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All-Subsets Important Separators with Applications to Sample Sets,
Balanced Separators and Vertex Sparsifiers in Directed Graphs
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Abstract

Given a directed graph G with n vertices and m edges, a parameter k£ and two disjoint subsets
S, T C V(G), we show that the number of all-subsets important separators, which is the number
of A-B important vertex separators of size at most k over all A C S and B C T, is at most
B(|S|, [T, k) = 4* (lfll) (<‘T2‘k), where (£) =37, (%), and that they can be enumerated in time
O(B(|S|, |T|, k)k*(m+n)). This is a generalization of the folklore result stating that the number
of A-B important separators for two fixed sets A and B is at most 4* (first implicitly shown by

Chen, Liu and Lu Algorithmica ’09). From this result, we obtain the following applications:

1. We give a construction for detection sets and sample sets in directed graphs, generalizing
the results of Kleinberg (Internet Mathematics’ 03) and Feige and Mahdian (STOC’ 06)
to directed graphs.

2. Via our new sample sets, we give the first FPT algorithm for finding balanced separators
in directed graphs parameterized by k, the size of the separator. Our algorithm runs in
time 2°%) . (m + n).

3. Additionally, we show a O(y/logk) approximation algorithm for finding balanced separa-
tors in directed graphs in polynomial time. This improves the best known approximation
guarantee of O(y/logn) and matches the known guarantee in undirected graphs by Feige,
Hajiaghayi and Lee (SICOMP’ 08).

4. Finally, using our algorithm for listing all-subsets important separators, we give a deter-
ministic construction of vertex cut sparsifiers in directed graphs when we are interested in
preserving min-cuts of size upto ¢ between bipartitions of the terminal set. Our algorithm

constructs a sparsifier of size O ((<t30)2(’)(c)) and runs in time O ((<t30)20(c)(m + n)),

where t is the number of terminals, and the sparsifier additionally preserves the set of
important separators of size at most ¢ between bipartitions of the terminals.
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1 Introduction

The study of parameterized algorithms, or fixed-parameter tractability (FPT) (see [CFKT15,
DF*13]) along with the classical area of approximation algorithms, has emerged as one of the
most promising ways to cope with NP-completeness. Given a decision problem @ with input size
n, together with a parameter ¢, a parameterized (or FPT) algorithm is an algorithm running in
time f (f)no(l) that decides Q. Over the last few years, parameterized algorithms have been studied
for most well-studied NP-complete problems. A particular focus has been on graph cut optimiza-
tion problems, including MuLTIWAY CUT, MULTICUT, MINIMUM BISECTION, FEEDBACK VERTEX
SET, BALANCED SEPARATOR [Mar06, FM06, CLLT08, MR14, CLP 19, CKL"20, LN22]. One of
the most important tools for graph cut problems has been the technique of important separators
(see [Marl1] for a brief survey), which has formed a building block in parameterized algorithms for
many of these and other problems [Mar06, CLL 08, CLL09, CHM13, LM13, LMR*21].

In this work, our contribution is two-fold. First, we show a new structural result on important
separators. Next, we show that using this result, combined with other techniques, leads to inter-
esting consequences. We show that one can compute sample sets in directed graphs. This in turn
allows us to obtain both an FPT algorithm and an improved approximation algorithm for finding
small balanced separators in directed graphs. We also show a deterministic construction of ver-
tex cut sparsifiers in directed graphs. All our algorithms are simple and concise modulo standard
results in approximation and parameterized algorithms.

Counting important separators Detection sets and sample sets
Combinatorics known: between fixed source/sink vertices | known: undirected graphs
this work: between all subsets of terminals this work: directed graphs
Deterministic directed vertex cut sparsifiers Directed balanced separators
. known: O(|TP3) size, 2001 (m + n) time known: O(y/log n)-approximation
AIgOI‘ltth this work: 1. O((lch)) size, O((‘g{‘)(’” +n)) time this work: first FPT algorithm also running in
2. O(|T|?) size, (%)O(C‘T‘)(m +n) time linear time, O(y/Iog k)-approximation

Figure 1: Summary of contribution of our paper

1.1 All-Subsets Important Separators

Important separators have proved to be a very important tool in the design of many FPT algorithms,
including fundamental problems such as MuLTIwWAY CUT, MULTICUT, DIRECTED FEEDBACK ARC
SET. We refer to Chapter 8 of [CFK'15] for various applications of important separators to
design parameterized algorithms. Given two disjoint subsets of vertices A, B and another set of
vertices X (which may intersect A, B) in a directed graph, we say that X is an A-B separator
if there is no directed path from any vertex of A to any vertex of B in G\ X'. For such a
separator X, define R(X) to be the set of vertices reachable from A in G \ X. Then an A-B
separator X is called an important A-B separator if it is (a) inclusion-wise minimal - so that for
any v € X, X \ {v} is not an A-B separator and (b) for any other A-B separator Y C V(G)
with |Y] < |X|, we do not have R(X) C R(Y).? Informally, important separators are those for
which there is no other separator which is further away from A without increasing the cut-size.
Marx [Mar06] first introduced the notion of important separators and showed a bound of 4% on
the number of important A-B separators of size at most k. Later this bound was improved to

@ \ X denotes the graph obtained from G by deleting the vertex set X along with its incident edges
2Throughout the paper, we use the notation P C Q to mean that P is a proper subset of Q.



4% (implicit in the FPT algorithm for VERTEX MULTIWAY CUT by Chen, Liu and Lu [CLL09])3.
Over the last few years, this result has been used extensively to obtain FPT algorithms for various
central parameterized problems [MR14, CHM13, CLP 19, LMR*21]. In this work, we show a new
structural result on important separators in directed graphs: Given a directed graph G and two
disjoint subsets S,T C V(G), we show that the number of A-B important separators across all
A C Sand B C T isat most B(|S|,|T], k) = 4* (|<Sk‘) (<|€‘,€), where () =37, (7). Note that the

<a
trivial bound is 4¥2/S1H171 which follows directly from the fact that there are at most 4% important
A-B separators for any fixed A C S, B C T. Previously, no such result is known even for undirected
graphs.
Throughout this paper, given a graph, we will denote by n the number of vertices and by m
the number of edges/arcs.

