AN INSTANTON TAKE ON SOME KNOT DETECTION RESULTS
JOHN A. BALDWIN AND STEVEN SIVEK

ABSTRACT. We give new proofs that Khovanov homology detects the figure eight knot and
the cinquefoils, and that HOMFLY homology detects 52 and each of the P(—3,3,2n + 1)
pretzel knots. For all but the figure eight these mostly follow the same lines as in previous
work. The key difference is that in honor of Tom Mrowka’s 60th birthday, the arguments
here use instanton Floer homology rather than knot Floer homology.

1. INTRODUCTION

Khovanov homology has been proved to detect a handful of the simplest knots, including
the unknot [KM11] and the trefoils 7'(+2, 3) [BS22b]. Recently, Dowlin [Dow18] constructed
a spectral sequence from Khovanov homology to knot Floer homology, which made it possi-
ble to prove that Khovanov homology also detects the figure eight [BDL™21], the cinquefoils
T(£2,5) [BHS21], and 52 [BS22a]. In [BS22a] we also used it to prove that reduced HOM-
FLY homology detects each of the P(—3,3,2n + 1) pretzel knots.

In this note, we give alternative arguments for most of these detection results, replacing
knot Floer homology and Dowlin’s spectral sequence with instanton knot homology and
Kronheimer and Mrowka’s spectral sequence from [KM11]. The figure eight detection result
follows quickly from known facts about instanton L-space knots, including a criterion for
their detection due to Li and Liang [LL21]. For T(£2,5), we apply this criterion together
with the classification of genus-2 instanton L-space knots given in [FRW22, Corollary 1.8].
Our main results are the following, which do not make any use of Heegaard Floer homology.

Theorem 1.1. Let K be a knot whose reduced Khovanov homology Kh(K;Q) is five-
dimensional and supported in §-grading zero. Then K is the figure eight knot.

Theorem 1.2. Let K be a knot whose reduced Khovanov homology Kh(K) over either Q
or 7/27 is five-dimensional and supported in the single §-grading £2. Then K = T(£2,5).

Here the d-grading on reduced Khovanov homology is defined by 6 = ¢/2 — h, where ¢
and h are the quantum and homological gradings, respectively.

Theorem 1.3. Let K be a knot whose reduced HOMFLY homology H(K;Q) is isomorphic
to H(52; Q) as triply-graded vector spaces. Then K = 5.

Theorem 1.4. Let K be a knot, and suppose for some n € Z that H(K;Q) is isomorphic
to H(P(—3,3,2n+ 1); Q) as triply-graded vector spaces. Then K = P(—3,3,2n + 1).

Remark 1.5. We should emphasize that the proofs of Theorem [1.2] and [1.4] are not really
new; they merely replace the parts of the arguments in [BHS21, [BS22a] which involve knot
Floer homology. By contrast, the proof of Theorem|[1.1]is genuinely different from the one in
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[BDL"21]. We also point out that we do not know how to prove that Khovanov homology
detects 52, as in [BS22al, without appealing to Heegaard Floer homology.

Remark 1.6. Beliakova, Putyra, Robert, and Wagner [BPRW22] recently established a
new spectral sequence relating HOMFLY homology with knot Floer homology. One can

use their construction in place of Dowlin’s spectral sequence, together with our results in
[BS22al, to give additional alternative proofs of Theorems and

Building on Theorems and we note that a knot K with dim Kh(K) = 5 satisfies
det(K) = 5 if and only if Kh(K) is supported entirely in J-gradings of a single parity (see
Lemma. We do not claim here to classify all knots K for which Kh(K) is 5-dimensional
and det(K) = 5, but we do come close by allowing some Heegaard Floer input.

Theorem 1.7. Let K be a knot other than the figure eight or T(£2,5), and suppose that
dim Kh(K;Z/27) = 5 and det(K) = 5. Then K is hyperbolic, with Seifert genus 4 and
Alezander polynomial

Agt) =t —t3+1 -3 474,
Moreover, either K or its mirror is an instanton L-space knot, hence fibered and strongly
quasipositive, with signature £8.

Remark 1.8. By [BDL'21, Theorem 1], a genus-4 knot satisfying the hypotheses of The-
orem cannot be supported in a single d-grading.

Remark 1.9. The Alexander polynomial appearing in Theorem [1.7]is in fact the Alexander
polynomial of an instanton L-space knot, namely the (5, 2)-cable of the right-handed trefoil.
But this knot K = 13n4g39 cannot satisfy the hypotheses of Theorem since it is a satel-
lite. Indeed, according to [Ras05, §7.2], we have dim Kh(K;Q) = 11, and dim Kh(K;Z/27Z)
is even larger, since Kh(K;Q) has nontrivial 2-torsion.

The organization is as follows. In Section [2] we prove Theorems [1.1] and In Section
we prove Theorem by first reducing it to a question about the factorization of the
Alexander polynomial Ak (t), and then determining enough about the factorization to rule
out all cases except g(K) = 4. Then in Section We prove Theorems and about the
HOMFLY homology of 55 and the pretzels P(—3,3,2n + 1).

