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Birational maps and Nori motives

Noémie C. Combe, Yuri I. Manin, and Matilde Marcolli

The monograph by A. Huber and S. Müller-Stach [in: Ergebnisse der Mathematik und ihrer

Grenzgebiete. 3. Folge, (2017), 207–232] contains a systematic exposition of Nori motives that

were developed and studied as the “universal (co)homology theory” of algebraic varieties (or

schemes), according to the prophetic vision of A. Grothendieck. Since then, some research was

dedicated to applications of Nori motives in various domains of algebraic geometry: geometries

in characteristic 1 (see the work of J. F. Lieber, Yu. I. Manin, and M. Marcolli [in: Facets of

Algebraic Geometry. Vol. II, (2017), 147–227] and Yu. I. Manin and M. Marcolli [in: Dynamics:

topology and numbers (202), 27–56]), absolute Galois group (see the article of Yu. I. Manin and

M. Marcolli [SIGMA Symmetry Integrability Geom. Methods Appl. (2020), article no. 038]),

persistence formalism (see Yu. I. Manin and M. Marcolli, [Math. Comput. Sci. (2020), 77–

102]).

In this chapter, we sketch an approach to the problems of equivariant birational geometry

developed by M. Kontsevich and Yu. Tschinkel [Invent. Math. (2019), 415–432], where Burn-

side invariants were introduced. We are making explicit the role of Nori constructions in this

environment.

1 Introduction and summary

1.1 Birational maps and their symmetries

Our main objects of study here are stable birational maps, mostly between algebraic

varieties defined over a subfield of C. The general restriction of stability is discussed

in [2], and the main results about natural categories/“towers” of birational maps we

use here are given in [1] and [4].

Symmetries of stable maps and their moduli spaces appear in various contexts.

The celebrated Grothendieck approach to the study of the absolute Galois group GQ

of the field of all algebraic numbers Q bridged geometry and arithmetic via the tower

of stable étale maps to P1 n ¹0; 1;1º. More generally, for any integral scheme X , the

exact sequence

1! �1.X ˝Q Q/! �1.X/! GQ ! 1

merges actions of what we call arithmetic and geometric symmetries.
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In [10], in place of étale maps P1 n ¹0; 1;1º we considered moduli spaces of

stable curves of genus zero with marked points, and later demonstrated that their

geometric symmetries can be approached through the Nori motivic structures of these

moduli spaces. In this context, the exact sequence of fundamental groups above is

replaced by a subextension of the “motivic fundamental groups”

1! Gmot.Q;Q/! Gmot.Q;Q/! GQ ! 1:

Here we focus on similar constructions, but starting with towers of birational maps

replacing towers of stable moduli spaces above.

1.2 Burnside groups and Nori diagrams

In [1,4], and other papers it was shown that the problem of classification of birational

maps can use information encoded in the tower of natural maps structurally similar to

the tower of stable genus zero moduli spaces M 0;n. Using these natural maps, in the

recent article [18], A. Kresch and Yu. Tschinkel are imposing an additional geometric

symmetry group from the start and then showing that this geometric symmetry can

be encoded by certain analogues of “modular symbols”.

In this note we demonstrate that the Kresch–Tschinkel modular symbols defined

through Burnside groups, also have a natural description in terms of Nori motivic

structures. Briefly, we prove the following theorem:

Theorem 1.3. Nori stratifications of appropriate towers of birational maps can be

enriched to the homological Nori geometric diagram by Burnside groups of strata.

For a more precise statement, see Theorem 4.4.

1.4 Bost–Connes structures, Burnside groups, and modular symbols

Finally, in the last section we consider the Bost–Connes formalism, which was ori-

ginally introduced in [5] to connect arithmetic zeta-functions of fields of algebraic

numbers with physicists’ studies of classical and quantum behaviour of physical

systems with infinite number of degrees of freedom. More recently, an arithmetic

form of the Bost–Connes algebra was shown to encode important aspects of F1-

geometry, [11].

In [22] we presented an enrichment of (equivariant) Burnside groups through a

Bost–Connes algebra structure and associated categorifications. This type of Bost–

Connes structures and categorification, and their relevance in the setting of F1 geo-

metry, were further investigated in [19].

The integral Bost–Connes system, as defined in [11], consists of the ring ZŒQ=Z�

together with a semigroup homomorphism � WN! End.ZŒQ=Z�/ and additive maps



Birational maps and Nori motives 763

�nWZŒQ=Z�! ZŒQ=Z� satisfying

�n ı �n D n id; �n ı �n D n�n;

with �n the idempotent in QŒQ=Z� given by �n D
1
n

P

nrD0 e.r/, for ¹e.r/ºr2Q=Z the

standard basis of ZŒQ=Z�.

It is shown in [11] that the integral Bost–Connes system is a model of F1-geome-

try, encoding the system of extensions F1n . For that reason, one expects that this kind

of structure will appear in several different arithmetic contexts, often together with

some form of categorification of the Bost–Connes algebra, as discussed in [19,22,23].

In Section 5 of this paper we prove that a similar type of Bost–Connes structure

exists at the level of the Kontsevich–Pestun–Tschinkel modular symbols of [16].