Theorem 1.1 (All Subsets Important Separators). Let G be a digraph, k be a positive integer and
let S CV(G) and T C V(G) be disjoint sets of source and sink vertices. Then there are at most
B(S|,|T|, k) = 4* (‘f]l) (f;‘,f) A-B important separators of size < k across all A C S and B C T.
Further, they can be enumerated in time O(8(|S|,|T|, k) - k% - (m + n)).

It is not difficult to show that this result is essentially tight: we show this formally in the next
lemma, whose proof is deferred to the appendix.

Lemma 1.2. For any positive integer k, the following two statements hold.

1. There exist infinitely many positive integers ¢, such that for each c, there is a directed graph
Ger and disjoint subsets S, T C V(G) of vertices with |T| = ¢ and |S| =1 so that there are

at least (‘Tl

<k) A-B important separators of size at most k across all choices AC S, BCT.

2. There exist infinitely many positive integers c, such that for each c, there is a directed graph
Ger and disjoint subsets S, T C V(G) of vertices with |S| = ¢ and |T'| = k + 1 so that there
are at least (fll) A-B important separators of size at most k across all choices AC S, BCT.

In the next few subsections, we show that this simple structural result has various interest-
ing consequences, allowing us to obtain many new results which were previously only known for
undirected graphs.

1.2 Detection Sets and Sample Sets in Directed Graphs

Kleinberg [Kle03] introduced the concept of a detection set in a graph. The principal motivation
for this concept was that of a network failure: given a network, can we compute a small set of
representative nodes so that for any small set of failure nodes that cuts communication between
two large subsets of nodes, there are two representatives that cannot communicate? Formally,
Kleinberg defined an (e, k) detection set for an undirected graph G as a set of terminals T'C V(G)
which satisfies the following property. First, define a network failure as a set of vertices X with
|X| < k so that G\ X can be partitioned into A U B where |A|,|B| > en and there are no edges
between A and B. Then for every such (vertex) failure set X, the set 7' must intersect with at least
two components of G\ X. Kleinberg [Kle03] showed that there is a detection set of size O(k—: log 1).
For the edge failure version, he showed a bound of (’)(% log %) which was subsequently improved
to O(é% log 1) by Kleinberg et al. [KSS08], where A is the size of the global minimum cut in the
graph. Feige and Mahdian [FMO6] showed an improved bound on (vertex) detection sets: they

3While these results focused mostly on the undirected version, the same proof works in directed graphs.



show a bound of (’)(% log ). Further, they showed a bound of (’)(%) for the edge failure version,
removing the dependence on log %

Feige and Mahdian [FMO06] also studied a strengthening of this notion of detection sets called
sample sets for undirected graphs: on a high level, these are a small set of terminals 7" which
represent all the small cuts of the graph in proportion to their size, up to some additive error.
Concretely, given an undirected graph G and a parameter k, they show that there exists a set
of terminals T" with |T'| = (9(?2 log 1), such that for any vertex set X of size | X| < k and every
connected component C of G\ X, we have ||C| — %|C’ NT|| < en. Further, the set T can be
obtained by simple random sampling, and [FMO06] shows that any random subset T C V (G) of size
(9(}2 log 1) is a sample set with constant probability.

The most important feature of these results is that the size of the detection set (or sample set)
T does not depend on n. It is then natural to ask if such results are possible for directed graphs.
Given a digraph G, let us define a network failure as a set of vertices X with |X| < k, so that
G\ X can be partitioned into two parts A and B, each of size at least en, such that there is no arc
from B to A. The analogous question for detection sets is then: is there a set of terminals T with
|T'| = f(k,€), such that for any network failure X there exists a pair t1,to € T so that there is no
path from ¢; to ¢t in G\ X7 Similarly, the analogous question for sample set becomes: is there a set
of terminals 7" with |T'| = g(k, €) for some function f, so that for any set of vertices X with | X| < k,
and any strongly connected component (SCC) C of G\ X, we have ||C| — %|C’ NT|| < en? We
answer both these questions in the affirmative, showing that one can in fact asymptotically match
the same bound as in the undirected case, with f(k,€) = (9(% log ) and g(k,€) = (9(?2 log 1).

Theorem 1.3. For any directed graph G, given parameters € € (0,1) and k € N, there is an
absolute constant c¢ such that there is an (€, k) detection set of size f(k,e) = c% log . Further, a
random set of f(k,e€) vertices must be an (e, k) detection set with probability at least %

Theorem 1.4. For any directed graph G, given parameters € € (0,1) and k € N, there is an
absolute constant c¢ such that there is an (e, k) sample set of size f(k,e) = CE% log%. Further, a
random set of f(k,e€) vertices must be an (e, k) sample with probability at least %

While we believe that this is of independent interest, we also show a similar connection to
parameterized and approximation algorithms for finding balanced cuts in directed graphs along the
lines of the undirected case as in [FMO06], as discussed in the following subsections. In fact, by using
a slightly more nuanced analysis, our results generalize that of [FM06] even for undirected graphs.

Finally, we note that one can easily prove that there exists an absolute constant ¢ such that a
random subset of size ckls# is a sample set with constant probability in a directed graph. This
follows from a simple application of Chernoff bounds and a union bound noting that the number
of vertex sets of size at most k is at most (z) ((’E) in the case of edge sets). However, for most
applications this bound is too weak. For instance, our parameterized algorithm for DIRECTED
BALANCED SEPARATOR has an exponential dependency in the size of the sample set, and hence to
show results parameterized by k, it is essential that the size of the sample set does not depend on

n.

