Chapter 31
Birational maps and Nori motives

Noémie C. Combe, Yuri I. Manin, and Matilde Marcolli

The monograph by A. Huber and S. Miiller-Stach [in: Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge, (2017), 207-232] contains a systematic exposition of Nori motives that
were developed and studied as the “universal (co)homology theory” of algebraic varieties (or
schemes), according to the prophetic vision of A. Grothendieck. Since then, some research was
dedicated to applications of Nori motives in various domains of algebraic geometry: geometries
in characteristic 1 (see the work of J. F. Lieber, Yu. I. Manin, and M. Marcolli [in: Facets of
Algebraic Geometry. Vol. 11, (2017), 147-227] and Yu. I. Manin and M. Marcolli [in: Dynamics:
topology and numbers (202), 27-56]), absolute Galois group (see the article of Yu. I. Manin and
M. Marcolli [SIGMA Symmetry Integrability Geom. Methods Appl. (2020), article no. 038]),
persistence formalism (see Yu. I. Manin and M. Marcolli, [Math. Comput. Sci. (2020), 77—
102]).

In this chapter, we sketch an approach to the problems of equivariant birational geometry
developed by M. Kontsevich and Yu. Tschinkel [Invent. Math. (2019), 415—432], where Burn-
side invariants were introduced. We are making explicit the role of Nori constructions in this
environment.

1 Introduction and summary

1.1 Birational maps and their symmetries

Our main objects of study here are stable birational maps, mostly between algebraic
varieties defined over a subfield of C. The general restriction of stability is discussed
in [2], and the main results about natural categories/“towers” of birational maps we
use here are given in [1] and [4].

Symmetries of stable maps and their moduli spaces appear in various contexts.
The celebrated Grothendieck approach to the study of the absolute Galois group Gq
of the field of all algebraic numbers Q bridged geometry and arithmetic via the tower
of stable étale maps to P! \ {0, 1, co}. More generally, for any integral scheme X, the
exact sequence

1 - m(X ®Q) — m(X) = Gg — 1

merges actions of what we call arithmetic and geometric symmetries.
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In [10], in place of étale maps P! \ {0, 1, oo} we considered moduli spaces of
stable curves of genus zero with marked points, and later demonstrated that their
geometric symmetries can be approached through the Nori motivic structures of these
moduli spaces. In this context, the exact sequence of fundamental groups above is
replaced by a subextension of the “motivic fundamental groups”

1— Gmot(a’ Q) - Gmot(Qv Q) - GQ — L

Here we focus on similar constructions, but starting with towers of birational maps
replacing towers of stable moduli spaces above.

1.2 Burnside groups and Nori diagrams

In [1,4], and other papers it was shown that the problem of classification of birational
maps can use information encoded in the tower of natural maps structurally similar to
the tower of stable genus zero moduli spaces M ¢ ,. Using these natural maps, in the
recent article [ 18], A. Kresch and Yu. Tschinkel are imposing an additional geometric
symmetry group from the start and then showing that this geometric symmetry can
be encoded by certain analogues of “modular symbols”.

In this note we demonstrate that the Kresch—Tschinkel modular symbols defined
through Burnside groups, also have a natural description in terms of Nori motivic
structures. Briefly, we prove the following theorem:

Theorem 1.3. Nori stratifications of appropriate towers of birational maps can be
enriched to the homological Nori geometric diagram by Burnside groups of strata.

For a more precise statement, see Theorem 4.4.

1.4 Bost—Connes structures, Burnside groups, and modular symbols

Finally, in the last section we consider the Bost—Connes formalism, which was ori-
ginally introduced in [5] to connect arithmetic zeta-functions of fields of algebraic
numbers with physicists’ studies of classical and quantum behaviour of physical
systems with infinite number of degrees of freedom. More recently, an arithmetic
form of the Bost—Connes algebra was shown to encode important aspects of Fi-
geometry, [11].

In [22] we presented an enrichment of (equivariant) Burnside groups through a
Bost—Connes algebra structure and associated categorifications. This type of Bost—
Connes structures and categorification, and their relevance in the setting of F; geo-
metry, were further investigated in [19].

The integral Bost—Connes system, as defined in [11], consists of the ring Z[Q/Z]
together with a semigroup homomorphism o: N — End(Z[Q/Z]) and additive maps
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on:Z[Q/Z] — Z]Q/Z] satistying
On © pp = nid, Pn © Op = N7y,

with 7, the idempotent in Q[Q/Z] given by 7, = % Y nr—oe(r), for {e(r)}req/z the
standard basis of Z[Q/Z].

It is shown in [11] that the integral Bost—Connes system is a model of F;-geome-
try, encoding the system of extensions F». For that reason, one expects that this kind
of structure will appear in several different arithmetic contexts, often together with
some form of categorification of the Bost—Connes algebra, as discussed in [19,22,23].

