the given

right-Λ ideal I. This can be achieved by the following probabilistic algorithm.

Algorithm 2.5.16 (The LadicGlobalGenerator routine: computing a `-adic generating

global element).
Input: An right Λ-ideal I. A splitting prime ideal ` in Q.

Output: A `-generating global element λ.

1: λ← 0

2: while v`(N(λ)) 6= v`(N(I)) do
3: λ← NextElement(I). . See Section 3.1 for the routine NextElement.

4: end while
5: return λ.

Validity of Algorithm 2.5.16. From [Rei03, Theorem 24.2(a)], we know that N(I)` = N(I`),
and both of them will be the same as minc∈I N(c). Therefore, if v`(N(λ)) = v`(N(I))
holds, λ is the `-adic generating global element of I. Heuristically, a randomly chosen λ

has probability 1− 1/` to attain the minimal valuation an become an `-adic generating

global element (we stated this in Heuristic 2.5.6). Therefore, for any ε > 0, the probabilistic

approach terminates in O(1) iterations in the loop with probability 1− ε.

Remark 2.5.17. Page has a deterministic algorithm in the quaternion algebra case, using

a generalized Euclid’s algorithm on the matrix ring Mat2(OF/pk).

Now we are ready to explain the LReduce algorithm. First, we will write down the

algorithm as Algorithm 2.5.18, then we will illustrate how to simplify the lattice to reduce

it as cycles in the Bruhat-Tits building. Finally, the validity is proven in Proposition 2.5.19.

Algorithm 2.5.18 (The LReduce routine).
Input: An integral right Λ-ideal I, a prime ` 6= p, splitting in B, the `-reduction structure

as described in Definition 2.5.4.

38



Output: An element γ` ∈ A×, a non-negative integer r, a right Λ-ideal J, such that

γ` I = `r Jm, and v`(N(J)), the `-adic valuation of the reduced norm of the ideal J, is

between 0 and 3.

1: γ` ← 1, r ← 0, d← v`(N(I)), J ← I.

2: λ← LadicGlobalGenerator(I, `), QJ ← λ · P0.

3: Compute a filtration of Z`-lattices P0 = L0 ⊃ L1 ⊃ · · · ⊃ Ld = QJ , so that for each

0 ≤ i ≤ d− 1, [Li : Li+1] = `.

4: while d > 3 do
. Outer loop of the traversal of Bruhat-Tits building.

. Will try to make as many chambers as possible.

5: for i = 0 to 3 do
. The inner loop of the traversal.

. For every four actions applied on the loop, a chamber will be formed on the

filtration.

6: ci ← TransitiveAction(L4r+i+1, Pi). . So ci ∈ Λ×i satisfies ci · L4r+i+1 = Pi+1.

7: L4r+i+2 ← ci · L4r+i+2, · · · , L4r+d ← ci · L4r+d.

8: end for
9: γ` ← c3c2c1c0γ`, r ← r + 1, d← d− 4, J ← `−1γ` J.

10: L4r ← `−1 · L4r, · · · , L4r+d ← `−1 · L4r+d.

11: end while
12: return γ`, r, J.

Here we explain how Algorithm 2.5.18 traverses the Bruhat-Tits building. Figure 2.1

illustrates an example when ` = 2, that is, the Bruhat-Tits tree of rank 4 Q`-lattices.

We first describe the general setting for Figure 2.1. The Bruhat-Tits building is an

infinite graph, but we only show the part around the center [P0] for simplicity. The vertices

of the building are the homothety classes, and we represent them as matrices, with column

vectors representing a basis of a lattice inside the homothety class. The matrices are written

in the nodes in Figure 2.1. The central homothety class of the Bruhat-Tits building, as

defined in Definition 2.2.10, is the bold red node. The fixed chamber, ([P0], [P1], [P2], [P3]),

in the Bruhat-Tits building as required in Definition 2.5.4(a) is the cycle with red edges in

Figure 2.1. In addition to Figure 2.1, all the vertices which are of distance 1 from the origin

(which are the heads of the blue arrows) and a part of the vertices which are of distance

from the origin (which are the heads of the green arrows) are drawn.

Suppose we are given an ideal as an input in Algorithm 2.5.18. The first step is to find

the corresponding Z`-lattice and a filtration of the lattice, which gives a path, as drawn

in bold black edges in figure 2.1(a). In this example, the filtration has length d = 6, and

39



(a) (b)

(c) (d)

Figure 2.1: The traversal of the Bruhat-Tits building of for ` = 2, as in Algorithm 2.5.18.
(a) The filtration of the lattice (in bold black edges) and the Bruhat-Tits building. The
central lattice [P0] is in bold red, and the chamber ([P0], [P1], [P2], [P3]) is the red loop.
(b) The reduction after the first iteration in step 5 in Algorithm 2.5.18. The black bold
path shows the updated filtration. (c) The reduction after the second iteration. (d) The
reduction after the third and the fourth iterations.

40



suppose it is P0 = L0 ⊃ L1 · · · ⊃ L6.

At the first step of the inner loop (step 5 of Algorithm 2.5.18, i = 0), we need to find an

element c0 ∈ Λ×0 which sends L1 to P1. After acting c0 on the entire filtration, we get a new

filtration P0 = L′0 ⊃ P1 = L′1 ⊃ L′2 · · · ⊃ L′6. The new filtration is shown in the bold path in

Figure 2.1(b).

Next, we will try to find an element in c1 ∈ Λ×1 , which sends L′1 to P2. Furthermore c1

sends the filtration to P1 = L′′1 ⊃ P2 = L′′2 ⊃ L′′3 · · · L′′6 , as shown in the bold path of Figure

2.1(c).

Repeat the same process, and find c2 ∈ Λ×2 , c3 ∈ Λ×3 , and act each of them on the

filtration. The filtration after action by c3 is shown in Figure 2.1(d). After a complete round

of traversal (four actions), the length of the filtration is shortened by four. And if we do

the same action of the corresponding ideal I, we claim that a two-sided factor ` can be

extracted from c3c2c1c0 I, which consequently simplifies the ideal.

Now we shall prove the validity of the process in Proposition 2.5.19.

Proposition 2.5.19. Algorithm 2.5.18 terminates and outputs γ`, r, J with the desired

property: γ` I = `r J, and it terminates probabilistically in polynomial time in the bit lengths

of ∆ and N(I), assuming Heuristic 2.5.6.

Proof. It is clear that after an iteration in the while loop, d is decreased by 4, which is the

only place where it is altered. Therefore, the algorithm terminates with finitely many while

loops.

For the validity of the algorithm, we need to keep track of the correspondence between

right Mat4(Z`)-ideals and Z` lattices of rank 4. After the setup in step 2 of Algorithm

2.5.18, we know that γ` I` = I` = λΛ` and L4r+d = QJ = λ · P0, so they are compatible

in the sense of Proposition 2.5.3. After each iteration in the while loop, since γ` I` and

L4r+d are both changed by the action of c3c3c1c0, so they remain compatible throughout the

algorithm.

In each iteration of the while loop, the lattices L0, · · · , L4r+d remains to form a path

of type 1 edges inside the Bruhat-Tits building T`. However, after each iteration, since

L4r+i = Pi for i = 1, 2, 3, 4, the path formed by {Li} forms a new cycle of length 4. Therefore,

after extracting an ` in step 10, the lattices {Li} remains to be a sublattice of P0.

And at the end of the algorithm, the distance between P0 and L4r+d in the Bruhat-Tits

building is at most 3. From Proposition 2.5.3, there is an integral Mat4(Z`)-ideal J` of

norm `d such that both it and γ` I` correspond to the lattice L4r+d, and they differ by a two-

sided Mat4(Z`) ideal, which is `rMat4(Z`) by comparing the exponents. And since γ` is a

product of units in Λi for i ∈ {0, 1, 2, 3}, we know that at any completion `′ 6= ` (including

41



the ramified places), (`−rγ` I)`′ is integral in Λ`′ . And from the previous argument, at the

place `, (`−rγ` I)` = J` is also integral. Hence, `−rγ` I = J is also an integral ideal since it is

integral at every completion. This justifies the correctness of our output.

For the complexity, the first nontrivial step is step 2, which computes the `-adic generatic

global element, and takes probabilistic polynomial time under the assumption in Heuristic

2.5.6. Computing the filtration in step 3 can be implemented in probabilistic polynomial

time, for instance, by sequentially inserting elements into the lattice QJ until the filtration

is fine enough in the sense that every two neighboring lattices are of index `.

Next, we look at the loop from steps 4 to 11. The number of iteration we need depends

on v`(N(I)), which is polynomial in bit length of N(I). And in each iteration, we need two

invocations of Algorithm 2.5.14 or Algorithm 2.5.9, which is known to be polynomial from

Proposition 2.5.13. The remaining are standard lattice and ideal operations, which take

polynomial time.

2.6 Putting everything together: the validity and the complexity

analysis

So far we have described and showed the validity and complexity of all the components

of our algorithm. Now we will combine everything together and discuss the validity and

complexity. The heuristics and complexity settings are the same as the previous sections:

for a real number x, we let L(x) be the function L(x) = exp((ln x ln ln x)1/2). Suppose B
is the set of primes in Q which are less than L(∆)O(1) and not equal to p (i.e., splits in B).

Again, we list a few heuristic assumptions which are needed for the size and complexity

estimate of Theorem 2.6.1.

Theorem 2.6.1. The main algorithm (Algorithm 2.3.1) is valid and terminates probabilisti-

cally in time L(∆)O(1). In addition, the output of the algorithm is a generator of I ⊆ Mat2(B)
whose bit lengths of entries are O(ln(N(I)) + ln(L(∆))).

Proof. First we check the validity of the main algorithm. As discussed in Proposition 2.4.7,

we have a decomposition f csI = JJ, where f ∈ Q×, c ∈ Λ×, J is a right Λ-ideal, and J is a

two-sided Λ-ideal. In addition, we know from the choice of B and the process of making sI
B-smooth, sI is integral and the norm is not divisible by the ramifying prime. Furthermore,

we know that N( f csI) = 1, so J is an integral right Λ-ideal, whose norm is not divisible by

any ramifying prime, and N(J) ∈ Z×4.

In step (3), after the local reduction at a place ` ∈ D and all the replacements of the

ideals J and J, the equation (∏` c`) f csI = JJ remains valid, and J remains integral, while

42



the replaced ideals J and J now satisfies v`(N(J)) = v`(N(J)) = 0. Therefore, at the

end of step (3), after all the primes in D are processed, we will have N(J) = 1 and inte-

gral, so J = Λ. Similarly, since N(J) is enforced to be 1, and it is two-sided, J = Λ as

well. This means that at step (4), from the relation (∏` c`) f csI = JJ = Λ, we know that

((∏` c`) f cs)−1 generates I. This proves the validity of the main algorithm.

Now we verify the complexity statement. Step (1) in Algorithm 2.3.1 involves invoking

the routine NextElement to the lattice I−1 repeatedly until we get a smooth element. By

Heuristic 2.4.4(a), the step is probabilistic of complexity L(∆)O(1). The element s ∈ I−1 as

the output of this step is of size less than N(I−1)L(∆)O(1), by Heuristic 2.4.4(a). Therefore,

sI, the input to step (2), will have an ideal norm of size L(∆)O(1). For step (2), we need

to compute the G-reduction structure, which takes time L(∆)O(1) from Proposition 2.4.5.

Then we need to take the GReduce routine, whose time complexity is agin bounded by

L(∆)O(1), by Proposition 2.4.7. Note that the output ideal J involves the “extract two-sided

ideal” step from sI, and we have N(J) divides N(sI)4, so the size of N(J) is as well of the

size L(∆)O(1).

Now we move to step (3), the local reduction part. If the ideal input to this step is J, then

we need to local reduction at every splitting places in D = {` prime | ` divides N(J)}. D
has size ω(N(J)) = O(log N(J)) log(L(∆)O(1)), where ω(N) denotes the number of prime

divisors of N. Therefore, such number of places is at most the bit length of the norm of J,

and hence it is polynomial in the bit length of ∆. And we know that the main part of the

local reduction consists of Algorithms 2.5.5, 2.5.9, 2.5.14, and 2.5.18, so by combining the

complexity arguments in Propositions 2.5.7 , 2.5.13, and 2.5.19, we know that the overall

complexity of step 3 is polynomial in the bit length of N(J), hence polynomial in the bit

length of ∆. Therefore, since step (4) is negligible in time, adding all four steps in the main

Algorithm 2.3.1, the total time complexity is L(∆)O(1).

Now, we provide an estimate of the size of the entries of the output generator. What

we need to do is to go through again the main Algorithm 2.3.1, and sum up the precision

of the elements which is applied to the output.

The first step of the main algorithm is a B-smooth ideal sI. The way we search for s
is to repeatedly invoke the routine NextElement(I−1) to get s, until sI is B-smooth. As in

Heuristic 2.4.4, the probability each NextElement work is of the size 1/L(∆)O(1).

After step (1) of the main algorithm, we knew that the norm of s is N(I−1)L(∆)O(1).

Since s is chosen from the NextElement routine, it is reasonable to assume that the entries of

s are polynomial in N(s), and the bit lengths of entries of s are in O(ln(N(I)) + ln(L(∆))).

43



In step (2), we need to extract the two-sided part. Since both N(sI) and N(J) are in

O(L(∆)O(1)), so is f = (sI)−1 J. So the bit length of f is O(ln(L(∆))).
Now we estimate the size of the units used in the local reduction step (3). The ideal we

need for local reduction is J, and we know that N(J) divides N(sI)4. Therefore, if we again

let Ω(N) denote the number of prime divisors of an integer N (counting multiplicity),

then Ω(N(J)) ≤ 4Ω(N(I)) = O(ln(L(∆))). When we make `-reduction along all prime

divisors of N(J), it turns out that we need Ω(N(J)) Bruhat-Tits traversals, which means

that we need to find Ω(N(J)) units as in Algorithm 2.5.9 or 2.5.14. Since 2.5.14 is the more

complicated part and generates units of larger entries, we can assume all Ω(N(J)) steps

are from 2.5.14. Suppose in one of the steps, `-adic reduction is performed, and gi is an

`-adic generating global element of Mi, and n = [Λ : Λ′] (see Section 4.4 for the notations),

Assume that g̃i is a left generator of Mi, and τ := g̃−1
i gi, then since Λ′ ⊇ N(τ)4Λ, we know

that n = [Λ : Λ′] divides N(τ)4. And since we can choose g̃i by the NextElement routine,

and from Heuristics 2.5.6, we can expect that the 1/ε2 = O(1)-th shortest element among

all possible values can be a choice of the `-adic generating global element of Mi. And

this implies N(τ) = O(1), as well as n = O(1). And, since Algorithm 2.5.14 involves two

applications of the Chinese remainder theorem, both over modulus n and `, The size of the

matrix g∗ at step 15 will be c`2 for some constant c. In addition, the size of entries of gi is

also polynomial in `, and this implies that the entries of the output of Algorithm 2.5.14 are

O(c`ε), for some constants c and ε. Multiplying all the units together, suppose that N(J) =

∏` `
e` , then the entries of the product of all the units appearing in the local reductions will

have entries of size ∏` O(ce``εe`) = O(cΩ(N(J))N(J)ε) = O(N(J)O(1)) = O(L(∆)O(1)).

Therefore, adding the sizes of s, f , and all the units in the local step together, we

know that the size, in terms of bit length, of the entries in the principal ideal generator is

O(ln(N(I)) + ln(L(∆))).

2.7 Experimental results

We have implemented various steps of the algorithm in Magma. In this section, we shall

demonstrate some experimental results and show how the algorithm worked out. We will

first find an answer to Example 2.7.1, whose process is split into two sections: the global

reduction is processed in Section 7.1; and the local reduction and the Bruhat-Tits building

traversal is dealt with in Section 7.2.

Example 2.7.1. In this section and the next, we will work on the quaternion algebra Bp,∞

over Q which ramifies at p = 11. For such a B, we can let it has a Q-basis, {1, i, j, k},
where i2 = −1, j2 = −11, ij = −ji = k. The principal ideal problem we will consider is

44



Mat2(Bp,∞). There is a maximal order O of Bp,∞ with basis {1, i, (1 + j)/2, (i + k)/2}. And

as usual, we take A = Mat2(Bp,∞) and Λ = Mat2(O).
Now we consider the right Λ-ideal I = 5Λ + αΛ, where

α =

[
−1 + 1

2 i + 1
2 k −i

−2− 3
2 i− 1

2 k 1
2 −

1
2 i− 1

2 j− 1
2 k

]
.

In fact, N(α) = 10 and N(I) = 5. Whenever required, assume that the set of smooth primes

is B = {2, 3, 5}. The goal for this section and the next is to find a right ideal generator of

the princial ideal I.

2.7.1 The smoothing process and the global reduction

In this section, we will work out the global reduction process for Example 2.7.1, as described

in Section 2.4. Since the ideal I is already B-smooth, there is no need to rescale by a factor

s as in step (1) of Algorithm 2.3.1. Then we move through to step (2), which involves

Algorithms 2.4.2 and 2.4.6.

For Algorithm 2.4.2, we at least need to find an element c5 in Mat2(B)× such that

N(c5) = 5. As in the algorithm, we randomly generate elements in Λ with small entries

(with respect to the quadratic form defined in Section 4) and collect B-smooth elements,

until c5 can be generated by a combination. For instance, the first few short elements we

generated are

m1 =

[
1
2 −

5
2 i− 1

2 j + 1
2 k 1

2 + i− 1
2 j

2i − 1
2 −

1
2 i + 1

2 j− 1
2 k

]
, m2 =

[
5
2 + 1

2 i + 1
2 j + 1

2 k − 5
2 −

1
2 i− 1

2 j− 1
2 k

5
2 + 1

2 i + 1
2 j + 1

2 k 1
2 −

1
2 i− 1

2 j− 1
2 k

]
,

m3 =

[
− 1

2 + i + 1
2 j 3

1
2 −

3
2 i + 1

2 j− 1
2 k 1

2 −
5
2 i + 1

2 j + 1
2 k

]
, m4 =

[
i− j 0
−3i −1− 2i.

]

Then the reduced norm of m1, m2, m3 and m4 are 22 · 32, 22 · 33, 2 · 3 · 5, 22 · 3 · 5, respec-

tively, and then one can deduce that

c5 = m1m−1
2 m2

3m−1
4 =

[
− 203

180 −
817
180 i− 73

90 j + 61
180 k − 301

120 −
21
40 i− 73

40 j + 67
120 k

113
72 + 533

120 i + 3
8 j− 77

360 k 83
30 +

103
60 i + 22

15 j− 49
60 k

]

is an element of norm 5 as required. From Algorithm 2.4.6, we need to extract the two-sided

ideal J of J = c−1
5 I, which is 16200−1Λ. From here, we can get the ideal J = 16200c−1

5 I and

send J to the local reduction, which we will demonstrate in the next section.

45



2.7.2 The local reduction and the Bruhat-Tits building

We will demonstrate the Bruhat-Tits building traversal in this section on the same ideal

I. However, for the c5 we have chosen, one need to do multiple steps of traversals on all

the primes in B since 16200 has all primes in B as divisors. For the sake of brevity, we will

demonstrate on a smaller set

c5 =

[
1 −i

− 1
2 −

1
2 i + 1

2 j + 1
2 k 3

2 −
1
2 i− 1

2 j + 1
2 k

]
, J = 5−1Λ, J = 5c−1

5 I,

so that we only need to do local reduction of J at the prime ` = 5 since N(J) = 54.

Now we start the local reduction for the right ideal J on ` = 5. First, we need to prepare

the local reduction data, as in Algorithm 2.5.5. Get a right maximal ideal of norm `, from

there we write down a chamber as in the algorithm. Suppose the right O-ideal of norm 5

we generated is P = 5Z + 5iZ + ((7 + j)/2)Z + ((3i + k)/2)Z. Then after the setup as in

Algorithm 2.5.5, we can construct a set of right Λ-ideals Λ ) M1 ) M2 ) M3 ) `Λ, and

the right ideals M1, M2, M3, `Λ correspond to the Z` lattices

P1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 5

 , P2 =


1 0 0 0

0 1 0 0

0 0 5 0

0 0 0 5

 , P3 =


1 0 0 0

1 5 0 0

0 0 5 0

0 0 0 5

 , P4 = `P0 =


5 0 0 0

0 5 0 0

0 0 5 0

0 0 0 5

 ,

respectively (the column vectors form a basis). The lattices P1, P2, P3 together with the

standard lattice form a chamber in the Bruhat-Tits building.

A `-adic global generator of the ideal J can be computed via Algorithm 2.5.16. A valid

one is

gI =

[
9
2 +

7
2 i− 3

2 j + 1
2 k 4− 1

2 i + j + 1
2 k

17
2 + 3i + 1

2 j− k − 1
2 + i + 1

2 j− k

]
.

From there, we can compute the Z`-lattice L4 corresponding to J and a filtration L0 = P0 )
L1 ) L2 ) L3 ) L4, which are

L(0)
1 =


1 0 0 0
3 5 0 0
0 0 1 0
0 0 0 1

 , L(0)
2 =


1 0 0 0
3 5 0 0
3 0 5 0
0 0 0 1

 , L(0)
3 =


1 0 0 0
3 5 0 0
3 0 5 0
4 0 0 5

 , L(0)
4 =


1 0 0 0
3 5 0 0
3 0 5 0

14 20 20 25

 .

The goal is to find the correct actions to match each Li to Pi. As N(J) = 54, we need 4 steps

for the Bruhat-Tits building traversal. We will give the intermediate results in each steps as

46



below.

1. The first step. We will follow Algorithm 2.5.9. Using the correspondence from

sublattices of P0 to elements in P3(F`) as described in Section 5.4.1, L1 corresponds

to [2, 1, 0, 0]t and P1 corresponds to [0, 0, 4, 1]t. The ideal of Algorithm 5.9 is to map

both of them to [0, 0, 0, 1]t.

On the side of [2, 1, 0, 0]t, we need to find two Hermitian elements in Λ× and an

element in SL2(Z). It turns out that in that order, the matrices[
1 1+j

2
1−j

2 2

]
∈ H,

[
−3 2

−2 1

]
∈ SL2(Z), and

[
2 −1+j

2
−1−j

2 2

]
∈ H

sends [2, 1, 0, 0]t to [1, 3, 1, 1]t, [3, 0, 0, 1]t, and then to [0, 0, 0, 3]t.

We can do the same on the side of [0, 0, 4, 1]t. We can see that in that order, the

matrices [
1 i
−i 0

]
∈ H,

[
2 −1

−1 1

]
∈ SL2(Z), and

[
1 i+k

2
−i−k

2 2

]
∈ H

sends [0, 0, 4, 1]t to [3, 1, 1, 4]t, [4, 0, 0, 4]t, and then to [0, 0, 0, 2]t.

Finally, merging the lattices in the both sides, we get an element in Λ× sending L(0)
1

to P1, which is

t1 =

[
67
2 + 16i + 1

2 j + 4k 22− 5i + 13j + 9k
−36 + 25i− 6j− 4k −1 + 69

2 i− 18j + 13
2 k]

]
.

After the action of t1, the filtration {Li} is now sent to

L(1)
1 =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 5

]
, L(1)

2 =

[
1 0 0 0
0 1 0 0
1 0 5 0
1 0 0 5

]
, L(1)

3 =

[
1 0 0 0
3 5 0 0
1 0 5 0
1 0 0 5

]
, L(1)

4 =

[
1 0 0 0
3 5 0 0
1 0 5 0

11 5 0 25

]
.

2. The second step. For this and the rest of the steps, we will follow Algorithm 2.5.14

in Section 5.4.2. We need to invoke Algorithm 2.5.16 to compute a `-local global

generator for the ideal M1 first, for which we used g1 =

[
1 + 1

2 i + 1
2 k i

7
2 +

7
2 i + 1

2 j− 1
2 k 7

2 i− 1
2 k

]
.