Our main result in Section 5 is the following.

Theorem 1.5. The Z-modules Mn.Z=NZ/ of Kontsevich–Pestun–Tschinkel modular

symbols, for the tower of Z=NZ ordered by divisibility, are endowed with a Bost–

Connes structure consisting of endomorphisms �n and linear maps �n satisfying the

Bost–Connes relations.

See Lemma 5.7, Lemma 5.8, and Proposition 5.9 for more precise statements and

a detailed proof.

1.6 Summary

The paper is organized as follows. Section 2 contains a short dictionary of graphic

presentations of categories and functors, including the definition of a category of

blowups. Nori diagrams and representations are discussed in Section 3, with focus

on diagrams associated to blowups. Burnside groups are discussed in Section 4, con-

taining also the last steps of the proof of Theorem 1.3, which identifies the associated

class of Nori diagrams. Section 5 is dedicated to Bost–Connes structures. We first

show how OZ-equivariant Kontsevich–Tschinkel Burnside rings carry a Bost–Connes

structure compatible with the analogous structure on the equivariant Grothendieck

ring obtained in [19]. We then focus on the Kontsevich–Pestun–Tschinkel modular

symbols and we identify the corresponding Bost–Connes structure.

2 Background

2.1 Categories and their diagrams

A diagramD is family .V .D/;E.D/; @/ where @ (boundary map) is an embedding of

E.D/ (edges) into V.D/ � V.D/ (ordered pairs of vertices). Each category defines

its diagram, whose edges are its morphisms, and vertices are its objects.
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Conversely, diagrams themselves form the objects of a category, whose morph-

isms imitate functors.

For a more detailed discussion of combinatorics of categories based upon dia-

grams, we refer the reader to [20, Section 0.2] and [8, Section 5]. Here we recall only

the definition of posets in groupoids ([8, Definition 5.2]).

Definition 2.2. A category P G is called a poset in groupoids, if

(a) for any object X of P G , the full subcategory consisting of all objects iso-

morphic X , is a groupoid, that is, all morphisms in it are isomorphisms;

(b) whenever X1 and X2 are not isomorphic and Hom.X1; X2/ ¤ ;, then

Hom.X1; X2/ has a single orbit with respect to the left action of the group

Hom.X1; X1/ � Hom.X2; X2/
op

combining precomposition and postcomposition.

A part of posets in groupoids consists of thin categories C such that if any set

HomC .X1; X2/ has cardinality � 1, and if both HomC .X1; X2/ and HomC .X2; X1/

are non-empty, then X1 D X2.

2.3 Diagrams of effective pairs ([14, Chapter 9, Definition 9.1.1.])

Fix a subfield k of C and define the diagram Pairseff of effective pairs over k in the

following way.

(a) Vertices of Pairseff are triples .X; Y; i/ where X is a variety over k, Y � X

is a closed subvariety, and i 2 Z.

(b) There are two types of edges of Pairseff: functoriality edges and coboundary

edges:

(b1) Each morphism f WX !X 0 with f .Y /� Y 0 determines edges denoted

by .f �; i/ starting at .X; Y; i/ and landing at .X 0; Y 0; i C 1/ for every

i 2 Z.

(b2) Each ladder Z � Y � X of closed subvarieties determines edges .@; i/

starting at .Y;Z; i/ and ending at .X; Y; i C 1/ for every i 2 Z.

Whenever one needs to consider tensor structures on the categories of diagrams,

one has to consider (super)gradings of such diagrams, as discussed in [14, Chapter 8].

2.4 Categories of blowups

We will now describe some categories of good blowups, following [1, Section 1.3]

(with somewhat changed terminology and notation).
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We will call a “good” scheme what in the Introduction to [1] is called a “noether-

ian quasi excellent (qe) regular scheme”.

Consider a morphism of good schemes 'WX1 ! X2, which is the blowing up of

a coherent sheaf of ideals I � OX2
(for the relevant definitions in this context, see

[1, Section 2.1.8]). Alternatively, we will call such ' the blowing up of the closed

subscheme defined by the equations f D 0 for all f 2 I .

Assume also given normal crossings divisorsDi � Xi such thatD1 D '
�1.D2/.

Let U be the maximal open subscheme of X2 upon which the restriction of I is

its structure sheaf. It follows that ' induces an isomorphism '�1.U /! U .

Definition 2.5. A good morphism is the structure represented by a set of data

.Xi ;Di ; I; '/ as above.

In particular, identical morphisms, and generally, automorphisms, are good: for

them D1 D D2 D ;.

Consider a finite connected poset in groupoids M whose objects are data

.X;D; I / and morphisms are good morphisms ' in the sense discussed above.

Consider the diagram (with identities) D.M/ whose vertices are objects of M,

oriented edges are morphisms of M, and orientation of X ! Y is from X to Y . Call

edges corresponding to isomorphisms (in particular, identities) horizontal, and other

edges vertical.

Form also the following quotient of D.M/, which we denote by T .M/: vertices

of T .M/ are isomorphisms classes of M, and oriented edges of T .M/ are orbits of

non-empty sets HomM.X1; X2/ with respect to the left action of the group

Hom.X1; X1/ � Hom.X2; X2/
op

combining precomposition and postcomposition, as in Definition 2.2 above. We omit

edges corresponding to identities.