1.3 Directed Balanced Cuts

One of the most well-studied graph partitioning problems, both from the parameterized and ap-
proximation algorithms point of view, is the problem of MINIMUM BISECTION. Given an undirected
graph G and a parameter k, the goal of the MINIMUM BISECTION problem is to obtain a partition



of the graph into two equal sized parts, such that the number of cut edges is at most k. MIN-
IMUM BISECTION was shown to be fixed-parameter tractable by Cygan et al. [CLP*19] and the
current best parameterized algorithm is due to [CKL"20] who show an algorithm with running
time 20(k10gk),O0) " Ricke [Ric08] gave an O(logn) approximation for (the optimization version
of) MINIMUM BISECTION. If only an approximate bisection where both sides have Q(n) vertices
is desired, then this problem is essentially the BALANCED SEPARATOR problem which is known to
have an FPT algorithm running in time 2°%)(m + n) due to Feige and Mahdian [FMO06] and an
O(v/log n) approximation algorithm in polynomial time using the seminal result of Arora, Rao and
Vazirani [ARV09]. Feige et al. [FHLOS] showed that in fact this guarantee can be made O(y/log k),
and also showed that one can compute vertex separators with the same approximation ratio. In
directed graphs, the MINIMUM BISECTION problem has been typically studied as DIRECTED BiI-
SECTION: Given a directed graph G with even number of vertices, is it possible to partition the
vertex set into two equal parts A and B so that the number of arcs from A to B is at most k?
This question was first raised by Feige and Yahalom [FY03]. When k = 0, they referred to this
problem as ONEwAY CuTs, and showed that even this problem is NP-hard. However, given a
ONEwWAY CuUTs instance which admits a solution, if one relaxes the requirement so that the algo-
rithm can output a partition (A’, B’) of V(G) such that there are no arcs directed from A’ to B’
and ||A'|—|B’'|| < en where € = Q(@), the problem now becomes tractable, and they show a poly-
nomial time algorithm for ONEwAY CuTs. Madathil et al. [MSZ21] showed that the DIRECTED
BISECTION problem is FPT with respect to k, even when one requires |A| = |B| exactly, on a
subclass of directed graphs called semi-complete digraphs, which are the class of directed graphs
where for every pair of vertices uw and v, there is an arc from u to v or an arc from v to u. In
terms of approximation algorithms, Agarwal et al. [ACMMO05] showed an O(y/Iog n) approximation
for DIRECTED BALANCED SEPARATOR , the directed analogue of BALANCED SEPARATOR, while
Even et al. [ENRS99] showed an O(log k) approximation, which is the best known approximation
guarantee depending only on k.

However, there is no prior work on the fixed-parameter tractability of DIRECTED BALANCED
SEPARATOR or DIRECTED BISECTION for general k£ on general directed graphs, even when we relax
the requirement of finding a bisection to that of finding an approximate bisection, that is, find a
partition (A’, B") with |A’|,|B’| = Q(n) so that the number of arcs from A’ to B’ is at most k.

Our result makes the first progress on this problem. Before we state our results, we define
the DIRECTED BALANCED SEPARATOR problem formally. Since all our results work for both the
vertex and edge versions, we state them together as one problem. We adapt our definition from the
definition of BALANCED SEPARATOR in [FMO06], whose results we generalize. For completeness, we
recall the definition of BALANCED SEPARATOR in [FMO0G6].

BALANCED SEPARATOR Parameter: k,b
Input: Undirected graph G = (V, E)

Question: Is there a set of vertices (edges) F' with |F| < k, so that in G \ F, every
connected component has size at most bn?

DIRECTED BALANCED SEPARATOR Parameter: k,b
Input: Directed graph G = (V, E)

Question: Is there a set of vertices (arcs) F' with |F| < k, so that in G \ F, every
strongly connected component has size at most bn?

For the sake of clarity and comparison, we state the main result of [FM06]. Given an undirected



graph G, we say that a set of vertices/edges F' is a b-balanced separator if every connected component
of G\ F has size at most bn.

Theorem 1.5 ([FMO06]). Given an instance of BALANCED SEPARATOR with 2 < b < 1 there is

a randomized algorithm, that for any € > 0, runs in time 2O(k1°g(%)/62)(m +n) and with constant
probability outputs either (a) a set of vertices (edges) F' of size at most k such that every connected
component of G\ F' has size at most (b+ €)n or (b) concludes correctly that there is no b-balanced
separator of size at most k.

The following theorem, which directly generalizes the result of Theorem 1.5 is our main result.
Given a directed graph G, we say that a set of vertices/arcs F' is a b-balanced separator if every
strongly connected component (SCC) of G\ F has size at most bn.

Theorem 1.6. Given an instance of DIRECTED BALANCED SEPARATOR there is a randomized
algorithm, that for any € > 0, runs in time 90 (kmin{log 3 log k} lOg%/g)(m + n) and with constant
probability outputs either (a) a set of vertices (arcs) F' of size at most k such that every strongly
connected component of G\ F' has size at most (b+ €)n or (b) concludes correctly that there is no
b-balanced separator of size at most k.

We observe that our algorithm has a running time of 2O(klog(%)/€2)(m + n) for any b = Q(1),
matching the run-time of Theorem 1.5 for % < b < 1 while also extending to any parameter
b € (0,1). We also observe that Theorem 1.6 implies Theorem 1.5, since given any undirected graph
G, one can create a directed graph H on the same vertex set, so that for every edge {u,v} € E(G),
we have the two arcs (u,v), (v,u) € E(H) and we can apply Theorem 1.6 to obtain Theorem 1.5.

Our algorithm for DIRECTED BALANCED SEPARATOR can be used to solve (approximate) DI-
RECTED BISECTION as well. To see this, given a graph G, observe that in any bisection (A, B) so
that the number of arcs going from A to B is at most k, the set F' of these at most k arcs form
a %-balanced separator, so that in G\ F, every strongly connected component is of size at most
I Using Theorem 1.6 with b = 1, we can find a set of arcs F” with |F’| < k that forms a (5 + ¢)
balanced separator. Finally, note that the strongly connected components of the graph G'\ F’ form
a Directed Acyclic Graph (DAG), and each strongly connected component of G\ F’ has size at most
(% + ¢)n. It follows that there is a topological ordering {C7,Cs ... Cy} of these strongly connected
components of G\ F', such that there is no arc from C; to C; for 4,5 € [(] with j > i. Therefore
we can pick some prefix of strongly connected components in the topological ordering of G \ F” to
obtain a set A’, so that both [A'|,[V(G)\ A’| > (1 —2¢)%, and in G'\ F’, there are no arcs from
V(G)\ A’ to A'. Tt follows that the set of arcs F’ forms an (approximate) directed bisection. Note
that the approximation is only in the balance, not in the number of arcs cut.