Note that N(g1) = 5 · 32, which implies Λ′ ⊇ I + 9Λ. Therefore, in the Chinese

Remainder Theorem step, we need to solve congruence equations with respect to 9

and ` = 5.

47



Using the correspondence from sublattices of P0 to elements in P3(F`) as described

in Section 5.4.2, g−1
1 L(1)

2 corresponds to [0, 3, 1, 0]t and g−1
1 P2 corresponds to [2, 2, 4, 1]t.

The idea of Algorithm 2.5.14 is to map both of them to [0, 0, 0, 1]t.

On the side of [0, 3, 1, 0]t, since 0 · 0 6= 3 · 1, we need to find an element in SL2(Z) and

a Hermitian elements in Λ× and an element in SL2(Z). It turns out that in that order,

the matrices [
10 −189

9 −170

]
∈ SL2(Z), and

[
1 − 9i+9k

2
9i+9k

2 244

]
∈ H

sends [0, 3, 1, 0]t to [1, 0, 0, 2]t, and then to [0, 0, 0, 3]t.

On the side of [2, 2, 4, 1]t, we also need to find an element in SL2(Z) and a Hermitian

elements in Λ× and an element in SL2(Z). The matrices[
163 −9

−18 1

]
∈ SL2(Z), and

[
244 −9+9j

2
−9−9j

2 1

]
∈ H

sends [2, 2, 4, 1]t to [4, 0, 0, 1]t, and then to [0, 0, 0, 1]t.

Merging the lattices in the both sides, we get an element t2 ∈ Λ×1 sending L(1)
2 to P2,

which is[
− 534416557

2 + 880668981
2 i + 583250271

2 j− 559225287
2 k − 850696553

2 + 124684578
5 i− 19854211

2 j + 430688781
5 k

− 5738659839
2 − 337452543i + 1662152013

2 j− 1220649876k −1381203482 + 1317794625
2 i− 291087732j + 563140125

2 k

]
.

After the action of t2, the filtration {Li} is now sent to

L(1)
1 =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 5

]
, L(2)

2 =

[
1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 5

]
, L(2)

3 =

[
1 0 0 0
0 1 0 0
0 0 5 0
5 10 5 25

]
, L(2)

4 =

[
1 0 0 0
1 1 0 0
0 0 5 0
30 85 55 125

]
.

3. The third step. Again we will follow Algorithm 2.5.14 in Section 5.4.2. Slightly

different from the second step, the right-ideal generator of M2 is known because

of our selected form, which is g2 =

[
1 0

0 5

]
. And since it is a generator, Λ′ = Λ.

Therefore, we do not need the Chinese Remainder Theorem for the pullback in

Algorithm 2.5.14.

Using the correspondence from sublattices of P0 to elements in P3(F`) as described

in Section 5.4.2, g−1
2 L(2)

3 corresponds to [4, 3, 4, 1]t and g−1
2 P3 corresponds to [4, 1, 0, 0]t.

We need to map both of them to [0, 0, 0, 1]t.

48



On the side of [4, 3, 4, 1]t, we get the matrices

[
−3 2

−2 1

]
∈ SL2(Z) and

[
4 i+k

2
−i−k

2 1

]
∈

H sends [4, 3, 4, 1]t to [2, 0, 0, 1]t, and then to [0, 0, 0, 1]t. On the side of [4, 1, 0, 0]t,[
1 i
−i 2

]
∈ H,

[
−1 −1

2 1

]
∈ SL2(Z), and

[
4 i+k

2
−i−k

2 1

]
∈ H sends [4, 1, 0, 0]t to

[3, 2, 3, 1]t, then to [2, 0, 0, 1]t, and then to [0, 0, 0, 1]t.

Merging the lattices in the both sides, we get t3 =

[
−10− 8i 6

5 + i
40− 25i −5 + 3i

]
∈ Λ×2

sending L(2)
3 to P3. After the action of t3, the filtration {Li} is now sent to

L(1)
1 =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 5

]
, L(2)

2 =

[
1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 5

]
, L(3)

3 =

[
1 0 0 0
1 5 0 0
0 0 5 0
0 0 0 5

]
, L(3)

4 =

[
1 0 0 0
0 1 0 0
10 10 25 0
0 0 0 5

]
.

4. The fourth (and final) step. Similar to the second step, we will need to use Al-

gorithm 2.5.16 to find an `-adic global generator for M3. A candidate is g3 =[
7
2 +

1
2 j 3

2 +
3
2 i− 1

2 j + 1
2 k

5 5
2 +

5
2 i− 5

2 j + 5
2 k

]
. As N(g3) = 53 · 23, and in the Chinese Remainder Theo-

rem step in Algorithm 2.5.14, we need to solve congruence equations with respect to

8 and ` = 5.

Using the correspondence from sublattices of P0 to elements in P3(F`) as described

in Section 5.4.2, g−1
2 L(2)

3 corresponds to [3, 2, 1, 1]t and g−1
2 P3 corresponds to [1, 2, 1, 1]t.

We need to map both of them to [0, 0, 0, 1]t.

For [3, 2, 1, 1]t, the matrices

[
−127 16

−8 1

]
∈ SL2(Z) and

[
769 −8 + 8j
−8− 8j 1

]
∈ H

sends [3, 2, 1, 1]t to [1, 0, 0, 1]t, and then to [0, 0, 0, 1]t. On the side of [1, 2, 1, 1]t,[
129 −16

−8 1

]
∈ SL2(Z) and

[
769 8− 8j

8 + 8j 1

]
∈ H sends [1, 2, 1, 1]t to [4, 0, 0, 1]t and

then to [0, 0, 0, 1]t.

Merging the lattices in the both sides, we get t4 ∈ Λ×3 , which is[
649411557− 539320764

5 i + 39070140j + 904692092
5 k − 703119492

5 + 561665612
5 i− 158492436

5 j− 177774436
5 k

2270519176− 1361698372i− 266298448j + 577765196k −649802211 + 579280672i− 14068540j− 68263256k

]
,

and sends L(3)
4 to 5P0, homothetic to P0.

As the Bruhat-Tits building traversal is completed, we have the relation

t4t3t2t1(5c−1
5 I) = 5Λ,

49



and can conclude that c5(t4t3t2t1)
−1 =

[
a11 a12

a21 a22

]
is a generator of I, where

a11

a12

a21

a22

 =


1504864366966371988561

2 + 2616398492156972754228i + 688383670772955470427
2 j− 1177005827499222504624k

−6590989077438772424− 2171133682526182706877
2 i− 133885533857364904664j + 339925139877433277475

2 k
611100321503819701318− 24947374597414364195167

2 i + 1778592087129882929431j− 1551373424146696776549
2 k

1609672161116642756891
2 + 2646154544490715747206i− 790122452307452016857

2 j + 645793079716769055010k

.

2.8 Future directions

How far can we generate the main algorithm? It is natural to ask if we can solve the

principal ideal problem for Matn(B), where B is a quaternion algebra over a number field

K. The strong approximation and Page’s algorithm in [Pag14] suggests us to consider the

norm ideal N(I) ⊆ OK. We did not generate to that level since Mat2(Bp,∞) is the setting

which provides us some link to applications.

In the local reduction in Section 2.5, we excluded the ramified case ` = p. Can we do

local reduction on a ramified prime?

50



Chapter 3 |
Computing Igusa Polynomials
via p-Adic Methods

3.1 Introduction

3.1.1 The case of genus 1: CM elliptic curves and Hilbert class polynomials

The key step to construct the system parameter for elliptic curve cryptography is to

construct an elliptic curve E over a finite field Fq. To ensure the hardness of the underlying

discrete logarithm problem, we need the group E(Fq) to contain a subgroup of a large

prime order (ideally, we want |E(Fq)| to be a prime).

The standard approach is to pick a random curve E until we find one with |E(Fq)|
satisfying our condition. Alternatively, one can achieve this via the complex multiplication

(CM) method.

We give a quick overview of how the CM method works in finding the system param-

eter. Suppose we start with a curve Ẽ over a number field L, such that EndQ(E) ∼= OK,

where OK us the maximal order of an imaginary quadratic field K. In this case, we say that

Ẽ has CM by K. Let p be a prime ideal of L with absolute norm p f . It is a well-known result

(see, for instance, [Lan87, Chapter 13, Theorem 12]) that Ẽ has ordinary reduction if and

only if p splits in the CM field K. Now, suppose that Ẽ has ordinary reduction to E over

the finite field Fq = Fp f . Let π be an element in OK such that ππ̄ = p f . Then the Weil-p f

number of E is either π or −π, which implies |E(Fp f )| = p f + 1± TrK/Q(π).

According to the construction above, finding a curve over a finite field with prescribed

order just boils down to choosing the parameters K, p, f , an elliptic curve over a number

field with CM by K, and then taking reduction.

For a fixed imaginary quadratic field K, the Hilbert class polynomial encodes all elliptic

51



curves over number fields with CM by K. For j ∈ Q, denote Ej by an elliptic curve over Q

whose j-invariant is j. Then the Hilbert class polynomial of K is defined as

HK(x) = ∏
j

End(Ej)=OK

(x− j).

It is a direct consequence of the previous discussion that an application of Hilbert class

polynomial is the construction of system parameters in the elliptic curve cryptography. It

also has importance on the theoretical side: Indeed, HK ∈ Z[x], and the splitting field of

HK in K is the Hilbert class field of K.

It is then natural to ask for the generalization for higher dimension abelian varieties. In

this chapter, our main focus will be on dimension g = 2. To construct the analog of Hilbert

class polynomials, we need the analogy of j-invariant which characterizes abelian varieties

of genus 2.

3.1.2 The case of genus 2: CM hyperelliptic Jacobians and Igusa class polyno-
mials

A CM field is a totally imaginary extension of a totally positive number field. For a quartic

CM field K, we say that an abelian surface A defined over a number field L has CM by K
if EndL(A) ∼= OK. Here we want to construct a “class polynomial” whose roots are some

invariants that characterize abelian surfaces with CM by K.

Instead of a general abelian variety, we are more interested when the abelian variety is

isomorphic to the Jacobian variety of a hyperelliptic curve, since more operations, such as

the point addition and some isogenies can be computed explicitly in this case.

It turned out that the situation is easier in lower genus, since every principally polarized

abelian variety of dimension g ≤ 3 is isomorphic to the Jacobian variety of an algebraic

curve ([OU73]), and in particular, every simple abelian surface is isomorphic to the Jacobian

of a hyperelliptic curve of genus 2. If we further restrict the quartic CM field K to be

primitive (here it simply means non-biquadratic), then every curve with CM by K will be

simple, and hence can be represented as a hyperelliptic Jacobian.

Therefore, it suffices to find all elliptic curves of genus 2 whose Jacobian variety has CM

by OK. Since the coarse moduli space of genus g curves has dimension 3g− 3, we would

expect 3 parameters to characterize a hyperelliptic curve. There are several such choices,

but we will use the Igusa invariants in [Igu60]. Conversely, given the Igusa invariants

(i1, i2, i3), given that the Jacobian variety is simple, we can use Mestre’s algorithm in

[Mes91] to recover the hyperelliptic curve.

52



Using the Igusa invariants (i1, i2, i3) described above, for each CM quartic field K, one

can define three polynomials HK,1, HK,2, HK,3, each of them is a monic polynomial whose

roots are exactly the corresponding Igusa invariant. We call these the Igusa polynomials.

Not every property from the Hilbert class polynomials generalizes to the Igusa class

polynomials. First, the Igusa polynomials are no longer of integral coefficients. They are

still of rational coefficients, and the prime divisors of the denominators are those primes

that have split Jacobians after reduction (see [Str10, Theorem 10.1]). The Igusa polynomials

no longer give information on the Hilbert class field of K; instead, from K, we can compute

a reflex field of K. And it turns out that the reflex field adjoining the Igusa invariants is a

subfield of the Hilbert class field of the reflex field. For more details on the properties, see

[Shi98] or [Spa94].

Analogous to the genus 1 case, one construct cryptographically secure hyperelliptic

curves over finite fields via Igusa polynomials. Suppose that a quartic CM field and p, f
are chosen such that there exists a hyperelliptic Jacobian over a number field which has

CM by K and an ordinary reduction over the finite field Fp f . Then the order of the reduced

hyperelliptic Jacobian will be NK/Q(π − 1) for some π ∈ OK satisfying ππ = p f .

We will now discuss some approaches in computing the Igusa class polynomials, but

first, we shall look at the case of Hilbert class polynomials in genus 1.

Hilbert class polynomials in genus 1 and the p-adic method. Algorithms in computing

Hilbert class polynomials for imaginary quadratic fields K can be classified in the following

three categories:

1. The analytic approach. The idea is to find a set of representatives {τa}a∈Cl(K) on the

upper half-plane, compute the j-invariants j(τa), and multiply the factors (x− j(τa))
to recover the Hilbert class polynomial HK. See [Eng09] for a discussion of possible

improvements and the complexity arguments.

2. The CRT approach (see [ALV04]). The idea is to start by determining a set of rational

primes SK, such that for each prime p ∈ SK, there are h(K) isomorphism classes of an

elliptic curve over Fp with CM by K. Suppose the j-invariants are {jp,i}1≤i≤Cl(K). Then

∏(x− jp,i) will coincide with HK (mod p). Given that the set SK is sufficiently large,

one can recover the Hilbert class polynomial by the Chinese Remainder Theorem.

3. The p-adic approach.

As our goal is to work on the p-adic method for higher genus, we summarize the p-adic

method in genus 1 in greater detail. This approach is described and analyzed by Bröker in

[Brö08].

53



To compute the Hilbert class polynomial for an imaginary quartic field K, We start by

choosing a prime p that splits completely in H, the Hilbert class field of K. Since such a

p also splits in K, Deuring’s theorem implies that elliptic curves with CM by OK remain

ordinary upon reduction by p. Conversely, for such a p, one can find an elliptic curve over

Fp with endomorphism ring OK.

After Ep is found, we need to find the "canonical lifting", denoted by Ẽ, of Ep. Denote

by EllK(Fp) and EllK(Qp) the sets of j-invariants of elliptic curves with endomorphism

rings OK over Fp and Qp, respectively. It is known that EllK(Fp) and EllK(Qp) are bi-

jective, which means that each Ẽ ∈ EllK(Qp) reduces to a E ∈ EllK(Fp), and it turns

out that Ẽ the canonical lifting of E. In [Brö08], Bröker considered the analytic space

XK(Cp) := {j ∈ Cp | red(j) ∈ EllK(Fp)}. Given an ideal I ⊂ OK, there is an action on the

CM curves, ρI : EllK(Qp) → EllK(Qp). Bröker claimed that the map can be extend to an

analytic map ρI : XK(Cp)→ XK(Cp), whose fixed points are exactly the j-invariants of the

canonical liftings, and can be computed by Newton’s method. And after one canonical

lifting of CM curve is computed, the rest of them can be computed via the action of the

class group Cl(OK).

Igusa class polynomials in genus 2 and the p-adic method.
All the three approaches in the genus 1 case had been tried out in genus 2. They are:

1. The analytic approach. The first analytic algorithm with a complete analysis of

complexity can be dated back to Streng in [Str14]. For a given quartic CM field K,

the idea is to first give a list of complex abelian surfaces with CM by K. They will be

given by the complex lattice Aa = C2/Φ(a), where a is an ideal in OK and Φ is a CM

type. Via the analytic theta functions, one can recover the Igusa invariants. And after

compute the Igusa invariant through all the isomorphism classes, one can recover

the Igusa class polynomial via the LLL algorithm. Improvements are proposed by

Enge and Thomé in [ET14].

2. The CRT approach, first proposed by Eisentraeger and Lauter in [EL10]. The idea is

similar: Find primes p such that there are sufficiently many hyperelliptic Jacobians

defined over Fp, and find all such hyperelliptic curves, reconstruct HK,i (mod p),
and use CRT to recover the Igusa polynomials. See also [BGL11] for some suggested

improvements using correspondences on Siegel modular varieties.

3. The p-adic method.

Our main goal in Chapter 4 is to investigate the possibilities of the p-adic approach. The

standard approach of using the p-adic method to compute the Igusa class polynomial of a

54



CM field K proceeds as follows: (1) Search for an ordinary abelian surface A over a finite

field Fpr so that A has CM by K; (2) Find the canonical lifting Ã of A. More explicitly, we

are in search for an abelian surface Ã over d Qpr′ such that End(Ã) = End(A), where the

field of definition of Ã the degree r′ unramified extension of Qp, such that End(Ã) ∼= OK;

(3) Recover the Igusa invariants and Igusa polynomials from Ã.

It turns out that the critical step of the p-adic approach is step (2) above, for which we

will take Ã as the canonical lift of A (see Definition 3.2.10 for details). Since the canonical

lift also lifts the p-power Frobenius to itself, this leads to the condition that the p-power

Frobenius have to lift to the canonical lift Ã, which will be a (p, p)-isogeny. This is the

main obstruction to generalize the p-adic method to genus 2 since it is in general hard to

describe the correspondence of (p, p)-isogenies on the moduli space of higher-dimensional

abelian varieties.

In [GHK+06], Gaudry et al. gave an approach for p = 2 on Rosenhein invariants. For

p = 3, [CKL08] proposed a method using the 4-theta null points, but their method does

not generate. For a general method, [CL09] proposed a method for general p and any di-

mension g using 2n p-theta null points, but it turned out to be feasible in practice only when

p = 3 since computing 2n p-theta null points involves the invocation of computationally

heavy Gröbner basis algorithms. Faugére et al. discussed improvements of the Gröbner

basis step in [DJP14] and gave experimental results to compute 2p-theta null points for

p = 3 or 5.

3.1.3 Outline

Our main contribution to this topic is to follow the algorithmic structure in Section 3.3, we

provided improvements on various steps. While it was only practical in the past literature,

such as [GHK+06] and [CKL08] to apply the p-adic method to compute the Igusa class

polynomial when p = 2, 3, we were able to run examples, under our improvements, up to

p = 5. The central ingredient of the p-adic method is the canonical lifting of a hyperelliptic

Jacobian over a finite field to a hyperelliptic Jacobian over an unramified extension of a

p-adic field. Our main contribution is the improvements that support Theorem 3.1.1 for

canonical lifts and Theorem 3.1.2 for the entire Igusa polynomial algorithm.

Theorem 3.1.1. Let K be a quartic CM field and K0 be the real subfield of K. Suppose that

the discriminant of K and K0 are D2
0D1 and D0, respectively. Suppose a hyperelliptic curve

C of genus 2, defined over some finite field Fq = Fpr is given, such that the endomorphism

ring of Jac(C) is the maximal order OK of K.

Assume that the 2p-theta null point of Jac(C) is in the finite field extension Fqd . If ω is

the exponential factor, such that multiplying two m×m matrices takes time O(mω), and µ

55



is the exponential factor such that multiplying two m′-bit integers is O(m′µ). The canonical

lift of Jac(C) can be computed in

Ξ = O
(

p8(ω((p+1)+1))
)
+ O

(
dµ(p− 2)!

(
p− 1

2

)p)
+ Õ

(
(D5/2

0 D3/2
1 d)µ

)
operations on the finite field Fq. The space complexity of the algorithm is O(p8) elements

in the finite field Fq.

Theorem 3.1.2. Let K and K0, as well as all other notations, be as in Theorem 3.1.1.

Suppose in addition that X is the time complexity to verify whether an abelian variety

over a finite field has CM by K (we have X = O(q18) if the algorithm proposed by Freeman

and Lauter in [FL08] is used). Then the Igusa class polynomials (hK,1, hK,2, hK,3) can be

computed in time and space complexity

O
(

q3(log q)9
√

D0D1

)
+ O

(
q3/2X√

D0D1

)
+ Ξ + Õ(D7

0D5
1).

The remaining of the chapter will be organized as follows. In Section 3.2, we will

introduce the background related to CM abelian varieties and algebraic theta functions.

We will propose the main algorithm in Section 3.3, which inputs a CM quartic field and

outputs the Igusa class polynomial, and give a brief overview of the major steps. The major

steps, finding curves with the correct CM over a finite field, finding the canonical lift, and

finishing with the Igusa class polynomial, will be elaborated in Sections 3.4, 3.5, and 3.6,

respectively. We will carry out actual examples in section 3.7. The validity, computational

complexity, and other issues regarding the main algorithm will be discussed in section 3.8.

3.2 Background

3.2.1 Moduli of Abelian Surfaces and Moduli of Hyperelliptic Curves

3.2.1.1 Principally Polarized Abelian and Jacobian Varieties; The Moduli Problem

The case of moduli of Jacobian of hyperelliptic curves is described as a special case in

[CO12, Chapter 2].

Let k be an algebraically closed field. Denote by Ag,1 be the moduli space of principally

polarized abelian varieties (ppav) of dimension g over k.

The main object of our interest in Ag,1 are those which are Jacobians. We say C/k is

a curve of compact type if it satisfies two conditions: (i) every irreducible component is

56



smooth, and (ii) The dual graph of C is a tree. A curve of compact type gives a compact

Jacobian variety J = Jac(C) which is a dimension g abelian variety (loc. cit.).

J admits a principal polarization λ whose construction is described, for instance, in

Milne’s notes, [Mil08, sections 1.8, 3.6]. First fix a point P ∈ C(k). Then there is a morphism

f r : Cr → J which maps (P1, · · · , Pr) 7→ [P1 + · · · + Pr − r · P], and the morphism f r

induces a map f (r) : C(r) → J , where C(r) is the r-th symmetric power of C. Then

Wr := Im( f (r)) is a subvariety of C(r), and we define the theta divisor Θ := Wg−1 (this is

defined up to a translation as we vary the initial selection of P). It is shown in [loc. cit.,

Theorem 3.6.6] that the invertible sheaf L(Θ) defines a principal polarization:

λ = λ : J → J ∨ ∼= Pic0(J )

a 7→ t∗aL(Θ)⊗L(Θ)−1.
(3.1)

Here Pic0(A) ⊂ Pic(A) is the collection of invertible line bundles L on A such that

taL⊗L−1 = 0 ∈ Pic(A) for all a ∈ A.

We denote by Mg the moduli space of genus g curves of compact type. From [CO12,

Chapter 2], there is a morphism j : Mg → Ag,1 that sends C to j(C) = (Jac(C), λC). It is

known that while the genus g ≥ 2, the dimension of Mg is 3g− 3 while the genus Ag,1 is

g(g + 1)/2, so at genus 4 or larger, it is not reasonable to expect that every ppav comes

from a Jacobian. But at low genera we have:

Theorem 3.2.1. [Oort, Ueno [OU73]] Suppose g ≤ 3, then j(Mg) = Ag,1. In other words,

every ppav of dimension 3 or less is isomorphic to a Jacobian variety of a (not necessarily

irreducible) curve of genus g. (See also [CO12, Chapter 2]).

3.2.1.2 The Igusa Invariants

The invariants are described by Igusa [Igu60]. For more details, see [Str14, Chapter 2] or

[BGL11, Chapter 2].

Let k be a field whose characteristic is not 2. Suppose we start with a hyperelliptic

curve over k of genus 2, defined by the equation y2 = c(x− a1)(x− a2) · · · (x− a6), and

a1, · · · a6 ∈ k̄ are pairwise distinct.

Let us treat ai as an indeterminate for now. For 1 ≤ i, j ≤ 6, denote for brevity

(ij) = ai − aj ∈ Z[a1, · · · , a6]. There are homogeneous and symmetric Igusa-Clebsh

57



invariants of degree 2, 4, 6, and 10 described as below:

I2 := c2 ∑
O15

(12)2(34)2(56)2;

I4 := c4 ∑
O10

(12)2(23)2(31)2(45)2(56)2(64)2;

I6 := c6 ∑
O60

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2;

I10 := c10 ∏
i<j

(ij)2.