2. THE FIGURE EIGHT AND THE CINQUEFOILS

We begin with the following lemmas, which are certainly well known to experts. In what
follows we let s(K) € 2Z denote the Rasmussen s-invariant [Ras10].

Lemma 2.1. The determinant of a knot K is determined by its d-graded reduced Khovanov
homology Kh(K;Q). In particular, we have
dim Kh(K;Q) > det(K),

and equality holds if and only if Kh(K; Q) is supported entirely in even 6-gradings or entirely
in odd 0-gradings. If in fact it is supported in a single §-grading o, then s(K) = 20.

Proof. The claim about s(K) follows from the fact that Kh(K;Q) is supported in one §-
grading if and only if the unreduced Khovanov homology Kh(K;Q) is “H-thin” [Kho03,
Proposition 3.6], meaning supported in two d-gradings, in which case these §-gradings are
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necessarily o + % Then the part of Kh(K;Q) in homological grading h = 0 must be
supported in quantum gradings ¢ = 2(h + ) = 20 £ 1, and so s(K) = 20 by definition.
For the claim about det(K), it follows from the fact that Kh(K) categorifies the Jones
polynomial [KhoO3]:
Vie(t) = 3 (—1)"9? dim Kh" (K).
q,h€Z
Then det(K) is equal to the absolute value of

Vic(=1) = Y (~1)(~1)%/* dim Kh"(K)

q,h€Z
= Y dmE"E) - Y dimERM(K)
q/2—h even q/2—h odd

Thus dim Kh(K;Q) > det(K) follows immediately from the triangle inequality. Moreover,
the last expression above is equal to +dim Kh(K) if and only if one of the two terms is zero,
or equivalently if and only if Kh(K) is supported entirely in even J-gradings or entirely in
odd J-gradings, as claimed. O

Lemma 2.2. If Kh(K;Z/27) is 5-dimensional, then so is Kh(K;Q), and moreover the two
are supported in the same §-gradings.

Proof. This follows from the universal coefficient theorem and the fact that dimg Kh(K; Q)
is odd and neither 1 nor 3, exactly as at the start of [BHS21| §5]. O

We next attempt to use Kh(K;Q) to determine the instanton knot homology KHI(K;Q),
as defined by Kronheimer and Mrowka [KM10b]. This invariant comes equipped with an
Alexander grading

g
KHI(K) = (P KHI(K,i),
i=—g

where g = ¢g(K) is the genus of K, each of whose summands are Z/2Z-graded. This
decomposition recovers the Alexander polynomial of K by the relation

g .
(2.1) = Ak(t) = S X(KHI(K, i) - £

i=—g

as proved in [KM10al [Lim10]. (The sign on the left comes from differing conventions for
the Z /27 grading.). It also satisfies the following properties:

e Symmetry: KHI(K,i) = KHI(K, —i) as Z/2Z-graded vector spaces for all 1.
e Genus detection: dim KHI(K,g) > 1.
e Fiberedness detection: dim KHI(K,g) =1 if and only if K is fibered.

The symmetry follows from the remark after [KM10b, Proposition 7.1], and the genus de-
tection and fiberedness results are [KM10bl Proposition 7.16] and [KMI10al, Proposition 4.1]
respectively.

Proposition 2.3. Let K be a knot for which dim Kh(K;Q) = 5. Then KHI(K;Q) has
total dimension 5.
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Proof. Kronheimer and Mrowka [KMI11], Proposition 1.2] constructed a spectral sequence
KnK;Q) = IF(K;Q)
which converges to the singular instanton knot homology of the mirror of K. Since the rank
of the latter is invariant under mirroring, this yields a rank inequality
dim I*(K; Q) < dim Kh(K;Q) = 5.
Moreover, we know by [KM11, Proposition 1.4] that I*(K;Q) = KHI(K;Q). Thus
(2.2) dim KHI(K;Q) < 5.

Equation and the fact that Ag (1) =1 tell us that the total rank of KHI(K) must
be odd. It cannot be 1, because then K would be the unknot — otherwise the summands
KHI(K,g) and KHI(K,—g) are distinct and contribute at least 1 each to dim KHI(K) —
and it cannot be 3 or else K would be a trefoil [BS22bl Theorem 1.6]. Thus we use (2.2)) to
conclude that dim KHI(K) = 5. O

Proposition 2.4. Let K be a knot for which dim KHI(K;Q) = 5. Then exactly one of the
following is true:

e K has Alexander polynomial 1, and in particular det(K) = 1.
o K is the figure eight knot.
o K has genus g > 2 and instanton knot homology

KHI(K;Q)=2Qy®Qy-1®Qo® Q14 ®Q_y,

where the subscripts denote the Alexander grading of each summand. In this case
either K or its mirror is an instanton L-space knot.

In particular, if det(K) # 1 then K is fibered.