Next, we show a O(y/logk) approximation for DIRECTED BALANCED SEPARATOR. This im-
proves both the O(y/logn) approximation of [ACMMAO5] and the O(log k) approximation given by
Even et al. [ENRS99] for approximating DIRECTED BALANCED SEPARATOR in polynomial time.

Theorem 1.7. There is an O(y/logk) approximation to DIRECTED BALANCED SEPARATOR in
polynomial time. Formally, given an instance of DIRECTED BALANCED SEPARATOR with b = Q(1),
suppose there is a set of vertices (arcs) F with |F| < k, so that every strongly connected component
of G\ F has at most bn vertices. Then there is a polynomial time randomized algorithm that with
constant probability finds a set of vertices (arcs) F' with |F'| < O(k+/logk) so that in G\ F', every
strongly connected component has size at most b'n for some b’ < 1 depending on b.

Note that for this theorem, we do not optimize b’, unlike our FPT result where we were able
to show that o' < b+ € for some suitably chosen e. Still, we remark that is not a limitation of our
framework, but inherent in [ACMMO5] due to the use of the ARV separation theorem [ARV09].



1.4 Vertex Cut Sparsifiers

Vertex sparsification is a fundamental problem in various settings. Broadly, given a graph and a
terminal set T', a vertex sparsifier is a smaller graph (with size typically depending only on |7T'|) that
preserves some (cut based) property of the terminals 7. Moitra [Moi09] first introduced a version
of vertex sparsification in undirected graphs. Chuzhoy [Chul2] generalized this notion by allowing
Steiner nodes in the sparsifier. Both these notions preserve edge cuts between bi-partitions of the
terminal set.

For our setting, we focus on directed graphs and vertex cuts. Given a directed graph G and
a set of terminals T along with an integer ¢, a (¢,T) vertex cut sparsifier for G is another graph
G’ with T C V(G’), so that for every partition {A, B} of T (so that AUB =T and AN B = (),
if the size of an A-B vertex min-cut is at most ¢ in G, then the size of an A-B vertex min-cut is
the same in both in G and G’. In other words, the goal is to find a vertex sparsifier that preserves
vertex min-cuts of size at most ¢ between sets of terminals. Here we allow the deletion of terminals
as well.

Kratsch and Wahlstrom [KW12, KW20] first studied this notion of vertex sparsification for
vertex cuts (without the parameter ¢) and showed that given G, T, there is a randomized polynomial
time algorithm that obtains a (|7, T') vertex sparsifier G’ for G with |V (G’)| < O(|T|?). This bound
was improved to O(|T|?) by [HLW?21] for the special case of directed acyclic graphs. Their algorithm
runs in linear time for fixed |T'|, but is still randomized as it needs to compute a representation of
gammoids.

One can then ask the question as to what is known about deterministic algorithms. Recently,
Misra et al. [MPRS20] showed that a representation of a gammoid with rank r over a ground set of
m elements can be constructed in time O(("") m®PM)) deterministic time. The technique of [KW12]
needs to compute a representation of a gammoid whose ground set has size n, the number of vertices
and rank |7'|, the number of terminals. We therefore obtain the following result.

Theorem 1.8 ([KW12], [MPRS20]). Given a n-vertex graph G and a terminal set T, there is a
deterministic algorithm that runs in time (9((&0710(1)) and computes a (|T|,T) vertex cut sparsifier

for G of size at most O(|T|3).

However, this algorithm (which is an XP algorithm in the notation of parameterized complexity)
can be easily improved to a (still deterministic) FPT algorithm. The reason for this is simple: there
are at most 2!T! partitions of the terminal set T. For each partition A U B, we can compute an
(A, B) directed min-vertex cut M. Note that this min-cut is of size at most |T|, since one can
simply delete all the terminals to obtain a cut. This gives a set X of 2/71. |T| vertices. It can now
be shown that we can apply the closure operation to the set V(G) \ X, where we simply delete
all vertices of V(G) \ X, and for each vertex pair (u,w) such that there are vertices (vy,vy) with
vy,v2 € V(G) \ X with (u,v1), (vg,w) € E(G) we add an arc (u,w). This results in a sparsifier of
size O(|T|2IT1). One can now set n = O(|T|2171) in Theorem 1.8 to obtain a sparsifer of size 2°(71%)
in time 2°071"). The total running time is 2T (m + n) + 20071

A similar line of research considers edge and vertex cuts in undirected graphs. For edge cuts
in undirected graphs, Chalermsook et al. [CDK*21] showed an upper bound of O(|T|c*) which
was later improved to O(|T'|c®) by Liu [Liu23]. Both these algorithms are randomized. Saranurak
and Yingchareonthawornchai [SY22] considered the vertex version in undirected graphs, and gave
a deterministic algorithm to compute a sparsifier of size O(|T[2°(*)) in time O(m!+o1)20(),

However, no improvement on the FPT algorithm with running time 2O(|T‘)(m +n)+ 20(T%)
based on Theorem 1.8 is known for deterministic algorithms for vertex cut sparsifiers in directed



graphs. We show the following result, which shows that if one is interested in preserving cuts of
size at most ¢, then a better deterministic algorithm is possible.

Theorem 1.9. Given a directed graph G, a set of terminals T and integer c, there is a deterministic
algorithm that runs in time O(Y(|T|,¢)- (m+n)) and computes a (¢, T) vertex sparsifier G' for G of
size at most Y(|T|, c), where (|T],c) = (|<€L) 2009 Additionally, G' satisfies T C V(G') C V(Q),
with the property that for every partition AUB of T and every subset X C V(G) with | X| < ¢, X is
an A-B important separator in G if and only if X C V(G') and X is an A-B important separator
in G'.

While the dependence on ¢ in the exponent for the size of the sparsifier seems undesirable, The-
orem 1.9 shows that the vertex sparsifier G’ constructed by our algorithm is more powerful: it
in-fact “preserves” all A-B important separators for any partition (A, B) of T. Additionally, if
one wants only a vertex sparsifier, we note that simply running the algorithm in Theorem 1.8
after applying our result in Theorem 1.9 gives a vertex sparsifier of size O(|T|?), but now the run-

o(c|TY)
ning time is (‘%') . Thus, together, we obtain a vertex cut sparsifier of size O(|T|?) in time

Oce|T
(11296 m +m) + (12) 7.