(3.2)

Note that the summation in (3.2) ranges over the orbits of the action of the symmetric

group S6 on the summands in Z[a1, · · · , a6], so I2, I4 and I6 is a summation of 15, 10, and

60 terms, respectively. Also note that I2, I4, I6, I10 ∈ k because of the symmetry in the

summation. Then the module space M2 has the following structure:

Theorem 3.2.2 (Igusa [Igu60]). M2 is isomorphic to P2,4,6,10\H10, where P2,4,6,10 is the

3-dimensional 2, 4, 6, 10-weighted projective plane, and H10 is the weighted hyperplane

generated by the weight 10 variable.

The isomorphism is given by sending a hyperelliptic curve to its Igusa-Clebsh invariants

[I2 : I4 : I6 : I10].

When the characteristic of k is not 2, the absolute Igusa invariants (i1, i2, i3) is obtained

by a regular map from P2,4,6,10\H10 to the affine space A3
k . Different maps are being chosen

in different literature: for instance, Bröker et al. used (i1, i2, i3) := (I5
2 /I10, I4 I3

2 /I10, I6 I2
2 /I10)

in [BGL11]; while Streng in [Str14] suggested (I4 I′6/I10, I2 I2
4 /I10, I5

4 /I2
10), where I′6 :=

(I2 I4 − 3I6)/2.

In our work, we will follow Kohel’s suggestions in the Echidna library in [Koh], which

takes (i1, i2, i3) = (I4 I6/I10, I3
2 I4/I10, I2

2 I6/I10).

3.2.1.3 The Igusa Class Polynomial

Analogous to the Hilbert class polynomial in the case of genus 1, for the case of genus 2,

we can construct a triple of Igusa class polynomial as follows:

Definition 3.2.3 (Igusa class polynomial).

hK,n(x) := ∏
C∈SOK

(x− in(C)), n ∈ {1, 2, 3}, (3.3)

where SOK means the isomorphism classes of hyperelliptic curves overOK whose Jacobians

have CM by OK.

58



One thing to note is that unlike in the genus 1 case, the Igusa class invariants need not

be an algebraic integer, hence hK,n(x) is only guaranteed to be in Q[x].
There is another issue with the Igusa class polynomial. Since we are not “labeling” the

Igusa class invariants, if we denote h∗K = |SOK |, the roots of the Igusa class polynomials

suggests h∗3K triples (i1, i2, i3), but only h∗K of them gives a curve with CM by OK, and

we have no more efficient way to figure them out other than exhaustive search. An

improvement for this issue is suggested in [GHK+06, Chapter 3] and [Str14, section 2.4].

Here we let C1, · · · , Ch∗K be a set of representatives in |SOK |.
The main ingredient of the improvement is that we need to replace the polynomials

hK,2 and hK,3 by some function h̃K,2 and h̃K,3 such that h̃K,n(i1(Cj)) = in(Cj) for n ∈ {2, 3}.
This can be computed by Lagrange interpolation in the case that we have all i1(Cj) distinct

(which happens most of the cases):

h̃K,n(x) =
h∗K

∑
j=1

in(Cj)
h∗K

∏
l=1
l 6=j

x− i1(Cl)

i1(Cj)− i1(Cl)

, n ∈ {2, 3}.

Observe that h′K,1(i1(Cj)) = ∏
h∗K
l=1,l 6=j (i1(Cj)− i1(Cl)). This means that we can replace

h̃K,n(x) with functions ĥK,n(x), n ∈ {2, 3} with potentially smaller coefficients:

ĥK,n(x) =
h∗K

∑
j=1

in(Cj)
h∗K

∏
l=1
l 6=j

(x− i1(Cl))

, n ∈ {2, 3}. (3.4)

From the triple of polynomials (hK,1, ĥK,2, ĥK,3), given i1(Cj) for some j, we can obtain in(Cj)

by in(Cj) = ĥK,n(i1(Cj))/h′K,1(i1(Cj)).

3.2.2 The Theory of CM

The object we concern about is the CM abelian surfaces. To give a better picture of how

things are generalized, we briefly discuss the case of dimension g = 1. A standard reference

for CM elliptic curves is [Sil94]; for general CM abelian varieties, see [Shi98].

3.2.2.1 CM elliptic curves

Suppose K = Q(
√

D) is an imaginary quadratic field of discriminant D < 0, and OK

be its maximal order. We say that an abelian variety A defined over L has CM by K if

EndL(A) = OK.

59



Now we return to the elliptic curve case. Suppose E is defined over C and has CM by

K. Then one have E(C) ∼= C/a for some integral ideal a ⊆ K. The main theorem of CM

theory implies that E can be defined over H, the Hilber class field of K. In addition, there

is a bijection {
Isomorphism classes of

CM elliptic curves

}
↔ Cl(K),

where both Gal(H/K) and Cl(K) act transitively on each of the two sets. And it implies

that if we define the Hilbert class polynomial as the monic polynomial HK whose roots are

exactly the j-invariants of the curves E with CM by K, then the splitting field of HK is the

Hilbert class field.

For our application, we also need to know about the reduction of CM elliptic curves

over Q. Suppose K and H are as above, and E is an elliptic curve with CM by K, defined

over H. Suppose p is prime ideal in H and p ∩ Z = (p). Assume that E has a good

reduction at p. Then from [Lan87, Chapter 13, Theorem 12], E has an ordinary reduction if

p splits in K; and has supersingular reduction if p ramifies or is inert in K.

3.2.2.2 CM abelian varieties

For the case of dimension g > 1, we first need to define general CM fields and CM types.

Definition 3.2.4 (CM fields and CM types). Let K be a number field and [K : Q] = 2g. We

say that K is a CM field if K is a totally imaginary extension of a totally real number field

K0 of degree g.

A CM type of K is a collection of g embeddings: Φ = {φ1, · · · , φg}, φi : K ↪→ C, such

that for every embedding ψ : K ↪→, exactly one of ψ or ψ̄ (the complex conjugate of ψ) is

contained in Φ. Φ can be viewed as a map K → Cg.

Suppose K′ ( K is a CM field and Φ′ is a CM type of K′. We say that (K, Φ) is induced

from (K′, Φ′), if {φ′}φ′∈Φ′ = {φ|K′}φ∈Φ. We call (K, Φ) a primitive CM type if it is not

induced from a CM subfield.

For a CM type (K, Φ), the reflex field of K, denoted as K†, is a CM field which is the

fixed field of {σ | σΦ = Φ} ⊂ Gal(Q/Q).

In particular, in the case we are interested in, when g = 2, (K, Φ) is non-primitive if

and only if K is biquadratic.

Definition 3.2.5 (CM abelian varieties). Let A be an abelian variety of dimension g,

defined over C. we say that A is of CM type (K, Φ), if there is an ideal a of K such that

A(C) ∼= Cg/Φ(a).

60



In fact, such an A always have End(A) ∼= OK. In addition, the abelian variety given

by the g-dimensional lattice Cg/Φ(a) is principally polarizable if and only if there exists a

ξ ∈ OK, satisfying the following condition: (1) ξ is purely imaginary; (2) for each φi ∈ Φ,

Im(φi(ξ)) < 0; (3) ξDK = aa, where DK is the different of the CM field K.

Our goal is to characterize the principally polarized abelian varieties A with primitive

CM type (K, Φ) via algebraic objects in K. In the elliptic curve case, we corresponded CM

curves with the class group. In the general case, we need the Shimura class group of a CM

field:

Definition 3.2.6 (The Shimura class group). For a CM field K, the Shimura class group of

a CM field, denoted as C(K), is defined as

C(K) := {(a, α) | a fractional OK-ideal, aa = (α), α ∈ K totally positive}/ ∼,

and we say (a, α) ∼ (b, β) if there exists an u ∈ K× satisfying b = ua and β = uūα. The

group law of C(K) is given by component-wise multiplication.

For a CM type (K, Φ), denote by S(K, Φ) the set of isomorphism classes of principally

polarizable abelian variety with CM by (K, Φ). Then, the best analog we can make from

the main theorem of CM of elliptic curves is the following:

Theorem 3.2.7 (See also [Shi98, Koh08, BGL11]). There exists a transitive action of C(K)
on S(K, Φ). Let H† be the Hilbert class field of K†, the reflex field of K. Then there exists a

group homomorphism Gal(H†/K†)→ C(K).

As Kohel pointed out in [Koh08], the homomorphism Gal(H†/K†)→ C(K) need not

be injective nor surjective. This leads to a weaker result compared to the elliptic curve case:

If A is a principally polarized abelian variety with CM type (K, Φ), and suppose its Igusa

invariants are (i1, i2, i3), then the compositum K†(i1, i2, i3) ⊆ H† ([Spa94, Theorem 5.8]),

but they do not necessarily needs to be equal.

Theorem 3.2.7 also suggests that |C(K)| = |S(K, Φ)|, which could tell us the degree of

the Igusa class polynomials if we can enumerate |C(K)|. This is given by the following

theorem:

Theorem 3.2.8 ([BGL11, Theorem 3.1]). Let K be a primitive CM field with the totally real

subfield K0. Denote by Cl+(K0) the narrow class group of K0, and (O×K0
)+ the group of

totally positive elements in OK0 .

Then the following sequence is exact:

1→ (O×K0
)+/NK/K0(O

×
K )→ C(K)→ Cl(K)→ Cl+(K0)→ 1,

61



where the three maps in the middle are defined by u 7→ (OK, u), (a, α) 7→ a, and the norm

map, respectively.

In the case when g = 2, for a quartic CM field K, there is one CM type (up to conjugation)

when K is cyclic and Galois, and two CM types when K is non-Galois. From Theorems

3.2.7 and 3.2.8, we have the following corollary which determines the degree of the Igusa

class polynomials:

Corollary 3.2.9 ([Str14, Proposition 4.4], [BGL11, Corollary 3.3]). Let K be a primitive

quartic CM field, and denote

N =
∣∣∣(O×K0

)+/NK/K0(O
×
K )
∣∣∣ · |Cl(K)|
|Cl+(K0)|

=
∣∣∣O×K0

/NK/K0(O
×
K )
∣∣∣ · |Cl(K)|
|Cl(K0)|

.

Then there are N and 2N isomorphism classes of principally polarized abelian varieties

with CM by K when K is Galois and non-Galois, respectively.

3.2.3 Canonical Lifting of Hyperelliptic Curves

Let k be a perfect field of characteristic p > 0, and let A0 be an ordinary abelian variety

over k.

Definition 3.2.10 (Canonical lifting). Given A0 as above, let W(k) be the ring of infinite

Witt vectors over k. We say that an abelian scheme A over W(k) is a canonical lifting,

if Ak
∼= A0 and the induced homomorphism EndW(k)-gr(A) → Endk-gr(A0) is bijective.

Here Ak := A×W(k) k is the change of basis.

The first important fact is that canonical lifting exists:

Theorem 3.2.11 (Lubin, Serre and Tate [LST64]; see also Messing [Mes72], theorem V.3.3, p.

172). For any ordinary abelian variety over k, there is a projective abelian W(k)-scheme A
which is the canonical lifting of A0.

Let K = Frac(W(K)) be the fraction field. Then the geometric fiber AK of the W(K)-
scheme A is an abelian variety over K. We also call AK the canonical lifting of A0. A can be

obtained by AK via the Néron model.

The next issue is the Frobenius. The Frobenius in W(k), denoted as σ ∈ Aut(W(k)), is

defined by sending each component of the Witt vector to its p-th power. We thus have the

relative Frobenius for abelian varieties on W(k) and on k.

62



Proposition 3.2.12 ([Mes72, Corollary A.1.2, p. 177]). Let A be a W(k)-scheme and A0 be

an ordinary abelian variety over k such that Ak
∼= A0. A is a canonical lifting of A0 if and

only if the relative Frobenius F0 : A0 → A(p)
0 lifts to a separable isogeny F : A→ Aσ.

3.2.4 Theta Functions

We shall look at two sides of theta functions: the analytic theta functions, which is defined

for abelian varieties defined over C; and the algebraic theta functions, which can be defined

for any abelian variety. We will also look at how they are connected.

To define the analytic theta function, let A be an abelian variety of dimension g over C.

Then A is associated to a period matrix Ω ∈ Hg, that is, A ∼= Cg/(Zg + ΩZg). Here Hg is

the “g-dimensional upper half-plane”, that is,

Hg := {Ω ∈ Mat(g× g, C) | The imaginary part of Ω is positive definite}.

Definition 3.2.13 (Analytic theta functions). Let ε1, ε2 ∈ Zg. And let l ∈ Z. Then the

analytic theta function is defined as

θl

[
ε1

ε2

]
(z, Ω) := ∑

n∈Zg
exp

[
πi
(

n +
ε1

l

)t
Ω
(

n +
ε1

l

)
+ 2πi

(
n +

ε1

l

)t (
z +

ε2

l

)]
.

We will need a similar construction which works on abelian varieties over any field.

We will do so by introducing algebraic theta structures. A complete treatise of this topic

can be found in the work of Mumford [Mum66].

As usual, suppose A is an abelian variety of dimension 2 over a field k, and L is

an ample line bundle on A of degree d. Let A∨ := Pic0(A) be the dual abelian vari-

ety of A. Then there is a homomorphism associated to L , given by φL : A → A∨,

x 7→ 〈τ∗x L ⊗L −1〉, where τx : A → A is the "shift by x homomorphism". Now we

denote K(L ) = ker(φL ) (so that if char(k) 6 | d, K(L ) has cardinality d2), and define

G(L ) := {(x, ϕ) | x ∈ K(L ), ϕ : L
∼−→ τ∗x L }. We can define a group structure on G(L )

by (x, ϕ) · (y, ψ) := (x + y, τy ϕ ◦ ψ).

On the other hand, define δ = (δ1, δ2) ∈ Z2
>0 where δ1 | δ2. Let Z(δ) := Z/δ1Z ×

Z/δ2Z be a finite group, and Z(δ)D be the Cartier dual of Z(δ). We then define K(δ) :=

Z(δ) × Z(δ)D. Note that for each L there is a unique δ such that K(δ) is isomorphic

to K(L ). We also define H(δ) := Gm,k × Z(δ) × Z(δ)D equipped with the group law

(α1, x1, l1) · (α2, x2, l2) := (α1α2l2(x1), x1 + x2, l1l2). Under all these settings we can define

63



theta structures as follows:

Definition 3.2.14. With notation as above, we define the theta structure as a homomor-

phism Θδ : H(δ)→ G(L ) which makes the diagram below commutative.

0 Gm,k H(δ) K(δ) 0

0 Gm,k G(L ) K(L ) 0

Θδ Θ̄δ

κ

Furthermore, suppose L is symmetric (which means there exists ψ : [−1]∗L ∼−→ L ). We

say that Θδ is symmetric if δ−1 ◦Θδ = Θδ ◦ D−1, where D−1 : H(δ) → H(δ), (α, x, l) 7→
(α,−x, l−1) and δ−1 : G(L ) → G(L ), (x, ϕ) 7→ (−x, τϕ), with τϕ := τ∗x ψ−1 ◦ [−1]∗ϕ ◦ ψ.

If both L and Θδ are symmetric, we call the data (A, Θδ, L ) an abelian variety with a

δ-marking.

Under this setting, Mumford [Mum66] proved that the global section Γ(A, L ) is an

irreducible G(L )-module. Together with the theta structure Θδ, we will get a unique

embedding A ↪→ P(Γ(A, L )), and the theta structure canonically defined P(Γ(A, L ))
∼−→

P(V(δ)))
∼−→ Pd−1

k , where V(δ) is the vector space with basis Z(δ).

Definition 3.2.15 (Theta null point). Let (A, Θδ, L ) be a marked abelian variety. We call

the theta null point the image of e, the identity of A, in the projective space Pd−1
k via the

canonical embedding described above.

Now we move to the situation about which we actually care: Let δ = nl = (nl, nl),
where n = 2v and l is a prime. For an nl-marking (A, Θnl , L ), we associate it with its

canonical theta null point (ai)i∈Z(nl). It is well known (see for example, [Mum66]), that the

coefficients (ai)i∈Z(nl) of a theta null point have the following restrictions.

Theorem 3.2.16 (Mumford, [Mum66]). Let (ai)i∈Z(nl) be a theta null point, as defined

above. Then:

1. (Symmetry inherited from Θnl) For all i ∈ Z(nl), ai = a−i.

2. (Riemann’s relations) Let (vj, wj, xj, yy), j = 1, 2 be in Z(nl)4 such that the two

quadruples (v1 + w1, v1−w1, x1 + y1, x1− y1) and (v2 + w2, v2−w2, x2 + y2, x2− y2)

only differ by permutation. Let χ ∈ Z(2̄)D. Then we have

∑
t∈Z(2)

χ(t)av1+taw1+t ∑
s∈Z(2)

χ(s)ax1+say1+s = ∑
t∈Z(2)

χ(t)av2+taw2+t ∑
s∈Z(2)

χ(s)ax2+say2+s.

64



Another desirable property is that the equations above actually characterize the moduli

space of abelian varieties with nl-covering:

Theorem 3.2.17 ([Mum67, p. 87]). Suppose n = 2v ≥ 8. Let Mnl be the locus of theta null

points of abelian varieties with nl-marking, and let M̄nl be the closed projective subvariety

of Pd−1
k defined by all the equations in Theorem 3.2.16. Then Mnl maps non-isomorphic

nl-markings to different points on Mnl , and Mnl is an open subvariety of M̄nl .

3.3 The Main Algorithm

In this section, we describe the major steps of the principal ideal generator algorithm. After

the algorithm, we give comments on each step, together with a pointer on where the steps

will be explained. The validity of the steps of the algorithm will be discussing following

the subsections describing each step. The complexity of the algorithm will be focused on

Section

Algorithm 3.3.1 (The main algorithm).
Input: A quadratic CM field K, with the real quadratic field K0.

Output: The Igusa polynomials hK,n(x), where n = 1, 2, 3 of K.

(1) Search for the smallest prime power pr such that there exists a hyperelliptic curve C
defined over Fpr with End(Jac(C)) = OK.

(2) Find a (i1, i2, i3) ∈ F3
pr such that the curve C/Fpr with the Igusa invariant (i1, i2, i3) has

endomorphism ring OK.

(3) Compute the canonical lift C̃/Qpr of C.

(4) Compute the Igusa invariants (ĩ1, ĩ2, ĩ3) ∈ Qpr of C̃.

Compute the minimal polynomials {h̃K,1, h̃K,2, h̃K,3} ⊂ Q[x] of {ĩ1, ĩ2, ĩ3}.

(5) If all the degrees of h̃K,i equal to the expected degree, which can be computed from

K, return {h̃K,1, h̃K,2, h̃K,3} and terminate. Otherwise, {h̃K,1, h̃K,2, h̃K,3} are factors of

h1, h2, h3. Go back to step (2) and find another set of (i1, i2, i3) to find other factors.

Below are some comments and rationales for the steps in Algorithm 3.3.1, together

with pointers to the relevant sections.

(1) As we will explain in Section 3.4.1, the characteristic p depends on the splitting condi-

tion in the number field K, and the extension degree r depends on both the class group

of K and H†, the Hilbert class field of the reflex field of K.

65



(2) Mestre gave an algorithm in [Mes91] to obtain a curve C from the Igusa invariants.

The remaining is a two-step check: To test if Jac(C) has CM by an order in K, one

can verify by point counting; to test if Jac(C) has CM by K, one can use the ideas of

[EL10, FL08, Spr19]. More will be discussed in 3.4.

(3) This is the core of the main algorithm. As will be explained in Section 3.5, we will first

extract the 2-theta null point of C from its hyperelliptic equation, then the 2p-theta

null point of C by solving the Riemann equations as in Theorem 3.2.17, Finally, to

compute the 2p-theta null point of C̃, one solves the Artin-Schreier equation induced

from Theorem 3.5.9.

(4) This is in Section 3.6. The Igusa invariants of C̃ can be derived from the 2p-theta null

points by reverting step (3) above. Then the minimal polynomial can be constructed

via the LLL-algorithm, as described in [GHK+06], if the degree and an upper bound of

the coefficients of the Igusa class polynomial are known.

(5) The expected degree of the Igusa class polynomials are given by Corollary 3.2.9.

3.4 Finding a Hyperelliptic Curve over a Finite Field with CM by

a Maximal Order

This section discusses steps 1 and 2 of the main algorithm (Algorithm 3.3.1 in greater detail.

The goal is to find a hyperelliptic curve C over a finite field whose Jacobian has the correct

CM. We describe the algorithm which we implemented in Algorithm 3.4.1. Then we will

discuss the validity and give some possible improvements.

Algorithm 3.4.1 (Finding a genus 2 curve whose Jacobian is the prescribed maximal order).

Input: A quartic CM field K
Output: A finite field Fq = Fpr ; a hyperelliptic curve C defined over Fq, satisfying

End(Jac(C)) ∼= OK.

1: Find a prime p such that there exists abelian surfaces A defined over Fp with End(A) ∼=
OK.

2: For the p from step 1, find the smallest q = pr such that there exists abelian surfaces A
defined over Fq with End(A) ∼= OK.

3: while C is not found do
4: for (i1, i2, i3) in F3

q do
5: Set C as the hyperelliptic curve over Fq with Igusa invariants (i1, i2, i3).

66



6: Discard C if End(Jac(C))⊗Z Q 6= K.

7: Discard C if if End(Jac(C)) ( OK.

8: if C not discarded then
9: Return (pr, C).

10: end if
11: end for
12: end while

For the rest of the section, we will walk through implementation issues on the key steps

of the algorithm and demonstrate the validity of Algorithm 3.4.1. The three key steps will

be: (1) Finding a finite field where hyperelliptic Jacobian with CM over K could possibly

be found (Section 4.4.1); (2) Over the finite field, finding hyperelliptic Jacobians with the

right endomorphism algebra (Section 4.4.2); and (3) From the hyperelliptic Jacobians in the

last steps, pick the right one with the right endomorphism ring (Section 4.4.3).

3.4.1 Finding suitable finite field

Step 2 involves finding the smallest possible finite field Fq such that there are hyperelliptic

curves C defined over Fq which has CM by the maximal order OK. The characteristic of

the field Fq will be determined by Theorem 3.4.2; and the extension degree of the finite

field will be determined by Lemma 3.4.3.

We start from the opposite side of the construction: Suppose there is a hyperelliptic

curve C̃ of genus 2 defined over a number field L such that End(C̃) ∼= OK, and p is a prime

ideal in L. We are interested in the reduction of C̃ modulo p, and in our application, we need

C̃ reduce to a curve C whose Jacobian is ordinary. Goren gave a complete characterization

in [Gor97] on the reduction of an abelian surface over a number field, which we summarize

the relevant part as the following theorem:

Theorem 3.4.2 (Ordinary reduction of CM abelian surfaces, [Gor97, Theorems 1 and 2]).
Suppose that Ã is an abelian surface defined over a number field L, with CM by OK for a

primitive quartic CM field K. Let M be the compositum of K and L. Let P be a prime in M,

p = P∩OK, and (p) = p∩Z. Suppose p is unramified in K, and let A be the reduction of

Ã modulo P.

(a) If K is a cyclic extension over Q, then A is ordinary and simple if and only if pOK =

p1p2p1p2, where p means the element-wise complex conjugation on p.

(b) If K is a non-Galois extension over Q, take K′ to be the Galois closure of K, and fix a

embedding K′ ↪→ Q. We have Gal(K′/Q) ∼= D4. Choose suitable x, y ∈ D4 such that

67



D4
∼= 〈x, y : x2, y4, xyxy〉, K is the fixed field of x, and suppose the CM type of Ã is

Φ = {1, y}.

Under the setting above, for the reduction of Ã modulo P to be ordinary, one of the

following two cases have to be true:

(i) pOK′ = p1pypy2py3pxpxypxy2pxy3 splits completely (here, for g ∈ D4, we denote

pg := gp to be the action by g), the decomposition group of p1 = {1}, and

pOK = (p1px)(pypxy)(py2pxy2)(py3pxy3).