In Section 5 of this paper we prove that a similar type of Bost—Connes structure
exists at the level of the Kontsevich—Pestun—Tschinkel modular symbols of [16].

Our main result in Section 5 is the following.

Theorem 1.5. The Z-modules M,,(Z/ N Z) of Kontsevich—Pestun—Tschinkel modular
symbols, for the tower of L/ NZ ordered by divisibility, are endowed with a Bost—
Connes structure consisting of endomorphisms o, and linear maps p, satisfying the
Bost—Connes relations.

See Lemma 5.7, Lemma 5.8, and Proposition 5.9 for more precise statements and
a detailed proof.

1.6 Summary

The paper is organized as follows. Section 2 contains a short dictionary of graphic
presentations of categories and functors, including the definition of a category of
blowups. Nori diagrams and representations are discussed in Section 3, with focus
on diagrams associated to blowups. Burnside groups are discussed in Section 4, con-
taining also the last steps of the proof of Theorem 1.3, which identifies the associated
class of Nori diagrams. Section 5 is dedicated to Bost—-Connes structures. We first
show how 2-equivariant Kontsevich—-Tschinkel Burnside rings carry a Bost—Connes
structure compatible with the analogous structure on the equivariant Grothendieck
ring obtained in [19]. We then focus on the Kontsevich—Pestun—Tschinkel modular
symbols and we identify the corresponding Bost—Connes structure.

2 Background

2.1 Categories and their diagrams

A diagram D is family (V(D), E(D), d) where d (boundary map) is an embedding of
E(D) (edges) into V(D) x V(D) (ordered pairs of vertices). Each category defines
its diagram, whose edges are its morphisms, and vertices are its objects.
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Conversely, diagrams themselves form the objects of a category, whose morph-
isms imitate functors.

For a more detailed discussion of combinatorics of categories based upon dia-
grams, we refer the reader to [20, Section 0.2] and [8, Section 5]. Here we recall only
the definition of posets in groupoids ([8, Definition 5.2]).

Definition 2.2. A category ¥ is called a poset in groupoids, if
(a) for any object X of #§ , the full subcategory consisting of all objects iso-
morphic X, is a groupoid, that is, all morphisms in it are isomorphisms;

(b) whenever X; and X, are not isomorphic and Hom(X;, X,) # @, then
Hom(X1, X>) has a single orbit with respect to the left action of the group

Hom(X1, X1) x Hom(X», X»)°?

combining precomposition and postcomposition.

A part of posets in groupoids consists of thin categories € such that if any set
Homee (X1, X>) has cardinality < 1, and if both Home (X1, X5) and Home (X5, X1)
are non-empty, then X; = X5.

2.3 Diagrams of effective pairs ([14, Chapter 9, Definition 9.1.1.])

Fix a subfield k of C and define the diagram Pairs® of effective pairs over k in the
following way.

(a) Vertices of Pairs are triples (X, Y, i) where X is a variety overk, Y C X

is a closed subvariety, and i € Z.
(b) There are two types of edges of Pairs®": functoriality edges and coboundary

edges:

(b1) Each morphism f: X — X’ with f(Y) C Y’ determines edges denoted
by (f*,i) starting at (X, Y, i) and landing at (X', Y”,i + 1) for every
i €Z.

(b2) Eachladder Z C Y C X of closed subvarieties determines edges (d, i)
starting at (Y, Z,i) and ending at (X, Y,i + 1) foreveryi € Z.

Whenever one needs to consider tensor structures on the categories of diagrams,
one has to consider (super)gradings of such diagrams, as discussed in [14, Chapter 8].

2.4 Categories of blowups

We will now describe some categories of good blowups, following [1, Section 1.3]
(with somewhat changed terminology and notation).
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We will call a “good” scheme what in the Introduction to [1] is called a “noether-
ian quasi excellent (qe) regular scheme”.

Consider a morphism of good schemes ¢: X1 — X3, which is the blowing up of
a coherent sheaf of ideals / C Oy, (for the relevant definitions in this context, see
[1, Section 2.1.8]). Alternatively, we will call such ¢ the blowing up of the closed
subscheme defined by the equations f = 0 forall f € I.

Assume also given normal crossings divisors D; C X; such that D1 = ¢~ 1(D5).

Let U be the maximal open subscheme of X, upon which the restriction of 7 is
its structure sheaf. It follows that ¢ induces an isomorphism ¢~ !(U) — U.

Definition 2.5. A good morphism is the structure represented by a set of data
(Xi. D;, I, ¢) as above.

In particular, identical morphisms, and generally, automorphisms, are good: for
them D; = D, = 0.

Consider a finite connected poset in groupoids M whose objects are data
(X, D, I') and morphisms are good morphisms ¢ in the sense discussed above.

