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Abstract

The bandwidth-free tests for a multi-dimensional parameter have attracted considerable attention in 
econometrics and statistics literature. These tests can be conveniently implemented due to their tuning- 
parameter free nature and possess more accurate size as compared to the traditional heteroskedasticity 
and autocorrelation consistent-based approaches. However, when sample size is small/medium, these 
bandwidth-free tests exhibit large size distortion when both the dimension of the parameter and the 
magnitude of temporal dependence are moderate, making them unreliable to use in practice. In this paper, 
we propose a sample splitting-based approach to reduce the dimension of the parameter to one for the 
subsequent bandwidth-free inference. Our SS–SN (sample splitting plus self-normalisation) idea is broadly 
applicable to many testing problems for time series, including mean testing, testing for zero 
autocorrelation, and testing for a change point in multivariate mean, among others. Specifically, we propose 
two types of SS–SN test statistics and derive their limiting distributions under both the null and alternatives 
and show their effectiveness in alleviating size distortion via simulations. In addition, we obtain the limiting 
distributions for both SS–SN test statistics in the multivariate mean testing problem when the dimension is 
allowed to diverge.
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1 Introduction

Hypothesis testing for a multi-dimensional parameter is often encountered in the analysis of 
economic time series. Classical approaches involve conducting consistent estimation of the 
variance–covariance matrix of the parameter estimate non-parametrically using spectral methods 
[e.g. heteroskedasticity and autocorrelation consistent (HAC) estimators] and constructing 
standard tests based on the asymptotic normality of the parameter estimate and consistency of 
HAC estimator. The use of HAC estimator has been extensively analysed in econometrics litera-
ture; see Andrews (1991), Andrews and Monahan (1992), Gallant (2009), Hansen (1992), Newey 
and West (1987), and Robinson (1991, 1998) for important contributions. It has become a long 
tradition in time series analysis and econometrics to use HAC estimator, and it has been imple-
mented in many statistical and econometrics softwares.

Since the pioneering work of Kiefer et al. (2000) (KVB thereafter), bandwidth-free inference has 
become an important alternative, due to the dif6culty of choosing the optimal bandwidth in the 
use of HAC estimator, and good statistical property of the KVB test. Speci6cally, the KVB test 
was developed for linear regression model with dynamic regressors and heteroscedastic and 
serially correlated errors. Their test statistics have non-standard asymptotic distributions that 
only depend on the number of restrictions being tested, and critical values are easy to simulate us-
ing standard techniques. The main advantage of the KVB approach compared to standard 
HAC-based counterpart is that estimates of the variance–covariance matrix are not explicitly re-
quired so the sensitivity of HAC estimator with respect to the choice of bandwidth (or truncation 
lag) is avoided, as no bandwidth is involved in the KVB test.
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In statistics literature, Lobato (2001) proposed a bandwidth-free test for the uncorrelation at 
top K lags of a time series and described the principle of bandwidth-free inference using the simple 
mean testing example, which can be viewed as a special case of KVB test. Inspired by Lobato 
(2001) and Kiefer et al. (2000), Shao (2010) proposed the self-normalisation (SN, hereafter) tech-
nique for the inference (testing and con6dence region construction) of a general parameter, includ-
ing marginal means, quantiles, and autocorrelation at speci6c lags, in the setting of stationary time 
series. Shao and Zhang (2010) further extended self-normalisation to testing for a change point in 
a parameter associated with a weakly dependent time series and modi6ed the self-normaliser to 
adapt to the change-point testing problem. For many follow-up work on self-normalisation for 
time series, we refer the reader to the review by Shao (2015). A major message from this line of 
literature is that no tuning parameter (i.e. bandwidth or truncation lag) is needed in conducting 
hypothesis testing or con6dence interval construction as we can use an inconsistent estimator of 
asymptotic variance–covariance matrix (or long run covariance matrix) and the resulting studen-
tised statistic is asymptotically pivotal. Both theoretical and empirical research suggest that the size 
associated with bandwidth-free test is typically more accurate as compared to the classical 
HAC-based method with some degree of power loss (Jansson, 2004; Kiefer & Vogelsang, 2005; 
Sun et al., 2008; Zhang & Shao, 2013).

Despite the implementational convenience and size accuracy of bandwidth-free tests, it has been 
empirically observed that the size can still be quite distorted when the dimension of the parameter 
is moderate and the temporal dependence is moderate/strong; see Figure 1 for an illustration in the 
mean testing context. This phenomenon is not superising in view of the theoretical work by Sun 
(2014c), where the impact of dimensionality and serial dependence on the size distortion was care-
fully investigated via edgeworth expansion for a class of F-test statistics under both small-b 
and 6xed-b asymptotics (Kiefer & Vogelsang, 2005). Note that in the mean testing problem, 
the SN test statistic corresponds to 6xed-b asymptotics with b = 1 and the use of Bartlett kernel 
(Kiefer & Vogelsang, 2002).

Moderate dimensional time series with moderate/strong temporal dependence are prevalent in 
practice. Therefore, there is a strong need to develop new testing methods that can control the size 
when the dimension of the parameter is moderate and the temporal dependence is moderate/ 
strong. When the time series is very strongly autocorrelated, Müller (2014) and Sun (2014a) pro-
posed methods to control the size in a near unit root model and focused on the univariate setting. 
In contrast, the temporal dependence in our framework is relatively weak compared to those ex-
amined in their work as the focus is more on reducing the size distortion due to the moderate 
dimensionality.

In this article, we develop a sample splitting-based approach (called SS–SN, sample splitting plus 
self-normalisation) to reduce the size distortion associated with bandwidth-free inference. The 

Figure 1. Empirical size for traditional SN test on multivariate mean.
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basic idea is to split the full sample into two parts, with one part used to reduce the dimension of 
the parameter to one, and the other part used to perform bandwidth-free testing for the dimension- 
reduced (i.e. one-dimensional) time series. We show that this SS–SN approach is generally applic-
able to testing for the multivariate mean, uncorrelation at a 6nite number of lags, regression 
coef6cients in linear regression models with time series regressor/error and a change point in multi-
variate mean, among others. Using the orthogonal increment property of Brownian motion and a 
novel conditioning argument, we obtain the limiting null distributions of our L∞-type and L2-type 
SS–SN test statistics when the dimension is 6xed, which is pivotal and is independent of the sample 
splitting proportion. We also derive the asymptotic power function for our proposed test and com-
pare to its bandwidth-free counterpart. By using a recent result on sequential Gaussian approxi-
mation for time series in a growing-dimensional environment (Mies & Steland, 2023), we show 
the asymptotic validity of our SS–SN test statistics in a multivariate mean testing problem 
when the dimension diverges as sample size grows to in6nity. Under the same setting, we further 
obtain the asymptotic independence of L∞-type and L2-type SS–SN test statistics under the null, 
which justi6es the Bonferroni test that combines the L∞-type and L2-type tests in achieving all- 
round power against dense and sparse alternatives. The theoretical tools we develop for the 
growing-dimensional setting are of independent interest.

The idea of sample splitting-based inference is not new, and there is a large literature in statistics 
and machine learning; see Shafer and Vovk (2008), Wasserman and Roeder (2009), Rinaldo et al. 
(2019), Wasserman et al. (2020), and Du et al. (2023) among others. However, it seems that sam-
ple splitting is mostly used for the inference of independent data. In the context of time series, sam-
ple splitting was used for the post-selection inference in Lunde (2019), for the identi6cation testing 
for structural VAR models in Maciejowska (2022) and for unit root testing in Chang et al. (2022). 
These are the only references we are aware of. The scope and property of our proposed SS–SN in-
ference are substantially different from these papers and have no overlap with the existing 
literature.

The rest of this paper is organised as follows. Section 2.1 describes the SN method in a multi- 
dimensional mean testing problem and illustrates its large size distortion due to moderate dimen-
sion and temporal dependence. Then, we propose our SS–SN test statistics and investigate their 
asymptotic properties under the null and local alternatives in Sections 2.1 and 2.2. In Sections 
2.3–2.5, we present the asymptotic theories for the two SS–SN test statistics when the dimension 
is allowed to diverge. In Section 3, we present several extensions, including testing for zero auto-
correlation in a time series, linear hypothesis testing in a regression model and testing for a change 
point in multivariate mean. Simulation results are provided in Section 4 and Section 5 concludes. 
Proofs for main results and auxiliary lemmas are gathered in the online supplemental material, 
which also contains some variants of SS–SN test statistics based on different rescaling methods, 
corresponding simulation results, and a real data illustration.

2 Methodology and theory

In this section, we introduce our L∞-type SS–SN test statistic in the case of testing the mean of a 
multivariate stationary time series in Section 2.1, and we develop an L2-type SS–SN statistic which 
targets the dense alternative in Section 2.2. We present the asymptotic theories for the two SS–SN 
test statistics in the growing-dimensional setting in Sections 2.3–2.5, respectively.

2.1 Hypothesis testing on multi-dimensional mean

Let Xt = (X1
t , X2

t , . . . , X
p
t )⊤ be a p-dimensional stationary time series with mean 

E(Xt) = μ = (μ1, μ2, . . . , μp)⊤
∈ R

p. We want to test the null hypothesis H0:μ = μ0 = 

(μ1
0, μ2

0, . . . , μp
0)⊤ against HA:μ ≠ μ0. Denote Sa,b =

ÿb
t=a Xt, S

j
a,b

=
ÿb

t=a X
j
t, the autocovariance 

matrix Γ(k) = E[(Xt − μ)(Xt+k − μ)⊤] and let Γ =
ÿ∞

k=−∞ Γ(k) be the long run covariance matrix 
with the (i, j) element being Γij. Also denote the ith row of Γ1/2 as Γ⊤

i , so we have Γij = Γ⊤
i Γj. 

The following functional central limit theorem (FCLT) is needed in deriving the asymptotic prop-
erties. Here, we let Dd[0, 1] (when d = 1, we omit the superscript and just use D[0, 1]) denote the 
space of Rd valued functions on [0, 1] which are right continuous and have left limit, endowed 
with the topology induced by the multi-dimensional Skorokhod metric (Billingsley, 2013).
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Assumption 1 (Functional central limit theorem). We assume that

n−1/2(S1,+nr+ − +nr+μ) ó Γ1/2Bp(r) on Dp[0, 1], (1) 

where Bp(r):[0, 1] ³ R
p is a p-dimensional vector of independent 

Brownian motions (we omit the subscript and use B(r) when p = 1), and 
‘ó’ signi6es weak convergence in Dp[0, 1] (Billingsley, 2013).