Call an edge X1 ! X2 in T .M/ indecomposable, if the respective morphism

cannot be expressed as composition of other morphisms.

In an important particular case, the diagram T .M/ is in fact a tree oriented down-

wards. More precisely, starting with any of its vertexX0, we may consider the longest

sequence of vertices (“a path down”)

X0 ! X1 ! � � � ! Xh:

Assume that there is only one vertex from which any longest path down can start.

Definition 2.6. One object of the category Blrs (the regular surjective category of

blowups, cf. [1, Section 1.3]) is a triple .X2; I;D2/ associated to a good morphism '

as above. We can equivalently write the objects as .Xi ;Di ; I; '/.
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A morphism between such objects of Blrs

.X 0
i ;D

0
i ; I

0; '0/! .Xi ;Di ; I; '/

is represented by a regular and surjective morphism

gWX 0
2 ! X2

satisfying the following conditions:

g�1.D2/ D D
0
2; g�.I / D I 0:

Remark. From this definition one can deduce that g induces a canonical isomorph-

ism

X 0
1 ! X1 �X2

X 0
2;

and moreover, D0
1 is the inverse image of D1 with respect to the composition of

this isomorphism and projection X1 �X2
X 0

2 ! X1 (cf. [1, Definition 1.3.1]). This

presentation may be helpful for defining and studying compositions of morphisms

between objects of Blrs.

In the next section, we will be studying posets of groupoids as above from the

viewpoint of Nori theory, as presented in [20, Section 1], but before continuing with

this part, we need one more definition.

2.7 Simple normal crossings divisors

Let S be a finite set. Consider a family ¹Ds � X j s 2 Sº of closed immersions.

Following [4, Definition (3.1)], we will call it an S -labelled simple normal crossings

divisor on X , if for any finite subset S 0 � S the intersection
T

s2S 0 Ds is smooth of

codimension cardS 0.

3 Nori geometric diagrams of blowups

3.1 Categories M

We will now introduce a class of geometric categories that will be the starting point

for our enrichment of birational maps by Nori motives. The notation M for a gen-

eric member of this class should remind the reader that we generalize here the basic

example of stable moduli spaces of genus zero and their canonical stratifications stud-

ied in [10]. Here are the basic restrictions imposed upon M.

(a) Objects of M are some objects of Blrs.
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(b) For any object .X2; I; D2/ (cf. Definition 2.6 above) of M, the divisor D2

is a simple normal crossings divisor. Sets of labels S , together with their

functorial behaviour, may be included as separate elements of the structure

of M.

3.2 Two classes of morphisms in M

Fix a category M as above. Let X WD .X2; IX ; D1/ and Y WD .Y2; IY ; D2/ be two

objects of M.

Assume that we have a locally closed embedding Y2 ,! X2 which extends in

a natural way to a morphism between some blowups of X2 and Y2, respectively.

The resulting commutative diagrams will be declared some new morphisms in M,

“morphisms of closed embeddings”: cf. [10, Section 1.5]

Similarly, “morphisms of complements to locally closed embeddings” are exten-

sions of this definition to X2 n Y 2 ,! X2, where Y 2 denotes the closure of Y2 in X2.

They are presented below as left and right sides of the commutative diagram:

Y1

'Y

��

� � // X1

'X

��

X1 n Y 1

'XnY

��

? _oo

Y2
� � // X2 X2 n Y 2:? _oo

Subschemes Yi ,! Xi (resp. Xi n Y i ,! Xi ), i D 1; 2, will be called locally closed

(respectively, open) strata of Xi .

One can then construct a category of diagrams, as recalled in Section 2 above,

using vertices and edges given by objects of M and the morphisms described above

as functoriality edges, together with boundary edges as discussed in Section 2.3.

In the case of moduli spaces considered in [10], this construction of diagrams

of blowups is related to some other interesting geometric structures, of which we

mention two examples (see [9] for additional discussion).

Example 3.3 (Kapranov’s presentation ofM 0;n, n � 3.). This presentation ofM 0;n,

n � 3, as a result of successive blowups of projective subspaces in Pn�3 was given

in [15], and then used in [6] for calculating of regular automorphisms of these stable

modular spaces.

Example 3.4 (Connes–Kreimer Hopf algebra of rooted trees). The Connes–Kreimer

Hopf algebras of rooted trees and of Feynman graphs were introduced in [12] in the

context of renormalization of perturbative quantum field theories.

Later, using the operadic formalism, F. Chapoton and M. Livernet have shown

that the Connes–Kreimer Hopf algebra can be equivalently formulated in terms of
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a “incidence Hopf algebra” associated to an operad structure, where the coproduct

operation is based on an ordering relation on subforests, [7].

In [9, Section 2], we considered such an incidence Hopf algebra in a geometric

context, associated to the strata of the moduli spaces M 0;n, labelled by trees. Using

the result of [7], we related it to the Connes–Kreimer Hopf algebra of rooted trees,

and we showed how to incorporate certain Galois symmetries in the structure.