Proof. Supposing first that K is not fibered, then
dim KHI (K, g) + dim KHI (K, —g) < 5,

and both terms on the left are equal and greater than 1 by the symmetry and fiberedness
detection properties, so

dim KHI(K,g) = dim KHI (K, —g) = 2.

By symmetry the remaining Q summand of KHI(K) can only be in Alexander grading zero,
SO

KHI(K) = Q2 & Q, ® Q%,,.

We apply to determine Ak (t). If KHI(K, g) is supported in a single Z/27Z grading,

then we have

Ag(t) = £2(t9 +t79) £ 1
for some signs, and this is impossible because there is no choice of signs for which Ag (1) = 1.
So KHI(K,g) must have a copy of Q in each Z/2Z grading, which by tells us that
Ak (t) = 1. Then det(K) = |[Ag(—1)] = 1.

We conclude from the above that if Ag(t) # 1 then K must be a fibered knot. If it
has genus g = 1 then it must be the figure eight, since dim KHI(K) = 3 if K is a trefoil.
Otherwise g > 2, and then we proved in [BS22b, Theorem 1.7] that dim KHI(K,g—1) > 1,
so KHI(K) is 5-dimensional and is nonzero at least in the four distinct Alexander gradings
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+g and +(¢g — 1). Again by symmetry each of these summands must be 1-dimensional and
the remaining @ summand must be in degree 0, so

KHI(K) = Q0 Q- 19Q Q14 ®Qy

as claimed. Now Li and Liang [LL21, Theorem 1.4] proved that any knot for which KHI
has this form must be an instanton L-space knot, up to mirroring, so this completes the
proof. ]

Proposition 2.5. Let K be a knot satisfying dim Kh(K;Q) =5 and det(K) # 1. Then

0 if K is the figure eight knot
s(K) = 29(K) if K is an instanton L-space knot
—29(K) if K is an instanton L-space knot,

and exactly one of these cases occurs. We also have g(K) > 2 unless K is the figure eight.

Proof. The case where K is the figure eight is immediate, so we will suppose that K is some
other knot. Proposition says that dim KHI(K) = 5, so we can apply Proposition 2.4 to
see that either K or its mirror is an instanton L-space knot, and that g(K) > 2.

Let us suppose that K is an instanton L-space knot, rather than K. Then K is strongly
quasipositive [BS19, Theorem 1.15], so we know from [Pla06, Proposition 4] or [ShuQ7,
Proposition 1.7] that s(K) = 2g(K). Otherwise K is an instanton L-space knot, so the
same argument says that

s(K) = —s(K) = —29(K) = —29(K). O
We are now ready to prove Theorems [1.1] and

Proof of Theorem [1.1l Suppose that Kh(K;Q) is 5-dimensional and supported in the single
d-grading o = 0. Then Lemma [2.1] tells us that det(K) = 5 and that s(K) =20 =0, so K
must be the figure eight by Proposition [2.5 g

Proof of Theorem[I.2, Suppose that Kh(K;Z/2Z) is 5-dimensional and supported in the
single -grading o = 2. Then the same is true of Kh(K;Q) by Lemma so we can work
over either Q or Z/27Z. With this in mind, Lemma says that det(K) = 5 and that
s(K) = 20 = 4, so by Proposition K must be an instanton L-space knot of genus
2. Such knots are fibered, and in [BLSY21) §2] we gave a partial characterization of their
possible monodromies; more recently, Farber, Reinoso, and Wang [FRW22, Corollary 1.8]
used this to show that K is necessarily 7'(2,5). We remark that if we wanted to work over
Z/2Z rather than Q, then we could finish the proof that K = T'(2,5) without recourse to
[FRW22], using instead the arguments in [BLSY21].

Now if Kh(K;Z/27) is 5-dimensional and supported in the J-grading o = —2, then we
apply the above to its mirror K to conclude that K = T'(2,5), and hence that K = T'(—2,5).
This completes the proof. ]

3. OTHER DETERMINANT-5 KNOTS

Here we address the question of whether there are knots K other than the figure eight
and cinquefoils such that dim Kh(K;Z/27Z) = 5 and Kh(K;Z/2Z) is supported entirely in
d-gradings of a single parity.
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In this case, Lemma [2.2] and Proposition [2.5] tell us that if K is not the figure eight, then

either K or its mirror is an instanton L-space knot whose genus g(K) = %S(K ) is at least 2.

We will see that its branched double cover is a Heegaard Floer L-space, and then use recent
work of Boileau, Boyer, and Gordon [BBG19| to put strong conditions on the Alexander
polynomial of K which rule out all cases except g(K) = 4.

3.1. The Alexander polynomial of a thin knot.

Proposition 3.1. Suppose that Kh(K;Q) is 5-dimensional and that det(K) = 5, but that
K is not the figure eight or T'(£2,5). Then either K or its mirror is an instanton L-space
knot, hence fibered and strongly quasipositive, and its Alexander polynomial is

Ag(t)=t9 —t9 41—t 9 479
where g = g(K) is even and at least 4.