Consider the diagram (with identities) D (M) whose vertices are objects of M,
oriented edges are morphisms of M, and orientation of X — Y is from X to Y. Call
edges corresponding to isomorphisms (in particular, identities) horizontal, and other
edges vertical.

Form also the following quotient of D (M), which we denote by 7' (M): vertices
of T (M) are isomorphisms classes of M, and oriented edges of 7' (M) are orbits of
non-empty sets Hom 4 (X1, X») with respect to the left action of the group

Hom(X1, X1) x Hom(X,, X5)%”

combining precomposition and postcomposition, as in Definition 2.2 above. We omit
edges corresponding to identities.

Call an edge X; — X5 in T(M) indecomposable, if the respective morphism
cannot be expressed as composition of other morphisms.

In an important particular case, the diagram T'(.M) is in fact a tree oriented down-
wards. More precisely, starting with any of its vertex X, we may consider the longest
sequence of vertices (“a path down”)

X0—>X1—>-~-—>Xh.

Assume that there is only one vertex from which any longest path down can start.

Definition 2.6. One object of the category Bl (the regular surjective category of
blowups, cf. [1, Section 1.3]) is a triple (X», I, D) associated to a good morphism ¢
as above. We can equivalently write the objects as (Xj, D;, I, ¢).
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A morphism between such objects of Bl
(X{.Di.1".¢)) > (Xi. Di. 1.¢)
is represented by a regular and surjective morphism
g X5 —> Xo
satisfying the following conditions:
g\ (D) =D).  gU)=1.

Remark. From this definition one can deduce that g induces a canonical isomorph-
ism
Xi = X1 xx, X3,

and moreover, D] is the inverse image of D; with respect to the composition of
this isomorphism and projection X; xx, X5 — X; (cf. [1, Definition 1.3.1]). This
presentation may be helpful for defining and studying compositions of morphisms
between objects of Bly.

In the next section, we will be studying posets of groupoids as above from the
viewpoint of Nori theory, as presented in [20, Section 1], but before continuing with
this part, we need one more definition.

2.7 Simple normal crossings divisors

Let S be a finite set. Consider a family {Ds C X | s € S} of closed immersions.
Following [4, Definition (3.1)], we will call it an S-labelled simple normal crossings
divisor on X, if for any finite subset S” C S the intersection ) ses’ Ds is smooth of
codimension card S’.

3 Nori geometric diagrams of blowups

3.1 Categories M

We will now introduce a class of geometric categories that will be the starting point
for our enrichment of birational maps by Nori motives. The notation M for a gen-
eric member of this class should remind the reader that we generalize here the basic
example of stable moduli spaces of genus zero and their canonical stratifications stud-
ied in [10]. Here are the basic restrictions imposed upon M.

(a) Objects of M are some objects of Blj.



Birational maps and Nori motives 767

(b) For any object (X2, I, D) (cf. Definition 2.6 above) of M, the divisor D,
is a simple normal crossings divisor. Sets of labels S, together with their

functorial behaviour, may be included as separate elements of the structure
of M.

3.2 Two classes of morphisms in (

Fix a category M as above. Let X := (X5, Ix, D1) and ¥ := (Y>, Iy, D>) be two
objects of M.

Assume that we have a locally closed embedding Y, <= X, which extends in
a natural way to a morphism between some blowups of X, and Y», respectively.
The resulting commutative diagrams will be declared some new morphisms in M,
“morphisms of closed embeddings”: cf. [10, Section 1.5]

Similarly, “morphisms of complements to locally closed embeddings” are exten-
sions of this definition to X, \72 <> X,, where Y, denotes the closure of Y5 in X5.

They are presented below as left and right sides of the commutative diagram:

Y € X1 > X1\ Y,

[

Y2;>X2(_) Xz\?z.

Subschemes Y; — X; (resp. X; \Y; — X;),i = 1,2, will be called locally closed
(respectively, open) strata of X;.

One can then construct a category of diagrams, as recalled in Section 2 above,
using vertices and edges given by objects of M and the morphisms described above
as functoriality edges, together with boundary edges as discussed in Section 2.3.

In the case of moduli spaces considered in [10], this construction of diagrams
of blowups is related to some other interesting geometric structures, of which we
mention two examples (see [9] for additional discussion).

Example 3.3 (Kapranov’s presentation of Mo,n, n > 3.). This presentation of Mo,n,
n > 3, as a result of successive blowups of projective subspaces in P"~3 was given
in [15], and then used in [6] for calculating of regular automorphisms of these stable
modular spaces.

Example 3.4 (Connes—Kreimer Hopf algebra of rooted trees). The Connes—Kreimer
Hopf algebras of rooted trees and of Feynman graphs were introduced in [12] in the
context of renormalization of perturbative quantum field theories.