4 Nori motives and Burnside groups

Below we work over a fixed field k of characteristic 0.

Definition 4.1 ([17, Section 4, Definition 10]). Let B (“base scheme”) be a separated

scheme of finite type over k.

Consider a smooth B-scheme f WX ! B. If U ,! X is an open embedding with

U D X , then f jU WU ! B is also a smooth B-scheme.

(a) Define the set BurnC.B/ as the set of equivalence classes of smooth B-

schemes modulo equivalence relation generated by f � f jU as above. We

may denote the respective equivalence class by Œf WX ! B�, or simply Œf �.

(b) Define the monoid structure C upon BurnC.B/ as generated by disjoint

union of smooth B-schemes.

It generates the respective Grothendieck group Burn.B/.

(c) Both Burnside group and Burnside monoid a naturally graded: class of X of

pure dimension n belongs to BurnC;n.B/ and Burnn.B/

These constructions are covariant functors of B: a morphism gWB 0! B induces

maps g�Œf � WD Œg ı f �.

4.2 Boundary homomorphisms

Start with a pair Z � X , in which X is an equidimensional algebraic variety, and Z

its closed subvariety of strictly lesser dimension. Moreover, we will assume that X is

reduced and separated, but nothing more.

Theorem 4.3 ([17, Section 4, Theorem 11]). On the set of Burnside groups of mem-

bers of such pairs Z � X one can define graded boundary elements

@Z.X/ 2 Burndim.X/�1.Z/

satisfying two requirements:
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(a) For any proper surjective morphism gWX 0! X inducing birational equival-

ence between X and X 0 and such that Z0 D g�1.Z/, we have

@Z.X/ D .gjZ/�.@Z0.X 0//:

(b) IfX is smooth, andZ is an S -labelled simple normal crossings divisor in the

sense explained in Section 2.4 above, then we have an explicit presentation

@Z.X/ D �
X

;¤T �S

.�1/card T ŒfT �

where fT WDT � Acard T �1 ! Z is the composition of projection to DT and

its inclusion into Z.

Moreover, these two requirements uniquely determine boundary elements.

We can now state precisely and prove Theorem 1.3.

Consider a category M as in Section 3.1 above, with its objects graded by dimen-

sion. For each object B of M, construct its Grothendieck–Burnside group Burn.B/.

Denote by GrAb the category of graded abelian groups.

Theorem 4.4. The natural degree zero map Ob.M/! Ob.GrAb/WB 7! Burn.B/

extends to the homological Nori geometric diagram, in which boundary edges cor-

respond to three step towers of closed embeddings Z � Y � X . The morphism

.X; Y; i C 1/! .Y;Z; i/

sends boundary element @Y .X/ to @Z.Y /. On obtains in this way a category MBurn.B/

of Nori motivic sheaves over B.

Proof. Given a base scheme B, we can consider a category MB of Nori motivic

sheaves in the sense of [3]. This is defined as the abelian category constructed from a

Nori diagram D.B/ with the following vertices and edges:

• Vertices are given by elements of the form

.f WX ! B; Y; i; w/

where f WX ! B is a smooth B-scheme, with an embedding Y ,! X , with f jY
as structure map f jY WY ! B, and integers i 2 N, w 2 Z.

• Edges are of three types:

(1) edges h�W .X 0!B; Y 0; i;w/! .X !B; Y; i;w/ associated to morph-

isms hW .X ! B; Y /! .X 0 ! B; Y 0/;

(2) connecting morphisms @W .Y ! B; Z; i; w/! .X ! B; Y; i C 1; w/

associated to a chain of embeddings Z ,! Y ,! X ;
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(3) twisted projections .X; Y; i; w/! .X � P1; Y � P1 [ X � ¹0º; i C 2;

w C 1/.

In particular, we can restrict to considering equivalence classes of diagrams in D.B/

where vertices .f WX ! B; Y; i; w/ and .f jU WU ! B; Y \ U; i; w/ are identified,

for j WU ,! X an open embedding with NU D X , and edges of type (1) are identified

if they fit commutative diagrams of the form

U
hjU

//

j

��

U 0

j 0

��

X
h

// X 0

where all the maps are compatible with the structure maps to B, not shown in the

diagram. Edges of type (2) descend to edges of type (2) on the quotient diagrams

by Theorem 4.3 above, and twisted projections also induce corresponding edges. We

can then use this resulting class D.B/=� of Nori diagrams to form a new category

MBurn.B/ of Nori motivic sheaves over B.

5 Bost–Connes system and Burnside groups

As we recalled in Section 1.4, the integral Bost–Connes algebra consists of the ring

ZŒQ=Z� together with a semigroup of endomorphisms �n and partial inverses given

by linear maps, designed to model the arithmetic Frobenius and Verschiebung maps

in characteristic one. Thus, the presence of a Bost–Connes structure (at the level of

algebras or of a categorification) can be regarded as a sign of the existence of an

underlying arithmetic structure over F1. In [19] and [22] several such generaliza-

tions and categorifications of the Bost–Connes algebra were constructed based on
OZ-equivariant Grothendieck rings, related to the original Bost–Connes algebra by

equivariant Euler characteristics. The categorifications were obtained either through

the assembler categories introduced by I. Zakharevich in [24, 25], which categorify

the scissor congruence relation of Grothendieck rings, or through categories of Nori

motives.