Proof. Proposition tells us once again that dim KHI(K) = 5, so that either K or
its mirror is an instanton L-space knot (hence fibered and strongly quasipositive [BS19,
Theorem 1.15]) and

KHI(K;Q) =2 Q@ Q12 Q & Q14 Qy

by Proposition This determines the Alexander polynomial Ak (t) by (2.1): applying
the conditions Ag (1) =1 and Ag(—1) = £ det(K) = £5, we must have

Ag(t) = (19 (9 =971 4 (=1)9 —t' 79 +t79).
In fact, since K is an instanton L-space knot up to mirroring, we can apply [LY21l The-
orem 1.9] to deduce that the nonzero coefficients of Ag(t) alternate in sign, so g must be
even and then
Ag(t) =t =971 1 —t179 479,
By assumption g is not T'(£2,5), but there are no other instanton L-space knots of genus
2 [FRW22, Corollary 1.8], so then g is at least 4. O

Proposition 3.2. Suppose that Kh(K;Z/2Z) is 5-dimensional and that det(K) = 5, but
that K is not the figure eight or T(£2,5). Then K has signature o(K) = £2¢(K), and if
we write h = %g(K), then h is an integer with h > 2, and the polynomial

ph(t) — t4h _ t4h_1 + t2h —t41

is a product of cyclotomic polynomials.

Proof. Lemma says that Kh(K;Q) is also 5-dimensional, so Proposition tells us
that g(K) is even and at least 4, so that h € Z as claimed; that K is fibered and strongly
quasipositive, after possibly replacing it with its mirror; and that

pi(t) = Ak (t),

so that pp(t) is a product of cyclotomic polynomials if and only if A (t) is. Boileau, Boyer,
and Gordon [BBG19l Corollary 1.2] proved that if the branched double cover of a fibered,
strongly quasipositive knot K is a Heegaard Floer L-space, then Ak (t) is a product of
cyclotomic polynomials; this follows from their observation [BBG19, Proposition 6.1] that
in this case K has signature £2¢(K). Thus it suffices to show that Yo(K) is a Heegaard
Floer L-space.
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We now apply Ozsvéath and Szabd’s link surgeries spectral sequence [OS05], and in par-
ticular the inequality

det(K) < dim HF(S4(K); Z,/27) < dim Kh(K; Z,/27),

to conclude that dim EF(EQ(K); Z)2Z) = |H1(X2(K))| = 5. In other words, the branched
double cover ¥o(K) is a Heegaard Floer L-space, and the proposition follows. U

Proof of Theorem[1.7. Suppose that Kh(K;Z/27Z) is 5-dimensional and supported in 4-
gradings of a single parity. Then the same is true of Kh(K;Q) by Lemma and det(K) =
5 by Lemma Moreover, since K is not the figure eight by assumption, Proposition
says that s(K) = £2¢g(K) and g(K) > 2.

We apply Proposition and see that in fact g(K) is even and at least 4, that o(K) =
+2¢(K), and that the polynomial py,(t) must be a product of cyclotomic polynomials, where
h = %g(K ). In Proposition we will prove that this is not the case for any h > 3, so
we must have h < 2. But since 2h = g(K) > 4 this leaves only h = 2, hence g(K) = 4 as
claimed. Proposition establishes all of the remaining conclusions except hyperbolicity.
The Alexander polynomial and genus prevent K from being a torus knot, so we need only

show that it cannot be a satellite; this requires substantially different techniques, so we
defer it to Proposition below. O

We need the following lemma to prove that knots satisfying the hypotheses of Theorem [1.7]
cannot be satellites.

Lemma 3.3. Let P C S' x D? be a knot, and suppose that there is a branched double cover
St x D? —» S x D?
with branch locus P. Then P is isotopic to the core S' x {0}.

Proof. Fix a nontrivial torus knot 7' = T'(p, q), and consider the satellite K = P(T"). We
form the branched double cover ¥3(K) by taking a double cover X of $3\ N(T'), which
may or may not be connected a priori, and gluing it to the branched double cover Xp of
P c S' x D?. Since the latter has connected boundary, so does X, so X is connected. We
also know that X is Seifert fibered over a disk, since the same is true of S3\ N(T); and that
it has r = 2 singular fibers since it is not a solid torus. (We recall that the knot complement
has base orbifold D?(|pl, |q]).)

Gluing the solid torus ¥ p to X amounts to a Dehn filling of X, so by [Hei74, Proposition 2]
there are now two possibilities:

e the Seifert fibration extends to Xo(K), with at most r + 1 = 3 singular fibers, or
e we have filled the fiber slope, and the resulting ¥9(K) is a connected sum of r
nontrivial lens spaces.