Throughout, p is held 6xed except for Sections 2.3–2.5, where p = pn is diverging as n ³ ∞. 
When p is 6xed, the above FCLT holds under mild moment and weak dependence assumptions; 
see Lobato (2001) for discussion on the primitive assumptions for FCLT. The SN (self-normalised) 
test statistic is

Tp
n = n−1(S1,n − nμ0)⊤(Vp

n)−1(S1,n − nμ0), 

where Vp
n = n−2

ÿn
t=1 {S1,t − (t/n)S1,n}{S1,t − (t/n)S1,n}⊤. Under the null, Tp

n converges in distribu-

tion to Up = Bp(1)⊤V−1
p Bp(1), where Vp= ∫10 [Bp(r) − rBp(1)][Bp(r) − rBp(1)]⊤dr. Since the distri-

bution of Up is pivotal and its upper critical values have been tabulated in Lobato (2001), we 

reject the null hypothesis at level ζ if Tp
n is larger than the 100(1 − ζ)% upper critical value of 

Up, denoted as Up,ζ .
One major drawback of this SN testing procedure is that there is large size distortion under the 

null when n is small/moderate, and when p is moderately large or the autocorrelation is moderate/ 
strong. To show numerically how large the size distortion is, we test the null hypothesis μ = 0, 
where 0 is a vector in Rp with all elements being 0, and simulate the data from the VAR(1) process 
Xt = ρIpXt−1 + ϵt, where Ip is the p-dimensional identity matrix and ϵt∼

iid
N(0, Ip). We set the nom-

inal level at 5% and repeat the mean test 5,000 times with the length of time series n = 100 and 
p ∈ {5, 10}. As shown in Figure 1, the size distortion for the above SN test when p = 10 is much 
larger than when p = 5 and the test is severely oversized when ρ is close to 1 and severely under-
sized when ρ is close to −1.

Next, we introduce an SS–SN test statistic to reduce the size distortion. The SS–SN procedure 
consists of two steps: (a) we split the sample into two parts: P1: = {X1, . . . , X+nα+} and 
P2: = {X+nα++1, . . . , Xn}, where α ∈ (0, 1) is the splitting ratio. For i = 1, 2, . . . , p, denote 
σ2

i = Var(Xi
1), Æσ2

i = 1
+nα+

ÿ+nα+
t=1 (Xi

t − Si
1,+nα+/+nα+)2 and based on the 6rst part P1, de6ne

Æj = argmax
j=1,2,...,p

n−1(S
j
1,+nα+ − +nα+μj

0)2

Æσ2
j

, (2) 

which represents the coordinate that corresponds to the largest deviation from the null. Note that Æj 
bears the signal and is solely determined by the difference between sample mean and true mean, 

rescaled by the sample variance of each component time series in P1. Under the alternative, Æj es-
timates the coordinate with the strongest deviation from the null as scaled by its corresponding 
marginal variance, see Theorem 1 below. Note that there are other sensible ways of rescaling in 

determining Æj in equation (2). We refer the reader to Remark 4 in Section 2.2 and online 

supplementary Appendix A. (b) Then we construct a SN test statistic based on the Æjth dimen-

sion/component of the second part P2, or the projected sample {e⊤
Æj
X+nα++1, . . . , e⊤

Æj
Xn}, where ej 

is a vector in Rp with jth element being 1 and all other elements being 0. So the SS–SN1 statistic 
is de6ned as

T(M)
n (α, Æj) =

(n − +nα+)−1(S
Æj
+nα++1,n − (n − +nα+)μÆj0)2

V(M)
n (Æj)

(3) 
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where V(M)
n (j) = (n−+nα+)−2ÿn

k=+nα++1 (S
j
+nα++1,k−

k−+nα+
n−+nα+ S

j
+nα++1,n)2. To derive the limiting distribu-

tions of T(M)
n (α, Æj) under both null and alternative, we introduce another assumption on σ2

i and Æσ2
i .

Assumption 2 σ2
i > 0 and Æσ2

i ³
p

σ2
i for i = 1, 2, . . . , p.

Assumption 2 is mild and can be veri6ed by imposing suitable moment and weak dependence 
assumptions on {Xt}t∈Z. As shown below, the limiting null distribution of T(M)

n (α, Æj) is U1, so the 
level ζ test is 1(T(M)

n (α, Æj) > U1,ζ ). The following theorem shows the asymptotic properties of 
T(M)

n (α, Æj) under the null and alternatives.

Theorem 1 Suppose Assumptions 1 and 2 hold. Then (i) under H0, we have

T(M)
n (α, Æj)³D U1, (4) 

where ‘³D ’ signi6es convergence in distribution. (ii) Under HA, let the true 

mean be μ = μn and denote 6μn − μ06∞ = maxj=1,2,...,p |μj
n − μj

0|. 

1. If 
ÿÿ

n
:

6μn − μ06∞ ³ ∞, then T(M)
n (α, Æj)³

p
∞, thus the limiting power is 1.

2. If 
ÿÿ

n
:

(μn − μ0) ³ c: = (c1, c2, . . . , cp) and 6c6∞ ≠ 0, then we have

Æj³D argmax
j=1,2,...,p

ÿ

B(j)(α) + αcj
ÿ2

σ2
j

=
d

j7,

T(M)
n (α, Æj)³D U7, 

where B(j)(r) = Γ⊤
j Bp(r) is mean zero Brownian motion with covariance 

Cov(B(i)(u), B(j)(v)) = min {u, v}Γij and the conditional distribution of U7

given j7 = j is

U7ÿ
ÿ

j7=j
=
d

ÿ

B(1) +

ÿÿÿÿÿÿÿ

1 − α
Γjj

ÿ

cj

ÿ2

∫10
ÿ

B(r) − rB(1)
ÿ2

dr

.

Since the non-central chi-square distribution is statistically larger than chi- 
square distribution and {B(r) − rB(1)}r∈[0,1] is independent of B(1), our test 
has non-trivial power asymptotically.

3. If 
ÿÿ

n
:

6μn − μ06∞ ³ 0, then T(M)
n (α, Æj)³D U1, so our test has trivial power 

asymptotically.

The limiting null distribution U1 is the same as the one in Lobato (2001) when p = 1 and the 
critical values are already tabulated there. Also it is interesting to note that the limiting null distri-
bution does not depend on the sample splitting proportion α ∈ (0, 1). We shall study the impact of 
α on size accuracy and power later.

2.2 L2-type SS–SN statistic

The SS–SN1 test statistic is expected to have good power when the alternative is sparse and strong, 
as only the Æjth component time series is used in the testing after dimension reduction. As will be 
shown in Figure 2a later, SS–SN1 test has more power loss under the dense alternative (i.e. a sub-
stantial portion of coordinates of μ − μ0 is non-zero) than under the sparse alternative (i.e. a small 
portion of coordinates of μ − μ0 is non-zero), as compared to the traditional SN test. This 
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motivates us to propose another SS–SN statistic which can preserve the power under the dense al-
ternative. To be speci6c, on P1, de6ne

ÆP = diag
1
ÿÿÿ

Æσ2
1

ÿ , . . . ,
1
ÿÿÿ

Æσ2
p

ÿ

§

«

«

«

«

«

«

¯

«

¯

1
ÿÿ

n
: (S1,+nα+ − +nα+μ0). (5) 

Note that under the alternative, ÆP estimates the direction with the strongest deviation from the null 

as measured by the squared L2 norm of the rescaled signal (μ − μ0)⊤diag{ 1
σ2

1

, . . . , 1
σ2

p
}(μ − μ0). Then 

the L2-type SS–SN statistic (i.e. SS–SNP) is de6ned as

Q(M)
n (α) =

(n − +nα+)−1
ÿ

ÆP
⊤ÿ

S+nα++1,n−(n−+nα+)μ0

ÿ

ÿ2

Vn(α)
, (6) 

where Vn(α) = (n − +nα+)−2ÿn
k=+nα++1 { ÆP

⊤
[S+nα++1,k −

k−+nα+
n−+nα+ S+nα++1,n]}2. Instead of constructing the 

test statistic using the Æjth coordinate of the second part P2 as done for SS–SN1, we construct the SN 

statistic based on the projected sample { ÆP
⊤
X+nα++1, . . . , ÆP

⊤
Xn}. The following theorem shows the 

asymptotic properties of Q(M)
n (α) under the null and alternatives.

Theorem 2 Suppose Assumptions 1 and 2 hold. Then (i) under H0, we have

Q(M)
n (α)³D U1. (7) 

(ii) Under HA, let the true mean be μ = μn and denote 

6μn − μ06 =

ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ

ÿp
i=1 (μi

n − μi
0)2

ÿ

. 

1. If 
ÿÿ

n
:

6μn − μ06 ³ ∞, then Q(M)
n (α)³

p
∞, thus the limiting power is 1.

Figure 2. Asymptotic power under the dense (a) and sparse (b) alternatives when testing hypothesis on multivariate 

mean.
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2. If 
ÿÿ

n
:

(μn − μ0) ³ c := (c1, c2, . . . , cp) and 6c6 ≠ 0, then we have

ÆP³D diag
1
ÿÿÿ

σ2
1

ÿ , . . . ,
1
ÿÿÿ

σ2
p

ÿ

§

«

«

«

«

«

«

¯

«

¯

ÿ

Γ1/2Bp(α) + αc
ÿ

=
d

P7,

Q(M)
n (α)³D U77, 

and the conditional distribution of U77 given P7
= P is

U77ÿ
ÿ

P7
=P

=
d

ÿ

B(1) +

ÿÿÿÿÿÿÿ

1 − α
P⊤ΓP

ÿ

P⊤c

ÿ2

∫10
ÿ

B(r) − rB(1)
ÿ2

dr

.

In this case, our test has non-trivial power asymptotically.

3. If 
ÿÿ

n
:

6μn − μ06 ³ 0, then Q(M)
n (α)³D U1, so our test has trivial power 

asymptotically.

Remark 1 For the traditional SN statistic, the computational cost is of order O(p2n + p3), 
which scales quadratically in p and is O(p2n) if p ≪ n. In contrast, the compu-
tational cost for both our SS–SN statistics are of order O(pn), which is linear in 
p. This could result in substantial saving in computation when p is moderate.

Remark 2 To understand how SS–SNP statistic can reduce power loss incurred by SS–SN1 

under dense alternative, we shall focus on the local alternative as in part (ii).2 of 
Theorem 2 with c = c1 and Γ = diag{σ2

1, . . . , σ2
p} = Ip, where 1 is a vector in Rp 

with all elements being 1. According to Theorem 6 in Magnus (1986), 
E P⊤cc⊤P

P⊤P
= pc2, so on average, the non-central constant for the numerator of 

U77 is (1−α)pc2, which is p times the non-central constant for the numerator 
of U7. Hence, SS–SNP statistic is expected to outperform SS–SN1 statistic in 
power under dense alternative when the same α is used.

Remark 3 Under the null, the limiting distribution U1 is pivotal and does not depend on 
the splitting ratio α. Under the local alternative 

ÿÿ

n
:

(μn − μ0) ³ c, the limiting 
distributions of our SS–SN1 and SS–SNP test statistics depend on α, c, {σ2

j }
p
j=1, 

and Γ. According to Lemma 4 in Lobato (2001), the limiting distribution of the 
traditional SN test statistic is [Bp(1) + Γ−1/2c]⊤V−1

p [Bp(1) + Γ−1/2c], which de-
pends on c and Γ.