(ii) pOK′ = p1pypy2py3 , the decomposition group of p1 = {1, xy3}, and pOK =

(p1py3)(pypy2).

From Theorem 3.4.2, we can see that for any quartic CM field K, a necessary condition

to have a curve defined over Fpr whose Jacobian has CM by OK is that p splits as either pp

or p1p2p1p2.

Now we will need to answer the opposite side of the question: Suppose p is a prime

that splits completely in a CM field K. We need to find the smallest finite field extension Fpr

such that there exists an abelian variety A over Fpr with CM by OK. We have the following

lemma which gives characterizes how to find such a finite field.

Lemma 3.4.3. Suppose K is a primitive quartic CM field, K 6= Q(e2πi/5), and p is a prime

which splits as in Theorem 3.4.2, in the sense that an abelian variety with CM by OK

has ordinary reduction. Suppose F is a field of characteristic p such that there exists a

hyperelliptic curve over F whose Jacobian has CM by OK.

(a) The lower bound of the size of F is as follows:

(i) If p splits into two conjugate primes p, p in K, and suppose p has order r in the

class group Cl(K) of K, then F contains Fpr .

(ii) If p splits completely into p1, p1, p2, p2 in K, and suppose p1p2 and p1, p2 have

orders r1 and r2 in Cl(K), respectively, then F contains either Fpr1 or Fpr2 .

(b) The upper bound of the size of F is as follows. Suppose K† is the reflex field of K, and

H† is the Hilbert class field of K†. Suppose that f1, · · · , fl are the inertia degrees of

prime ideals over p in H†, then F is contained in Fp fi for some i.

Proof. (a) It turned out that this part of the lemma is at least implemented without proof in

Kohel’s Echidna library ([Koh]). We will prove this part for the sake of completeness.

68



Suppose A is an abelian variety over F with CM by OK Fix an embedding of EndF(A)

in K, we will have the F-Frobenius endomorphism π ∈ OK, and from the Honda-Tate

theory, ππ = |F|. In case (i), if pOK = pp, then π is either in p or p. Furthermore,

if |F| = pr, then since p does not divide π, π is either in pr or pr, and by comparing

the norm, π is the generator of either pr or pr, which enforces both of them to be

principal ideals, and r is a multiple of the order of p in Cl(K). Similarly, in case (ii),

pOK = p1p1p2p2, π must be contained in two non-conjugate prime ideals over p, which

implies π is one of (p1p2)r, (p1p2)r, (p1p2)r, or (p1p2)r. And this enforces the extension

degree r of F must divide the order of p1p2 or p1p2 in Cl(K).

(b) From [Spa94, Theorem 5.8], it is known that if Ã is a principally polarized abelian

variety defined over Q which has CM by K, and let (ĩ1, ĩ2, ĩ3) be the Igusa invariants of

Ã, then the field K†(ĩ1, ĩ2, ĩ3) is contained in the Hilbert class field H†. Suppose P is a

prime ideal over p in K†(ĩ1, ĩ2, ĩ3) of inertia degree f , then Ã has a ordinary reduction

over the residue field Fp f , with Igusa invariants (i1, i2, i3) in the residue field. We claim

that (i1, i2, i3) corresponds to a hyperelliptic curve C with Aut(C) ∼= Z/2Z. In [Igu60,

section 8], all the possible Aut(C) are listed, and from [Igu60, Lemma 9], among those

possibilities, if Aut(C) contains (Z/2Z)2 as a subgroup, then C has split Jacobian (i.e.

Jac(C) is isogenous to a product of elliptic curves). This cannot happen since Jac(C), as

a reduction, has CM by OK. For the cases where (Z/2Z)2 is not a subgroup of Aut(C),
Aut(C) contains an element of order 3 or 5. This implies that K is either a biquadratic

field of Q(e2πi/5), which we have already excluded.

When (ĩ1, ĩ2, ĩ3) ∈ Fp f corresponds to a curve satisfying Aut(C) ∼= Z/2Z, Mestre gave

an algorithm in [Mes91] which recovers the hyperelliptic curve C from the Igusa invari-

ants, defined over the same field Fp f . And we know that End(Jac(C)) ⊃ End(Ã) ∼= OK

as desired.

3.4.2 Finding a hyperelliptic Jacobian with the correct endomorphism algebra

Now, suppose that given a primitive CM field, the finite field Fq = Fpr is chosen according

to the conditions in Lemma 3.4.3. In this subsection, we will explain step 5 in Algorithm

3.4.1, which finds a curve C such that End(Jac(C))⊗Z Q ∼= K. The criteria for such C are

defined in Lemma 3.4.4, for which the case wheen q = p1 is described in [EL10].

Lemma 3.4.4. Suppose K is a primitive quartic CM field and Fq = Fpr is a finite field

satisfying the conditions in Lemma 3.4.3. For a curve C defined over the finite field Fq,

69



denote Ni = |C(Fqi)|, and NJ = |Jac(C)(Fq)|. If Jac(C) has CM by OK, there are at most 2

of 4 possible values for the pairs (N1, N2) and (N1, NJ).

Proof. According to the proof of Lemma 3.4.3, for a fixed primitive CM field K, there are

either 2 or 4 possible π ∈ OK elements satisfying ππ = q, which are generators of the

prime ideals (p)r (or either (p1p2)r or (p1p2)r), depending on whether p splits into 2 or 4

primes in K. And we can compute from each possible π its minimal polynomial, which will

be of the form f (t) = t4 + a1t3 + a2t2 + qa1t + q2. Therefore, there are only 2 or 4 possible

minimal polynomials for the q-Frobenius endomorphism a Jac(C) with CM by OK.

If Jac(C) has CM by OK, the zeta function associated with C is

Z(C, t) = exp

(
∞

∑
m=1

Nm
tm

m

)
=

t4 f (1/t)
(1− t)(1− qt)

=
1 + a1t + a2t2 + qa1t3 + q2t4

(1− t)(1− qt)
.

Matching the t and t2-coeffiecients of the zeta functions, we get

N1 = 1 + q + a1;
1
2

N2
1 +

1
2

N2
2 = (1 + q + q2) + (1 + q)a1 + a2.

Rearranging the terms, we get N2 = 1 + q2 − a2
1 + 2a2. It is clear that (N1, N2) uniquely

determines (a1, a2). This means to find C such that Jac(C) has CM by OK, it is a necessary

condition that

(|C(Fq)|, |C(Fq2)|) = (1 + q + a1, 1 + q2 − a2
1 + 2a2).

Equivalently, as we have |Jac(C)(Fq)| = N(π − 1). Since this is the constant term of

f (t− 1), we have |Jac(C)(Fq)| = 1 + q2 − (1 + q)a1 + a2. Again one readily checks that

(N1, |Jac(C)(Fq)|) uniquely determines (a1, a2) as well, so it is also a necessary condition

that

(|C(Fq)|, |Jac(C)(Fq2)|) = (1 + q + a1, 1 + q2 − (1 + q)a1 + a2).

In summary, given K and Fq, we will obtain 2 or 4 possible Weil-q numbers π and

values of (N1, N2) (or equivalently, (N1, |Jac(C)(Fq)|)), which are the necessary conditions

for |Jac(C)| to have K as the endomorphism algebra.

To summarize what we have done so far, Algorithm 3.4.1 loops over all possible Igusa

invariants (ĩ1, ĩ2, ĩ3), and uses Mestre’s algorithm in [Mes91] to recover a curve C over Fq.

We have a finite set of necessary condition on the number of points (N1, N2) or (N1, NJ)

for C. If the conditions for C is satisfied, then End(Jac(C))⊗Z Q ∼= K, and we will proceed

to the next section to see if End(Jac(C)) ∼= OK.

70



3.4.3 Finding a hyperelliptic Jacobian with the correct endomorphism ring

Suppose C is a hyperelliptic curve such that Jac(C) corresponds to the Weil-q number

π. Then, after identifying End(Jac(C)) ↪→ OK, π and π corresponds to the q-Frobenius

and Verschiebung endomorphism, respectively, and this implies Z[π, π] ⊆ End(Jac(C)).
Therefore, we need to determine whether [OK : End(Jac(C))] = 1, knowing a priori that

this index divides [OK : Z[π, π]].

Eisenträger and Lauter discussed possible approaches to determine [OK : End(Jac(C))] =
1 in [EL10, Section 6], with some additional assumptions such as K0, the real subfield of K,

has class number 1. A closer discussion, with the class number requirements removed, is

in [FL08].

The idea in [FL08] is to find a set of generator {αi}, so that Z[π, π{αi}] = OK and

each αi is of the form (πk − 1)/` or (s0 + s1π + s2π2 + s3π3)/`d. In the former case,

(πk− 1)/` ∈ End(Jac(C)) is equivalent to Jac(C)[`] being contained in Fpk ; and in the latter

case, (s0 + s1π + s2π2 + s3π3)/`d ∈ End(Jac(C)) is equivalent to s0 + s1π + s2π2 + s3π3

acts as a zero map on Jac(C)[`d]. Both can be tested via probabilistic methods.

Although we will be using the implementation of endomorphism ring computation in

Echidna [Koh], which is based on the idea of [EL10] and [FL08], these algorithms could

be inefficient and even infeasible, since for each prime divisor ` of [OK : Z[π, π]], the

complexity of the algorithm depends on the underlying field of the `d-torsion of Jac(C)
since we need to work on the arithmetic of this field. In the worst case, the complexity can

reach Õ(q18) ([BGL11]).

Finally, in the special case when Jac(C) has ream multiplication (RM), i.e. End(Jac(C))∩
K0 = OK0 , Springer proposed in [Spr19] a subexponential algorithm in computing Jac(C),
which gives substantial improvements especially when there are large prime factors in the

index [OK : End(Jac(C))].

3.4.4 Discussing some potential improvements

Indeed, the triple loop in step 4 is quite hopeless when q gets moderately large (probably

around 1000). For more hope, it has been suggested that one starts from a curve such that

Jac(C) has the right endomorphism algebra. Then, for each ` dividing [OK : Jac(C)], one

can attempt to take an (`, `)-isogeny path until arriving at an isogenous Jacobian Jac(C′)
whose endomorphism ring is maximal at ` (so ` - [OK : Jac(C)]). In the elliptic case, this is

possible, since the `-isogeny graph has a “volcano” structure, as stated in Kohel’s thesis

[Koh96]. However, the isogeny volcano structure no longer exists in dimension 2, since the

(`, `)-isogeny graph might not even be connected. This approach is tried and discussed in

71



[BGL11], and then in [RL13]. Later, in the special case when Jac(C) has maximal RM, the

(`, `)-graph structure is better understood by Brooks, Jetchev, Wesolowski [BJW17].

3.5 Computing the Canonical Lift of a Hyperelliptic Jacobian over

a Finite Field

This is the core of the algorithm. We will split the entire procedure into three subsections.

The first part deals with computing the 2-theta null points over the finite field from the

hyperelliptic equation. This step is standard and implemented in various packages, such

as Echidna by Kohel [Koh]. The second part deals with the 2p-theta null points over Fpr ,

and it involves using Gröbner systems to solve systems of Riemann equation. Finally, the

third part involves computing the 2p-theta null points over Qpr . This involves solving a

system of Artin-Schreier equations, and is where the canonical lift essentially happens.

3.5.1 Computing the 2-theta Null Points over Fpr

Suppose that C : y2 = f (x) is a hyperelliptic curve of genus 2 defined over Fq, and

pass to a finite field extension, suppose that C can be written in the Rosenhein form

C : y2 = ∏5
i=1(x− αi). Then the 2-theta null points of A = Jac(C) can be computed via the

following proposition:

Proposition 3.5.1 (The implementation of Echidna [Koh]). Suppose C : y2 = ∏5
i=1(x− αi)

is a hyperelliptic curve over a field of odd characteristic. Then (a00, a01, a10, a11), computed

via the steps below, gives a 2-theta null point of Jac(C).
Step 1: First, calculate an intermediate vector (u00, u01, u10, u11), where

u00 = 1; u01 =

√
(α1 − α2)(α1 − α4)

(α1 − α3)(α1 − α5)
; u11 =

√
(α1 − α2)(α2 − α5)(α3 − α4)

(α1 − α3)(α2 − α4)(α3 − α5)
;

u10 =

√
(α1 − α4)(α2 − α5)(α3 − α4)

(α1 − α5)(α2 − α4)(α3 − α5)
.

Step 2: Using the intermediate vector (u00, u01, u10, u11), we can solve the following system

72



of equations to get the 2-theta null points (a00, a01, a10, a11) (here t is a constant):

(a00 + a01 + a10 + a11)
2 = t(u00 + u01 + u10 + u11);

(a00 − a01 + a10 − a11)
2 = t(u00 − u01 + u10 − u11);

(a00 + a01 − a10 − a11)
2 = t(u00 + u01 − u10 − u11);

(a00 − a01 − a10 + a11)
2 = t(u00 − u01 − u10 + u11).

Proof of the validity of Proposition 3.5.1. As usual, let Qq be the degree [Fq : Fp] unramified

extension of Qp. Let CQq : y2 = fQq(x) be a hyperelliptic curve in Qp which reduces to C.

Denote Cq := Q̂q and fix an embedding ι : Cq ↪→ C, we obtain a complex abelian surface

AC := Jac(CQq)ι. Assume that AC
∼= C2/(Z2 + ΩZ2), for some lattice Ω with positive

definite complex part.

Let (aij)0≤i,j<2 be an algebric 2-theta null point of AC. The linkage between the algebraic

2-theta null points and the analytic theta functions are described by the following theorem

of Carls and Lubicz:

Lemma 3.5.2 ([CL09, Lemma 2.9, page 711]). Let A be an abelian scheme over Zq, en-

dowed with the theta structure (A, Θ2v p, L 2v p). Also denote Zl = (Z/lZ)g. Then there

exists a λ ∈ C, χ ∈ Ẑ2v p be a character of order 2 (that is, χ2 = 1 and δ ∈ Z2), such that for

any u ∈ Z2v p, we have

(au ⊗Qq C)u∈Z2v p = λχ(u)θ2v p

[
0

u + δ

](
0 ,

1
2v p

Ω
)

.

Therefore, it suffices to compute the theta functions θ2
[ 0

u+δ

]
(0, 1

2 Ω). The theta func-

tions of the form θ2 [
u
v ] (0, 1

2 Ω) can be computed from the Rosenhein form via the Thomae-

Fae formula:

Theorem 3.5.3 (The Thomae formula, [Mum06, page 3.120]). Suppose C is a hyperelliptic

curve C : y2 = ∏
2g+1
i=1 (x− αi) of genus g over C. Denote B := {α1, · · · , α2g+1, ∞} be the set

of branch points. Define an abelian group GB := {S ⊆ B | |S| is even}/ ∼, where ∼ is the

smallest relation satisfying S ∼ Sc. The group action of GB is given by ◦, the “exclusive or”.

One readily checks that GB ∼= (Z/2Z)2g.

We define mappings e∗ : (Z/2Z)2g → {±1} and e2 : (Z/2Z)2g × (Z/2Z)2g → {±1}
as follows: Let ξ, ζ ∈ (Z/2Z)2g, and ξ = [ ξ1

ξ2
]t with ξ1, ξ2 ∈ (Z/2Z)g. Then e∗(ξ) :=

exp(πiξt
1ξ2); and e2(ξ, ζ) := exp(πiξt Jζ), where J :=

[
0 1g

−1g 0

]
.

Let U be a fixed subset of B of g + 1 element such that ∞ /∈ U. For the given U, there

73



is an isomorphism η : GB → (Z/2Z)2g satisfying the following property: Denote for

simplicity that η(S) = ηS. Then for any S1, S2, T ∈ GB, e∗(ηT) = (−1)(|T◦U|−g−1)/2 and

e2(ηS1 , ηS2) = (−1)|S1∩S2|.

Under the settings above, there exists a constant c, such that for any S ∈ B\{∞}, |S|
even,

θ2[ηS](0, Ω)4 =


0, if |S ◦U| 6= g + 1;

c · (−1)|S∩U|∏ i∈S◦U
j∈B\S◦U\{∞}

(αi − αj)
−1, if |S ◦U| = g + 1.

To apply the Thomae-Fay formula in our construction when g = 2, with notations the

same as Theorem 3.5.3, we can choose U = {α1, α3, α5}. After U is chosen, the isomorphism

η is defined as constructed in [CR15, A.2]:

η{1} =

[
(1, 0)

(0, 0)

]
; η{2} =

[
(1, 0)

(1, 0)

]
; η{3} =

[
(0, 1)

(1, 0)

]
;

η{4} =

[
(0, 1)

(1, 1)

]
; η{5} =

[
(0, 0)

(1, 1)

]
; η{∞} =

[
(0, 0)

(0, 0)

]
.

Plug in our choice of U and η and apply the Thomae-Fay formula. Note that since the

algebraic theta null point is defined in the projective space, and from Lemma 3.5.2, we can

rescale such that u00 = 1. And for the choice of the square root in step 1 of Proposition

3.5.1, we can choose either of them, since that only affects the choice of the basis of the

period matrix Ω.

At this step, we have obtained uδ = θ2[ 0
δ ]
(
0 , 1

2 Ω
)2

for each δ ∈ (Z/2Z)2. We need to

compute θ2[
u
v ](0, Ω) for each u, v ∈ (Z/2Z)2. This can be done by applying the following

duplication formula:

Lemma 3.5.4 (Duplication lemma, cf. [CL09, page 718]). For u, v ∈ (Z/2Z)2g,

θ2

[
v
u

](
0,

1
2i−1 Ω

)2

=
1
2g ∑

t∈(Z/2Z)g

(−1)
tvtθ2

[
0

u + t

](
0,

1
2i Ω

)
θ2

[
0

t

](
0,

1
2i Ω

)
.

Taking g = 2, i = 1, we get a system of equations involving aδ and uδ for δ ∈ (Z/2Z)2

as in step 2 of Algorithm 3.5.5. As uδ are computed now, taking a square root, we obtain

a system of linear equations on aδ, which can be readily solved. The choice of the square

root in this stage does not matter as well, since this can be compensated by the character χ

in Lemma 3.5.2.

Finally, from the functoriality of Jacobian, we know that starting from a hyperelliptic

74



curve C over the finite field Fq of odd characteristics, we can compute the 2-theta null

points over the finite field via the same equations.

3.5.2 Computing the 2p-theta Null Points over Fpr

For the general direction, we will be following the p-adic method proposed by Carls and

Lubicz in [Car10, CL09].

3.5.2.1 Setting up the equations

Suppose that the 2-theta null points of an abelian variety A is given, denoted as [b00, b01, b10, b11].

One of the hardest part of a general p-adic lifting algorithm is to compute the 2p-theta

null point from the 2-theta null point. To be more precise, denote Z(n̄) = (Z/nZ)2. Given

the 2-theta null point (bu)u∈Z(2̄) over a finite field, we need to find the 2p-theta null point

(au)u∈Z(2p) satisfying the requirements as in Theorem 3.2.17, and the compatibility from

2-theta null points. We summarize the condition below.

(1) (Compatibility) a00 = b00, a0p = b01, ap0 = b10, and app = b11.

(2) (Symmetry inherited from Θnl) For all i ∈ Z(nl), ai = a−i.

(3) (Riemann’s relations) Let (vj, wj, xj, yy), j = 1, 2 be in Z(nl)4 such that the two quadru-

ples (v1 + w1, v1 − w1, x1 + y1, x1 − y1) and (v2 + w2, v2 − w2, x2 + y2, x2 − y2) only

differ by permutation. Let χ ∈ Z(2̄)D. Then we have

∑
t∈Z(2)

χ(t)av1+taw1+t ∑
s∈Z(2)

χ(s)ax1+say1+s = ∑
t∈Z(2)

χ(t)av2+taw2+t ∑
s∈Z(2)

χ(s)ax2+say2+s.

The naïve approach is to directly feed all the equations to the Gröbner basis algorithm

in Magma. In other words, to compute a 2p-theta null point, among the (2p)2 entries,

the symmetry relation (2) gives us 2p2 + 2 unique entries, and from the 4 entries coming

from the 2-theta null point (as in (1)), we have 2p2 − 2 variables to solve from the Gröbner

basis system. After plugging in the 2-theta null points in (1), the Riemann equations

in (3) are polynomials of degree at most 4. This means that after eliminating Z-linearly

dependent Riemann relations, we will have at most (2p2+2
4 ) = O(p8) equations to feed to

the Gröbner basis system. And in the worst-case scenario, the complexity of the Gröbner

basis algorithm is exponential in the number of equations, which means that it could easily

get out of reach without some good improvements.

The naïve approach is infeasible even in the case p = 3: after removing all the perceiv-

able redundancies, we still have 426 equations, and the Gröbner basis algorithm ran out of

75



memory.

Carls proposed an improvement in [Car10] for computing the 6-theta null points for

3-adic lifting. The idea is to separate the 16 variables we need to solve into 4 groups (see

the color codes below). And the upshot for this method is to decompose the 2p-theta null

points to p + 1 (2, 2p)-theta null points lying between the 2- and 2p-theta null points.

Figure 3.1: Grouping 2p-theta null points. For this figure, p = 3. The green variable
are known from the 2-theta null points, and the other 4 colors represents variables in
different groups. Variables with white font colors does not need to be computed due to
symmetry.

Carls explicitly wrote down 4 equations that each group of 4 variables have to satisfy

(the equations are essentially the same except that the footnotes changed). However, by

running through all possible Riemann relations we actually know that we have 5 Z-linearly

independent relations. Now the Gröbner basis algorithm is immediate, and resulted in 4

solutions for each of the quadruples (a01, a02, a31, a32), (a23, a20, a13, a10), (a25, a22, a11, a14),

and (a21, a24, a15, a12). To combine the four groups, we simply assign them to a different

solution, so there are 4! = 24 possibilities. Note that GL(F2
3) acts on the 6-theta null points,

whose orbit is |GL(F2
3)|/|{±1}| = 24, so all 24 possibilities represents an equivalent 6-null

point.

And we will apply similar ideas to compute 2p-theta null points for larget p. We were

able to extend the idea on 10-theta null points (p = 5), this time grouping into 6 groups

with 8 variables each. We end up with 30 equations, and after Gröbner basis reduction,

there will be 12 solutions for each variable, yielding 26 · 6! solutions. However, in contrast

to the 6-theta null point case the GL(F5) actions only give |GL(F5)|/|{±1}| = 240 orbit

size, so we need an extra step to test the Riemann relation to get valid 10-theta null points.

Moving one step further, for the 14-theta null points (p = 7), the same strategy gives

8 groups with 12 variables each, and then we have 114 Z-linearly independent Riemann

relations on each group. Unfortunately, we went out of memory while using the FGLM

algorithm to compute the lexicographical Gröbner basis algorithm (step 4 in Algorithm

76



3.5.5). Instead, we were able to find a Gröbner basis using the Gröbner walk algorithm as in

[CKM97], which was much slower than the FGLM algorithm. Currently we are still unable

to find an approach for p ≥ 11 to optimize the Gröbner basis reduction to a manageable

level.

We will give our revised algorithm (Algorithm 3.5.5) on computing 2p-theta null points

in the next section, and formulate conjectural propositions which supports the validity of

the algorithm.

3.5.2.2 Computing the 2p-theta null point with our modifications

The method we applied on computing 2p-theta null points using Gröbner bases are de-

scribed below. The core idea for solving the Gröbner basis system is similar to [FLR11,

Algorithm 6.3]. Our observations are applied in steps 1 and 2, with a final combination

phase in step 5.

Algorithm 3.5.5 (Computing the 2p-theta null point from 2-theta null point).
Input: (bij)i,j∈{0,1}, the 2-theta null point of an abelian variety A.

Output: (aij)0≤i,j≤2p, the 2p-theta null point of A.