Later, using the operadic formalism, F. Chapoton and M. Livernet have shown
that the Connes—Kreimer Hopf algebra can be equivalently formulated in terms of
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a “incidence Hopf algebra” associated to an operad structure, where the coproduct
operation is based on an ordering relation on subforests, [7].

In [9, Section 2], we considered such an incidence Hopf algebra in a geometric
context, associated to the strata of the moduli spaces Mo,n, labelled by trees. Using
the result of [7], we related it to the Connes—Kreimer Hopf algebra of rooted trees,
and we showed how to incorporate certain Galois symmetries in the structure.

4 Nori motives and Burnside groups

Below we work over a fixed field k of characteristic 0.

Definition 4.1 ([17, Section 4, Definition 10]). Let B (“base scheme”) be a separated
scheme of finite type over k.
Consider a smooth 8-scheme f: X — B.If U < X is an open embedding with
U = X, then flu:U — B is also a smooth B-scheme.
(a) Define the set Burn4 (8) as the set of equivalence classes of smooth -
schemes modulo equivalence relation generated by f ~ f|y as above. We
may denote the respective equivalence class by [ f: X — B], or simply [ f].
(b) Define the monoid structure 4+ upon Burny (8) as generated by disjoint
union of smooth B-schemes.
It generates the respective Grothendieck group Burn(B).
(c) Both Burnside group and Burnside monoid a naturally graded: class of X of
pure dimension n belongs to Burny ,($8) and Burn, (B)

These constructions are covariant functors of B: a morphism g: 8’ — B induces
maps gx[f]:= [go f].

4.2 Boundary homomorphisms

Start with a pair Z C X, in which X is an equidimensional algebraic variety, and Z
its closed subvariety of strictly lesser dimension. Moreover, we will assume that X is
reduced and separated, but nothing more.

Theorem 4.3 ([17, Section 4, Theorem 11]). On the set of Burnside groups of mem-
bers of such pairs Z C X one can define graded boundary elements

0z (X) € Burnginx)-1(Z)

satisfying two requirements:
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(a) For any proper surjective morphism g: X' — X inducing birational equival-
ence between X and X' and such that Z' = g='(Z), we have

Iz(X) = (gl2)«(3z/(X")).

(b) If X is smooth, and Z is an S-labelled simple normal crossings divisor in the
sense explained in Section 2.4 above, then we have an explicit presentation

0z(X)=— Y (=D™T[fr]

PATCS
where fr: Dt x AT=1 . 7 is the composition of projection to Dt and
its inclusion into Z.
Moreover, these two requirements uniquely determine boundary elements.
‘We can now state precisely and prove Theorem 1.3.
Consider a category M as in Section 3.1 above, with its objects graded by dimen-

sion. For each object B of M, construct its Grothendieck—Burnside group Burn(3).
Denote by GrAb the category of graded abelian groups.

Theorem 4.4. The natural degree zero map Ob(M) — Ob(GrAb): B +— Burn(B)
extends to the homological Nori geometric diagram, in which boundary edges cor-
respond to three step towers of closed embeddings Z C Y C X. The morphism

(X.Y.i +1)— (Y,Z,i)

sends boundary element dy (X ) to 0z (Y'). On obtains in this way a category Mpym(8)
of Nori motivic sheaves over B.

Proof. Given a base scheme 8, we can consider a category Mg of Nori motivic
sheaves in the sense of [3]. This is defined as the abelian category constructed from a
Nori diagram D (8B) with the following vertices and edges:

* Vertices are given by elements of the form
(f: X - 8,Y,i,w)
where f: X — B is a smooth B-scheme, with an embedding ¥ — X, with f|y
as structure map f'|y:Y — B, and integersi € N, w € Z.

» Edges are of three types:
(1) edgesh*: (X' — 8B.,Y',i,w) > (X — 8B,Y,i,w) associated to morph-
ismsh:(X - 8,Y)—> (X' — 8,Y');
(2) connecting morphisms 9: (Y — 8B, Z,i,w) > (X — B,Y,i + 1, w)
associated to a chain of embeddings Z — Y — X;
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(3) twisted projections (X,Y,i,w) — (X x PL,Y x P U X x {0},i + 2,
w + 1).
In particular, we can restrict to considering equivalence classes of diagrams in D (8)
where vertices (f: X — B,Y,i,w) and (f|y:U — B,Y NU,i, w) are identified,
for j:U < X an open embedding with U = X, and edges of type (1) are identified
if they fit commutative diagrams of the form

h
vy

o

X x
where all the maps are compatible with the structure maps to 83, not shown in the
diagram. Edges of type (2) descend to edges of type (2) on the quotient diagrams
by Theorem 4.3 above, and twisted projections also induce corresponding edges. We
can then use this resulting class O (8B)/~ of Nori diagrams to form a new category
Mpum(8) of Nori motivic sheaves over B. ]