To understand the power behaviour of SS–SN1 and SS–SNP statistics, as 
compared to the traditional SN test, we set p = 10 and calculate the asymptotic 
power P(U7>U1,0.05), P(U77>U1,0.05), and P([B10(1) + Γ−1/2c]⊤V−1

10 [B10(1) + 

Γ−1/2c]>U10,0.05) under the sparse alternative c = ce1 and dense alternative 
c = c1. Here, Γ = diag{σ2

1, . . . , σ2
p} = I10 and U1,0.05, U10,0.05 are the 95th upper 

percentile of U1 and U10, respectively. We plot the asymptotic power as a func-
tion of c. Here, we approximate the asymptotic power by approximating the 
p-dimensional Brownian motion with standardised partial sum of 5,000 iid 
N(0, Ip) random vectors and setting the number of replications as 3,000.

As shown in Figure 2a and b, both SS–SN1 and SS–SNP statistics have power 
loss compared with the traditional SN test by Lobato, which is expected since 
only the second part of data (i.e. P2) is directly used in constructing the SN 
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statistics. This is a price we have to pay to achieve more accurate size and lower 
computational cost. For dense alternative, the power loss of SS–SN1 statistic 
appears substantially larger than that of SS–SNP statistic for all α, which is con-
sistent with the theoretical 6nding (cf. Remark 2). It appears that when 
α = 0.3, 0.5, the SS–SNP statistic achieves the best power as compared to other 
SS–SN counterparts, and the power loss relative to Lobato’s test is moderate. 
In contrast, the optimal α for SS–SN1 is 0.15, suggesting that the optimal α in 
general depends on which SS–SN statistic we use. For sparse alternative, the 
optimal power corresponds to SS–SN1 with α = 0.3, 0.5, which outperforms 
other SS–SN counterparts and the power loss is very small compared with trad-
itional SN statistic. It is worth noting that there is no advantage to set α > 0.5, 
as that is always dominated by α = 0.5 in power.

As shown in Figure 2, SS–SNP outperforms SS–SN1 under dense alternative and SS–SN1 outper-
forms SS–SNP under sparse alternative. In practice, if the practitioner has the prior knowledge 
about the type of alternative, then he/she is recommended to choose the one of SS–SN test statistics 
accordingly. In the absence of such knowledge, we recommend to combine the two SS–SN test sta-
tistics via a simple Bonferroni procedure. Since when α = 0.5, SS–SN1 have almost best power 
against sparse alternative and SS–SNP have almost best power against dense alternative, we com-
bine SS–SN1 and SS–SNP with α = 0.5 and name it SS–SNb. To be speci6c, the test using SS–SNb 

rejects the null at 5% level if either the test using SS–SN1 with α = 0.5 or the test using SS–SNP with 
α = 0.5 rejects the null at 2.5% level. In Section 4, we show through simulation that the power for 
SS–SNb is close to the best of two SS–SN statistics with overall good performance under both 
sparse and dense alternatives.

Remark 4 As pointed out by one of the reviewers, the projection ÆP de6ned in equation (5) is 
not necessarily the optimal direction of projection in terms of power maximisa-
tion. To see that, assume μ0 = 0 and the true mean is μn ≠ 0 under the alternative. 
For any 6xed P ∈ R

p, we project the data in the second subsample along the dir-
ection P and construct a one-dimensional SN statistic. Then similar to part (ii).2 
of Theorem 2, the statistic approximately follows the same distribution as

Un =

B(1) +

ÿÿÿÿÿÿÿ

1 − α
P⊤ΓP

ÿ

P⊤
ÿÿ

n
:

μn

ÿ ÿ2

∫10
ÿ

B(r) − rB(1)
ÿ2

dr 

for large enough n. Note that the numerator and denominator of Un are inde-

pendent and conditioning on ∫10 {B(r) − rB(1)}2dr, {B(1) +

ÿÿÿÿÿ

1−α
P⊤ΓP

ÿ

P⊤
ÿÿ

n
:

μn}2 fol-

lows non-central chi-square distribution with one degree of freedom and 

non-central constant n(1−α)
P⊤μ⊤

n μnP

P⊤ΓP
. Following similar argument as in Theorem 

3.4.1 of Huang (2015), we can show the optimal direction of projection which 
maximise P(Un ≥ t) for all t > 0 is the one that maximise the 
non-central constant. According to A.4.11 in Seber and Lee (2003), it is propor-

tional to P7
n = Γ−1/2μn. The projection ÆP de6ned in Section 2.2 of the paper is an 

estimator of ÞPn = diag{σ2
1, σ2

2, . . . , σ2
p}−1/2μn, which is not the optimal direction 

in theory.
To pursue the optimal projection, we need to provide a consistent long run 

covariance matrix estimator, which is hard for moderate dimensional time ser-
ies when the sample size is small/medium. This point was also expressed in 
Korkas and Fryzlewicz (2017) for a one-dimensional change-point detection 
problem, where the authors state that estimating long run variance is a dif6cult 
problem in time series analysis and the estimation error would likely not make 
it worthwhile and they opt to rescale using marginal sample variance. This 
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might suggest we estimate Γ(0)−1/2μn instead of Γ−1/2μn, where Γ(0) is the mar-
ginal covariance matrix. However, the moderate and possibly growing dimen-
sionality (see Sections 2.3–2.5) further adds complication to the estimation of 
Γ(0)−1/2, which is well recognised in high-dimensional mean testing for iid 
data; see Srivastava and Du (2008) and Srivastava et al. (2013). The latter au-
thors propose to use the diagonal elements of the covariance matrix to replace 
Γ(0) in their testing to avoid the error accumulation due to high dimensional-
ity. Based on these considerations, we opt to use an estimator of the simple pro-
jection vector ÞPn, which does not involve any bandwidth parameter and 
appears to work well in 6nite sample.

In Appendix A of the online supplementary material, we compare different 
SS–SN statistics where the projection vectors are de6ned using different rescal-
ing methods, and we show that for the SS–SN statistics rescaled by the long run 
covariance matrix estimator (SSSN-L1 and SSSN-LP), the power loss are larger 
compared with most marginally rescaled SS–SN statistics when there is no or 
weak cross-sectional dependence (see online supplementary Figures S1a, b 
and S3a, b), which con6rmed the claim made in Korkas and Fryzlewicz 
(2017) (see the discussion before Section 4.1 therein).

2.3 Asymptotic theory for SS–SN1 when the dimension is diverging

In this subsection, we justify the asymptotic validity of the SS–SN1 statistic in the multivariate 
mean testing problem, when the dimension is diverging as sample size grows to in6nity. This is 
consistent with the main theme of this work, that is, to address the large size distortion due to mod-
erate dimensionality of the parameter we test. We shall use a set of notations with their dependence 
on n being explicit. Speci6cally, for t = 1, 2, . . . , n, let Xnt = (X1

nt, X2
nt, . . . , X

pn
nt )

⊤ be a stationary 
time series with mean E(Xnt) = μn = (μ1

n, μ2
n, . . . , μpn

n )⊤
∈ R

pn and with long run covariance matrix 
Γn =

ÿ∞

h=−∞ Cov(Xnt, Xn(t+|h|)) = (γnij)
pn

i,j=1. For any i = 1, 2, . . . , pn, let σ2
ni and Æσ2

ni be the variance 
of Xi

n1 and its sample version calculated on {Xi
n1, . . . , Xi

n+nα+} and let γni = γnii be the ith diagonal 
element of Γn. For two functions p(x) and q(x) we write p ≲ q if there exist constant C > 0 such 
that lim supx³∞ | p(x)

q(x) | ≤ C and we write p ≍ q if p ≲ q and q ≲ p. In this section, we allow the di-
mension pn to grow with n and we want to test the sequence of null hypotheses Hn0:μn = 0 against 
HnA:μn ≠ 0.

We use the physical dependence measure of Wu (2005) to describe the dependence structure of 
Xnt. Let ϵi, Þϵi, i ∈ Z be iid U[0, 1] random variables and denote ϵt = (ϵt, ϵt−1, . . . ) ∈ R

∞, Þϵt,j = 

(ϵt, . . . , ϵj+1, Þϵj, ϵj−1, . . . ) ∈ R
∞ and �ϵt,j = (ϵt, . . . , ϵj+1, Þϵj, Þϵj−1, . . . ) ∈ R

∞. For some measurable 
function Gn = (G1

n, . . . , Gpn
n )⊤:R∞ ³ R

pn , de6ne

θn,j,q = (E6Gn(ϵ0) − Gn(Þϵ0,−j)6q)
1
q, j = 0, 1, 2, . . . , 

where 6 · 6 is the Euclidean norm on Rpn . The following assumption is needed to derive a strong 
approximation result for the partial sum process of Xnt.

Assumption 3 Assume that Xnt − μn = Gn(ϵt), and for some constant q > 4, β > 2 and 
Θn > 0, we have

θn,j,q ≤ Θn
1

(j ∨ 1)β , j = 0, 1, 2, . . . (8) 

(E6Xn1 − μn6q)
1
q ≤ Θn. (9) 

Also, assume that there exist 0 < γmin < γmax < ∞, 0 < σ2
min < σ2

max < ∞ 

such that γmin ≤ γni ≤ γmax, σ2
min ≤ σ2

ni ≤ σ2
max for any n = 1, 2, . . . and 

i = 1, 2, . . . , pn.
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De6ne

ξ =

q − 2

6q − 4
, β ≥ 3

(β − 2)(q − 2)

(4β − 6)q − 4
3+2/q
1+2/q < β < 3

1

2
−

1

β
, 2 < β ≤

3+2/q
1+2/q .

§

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

Mies and Steland (2023) provided a sequential Gaussian approximation result for non-stationary 
time series in high dimension. Here, we provide a slightly re6ned version of Theorem 3.1 in Mies 
and Steland (2023) for stationary time series in the following proposition.

Proposition 1 Suppose Assumption 3 holds, then on a potentially different probability 
space, there exist random vectors {X2

nt}
n
t=1 =

d
{Xnt}

n
t=1 and a standard 

pn-dimensional Brownian motion Bpn
(r) such that for any small ϵ > 0,

E sup
r∈[0,1]

1
ÿÿ

n
:

ÿ

+nr+

t=1

(X2
nt − μn) − Wn(r)

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

2

≤ C Θ2
nlog (n)

pn

n

ÿ ÿ2ξ
+

pnΘ2
n

n1−ϵ

ÿ ÿ

, (10) 

where Wn(r) = (Wn1(r), Wn2(r), . . . , Wnpn
(r))⊤

= Γ1/2
n Bpn

(r) and C > 0 is a 

generic constant.

Note that in equation (10), the term Θ2
nlog (n)( pn

n )2ξ comes from Theorem 3.1 in Mies and 

Steland (2023) and the term 
pnΘ2

n

n1−ϵ quanti6es the difference between Wn( +nr+
n ) and Wn(r). The right- 

hand side of equation (10) converges to 0 if Θn = O(
ÿÿÿ

pn
:

) and pn ≍ nψ for some 0 < ψ <
ξ

ξ+1
2 

and 

under these two conditions the 6rst term Θ2
nlog (n)( pn

n )2ξ dominates.
As in Section 2.1, we de6ne the test statistic as

T(D)
n (α, Æjn) =

(n−+nα+)−1[S
nÆjn
+nα++1,n]2

V(D)
n (Æjn)

, (11) 

where

Æjn = argmax
j=1,2,...,pn

n−1[S
nj
1,+nα+]

2

Æσ2
nj

, (12) 

S
nj
a,b

=
ÿb

t=a X
j
nt and V(D)

n (j) = (n − +nα+)−2ÿn
k=+nα++1 (S

nj
+nα++1,k −

k−+nα+
n−+nα+ S

nj
+nα++1,n)2. We derive the 

asymptotic properties of T(D)
n (α, Æjn) under two sets of assumptions on the matrix Γn and 

dimensionality.