1: List all possible Riemann relations related only to aij, where i ∈ {0, 1, · · · , p}, and j = 0

or p. Among the relations, eliminate those which are linear combinations of other Rie-

mann relations, and pass the minimal set of Riemann relations R ⊂ Fq[{aij}0≤i≤p,j=0,p]

to Step 2.

2: From the set of Riemann relations R obtained from Step 1, assign the variables

(a00, a0p, ap0, app) as (b00, b01, b10, b11). Now polynomials in R reduce to 2p − 2 vari-

ables. Among the 2p− 2 variables, take U = {aij | i ∈ {2, · · · , p− 2}, j ∈ {0, p}} and

V = {a10, a1p, ap−1,0, ap−1,p}.
Using Gröbner basis algorithms for grevlex monomial ordering (such as Faugére’s

F4 [Fau99] or F5 algorithm) which prioritizes in eliminating variables in U, we ob-

tain a Gröbner basis (G1,<grevlex). G1 is of the form GU ∪ GV . Here GU consists

of 2p − 6 polynomials: for each bij ∈ U, there is one polynomial of the form aij −
p(a10, a1p, ap−1,0, ap−1,p). And GV contains polynomials only in V.

3: Use the FGLM algorithm as described in [FGLM93] to change the Gröbner basis

(GV ,<grevlex) to the lexicographical Gröbner basis (G2,<lex).

4: Use the Gröbner basis (G2,<lex) to solve all solutions of (a00, a0p, ap0, app). Let S be the

set containing all quadruples of such solutions of multiplicity p2. Then |S| = (p2− 1)/2.

For each quadruple in S, use the partial Gröbner basis GU from Step 3 to solve for

77



aij ∈ U. Note that each (2p− 6)-uple of solution (aij)aij∈U can be grouped into (p− 3)/2

quadruples, and every such quadruple is contained in S.

5: The 2p-theta null point can be written as (b00, b01, b10, b11) plus the (p2 − 1)/2 disjoint

quadruples of the form (a2i,2j, a2i,2j+p, a2i+p,2j, a2i+p,2j+p), and they are exactly the ele-

ments in S. Among the possible (p + 1)!((p− 1)/2)p+1 possible assignments of the

quadruples, randomly search for solutions which satisfies all the Riemann relations.

6: Return any combined 2p-theta null point (aij)0≤i,j<2p which passed Step 5.

We need the following propositions for the validity of Algorithm 3.5.5:

Proposition 3.5.6. Suppose (bij)i,j∈{0,1} is a 2-theta null point with respect to a marked

abelian variety (A, Θ2, L ) (see Definition 3.2.14 for details). Let (δ1, δ2) satisfy 2 |δ1 |δ2.

Then there exists a (δ1, δ2)-theta null point (ai′ j′)
0≤j′<δ2
0≤i′<δ1

corresponding to (A, Θ(δ1,δ2)
, L ′)

and for each i, j ∈ {0, 1}, bij = aiδ1/2,jδ2/2.

We need the case (2p, 2p) for the first half of step 2 and the case (2, 2p) for the second

half of step 2. Probably need to connect the algebraic theta theory to the analytic side.

Proposition 3.5.7. Denote W = U ∪ V, where U = {aij | i ∈ {2, · · · , p− 2}, j ∈ {0, p}}
and V = {a10, a1p, ap−1,0, ap−1,p}, as in step 2 of Algorithm 3.5.5. The values of {a00, a0p, ap0, app}
and the equations in Theorems 3.2.16 involving variables in W and {a00, a0p, ap0, app}
defines a dimension 0 scheme in the affine space AW , where (p2 − 1)/2 points have

multiplicity p2, 1 point has multiplicity p and 1 point has multiplicity 1.

And for the feasibility of step 5 in Algorithm 3.5.5, we need the following proposition.

Proposition 3.5.8. Suppose S is the set consisting of quadruples of V-coordinates of

points in the 0-dimensional scheme as in Proposition 3.5.7 which has multiplicity p2 (so

from Proposition 3.5.7, |S| = (p2 − 1)/2). Then there are 2p-theta null points (aij)0≤i,j<2p

satisfying the symmetric and Riemann relations, as well as the following properties:

(1) (a00, a0p, ap0, app) = (b00, b01, b10, b11), and

(2) For each pair (i, j) 6= (0, 0) satisfying 0 ≤ i, j < p, the quadruple (aij, ai,j+p, ai+p,j, ai+p,j+p)

is in S, and distince (i, j) corresponds to distinct quadruples.

These propositions are not yet solved. We believe that generalizing the AutGm H2p-

actions as in [FLR11] is the key to these propositions and will attempt to finish this up as

future work. See [FLR11, Section 5] for more details.

78



3.5.3 Computing the 2p-theta Null Points over Qpr

At this stage, we have computed the 2p-theta null points (aij)0≤i,j<2p of an abelian variety

A defined over Fpr . Then, from [Mes72], there is a canonical lift Ã defined over the Witt

ring W(Fpr) ∼= Zpr , the degree r unramified extension of Zp. Now, it suffices to compute

the 2p-theta null points (ãij)0≤i,j<2p of Ã.

For (ãij)0≤i,j<2p to be a theta null point of the canonical lifting, we will need (ãij)0≤i,j<2p

to reduce to (aij)0≤i,j<2p, plus they have to satisfy the following theorem by Carls and

Lubicz:

Theorem 3.5.9 ([CL09, Theorem 2.1]). Suppose x, y, v, w are elements in Z/2pZ, and the

sets {x + y, x− y} and {v + pw, v− pw} are the same sets and both contained in Z/pZ.

Denote by σ the p-th power Frobenius on Zpr . Then there is an element ω ∈ Z∗pr such that

∑
z∈Z/2Z

ãx+z ãy+z = ω ∑
u∈Z/2pZ

ãv+pu ãσ2

w+u.

The correspondence relation in Theorem 3.5.9 together with the symmetric and Rie-

mann relations in Theorem 3.2.17 determines the 2p-theta null point of (ãij)0≤i,j<2p.

While theoretically it is possible to use Theorems 3.5.9 and 3.2.16 to determine (ãij)0≤i,j<2p

in Qpr , computationally we can only find them up to a precision N, equivalently, find

the reductions of (ãij)0≤i,j<2p in Zpr /pNZpr . The requirement on N is that it should be

large enough to recover the Igusa class polynomials, so it is determined by the size of the

coefficients and the degree of the Igusa class polynomials, and the errors introduced by the

LLL algorithm in Section 5. We should discuss the choice of N in Section 3.8.4, which is

affected by the effectiveness of LLL algorithm in finding the shortest vectors and the size

of coefficients of the Igusa class polynomial. In short, N ∈ Õ(D5/2
0 D3/2

1 ).

as one can proceed by the following algorithm.

Algorithm 3.5.10 ([CL09, Section 3.2], canonical lifting of an abelian surface over Fpr ).
Input: The 2p-theta null point (aij)0≤i,j<2p ∈ Mat2p(Fpr) of an abelian surface, a prescribed

pr-adic precision N.

Output: The 2p-theta null point (ãij)0≤i,j<2p ∈ Mat2p(Qpr /pNQpr) of the canonical lifting,

up to precision N.

1: Pick up a set of 2p2 − 2 non-singular equations from the Riemann relations.

2: Pick up a set of 3 non-singular equations from the correspondence relations.

3: After projectification, the 2p2 + 1 equations chosen from steps 1 and 2 defines a system

79



of equation Φ : Z
2p2+1
pr ×Z

2p2+1
pr → Z

2p2+1
pr , written as

Φ(x, y) = ( f1(x, y), · · · , f2p2+1(x, y)).

4: Solve the equation Φ(A, Aσ2
) ≡ 0 (mod pN), where σ ∈ Gal(Qpr /Qp) is the Frobenius

in the totally ramified extension.

5: Return the affine version of A.

Steps 1 and 2 only involve selecting equations with coefficients in Z, and the time

complexity is negligible. For the dominating step 3, it is where the canonical lifting

takes place. Using the relation in step 3 to find the canonical lifting is indeed the higher

dimensional analog of the Newton method or the Hensel lifting.

Suppose we know at some stage the solution A in step 3 up to precision m/2. This

means that we have Φ(A, Aσ2
) ≡ 0 (mod pm/2). To enhance the solution to precision m,

we then need to solve ∆ ∈ Qpd /pm/2Qpd such that

Φ
(

A + pm/2∆, Aσ2
+ pm/2∆σ2

)
≡ 0 (mod pm).

Let DX and DY be (2p2 + 1)× (2p2 + 1) matrices whose ij-th entry is given by the xi- and

yj-parial derivatives of fi, respectively, Then from the Taylor’s expansion, we have

0 ≡ Φ(A, Aσ2
) + pm/2DX(A, Aσ2

)∆ + pm/2DY(A, Aσ/2)∆σ2
(mod pm).

So, in each iteration of the canonical lifting, it suffices to solve the Artin-Schrier equation

of the form ∆σ2
= A∆ + B, where A, B ∈ Mat(2p2+1)×(2p2+1)(Qpd /pm/2Qpd).

To solve the Artin-Schreier equation of the form ∆σ2
= A∆ + B, let e = r/2 or r be the

minimal exponent such that (∆σ2
)e = ∆. Then one can iterate the Artin-Schrier equation:

for example, ∆σ4
= (A∆ + B)σ2

= Aσ2
∆σ2

+ Bσ2
= Aσ2

(A∆ + B) + Bσ2
. From that, we can

get a linear system involving only ∆σ2e
= ∆. [LL06, Theorem 2] gave condition on when

this linear system is non-singular, which is the general case. In case we end up with a

singular linear system, we will have to randomly choose equations in steps 1 and 2 again.

3.6 Recovering the Igusa Class Polynomials from the Canonical

Lift

At this stage, we have the theta coefficients of an abelian variety Ã defined over Qpr which

has CM by OK, and the theta coefficients has a sufficient precision N. In this step, we

80



will recover factors of the Igusa class polynomials for the quartic CM field K. This can be

achieved by the following steps:

(1) Compute the Igusa invariants (ĩ1, ĩ2, ĩ3) of the abelian variety with the 2p-theta null

points (ãij)0≤i,j<2p, up to precision N

(2) Use the LLL algorithm to compute the minimal polynomials {h̃K,1, h̃K,2, h̃K,3} of each

Igusa coefficient. See Algorithm 3.6.1.

(3) Check if the degrees of h̃K,1 are as expected. If not, find another abelian variety over

Fpr and go through the canonical lifting.

For step (1), starting from the 2p-theta null points of the canonical lifting Ã, we can

pick (ã00, ã0p, ãp0, ãpp) to obtain the 2-theta null points. Then, by reverting the steps in

Proposition 3.5.1, we can get the Rosenhein invariants of a hyperelliptic curve C̃ such that

Ã ∼= Jac(C̃). Then we can obtain the Igusa invariants (ĩ1, ĩ2, ĩ3) from the equation of C̃.

For step (2), we can apply LLL-algorithm to find the minimal polynomial of the Igusa

invariants, as stated in Algorithm 3.6.1.

Algorithm 3.6.1 (Recovering Igusa class polynomials from Igusa invariants, [GHK+06,

Section 4.2]).
Input: A local field extension Zpd /Zp, with Zp-basis {w0 = 1, w1, · · · , wd−1}, an Igusa

invariant ι ∈ Zpd /pNZpd with precision N, the expected degree s of the Igusa class

polynomial

Output: The minimal polynomial f (x) = ∑s
i=0 mixi of ι

1: Compute the (s + d + 1)× d matrix M =

[
A

pN Id

]
, where A = (aij) ∈ Mat(Z, s + 1, d),

where aij is in [0, pN) and satisfies

ι0 = a0,0w0 + · · ·+ a0,d−1wd−1,

ι1 = a1,0w0 + · · ·+ a1,d−1wd−1,
...

ιs = as,0w0 + · · ·+ as,d−1wd−1,

when reduced to Zp/pNZp.

2: Let Λ be the left kernel of M. Use LLL to compute the shortest vector of Λ. Suppose it

is [m0 m1 · · · ms − ε0 · · · − εd−1].

3: Return f (x) = ∑s
i=0 mixi.

81



Note that while the approach is seen in [GHK+06], a similar minimal polynomial

algorithm in the complex analytic setting can be found in [Str14]. The precision N is the

same as the one used in Section 3.5.3, which is of size Õ(D5/2
0 D3/2

1 ). We will establish the

validity of the algorithm as well as the estimation of N in Section 3.8.4.

3.7 Examples

We will present two examples, which finds the Igusa class polynomials of the cyclic number

field Q(
√
−2 +

√
2), including a canonical lift over F7; as well as the non-Galois number

field Q(
√
−30 +

√
96), including a canonical lift over F5. The examples are computed by

Magma v2.25 on a Intel(R) Core(TM) i9-9980HK CPU with 1.3GB RAM.

3.7.1 Example 1: Q
(√
−2 +

√
2
)

Todo: When finished, break down the bullet points...

1. We denote K = Q
(√
−2 +

√
2
)

. By testing small primes, we can immediately

see that p = 7 splits completely in K, which implies that there exists hyperelliptic

Jacobians defined over F7 with CM by OK.

2. We can compute that for a hyperelliptic curve C/F7, if we denote by nC and nJ the

number of points of C and Jac(C) over F7, then Jac(C) has CM by OK only when

(nC, nJ) = (4, 28) or (12, 92).

3. We run through all possible Igusa invariants (i1, i2, i3) ∈ F3
7, we can see that

C : y2 = 3x6 + 3x5 + 5x4 + x3 + 6x2 + 2x + 6

has the right orders. And then we pass to the endomorphism algorithm by [Koh], we

verify that Jac(C) does have CM by the maximal order OK.

4. Then, we need to compute the canonical lift of C. The first step is to compute its

14-theta null point. We need to start by computing the Rosenhein form of C and

deduct the 2-theta null point from there. It turns out that, over the field extension

F7[τ]/(τ2 + 6τ + 3) ∼= F72 , C is isomorphic to C′ : y2 = x(x− 1)(x− 3)(x− 5)(x−
τ6). From the explicit formulas in Proposition 3.5.1, we get the following 2-theta null

point, defined in F72 [σ]/(σ2 + τ9) ∼= F74 :[
b00 b01

b10 b11

]
=

[
τ38σ + τ27 τ20σ + τ19

τ10σ + 3 τ35σ + τ18

]
.

82



5. Now we are at the most computationally heavy part–computing the 14-theta null

point (aij)0≤i,j<14. From the symmetric relation aij = a−i,−j, essentially we still need

to determine the value of 100 coordinates (including those inherited from the 2-theta

null points).

To trim down the computational complexity of the Gröbner basis algorithm, as

discussed in Algorithm 3.5.5, we shall regroup the 2p2− 2 variables into p+ 1 groups,

each consisting of variables which forms a (2, 2p)-theta structure and satisfies the

same set of Riemann relation equations. For example, one of the groups consists

of the 12 variables (aij)
j=0,p
1≤i≤p−1. As in step 2 of Algorithm 3.5.5, we applied the F4

algorithm to compute the first Gröbner basis in the grevlex order, and to boost

the computation of Gröbner basis, we priortize on eliminating the 8 variables U =

{a20, a27, · · · , a50, a57} and get equations on V = {a10, a17, a60, a67}. The first Gröbner

basis computation took about 26 seconds to finish, and returned a basis with 695

polynomials: 8 of them are only of degree 1 with respect to the variables in U, and

the other 687 of them are solely on variables in V.

6. With the equations on V, to solve them, we will compute the second Gröbner ba-

sis, now on the lexicographical lex order. Typically we use the FGLM algorithm

[FGLM93], however, as it slightly went beyond the memory limit with the Magma

implementation, we have to take the Gröbner walk algorithm. The second Gröbner

basis computation took about 70 minutes on our platform. On the Gröbner basis, the

last polynomial is univariate on b67 of degree 1184, consisting of (p2 − 1)/2 = 24

roots of multiplicity p2 = 49, 1 root of multiplicity p = 7 and 1 trivial root 0 of

multiplicity 1.

Solving for the 24 roots, we can recover 24 solution sets for a67. All the roots will be

in the field F74 [ν]/(ν3 + τ37σ + τ12) ∼= F712 . And from this we can sequentially solve

the equations in the Gröbner basis, and apply all the GL2(F7) actions, we see that the

24 quadruples of variables

{q1, · · · , q24} = {(a10, a17, a60, a67), (a30, a37, a40, a47), (a50, a57, a20, a27), (a76, a71, a06, a01), (a74, a73, a04, a03),

(a72, a75, a02, a05), (a12, a19, a6,12, a65), (a36, a3,13, a48, a41), (a5,10, a53, a24, a2,11), (a14, a1,11, a6,10, a63),

(a3,12, a35, a42, a49), (a56, a5,13, a28, a21), (a16, a1,13, a68, a61), (a34, a3,11, a4,10, a43), (a52, a59, a2,12, a25),

(a18, a11, a66, a6,13), (a3,10, a33, a44, a4,11), (a5,12, a55, a22, a29), (a1,10, a13, a64, a6,11), (a32, a39, a4,12, a45),

(a58, a51, a26, a2,13), (a1,12, a15, a62, a69), (a38, a31, a46, a4,13), (a54, a5,11, a2,10, a23)}

in a 14-theta null point will be bijectively matched to the set of values {θ1, · · · , θ24},

83



which are:

{(τ47σ + 4, τ41σ, τ39σ + τ23 , τ30σ + τ27),

((τ30σ + τ26)ν2 + (τ22σ + τ5)ν + τ10σ + 5, (6σ + τ6)ν2 + (5σ + τ7)ν + τ31σ + τ41 , (τ21σ + τ6)ν2 + (τ22σ + τ5)ν + τ44σ + τ39 , τ3ν2 + (τ26σ + τ43)ν + τ29σ + τ37),

(τ3σ + τ15 , τ27σ + 1, 4σ + τ23 , τ35σ + τ29),

(τ19σ + τ20 , τ13 , τ4σ + τ4 , τ38σ + τ26),

((τ17σ + τ18)ν2 + (τ4σ + τ25)ν + τ43σ + τ10 , (τ33σ + τ28)ν2 + (τ30σ + τ31)ν + τ46σ + τ46 , (τ5σ + τ9)ν2 + (τ6σ + τ43)ν + τ5σ + τ46 , (4σ + τ23)ν2 + (τ22σ + τ12)ν + τ37σ + τ38),

((τσ + τ4)ν2 + (τ10σ + 3)ν + τ34σ + τ39 , (τ18σ + τ7)ν2 + (τ39σ + τ22)ν + 2σ + τ19 , τ46σν2 + (τ28σ + τ35)ν + τ27σ + τ36 , (τ46σ + τ46)ν2 + (τ15σ + τ46)ν + τ15σ + τ5),

((τ2σ + τ43)ν2 + (τ3σ + τ4)ν + 4σ + 6, (τ31σ + τ20)ν2 + (τ13σ + τ4)ν + 3σ + 2, (τ31σ + τ37)ν2 + (τ19σ + τ9)ν + τ20σ + τ38 , (τ11σ + τ11)ν2 + (τ41σ + τ26)ν + τ10σ + τ20),

((τ41σ + τ37)ν2 + (τ33σ + τ4)ν + σ + τ9 , (τ25σ + τ13)ν2 + (τ30σ + τ25)ν + τ19σ + τ39 , (4σ + τ17)ν2 + (τ12σ + τ21)ν + τ7σ + τ12 , (τ7σ + τ26)ν2 + (τ25σ + τ9)ν + 5σ + τ9),

((τ42σ + τ33)ν2 + (τ21σ + τ38)ν + τ18σ + τ43 , (τ3σ + τ25)ν2 + (τ39σ + τ37)ν + τ14σ + τ38 , (τ19σ + τ14)ν2 + (τ11σ + τ26)ν + τ22σ + τ45 , (τ38σ + τ18)ν2 + (τ33σ + 5)ν + τ17σ + τ45),

((τ17σ + τ20)ν2 + (τ42σ + 5)ν + τ34σ + τ39 , (τ34σ + τ23)ν2 + (τ23σ + τ6)ν + 2σ + τ19 , τ14σν2 + (τ12σ + τ19)ν + τ27σ + τ36 , (τ14σ + τ14)ν2 + (τ47σ + τ30)ν + τ15σ + τ5),

((τ25σ + τ21)ν2 + (τσ + τ20)ν + σ + τ9 , (τ9σ + τ45)ν2 + (τ46σ + τ41)ν + τ19σ + τ39 , (2σ + τ)ν2 + (τ28σ + τ37)ν + τ7σ + τ12 , (τ39σ + τ10)ν2 + (τ41σ + τ25)ν + 5σ + τ9),

((τ45σ + τ19)ν2 + (τ6σ + τ38)ν + τ43 , (τ10σ + τ39)ν2 + (τ45σ + τ9)ν + τ41σ + τ6 , (3σ + τ36)ν2 + (τ35σ + τ30)ν + τ44σ + 4, (τ19σ + τ3)ν2 + (τ15σ + τ11)ν + τ35σ + τ3),

((τ33σ + τ34)ν2 + (τ36σ + τ9)ν + τ43σ + τ10 , (τσ + τ44)ν2 + (τ14σ + τ15)ν + τ46σ + τ46 , (τ21σ + τ25)ν2 + (τ38σ + τ27)ν + τ5σ + τ46 , (σ + τ39)ν2 + (τ6σ + τ44)ν + τ37σ + τ38),

((τ29σ + τ3)ν2 + (τ22σ + τ6)ν + τ43 , (τ42σ + τ23)ν2 + (τ13σ + τ25)ν + τ41σ + τ6 , (5σ + τ20)ν2 + (τ3σ + τ46)ν + τ44σ + 4, (τ3σ + τ35)ν2 + (τ31σ + τ27)ν + τ35σ + τ3),

((τσ + τ2)ν2 + (τ20σ + τ41)ν + τ43σ + τ10 , (τ17σ + τ12)ν2 + (τ46σ + τ47)ν + τ46σ + τ46 , (τ37σ + τ41)ν2 + (τ22σ + τ11)ν + τ5σ + τ46 , (2σ + τ7)ν2 + (τ38σ + τ28)ν + τ37σ + τ38),

((τ33σ + τ36)ν2 + (τ26σ + 6)ν + τ34σ + τ39 , (τ2σ + τ39)ν2 + (τ7σ + τ38)ν + 2σ + τ19 , τ30σν2 + (τ44σ + τ3)ν + τ27σ + τ36 , (τ30σ + τ30)ν2 + (τ31σ + τ14)ν + τ15σ + τ5),

((τ13σ + τ35)ν2 + (τ38σ + τ22)ν + τ43 , (τ26σ + τ7)ν2 + (τ29σ + τ41)ν + τ41σ + τ6 , (6σ + τ4)ν2 + (τ19σ + τ14)ν + τ44σ + 4, (τ35σ + τ19)ν2 + (τ47σ + τ43)ν + τ35σ + τ3),

((τ34σ + τ27)ν2 + (τ19σ + τ20)ν + 4σ + 6, (τ15σ + τ4)ν2 + (τ29σ + τ20)ν + 3σ + 2, (τ15σ + τ21)ν2 + (τ35σ + τ25)ν + τ20σ + τ38 , (τ43σ + τ43)ν2 + (τ9σ + τ42)ν + τ10σ + τ20),

((τ9σ + τ5)ν2 + (τ17σ + τ36)ν + σ + τ9 , (τ41σ + τ29)ν2 + (τ14σ + τ9)ν + τ19σ + τ39 , (σ + τ33)ν2 + (τ44σ + τ5)ν + τ7σ + τ12 , (τ23σ + τ42)ν2 + (τ9σ + τ41)ν + 5σ + τ9),

((τ18σ + τ11)ν2 + (τ35σ + τ36)ν + 4σ + 6, (τ47σ + τ36)ν2 + (τ45σ + τ36)ν + 3σ + 2, (τ47σ + τ5)ν2 + (τ3σ + τ41)ν + τ20σ + τ38 , (τ27σ + τ27)ν2 + (τ25σ + τ10)ν + τ10σ + τ20),

((τ26σ + τ17)ν2 + (τ37σ + τ6)ν + τ18σ + τ43 , (τ35σ + τ9)ν2 + (τ7σ + τ5)ν + τ14σ + τ38 , (τ3σ + τ46)ν2 + (τ27σ + τ42)ν + τ22σ + τ45 , (τ22σ + τ2)ν2 + (τσ + 3)ν + τ17σ + τ45),

((τ10σ + τ)ν2 + (τ5σ + τ22)ν + τ18σ + τ43 , (τ19σ + τ41)ν2 + (τ23σ + τ21)ν + τ14σ + τ38 , (τ35σ + τ30)ν2 + (τ43σ + τ10)ν + τ22σ + τ45 , (τ6σ + τ34)ν2 + (τ17σ + 6)ν + τ17σ + τ45),

((τ14σ + τ10)ν2 + (τ38σ + τ21)ν + τ10σ + 5, (3σ + τ38)ν2 + (3σ + τ23)ν + τ31σ + τ41 , (τ5σ + τ38)ν2 + (τ38σ + τ21)ν + τ44σ + τ39 , τ35ν2 + (τ42σ + τ11)ν + τ29σ + τ37),

((τ46σ + τ42)ν2 + (τ6σ + τ37)ν + τ10σ + 5, (5σ + τ22)ν2 + (6σ + τ39)ν + τ31σ + τ41 , (τ37σ + τ22)ν2 + (τ6σ + τ37)ν + τ44σ + τ39 , τ19ν2 + (τ10σ + τ27)ν + τ29σ + τ37)}.