Corollary 1.10. Given a graph G and a terminal set T C V(G), there is a deterministic algorithm
O(clTY)

that runs in time (';;)‘C) 200 (m +n) + <|—:CF‘> and obtains a (¢, T) vertex cut sparisifer for G

with O(|T|3) vertices.

1.5 Techniques and Overview

In this section we give a high-level overview of our techniques. For the sake of simplicity and clarity
we sometimes omit small details in this section.

All-Subset Important separators: Our result on counting all-subset important separators is
obtained using the connection between important separators and closest sets. For simplicity, in this
overview, suppose that we are given a single source s and a set of target vertices T. Our goal in

this simplified setting shall be to bound the number of (s, B) important separators of size exactly
||
k+1
idea, we remark that our eventual goal will be to show that every (s, B) important separator of

size k for some B C T is an (s, B') important separator for some B’ C B with |B'| < (k+1)2. It

||
k+1)2

4% such (s, B') important separators of size k for a fixed choice of B’.

Fix B C T, and consider an (s, B) important separator X of size k. Consider the (vertex)
min-cut X’ between X and B*. If this min-cut X’ has size strictly less than |X| = k, X cannot
be important: X’ would allow more vertices to be reachable from s while having a size strictly less
than k. This means that X by itself must be a (X, B) min-cut. Using simple cut-flow duality, it
must be the case that there are | X| = k vertex disjoint paths from X to (some) vertices in B.

However, this flow property can be strengthened: it is easy to see that we can in fact assume
that every such important separator X is the (X, B) min-cut “closest” to B. (We say X is closest
to B if X is the unique (X, B) min-cut.) But it can be shown that closest sets have a stronger flow

k across all B C T, and we will show a weaker bound of 4% ( < )2). Before we describe the main

is easy to see that this suffices, since there are only ( < ) choices for B’, and there are at most

4Throughout this paper, we allow deletion of source and sink vertices in vertex cuts



property: we can now conclude that for every vertex v € X, there are k + 1 paths from X to B,
which are vertex disjoint except that two of these paths both start at v (Lemma 2.2).

Why does this help? Fix a v € X, and fix the k£ + 1 paths from X to B. Suppose the k + 1
endpoints of these paths are B C B. Consider any set of vertices X’ that is a (s, B}) separator
of size < k that is “closer” to B} than X. (Here “closer” means that the set of vertices reachable
from s in G\ X’ is a superset of that in G\ X). Then X’ must delete v! For if not, since there are
k + 1 paths from X to B which are vertex disjoint except 2 paths which begin at v, and | X'| < k,
X' cannot be a (s, B) separator.

Applying the above argument for every v € X and letting B’ := U,ecx B;; allows us to conclude
that there is no (s, B") separator X’ that is closer to B’ than X. Thus, in fact, among all the sets
of size at most k separating s from B’, X is a set which is closest to B’. This means X must be an
important (s, B') separator. But |B’| = | Uyex B < k(k+ 1) < (k + 1)?, and hence we are done.
Our actual result uses a slightly more subtle argument using augmenting paths to obtain such a B’
with |B’| < 2k.

Here we remark that Lemma 4.10 of Lokshtanov et al. [LRS'25] showed a similar result: it
claims that there is a set B’ C B with |B’| < k + 1 such that any (s, B) important separator is an
(s, B) important separator. However, there is a gap in the proof which leads to an unavoidable
factor of 2 loss. Indeed, as we show in Lemma A.1, there is a graph G, source vertex s € V(G) and
B C V(G) for which |B’| = 2k is necessary, and hence our result is tight. Our high-level idea is
flow-based, similar to [LRST25]. But as described above, the direct application of this flow-based
idea gives a bound of k(k+ 1), which we refine using an augmenting path based argument to obtain
the tight bound of 2k.

Detection sets and Sample sets for Directed Graphs: To obtain detection sets and sample
sets for directed graphs, on a high level, we follow the approach of Feige and Mahdian [FMO0G6].
We focus on sample sets in this brief overview. First, we consider the family of sets that arise as
a strongly connected component after deleting an arbitrary k vertices in the given digraph. Our
key contribution is to show that this family has VC-dimension O(k). Using the standard results
on e-samples, similar to that in [FMO06], it then follows that a random set of (’)(Eﬁ2 log %) vertices
is a sample set with constant probability. Thus the question becomes: how can we bound the
VC-dimension of the family of sets S formed by strongly connected components after deleting some
k vertices? We note that the techniques in [FMO06] to bound the VC-dimension do not extend
to directed graphs, and hence a different approach is needed. We accomplish this by showing a
connection to our result on all-subset important separators.

Recall the definition of VC-dimension: given a set family S on a universe U, the VC-dimension
is the size of the largest set U’ C U shattered by S. Here U’ is shattered by S if for every subset
U"” C U’ there exists an S € S with [U'NS| = U”. Thus to prove a bound of O(k) for VC-dimension
for our case, it is enough to show that there exists some constant ¢ so that any set of terminals
T C V(G) with |T| > ck cannot be shattered by the set family S which consists of the strongly
connected components C' in G \ F across all sets F' C V(G) with |F| < k. Fix any T of size > ck
for large enough ¢ which we choose later. For the sake of contradiction, assume that the set T' can
be shattered. Fix a “pattern” P C T, P # (). Since T can be shattered by S, there exists a set F'
of at most k vertices, so that in G \ F, there is a strongly connected component C' that satisfies
CNT = P. Fix some terminal ¢ € P. Then it must be the case that P is the exact set of terminals
that can both reach ¢ and can be reached from ¢ in G \ F. Equivalently, it is the exact set of
terminals that can be reached from ¢ in both G\ F' and GF\ F, where G¥ is obtained by reversing
every arc of G. This motivates us to define Reach(t) for each ¢ € T, the collection of subsets of



terminals that can be reached from ¢ after deleting a set I’ of size at most k. Formally,

Reach(t) = {@Q C T |there exists F' C V(G), |F| < k such that @ is reachable from ¢t
while 7"\ @ is unreachable from ¢t in G \ F'}

If we can bound |Reach(t)| for any graph by a function B(|T|, k), then applying this result twice,
once on G and once on G, will bound the number of such patterns P with ¢ € P by (B(|T|, k))>.
Then a simple union bound over all ¢ € T will give that the number of patterns P C T is at most
|T|B(|T)|, k))?. If this is less than 2|71 whenever |T| > ck, then we have a contradiction to the fact
that 7" can be shattered. Thus the key question is to obtain B(|T|, k), a good bound on |Reach(t)|.