Assumption 4 (a) γnij = ρnij
ÿÿÿÿÿÿγniγnj

:
with |ρnij| < �ρ ∈ (0, 1) for any i, j = 1, 2, . . . , pn and 

n = 1, 2, . . ..
(b) Θn = O(

ÿÿÿ

pn
:

).

(c) pn ≍ nψ for some 0 < ψ <
ξ

ξ+9
2

.

Assumption 5 (a) Γn is diagonal.
(b) Θn = O(

ÿÿÿ

pn
:

).

(c) pn ≍ nψ for some 0 < ψ <
ξ

ξ+1
2

.
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Note that by Minkowski inequality, a suf6cient condition for (b) in previous two assumptions is 
that E|Xj

n1 − μj
n|q is uniformly bounded for n = 1, 2, . . . and j = 1, 2, . . . , pn. The following the-

orem shows the asymptotic distribution of T(D)
n (α, Æjn) under the null.

Theorem 3 Suppose either Assumptions 3, 4 or Assumptions 3, 5 hold. Then under Hn0, 
we have

T(D)
n (α, Æjn)³D U1. (13) 

The following theorem shows the consistency of our test under alternatives.

Theorem 4 Under HnA and Assumption 3, denote 6μn6∞ = maxj=1,2,...,pn
|μj

n|. Assume that 

pn ≍ nψ for some 0 < ψ <
ξ

ξ+1
2 

and there exists κ > 0 such that 
ÿÿ

n
:

6μn6∞

pκ
n

³ ∞. 

Then we have T(D)
n (α, Æjn)³

p
∞.

2.4 Asymptotic theory for SS–SNP when the dimension is diverging

In this subsection, we justify the asymptotic validity of the SS–SNP statistic in the multivariate 
mean testing problem, when the dimension is diverging as sample size grows to in6nity. As in 
Section 2.2, we de6ne the test statistic as

Q(D)
n (α) =

(n − +nα+)−1
ÿ

ÆP
⊤

n S+nα++1,n

ÿ2

V(2)
n (α)

, (14) 

where

ÆPn =
Sn1

1,+nα+
ÿÿ

n
:

Æσn1
, . . . ,

S
npn

1,+nα+
ÿÿ

n
:

Æσnpn

ÿ ÿ⊤

, (15) 

V(2)
n (α) = (n − +nα+)−2ÿn

k=+nα++1 { ÆP
⊤

n [S+nα++1,k −
k−+nα+
n−+nα+ S+nα++1,n]}2 and Sa,b = (Sn1

a,b, . . . , S
npn

a,b )⊤
= 

(
ÿb

t=a X1
nt, . . . ,

ÿb
t=a X

pn
nt )

⊤.

The following theorem shows the asymptotic distribution of Q(D)
n (α) under the null.

Theorem 5 Suppose Assumptions 3 and 5(b,c) hold. Then under Hn0, we have

Q(D)
n (α)³D U1. (16) 

Note that no restrictions on the correlation between different coordinates of Xnt are imposed, so 
both weak and strong cross-sectional dependence are allowed. The following theorem shows the 
consistency of our test under alternatives.

Theorem 6 Under HnA and Assumption 3, denote 6μn6 =

ÿÿÿÿÿÿÿÿÿÿÿÿ

ÿpn

j=1 (μj
n)2

ÿ

. Assume that pn ≍ 

nψ for some 0 < ψ <
ξ

ξ+1
2 

and there exists κ > 0 such that 
ÿÿ

n
:

6μn6
p1/2+κ

n

³ ∞. Then we 

have Q(D)
n (α)³

p
∞.
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The asymptotic validity for the original SN test statistic Tp
n has only been provided for the 

6xed-p case, and whether it works under the diverging p setting is unknown. Therefore, we 
view the justi6cation for SS–SN test statistics in the growing p setting an interesting theoretical 
contribution to the literature.

With that being said, it is worth noting that self-normalisation has been extended to do inference 
for high-dimensional time series via the use of U-statistics; see Wang and Shao (2020) and Wang 
et al. (2022). In particular, Wang and Shao (2020) adopted a trimmed U-statistic and developed a 
new SN test statistic to test for the mean of high-dimensional stationary time series. The restriction 
on the growth rate of the dimensionality in their work is minimal and they require p ³ ∞ but 
allow p ≫, and in some special cases, p can grow exponentially. In contrast, we are focusing on 
the testing problem where the dimension of parameter is moderate, and the regime corresponds 
to either p is 6xed or growing p with p ≪ n. So the applicability of the tests developed in Wang 
and Shao (2020) and ours are fairly different. The test in Wang and Shao (2020) targets the dense 
alternative and requires weak cross-sectional dependence, whereas our two SS–SN test statistics 
together can capture both dense and sparse alternatives, and can accommodate both weak and 
strong cross-sectional dependence. The technical tools involved are also very different. Here, we 
rely on the strong approximation for partial sum process and a careful analysis of the maximum 
spacing for an independent but not identically distributed chi-square random variables, whereas 
the theory in Wang and Shao (2020) is built on the weak convergence of sequential U-statistic 
of high-dimensional dependent observations.

2.5 Asymptotic independence of SS–SN1 and SS–SNP

In the literature, there has been a sizeable amount of work on the asymptotic independence be-
tween the sum and maximum of a weakly dependent sequence (Hsing, 1995; Peng & 
Nadarajah, 2003) and between the sum-of-squares type test statistic and the maximum-type 
test statistic in high-dimensional testing problems; see Li and Xue (2015), Xu et al. (2016), and 
He et al. (2021), among others. It is natural to ask whether our L2-type and L∞-type SS–SN sta-
tistics are asymptotically independent in the growing-dimensional setting. We shall provide an 
af6rmative answer to this question below.

As in the proof of Theorem 5, denote Dg = Diag{ 1
σn1

, . . . , 1
σnpn

} and Λn = Γ1/2
n DgΓ1/2

n Γ1/2
n DgΓ1/2

n 

with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λpn
. The following assumption is needed to prove the asymp-

totic independence.

Assumption 6 There exist ϵ > 0 such that λpn
/p1−ϵ

n ³ 0 as pn ³ ∞.

Let B(R) be the Borel σ-algebra on R, we now state asymptotic independence of T(D)
n (α, Æjn) and 

Q(D)
n (α), the proof of which is deferred to Appendix C.10 in the online supplementary material.

Theorem 7 Under Hn0, suppose Assumptions 3, 6 and either Assumption 4 or Assumtion 
5 hold, then T(D)

n (α, Æjn) and Q(D)
n (α) are asymptotically independent in the 

sense that

ÿ

ÿ

ÿP
(

T(D)
n (α, Æjn) ∈ A; Q(D)

n (α) ∈ B
ÿ

− P
(

T(D)
n (α, Æjn) ∈ A

ÿ

P
(

Q(D)
n (α) ∈ B

ÿ

ÿ

ÿ

ÿ³ 0 

for any A, B ∈ B(R).

A few remarks are in order. Note that the largest eigenvalue of Γ1/2
n DgΓ1/2

n is λ1/2
pn

. Denote the 
largest eigenvalue of Γn as Þγn, then according to online supplementary Lemma 2, if Assumption 
3 holds, Assumption 6 is equivalent to Þγn/p

(1−ϵ)/2
n ³ 0 as pn ³ ∞. According to the Gershgorin 

Circle Theorem (see Bell, 1965), Þγn is upper bounded by the largest absolute row sum of Γn, so 
Assumption 6 holds if, under Assumption 3, Γn is diagonal or γnij = c|i−j| for some c ∈ ( − 1, 1) 
[i.e. AR(1) type correlation]. This suggests that when the p components are independent or weakly 
correlated in the long run, Assumption 6 is satis6ed and asymptotic independence between our 
L2-type and L∞-type SS–SN statistics holds.

On the other hand, if γnij = c ∈ (0, γmin) for all i ≠ j, then we have Γn = 

Diag{γn1−c, . . . , γnpn
−c} + c1n1⊤

n where 1n is a vector in Rpn with all elements being 1. Under 
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Assumption 3 all eigenvalues of Diag{γn1−c, . . . , γnpn
−c} are non-negative and the largest eigen-

value of c1n1⊤
n is cpn, so we have Þγn ≥ cpn and Assumption 6 does not hold. This corresponds 

to the case with strong correlation among the pn components in the long run. We conjecture 
that the asymptotic independence between our L2-type and L∞-type SS–SN statistics does not 
hold for this case, which is con6rmed in our unreported simulations.

3 Extensions to other testing problems

In this section, we generalise the SS–SN approach to testing for zero autocorrelation in a time series 
in Section 3.1, linear hypothesis testing in a regression model in Section 3.2 and testing for a 
change point in multivariate mean in Section 3.3. For simplicity, we only consider the SS–SN1 stat-
istic and similar results for SS–SNP statistic can be obtained in an analogous fashion.

3.1 Testing for zero autocorrelation

Let {Xt} be a univariate stationary time series with mean E(Xt) = μ. Testing for white noise is an 
important problem in time series analysis and there is a rich literature; see Horowitz et al. 
(2006), Shao (2011a, 2011b), and Liu et al. (2022) and cited references therein. To be speci6c, 
we shall test the null hypothesis H0:r1 = r2 = · · · = rp = 0 against HA:ri ≠ 0 for some 
i = 1, 2, . . . , p, where p is a positive integer and ri = E[(Xt − μ)(Xt+i − μ)] is the autocovariance 
at lag i.

We now apply the SS–SN approach to test H0. De6ne Zt = (Z1
t , Z2

t , . . . , Z
p
t )⊤ and 

ÆZt = ( ÆZ1
t , ÆZ2

t , . . . , ÆZ
p
t )⊤ where Zi

t = (Xt − μ)(Xt+i − μ), ÆZi
t = (Xt − �Xn)(Xt+i − �Xn) and 

�Xn = (1/n)
ÿn

i=1 Xi. The null hypothesis is equivalent to the hypothesis that {Zt} is a 
p-dimensional mean zero stationary time series. We prove the following proposition about 
the FCLT for { ÆZt}.

Proposition 2 If Assumptions 1 and 2 hold for {Xt} and {Zt}, then (i) Assumption 1 also 
holds for { ÆZt} and (ii) for i = 1, 2, . . . , p, the sample variance of { ÆZ

i

t} con-
verges in probability to the variance of Zi

t.

By Proposition 2, we can use { ÆZt} to construct a similar test statistic as in equation (3) to test the 
zero autocorrelation hypothesis. The asymptotic property of this statistic is stated in the following 
proposition.