We took random testing to find a correct match. It took us about 1.08 million trials

until a valid 14-theta null point is found, which took about 5 minutes. In the correct

combination, (q1, · · · , q24) is mapped to

(θ24, θ5, θ8, θ6, θ14, θ7, θ13, θ19, θ23, θ20, θ10, θ12, θ9, θ21, θ22, θ4, θ3, θ1, θ17, θ18, θ16, θ2, θ15, θ11).

respectively. And we can assemble the 14-theta null point from the mapping.

7. After the 14-theta null point over F712 is computed, we need to pass to Algorithm

3.5.10 to compute the lifted theta null point over Q7[t]/(t12 + 2t8 + 5t7 + 3t6 + 2t5 +

4t4 + 5t2 + 3) ∼= Q712 , the degree 12 unramified extension of Q7. As described in

Algorithm 3.5.10, we will need to find 96 Riemann equations from Theorem 3.2.17

and 3 correspondence equations from Theorem 3.5.9 which forms a non-singular

system of Artin-Schreier equation in the 99-dimensional projective space over Q712 .

After testing, we know that N = 32 7-adic digits precision is sufficient to recover

the Igusa polynomials after the LLL-reduction in Algorithm 3.6.1. The canonical

lift step took about 122 seconds. And after sampling, the lifted 2-theta null point in

84



Q712 /732Q712 is (ã00, ã07, ã70, ã77), where

ã00 = 1,

ã07 = 430209963233516739343827684t11 − 263038941687584699200369049t10 + 73511422140243742538030143t9

− 482917741485237891852802839t8 + 65362187750410345640190640t7 + 387944182120549706869198782t6

+ 537884498732469939141763739t5 + 12960073191765693126840517t4 + 279311473845499276425640053t3

+ 398664681377083153281231992t2 + 458708656158401987705625398t + 126708230087604433229111745,

ã70 = −200019157013160998614803282t11 + 25556357848259533128762971t10 − 508706914512636967017762957t9

− 241002713401785217617038092t8 − 512802758811656154351955312t7 − 98060247716320446097033663t6

− 140576647483119572847929766t5 − 26068841307144617446180861t4 − 472922291241081750675627331t3

+ 161291271265340183894296957t2 − 318424673281497759260444088t− 531872481349200705504981357,

ã77 = −169532528779527646088988256t11 + 52408226493947413864394952t10 − 2915582676570770352232351t9

+ 149253476431052829230311408t8 − 522657937084187089539633274t7 + 146885636140666855930472454t6

− 484807571865515135169724303t5 + 211935525808214294590925139t4 − 409632555841931027499097093t3

+ 355771127208983547553200251t2 − 418526467847341521551028766t− 474600739522272172687113429.

8. From the lifted 2-theta null point, we can recover in the order the Rosenhein in-

variants, the lifted hyperelliptic curve C̃, and the Igusa invariants. From the class

numbers, we expect that the degree of the Igusa class polynomials should be of

degree 1 (so there exists a hyperelliptic Jacobian defined over Q with CM by OK).

Using the LLL-algorithm, we can get the minimal polynomials of the Igusa invariants,

and in this case, they coincide with the modified Igusa class polynomial (here N = 1):

[i1 − 150660, i2N − 28343520, i3N − 9762768].

The result suggests that the hyperelliptic Jacobian with CM by OK should have the

Igusa invariants (150660, 28343520, 9762768). Magma suggests that such a hyperellip-

tic curve can be defined by the equation y2 = −x5 − 3x4 + 2x3 + 6x2 − 3x− 1. This

is isomorphic to the curve suggested in [vW99, Table 1].

3.7.2 Example 2: Q
(√
−30 +

√
96
)

Todo: When finished, break down the bullet points...

1. We denote K = Q
(√
−30 +

√
96
)

. By testing small primes, we found from the

splitting of p = 5 in K that, there exists hyperelliptic Jacobians defined over Fp2 with

CM by OK.

2. We know that for a hyperelliptic curve C/F52 , if we denote by nC and nJ the number

of points of C and Jac(C) over F7, then Jac(C) has CM by OK only when (nC, nJ) =

(16, 417), (24, 571), (28, 675) or (36, 937).

85



3. We run through all possible Igusa invariants (i1, i2, i3) ∈ F[τ]/(τ2 + 4τ + 2) ∼= F2
5,

among a couple of possible choices, we can see that

C : y2 = τ13x6 + τ5x5 + τ20x4 + τ22x + τ19

has the Jacobian with CM by OK.

4. Then, we need to compute the canonical lift of C. The first step is to compute its

10-theta null point. We need to start by computing the Rosenhein form of C and

deduct the 2-theta null point from there. It turns out that the equation of C splits into

linear factors in the field extension F512 , which is the smallest field the Rosenhein

invariants and the 2-theta null point lie in.

5. The next step is to compute the 10-theta null point (aij)0≤i,j<10, which involves solving

52 coordinates. Same as the previous example, we regroup the 2p2 − 2 unknown

variables into p + 1 groups of 2(p− 1) variables. The F4 algorithm involved in step 2

of Algorithm 3.5.5 took about 10.5 seconds to compute a Gröbner basis of 2(p− 1)

variables in the grevlex ordering. After that, to solve for the equations, as in step 3

of Algorithm 3.5.5, we applied the FGLM algorithm to convert the Grob̈er basis to

the lex ordering. The FGLM algorithm took about 17.4 seconds to finish. For the

final lex ordered Gröbner basis, the final generator is univariate in a45 of degree 306,

with 12 roots of multiplicity 52. Those 12 roots will contribute to the coordinates of

the 10-theta null point. We compute the 12 roots, which fall in the extension field F524 ,

and found a match as in step 5 of Algorithm 3.5.5 almost immediately. Combining

all the steps involving computing the 10-theta null point, it took us about 29 seconds

in total.

6. After the 10-theta null point over F524 is computed, we need to pass to Algorithm

3.5.10 to compute the lifted theta null point over Q524 , the degree 24 unramified

extension of Q5. As described in Algorithm 3.5.10, we will need to find 48 Riemann

equations from Theorem 3.2.17 and 3 correspondence equations from Theorem 3.5.9

which forms a non-singular system of Artin-Schreier equation in the 51-dimensional

projective space over Q524 . After testing, we know that N = 512 5-adic digits precision

is sufficient to recover the Igusa polynomials after the LLL-reduction. The canonical

lift step is the bottleneck and it took about 73 minutes to run through Algorithm

3.5.10.

7. From the lifted 2-theta null point, we can recover sequentially the Rosenhein invari-

ants, the lifted hyperelliptic curve C̃, and the Igusa invariants (ĩ1, ĩ2, ĩ3). From the

86



class numbers, we expect that the degree of the Igusa class polynomials should be

of degree 8. After applying the LLL-algorithm, we get in approximately 0.5 sec-

onds that the irreducible factors of the modified Igusa polynomials of (ĩ1, ĩ2, ĩ3) are

{hK,1, ĥK,2, ĥK,3} where

hK,1(i1) = −5006007982921i81 + 7136315652374776988208i71 − 1030597414397029893260196693216i61 + 37019733797983009315008857459542891776i51

+ 11771315624209975198163642301353693850081024i41 + 37978855841533585786338689274170129786148771569664i31

+ 568999777041193161486683969763628398650692806805585920i21 + 1671029418684861474961003943400681863127241786617182552064i1

+ 1496012174486894469574556219042078936215763686245616397058048,

ĥK,2(i1) = (−158501792787774960344664220811897760i71 + 23327413057463058973733242059612989670157056i61

− 204028983853104473930007475097968677429178064686080i51 − 940693566406722395678412813864742417548601906390960889856i41

− 1376113120086892968318091183927487209997366477116156961694621696i31

− 45159152499530136777973051621886886650928590741080316255000047976448i21

− 286700825560000743960177900521203172924538850289879742237456151164223488i1

− 425373012874781458920326282347378676489080575865775132997262689800414035968)/455091634811,

ĥK,3(i1) = (−662151060149841893696294321754307272i71 + 113484641243574620712360609712684631732807232i61

− 2306289158690614751776608966639777541961309842657536i51 − 3356005079902747823016319200471374188074203750918347812864i41

− 5035198581992372253485863299205548121579448500137586031066646528i31

− 162056862743043213054229143330119308828877290209215754586883268624384i21

− 1033943674551756199532413554306073025439559921449347040173926615858151424i1

− 1490807520255004937134090495011492053026157649536998766997011914281427402752)/5006007982921.

Check out Section 3.2.1.3 for the definition. For an i1 satisfying hK,1(i1) = 0, for

n = 2, 3, the corresponding in can be computed by ĥKn(i1)/hK,1(i1).

Since the degrees of the factors of the modified Igusa class polynomials fits the degree

of the expected degree, we know that they are indeed the Igusa class polynomials.

3.8 The Complexity Analysis of the Main Algorithm

In this section, we will break down the main steps of the component algorithms in Sections

3.4, 3.5, and 3.6. By combining the complexity of each component, we will obtain the

complexity statements in Theorem 3.1.1 and 3.1.2.

Before we start, we define two complexity constants that will be used throughout our

analysis.

Definition 3.8.1. We define the following two constants, ω and µ, which measure the

effectiveness of the implementations on basic objects.

(1) µ is the complexity constant so that multiplying two n-bit integers takes O(nµ) bit

operations, and so that multiplying two elements in Fpn takes O(nµ) arithmetics on Fp

(so it is 2 for schoolbook multiplication, and log2 3 for the Karatsuba algorithm, etc).

(2) ω is the complexity constant for multiplying two n× n matrices (so it will be 3 for

schoolbook multiplication, log2 7 for the Strassen algorithm, etc).

87



3.8.1 Issues on Curve Finding

The goal for this step is, given a primitive quartic CM field K, compute a finite field

Fq = Fpr and a principally polarized abelian variety A over Fq satisfying End(A) ∼= OK.

The algorithm in this step is described below.

We will use the following notations. For the principal quartic CM field K, let K† be

its reflex field, L be the algebraic closure, and let K0 and K†
0 be the real quadratic subfield

of K and K†, respectively. Also, let D0 = ∆(K0) be the discriminant of the real quadratic

field, and let D1 be the number satisfying ∆(K) = D2
0D1. The ultimate goal is to find the

asymptotic complexity of finding the Igusa class polynomial via the p-adic method in

terms of D0 and D1.

3.8.1.1 Finding the Underlying Finite Field

In this subsection, we will analyze step 2 in Algorithm 3.4.1. The complexity itself is

negligible; instead, we need to estimate the size of the finite field Fq = Fpr , as it is one of

the most important parameters in the entire algorithm.

In practice, consider a principally polarized abelian surface Ã over Qq, such that

End(Ã) ∼= OK, we need its reduction Ã → A to Fq to be ordinary. Among all possible

q = pr, we need q to be as small as possible to speed up the searching of principal polar-

ized abelian surfaces; and we also need p to be small, like the Gröbner basis approach to

compute 2p-theta null points seems to be unfeasible as p grows.

By the Cebotarev density theorem, case (a) occurs with probability 1/8; and case (b)

occurs with probability 1/4. So roughly 3/8 of the primes satisfies the splitting conditions,

which is compatible with preliminary experiments. As all we need is the splitting condi-

tion described above, if we assume Heuristic 3.8.2 below, the average chosen p will be O(1).

Heuristic 3.8.2. For a fixed prime p, the probability that p divides ∆(K) = D0D1 does not

depend on the size of the discriminant of K.

Alternatively, assuming GRH, we can also potentially give some upper bound ar-

guments. For instance, [LO77] gave a upper bound on the smallest prime which splits

completely in a number field: if p is the smallest such prime, there exists a efficiently com-

putable constant c satisfying p ≤ c(log ∆(K))2 = c(log(Õ(D2
0D1)))

2. For newer results,

88



see [GMP19]. Our application allows some cases that the prime does not need to split

completely, so the upper bound could be decreased.

After the characteristic of the finite field, p is decided, we need to decide the degree of

extension q = pr. Then by [Koh], we can use Lemma 3.4.3 to choose r.

To estimate the minimal r, the heuristic is that given an r dividing h(K), the class number

of K, the probability that Fpr is the smallest possible extension equals the probability that a

random element in Cl(K) has order r. Preliminary experiment results show that it should

be true for at least most of the non-abelian cases, but there are counterexamples for cyclic

cases:

Example 3.8.3. Let K ∼= Q[x]/(x4 + 41x2 + 164) be a cyclic extension of Q. The real

subfield of K has discriminant D0 = 41. It is readily computed that Cl(K) ∼= Z/2Z ×
Z/2Z, so a random element in Cl(K) has a 1/4 chance to have order 1 and a 3/4 chance to

have order 2. However, experimental results showed that the probabilities that r = 1 and

r = 2 are both 1/2.

More work needs to be done to characterize the situations like Example 2. However,

under the following heuristic assumption, we can assert that for the average case, r =

O(h(K)).

Heuristic 3.8.4. For a fixed quartic CM field K. When varying through all admissible p
(such that ordinary abelian surfaces over Fp with CM by OK exists) and varying through

all prime ideals p over p, the ideal class [p] ∈ Cl(K) distributes uniformly in a subgroup G
of Cl(K) with a small index.

Another issue is that we want to deal with the class number h(K). We may simply

treat it as a parameter since it also plays an important role as the degree of the Igusa class

polynomial, Alternatively, we can also try to bound it in terms of D0 and D1.

Denote h−(K) := |Cl(K)|/|Cl(K0)| the relative class number. Louboutin gave a bound

in [Lou03], saying that h−(K) = Õ(
√

D0D1). For the class number of the real quadratic

field K0, Le provided a bound in [Le94], saying that h(K) = O(
√

D0). Combining these,

we will have h(K) = Õ(
√

D2
0D1). However, to obtain a better average bounds on r, we

want to have the structure of Cl(K) as well. We collect our results in the following lemma.

Lemma 3.8.5. In Algorithm 3.4.1, under Heuristics 3.8.2 and 3.8.4 and GRH:

1. In average, p is in O(1), and r is in O(h(K)). If we estimate h(K) in terms of D0 and

D1, then r = Õ(
√

D2
0D1).

89



2. For the worst case, p = log(Õ(D2
0D1)), and r = O(h(K)) = Õ(

√
D2

0D1).

However, since p and r are the most important parameters in the algorithm, in the rest

of the chapter, we will avoid using rough estimates as in Lemma 3.8.5.

3.8.1.2 Finding a Curve over Given Finite Field via Computing Endomorphism Rings

For the remaining subsection, we will put aside the estimates of q = pr and find complexity

estimates using q as a parameter. Finding a suitable hyperelliptic Jacobian consists of

looping over steps 5, 6, and 7 in Algorithm 3.4.1. Our complexity estimation follows the

ideas in [BGL11], except that we are working over the extension field Fq, while [BGL11]

put stronger restrictions on the splitting of p so that they can work over the prime field Fp.

We first analyze the complexities of step 5. The first goal is to estimate the number of

iterations we need to make in the for loop. Before step 5, there will be q3 = p3r possible

curves, since we can run through all isomorphism classes of principally polarized hyper-

elliptic Jacobians of genus 2 by running through the Igusa or G2 tuples defined over Fq.

After step 6, there will be |C(K)| Jacobians remaining, where C(K) is the Shimura class

group of K, and the size can be computed via Corollary 3.2.9. From the corollary, the size

of |C(K)| is a constant times h−(K) = Õ(
√

D0D1). Intuitively, on average one needs to test

O(q3/
√

D0D1) hyperelliptic curves before one obtains one with the correct endomorphism

ring.

For the complexity of looping over step 5, one needs to apply Mestre’s algorithm. For

the explicit formulas involved, see [LY11, Appendix A.2]. Note that the complexity here

should be absorbed by looping over step 6, where we will describe next.

For step 6, we need to compute the endomorphism algebra for a given Jacobian curve,

and this is essentially the same as computing |Jac(C)[Fq]| and |Jac(C)[Fq2 ]|, or equivalently

the characteristic polynomial of the Frobenius. We can use the theory as described in [JW15].

Suppose A = Jac(C) be a principally polarized abelian surface over Fq of dimension 2. By

the method of Pila, it takes O((log q)9) time to compute the characteristic polynomial of

the Frobenius. Multiplying by q3/
√

D0D1, the average number of the curve we need to

consider in step 1, we obtain the following Lemma:

Lemma 3.8.6. Taking the number of loops into account, the time complexity for steps 5

and 6 in Algorithm 3.4.1 are

O(q3(log q)9/
√

D0D1).

90



Now we estimate the running time for step 7. One key factor is the number of candidate

curves that passed through step 6, so we need to look at 6 in more detail. The Frobenius

polynomial we computed in step 6 will be of the form x4 + s1x3 +(s2 + 2q)x2− qs1x+ q2. s1

and s2 are related to the number of Fq-points on the curve C and on the Jacobian A = Jac(C)
via the following formula:

s1 = |C(Fq)| − q− 1;

s2 =
s2

1 + 2|A(Fq)| − |C(Fq)|2 − q2 − 2q− 1
2

.

There are several known bounds on the values s1 and s2:

Proposition 3.8.7 ([JW15]). Let q, s1 and s2 be defined as above.

1. (The Weil bound) |s1| ≤ 4
√

q, and |s2| ≤ 4q.

2. (The Ruck bound) s2
1 − 4s2 > 0, and s2 + 4q > 2|s1|

√
q.

In addition, we make the following assumption (more experiments need to justify the

validity):

Heuristic 3.8.8. (s1, s2) distributes uniformly within the region described by the Weil and

Ruck bounds.

Since there are only 1 or two (s1, s2) pairs which leads to the correct endomorphism

algebra, the chance that a random abelian surface passes through step 1 is O(q−3/2), and

on average, the number of curves entering step 2 will be O(q3/2/
√

D0D1).

Remark 3.8.9. A more careful approach to compute the number of curves passing through

step 1 given in [BGL11]. The key idea is to note that if End(A)⊗Q Z ∼= K has the correct

endomorphism algebra, then we know that Z[π, π] ⊆ End(A) ⊆ OK. The alternate

method is then to find all possible orders for End(A) bounding between Z[π, π] and OK,

and then estimate the class number for all the intermediate orders.

For the complexity in looping over step 7, the bottleneck is the complexity of comput-

ing endomorphism rings. The more classical method by Freeman and Lauter in [FL08]

has complexity O((log q)18); and the more recent method proposed [Bis15, Spr19] has

complexity

L
[

1
2

]
(q)2

√
3+o(1) = exp

(√
log q · log log q

)2
√

3+o(1)
.

The following Lemma integrates Lemma 3.8.6, Heuristic 3.8.8, and the complexity of

endomorphism rings computation as described above:

91



Lemma 3.8.10. Assuming Heuristic 3.8.8, and denote by X the complexity of endomor-

phism ring computation algorithm (So X = (log q)18 in Freeman-Lauter [FL08], and

X = L[1/2](q)2
√

3 in Bisson [Bis15]). The complexity of step 2 as a whole (counting loops)

is

O
(

q3(log q)9
√

D0D1

)
+ O

(
q3/2X√

D0D1

)
.

The bottleneck is still the q3 term in step 6. If we cannot cut that down the lifting

method would turn out to be infeasible as long as q reaches a certain value.

3.8.2 From 2-theta Null Points to 2p-theta Null Points

In this section, we will estimate the complexity of steps 1 to 5 in Algorithm 3.5.5. Note that

not only the time complexity, the space complexity is also important, which is indeed the

bottleneck in our implementation.

We first analyze step 1, which involves the reduction of Riemann relations. Denote

Z(n) as the group (Z/nZ)2, and for u = (i, j) ∈ Z(2p), let bu = bij. And for all n = dm,

we consider Z(m) as a subgroup of Z(n) by the embedding (i, j) 7→ (di, dj).

Under this notation, recall that the Riemann relations are of the following form:

∑
t∈Z(2)

χ(t)bx+y+tbx−y+t ∑
t∈Z(2)

χ(t)bu+v+tbu−v+t =

∑
t∈Z(2)

χ(t)bx+u+tbx−u+t ∑
t∈Z(2)

χ(t)by+v+tby−v+t,

where χ ∈ Z(2)D is a character of Z(2), and x, y, u, v ∈ Z(2p) are congruent to Z(p). Since

we only consider Riemann relations in Fq[{bij}0≤i≤p,j=0,p] at this stage, we really only need

to take x, y, u, v be of the form (i, 0) ∈ Z(2p). There are 2p4 choices for x, y, u, v and 4

choices for χ, yielding 8p4 possible Riemann relations.

Among the aforementioned 2p4 Riemann relations which are all degree 4 homogeneous

polynomials in Fq[{bij}0≤i≤p,j=0,p], we need to know how many of them are Fp-linearly

independent. It is only known by experiments that there are 5, 30, and 114 linearly

independent Riemann relations when p = 3, 5 and 7, respectively, and in practice, it is not

yet computable for larger p due to memory constraint. However, we have the following

asymptotic estimation:

Lemma 3.8.11. For an odd prime p, there are O(p4) Fp-linearly independent Riemann

92



relations in Fq[{bij}0≤i≤p,j=0,p].

Proof. Fq[{bij}0≤i≤p,j=0,p] contains 2p + 2 variables, and Riemann relations are homoge-

neous polynomials of degree 4. Let M be the set of degree 4 monomials, then |M| =
(2p+2+4−1

4 ). Denote by V the Fp-vector space spanned by the Riemann relations. By

observation, each degree 4 monomial occurs in some Riemann relation, hence for any

proper subset M′ ( M, V ∩⊕m∈M′ Fpm 6= {0}. Let B be a basis of V which is a col-

lection of Riemann relations. Let B(M) be the monomials involved in the elements of

B. Then we know that B(M) = M. But it is clear from the form of Riemann relations

that element in B can contain at most 32 monomials, so |M| = |B(M)| ≤ 32|B|. Hence

dimV = |B| ≥ (2p+5
4 )/32 = O(p4).