In the latter case, K is a connected sum of r nontrivial knots, because the branched double
cover of a prime knot is prime |[HNI10, Proposition 5.1]. But as a satellite of a torus
knot, it can only be composite if the pattern P has wrapping number 1, see e.g. [Cro04,
Theorem 4.4.1]. In this case P is a connected sum of the core Cy = S! x {0} with some
other knot Ky C S3, and we have

Yp 22 ¥9(Co)#Xa(Ko) =2 (St x D?)#55(Ky).



8 JOHN A. BALDWIN AND STEVEN SIVEK

Thus Y2(Kp) = S, which implies that Ky is unknotted [Wal69] and hence that P is isotopic
to the core Cj.

In the remaining case, we know that Yo (K) is a small Seifert fibered space: it has base
S? and at most three singular fibers. We can also arrange for 71 (32(K)) to be infinite by
taking both p and ¢ to be large. Then a folklore result (see e.g. [Mot17, Proposition 3.3] for
details) says that K must be either a torus knot or a Montesinos knot with three rational
tangles. These are never nontrivially satellite knots — the Montesinos case is due to Oertel
[Oer84, Corollary 4] — so either P is contained in a ball inside S' x D?  in which case
its branched double cover cannot actually be S' x D?, or P is isotopic to the core circle
St x {0}, as claimed. O

The following is the last remaining claim of Theorem

Proposition 3.4. Let K be a knot such that dim Kh(K;Z/27) =5 and det(K) = 5. Then
K is not a satellite knot.

Proof. We first show that K is prime: if K =& K;#K>, then by the Kiinneth formula for
reduced Khovanov homology over Z /27 we have

dim Kh(K7) - dim Kh(K3) = dim Kh(K) = 5,

so dim Kh(K;) = 1 for some 4, but then K; must be the unknot [KM11]. This also implies
in turn that the branched double cover ¥o(K) is prime, as in [HN10, Proposition 5.1].

Now we suppose that K is a nontrivial satellite, with pattern P C S x D? and companion
C C S3. By assumption P cannot be isotopic to the core S* x {0}, and C cannot be the
unknot. We recall from Theorem that K (up to mirroring) is fibered and strongly
quasipositive, and from the proof of Proposition that Yo(K) is a Heegaard Floer L-
space. It thus follows from [BBG19, Proposition 6.2 and Remark 6.3] that P must have
winding number 1.

Since P has odd winding number, we can write ¥9(K) as a union
Yo(K) = X5(C) U2 Ep,

where X5(C) is a connected double cover of the exterior S3\ N(C), and X p is a double cover
of S1 x D? branched over P; these pieces are glued along their respective torus boundaries.
We note that 9X2(C) is incompressible since C' is a nontrivial knot.

Suppose that X p has incompressible boundary as well. Then this torus remains incom-
pressible in Y9(K). Hanselman, Rasmussen, and Watson [HRW17, Theorem 57| classified
the prime, toroidal Heegaard Floer L-spaces Y with |H;(Y')| = 5, and showed in particular
that they are all built by gluing together a pair of trefoil exteriors. In each case there is
a unique incompressible torus up to isotopy, so we conclude that Xs(C') and X p are both
trefoil exteriors. In particular we have a double cover

S3\ N(T(£2,3)) = X5(C) — S3\ N(C).
Gonzalez-Acuna and Whitten [GAW92| Theorem 3.4] proved in this case that either

e ('is not a torus knot, and then it must admit a cyclic +2-surgery, which contradicts
the main result of [KMO04]; or

e (C'is a torus knot T'(p, q), and we can write 2 = dpg £ 1 for some integer d, which is
also impossible.



AN INSTANTON TAKE ON SOME KNOT DETECTION RESULTS 9

Thus ¥ p has compressible boundary after all, and we can write
Yp = (S x DH#Z
for some closed 3-manifold Z, which may or may not be S3.
Supposing that Z is different from S3, it now follows that
So(P(C)) = (X2(C)U (S' x D*)#Z

can only be prime if S% arises as a Dehn filling of X(C), i.e., if Xo(C) is the exterior of some
other knot in S3. Again this is impossible since C' is nontrivial [GAW92, Theorem 3.4], so
Yo (K) 22 ¥5(P(C)) is not prime, which is a contradiction. So Z =2 $3, and therefore ¥p is
a solid torus. Lemma now tells us that P must be isotopic to a core of S x D?. But in
this case K is not a nontrivial satellite of C after all, so we are done. ]

3.2. Factorization of the Alexander polynomial. In this subsection we prove the fol-
lowing, which completes the proof of Theorem
Proposition 3.5. Fiz an integer h > 1, and define the polynomial
(3.1) pr(t) =t — =l g2h g
If h > 3, then py(t) is not a product of cyclotomic polynomials.
Remark 3.6. By contrast, we note that p;(t) = ®10(t) and pa(t) = P1o(t) - P12(t).

In the proof of Proposition [3.5] we will adapt an algorithm called the “Graeffe” method
[BD8&9] for recognizing cyclotomic polynomials. The idea is that if

p(t) =t +ag_ 1t + - Fart +ag

has roots oy, o, ..., a4, then we can split p into its even and odd parts by writing
pe(t) = ag + ast + agt® + . ..,

t) = po(t?) + t - po(t?) where
p() pe( ) pO( ) {po(t):a1+a3t+a5t2+....