Proposition 3 Suppose Assumption 1 holds for {Xt} and {Zt} and the δth moment of |Xt| is 
6nite for some δ > 2. De6ne the test statistic T(A)

n (α, Æj) = T(M)
n2 (α, Æj) according 

to equations (3) and (2), with {Xt} replaced by { ÆZt}, μ0 replaced by 0 and n 
replaced by n2 = n − p, then we have under H0

T(A)
n (α, Æj)³D U1. (17) 

At level ζ, we reject H0 if T
(A)
n (α, Æj) > U1,ζ . In Section 4.2, we show that our test has accurate size 

even when the white noise process is not independent over time (i.e. contains higher order depend-
ence) and when the sample size is small.

3.2 Testing linear hypotheses in a regression model

Kiefer et al. (2000) pioneered the bandwidth-free test for general linear hypotheses of the param-
eters in a time series regression model. We now show that SS–SN method is also applicable to their 
setting. Consider the regression model

yt = X⊤
t β + ϵt, t = 1, 2, . . . , n, (18) 

where β is a p-dimensional parameter, Xt is a p-dimensional regressor and ϵt is a mean zero (con-

ditional on Xt) random process. Let vt = Xtϵt and Ω =
ÿ∞

k=−∞ E(vtv
⊤
t+k), we assume that the fol-

lowing condition from Kiefer et al. (2000) holds.

258                                                                                                                                          Zhang and Shao



Assumption 7 (i) n−1/2
ÿ+nr+

t=1 vt ó Ω1/2Bp(r) on Dp[0, 1].

(ii) 1/n
ÿ+nr+

t=1 XtX
⊤
t ³

p
rQ for all r ∈ [0, 1] and Q−1 exists.

Suppose we are interested in testing H0:Rβ = s against HA:Rβ ≠ s, where s ∈ R
d and R is a (d × p) 

matrix of rank d. The test statistic proposed by Kiefer et al. (2000) is 
An = n(RÆβ − s)⊤V−1

n (RÆβ − s)/d, where

Vn = R
1

n

ÿ

n

t=1

XtX
⊤
t

ÿ ÿ−1
1

n2

ÿ

n

k=1

ÿ

k

t=1

Xt Æϵt

ÿ ÿ

ÿ

k

t=1

XtÆϵt

ÿ ÿ⊤
£

£

§

§

1

n

ÿ

n

t=1

XtX
⊤
t

ÿ ÿ−1

R⊤, 

Æβ is the OLS (Ordinary Least Squares) estimator of β and Æϵt is the residual. The limiting null dis-
tribution of An is Ud/d. As shown in Kiefer et al. (2000), the size distortion for their test 1(An > 

Ud,ζ/d) increases as d increases, and our SS–SN1 test tackles this problem by focusing on the single 

hypothesis among d hypotheses which deviates most from the null. Let Æβa:b be the OLS estimator of 

β based on (yt, X⊤
t ) for t = a, a + 1, . . . , b and de6ne

Æj
(R)

= argmax
j=1,2,...,d

n[e⊤
j (RÆβ1:+nα+ − s)]2

+nα+−1
ÿ+nα+

t=1 (g
j
t −

1

+nα+
ÿ+nα+

k=1 g
j
k)2

, 

where (g1
t , . . . , gd

t )⊤
= R( 1

+nα+
ÿ+nα+

t=1 XtX
⊤
t )−1Xt(yt − X⊤

t
Æβ1:+nα+) for t = 1, 2, . . . , +nα+. So Æj(R) repre-

sents the coordinate of Rβ − s that deviates most from 0 at the sample level. The following assump-

tion on (g1
t , . . . , gd

t )⊤ is needed to derive the asymptotic properties of our test statistic.

Assumption 8 For j = 1, 2, . . . , d, +nα+−1
ÿ+nα+

t=1 (g
j
t − 1

+nα+
ÿ+nα+

k=1
g

j
k)2³

p
Υj > 0.

We then 6nd the OLS Æβ+nα++1:n on the second part of the data and the residual is 
Æμt = yt − X⊤

t
Æβ+nα++1:n. De6ne

Æst = (Æs1
t , Æs2

t , . . . , Æsd
t ) = R

1

n − +nα+
ÿ

n

t=+nα++1

XtX
⊤
t

ÿ ÿ−1

Xt Æμt, 

and ÞS
j

a,b =
ÿb

t=a Æs
j
t for +nα+ + 1 ≤ a ≤ b ≤ n, j = 1, . . . , d. Our test statistic can be de6ned as

T(R)
n (α, Æj

(R)
) =

(n − +nα+)e⊤

Æj
(R) (RÆβ+nα++1:n − s)(RÆβ+nα++1:n − s)⊤e

Æj
(R)

V(R)
n (Æj

(R)
)

, (19) 

where V(R)
n (j) = (n − +nα+)−2ÿn

k=+nα++1 (ÞS
j

+nα++1,k −
k−+nα+
n−+nα+

ÞS
j

+nα++1,n)2. The following proposition 

shows the asymptotic property of T(R)
n (α, Æj(R)).

Proposition 4 Suppose Assumption 7 holds, then (i) under H0, we have

T(R)
n (α, Æj(R))³D U1. (20) 

(ii) Under HA, denote 6Rβ − s6∞ = maxj=1,2,...,d |R⊤
j β − sj| where R⊤

j is the 

jth row of R. Let the jth row of RQ−1Ω1/2 be h⊤

j ∈ R
p, then we have 

1. If 
ÿÿ

n
:

6Rβ − s6∞ ³ ∞, then T(R)
n (α, Æj(R))³

p
∞, thus the limiting power 

is 1.
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2. If 
ÿÿ

n
:

(Rβ − s) ³ c = (c1, c2, . . . , cd)⊤ and 6c6∞ ≠ 0, then we have

Æj(R)³D argmax
j=1,2,...,d

ÿ

ÞB
(j)

(α) + αcj
ÿ2

Υj
=
d

j(R) and T(R)
n (α, Æj(R))³D U(R), 

where ÞB
(j)

(r) = h⊤

j Bp(r) are mean zero Brownian motions with covari-

ance Cov( ÞB
(i)

(u), ÞB
(j)

(v)) = min {u, v}h
⊤

i hj and the conditional distribu-

tion of U(R) given j(R) = j is

U(R)
ÿ

ÿ

j(R)=j
=
d

ÿ

B(1) +

ÿÿÿÿÿÿÿ

1 − α
h

⊤

j hj

ÿ

cj

ÿ2

∫10
ÿ

B(r) − rB(1)
ÿ2

dr

.

3. If 
ÿÿ

n
:

6Rβ − s6∞ ³ 0, then T(R)
n (α, Æj(R))³D U1, so our test has trivial 

power asymptotically.

In Section 4.3, we show that our test has less size distortion, at the cost of a small loss of power, 
compared with the test used in Kiefer et al. (2000) when the number of restrictions under the null 
is moderate and strong autocorrelation is present in the data. We do not provide proofs for 
Propositions 3 and 4 since they are trivial in view of the proofs we provided for Theorems 1 and 2.

3.3 Testing for a change point in multivariate mean

Let Xt = (X1
t , X2

t , . . . , X
p
t )⊤ be a p-dimensional time series and let E(Xt) = μt:= 

(μ1
t , μ2

t , . . . , μp
t )⊤

∈ R
p. Suppose we want to test the null hypothesis H0:μ1 = μ2 = · · · = μn against 

HA:μ1 = · · · = μk7 ≠ μk7+1 = · · · = μn where k7 = +nr0+ for some unknown r0 ∈ (0, 1). As in Section 

2.1, de6ne the autocovariance matrix as Γ(k) = E[(Xt − μt)(Xt+k − μt+k)⊤], and let Γ =
ÿ∞

k=−∞ Γ(k) 
with (i, j) element being Γij. The following assumption is needed in deriving the asymptotic distri-

bution of our test statistic.

Assumption 9 Assume that (a)

n−1/2
ÿ

+nr+

t=1

(Xt − μt) ó Γ1/2Bp(r) on Dp[0, 1]. (21) 

(b) +nb+ + 1 ≤ k7 ≤ n − +nb+ − 1 for some b ∈ (0, 0.5)

Under this assumption, the change point cannot lie in the 6rst and last +nb+ sample points. Here, 
b is usually called a trimming parameter, see Andrews (1993). For k = 1, 2, . . . , +nb+, de6ne W1,k= 

(W1
1,k, . . . , W

p
1,k)⊤

= Xk − Xn−+nb++k, M1,k = (M1
1,k, . . . , M

p
1,k)⊤

=
ÿk

t=1 W1,t and ϑ2
j = Var(W

j
1,1), 

Æϑ2
j = +nb+−1ÿ+nb+

t=1 (W
j
1,t − 1

+nb+
ÿ+nb+

k=1
W

j
1,k

)2 for j = 1, 2, . . . , p. We use the difference between the 

6rst and last +nb+ points of the data to 6nd the coordinate of Xt that has the strongest signal of a 
mean change, then we apply the SN test statistic used in Shao and Zhang (2010). To be speci6c, de6ne

Æj = argmax
j∈{1,2,...,p}

n−1[e⊤
j M1,+nb+]

2

Æϑ2
j

.
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Then we apply the SN-based test statistic used in Shao and Zhang (2010) on {Xt,Æj}
n−+nb+
t=+nb++1

. De6ne 

S
j
a,b

=
ÿb

t=a X
j
t. Let

Gn = sup
k=+nb++1,+nb++2,...,n−+nb+−1

Tn(Æj, k)2

Vn(Æj, k)
, 

where

Tn(j, k) =
1

ÿÿÿÿÿÿÿÿÿÿÿÿ

n − 2+nb+
ÿ

ÿ

k

t=+nb++1

X
j
t −

S
j
+nb++1,n−+nb+
n − 2+nb+

ÿ ÿ

,

Vn(j, k) =
1

(n − 2+nb+)2

ÿ

k

t=+nb++1

ÿ

S
j
+nb++1,t

−
t − +nb+
k − +nb+ S

j
+nb++1,k

ÿ2
ÿ

+
ÿ

n−+nb+

t=k+1

S
j
t,n−+nb+ −

n − +nb+ − t + 1

n − +nb+ − k
S

j
k+1,n−+nb+

ÿ ÿ2
ÿ

.

The following theorem shows the asymptotic properties of Gn under the null and alternative.

Theorem 8 Suppose Assumption 9 holds and Æϑ2
j ³

p
ϑ2

j > 0 for j = 1, 2, . . . , p, then (i) under 
H0, we have

Gn³
D

G =
d

sup
r∈[0,1]

ÿ

B(r) − rB(1)
ÿ2

∫r0
ÿ

B(s) −
s

r
B(r)

ÿ2

ds+ ∫1r
ÿ

B(1) − B(s) −
1 − s

1 − r
(B(1) − B(r))

ÿ2

ds

,

(22) 

(ii) under HA, denote Δn = (Δ1
n, Δ2

n, . . . , Δp
n)⊤

= E(Xk7+1) − E(Xk7 ) and 

6Δn6∞ = maxj=1,2,...,p |Δp
n|, we have 

1. If 
ÿÿ

n
:

6Δn6∞ ³ ∞, then Gn³
p

∞, thus the limiting power of the level ζ test 
1(Gn > Gζ ) for ζ ∈ (0, 1) is 1, where Gζ is the 100(1 − ζ)th upper percent-
ile of G.