5 Bost—Connes system and Burnside groups

As we recalled in Section 1.4, the integral Bost—Connes algebra consists of the ring
Z[Q/Z] together with a semigroup of endomorphisms o, and partial inverses given
by linear maps, designed to model the arithmetic Frobenius and Verschiebung maps
in characteristic one. Thus, the presence of a Bost—Connes structure (at the level of
algebras or of a categorification) can be regarded as a sign of the existence of an
underlying arithmetic structure over F;. In [19] and [22] several such generaliza-
tions and categorifications of the Bost—Connes algebra were constructed based on
Z—equivariant Grothendieck rings, related to the original Bost—Connes algebra by
equivariant Euler characteristics. The categorifications were obtained either through
the assembler categories introduced by I. Zakharevich in [24, 25], which categorify
the scissor congruence relation of Grothendieck rings, or through categories of Nori
motives.

In [22] it was shown that there is a Bost—Connes system of endomorphisms acting
on the Z-equivariant version of the Kontsevich-Tschinkel Burnside ring. This is a
lift of the integral Bost—-Connes algebra of [11], through the map to the graded ring
associated to the filtration of the Grothendieck ring by dimension, which in turn maps
to the integral Bost—Connes algebra through the equivariant Euler characteristic.

On the other hand, in [19] it was also shown that the lift of the Bost—Connes
algebra to the Z-equivariant Grothendieck ring of varieties can be lifted higher, to a
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Z—Cquivariant category of Nori motives, where it maps through the fibre functor to
the categorification of the Bost—Connes system constructed in [23].

We review here briefly the setting of [19] and [22], and then we show that a sim-
ilar categorification of the Bost—-Connes system via Nori motives can be constructed
in the case of the Kontsevich—Tschinkel Burnside group. As was done in [19] for
the Grothendieck ring, we work here with the relative version of the Kontsevich—
Tschinkel Burnside ring considered in the previous sections, and with its Z—equi—
variant version.

5.1 Relative equivariant Kontsevich-Tschinkel Burnside group

In the previous sections we considered a base scheme B and the Kontsevich—Tschinkel
Burnside group Burn(3). ~

Here we introduce its equivariant version Burn?(8) where now B is endowed
with a residually finite action of Z. The last condition means that this action factors
through some finite Z/ N Z-quotient of Z.

The Burnside group Burn? (8) then is generated by equivalence classes of smooth
B-schemes f: X — B where X is also endowed with a residually finite action of Z,
and f is Z-equivariant. Equivalence classes correspond to the equivalence relation
f~ flu whereU — X isa Z—equivariant dense open embedding.

As in [19], we will adopt the notation (8, ag) for the base scheme endowed with
action ag:Z x B — B, and we similarly write (X, ax) and f:(X,ax) — (8,a3)
to keep track explicitly of the Z-actions.

5.2 Lifting the Bost—Connes system

We will use notation and conventions of [19], which are briefly repeated below.

Put Z, := Spec K" where K is our ground field.

Given (B, ag) as above, denote by ®(xg) the Z-action upon B x Z,through
composition with geometric Verschiebung map: see [19, (2.12) and (2.13)]. Namely,
for ¢ a primitive N th root of unity, we write

00 - 0 alwn)

10 --- 0 0
Vn(é'Nn) =[0 1 0 0

0 0 1 0

so that we can write the Verschiebung map as V,,({ny,) - x = (x, aj41) for i =
1,....,n—1 and V,(CNn) - x = (¢(ly) - x,ay) for i = n, so that it satisfies



N. C. Combe, Y. I. Manin, and M. Marcolli 772

Va(Cnn)" = a(in) x Idz,. The resulting action ®, («) of Zon B x Z, that factors
through Z/NnZ is specified by setting

Pn(@)(Enn) - (x,a) = (Va(@(CN)) - X)a,

where for x € B we write X = (X, d;)a;ez, = (Xi)7—, for the subset {x} x Z, C
B xZ,.

This action is residually finite as well: if the action ag of Z factors through
Z/NZ, then the action ®(ag) factors through Z/NnZ. Denote by o, the endo-
morphism of multiplication by 7.

Now, by lifting 0, (and avoiding extra notation), define the maps o, and p, as
follows:

on: (f:(X,ax) = (B,ag)) — (f: (X,ax c0,) = (B,ag o 0y)),
Pz (f (X, ax) = (B.ag)) — (f xid: (X X Z,, Pp(ax)) = (B X Zy, Pu(ag))).

Proposition 5.3. The maps above induce ring homomorphisms
On: Burnz(i?, ag) — Burnz(o%’, ag o 0y)
and group homomorphisms
ﬁn:Burni(o@, ag) — Burnz(o@ X Zn, On(ag)).

For proofs, see [19, Theorem 3.15].
The induced morphisms of the Kontsevich—Tschinkel Burnside group lift the
maps o, and p, of the integral Bost—-Connes algebra of [11] in the following way.