Now we give statements on the time and space complexity for step 1. The essence

for step 1 is to find a minimal spanning set of V ∈ FN
p , where N = (2p+5

4 ) = O(p4), the

generators of V is of size 8p4 = O(p4), and dimV = O(p4). While computing the minimal

spanning set of V , if Gaussian elimination is used (which seems to be the most inefficient),

the time complexity is O(p12) and the space complexity is O(p8) entries of size O(1). If the

sparse matrix structure is used, then it is possible to reduce to O(p8) in time complexity

and O(p4) space complexity (verification needed). We conclude our current result in the

following lemma:

Lemma 3.8.12. For Step 1 in Algorithm 3.5.5, the time complexity is at most O(p12), and

the space complexity is at most O(p8).

Now we analyze Step 2. The core content involves computing a Gröbner basis under

the grevlex monomial ordering with priority. It is still hard to estimate the improvements

made by applying the priority on the variables U in Step 2, so, at this stage, we just try to

provide general arguments on Faugére’s F4/F5 algorithm. We will apply the following

Proposition, which turns out to be close enough to our scenario:

Proposition 3.8.13 ([BFS15, Proposition 1]). Let ( f1, · · · , fm) be a system of homogeneous

polynomials in k[x1, · · · , xn]. Then the number of operations in k required to compute a

Gröbner basis for a grevlex order is O
(

mD(n+D−1
n )

ω
)

as D → ∞, where D is the degree

of the ideal generated by ( f1, · · · , fm), and ω is as in 3.8.1.

Note that besides the issue of prioritizing, our scenario still differs from Proposition

3.8.13 because after evaluating (b00, b0p, bp0, bpp) by (a00, a01, a10, a11), the ideal generated

by the Riemann relations is no longer homogeneous. However we can still use Proposition

3.8.13 to obtin an upper bound of the time complexity by interchanging the evaluation and

93



the F4 (or F5) algorithm.

For the parameters in Proposition 3.8.13, it is immediate from Algorithm 3.5.5 and

Lemma 3.8.12 that we have n = 2p + 2 variables and m = O(p4) equations. It re-

mains to determine D, the degree of the ideal. Experimental results showed that, gener-

ically after fixing (b00, b0p, bp0, bpp) = (a00, a01, a10, a11), all the other variables will be

uniquely determined by b10 (or any other variable in U ∪ V by symmetry). And the

unique univariate polynomial in the Gröbner basis in Step 3 for b01 has 1 root of mul-

tiplicity 1, 1 root of multiplicity p and (p2 − 1)/2 roots of multiplicity p2. Therefore,

D = p2 · (p2 − 1)/2 + p + 1 = (p3 − p2 + 2)(p + 1)/2 = O(p4).

Plugging all variables back into Proposition 3.8.13, we see that the time complexity for

the grevlex Gröbner basis algorithm is

O
(

mD
(

n + D− 1
n

)ω)
= O(p4 p4(p4)(2p+2)ω) = O(p8(ω(p+1)+1)).

Lemma 3.8.14. For Step 2 in Algorithm 3.5.5, the time complexity is at most O(p8(ω(p+1)+1))

operations in Fq.

We remark that it seems that many modifications are done beyond the scenario in

Proposition 3.8.13, so the bound above could be largely optimized.

Next, we analyze step 3, which computes the Gröbner basis in the lexicographical <lex

order. Since we used Magma’s implementation on the FGLM algorithm as described on

[FGLM93], we will use the complexity arguments there, and then describe some possible

improvements.

As in Algorithm 3.5.5, we need to convert a grevlex Gröbner basis (GV ,<grevlex) in

4 variables to a lexicographical Gröbner basis (G2,<lex). When the ideal generated is of

dimension 0, this can be handled by the FGLM algorithm, and we briefly summarize the

algorithm as follows. Let M = Fq[x1, · · · , xn]/〈GV〉 be the dimension D Fq-vector spaces

determined by the first Gröbner basis. Also, let B = {ε1, · · · , εD} be the a basis of M,

where εi are monomials ordered increasingly by <grevlex. For each εj ∈ B, sequentially in

lex compute the normal form of εjxi with respect to the Gröbner basis GV for 1 ≤ i ≤ n.

Then we fit the coefficients of the normal form into column vectors of a matrix. When there

are linear dependencies among the column vectors, we get an element in the new Gröbner

basis (G2,<lex). We see that linear algebra plays the central role in the FGLM algorithm,

94



which allows us to compute the time and space complexity. In particular, we have the

following Proposition:

Proposition 3.8.15 ([FGLM93, Theorem 5.1]). When the ground field of the polynomial

ring is a finite field, the time complexity is O(nD3) and the space complexity is O(D2),

where n is the number of variables and D is the degree of dimension 0 ideal.

Plugging in n = 4 and D = O(p4) (from the analysis of Step 2), we have the following

result:

Lemma 3.8.16. For Step 3 in Algorithm 3.5.5, the time complexity (number of Fq opera-

tions) is at most O(p12), and the space complexity is at most O(p8).

Remark 3.8.17. It seems that this is the best the built-in FGLM implementation Magma

can do so far. Indeed Faugére and Mou proposed in [FM17] the sparse version of the FGLM

algorithm, which has the potential to outperform the original version in Magma. Need to

understand more about this.

Next we analyze step 4, which involves solving the (2n− 2) variables of the 2p-theta

null points from the Gröbner bases (GU ,<grevlex) and (G2,<lex). The most costly step here

is to solve for the first variable b01 from the first polynomial in the Gröbner basis f (b1) over

its splitting field (the size of the splitting field is unknown). The polynomial f has degree

D, and contains 1, 1, and (p2 − 1)/2 roots of multiplicity 1, p and p2, respectively. Hence

it is of negligible time to derive from f to the polynomial f̃ , the square-free polynomial

whose roots are exactly those of f with multiplicity p2 (hence deg f̃ = (p2 − 1)/2).

Classically (see [Coh13, Section 3.4]), solving f̃ over its splitting field contains two

stages. The first stage is to factor f̃ into polynomials of the form fr, where fr is the product

of all degree r polynomials which divides f̃ and is irreducible over Fq. The second stage is

to solve fr for each r, using the Cantor-Zassenhaus algorithm for instance.

Suppose the splitting field is a degree d extension of Fq. In stage 1, for each r | d, we

indeed have fr = gcd( f̃ (b01), bqr

01 − b01). The complexity for this is O(r(deg f̃ )2(log q +
deg f̃ )) = O(rp4(log q + p2)).

The Cantor-Zassenhaus stage has complexity O((deg f̃ )2 log q log r) = O(p4 log q log r).
Combining all possible r, which ranges through divisors of d, we get the overall complexity

O(σ(d)p4(log q + p2)).

At this moment, not much is known about the splitting field extension degree d, except

that when p = 3, Carls gave in [Car10] that d | 48. It is backed up by experiments that in

95



most cases d is small, so both theoretically and by experiment, we can assume that Step 4

takes negligible time compared to other steps in Algorithm 3.5.5.

Finally, we analyze step 5. From step 4, we have a solution set S, which contains

(p2 − 1)/2 sets of quadruples. From step 4, we also partitioned S into p + 1 groups, and

each group contains (p− 1)/2 quadruples. On the other hand, for the 2p-theta null point

(bij)0≤i,j<2p, we can separate the unknown positions into (p2 − 1)/2 quadruples, and the

quadruples form p + 1 groups, with each group consists of (p− 1)/2 quadruples.

We need to fill in the positions in (bij) by the quadruples in S, by the following rules:

Each group in S has to be filled into a group in (bij); and within a group of (bij), when

a quadruple in (bij) is fixed by a quadruple in S, the other (p− 3)/2 quadruples in (bij)

are automatically fixed. Therefore, there are (p + 1)! assignments for the groups and

(p− 1)/2 assignments for the quadruples in each group, yielding (p + 1)!((p− 1)/2)p+1

assignments in total.

Among all these assignments, only |GL2(Fp)|/|{±1}| = p(p− 1)2(p + 1)/2 = O(p4)

of them are the desired 2p-theta null points. Since we randomly choose the assignments

and test the validity, and testing takes O(1) arithmetic in the ground field, In average

it takes O((p − 2)!((p − 1)/2)p) field operations to get a valid 2p-theta null point. We

summarize the result in the following lemma.

Lemma 3.8.18. In Step 5 of Algorithm 3.5.5, suppose that the 2p-theta null point lies on

Fqd , on average it takes

O
(
(p− 2)!

(
p− 1

2

)p)
field operations on Fqd , or O

(
dµ(p− 2)!

(
p−1

2

)p)
field operations of Fq to derive a valid

2p-theta null point.

To summarize Algorithm 3.5.5, we see that for a general p, the bottlenecks in terms of

time complexity are Steps 2 and 5, which are exponential in p; the bottlenecks in terms

of space complexity are Steps 1 and 3, which are O(p8) (although there is a potential to

improve by applying sparse matrices).

96



3.8.3 From 2p-theta Null Points over Finite Fields to 2p-theta Null Points over
Local Fields

In this section, we will look at the complexity of Algorithm 3.5.10. Carls and Lubicz

provided a complexity formula for this in [CL09, Section 4.2], which follows from the ones

in Lercier and Lubicz in [LL06, Algorithm 5.1]. Since the scenario in [LL06] is for fixed p
(there p = 2), so we need look closer to the formula.

It is not hard to see that Step 3 is dominated by the highest precision iteration, and in

that iteration, the dominating step is to solve the Artin-Schreier equation. Adapting the

analysis from [LL06, Algorithm 5.1] and substitute all operations on F2 (respectively Q2d )

to operations on Fp (respectively Qpd ), we get the following lemma:

Lemma 3.8.19. The complexity for Algorithm 3.5.10 is O(log(N)Nµdµ) operations on Fp,

where:

• d is the extension where the 2p-theta null point lies in. When we solve the Gröbner

basis system to solve the 2p-theta null point, we will potentially need to get to a

larger finite field extension. Carls in [Car10] claimed that when p = 3, the maximal

extension needed will be d = 48r, where r is the extension where the 2-theta null

point (though in most case d will be less or equal to 3r).

• The complexity constants µ is as in Definition 3.8.1

• N is the required precision.

We note that N is affected by many factors, such as the coefficient bounds and denomi-

nator bounds of the Igusa class polynomial, and the error factor of the LLL algorithm. We

will figure out the asymptotic size of N in section 3.8.4.2.

3.8.4 Recovering Igusa Class Polynomials

For this step, the input will be the Igusa invariants (i1, i2, i3) in the local field Qp, and the

output will be a factor of the Igusa polynomial, which is the minimal polynomial of the

factors. If it were the elliptic curve case, there will be two possible approaches.

3.8.4.1 Using the Actions of Ideal Classes [a] ∈ Cl(K)

This is the best method in genus 1 and suggested as an improvement for the CRT method

in the genus 2 case in the paper [BGL11]. However, it does not seem that the method can

97



be applied to our scenario. First, we need the actions on abelian surfaces over Qq rather

than a finite field; and in addition, the modular polynomial of the Siegel modular variety

V( f ; l) described in section 2.3 is hard to compute for larger l.

3.8.4.2 Using the LLL algorithm to Find Minimal Polynomials

We will discuss the complexity of Algorithm 3.6.1. Let C(K) be the Shimura class group,

d := [Qq : Qp] be the extension degree, and N be the required precision. Also, we take s to

be the degree of the minimal polynomial of the Igusa invariants. In general, we will have

|C(K)| = s or 2s.

We first explain the validity of Algorithm 3.6.1. First, we show that there exists a

vector of the form v := [m0 m1 · · · ms − ε0 · · · − εd−1] in the left kernel Λ of M. Suppose

that f (x) = ∑s
i=0 mixi be the minimal polynomial, we have ∑s

i=0 miai,jwj ≡ 0 (mod pN).

Denote ∑s
i=0 miai,jwj = εj pN for each 0 ≤ j < d, then [m0 m1 · · · ms− ε0 · · · − εd−1]M = 0.

And this justify that [m0 m1 · · · ms − ε0 · · · − εd−1] ∈ Λ.

Next, we show that when the precision N is sufficiently large, [m0 m1 · · · ms− ε0 · · · −
εd−1] is indeed the shortest vector and can be recovered by the LLL algorithm, by proving

the following lemma:

Lemma 3.8.20. Let C be the upper bound for both the denominator and the coefficients

of the Igusa class polynomial. Suppose N is chosen so that N = logp(O(2(s+1)/2C2s2d2))),

then the shortest vector provided after Step 2 of Algorithm 3.6.1 gives the correct coefficients

of the minimal polynomial.

Proof. We first estimate the norm of the vector v = [m0 m1 · · · ms − ε0 · · · − εd−1]. The

first s + 1 entries are from the minimal polynomial, hence bounded by C. For the last d
entries involving ε, we have |εj| ≤ (1/pN)∑s

i=0 |ai,jmi| ≤ ∑s
i=0 mi ≤ (s + 1)C. Therefore,

||v|| = O(Csd).

We then estimate the lengths of other vectors in the left kernel Λ of M which are

not scalar multiples to v. Let u := [u0 · · · ud+s] ∈ Zd+s+1 be such a vector. Then

∑s
i=0 uiι

i ≡ 0 (mod pN) for the Igusa invariant ι, which means that there exists embed-

dings ũ0, · · · , ũs ∈ Zp of u0, · · · , us satisfying ∑s
i=0 ũiι

i = 0. Hence there exists a c̃ ∈ Zp

such that [ũ0 · · · ũs] = c̃[m0 · · ·ms]. This means that projecting c̃ into the Z/pNZ and take

the least non-negative representative in Z, we have u = cv + pNe for some e ∈ Zd+s+1.

98



We claim that the second shortest vector w should have ||w|| = O(pN/Csd). For

i = 0, · · · , s, let bi = [0, · · · 0, pN , 0, · · · , 0,−ai,0, · · · ,−ai,d−1] (pN is in the (i + 1)-th entry).

Observe that the vectors b0, · · · , bs together with v span the left kernel Λ. If we only keep

the first (s + 1)-entries, then b0, · · · , bs has volume (pN)s+1 = pN(s+1). Joining v, then

pNv is the smallest scalar product of v which is in span(b0, · · · , bs). Therefore, we know

that restricted in the first (s + 1)-entries, Λ has volume pNs. Since there are s− 1 linearly

independent vectors of norm pN , the norm of the second shortest vector w must have size

at least O(pN/Csd) putting the last d-entries back will only lengthen w.

There is an adjustable parameter δ ∈ (0.25, 1) in the LLL algorithm, which controls the

Lovász condition and the “idealness” of the output short lattice base. Suppose we choose,

as the default of Magma, δ = 0.75, then the classical result states that if 2(s+1)/2||v|| < ||w||,
the first vector in the output of the LLL algorithm will be indeed v.

Therefore, given N = logp(O(2(s+1)/2C2s2d2))), we will obtain the shortest vector v
containing the coefficients of the minimal polynomial.

The next issue is to estimate C := max{|m0|, · · · , |ms|}, the maximal coefficient of the

minimal polynomial and the denominator. And suppose we have the bound on C, then we

will get a bound on N as well.

Lemma 3.8.21 ([BGL11, Section 6.4]). C = exp(Õ(D5/2
0 D3/2

1 )), and N = Õ(D5/2
0 D3/2

1 ).

Proof. For the denominator (defined as the least common multiple of the denominators

of the coefficients of the Igusa class polynomial when we write it as a monic polynomial)

in the Igusa class polynomial, Streng have in [Str14] the following theorem, based on the

result of Goren and Lauter:

Theorem 3.8.22 (Streng, [Str14, Theorem 10.1]). Let K = Q(
√
−a + b

√
d) with d = D0,

and a < 8
√

D0D1/π. Then the denominator of the Igusa class polynomial divides D =

224h′D2
1, where h′ = |C(K)|,

D1 =

 ∏
p<4da2

p prime

p

⌊
4 f (p)

(
1+ 1 log(2da2)

log p

)⌋
h′

.

Here f (p) is 3 if p ≤ 3 and ramifies in K, and 1 otherwise.

From Theorem 3.8.22, it is deducted in [Str10, section II.9] that the denominator is

exp(Õ(D5/2
0 D3/2

1 )). Moreover, in [Str10, section II.11], Streng also proved that the maximal

99



absolute value of the monic Igusa class polynomial is also bounded by exp(Õ(D5/2
0 D3/2

1 )).

Combining both bounds we have C := max{|m0|, · · · , |ms|}.

Compare with the estimate of s, which is related to the relative class number h−(K),
we have s = Õ(D1/2

0 D1/2
1 ). So both occurences of s will also be absorbed. Also, since d is

also polynomial in D0 and D1, it is also absorbed in the estimation of N. This means that

N = Õ(D5/2
0 D3/2

1 ) is dominated by the contribution of C.

Remark 3.8.23. In [LV15], Lauter and Viray gave a sharper bound for the denominator of

the Igusa class polynomials, which used results on certain intersection formulas on Hilbert

modular surfaces. It could potentially improve the bound in Lemma 3.8.21, but as the

formula was extremely lengthy, so we decided not to address it in the lemma.

Finally, for the complexity of the LLL algorithm, [GHK+06], the L2 variant of the

general LLL algorithm has the complexity O((s + d)5(s + d + N)N) and can be reduced to

O((s + d)4(s + d + N)N)

in our setting. Combining our estimates for d and N, we have the following:

Lemma 3.8.24. The complexity for using the LLL algorithm to recover a factor of the

Igusa class polynomial is Õ(D7
0D5

1) (in terms of Z-operations).

As we have complexity statements from all the steps now, by assembling all the parts,

we can see that the main Theorems 3.1.1 and 3.1.2 follows from Lemmas 3.8.10, 3.8.14,

3.8.18, 3.8.19, and 3.8.24.

3.9 Future directions

To reduce the complexity of Gröbner basis computation so that the computation of canoni-

cal lifting works out for as many prime p as possible, we made observations in Section 3.5.3.

However, we are not yet able to rigorously justify our observations in this dissertation.

Some facts which are believed to be helpful regarding the actions of AutGm H2p on valid

theta 2p-mull points are given in [FLR11]. There is still a gap to apply the actions [FLR11]

directly, since their results needed the theta level to be not divisible by p, which is not our

case. We are still working out to get a better understanding of the tools required for Section

3.5.3.

Nevertheless, as p increases, the size of the Gröbner bases expand exponentially, and

the extension field degree of the 2p-theta null points also increased with a speed that is

100



hard to control. Is there any correspondence relation for the p-adic canonical lifting which

does not rely on the 2p-theta null points? A positive answer to the question might lead to a

breakthrough for the p-adic method. At this moment, for p = 3, [CKL08] found a relation

on the 4-theta null point, but we do not know anything beyond that.

101



Appendix |
A Proposal of a Signature
Scheme in Genus 2

In this appendix, we provide an outline of a signature scheme, which generalized the key

component of the signature scheme by Galbraith, Petit and Silva in [GPS19, Section 4] to

superspecial abelian surfaces. The goal of this appendix is to provide a connection to the

principal ideal problem with a signature scheme over superspecial ableian surfaces.

1 A sketch of Galbraith et al.’s signature scheme for supersingu-

lar elliptic curves

Galbraith’s scheme relied on the fact that the following problems are computationally hard.

Indeed, it is shown in [EHL+18] that these hard problems are equivalent.

• MaximalOrder: Given a supersingular curve E defined over Fp2 and a basis of the

quaternion algebra Bp,∞, find a basis {β1, β2, β3, β4} ⊆ Bp,∞, so that EndFp
(E) ∼=

Zβ1 + Zβ2 + Zβ3 + Zβ4.

• EndomorphismRing: Given a supersingular j-invariant j ∈ Fp2 , output EndFp
(E(j)),

which is represented by the four rational maps E→ E generating the endomorphism

ring.

• `-PowerIsogeny: Given a prime p and two supersingular elliptic curves E1, E2 de-

fined over Fp, and a small prime ` 6= p, output an `-power isogeny φ : E1 → E2,

where deg φ = `k, represented by a chain of `-isogenies of length k.

On the other hand, Galbraith’s scheme required efficient algorithms for the following

questions. We list their problems alongside with a reference to the algorithms.

102



• IsogenyPathToIdeals: Given a supersingular elliptic curve E0 and its endomor-

phism ring O0, and an isogeny path E0 → E1, compute the endomorphism ring O1

of E1 and the connecting ideal of O0 and O1 (see [GPS19, Section 4.4]).

• PowersmoothIdeal: Given a left O0-ideal I, find another left O0-ideal J, in the same

ideal class as I, such that N(J) is powersmooth. (see [GPS19, Section 4.3], which

generalizes the result of [KLPT14]).

• IdealsToIsogenyPath: Given E0,O0 as above, and E2, and a O0-EndFp
(E2)-ideal I,

find an isogeny path E0 → E2 corresponding to I (see [GPS19, Section 4.5]).

The core of Galbraith’s signature scheme is the following zero-knowledge identification

protocol which uses the algorithm to the above questions as components:

Algorithm A.1.1 (The identification scheme in [GPS19, Figure 1]).
Settings: The prover possesses the private key, which is an isogeny ψ : E0 → E1 with deg ψ

being powersmooth. The verifier knows the public key (E0, E1).

Goal: The prover proves to the verifer the possession of the private key, and the verifier

verifies it.

1: The prover starts a random walk from E1 along the powersmooth isogeny graph and

generates a powersmooth isogeny ϕ : E1 → E2. The prover sends E2 to the verifier.

2: The verifier generates a random bit b and send it to the prover.

3: if b = 0 then
4: The prover sends ϕ : E1 → E2 to the verifier

5: else
6: The prover uses algorithm IsogenyPathToIdeals to compute EndFp

(E2) and the

connecting ideal I between EndFp
(E0) and EndFp

(E2).

7: Use the algorithm in [KLPT14] to construct an ideal J in the same left ideal class as

I, with powersmooth norm.

8: The prover uses algorithm IdealsToIsogenyPath to compute an alternate isogeny

η : E0 → E2 corresponding to the ideal J, and send η : E0 → E2 to the verifier.

9: end if
10: The verifier accepts the proof if the returned ϕ is indeed an isogeny E1 → E2, or the

returned η is indeed an isogeny E0 → E2.

2 A generalization to genus 2

Overview of the required routines. We need the following questions to be hard (say,

polynomial time in log p):

103



• IsogenyPathToMatrix: Given An isogeny chain E2
0 = A0

φ1−→ A1 · · ·
φr−→ Ar, where

each φi is an (`i, `i)-isogeny for some prime `i. Suppose in addition that N = ∏r
i−1 `i

is O(log p)-powersmooth. For each 1 ≤ i ≤ r, find γi and gi = `i(γi
t)−1gi−1γ−1

i (as

in Proposition 2.2.9).

• PowersmoothMatrix: Given g, g′ ∈ Mat+2 (O), find a O(log p)-powersmooth N =

∏r
i=1 `

ei
i and γ ∈ Mat2(O), τ, τ′ ∈ Mat1

2(O), such that N(γ) = N and N(τtgτ) =

γt(τ′
t
g′τ′)γ, and γ represents an isogeny path which consists of ei (`i, `i)-isogenies

for 1 ≤ i ≤ r.

• MatrixToIsogenyPath: Given a superspecial abelian surface A0/Fp, a represen-

tative g0 ∈ Mat+2 (O) of A, and γ ∈ Mat2(O), where N = N(γ)1/2 is O(log p)-
powersmooth. Find γ1, · · · γr and A1 · · · Ar, such that for each 1 ≤ i ≤ r, N(γi) = `2

i

for some prime `i, γ = γr · · · γ1, and γi represents an (`i, `i)-isogeny Ai−1 → Ai.

Here, we give a rough sketch how to set up the identification scheme. This is supposed

to be a generalization of Algorithm A.1.1.

Settings for the superspecial signature scheme. We first describe the system parameters.