2. If 
ÿÿ

n
:
Δn ³ c:= (c1, c2, . . . , cp) ∈ R

p and 6c6∞ ≠ 0, then we have

Æj³D argmax
j∈{1,2,...,p}

ÿ

B(j)(b) −
(

B(j)(1) − B(j)(1 − b)
ÿ

− bcj
ÿ2

ϑ2
j

=
d

j7,

Gn³
D

G7, 

where B(j)(r) are mean zero Brownian motions with covariance 
Cov(B(i)(u), B(j)(v)) = 2 min {u, v}Γij. The conditional distribution of G7

given j7 = j is

G7ÿ
ÿ

j7=j
=
d

sup
r∈[0,1]

ÿ

B2(r)−rB2(1)
ÿ2

∫r0
ÿ

B2(s)−
s

r
B2(r)

ÿ2

ds+∫1r
ÿ

B2(1)−B2(s)−
1−s

1−r
(B2(1)−B2(r))

ÿ2

ds

,

(23) 
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where the process B2(r) is de6ned as B2(r) = B(r) + 1
ÿÿÿÿÿ

1−2b
: Hj((1−2b)r + b) 

with Hj = 1
ÿÿ

Γjj

: e⊤
j H(r) and H(r) = (r − r0)c1r≥r0 

where 1r≥r0
= 1 if r ≥ r0 

and 0 otherwise. 

3. If 
ÿÿ

n
:

6Δn6∞ ³ 0, then

Gn³
D

G, 

so our test has trivial power asymptotically.

Interestingly, the limiting null distribution G is pivotal and is identical to the one for the SN test 
in Shao and Zhang (2010), who has tabulated its critical values. In Section 4.4, we show that our 
test has substantially smaller size distortion than the test used in Shao and Zhang (2010) when the 
dimension of Xt is moderate and there is strong autocorrelation in the data.

4 Simulation studies

In this section, we examine the size and power properties of our SS–SN test statistics in 6nite sam-
ple. Speci6cally in Section 4.1, we examine the empirical size and power of our test statistics in 
testing hypotheses on multivariate mean and compare with the traditional SN statistic proposed 
in Lobato (2001). In Section 4.2, we show the favourable size performance of our test statistics 
when testing for uncorrelation in a univariate time series. In Sections 4.3 and 4.4, we present 
the size and size-adjusted power of our test statistics for testing linear hypotheses in a regression 
model and the existence of a change point in multivariate mean, respectively.

4.1 Finite sample size and power for multivariate mean tests

In this subsection, we examine the empirical size and power of our test statistics in testing hypoth-
eses on multivariate mean. Under the null, we assume the data comes from the following VAR(1) 

model: Xt = ρIpXt−1 + ϵt, where ϵt∼
iid

N(0, Ip). We set the nominal level at 5%. The experiment is 

repeated 5,000 times with the length of time series n ∈ {100, 300}, ρ ∈ { −0.7, −0.5, 0.2,0.5, 0.7} 

and p ∈ {5, 10}. We compare the empirical sizes for T(M)
n (α, Æj) (denoted as SS–SN1), Q(M)

n (α) 
(denoted as SS–SNP), their Bonferroni combination when α = 0.5 (denoted as SS–SNb), and the test 
statistic used in Lobato (2001) (denoted as Lobato) for different combinations of n, p, and ρ. 
As Table 1 shows, SS–SN1, SS–SNP, and SS–SNb have more accurate size than Lobato when 
|ρ| is close to 1 and the sizes for SS–SN1 and SS–SNp are very similar, while the size of SS–SNb 

is often slightly more distorted compared with these two. The distortion for Lobato gets more 
severe when p increases from 5 to 10, whereas for our tests the impact of the dimension on the 
size is minimal. When we increase the sample size from n = 100 to 300, we see noticeable improve-
ments in size distortion for all tests. For both SS–SN1 and SS–SNP, the choice of α seems to have little 
impact on the size distortion and no particular value of α dominates others in size accuracy. 
Furthermore, our SS–SN tests exhibit more size stability across the range of ρs as compared to 
Lobato, especially at n = 300. This stability, which is achieved by dimension reduction step in-
volved in the SS–SN procedure, is attractive since in practice the amount of temporal dependence 
is usually unknown.

For the size-adjusted power, we generate the data from the process: Xt − μe1 = ρIp(Xt−1 − μe1) + 

ϵt under the sparse alternative and from the process: Xt − μ1 = ρIp(Xt−1 − μ1) + ϵt under the dense 
alternative, where ϵt∼

iid
N(0, Ip). We set n = 300, ρ = 0.2, p = 10 and the experiment is repeated 

2,000 times at nominal level 5%. As Figure 3a and b shows, SS–SN1 has relatively larger power 
loss than SS–SNP, as compared with Lobato under the dense alternative. The power loss is rela-
tively smaller under sparse alternative and in this case SS–SN1 outperforms SS–SNP. Note 
that under both dense and sparse alternatives, the power curve of SS–SNb is close to that of the 
SS–SN statistic which performs better. Hence, the SS–SNb can have good all-round power against 
both types of alternatives. The power loss of SS–SNb relative to Lobato is moderate, but its gain in 
size stability and accuracy can be substantial, especially when p is moderate and temporal 
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dependence is strong. We also tried other settings (e.g. n = 300, ρ = 0.7, p = 10) for the 
size-adjusted power and the results are quantitatively similar so are skipped.

4.2 Finite sample size for testing zero autocorrelation

In this subsection, we present the empirical size of T(A)
n (α, Æj) statistic (denoted as SS–SN1), its 

L2-type counterpart (denoted as SS–SNP), and their Bonferroni combination (denoted as 
SS–SNb) in testing zero autocorrelation at nominal level 5%. Under the null hypothesis, we assume 

the data comes from the same models used in Lobato (2001). Let ut ∼
i.i.d

N(0, 1) and the eight models 
are (a) i.i.dN(0, 1); (b) t(6); (c) demeaned standard log normal; (d) 1-dependent process 
Xt = utut−1; (e) the heteroscedastic process Xt = stutut−1, where st is the in6nite repetition of the 
sequence {1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 4, 6}; (f) the uncorrelated non-martingale difference process 

Xt = ut−2ut−1(ut−2 + ut + 1); (g) the GARCH(1,1) model Xt = δtut, where δ2
t = 0.001+ 

0.02X2
t−1 + 0.8δ2

t−1; (h) the bilinear model Xt = ut = 0.5ut−1Xt−2. The experiment is repeated 
5,000 times with n ∈ {100, 500} and the results are shown in Table 2. The size for our tests and 
the Ljung-Box test are close to the nominal level for N(0,1), t(6) and GARCH(1) models, while 
Lobato test is severely undersized when n = 100 or p = 20. For the bilinear model, our test statis-
tics have accurate size, while Ljung-Box test is oversized. For LogNormal model, SS–SN1 and 
Ljung-Box have slightly more accurate size than SS–SNP and the Lobato test is noticeably under-
sized for all cases. For the RT, Hetero, and No-MDS models, Lobato and Ljung-Box test both have 
severe size distortion, while our tests are mildly undersized. In addition, for different splitting ratio 
α and p, the size for our two SS–SN tests does not change much. Overall it is fair to say that our 
SS–SN tests have the most accurate and stable sizes across all DGPs. Note that the size for SS–SNb 

is generally slightly more distorted than SS–SN1 and SS–SNP but the difference is small.

Table 1. Empirical rejection rate (in percentage) under the null when testing hypothesis on multivariate mean

n p ρ SS–SN1 SS–SNP SS–SNb Lobato

α = 0.15 α = 0.3 α = 0.5 α = 0.15 α = 0.3 α = 0.5

100 5 −0.7 3.22 2.94 2.20 2.96 2.72 2.40 1.52 0.62

−0.5 3.88 3.84 3.38 4.02 3.80 3.48 2.60 1.88

0.2 6.00 5.72 5.72 5.40 5.90 5.38 5.14 7.08

0.5 6.56 6.94 7.14 6.28 6.78 7.12 6.54 11.90

0.7 7.92 8.62 9.40 7.46 8.24 9.68 10.12 21.04

10 −0.7 3.10 2.92 2.10 2.80 2.92 2.28 1.44 0.06

−0.5 3.80 3.88 2.94 3.84 3.73 3.42 2.42 0.64

0.2 5.20 5.70 5.52 5.18 5.50 5.48 5.16 10.42

0.5 6.02 6.92 7.44 6.18 7.08 7.34 7.42 26.00

0.7 7.38 8.42 10.48 7.16 8.78 9.52 10.62 52.78

300 5 −0.7 4.34 3.80 3.74 4.04 3.62 3.84 2.84 2.26

−0.5 4.50 4.10 4.48 4.34 4.18 4.30 3.64 3.28

0.2 5.12 4.52 5.32 4.98 4.96 5.18 4.98 6.18

0.5 5.22 4.74 5.56 5.44 5.20 5.92 5.54 7.18

0.7 5.82 5.54 6.32 5.82 5.96 6.72 6.38 9.42

10 −0.7 4.64 3.92 4.06 3.84 3.86 3.92 3.36 0.56

−0.5 4.92 4.42 4.60 4.22 4.36 4.16 4.08 2.18

0.2 5.28 5.40 5.06 4.98 5.00 5.12 4.88 6.42

0.5 5.62 5.74 5.52 5.46 5.50 5.60 5.54 10.68

0.7 5.96 6.22 6.46 5.90 6.04 6.38 6.28 18.34
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Figure 3. Size-adjusted power for testing hypothesis on multivariate mean (first row), in a regression model (second 

row) and the existence of a change point (last row) under the dense (left column) and sparse (right column) 

alternatives.