Proposition 5.4. The action of the o, and p, on the Burni(ia’ ,ag) is compatible
with the o, and p,, constructed in [19] on the Grothendieck rings Kg(i;’ ,ag), through

the morphism Burn? (B,ag) — gr Kg(i)’, ag) to the associated graded object with
respect to filtration by dimension.

Proof. The maps o, and p, on Kg(i;’, ag) are constructed in [19] using the same
formulas as above. These preserve the filtration by dimension, since the schemes Z,
are zero dimensional. Thus, the map BumZ(i)’, ag) > grk g (8B, ag) intertwines the
action of the oy, and p, on the Burnside ring and on the Grothendieck ring.

Itis also shown in [19, Theorem 2.11] that the actions of o, and p,, on Kg(i)’, ag)
are compatible with the o, and p, acting on Z[Q/Z], through an equivariant Euler
characteristic map. u
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5.5 Equivariant Nori motives

Given a base scheme B with a residually finite Z-action « 8, we can consider, as in
[19], Section 7, a category Mg,y 4) Of Z-equivariant Nori motivic sheaves. This is
defined as the abelian category constructed from a Nori diagram D (8B, «g) with the
following vertices and edges:

* Vertices are given by elements of the form
(f:(X,ax) = (B.ag). (Y,ax|y).i, w)

where f:(X,ax) = (B, ag) is a smooth 2—equivariant B-scheme, with a Z-
equivariant embedding (Y, ax|y) — (X,ax),andi € N, w € Z.
* Edges are of three types:
(1) edgesh*: (X' — B,Y',i,w) - (X — B,Y,i,w) associated to morph-
ismsh:(X - 8,Y)—> (X' — 8,Y');
(2) connecting morphisms 9: (Y — 8B, Z,i,w) > (X — B,Y,i + 1, w)
associated to a chain of embeddings Z — Y — X;
(3) twisted projections (X,Y,i,w) — (X x PL,Y x P U X x {0},i + 2,
w + 1).
As was shown in [19], the maps o, and p, from above induce functors of the
categories of Nori motivic sheaves considered above, with

(o™ M(g,aﬂ) — eM(;’B,aBOGn)
Pn: M(B.ag) = M(BxZ,,n(ag))-

The functors o, are compatible with the monoidal structure, but p, are not, as dis-
cussed in [19].

By construction, the Bost—Connes structure on the categories Mg q4) Of
Nori motives is compatible with those discussed above on Kg(i)’, ag) and on
Burni(ﬂ ,ag). In particular, the same construction can also be applied to the yA
equivariant version of the Nori motives considered in Theorem 4.4, by working with
the Z-equivariant version Mpym(8,«5) Of the category Mpym(g)-

5.6 The Bost—Connes structure of the Kontsevich—Pestun—Tschinkel modular
symbols

As summarised above, in [19] and [22] we considered various lifts of the Bost—
Connes algebra to Grothendieck rings, assemblers, spectra, and Nori motives, based
on varieties with good actions of Z. This setting includes the case of equivari-
ant Kontsevich—Tschinkel Burnside ring and associated assembler and Nori motives
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described here in the previous subsections. There is another setting in birational geo-
metry where the Bost—Connes structure naturally appears, which we discuss in this
subsection, namely the Kontsevich—Pestun—Tschinkel modular symbols of [16].

As in [16] we consider, for n € N and G a finite abelian group, the Z-modules
M, (G), generated by symbols {ay,...,a,) witha; € A = GV := Hom(G, C*), such
thatay, ..., a, generate A, with relations:

(1) (asq),---+a6@m)) = {(ar,...,an), for all permutations o € Sy;

(2) forall2 <k <mandallay,...,ar and by, ..., b, in A satisfying
> Za;+) Zbhj =4
i J
one has the relation

(ar.....ap.br.....bp_i) =D a1 —ai.....a;.....ax —a;.by.....by_y),

with a; in the ith place.

As shown in [16], these relations reflect certain scissor-congruence relations on
convex cones in lattices. We also consider as in [16] the quotient M, (G) of M, (G)
by the further relation (—ay,...,a,) = —{a,...,an).

There is a Z-bilinear multiplication, for n = n’ + n”,

ViMy (G') @ My (G") — Mn(G)
associated to an exact sequence of finite abelian groups
0>G —-G—G'—0,
with both G’ and G” nontrivial, given by
Vilar.....aw) ® (br.....byr) > > (G1.. .. . by.. .. byr),
where the sum is over all the lifts @; in A, in the dual exact sequence

0>A"—>A4A—> A4 -0,

while the b ; are the images in A of the b; under the embedding A” — A. The multi-
plication map descends to the M, (G) in the same form.
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There is similarly a Z-bilinear comultiplication, for n = n’ + n”, determined by
A: Ma(G) — M (G) @ My (G
for a sequence as above with G” nontrivial, given by
A:{ay,...,an) — Z(ap mod A”) ® (arr)~,

for {1,....n} =1"U 1" with #I" = n', #1" =n", ap = a;, ...a; ,, and a;» =
aj, ...aj, for I' ={iy,... i} and I"” = {j1,..., juv}, such that all the a;, are
in A” < A. Here taking the quotient M, (G") instead of M,~(G") is necessary
because of the second type of relations in M, (G), see Proposition 9 of [16]. The
comultiplication also descends to M, (G).