Let p be a prime of the form p = 4M − 1, where M = p1 · · · ps is a product of small

primes. Choose the base supersingular elliptic curve as E0 : y2 = x3 + Ax for some

A ∈ Fp2 such that |E0(Fp)| = p + 1 and |E0(Fp2)| = (p + 1)2. In this case, EndFp
(E0) can

be explicitly computed as a maximal order O ⊆ Bp,∞. And when A0 := E2
0, EndFp

(A0) can

be embedded in Mat2(Bp,∞).

We first propose the identification scheme, analogous to Algorithm A.1.1. In the

identification scheme, there is a prover and a verifier. The prover possesses a private key,

which is is an isogeny ψ : A0 = E2
0 → A1, where ψ is a chain of (2, 2)-isogenies, while the

public key is A0 and A1.

Algorithm A.2.1 (The genus 2 identification scheme, analogous to algorithm A.1.1 as in

[GPS19, Figure 1]).
Settings: The prover possesses the private key, which is an isogeny ψ : A0 := E2

0 → A1,

where ψ is a composition of (2, 2)-isogenies. The prover also precomputes and γ1 ∈
Mat1

2(O) and g1 ∈ Mat+2 (O) corresponding to A1 using IsogenyPathToMatrix. The veri-

fier knows the public key A1.

Goal: The prover proves to the verifer the possession of the private key, and the verifier

verifies it.

1: The prover starts a random walk from A1 along the (2, 2)-isogeny graph and generates

an isogeny ϕ : A1 → A2. The prover sends A2 to the verifier.

104



2: The verifier generates a random bit b and send it to the prover.

3: if b = 0 then
4: The prover sends ϕ : A1 → A2 to the verifier

5: else
6: The prover invokes IsogenyPathToMatrix to obtain the matrix g2 ∈ Mat+2 (O)

corresponding to A2.

7: The prover invokes PowersmoothMatrix to find γ ∈ Mat2(O) and τ, τ′ ∈ Mat1
2(O),

such that N(γ) = 3e and 3e(τtτ) = γt(τ′
t
g2τ′)γ, and γ represents an isogeny path

η : A0 → A2 which is a combination of e (3, 3)-isogenies.

8: The prover invokes MatrixToIsogenyPath to recover from γ the actual (3, 3)-

isogeny path η : A0 → A2. The prover then sends η : A0 → A2 to the verifier.

9: end if
10: The verifier accepts the proof if the returned ϕ is indeed an isogeny A1 → A2, or the

returned η is indeed an isogeny A0 → A2.

In particular, we will give a proposed algorithm for the IsogenyToMatrix problem,

which showed up in step 6 in Algorithm A.2.1.

Algorithm A.2.2 (IsogenyPathToMatrix).
Input: A supersingular elliptic curve E0 defined over Fp2 , O = EndFp

(E0) = Zψ1 + Zψ2 +

Zψ3 + Zψ4, B = O ⊗Z Q, a chain of isogenies A0 = E2
0

φ1−→ A1 → · · ·
φr−→ Ar, where each

φi is a (`i, `i)-isogeny specified by the kernel Ki := ker(φi−1).

Output: For each 1 ≤ i ≤ r, the matrices γi ∈ Mat2(O) and gi ∈ Mat+2 (O), as described in

Proposition 2.2.9.

1: Compute N = ∏r
i=1 `i, and let N = ∏s

j=1 p
ej
j be the prime factorization (so `i ∈ {pj}s

j=1).

2: for j = 1, · · · , s do
3: Compute a basis {Pj,1, Pj,2} of E0[p

ej
j ].

4: Compute the Weil pairing matrix Wj ∈ Mat4(Z/pjZ) with respect to the basis

{(pei−1
i Pj,1, O), (pei−1

i Pj,2, O), (O, pei−1
i Pj,1, (O, pei−1

i Pj,2))} and the product

polarization.

5: Compute δj,1, δj,2, δj,3, δj,4 ∈ Mat2(Z/pjZ), the action of ψ1, ψ2, ψ3, ψ4 on E0[pj] with

respect to the basis {p
ej−1
j Pj,1, p

ej−1
j Pj,2}.

6: end for
7: Set φ = idE2

0
and g = γ = id ∈ Mat2(O).

8: for i = 1, · · · , r do
9: Find a basis {Si,1, Si,2} of Ki.

10: Suppose `i = pj. Solve DLP to get u1, u2, u3, u4 and v1, v2, v3, v4 satisfying

105



Si,1 = u1φ((Pj,1, O)) + u2φ((Pj,2, O)) + u3φ((O, Pj,1)) + u4φ((O, Pj,2)) and

Si,2 = v1φ((Pj,1, O)) + v2φ((Pj,2, O)) + v3φ((O, Pj,1)) + v4φ((O, Pj,2)).

11: Compute Ti,1 = γ(u1(Pj,1, O) + u2(Pj,2, O) + u3(O, Pj,1) + u4(O, Pj,2)) and

Ti,2 = γ(v1(Pj,1, O) + v2(Pj,2, O) + v3(O, Pj,1) + v4(O, Pj,2)).

12: Compute Γ ∈ Mat4(Z/pjZ) from g, and compute W = WjΓ.

. Use the mapping in line 5.

13: if [u1 u2 u3 u4]W[v1 v2 v3 v4]
t 6= 0 then

14: return error. . Implies the kernel is not isotropic.

15: end if
16: List V = {Λ ∈ Mat4(Z/pjZ) | rank(Λ) = 2, Λ[u1 u2 u3 u4]

t = Λ[v1 v2 v3 v4]
t = 0}.

17: Find Λi ∈ V and γi ∈ Mat2(O) such that γi acts as Λi on E2
0[pj] and N(γi) = p2

j .

. If possible, choose Λi and γi such that γi
t = γi.

18: Compute gi = pj(γi
t)−1gγ−1

i , replace g by gi, and replace γ by γiγ.

19: end for
20: return {γi, gi}r

i=1.

For what is relevant to Chapter 2, step 17 can be solved if we can find a principal ideal

generator of ΓMat2(O) + pjMat2(O).

106



Bibliography

[ALV04] A. Agashe, K. Lauter, and R. Venkatesan. Constructing elliptic curves with a
known number of points over a prime field, volume 41, pages 1–18. Fields Institute
Communications, 2004.

[BFS15] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity
of the F5 Gröbner basis algorithm. Journal of Symbolic Computation, 70:49–70,
September 2015.

[BGL11] Reinier Bröker, David Gruenewald, and Kristin Lauter. Explicit CM theory for
level 2-structures on abelian surfaces. Algebra & Number Theory, 5(4):495 – 528,
2011.

[Bis15] Gaetan Bisson. Computing endomorphism rings of abelian varieties of dimen-
sion two. Mathematics of Computation, 84:1977–1989, 01 2015.

[BJW17] E. H. Brooks, Dimitar Jetchev, and B. Wesolowski. Isogeny graphs of ordinary
abelian varieties. Research in Number Theory, 3(28):1–38, 2017.

[Bro93] Bradley Brock. Superspecial curves of genera two and three. PhD thesis, Princeton
University, 1993.

[Brö08] Reinier Bröker. A p-adic algorithm to compute the Hilbert class polynomial.
Mathematics of Computation, 77(264):2417–2435, 2008.

[Buc88] Johannes Buchmann. A subexponential algorithm for the determination of
class groups and regulators of algebraic number fields. Séminaire de théorie des
nombres, Paris, 1989(1990):27–41, 1988.

[Car10] Robert Carls. Fast point counting on genus two curves in characteristic three,
2010.

[CDS20] Wouter Castryck, Thomas Decru, and Benjamin Smith. Hash functions from
superspecial genus-2 curves using richelot isogenies. Journal of Mathematical
Cryptology, 14, 08 2020.

[CGL08] Denis Charles, Eyal Goren, and Kristin Lauter. Cryptographic hash functions
from expander graphs. Journal of Cryptology, 22:93–113, 12 2008.

107



[CKL08] Robert Carls, David Kohel, and David Lubicz. Higher-dimensional 3-adic CM
construction. Journal of Algebra, 319(3):971–1006, 2008.

[CKM97] S. Collart, M. Kalkbrener, and D. Mall. Converting bases with the gröbner walk.
Journal of Symbolic Computation, 24:465–469, 1997.

[CL09] Robert Carls and David Lubicz. A p-Adic Quasi-Quadratic Time Point Count-
ing Algorithm. International Mathematics Research Notices, 2009(4):698–735, 01
2009.

[CO12] Ching-Li Chai and Frans Oort. Abelian varieties isogenous to a Jacobian. Annals
of Mathematics, 176(1):589–635, 2012.

[Coh13] Henri Cohen. A course in computational algebraic number theory. Graduate Texts
in Mathematics. Springer Berlin Heidelberg, 2013.

[CR15] Romain Cosset and Damien Robert. Computing (l, l)-isogenies in polynomial
time on Jacobians of genus 2 curves. Mathematics of Computation, 84(294):1953–
1975, 2015. Accepté pour publication à Mathematics of Computations.

[DJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies. Journal of Mathematical
Cryptology, 8(3):209–247, 2014.

[EHL+18] Kirsten Eisenträger, Sean Hallgren, Kristin Lauter, Travis Morrison, and
Christophe Petit. Supersingular isogeny graphs and endomorphism rings:
Reductions and solutions. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, Advances in Cryptology – EUROCRYPT 2018, pages 329–368, Cham, 2018.
Springer International Publishing.

[EL10] Kirsten Eisentraerger and Kristin Lauter. A CRT algorithm for constructing
genus 2 curves over finite fields. In Arithmetics, geometry, and coding theory
(AGCT 2005), volume 21 of Sémin. Congr., pages 161–176, Soc. Math. France,
Paris, 2010.

[Eng09] Andreas Enge. The complexity of class polynomial computation via floating
point approximations. Mathematics of Computation, 78(266):1089–1107, 2009.

[ET14] Andreas Enge and Emmanuel Thomé. Computing class polynomials for abelian
surfaces. Experimental Mathematics, 23(2):129–145, 2014.

[Fau99] Jean-Charles Faugére. A new efficient algorithm for computing Gröbner bases
(f4). Journal of Pure and Applied Algebra, 139(1):61–88, 1999.

[FGLM93] J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional gröbner bases by change of ordering. Journal of Symbolic
Computation, 16(4):329–344, 1993.

[FL08] David Freeman and Kristin Lauter. Computing endomorphism rings of Jacobians
of genus 2 curves over finite fields, pages 29–66. World Scientific, 2008.

108



[FLR11] Jean-Charles Faugére, David Lubicz, and Damien Robert. Computing modular
correspondences for abelian varieties. Journal of Algebra, 343(1):248–277, 2011.

[FM17] Jean-Charles Faugére and Chenqi Mou. Sparse FGLM Algorithms. Journal of
Symbolic Computation, 80:538–569, 2017.

[FT19] E. V. Flynn and Yan Bo Ti. Genus two isogeny cryptography. In Jintai Ding and
Rainer Steinwandt, editors, Post-Quantum Cryptography, pages 286–306, Cham,
2019. Springer International Publishing.

[GHK+06] P. Gaudry, T. Houtmann, D. Kohel, C. Ritzenthaler, and A. Weng. The 2-Adic
CM Method for Genus 2 Curves with Application to Cryptography. In Xuejia
Lai and Kefei Chen, editors, Advances in Cryptology – ASIACRYPT 2006, pages
114–129, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[GMP19] Zhenchao Ge, Micah B. Milinovich, and Paul Pollack. A note on the least
prime that splits completely in a nonabelian galois number field. Mathematische
Zeitschrift, 292:183–192, 2019.

[Gor97] Eyal Z. Goren. On certain reduction problems concerning abelian surfaces.
Manuscripta Mathematica, 94:33–43, 1997.

[GPS19] Steven Galbraith, Christophe Petit, and Javier Silva. Identification protocols
and signature schemes based on supersingular isogeny problems. Journal of
Cryptology, 33, 03 2019.

[Gra08] A. Granville. Smooth numbers: computational number theory and beyond. In
Algorithmic Number Theory: Lattices, Number Fields, Curves, and Cryptography,
volume 44, pages 267–323, 2008.

[HJ20] Tommy Hofmann and Henri Johnston. Computing isomorphisms between
lattices. Mathematics of Computation, 89(326):2931–2963, November 2020.

[HM06] Emmanuel Hallouin and Christian Maire. Cancellation in totally definite quater-
nion algebras. Journal Fur Die Reine Und Angewandte Mathematik, 2006:189–213,
06 2006.

[Ibu19] Tomoyoshi Ibukiyama. Quinary lattices and binary quaternion hermitian
lattices. Tohoku Mathematical Journal, 71(2):207–220, 2019.

[Igu60] Jun-Ichi Igusa. Arithmetic variety of moduli for genus two. Annals of Mathe-
matics, 72(3):612–649, 1960.

[IKO86] Tomoyoshi Ibukiyama, Toshiyuki Katsura, and Frans Oort. Supersingular
curves of genus two and class numbers. Compositio Mathematica, 57(2):127–152,
1986.

[JW15] Dimitar Jetchev and Benjamin Wesolowski. Horizontal isogeny graphs
of ordinary abelian varieties and the discrete logarithm problem.
https://arxiv.org/abs/1506.00522, 2015.

109



[KL14] Ming Hsuan Kang and Wen Ching Winnie Li. Zeta functions of complexes
arising from PGL(3). Advances in Mathematics, 256:46–103, May 2014.

[KLPT14] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. On the
quaternion -isogeny path problem. LMS Journal of Computation and Mathematics,
17, 06 2014.

[Koh] David R. Kohel. Echidna algorithms: Algorithms for elliptic curves and higher
dimensional analogues. http://iml.univ-mrs.fr/ kohel/alg/index.html.

[Koh96] David Kohel. Endomorphism Rings of Elliptic Curves over Finite Fields. PhD thesis,
University of California, Berkley, 1996.

[Koh08] David R. Kohel. Complex multiplication and canonical lifts. In Algebraic
Geometry and Its Applications, pages 67–83. World Scientific, 2008.

[KV10] Markus Kirschmer and John Voight. Algorithmic enumeration of ideal classes
for quaternion orders. SIAM Journal on Computing, 39(5):1714–1747, 2010.

[Lan87] Serge Lang. Elliptic Functions, volume 112 of Graduate Texts in Mathematics.
Springer-Verlag New York, 1987.

[Le94] M. Le. Upper bounds for class numbers of real quadratic fields. Acta Arithmetica,
68(2):141–144, 1994.

[LL06] Reynald Lercier and David Lubicz. A quasi quadratic time algorithm for
hyperelliptic curve point counting. The Ramanujan Journal, 12:399–423, 2006.

[LO77] J. C. Lagarias and A. M. Odlyzko. Effective versions of the Chebotarev density
theorem. In A. Fröhlich, editor, Algebraic Number Fields: L-functions and Galois
Properties, pages 409–464. Academic Press, London, 1977.

[LO98] Ke-Zheng Li and Frans Oort. Moduli of supersingular abelian varieties, volume
1680. Springer Science & Business Media, 1998.

[Lou03] Stephane Louboutin. Explicit lower bounds for residues at s = 1 of Dedekind
zeta functions and relative class numbers of CM-fields. Transactions of the
American Mathematical Society, 355(08):3079–3098, 2003.

[LST64] J. Lubin, J-P. Serre, and J. Tate. Elliptic curves and formal groups. Lecture
notes prepared in connection with the seminars held at the Summer Institute of
Algebraic Geometry, Whitney Estate, Woods Hole, Massachusetts, July 6-July
31, 1964.

[LV15] Kristin Lauter and Bianca Viray. An arithmetic intersection formula for denom-
inators of Igusa class polynomials. American Journal of Mathematics, 137(2):497–
533, 2015.

[LY11] Kristin Lauter and Tonghai Yang. Computing genus 2 curves from invariants
on the Hilbert moduli space. Journal of Number Theory, 131(5):936–958, 2011.
Elliptic Curve Cryptography.

110



[Mes72] William Messing. The Crystals Associated to Barsotti-Tate Groups: With Applica-
tions to Abelian Schemes, volume 264 of Lecture Notes in Mathematics. Springer-
Verlag Berlin Heidelberg, 1972.

[Mes91] Jean-François Mestre. Construction de courbes de genre 2 à partir de leurs modules,
pages 313–334. Birkhäuser Boston, Boston, MA, 1991.

[Mil08] J.S. Milne. Abelian varieties. http://www.jmilne.org/math/CourseNotes/av.
html, 2008.

[Mum66] David Mumford. On the equations defining abelian varieties. I. Inventiones
Mathematicae, 1(4):287–354, 1966.

[Mum67] David Mumford. On the equations defining abelian varieties. II. Inventiones
Mathematicae, 3(2):75–135, 1967.

[Mum06] David Mumford. Tata Lectures on Theta II: Jacobian theta functions and differential
equations. Modern Birkhäuser Classics. Birkhäuser, 2006.

[Nat16] National Institute of Standards and Technology. Post-quantum cryptography.
https://csrc.nist.gov/projects/post-quantum-cryptography, 2016.

[OU73] F. Oort and K. Ueno. Principally polarized abelian variaties dimension two or
three are Jacobian varieties. Journal of the Faculty of Science. University of Tokyo.
Section IA. Mathematics, 20(3):377–381, 1973.

[Pag14] Aurel Page. An algorithm for the principal ideal problem in indefinite quater-
nion algebras. In Algorithmic Number Theory Symposium ANTS XI, volume 17 of
LMS Journal of Computation and Mathematics, pages 366–384, GyeongJu, South
Korea, August 2014.

[Rei03] Irving Reiner. Maximal Orders. London Mathematical Society monographs
series: London Mathematical Society. Clarendon Press, 2003.

[RL13] Damien Robert and Kristin Lauter. Improved CRT algorithm for class polyno-
mials in genus 2. In Tenth Algorithmic Number Theory Symposium, volume 1 of
The Open Book Series, pages 437–461, 2013.

[Shi79] Tetsuji Shioda. Supersingular k3 surfaces. In Algebraic geometry, pages 564–591.
Springer, 1979.

[Shi98] Goro Shimura. Abelian Varieties with Complex Multiplication and Modular Func-
tions. Princeton University Press, 1998.

[Sil94] Joseph Silverman. Advanced Topics in the Arithmetic of Elliptic Curves, volume
151 of Graduate Texts in Mathematics. Springer, New York, NY, 1994.

[Spa94] Anne-Monika Spallek. Kurven vom Geschlecht 2 und ihre Anwendung in Public-
Key-Kryptosystemen. PhD thesis, Institut für Experimentelle Mathematik (Essen),
1994.

111

http://www.jmilne.org/math/CourseNotes/av.html
http://www.jmilne.org/math/CourseNotes/av.html
https://csrc.nist.gov/projects/post-quantum-cryptography


[Spr19] Caleb Springer. Computing the endomorphism ring of an ordinary abelian
surface over a finite field. Journal of Number Theory, 202:430–457, 2019.

[Str10] Marco Streng. Complex Multiplication of Abelian Surfaces. PhD thesis, Universiteit
Leiden, 2010.

[Str14] Marco Streng. Computing igusa class polynomials. Mathematics of Computation,
83(285):275–309, 2014.

[Tak18] Katsuyuki Takashima. Efficient algorithms for isogeny sequences and their
cryptographic applications. In Mathematical Modelling for Next-Generation Cryp-
tography: CREST Crypto-Math Project, pages 97–114. Springer Singapore, Singa-
pore, 2018.

[Voi20] John Voight. Quaternion Algebras. Graduate Texts in Mathematics. Springer
International Publishing, 2020.

[vW99] Paul B. van Wamelen. Examples of genus two CM curves defined over the
rationals. Mathematics of Computation, 68(225):307–320, 1999.

[Wat69] William C. Waterhouse. Abelian varieties over finite fields. Annales scientifiques
de l’École Normale Supérieure, Ser. 4, 2(4):521–560, 1969.

[YY09] Chia-Fu Yu and Jeng-Daw Yu. Mass formula for supersingular abelian surfaces.
Journal of Algebra, 322(10):3733–3743, 2009.

112



Vita

Hao-Wei Chu

The author was born 1986 in Kaohsiung, Taiwan. He went to National Taiwan Univer-

sity and obtained B.S. in Electrical Engineering and Mathematics in 2006. He then entered

the Graduate Institute of Communication Engineering in National Taiwan University with

a Master degree in 2008. After working for a while, he decided to return to mathematics

and earned a Master degree in Mathematics in National Taiwan University in 2013 under

the supervision of Professor Jing Yu. He then got an opportunity to study as a research

trainee in Institute of Mathematics, Academia Sinica in Taiwan, under the supervision of

Professor Chia-Fu Yu. He then enrolled in the mathematics Ph. D. program at Penn State

in 2015 and studied number theory, arithmetic geometry, and cryptography under the

supervision of Professor Kirsten Eisenträger.


	List of Figures
	Acknowledgements
	Introduction
	Isogeny-Based Cryptosystems on Abelian Surfaces
	Finding CM Abelian Surfaces via the p-Adic Approach

	Principal Ideal Generator Problems over Matrix Rings of Quaternion Algebras
	Introduction
	Isogeny-based cryptosystems
	Superspecial abelian surfaces and matrix rings over quaternion algebras
	Outline

	Background
	General theory of central simple algebras
	Quaternion algebras and supersingular elliptic curves
	Central simple algebras and superspecial abelian varieties
	Lattices over a local field and Bruhat-Tits buildings

	The Principal Ideal Generator Algorithm
	The Global Reductions of Ideals
	The G-reduction structure
	The GReduce process

	The local reduction process
	The compatibility between ideals and lattices actions
	The l-reduction structure: the definition
	Computing the l-reduction structure: finding the filtration of ideals and lattices
	Finding transitive actions in the chamber
	Computing the l-reduction structure: finding transitive actions on P0
	Finding a transitive action on P1 and beyond

	The LReduce algorithm

	Putting everything together: the validity and the complexity analysis
	Experimental results
	The smoothing process and the global reduction
	The local reduction and the Bruhat-Tits building

	Future directions

	Computing Igusa Polynomials via p-Adic Methods
	Introduction
	The case of genus 1: CM elliptic curves and Hilbert class polynomials
	The case of genus 2: CM hyperelliptic Jacobians and Igusa class polynomials
	Outline

	Background
	Moduli of Abelian Surfaces and Moduli of Hyperelliptic Curves
	Principally Polarized Abelian and Jacobian Varieties; The Moduli Problem
	The Igusa Invariants
	The Igusa Class Polynomial

	The Theory of CM
	CM elliptic curves
	CM abelian varieties

	Canonical Lifting of Hyperelliptic Curves
	Theta Functions

	The Main Algorithm
	Finding a Hyperelliptic Curve over a Finite Field with CM by a Maximal Order
	Finding suitable finite field
	Finding a hyperelliptic Jacobian with the correct endomorphism algebra
	Finding a hyperelliptic Jacobian with the correct endomorphism ring
	Discussing some potential improvements

	Computing the Canonical Lift of a Hyperelliptic Jacobian over a Finite Field
	Computing the 2-theta Null Points over Fpr
	Computing the 2p-theta Null Points over Fpr
	Setting up the equations
	Computing the 2p-theta null point with our modifications

	Computing the 2p-theta Null Points over Qpr

	Recovering the Igusa Class Polynomials from the Canonical Lift
	Examples
	Example 1: [8,4,2]
	Example 2: [24,60,804]

	The Complexity Analysis of the Main Algorithm
	Issues on Curve Finding
	Finding the Underlying Finite Field
	Finding a Curve over Given Finite Field via Computing Endomorphism Rings

	From 2-theta Null Points to 2p-theta Null Points
	From 2p-theta Null Points over Finite Fields to 2p-theta Null Points over Local Fields
	Recovering Igusa Class Polynomials
	Using the Actions of Ideal Classes a in Cl(K)
	Using the LLL algorithm to Find Minimal Polynomials


	Future directions

	A Proposal of a Signature Scheme in Genus 2 
	A sketch of Galbraith et al.'s signature scheme for supersingular elliptic curves
	A generalization to genus 2

	Bibliography