264                                                                                                                                          Zhang and Shao



T
a
b

le
 2

. 
E

m
p
ir
ic

a
l 
re

je
c
ti
o
n
 r

a
te

 (
in

 p
e
rc

e
n
ta

g
e
) 
u
n
d
e
r 

th
e
 n

u
ll 

w
it
h
 d

if
fe

re
n
t 

m
o
d
e
ls

 w
h
e
n
 t

e
s
ti
n
g
 z

e
ro

 a
u
to

c
o
rr

e
la

ti
o
n

M
o
d
el

n
p

S
S
–
S
N

1
S
S
–
S
N

P
S
S
–
S
N

b
L

o
b
a
to

L
ju

n
g
-B

o
x

α
=

0
.1

5
α

=
0
.3

α
=

0
.5

α
=

0
.1

5
α

=
0
.3

α
=

0
.5

N
(0

,1
)

1
0
0

5
4
.9

0
4
.6

0
4
.3

6
4
.4

6
4
.6

0
4
.5

8
3
.3

0
4
.1

6
5
.4

8

1
0

4
.4

0
4
.4

2
4
.2

6
4
.7

0
4
.6

6
3
.7

0
3
.5

2
1
.4

6
5
.2

4

2
0

4
.6

3
4
.6

8
4
.5

0
4
.2

8
4
.3

2
4
.4

6
4
.2

2
0
.6

6
4
.7

6

5
0
0

5
4
.7

2
5
.4

0
5
.1

6
4
.7

2
4
.5

0
4
.6

8
4
.5

6
5
.2

0
4
.9

6

1
0

4
.9

6
5
.3

2
4
.7

8
4
.6

2
4
.6

0
4
.8

2
4
.5

8
5
.5

0
5
.1

2

2
0

5
.1

8
5
.3

0
4
.4

8
4
.6

6
4
.9

0
4
.9

6
4
.5

8
2
.9

8
4
.5

2

t(
6
)

1
0
0

5
4
.5

2
3
.8

8
3
.8

0
4
.4

2
3
.9

0
3
.7

4
2
.9

0
2
.4

4
4
.7

6

1
0

4
.5

8
3
.7

4
4
.3

6
4
.3

8
4
.2

0
3
.7

2
3
.6

2
0
.8

0
4
.4

4

2
0

4
.7

0
4
.4

0
4
.4

2
4
.2

8
4
.1

6
4
.9

2
4
.2

8
0
.4

8
4
.5

8

5
0
0

5
4
.7

8
4
.8

0
4
.9

0
4
.5

2
4
.5

2
4
.6

8
3
.8

4
5
.0

4
4
.2

4

1
0

4
.8

0
4
.8

4
4
.8

6
4
.9

4
4
.9

8
5
.1

2
4
.3

6
4
.2

4
5
.5

6

2
0

4
.3

2
4
.4

2
4
.6

6
4
.1

8
4
.2

6
4
.2

8
4
.5

6
2
.1

2
4
.9

8

L
o
g
N

o
rm

a
l

1
0
0

5
3
.7

8
3
.3

6
3
.1

4
2
.9

8
2
.8

8
2
.6

2
2
.4

6
0
.6

2
3
.1

4

1
0

3
.7

6
3
.9

6
3
.8

2
3
.2

2
3
.0

0
2
.9

2
3
.1

6
0
.2

4
3
.5

8

2
0

4
.1

6
4
.4

0
4
.1

6
3
.3

0
3
.6

8
3
.7

4
3
.3

4
0
.1

2
3
.5

8

5
0
0

5
4
.6

8
5
.1

6
4
.7

4
3
.9

8
4
.2

2
4
.1

6
3
.4

2
3
.0

6
4
.1

0

1
0

4
.3

2
5
.3

8
4
.2

8
3
.7

6
4
.2

0
3
.7

0
3
.5

8
1
.5

4
4
.0

8

2
0

4
.7

0
4
.8

8
4
.5

0
3
.7

2
3
.7

6
3
.6

2
3
.6

4
0
.2

6
4
.1

2

R
T

1
0
0

5
3
.4

0
3
.3

0
2
.6

4
3
.0

4
3
.4

4
2
.5

2
1
.5

0
0
.8

6
2
1
.3

4

1
0

2
.8

0
2
.9

4
2
.5

8
2
.8

8
2
.9

2
2
.6

4
1
.8

8
0
.1

2
2
1
.9

0

2
0

3
.2

8
3
.3

0
2
.9

4
3
.4

6
3
.6

0
3
.4

4
2
.6

2
0
.0

2
2
1
.9

4

5
0
0

5
4
.6

2
4
.4

6
4
.4

4
4
.7

0
4
.4

0
4
.0

8
3
.5

8
3
.8

6
2
4
.1

0

1
0

4
.6

2
4
.1

8
4
.1

0
4
.8

4
4
.2

2
4
.4

0
3
.5

4
1
.6

0
2
4
.5

8

2
0

4
.6

0
4
.2

8
4
.0

0
4
.6

6
4
.6

2
4
.3

4
3
.6

2
0
.3

8
2
4
.0

8

( c
o
n
ti

n
u
ed

) 

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 1                                                     265



T
a
b

le
 2

. 
C

o
n
ti
n
u
e
d
  

M
o
d
el

n
p

S
S
–
S
N

1
S
S
–
S
N

P
S
S
–
S
N

b
L

o
b
a
to

L
ju

n
g
-B

o
x

α
=

0
.1

5
α

=
0
.3

α
=

0
.5

α
=

0
.1

5
α

=
0
.3

α
=

0
.5

H
et

er
o

1
0
0

5
2
.8

0
2
.5

8
1
.9

2
2
.5

6
2
.4

8
1
.6

6
1
.1

2
0
.4

8
2
6
.0

6

1
0

3
.0

0
2
.5

8
2
.7

2
2
.5

4
2
.2

8
2
.2

6
1
.8

8
0
.1

6
2
5
.9

4

2
0

3
.1

0
3
.2

0
2
.9

6
3
.3

2
3
.0

6
3
.8

6
2
.7

4
0
.1

0
2
5
.4

8

5
0
0

5
4
.0

6
3
.6

4
3
.4

6
4
.4

6
4
.1

6
3
.1

4
2
.5

6
2
.8

0
3
2
.4

8

1
0

4
.0

6
4
.1

4
3
.6

4
4
.2

6
4
.0

6
4
.1

2
2
.8

2
1
.0

8
3
2
.5

2

2
0

3
.7

8
3
.9

2
3
.3

0
4
.2

8
3
.6

8
3
.5

4
2
.9

8
0
.2

4
3
1
.9

2

N
o
-M

D
S

1
0
0

5
2
.0

2
2
.3

4
1
.5

4
1
.9

0
1
.9

8
1
.8

0
1
.0

8
0
.3

0
2
7
.2

6

1
0

1
.8

6
1
.8

2
2
.3

8
2
.1

0
2
.0

4
1
.7

6
1
.4

4
0
.0

2
2
8
.7

0

2
0

1
.9

6
2
.1

2
2
.4

8
2
.2

6
2
.5

4
2
.5

0
2
.0

4
0
.0

6
2
8
.2

8

5
0
0

5
3
.5

6
3
.5

4
3
.1

8
3
.8

6
3
.5

8
3
.2

0
2
.3

2
2
.3

2
3
8
.4

2

1
0

3
.2

2
3
.6

8
3
.2

2
3
.8

2
3
.3

2
3
.3

0
2
.4

8
0
.4

8
3
9
.2

2

2
0

3
.2

0
3
.4

0
3
.3

2
3
.5

4
3
.2

0
3
.0

8
2
.5

8
0
.0

6
3
9
.6

0

G
A

R
C

H
(1

)
1
0
0

5
4
.5

2
4
.7

0
4
.0

8
5
.0

6
4
.5

6
4
.2

8
3
.6

6
3
.6

8
5
.6

6

1
0

4
.4

6
4
.2

2
3
.9

6
4
.3

0
4
.6

6
4
.0

8
3
.5

2
1
.4

4
5
.3

4

2
0

4
.7

8
4
.6

6
4
.3

2
4
.7

6
4
.8

8
4
.3

2
4
.2

4
0
.6

0
5
.0

6

5
0
0

5
4
.7

2
4
.9

4
4
.7

0
4
.3

8
5
.0

6
4
.8

6
4
.0

2
5
.0

2
4
.9

8

1
0

5
.2

2
5
.0

0
4
.9

0
4
.7

2
5
.0

0
5
.0

0
4
.7

6
4
.9

6
5
.6

2

2
0

5
.3

0
4
.8

4
4
.5

4
4
.4

0
4
.9

0
4
.6

6
4
.5

6
2
.6

6
5
.5

8

B
il
in

ea
r

1
0
0

5
5
.3

2
4
.4

4
4
.0

8
4
.9

4
3
.8

8
3
.7

0
2
.8

8
2
.9

0
1
2
.6

6

1
0

5
.1

8
4
.5

8
3
.8

4
4
.0

8
3
.6

8
3
.8

6
3
.2

4
1
.0

0
1
2
.1

6

2
0

4
.4

4
4
.5

0
3
.6

2
4
.4

2
4
.3

8
3
.8

8
3
.4

0
0
.3

0
1
3
.1

0

5
0
0

5
5
.1

6
4
.3

4
4
.8

6
4
.9

0
5
.4

4
4
.6

4
4
.0

2
6
.1

8
1
4
.3

2

1
0

4
.7

0
4
.7

0
5
.2

6
5
.1

0
4
.8

0
4
.8

4
4
.2

2
4
.2

4
1
4
.2

2

2
0

4
.9

0
4
.9

6
4
.9

4
4
.6

2
3
.9

6
4
.5

0
4
.3

6
2
.2

0
1
4
.5

4

266                                                                                                                                          Zhang and Shao



4.3 Finite sample size and power for testing linear hypotheses in a regression 
model

In this subsection, we report the result of a simulation experiment to compare the 6nite sample size 
and power of the statistic T(R)

n (α, Æj(R)) (denoted as SS–SN1) de6ned in equation (19), its L2-type 
counterpart (denoted as SS–SNP), their Bonferroni combination (denoted as SS–SNb), and the 
test statistic used in Kiefer et al. (2000) (denoted as KVB). For p ∈ {5, 10, 20}, n ∈ {300, 600} 
and ρ ∈ {−0.7, −0.5, 0.2, 0.5, 0.7}, we assume the data is generated from the following model

yt =
ÿ

p

i=1

Xi
tβi + ϵt, t = 1, 2, . . . , n, 

where {Xi
t} and {ϵt} come from (p + 1) independent AR(1) processes ηt = ρηt + et with et ∼

i.i.d
N(0, 1 − ρ2) 

so that the marginal distribution of ηt is N(0, 1). The null hypothesis is H0:β1 = β2 = · · · = βp = 0. 

The empirical rejection rate based on 5,000 Monte Carlo replications under H0 is shown in 
Table 3. In general SS–SN1, SS–SNP, SS–SNb, and KVB have relatively accurate size when p = 5 
and ρ = 0.2, i.e. when the dimension and temporal dependence is small, and are oversized for other 
parameter combinations. When n = 300, as p and |ρ| increases, the size distortion for KVB in-
creases drastically, while the size distortion for SS–SN1 and SS–SNP are small when |ρ| < 0.7 for 
all values of p. When n = 600, the size for all SS–SN statistics are less than 10% for all but one par-
ameter combination, while KVB still have large size distortion when p = 10, 20 and |ρ| = 0.7. 
Overall, the improvement of size stability and accuracy across the dimension and range of ρs 
from KVB to SS–SN is apparent, and this is mainly due to the dimension reduction step in our 
SS–SN procedure.

Next, we examine the power of our SS–SN statistics under two alternative hypotheses. For the 
sparse alternative, we assume β = βe⊤

1 for some β > 0, so only the 6rst component of β deviates 
from H0. For the dense alternative, we assume β = β1⊤. We assume the same model as in Section 
4.3 with n = 300, p = 10 and ρ = 0.2. We repeat the experiment 2,000 times and the curve for 
size-adjusted power against β for the dense and sparse alternatives is shown in Figure 3c and d. The 
6ndings here are qualitatively similar to those reported in Figure 3a and b. Under dense alternative, 
the power loss of SS–SNP compared with KVB is signi6cantly smaller than that of SS–SN1. Under 
sparse alternative, the power curve of SS–SN1 is very close to that of KVB. Overall, we recommend 
the user to employ SS–SNb, which achieves good all-round power and exhibits moderate power 
loss as compared to KVB under both alternatives.