In particular, we will focus here on the case of M, y := M,(Z/NZ). We write
Gy =Z/NZ,and Ay for the characters and we consider the projective system of the
Ay ordered by divisibility, with the maps ox: Ay — Ay for M|N with N = Mk,
given by ox: ¢ — ¥ when we identify Ay with the group of Nth roots of unity
(multiplication by k if written additively). Dually we have the injective system of the
Gy with the corresponding inclusions ji: Gas — Gy, so that

ll_II)lGN:Q/Z, 1(£nAN:Z.

We define M,(Q/Z) as the Z-module spanned by the M,(Gy) for all N.
We write elements of M, (Q/Z) in the form ), ¢;{(a;) where we use the short-
hand notation (a;) := (ai,1,...,ai,) witha; x € Ay,. We also write Mq(Q/Z) :=
M(Q/Z) ®z Q, and denote by M, (Q/Z)~ the span of the M, (Gx)~.

Let og: M, (Q/Z) — M, (Q/Z) be the map of Z-modules determined by

ox: (a) = (ox(a)),

for (a) = (a1,...,a,) in My(Z/NZ) and {0y (a)) = (or(a1),...,o0r(a,)). We set
ox{a) = 0 whenever (0% (a)) would not be an acceptable symbol: for instance this
happens for (a) € M,(Z/kZ) when all oy (a;) = 0 € Z/kZ. We also consider the
maps of Z-modules

pr: Mn(Gp) — Mn(Gn)

that maps a symbol to the sum over preimages

prilar.....an) > Y (br.....by).

o (bi)=a;

With a slight abuse of notation we will write for convenience

(pe(@) = Y (b1, ba),

o (bi)=a;
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so that we can write pg(a) = (px(a)). On Mq(Q/Z) we also consider the Q-linear
maps

R L.

P = 15 P Mo.n (Q/Z) - Mo (Q/Z),
. 1
pk:(al,...,an)|—>k—n Z (b1,...,bn).

ok (bi)=a;

Notice that the notation we are using here differs from [11, 19, 22] where we
used oy for what is here called p; and p; for what is here called p. The reason
for this change of notation is that, as maps on the group ring Z[Q/Z], the pj of
[11] are not ring homomorphisms, while the pi of [11] are algebra homomorphisms
of Q[Q/Z] and are the original Bost-Connes maps. Here however, since we will be
considering the multiplication structure on the M, (G) as in [16] rather than the group
ring Z[Q/Z)], it will turn out that the pg of [11] are the fundamental maps, which we
call simply pg.

Lemma 5.7. The maps oy, and px on M,(Q/Z) defined as above satisfy the relations
0k 0¢ = Okg, Pk Pt = Pie- Moreover, if (k,£) = ged{k, L} = 1, then

Ok © pg = pg © Ok,

while
Ok © px = k -1id, Pk © Ok = e,

with the map ey: M, (Q/Z) — M, (Q/Z) given by

exlay,...,ap) = Z (ay 4+ 851,...,an + Su).
ks;i=0

Proof. The compositions o030y = oy¢ and pxpg = pr¢ follow directly from the defin-
ition. For (k, ) = 1 we have

ok Y (bi.....by) = D (kby.....kby)

tbi=a; Lbi=a;

= Y (kbr.....kbs) = pe(kay.. .. kay).
Lkb;=ka;

On the other hand oy, Zkb,»:a,- (b1,....by) = Zkb,~=a,~ (ayr,...,an) =k -{ay,...,a,)
and pr(kay, ... kay) = Zkb,-:ka,- (b1,....by) = st,:o(al + S1y...s0n + Sp).
The more general case with (k, £) # 1 is also obtained by combining the relations
above. |
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Note that, unlike in the case of the maps o, and p, acting on Q[Q/Z] in the
Bost—Connes system, the e; here are not idempotents with respect to V.

The following lemma is a direct consequence of the explicit expression for the
multiplication and comultiplication and of the maps o and p; defined above.

Lemma 5.8. The multiplication V induces a multiplication
VM (Q/Z) @ My (Q/Z) — My 1n7(Q/Z),

which is given by
V({a). (b)) = (pe(a). D).