In [22] it was shown that there is a Bost–Connes system of endomorphisms acting

on the yZ-equivariant version of the Kontsevich–Tschinkel Burnside ring. This is a

lift of the integral Bost–Connes algebra of [11], through the map to the graded ring

associated to the filtration of the Grothendieck ring by dimension, which in turn maps

to the integral Bost–Connes algebra through the equivariant Euler characteristic.

On the other hand, in [19] it was also shown that the lift of the Bost–Connes

algebra to the yZ-equivariant Grothendieck ring of varieties can be lifted higher, to a
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yZ-equivariant category of Nori motives, where it maps through the fibre functor to

the categorification of the Bost–Connes system constructed in [23].

We review here briefly the setting of [19] and [22], and then we show that a sim-

ilar categorification of the Bost–Connes system via Nori motives can be constructed

in the case of the Kontsevich–Tschinkel Burnside group. As was done in [19] for

the Grothendieck ring, we work here with the relative version of the Kontsevich–

Tschinkel Burnside ring considered in the previous sections, and with its yZ-equi-

variant version.

5.1 Relative equivariant Kontsevich–Tschinkel Burnside group

In the previous sections we considered a base scheme B and the Kontsevich–Tschinkel

Burnside group Burn.B/.

Here we introduce its equivariant version Burn
yZ.B/ where now B is endowed

with a residually finite action of yZ. The last condition means that this action factors

through some finite Z=NZ-quotient of yZ.

The Burnside group Burn
yZ.B/ then is generated by equivalence classes of smooth

B-schemes f WX ! B where X is also endowed with a residually finite action of yZ,

and f is yZ-equivariant. Equivalence classes correspond to the equivalence relation

f � f jU where U ,! X is a yZ-equivariant dense open embedding.

As in [19], we will adopt the notation .B; ˛B/ for the base scheme endowed with

action ˛B W yZ �B ! B, and we similarly write .X; ˛X / and f W .X; ˛X /! .B; ˛B/

to keep track explicitly of the yZ-actions.

5.2 Lifting the Bost–Connes system

We will use notation and conventions of [19], which are briefly repeated below.

Put Zn WD SpecKn where K is our ground field.

Given .B; ˛B/ as above, denote by ˆ.˛B/ the yZ-action upon B � Znthrough

composition with geometric Verschiebung map: see [19, (2.12) and (2.13)]. Namely,

for �N a primitive N th root of unity, we write

Vn.�Nn/ D

0

B

B

B

B

B

@

0 0 � � � 0 ˛.�N /

1 0 � � � 0 0

0 1 � � � 0 0
:::

:::
:::

0 0 � � � 1 0

1

C

C

C

C

C

A

so that we can write the Verschiebung map as Vn.�Nn/ � x D .x; aiC1/ for i D

1; : : : ; n � 1 and Vn.�Nn/ � x D .˛.�N / � x; a1/ for i D n, so that it satisfies
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Vn.�Nn/
n D ˛.�N / � IdZn

. The resulting action ˆn.˛/ of OZ on B �Zn that factors

through Z=NnZ is specified by setting

ˆn.˛/.�Nn/ � .x; a/ D .Vn.˛.�N // � x/a;

where for x 2 B we write x D .x; ai /ai 2Zn
D .xi /

n
iD1 for the subset ¹xº � Zn �

B �Zn.

This action is residually finite as well: if the action ˛B of yZ factors through

Z=NZ, then the action ˆ.˛B/ factors through Z=NnZ. Denote by �n the endo-

morphism of multiplication by n.

Now, by lifting �n (and avoiding extra notation), define the maps �n and Q�n as

follows:

�nW .f W .X; ˛X /! .B; ˛B// 7! .f W .X; ˛X ı �n/! .B; ˛B ı �n//;

Q�nW .f W .X; ˛X /!.B; ˛B// 7!
�

f � idW .X �Zn; ˆn.˛X //!.B �Zn; ˆn.˛B//
�

:

Proposition 5.3. The maps above induce ring homomorphisms

�nWBurn
yZ.B; ˛B/! Burn

yZ.B; ˛B ı �n/

and group homomorphisms

Q�nWBurn
yZ.B; ˛B/! Burn

yZ.B �Zn; ˆn.˛B//:

For proofs, see [19, Theorem 3.15].

The induced morphisms of the Kontsevich–Tschinkel Burnside group lift the

maps �n and Q�n of the integral Bost–Connes algebra of [11] in the following way.

Proposition 5.4. The action of the �n and Q�n on the Burn
OZ.B; ˛B/ is compatible

with the �n and Q�n constructed in [19] on the Grothendieck ringsK
OZ
0 .B;˛B/, through

the morphism Burn
OZ.B; ˛B/! grK

OZ
0 .B; ˛B/ to the associated graded object with

respect to filtration by dimension.

