



## Abstract Submission

ID: 1574129

[Abstract Details](#) [Author\(s\)](#) [Abstract Text](#) [Plain-Language Summary \(Optional\)](#) [Special Programs](#) [Payment](#) [Submit Abstract](#)

## Your Abstract Submission Has Been Received

Click [here](#) to print this page now.

You have submitted the following abstract to AGU24. Receipt of this notice does not guarantee that your submission was free of errors.

### Distinct Isotopic and Sedimentary Signatures of Tsunamigenic Earthquakes, Japan Trench Subduction Boundary

Cecilia M McHugh<sup>1</sup>, Amanda Feltz<sup>1,2</sup>, Troy Rasbury<sup>3</sup>, Leonardo Seeber<sup>4,5</sup> and Katie Wooton<sup>6</sup>, (1)Queens College, City University of New York, School of Earth and Environmental Sciences, Flushing, United States, (2)CUNY Queens College, Flushing, NY, United States, (3)Stony Brook University, Department of Geosciences, Stony Brook, NY, United States, (4)Lamont-Doherty Earth Obs, Palisades, United States, (5)Lamont -Doherty Earth Observatory, Palisades, United States, (6)Stony Brook University, Stony Brook, United States

#### Abstract Text:

The largest known earthquakes ruptured megathrusts at subduction boundaries. The largest among these ruptured the entire seismogenic depth range up to the seafloor and have generated enormous regionally destructive tsunamis. This type of rupture that breaches the sea-floor is fortunately rare, but, as a result, the most recent ones, M9.2 Sumatra in 2004 and the M9.0 Japan in 2011, were unexpected and thus caused great damage. We don't know where and when they can occur again. Our approach has been to compare earthquake event deposits in various ocean settings (IODP Expedition 386, Japan 2021; Jamaica Passage 2022; Bay of Bengal 2024) and to study the entrainment processes (shaking tank experiments) and search for distinguishing features in the depositional record.

We are now revealing techniques that involve the use of isotopes and chemistry to characterize earthquake related event deposits. We identified thick, acoustically homogeneous layers "homogenites" that have homogeneous radiogenic isotope (Nd, Sr, Pb) signatures, unlike the background sediments. Additionally, TOC%, N% and d<sup>13</sup>C, d<sup>15</sup>N, show distinct signatures relative to the background. These isotopic signatures correspond perfectly well with lithology, physical properties and X-CT scans in the thick homogenites. Using these techniques we recognize the 1454 AD Kiatoka and 869 AD Jogan events in the Japan Trench that were tsunamigenic and possibly ruptured the seafloor. While each of these events has unique signatures, there are common threads and these findings lay the groundwork to go back in time and better characterize older Mw9.0 ruptures.

One of the most significant contributions to this effort is the recognition of M9.0 2011 Tohoku tsunamigenic earthquake in the Japan Trench. Short-lived radioisotopes help to document the extent of the remobilized sediment. This event has provided unique insights due to the Fukushima nuclear reactor radioisotopes measured in the Japan Trench as far as ~200km from its source. The use of these techniques provides tools for recognizing tsunamigenic earthquakes in other subduction boundaries such as Cascadia.

#### Session Selection:

T009. Insights into the Cascadia Subduction Zone: From Fundamental Scientific Processes to Societal Resilience

#### Submitter's E-mail Address:

Cecilia.McHugh@qc.cuny.edu

#### Abstract Title:

Distinct Isotopic and Sedimentary Signatures of Tsunamigenic Earthquakes, Japan Trench Subduction Boundary

#### Requested Presentation Type:

Assigned by Committee (oral, poster, or eLightning)

#### Virtual Participation:

In-person

#### Recording Permission Given?

Yes

#### Previously Published?:

No

#### Abstract Payment:

Paid (agu-agu24-1574129-9287-6362-5792-4282)

*I decline the opportunity to volunteer as an OSPA reviewer.*

#### First Presenting Author

**Presenting Author**

Cecilia M McHugh  
Primary Email: [cecilia.mchugh@qc.cuny.edu](mailto:cecilia.mchugh@qc.cuny.edu)

**Affiliation(s):**

Queens College, City University of New York  
School of Earth and Environmental Sciences  
Flushing 11367 (United States)

**Second Author**

Amanda Feltz  
Primary Email: [amanda.feltz86@qmail.cuny.edu](mailto:amanda.feltz86@qmail.cuny.edu)

**Affiliation(s):**

CUNY Queens College  
Flushing NY (United States)

Queens College, City University of New York  
School of Earth and Environmental Sciences  
Flushing 11367 (United States)

**Third Author**

Troy Rasbury  
Primary Email: [Troy.Rasbury@stonybrook.edu](mailto:Troy.Rasbury@stonybrook.edu)

**Affiliation(s):**

Stony Brook University  
Department of Geosciences  
Stony Brook NY 11794 (United States)

**Fourth Author**

Leonardo Seeber  
Primary Email: [Nano@ldeo.columbia.edu](mailto:Nano@ldeo.columbia.edu)

**Affiliation(s):**

Lamont -Doherty Earth Observatory  
Palisades 10964-0190 (United States)  
  
Lamont-Doherty Earth Obs  
Palisades 10964-0190 (United States)

**Fifth Author**

Katie Wooton  
Primary Email: [katie.Wooton@stonybrook.edu](mailto:katie.Wooton@stonybrook.edu)

**Affiliation(s):**

Stony Brook University  
Stony Brook 11794 (United States)

---

If necessary, you can make changes to your abstract submission

To access your submission in the future, point your browser to: [User Portal](#)

Your Abstract ID# is: 1574129.

Any changes that you make will be reflected instantly in what is seen by the reviewers.

After the abstract proposal is submitted, you are not required to go through all submission steps to make edits. For example, click the "Authors" step in the Abstract Submission Control Panel to edit the Authors and then click save or submit.

When you have completed your submission, you may close this browser window or submit another abstract proposal: [Call](#)

**for Abstracts.**

**Tell us what you think of the abstract submission process**