Jor (b) € My(Z/LZ). The comultiplication A induces a comultiplication
A: Mp(Q/Z) — @p/4nr=nMn (Q/ZL) & My, (Q/Z)

given by
Ala) = ®{oe(ar)) ® {ar)~,

where for (a) € M, (Gy) the sum is over £|N and over all partitions
I'ul”=1{1,...,n},

with {ay») in M, (Ker(oy)).

Thus, we can consider the graded ring M(Q/Z) = &, M,(Q/Z) endowed with
this multiplication, and the Q-algebra Mq(Q/Z).

Proposition 5.9. The maps pg: M(Q/Z) — M(Q/Z) are ring homomorphisms,
while the maps o: M(Q/Z) — M(Q/Z) are coalgebra homomorphisms.

Proof. As mentioned above, the multiplication in M(Q/Z) is given by V({a), (b)) =
(pe(a), b), hence we have

pre © V({a), (b)) = (o pe(a). pr (D)) = (pepr (@), pr (D)) =V o pr({a), (b)),

while the comultiplication is given by A{a) = &(oy(ay’)) ® (ay»)~ so that
ok o Afa) = &(oroe(ar)) @ {ox(ar))”.

The sum is over all £|N, for (a) € M, (Z/NZ) and over all decompositions I’,
1" where {ay») is in My, (Z/LZ). If (k, N) = 1, then also (k,£) = 1 and we have
0¢:Z/NZ — Z/NZ and {(ajy~) is in M, (Z/LZ) if and only if the same holds for
(ox(ay)), hence the sum on the right hand side is the same as A o oy (a). It suf-
fices then to check the case where k| N, with N = kM . Then (o} (a)) € M,,(Z/MZ)
and A(og(a)) is the sum over all the £'|M and the partitions I’, I with (b;~) €
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My (Z/C'Z), up to terms that are mapped to zero by o when ay» € Z/kZ. Thus, the
maps px are compatible with the multiplication V and the maps o} are compatible
with the comultiplication A.

Note that the maps oy are not compatible with multiplication since

oxV({a), (b)) = (orp(a), ok (b)).

For (k,£) = 1 one has oxp; = peox, which gives the right compatibility, but in the
case where (k, £) # 1 this is not the case. For simplicity, consider the case where
£ = k, where (ox px(a), ox (b)) = (a, o (b)) while

(pkor(a), ok (b)) = Y (a+s,0x(b)),

ks;i=0

witha + s = (a1 + s1,...,an + Sp). Similarly, the maps pg are not compatible with
comultiplication for exactly the same reason.

The data (M(Q/Z),V, A, pg, o) provide the Bost—Connes structure associated
to the Kontsevich—Pestun—Tschinkel modular symbols.

In the original Bost—Connes quantum statistical mechanical system, the maps px
have a geometric interpretation in terms of lattices and commensurability, see [13,
Chapter 3]. One defines Q-lattices as pairs (L, ¢) of a rank n-lattice L (withn = 1
in the original Bost—Connes case) and a group homomorphism ¢: Q" /Z" — QL/L.
Two Q-lattices are commensurable if QL = QL; and ¢y = ¢, modulo L + L,.
In the rank one case, the commensurability relation is precisely captured by the maps
pi of the Bost—Connes system.

In the case of the Kontsevich—Pestun—Tschinkel modular symbols, it is shown
in [16] that the M, (G) can also be described in terms of lattices and cones. For
M5 (G), one considers isomorphism classes of data (L, y, A) with L >~ Z" a lattice
of rank n, with an element y € L ® A for which the induced homomorphism LY — A
is surjective, and a strictly convex cone A C Lg spanned by a basis of L. To a datum
(L, x, A) one associates a symbol ¥ (L, y, A) = {(ay,...,a,) obtained by a choice of
a basis {e; } of L with respect to which y = )", ¢; ® a;. The relations of M, (G) are
then described geometrically in terms of scissor congruence relations ¥ (L, x, A) =
> i (L, x. A;) determined by possible decompositions of the cone.

To see the compatibility between these two settings, note that a lattice L with
the choice of a basis {e;} determines an invertible Q-lattice of rank n, by taking
¢:Q"/Z" — QL/L that maps ¢: (a1, ...,a,) — Y _; aje;. To a (not necessarily
invertible) Q-lattice with ¢: Q*/Z" — QL/L, we can assign an element y € L ®
Q/Z by x =), ¢(e;) ® a; with e; the tuple in (Q/Z)" with 1 in the ith pos-
ition and zeroes elsewhere. For a fixed Z/NZ, the restriction of ¢ to (Z/NZ)"
induces on those n-tuples that determine corresponding symbols (a1, ..., a,) map
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.. an) > Y ; e; ® a; that gives rise to an associated y as above. The maps px

are then implementing the commensurability relation as in the Bost—-Connes case on
the rank one Q-lattices obtained by projecting along the e; directions. ]
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