Proof. The maps �n and Q�n on K
OZ
0 .B; ˛B/ are constructed in [19] using the same

formulas as above. These preserve the filtration by dimension, since the schemes Zn

are zero dimensional. Thus, the map Burn
OZ.B; ˛B/! grK

OZ
0 .B; ˛B/ intertwines the

action of the �n and Q�n on the Burnside ring and on the Grothendieck ring.

It is also shown in [19, Theorem 2.11] that the actions of �n and Q�n onK
OZ
0 .B;˛B/

are compatible with the �n and Q�n acting on ZŒQ=Z�, through an equivariant Euler

characteristic map.
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5.5 Equivariant Nori motives

Given a base scheme B with a residually finite OZ-action ˛B , we can consider, as in

[19], Section 7, a category M.B;˛B/ of OZ-equivariant Nori motivic sheaves. This is

defined as the abelian category constructed from a Nori diagram D.B; ˛B/ with the

following vertices and edges:

• Vertices are given by elements of the form

.f W .X; ˛X /! .B; ˛B/; .Y; ˛X jY /; i; w/

where f W .X; ˛X / ! .B; ˛B/ is a smooth OZ-equivariant B-scheme, with a OZ-

equivariant embedding .Y; ˛X jY / ,! .X; ˛X /, and i 2 N, w 2 Z.

• Edges are of three types:

(1) edges h�W .X 0!B; Y 0; i;w/! .X !B; Y; i;w/ associated to morph-

isms hW .X ! B; Y /! .X 0 ! B; Y 0/;

(2) connecting morphisms @W .Y ! B; Z; i; w/! .X ! B; Y; i C 1; w/

associated to a chain of embeddings Z ,! Y ,! X ;

(3) twisted projections .X; Y; i; w/! .X � P1; Y � P1 [ X � ¹0º; i C 2;

w C 1/.

As was shown in [19], the maps �n and Q�n from above induce functors of the

categories of Nori motivic sheaves considered above, with

�nWM.B;˛B/ !M.B;˛Bı�n/

Q�nWM.B;˛B/ !M.B�Zn;ˆn.˛B//:

The functors �n are compatible with the monoidal structure, but Q�n are not, as dis-

cussed in [19].

By construction, the Bost–Connes structure on the categories M.B;˛B/ of

Nori motives is compatible with those discussed above on K
OZ
0 .B; ˛B/ and on

Burn
OZ.B; ˛B/. In particular, the same construction can also be applied to the OZ-

equivariant version of the Nori motives considered in Theorem 4.4, by working with

the OZ-equivariant version MBurn.B;˛B/ of the category MBurn.B/.

5.6 The Bost–Connes structure of the Kontsevich–Pestun–Tschinkel modular

symbols

As summarised above, in [19] and [22] we considered various lifts of the Bost–

Connes algebra to Grothendieck rings, assemblers, spectra, and Nori motives, based

on varieties with good actions of OZ. This setting includes the case of equivari-

ant Kontsevich–Tschinkel Burnside ring and associated assembler and Nori motives
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described here in the previous subsections. There is another setting in birational geo-

metry where the Bost–Connes structure naturally appears, which we discuss in this

subsection, namely the Kontsevich–Pestun–Tschinkel modular symbols of [16].

As in [16] we consider, for n 2 N and G a finite abelian group, the Z-modules

Mn.G/, generated by symbols ha1; : : : ; ani with ai 2 ADG
_ WD Hom.G;C�/, such

that a1; : : : ; an generate A, with relations:

(1) ha�.1/; : : : ; a�.n/i D ha1; : : : ; ani, for all permutations � 2 Sn;

(2) for all 2 � k � n and all a1; : : : ; ak and b1; : : : ; bn�k in A satisfying

X

i

Zai C
X

j

Zbj D A

one has the relation

ha1; : : : ;ak;b1; : : : ;bn�kiD
X

1�i�k

ha1 � ai ; : : : ;ai ; : : : ;ak � ai ;b1; : : : ;bn�ki;

with ai in the i th place.

As shown in [16], these relations reflect certain scissor-congruence relations on

convex cones in lattices. We also consider as in [16] the quotient M
�
n .G/ of Mn.G/

by the further relation h�a1; : : : ; ani D �ha1; : : : ; ani.

There is a Z-bilinear multiplication, for n D n0 C n00,

rWMn0.G0/˝Mn00.G00/!Mn.G/

associated to an exact sequence of finite abelian groups

0! G0 ! G ! G00 ! 0;

with both G0 and G00 nontrivial, given by

rW ha1; : : : ; an0i ˝ hb1; : : : ; bn00i 7!
X

h Qa1; : : : ; Qan0 ; Qb1; : : : ; Qbn00i;

where the sum is over all the lifts Qai in A, in the dual exact sequence

0! A00 ! A! A0 ! 0;

while the Qbj are the images in A of the bj under the embedding A00 ! A. The multi-

plication map descends to the M
�
n .G/ in the same form.
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There is similarly a Z-bilinear comultiplication, for n D n0 C n00, determined by

�WMn.G/!Mn0.G0/˝M
�
n00.G

00/

for a sequence as above with G00 nontrivial, given by

�W ha1; : : : ; ani 7!
X

haI 0 mod A00i ˝ haI 00i�;

for ¹1; : : : ; nº D I 0 t I 00 with #I 0 D n0, #I 00 D n00, aI 0 D ai1 : : : ain0 , and aI 00 D

aj1
: : : ajn00 for I 0 D ¹i1; : : : ; in0º and I 00 D ¹j1; : : : ; jn00º, such that all the ajk

are

in A00 ,! A. Here taking the quotient M
�
n00.G

00/ instead of Mn00.G00/ is necessary

because of the second type of relations in Mn.G/, see Proposition 9 of [16]. The

comultiplication also descends to M
�
n .G/.