We do this as follows. Suppose T" € Reach(t) some 77 C T'. Then there exists a set F of at most
k vertices after whose deletion the set of reachable terminals from ¢ is exactly T'. We then show
that there is a (¢t,7 \ T") important separator X of size at most k whose deletion gives the same
reachability set T” as that after deleting F. But now using our bound on important separators,
we can show that B(|T|,k) < 4%( 7] ). It is then easy to see that |T|B(|T|,k)* < 2171 whenever

<2k
|T'| > ck for some large enough (absolute) constant c.

FPT algorithm for Directed Balanced Separators: To obtain the algorithm for DIRECTED
BALANCED SEPARATOR, we follow the approach of [FMO06] in the undirected case. For simplicity,
in this overview, we work with vertex separators, assume that b = %, and we will only return a
b = (3 + 2¢)-balanced separator (as opposed to the (b+ €) balance guaranteed in our result). We
are given that there is a set of vertices F' with |F'| < k, so that every strongly connected component

1
of G\ F has at most %n vertices. We first compute an (e, k) sample set T of size O <k1:§ 5) using

our result on sample sets, Theorem 1.4. Since T is a sample set, each SCC of G \ F' has at most
(% + €)|T'| terminals. We will try to find a set of vertices F’ such that |F’| < k and every SCC of
G\ F’ has at most (2 + €)|T'| terminals. The property of sample sets will then again imply that F’
is a (2 + 2¢)-balanced separator.

Consider the toplogical ordering C1,C5 ... Cy of the SCC’s of G\ F', so that there is no arc from
Cj to C; for 1,5 € [¢] with j > i. Consider the smallest index ¢* so that the union L = Ui;l C;
contains at least (1 —€)|T| terminals. Since no component contains more than (3 +€)|7'| terminals,
it follows that L contains at most %]T | terminals. Also, by definition, V(G) \ L contains at most
(2 4 €)|T| terminals.

The algorithm proceeds as follows. First, guess TN L and TN (V(G) \ L). This can be done

klog%

S . klog . .
in time 2 ( < ) since |T| = O ( :§ < > Next, we compute a directed min-vertex cut between

TN(V(G)\L)and TNL. Since F' is a vertex cut between these sets of size at most &, this min-cut
F’ must be of size at most k as well. But then the set of vertices F” is a (% + €)-balanced separator
with respect to the set T'. Using the property of sample sets, it follows that F’ is a (% +2¢)-balanced
separator in G.

In order to make the loss in the balance factor only an additive O(€) we need a slightly more
sophisticated argument. We accomplish this using a reduction to the SKEW SEPARATOR problem,
where we are given pairs (s;,;),4 € [¢], and the goal is to separate s; from all ¢;, j < i, for each
i, by deleting minimum number of vertices. This problem, which is a special case of DIRECTED
MULTICUT, was first defined by [CLLT08] in their FPT algorithm for DIRECTED FEEDBACK ARC
SET.

Approximation algorithm for Directed Balanced Separators: Our O(y/log k) approxima-
tion algorithm proceeds similar to the FPT algorithm. The only key technical difference is that to



compute a balanced separator with respect to the terminal set, we cannot guess where the terminals
of the sample set are (this requires FPT time); instead we use the algorithm of [ACMMO05] to obtain
a balanced separator with respect to the sample set. While the algorithm of [ACMMO5] has an
approximation ratio of O(y/logn), when we need a balanced separator with respect to a terminal
set T, this algorithm can be made to work with an approximation ratio of O(y/log|T’|). On a high
level, the reason is quite simple: the structure theorem of Arora, Rao and Vazirani [ARV09] is a
statement about vectors. As long as we apply the structure theorem to only |T'| vectors, we get an

approximation ratio of O(y/log |T'|).

Vertex Sparsifiers: Our result on vertex sparsifiers is similar in spirit to the result by Kratsch
and Wahlstrom [KW12] and proceeds by identifying irrelevant vertices. However instead of using
techniques based on matroids, we use our result on all-subsets important separators. Given a
terminal set T', we are interested in preserving cuts across partitions of the terminal set of size
up to c. We will define an irrelevant vertex as a vertex that is (a) not in 7" and (b) not in any
A-B important separator of size < ¢ for any partition A U B of T. By our result on all-subsets

important separators, we can bound the number of relevant (non-irrelevant) vertices by ( ‘<731|c) 20(c)

and identify this set in time ( ‘<1;>|c) 200 (m + n). Thus at least |V (G)| — |T| — ( ‘<1;>|c) 20(9) vertices
are irrelevant. Let I be the set of irrelevant vertices. We now apply the standard operation of
“closing” the irrelevant vertices I, which is to delete each v € I, and for every pair (w,y) where w
is an in-neighbour of v; and y is an out-neighbour of vy for some vy, vy € I, to add the arc (w,y).
This operation is the vertex equivalent of edge contraction. The key observation here is that the
closure operation can be applied to the entire set I at once as opposed to applying it to one vertex
of I and restarting the whole algorithm. This helps us achieve a linear-time algorithm. Thus we

obtain another graph G’ with V(G’) C V(G), where |V(G')| < |[V(G) \ I| < (5‘0) 20(c)

2 All-Subsets Important Separators

The goal of this section is to prove our result on all-subsets important separators.

Theorem 1.1 (All Subsets Important Separators). Let G be a digraph, k be a positive integer and

let S CV(G) and T C V(G) be disjoint sets of source and sink vertices. Then there are at most
B(S|,|T|, k) = 4* (f]l) (<|€L) A-B important separators of size < k across all A C S and B C T.
Further, they can be enumerated in time O(B(|S|,|T|, k) - k- (m +n)).