4.4 Finite sample size and power for testing a change point in multivariate mean

In this subsection, we calculate the empirical size of our proposed tests in testing the existence of a 
change point in the mean of a VAR(1) process. As in previous simulations, the L∞-type, L2-type, 
and the Bonferroni combination are denoted as SS–SN1, SS–SNP, and SS–SNb. Under the null hy-
pothesis, we assume the data comes from the VAR(1) process Xt = ρIpXt−1 + ϵt, where ϵt∼

iid
N(0, Ip) 

and we set the trimming constant b in Assumption 9 to be 0.15, following the convention 
(Andrews, 1993). The experiment, with nominal level at 5%, is repeated 5,000 times with the 
length of time series n ∈ {300, 600}, ρ ∈ {−0.7, −0.5, 0.2, 0.5, 0.7} and p ∈ {5, 10, 20}. We 
also calculate the empirical size for the test used in Shao and Zhang (2010) (denoted as SZ) and 
compare them under different combinations of n, p, and ρ.

As shown in Table 4, when n = 300, our tests are slightly undersized when ρ = −0.7 and over-
sized when ρ = 0.7, but the size distortion does not get worse as p increases, which is not the case 
for SZ. When n = 600, the sizes for our tests are more accurate than that for n = 300 and close to 
the nominal level uniformly over p and ρ. For SZ, the size also gets more accurate, but there is still 
large size distortion when p is large and |ρ| is close to 1. Again SS–SN improves the size stability 
and accuracy across the dimension and ρs.

To examine the size-adjusted power, assume data Yt comes from the following model:

Yt =
Xt, 1 ≤ t ≤ k0 = +nr0+
Xt + μ k0 < t ≤ n,

ÿ
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where Xt is generated from the model in the null hypothesis. For the sparse alternative, we let μ = μe1 

and for the dense alternative, we let μ = μ1. We set n = 300, ρ = 0.2, p = 10, r0 = 1/2 and the experi-
ment is repeated 2,000 times. The results, as shown in Figure 3e and f, are qualitatively similar to 
those reported in Figure 3a–d. Note that under sparse alternative, the power curve of SS–SN1 and 
SS–SNb are very close to that of SZ and even slightly outperforms SZ when μ is large. The use of 
SS–SNb is again recommended due to its overall good performance under both alternatives.

Based on the simulation results reported in Sections 4.1–4.4, we conclude that both SS–SN test 
statistics offer very stable and relatively accurate size across a wide range of data generating proc-
esses for most combinations of (n, p, ρ) we examined, as compared to the traditional bandwidth- 
free tests. The latter often yield very large size distortion in the case of small sample size and/or 
large dimension when the magnitude of temporal dependence is moderate. The size stability 
and accuracy with respect to the dimension and magnitude of dependence is a major gain of the 
SS–SN procedures. As a consequence of the usual size-power trade-off, there is a power loss for 

Table 3. Empirical rejection rate (in percentage) under the null at level 5% in a regression model

n p ρ SS–SN1 SS–SNP SS–SNb KVB

α = 0.15 α = 0.3 α = 0.5 α = 0.15 α = 0.3 α = 0.5

300 5 −0.7 6.80 7.58 8.62 7.26 6.96 8.08 8.34 10.62

−0.5 6.14 6.30 6.72 5.78 5.88 7.04 6.32 7.46

0.2 5.50 5.34 6.00 5.54 5.38 5.90 5.84 5.60

0.5 6.24 6.48 6.42 6.10 6.24 6.52 6.30 7.52

0.7 6.80 8.04 8.58 6.76 7.60 8.40 7.90 10.28

10 −0.7 7.58 8.80 9.58 7.90 8.62 10.50 11.00 20.18

−0.5 6.60 7.32 7.68 6.72 6.96 7.78 7.74 11.56

0.2 5.48 5.38 5.76 5.74 5.78 5.92 5.46 7.36

0.5 6.34 6.30 7.28 6.54 6.52 7.44 7.22 11.72

0.7 7.66 7.78 10.66 7.74 8.28 10.58 10.68 20.08

20 −0.7 9.64 10.74 12.52 9.16 11.16 12.14 14.00 49.20

−0.5 7.58 7.88 8.76 7.38 8.16 8.58 8.98 23.70

0.2 6.38 7.00 6.90 6.00 6.00 6.88 7.34 11.58

0.5 7.64 8.46 9.34 7.48 8.08 8.48 9.96 23.86

0.7 10.40 10.72 12.76 9.98 11.30 13.08 14.12 50.32

600 5 −0.7 6.24 5.56 6.60 6.88 6.26 6.66 6.26 7.96

−0.5 5.62 5.64 5.78 5.88 6.14 5.94 5.10 6.64

0.2 5.06 5.64 5.10 5.30 5.02 5.04 4.66 5.52

0.5 6.04 5.86 5.54 5.32 5.92 5.60 5.12 6.26

0.7 5.80 6.36 6.28 5.54 6.48 5.54 5.56 7.70

10 −0.7 6.92 6.80 7.62 6.40 6.50 7.28 7.70 12.66

−0.5 6.14 6.28 6.48 5.96 5.96 6.48 6.62 8.64

0.2 5.42 5.70 5.72 5.22 5.16 5.46 5.34 5.82

0.5 5.72 5.48 5.40 5.50 6.18 6.22 5.90 7.76

0.7 6.26 6.80 6.84 7.02 7.12 7.22 7.66 12.02

20 −0.7 7.46 7.80 9.18 7.84 8.60 8.86 9.86 27.26

−0.5 6.72 6.48 7.12 6.50 6.60 7.18 6.92 13.96

0.2 5.24 5.58 6.18 5.28 5.90 6.40 5.78 8.48

0.5 5.68 6.76 7.72 6.00 6.34 7.34 7.56 13.74

0.7 6.42 8.50 9.10 8.02 7.36 8.96 10.10 26.74
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SS–SN tests due to the use of sample splitting. However, when comparing the optimal SS–SN test 
to the traditional bandwidth-free counterparts (e.g. SS–SNP for dense alternative, and SS–SN1 for 
sparse alternative), the power loss is mild. In a sense, this is similar to the ‘more accurate size but 
less power’ phenomenon when comparing tests based on 6xed-b asymptotics versus small-b 
asymptotics (Kiefer & Vogelsang, 2005). In practice, when there is no prior knowledge about 
the type of alternative, we recommend the user to employ the Bonferonni test, i.e. SS–SNb by set-
ting α = 0.5. The asymptotic independence between L2-type and L∞-type SS–SN test statistics as 
stated in Theorem 7 further lends theoretical support to the Bonferroni test as it is expected to be 
non-conservative when the dimension of the parameter is moderate and sample size is large.

5 Conclusion

In this article, we propose a class of new tests for hypotheses on a multi-dimensional parameter 
based on SN and sample splitting. Our two SS–SN statistics do not involve any bandwidth param-
eter and the asymptotic null distribution is pivotal and is independent of the sample splitting pro-
portion α. The construction of both SS–SN statistics are rather straightforward and the test 
statistics applied to the second part of sample P2 after dimension reduction based on the 6rst 
part P1 are effectively targeting at parameter of dimension one. This sample splitting approach 
is broadly applicable to many time series testing problems, and we only cover testing hypotheses 
on marginal means, autocorrelations, regression parameter and a change point in multivariate 
mean to illustrate its usefulness. Overall, the SS–SN methodology provides an important addition 
to the existing SN toolbox owing to its superior ability of dealing with moderate dimensional par-
ameter in the inference of low or moderate dimensional time series.

Below we shall highlight several appealing features of our test statistics. (a) For a moderate di-
mensional parameter, the size of our test statistics is considerably more accurate than traditional 
SN statistic, especially when temporal dependence is strong. As a price to pay, the SS–SN test loses 
some power. However, the power loss is moderate as seen from both theoretical power analysis 
and simulation studies. In practice, we recommend the practitioner to set α = 0.5, and use the 
Bonferroni test that combines the two SS–SN test statistics so the power is adaptive to both sparse 
and dense alternatives. Simulation results show that the Bonferroni test exhibits accurate size and 

Table 4. Empirical rejection rate (in percentage) under the null at level 5% when testing for change point in 

multivariate mean

p ρ n = 300 n = 600

SS–SN1 SS–SNP SS–SNb SZ SS–SN1 SS–SNP SS–SNb SZ

5 −0.7 2.94 3.30 2.50 1.10 3.38 3.70 2.98 2.80

−0.5 3.98 4.54 3.38 2.20 3.84 4.36 3.34 3.12

0.2 5.06 6.06 4.88 5.10 4.88 4.72 4.02 5.02

0.5 6.04 6.96 5.96 7.86 5.20 5.38 4.40 6.84

0.7 7.10 7.94 7.44 12.88 5.82 6.18 5.00 8.38

10 −0.7 3.10 2.90 2.50 0.22 4.28 4.06 3.80 1.26

−0.5 4.22 3.96 3.66 1.22 5.26 4.78 4.58 2.32

0.2 5.48 5.20 5.24 7.70 5.92 5.30 5.52 6.28

0.5 6.62 6.28 6.24 13.46 6.02 5.64 5.86 9.46

0.7 7.36 7.50 7.66 28.82 6.50 6.22 6.70 14.24

20 −0.7 2.82 3.12 2.56 0.00 4.52 4.30 4.00 0.18

−0.5 3.62 3.90 3.26 0.34 5.12 4.82 5.08 1.02

0.2 4.92 5.14 4.90 11.80 5.58 5.44 5.56 7.92

0.5 5.82 5.94 6.04 32.84 5.82 5.90 6.10 16.80

0.7 7.20 6.88 7.60 73.20 6.36 6.32 7.04 35.82
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all-round good power in all settings. (b) We managed to show the asymptotic validity of SS–SN1 

and SS–SNP test statistics and their asymptotic independence under the null in multivariate mean 
testing problem in a growing-dimensional setting, which is an interesting theoretical contribution 
to the SN literature. The theory is consistent with the empirical observation that the size is robust 
for SS–SN test statistics for a broad range of dimensions. (c) As a by-product of dimension reduc-
tion involved in SS–SN, there is substantial saving in computational cost as compared to tradition-
al SN test statistics. In the mean testing problem, the cost of our SS–SN test statistics scales linearly 
in p, which is superior to that for the traditional SN statistic.

To conclude, we mention some possible extensions. The scope of this paper can be considerably 
expanded by using the GMM (Generalized Method of Moment) framework of Kiefer and 
Vogelsang (2005). Also one can regard KVB’s test as a special case of the so-called 6xed-b asymp-
totics (Kiefer & Vogelsang, 2005) with b = 1 and the use of Bartlett kernel. It is expected that the 
6xed-b-based tests and also other 6xed-smoothing-based tests as advocated in Sun (2014b), 
Hwang and Sun (2017), and Wang and Sun (2020) will encounter the same size distortion problem 
when the dimension is moderate and temporal dependence is moderate/strong. Hence, it would be 
interesting to extend the SS–SN idea to 6xed-smoothing methods and to GMM settings. These 
topics are left for future research.
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