In particular, we will focus here on the case of Mn;N WDMn.Z=NZ/. We write

GN D Z=NZ, andAN for the characters and we consider the projective system of the

AN ordered by divisibility, with the maps �k WAN ! AM for M jN with N D Mk,

given by �k W � 7! �k when we identify AN with the group of N th roots of unity

(multiplication by k if written additively). Dually we have the injective system of the

GN with the corresponding inclusions jk WGM ! GN , so that

lim
�!

GN D Q=Z; lim
 �

AN D OZ:

We define Mn.Q=Z/ as the Z-module spanned by the Mn.GN / for all N .

We write elements of Mn.Q=Z/ in the form
P

i ci hai i where we use the short-

hand notation hai i WD hai;1; : : : ; ai;ni with ai;k 2 ANi
. We also write MQ.Q=Z/ WD

M.Q=Z/˝Z Q, and denote by Mn.Q=Z/� the span of the Mn.GN /
�.

Let �k WMn.Q=Z/!Mn.Q=Z/ be the map of Z-modules determined by

�k W hai 7! h�k.a/i;

for hai D ha1; : : : ; ani in Mn.Z=NZ/ and h�k.a/i D h�k.a1/; : : : ; �k.an/i. We set

�khai D 0 whenever h�k.a/i would not be an acceptable symbol: for instance this

happens for hai 2Mn.Z=kZ/ when all �k.ai / D 0 2 Z=kZ. We also consider the

maps of Z-modules

�k WMn.GM /!Mn.GN /

that maps a symbol to the sum over preimages

�k W ha1; : : : ; ani 7!
X

�k.bi /Dai

hb1; : : : ; bni:

With a slight abuse of notation we will write for convenience

h�k.a/i WD
X

�k.bi /Dai

hb1; : : : ; bni;
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so that we can write Q�khai D h Q�k.a/i. On MQ.Q=Z/ we also consider the Q-linear

maps

O�k D
1

kn
Q�k WMQ;n.Q=Z/!MQ;n.Q=Z/;

O�k W ha1; : : : ; ani 7!
1

kn

X

�k.bi /Dai

hb1; : : : ; bni:

Notice that the notation we are using here differs from [11, 19, 22] where we

used Q�k for what is here called �k and �k for what is here called O�k . The reason

for this change of notation is that, as maps on the group ring ZŒQ=Z�, the Q�k of

[11] are not ring homomorphisms, while the �k of [11] are algebra homomorphisms

of QŒQ=Z� and are the original Bost–Connes maps. Here however, since we will be

considering the multiplication structure on the Mn.G/ as in [16] rather than the group

ring ZŒQ=Z�, it will turn out that the Q�k of [11] are the fundamental maps, which we

call simply �k .

Lemma 5.7. The maps �k and �k on Mn.Q=Z/ defined as above satisfy the relations

�k�` D �k`, �k�` D �k`. Moreover, if .k; `/ D gcd¹k; `º D 1, then

�k ı �` D �` ı �k;

while

�k ı �k D k � id; �k ı �k D ek;

with the map ek WMn.Q=Z/!Mn.Q=Z/ given by

ekha1; : : : ; ani D
X

ksi D0

ha1 C s1; : : : ; an C sni:

Proof. The compositions �k�` D �k` and �k�` D �k` follow directly from the defin-

ition. For .k; `/ D 1 we have

�k

X

`bi Dai

hb1; : : : ; bni D
X

`bi Dai

hkb1; : : : ; kbni

D
X

`kbi Dkai

hkb1; : : : ; kbni D �`hka1; : : : ; kani:

On the other hand �k

P

kbi Dai
hb1; : : : ; bni D

P

kbi Dai
ha1; : : : ; ani D k � ha1; : : : ; ani

and �khka1; : : : ; kani D
P

kbi Dkai
hb1; : : : ; bni D

P

ksi D0ha1 C s1; : : : ; an C sni.

The more general case with .k; `/ ¤ 1 is also obtained by combining the relations

above.
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Note that, unlike in the case of the maps �n and �n acting on QŒQ=Z� in the

Bost–Connes system, the ek here are not idempotents with respect to r.

The following lemma is a direct consequence of the explicit expression for the

multiplication and comultiplication and of the maps �k and �k defined above.

Lemma 5.8. The multiplication r induces a multiplication

rWMn0.Q=Z/˝Mn00.Q=Z/!Mn0Cn00.Q=Z/;

which is given by

r.hai; hbi/ D h�`.a/; bi;

for hbi 2Mn.Z=`Z/. The comultiplication � induces a comultiplication

�WMn.Q=Z/!˚n0Cn00DnMn0.Q=Z/˝Mn00.Q=Z/

given by

�hai D ˚h�`.aI 0/i ˝ haI 00i�;

where for hai 2Mn.GN / the sum is over `jN and over all partitions

I 0 t I 00 D ¹1; : : : ; nº;

with haI 00i in Mn.Ker.�`//.