As described in the introduction, our proof proceeds by capturing the relationship between
important separators and closest sets. We then use well-known connectivity properties of closest
sets to obtain our result.

Definition 2.1 (Closest set). For sets of vertices X, T C V(G), X is closest to T if X is the
unique verter mincut between X and T.

We use the following well-known fact about closest cuts.

Lemma 2.2 (Lemma 18 of [HLW21]). X is closest to T if and only if for each vertex v € X, there
are | X |+ 1 paths from X to T that are vertez-disjoint except at v, which appears in exactly two of
these paths.

Definition 2.3 (Minimal separators). Given X,S,T C V(G) such that SNT =0, X is called an
S-T (inclusion-wise) minimal separator if in G\ X, there is no path from any s € S to anyt € T,
and further, for every v € X, there is a path between some s € S andt € T in G\ (X \ {v}).
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Definition 2.4. Given X,S C V(G), the reachability set of the source vertices S after removing X,
that is, the set of all vertices v reachable from some vertex of S via a directed path after removing
X, is denoted by RY(X).

Definition 2.5. Given X, S, T C V(G) with SNT =0, a minimal S-T separator X is called an
S-T important separator if for every S-T separator X' C V(G) with |X'| < |X|, R§(X') D R§(X)
does not hold.

We will drop the subscript or the superscript in Rg(X ) when the graph or the set of source
vertices is clear from the context.

Informally, the idea of important separators is similar to that of a closest set: they are separators
which cannot be pushed “closer” to the sink, without increasing the cut-size. The next lemma
captures this relationship formally.

Lemma 2.6. Given X,S,T C V(G), X is an important S-T separator if and only if (a) X is a
minimal S-T separator and (b) X is closest to T.

Proof. Notice that by definition, any important S-T" separator must be a minimal S-T" separator.
First, suppose to the contrary that X is an important S-T' separator but X is not closest to T'. Let
Y be a vertex min-cut between X and T with Y # X. Since X is not closest to T', such a Y indeed
does exist. Clearly, |Y| < |X|. We claim that R(X) C R(Y), which will contradict that X is an
important separator. First, let us show that R(X) C R(Y'). Suppose for some vertex v, v € R(X)
but v ¢ R(Y). Since Y is a min-cut, there are vertex disjoint paths between each vertex y € Y
and some vertex t(y) € T such that no internal vertex of these paths is from X. Consider a path
P from some vertex s € S to v in G\ X. There must be such a path, since v € R(X). Let y be a
vertex of Y on this path: there has to be such a vertex y since v ¢ R(Y). Then y is reachable from
sin G\ X. Also, there is a path from y to ¢(y) which does not contain any vertex of X. It follows
that there is a path from s to t(y) in G \ X, which is a contradiction since X is an S-T separator.
Since X is a minimal S-T" separator and Y # X it follows that there exists a v € X N R(Y'), and
hence R(X) C R(Y).

Next, suppose that X is both closest to T" and is also a minimal S-T separator. Assume for the
sake of contradiction that X is not important. Since X is not important, there is another separator
X' with | X’| < |X| which is a minimal S — T separator, and further R(X) C R(X'). Since X’ # X,
there exists a v € X N (V(G) \ X’). By Lemma 2.2, for every vertex v € X there exists a collection
of | X|+ 1 paths from X to T which are vertex disjoint except at v, which appears twice. Since X’
does not delete v, it follows that there is at least one such path P from some vertex z € X to some
vertex t € T' which survives in G\ X’. We next show that there must be a path from some vertex
of S to x in G\ X’ and this will imply a path from S to ¢ in G\ X', a contradiction.

Consider any path from some vertex s € S to z, all of whose internal vertices are not in X.
Such a path must exist, for otherwise X will not be a minimal S-T separator since X \ {z} will
also be an S-T separator. Every internal vertex on this path is reachable from s in G\ X. But
R(X) C R(X'), which means every internal vertex on this path is reachable from s in G \ X’ as
well. This in turn means that there is a path from s to z in G \ X', a contradiction. ]

Lemma 2.7 (Theorem 8.51 of [CFK15]). Given a digraph G and two disjoint sets A, B C V(G),
there are at most 4% A-B important separators of size < k.

Equipped with these results, we are now ready to prove our main theorem in this section which
bounds the number of important separators between across all subsets A C S and B CT.
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Theorem 1.1 (All Subsets Important Separators). Let G be a digraph, k be a positive integer and
let S CV(G) and T C V(G) be disjoint sets of source and sink vertices. Then there are at most

B(S|,|T|, k) = 4* (f,l) (<|:,21D A-B important separators of size < k across all A C S and B C T.

Further, they can be enumerated in time O(B(|S|,|T|, k) - k? - (m + n)).

Proof. Let X be an important A-B separator for some A C S and B C T with | X| < k. We will
show that S is also an A*-B* important separator for some A* C S and B* C T with |A*| < k and
|B*| < 2k.

By Lemma 2.6, it must be the case that X is closest to B. Also, there are vertex disjoint paths
from each vertex z of X to some vertex t(x) of B. Also, we know that for every v there exists
|X |+ 1 disjoint paths from X to B which are vertex disjoint except at v which appears twice.

Consider the vertex-flow network H obtained by adding a super-source s* and a super-sink ¢*.
We add outgoing arcs from s* to each vertex of X, and incoming arcs to t* from each vertex of
B. The capacity of each vertex is 1. Let f be the (maximum) flow corresponding to any set of
| X| vertex disjoint paths between X and B, and let the endpoints of these paths in B be the set
Y. Now we do the following operation for each vertex v. Consider the modified flow network H,
obtained from H where the underlying graph is same, but the vertex capacity of v is raised to 2.
f is not a maximum flow in H,, since there exists |X| + 1 paths from X to B which are vertex
disjoint except at v which appears in two of these paths. Thus, there is an augmenting path for f
in H,. We augment the flow f along this augmenting path to obtain a new flow f,. The new flow
has one additional endpoint in B, so that the endpoints of the paths of this new flow f, are either
in Y or at the newly added vertex u € B\ Y. Let us denote by Y, the set of the new endpoints.