Then Graeffe’s root-squaring method says that the polynomial
g(t) = (=1)7 (pe(t)* =t - po(t)?)

has roots of, a3,...,a2. For example, if p(t) = ®,(t) then we will have
D, (1), n odd
(3.2) q(t) = Ppya(t), n even but not a multiple of 4

(Cbn/2(t))2 , n a multiple of 4.

We note that if p(t) = ps(t) is the polynomial given in (3.1), then we have
pe(t) = 2" 4 th 1, polt) = —t2"=1 —1
and so the root-squaring method produces the polynomial
gn(t) = (" + 1"+ 1)? — (4271 —1)7
(3:3) = ¢th _ph=1 g odh g2k 4 ogh y 4 1

Before we begin the proof of Proposition [3.5] we will first recall some facts about special
values of cyclotomic polynomials.
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Lemma 3.7. For all n > 2, we have

=p°i ' 1 dd
B, (1) = p n=p .zs a prime power B (—1) = n o
1 otherwise ®,/5(1) n even.

Proof. We evaluate both sides of
xnfl+xn72+...+x+1: H(I)d(x)

dln
d#1
at x = 1 and at x = —1 to conclude that
0 n even
H a(1) =mn, H a(=1) {1 n odd.
dn dln
d#1 d#1

If n = p® is a prime power, with e > 1, then the first of these implies by induction on e
that @, (1) = p, and then it follows that ®,(1) =1 if n is not a prime power. The second
equation similarly implies by induction that ®,(—1) =1 for all odd n.

In the remaining cases, we wish to evaluate ®,(—1) where n = 2k is even. We observe
that if k is odd then ®,(x) = ®;(—x), and if k is even then ®,(z) = &1 (2?). In either case
it follows that ®,(—1) = ®x(1). O

We now begin to determine which cyclotomic polynmoials can divide py(t).

Lemma 3.8. If n is odd, then ®,(t) does not divide pp(t).
Proof. Suppose that ®,,(t) divides pp(t). Then the squares of the primitive nth roots of

unity are also primitive nth roots of unity, so @, (t) also divides the polynomial g, (t) from
(3.3), and hence it divides the difference

an(x) — pe(h) = 263" + 2" = 2" (121 + 1).

The roots of ®,(t) are all nonzero, so it divides #* + 1 and hence t** — 1. But this means
that n is an odd divisor of 4h, so in fact n divides h.

Letting ¢ be any root of ®,,(t), we have (" = 1 and therefore (" = 1. We compute that
0=pn(¢) = R L I L |
=1-¢1'+1-¢+1
and so (? — 3¢ +1=0. But then ¢ = %(3 ++/5) is not a root of unity, contradiction. [

Lemma 3.9. Let n = 2k be twice an odd integer k > 1, and suppose that ®,(t) divides
pr(t). Then n =10, and h is congruent to either 1 or 2 modulo 5.

Proof. Since ®,,(t) divides pp(t), the primitive kth roots of unity must be roots of g5 (t), so
O (t) divides gp(t). Equivalently, since ®,,(t) = ®x(—t) we see that ®,(t) divides gp(—t)
and thus also the difference

qn(—t) — pp(t) = 264" 2(—1)M3h po(— 1)t 42t
— 9 (th_l + (_1)h> <t3h_1 + (_1)h) )

Then ®,,(t) divides either t?»=2 —1 or t%"~2 — 1, and hence n divides either 2k — 2 or 6k — 2.
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Suppose first that n divides 2h — 2, and let ¢ be a root of ®,,(¢). Then ¢?"~2 =1, so

0=pn(¢) =¢" = ¢+ ¢ (41
= -G 1=20(0)
and since ( is a root of the irreducible ®19(t), we must have n = 10. In this case 2h — 2 is
a multiple of 10, so h =1 (mod 5).

Now suppose instead that n divides 65 — 2, and let ¢ be a root of ®,,(t); then (672 = 1.
We note that n is not a multiple of 3 since 6h — 2 is not, so ¢? is also a primitive nth root
of unity and therefore a root of ®,(t). Since ®,(t) divides py(t), we have

0= ph(C3) — <12h _ C12h—3 + <6h _ C3 +1
==+ = +1=010(C)

and so once again we must have n = 10. Now 6h — 2 is a multiple of 10, and so h =

2
(mod 5). O

Lemma 3.10. Fiz h > 1. If py(t) is a product of cyclotomic polynomials, then we have

(3.4) ph(t) = io(t H Dy, (t)

where each nj is a multiple of 4 but not a power of 2. In particular h must be congruent to
either 1 or 2 modulo 5.

Proof. By assumption we can find integers ng,n1,...,n; (k > 0) such that
Pr(t) = @py(t) - Dy (8) - ... - P, (B).