Thus, we can consider the graded ring M.Q=Z/ D ˚nMn.Q=Z/ endowed with

this multiplication, and the Q-algebra MQ.Q=Z/.

Proposition 5.9. The maps �k WM.Q=Z/ ! M.Q=Z/ are ring homomorphisms,

while the maps �k WM.Q=Z/!M.Q=Z/ are coalgebra homomorphisms.

Proof. As mentioned above, the multiplication in M.Q=Z/ is given by r.hai; hbi/D

h�`.a/; bi, hence we have

�k ı r.hai; hbi/ D h�k�`.a/; �k.b/i D h�`�k.a/; �k.b/i D r ı �k.hai; hbi/;

while the comultiplication is given by �hai D ˚h�`.aI 0/i ˝ haI 00i� so that

�k ı�hai D ˚h�k�`.aI 0/i ˝ h�k.aI 00/i�:

The sum is over all `jN , for hai 2 Mn.Z=NZ/ and over all decompositions I 0,

I 00 where haI 00i is in Mn.Z=`Z/. If .k; N / D 1, then also .k; `/ D 1 and we have

�`W Z=NZ ! Z=NZ and haI 00i is in Mn.Z=`Z/ if and only if the same holds for

h�k.aI 00/i, hence the sum on the right hand side is the same as � ı �khai. It suf-

fices then to check the case where kjN , withN D kM . Then h�k.a/i 2Mn.Z=MZ/

and �h�k.a/i is the sum over all the `0jM and the partitions I 0; I 00 with hbI 00i 2
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Mn.Z=`
0Z/, up to terms that are mapped to zero by �k when aI 00 2 Z=kZ. Thus, the

maps �k are compatible with the multiplication r and the maps �k are compatible

with the comultiplication �.

Note that the maps �k are not compatible with multiplication since

�kr.hai; hbi/ D h�k�`.a/; �k.b/i:

For .k; `/ D 1 one has �k�` D �`�k , which gives the right compatibility, but in the

case where .k; `/ ¤ 1 this is not the case. For simplicity, consider the case where

` D k, where h�k�k.a/; �k.b/i D ha; �k.b/i while

h�k�k.a/; �k.b/i D
X

ksi D0

haC s; �k.b/i;

with aC s D .a1 C s1; : : : ; an C sn/. Similarly, the maps �k are not compatible with

comultiplication for exactly the same reason.

The data .M.Q=Z/;r; �; �k; �k/ provide the Bost–Connes structure associated

to the Kontsevich–Pestun–Tschinkel modular symbols.

In the original Bost–Connes quantum statistical mechanical system, the maps �k

have a geometric interpretation in terms of lattices and commensurability, see [13,

Chapter 3]. One defines Q-lattices as pairs .L; �/ of a rank n-lattice L (with n D 1

in the original Bost–Connes case) and a group homomorphism �WQn=Zn ! QL=L.

Two Q-lattices are commensurable if QL1 D QL2 and �1 D �2 modulo L1 C L2.

In the rank one case, the commensurability relation is precisely captured by the maps

�k of the Bost–Connes system.

In the case of the Kontsevich–Pestun–Tschinkel modular symbols, it is shown

in [16] that the Mn.G/ can also be described in terms of lattices and cones. For

Mn.G/, one considers isomorphism classes of data .L; �;ƒ/ with L ' Zn a lattice

of rank n, with an element � 2L˝A for which the induced homomorphismL_!A

is surjective, and a strictly convex cone ƒ � LR spanned by a basis of L. To a datum

.L;�;ƒ/ one associates a symbol  .L;�;ƒ/D ha1; : : : ; ani obtained by a choice of

a basis ¹eiº of L with respect to which � D
P

i ei ˝ ai . The relations of Mn.G/ are

then described geometrically in terms of scissor congruence relations  .L; �;ƒ/ D
P

i  .L; �;ƒi / determined by possible decompositions of the cone.

To see the compatibility between these two settings, note that a lattice L with

the choice of a basis ¹eiº determines an invertible Q-lattice of rank n, by taking

�WQn=Zn ! QL=L that maps �W .a1; : : : ; an/ 7!
P

i aiei . To a (not necessarily

invertible) Q-lattice with �WQn=Zn ! QL=L, we can assign an element � 2 L˝

Q=Z by � D
P

i �.ei / ˝ ai with ei the tuple in .Q=Z/n with 1 in the i th pos-

ition and zeroes elsewhere. For a fixed Z=NZ, the restriction of � to .Z=NZ/n

induces on those n-tuples that determine corresponding symbols ha1; : : : ; ani map
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ha1; : : : ; ani 7!
P

i ei ˝ ai that gives rise to an associated � as above. The maps �k

are then implementing the commensurability relation as in the Bost–Connes case on

the rank one Q-lattices obtained by projecting along the ei directions.
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