By Lemma all of the n; must be even, and then by Lemma [3.9] they must all be either
10 or multiples of 4. Setting ¢t = —1, we have

k
5=pn(- H

and every factor on the right is a nonnegative integer by Lemma we order them so that
Dy (—1) =5 and @, (—1) =1 for all j > 1.

Now by Lemma the integer ®,,(—1) can only be 5 if ng = 2 - 5¢ for some e > 1,
and then ng is not a multiple of 4 so it must be 10. Then Lemma guarantees that h is
either 1 or 2 modulo 5. Moreover, we cannot have n; = 10 for any other j > 1, because
then ®,,.(—1) would not be 1, so the remaining n; are all multiples of 4.

Finally, if instead we set ¢ = 1 then p,(1) = 1 implies that @, (1) = 1 for all j =
1,2,...,k, so we cannot have n; = 2° because then Lemmawould tell us that ®,(1) = 2
instead. O

With Lemma in hand, we can now prove Proposition

Proof of Proposition[3.5. Suppose that py(t) is a product of cyclotomic polynomials. Then
Lemma says that h = 1 or 2 (mod 5), so h cannot be 3, 4, or 5. We will therefore
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require from now on that h > 6, so that 3h < 4h — 6 and hence the polynomial g, (t) from
(3.3 satisfies
qu(t) = t*h —¢Hh=l gpdh L g2 Lot
By assumption, pp(¢) has the form (3.4)). Following ({3.2)), the polynomial g (¢) must then

equal
2

k
5(t) - | [[ @y )| =t ="+ O@"6).
j=1

The product being squared on the left is a monic polynomial with integer coeflicients: if we
write

k 2h—2
j=1 i=1
then its square has the form
k 2 4h—4
j=1 i=1
where b = 2a; and
i—1
b; :2ai+2ajai,j, 1> 2.
j=1

The summands on the right occur in pairs aja;—; = a;—ja; for 1 < j < L%J, so it follows

that
; odd
b = 0 ) Z © (mod 2).
(aij2)® = a9, ieven

Multiplying by ®5(t) = t* + 3 4+ t2 +t + 1, we see that the t**~1- and t*"~2-coefficients of

4h—4
a(t) ="+ + 2+t +1) <t4h—4 +y bit4h—4—z‘>
i=1

are —1 and 0 respectively, so that
A=b+1=2a+1 = a5 =-1,
and
O=by+b +1=2a0+a})+(2a1)+1 = ay=0.

But then we also know that the t*"~®-coefficient of g;,(t) is 0 by assumption, and yet it is
also

b1 +bo+bg+bs+bs=a1+ay=-—1 (mod2),

which is a contradiction. O
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4. HOMFLY HOMOLOGY OF NEARLY FIBERED KNOTS

In this section we prove that reduced HOMFLY homology detects 52 and each of the
P(-3,3,2n + 1) pretzel knots, where n € Z.

As background, we recall that Khovanov and Rozansky [KR08a] defined for each integer
N > 1 a bigraded sly link homology Hy(K), where Hy(K) agrees with Kh(K) up to a
change of grading. In [KRO8b] they also defined a triply graded homology theory H(K)
whose graded Euler characteristic recovers the HOMFLY polynomial. Rasmussen [Rasl5]
constructed for each N > 1 a spectral sequence

(4.1) H(K) = Hy(K)
which collapses for all large enough N.
Lemma 4.1. Suppose for some knot K and some
Je {5t U{P(-3,3,2n+1) | neZ}

that B B

H(K;Q) = H(J;Q)
as triply-graded vector spaces. Then Ak (t) = Ay(t), and

dim H(K;Q) = dim Kh(K;Q) = det(K).

Proof. The claim that Ag(t) = Ay(t) follows from the fact that H(K) determines the

HOMFLY polynomial of K, and hence its Alexander polynomial. We note by taking ¢t = —1
that this implies that det(K) = det(J).

We now claim that
(4.2) dim H(K;Q) = dim H(J; Q) = det(J) = det(K).

It suffices to prove the middle equality. When J = 5o this follows from the fact that
J is a two-bridge knot: Rasmussen proved for each N > 4 that J is “N-thin” [Ras07,
Theorem 1], and hence that the sly homology Hy(J;Q) has dimension det(.J). We take
N large enough so that the spectral sequence collapses for J, and thus conclude that
dim H(J; Q) = det(J). The case J = P(—3,3,2n + 1) is [BS22a, Lemma 9.1], in which we
use an identical argument for the two-bridge knot P(—3,3,1) = 61, and then we apply work
of Wang [Wan21] to get the general case.

Combining (4.2)) with the case N = 2 of (4.1) and Lemma we now see that
det(K) = dim H(K;Q) > dim Hy(K; Q) = dim Kh(K;Q) > det(K).
Thus equality must hold throughout, completing the proof. O

Lemma [4.1] is enough to determine the instanton knot homology of such a knot K.

Lemma 4.2. Suppose for some knot K and some
J e {5 U{P(-3,3,2n+1) | neZ}

that B B
H(K;Q) = H(J;Q)

as triply-graded vector spaces. Then dim KHI(K) = det(K), and K has genus 1 and
dim KHI (K, 1) = 2.
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Proof. According to Lemma [4.1] we have

2 —34+2t71, J=05

Ax(t) = Ay(t) =

and
dim Kh(K; Q) = det(K) = T J =0
9, J=P(-332n+1).

We once again apply Kronheimer and Mrowka’s spectral sequence
KWEK;Q) = I*(K;Q)
of [KM11}, Proposition 1.2], together with the isomorphism
I'(K;Q) = KHI(K; Q)

of [KM11l Proposition 1.4] and the invariance of dim KHI under orientation reversal, to
conclude that

dim KHI (K ; Q) < dim Kh(K; Q) = det(K).
But the relation (2.1)) implies that if we write Ag(t) = >, a;t* then

dim KHI(K:Q) > 3 Jai] > [ A (—1)] = det(K),
1EZ
so if dim KHI(K; Q) < det(K) as well then each inequality must in fact be an equality.

In other words, we have shown that
dim KHI(K,i;Q) = |a;]

for all i € Z, where the a; are the coefficients of A ;(t). This is zero for all ¢ > 2 and nonzero
for i = 1, so the genus detection property of KHI says that g(K) = 1. And since a; = +2
we can also conclude that dim KHI(K,1) = 2, as claimed. O

Knots satisfying the conclusion of Lemmal[4.2lhave been completely classified: we achieved

the analogue of this with HFK in place of KHI in [BS22a], and then Li and Ye [LY22]
showed that the same conclusion holds for KHI. Specifically, for any such knot the sutured
complement of a genus-1 Seifert surface must be one of two possible sutured manifolds, up to
orientation: for HFK this is [BS22a, Theorem 5.1}, and then [LY22, Example 2.2] establishes
the same result (with the same sutured manifolds) for KHI. Then [BS22a, Theorem 6.1]
and [BS22a, Theorem 7.1] classify the knots that realize these sutured manifolds, by an
argument that uses no Floer homology whatsoever.

Proposition 4.3 ([BS22a, [LY22]). Suppose that K is a genus-1 knot, and that
dim KHI(K,1;Q) = 2.
Then up to mirroring, either

° AK(t) =2t -3+ 21571, and K is either 5o, 15n43509, or 16ng9es30, OT
o Ap(t)=—-2t+5—2t"1 and K is either some P(—3,3,2n + 1) or 151115646,

where the knots 15n115646 and 16ngogs30 are in fact twisted Whitehead doubles Whi(ng,, 2)
of the right-handed trefoil.
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Using Shumakovitch’s KhoHo program [Shul8], we can compute that

17, J = 15143522
(4.3) dunﬁ(J,@) = 23, J = 15n115646
25, J = 16n696530-

With this information at hand, we are now ready to prove the remaining results from the
introduction.

Proof of Theorem[1.3 Suppose that H(K) = H(53). Then Lemmas and say that
Ag(t) =2t —3+2t71

that dim Kh(K;Q) = 7, and that K has genus one, with dim KHI(K,1;Q) = 2. According
to Proposition[4.3] it follows that K must be either 52, 15n435922, or 16n696530 up to mirroring.
But the triple grading distinguishes H(52) from H (53), since they have different signatures
[Ras15 Corollary 5.1], so K cannot be 59. It also cannot be either 15n43522 or 16696530,
or their mirrors, because by we would then have dim Kh(K;Q) > 7. Thus K must be

59 after all. 0

Proof of Theorem[1.4} Suppose that H(K) = H(P(-3,3,2n + 1)) for some fixed n. Then
Lemma [4.1] says that
Ag(t)=—2t+5—2t71,
so det(K) =9, and that
dim H(K;Q) = dim Hy(K; Q) = dim Kh(K;Q) = 9.

In particular, when N = 2 the spectral sequence (4.1)) collapses, and so by [Rasl5 Theo-
rem 1] the bigrading on Hs(K) is completely determined by the triple grading on H(K).
This means that

Kh(K;Q) = Kh(P(-3,3,2n+1);Q)
as bigraded vector spaces.

Moreover, by Lemma we know that K has genus one, with dim KHI(K,1;Q) = 2.
Proposition says that K must therefore be some pretzel knot P(—3,3,2m + 1), or
15n115646 or its mirror. (We note that P(—3,3,2m+ 1) is the mirror of P(—3,3,—2m —1).)
But again by the reduced Khovanov homologies of 151115646 and its mirror are not
9-dimensional, so in fact K cannot be either of these knots. So now we have

K = P(-3,3,2m+1)

for some m € Z, and all of these pretzel knots are distinguished by the bigradings on their
Khovanov homologies, by [Stal2] Theorem 4.1] or more generally [HW18, Theorem 3.2].
Thus m = n after all. g
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