Let B* = |J,cx Yu. Notice that |B*| < 2k, since each Y, = Y U {u} for some vertex u for each
v € X. Also since X is minimal, there must exist paths P, for each v € X from some vertex s(v)
of A to v which do not contain any other vertex of X. Let A* = J,cx s(v). We now claim that X
is also an important A* — B* separator.

First, observe that X must be a minimal A*-B* separator: there exists a path from some vertex
of A* to each vertex v € X containing no other vertex of X, and similarly there exists a path from
each vertex v of X to some vertex in Y C B* containing no other vertex of X. Now suppose that
X is not an A*-B* important separator. Then there exists another A*-B* minimal separator X’
with | X'| < |X| with R(X’) D R(X). Since X' # X, there exists a vertex v € X N (V(G) \ X').
Consider the set Y, and the set of | X| + 1 paths from X to Y, which are vertex disjoint except at
v, which appears twice. Since X’ does not delete v, at least one of these paths from some vertex
x € X tot €Y, survives in G\ X’. By construction, there is a path P from some vertex s € A*
to z € X, whose every internal vertex is not in X. Since every internal vertex of P is in R(X), it
must also be in R(X’). It follows that there is a path from s to z in G\ X’. Appending this to
the path from x to ¢t we obtain a path from s to ¢ in G \ X', contradicting the fact that X’ is an
A*-B* separator.

Finally, it is clear that the number of A*-B* important separators where A* C S and B* C T
with |A*| < k and |B*| < 2k is at most 4F times the number of ways of choosing A* and B*,
and hence is at most 4% (f,l) ( <|:g‘k) Furthermore, once we fix A* and B*, all the important A*-B*

separators of size < k can be enumerated in time O(4%-k2-(m+n)), see Theorem 8.51 of [CFK*15].
The set of all subsets of A of size at most k and the set of all subsets of B of size at most k can be
enumerated in time (’)(k('*,j ‘)) and (’)(k:('ﬂ)) respectively. This completes the proof. O
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3 Detection Sets and Sample Sets in Directed Graphs

The goal of this section is to prove our result on detection sets and sample sets in directed graphs.
The following theorems are our main results in this section.

Theorem 1.3. For any directed graph G, given parameters € € (0,1) and k € N, there is an
absolute constant ¢ such that there is an (€,k) detection set of size f(k,e) = c% log%. Further, a
random set of f(k,e€) vertices must be an (e, k) detection set with probability at least %

Theorem 1.4. For any directed graph G, given parameters € € (0,1) and k € N, there is an
absolute constant c¢ such that there is an (e, k) sample set of size f(k,e) = CE% log%. Further, a
random set of f(k,e€) vertices must be an (e, k) sample with probability at least %

We start by defining a notion of (e, k) nets and recalling the definitions for (¢, k) detection sets
and (e, k) sample sets from the overview. These definitions naturally extend those in [FMO06] for
undirected graphs.

Definition 3.1 (Net). Given a directed graph G, an (€, k) net is a set of terminals T C V(G) sat-
isfying the following property: for every set of vertices F' with |F| < k, the following two conditions
are met:

1. For every SCC C of G\ F with |C| > en we have
IcCNT| > 1.

2. Let C* be the union of all except one SCC in G \ F such that |C*| > en, then we have
|C*NT| > 1.

Definition 3.2 (Detection Set). Given a directed graph G, an (e,k) detection set is a set of
terminals T C V(G) satisfying the following property: for every set of vertices F' with |F| < k such
that V(G \ F) can be partitioned into (A, B) with |A|,|B| > en and there are no arcs from B to A,
there exists t1,to € T such that there is no t1-ty path in G\ F'.

Definition 3.3 (Sample Set). Given a directed graph G, an (e, k) sample set is a set of terminals
T C V(G) satisfying the following property: for every set of vertices F with |F| < k, and every
SCC C of G\ F, we have

icnT| |C]

<
T n |

We note that these definitions are almost identical to the one in [FMO06], with the only difference
being that we deal with directed graphs and strongly connected components in lieu of undirected
graphs and connected components. Before proving the main results of this section, we show that
(e, k)-nets are also (e, k)-detection sets. The proof is similar to that in undirected graphs.

Lemma 3.4. Every (e, k)-net is also an (e, k) detection set.

Proof. Let T be an (e, k)-net for G. Consider a set of vertices F' of size at most k, so that V(G \ F)
admits a partition A, B with |A|,|B| > en such that there are no arcs from B to A. Consider an
SCC C of G\ F, and let C' be the union of all SCC’s of G \ F except C. Then clearly |C'| > en,
hence there exists a terminal t; € C'NT. Let Cy, be the SCC of G'\ F containing ¢;. Now consider
C” which is the union of all SCC’s of G \ F except Cy,. Again |C”| > en, therefore there is a
terminal to € C” NT. But clearly ¢; and ¢, lie in different SCC’s of G \ F, which means there is
either no t1-t2 path or no to-t; path in G \ F, hence satisfying our detection set property. O
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Thus we henceforth focus on obtaining (e, k)-nets and samples.
First, we observe that showing a VC-dimension bound directly implies (e, k) samples. This is
similar to the approach in [FMO06]. We start with a few definitions.

Definition 3.5 (Shattering a set of elements). Suppose we are given a set system (S,U) consisting
of a family of sets S, where each set in S consists of elements from a universe U. We say that
a subset W C U is shattered by S, if for every subset Y C W, there exists a set S € S so that
SNWw =Y.

Definition 3.6 (VC-dimension). Given a set system (S,U), its VC-dimension is the size of the
largest subset W C U that can be shattered by S.

Theorem 3.7 (e-net theorem, see [FMOG]). Let (S,U) be a set system with VC-dimension d, and
universe size \U| = n. Then for every ¢ > 0, there exists an absolute constant ¢ such that a
random subset T C U of size cd% log% s an e-net with probability at least % Concretely, T satisfies
|ISNT| >1 for every S € S satisfying |S| > en with probability at least %

Theorem 3.8 (e-sample theorem, see [FMO06]). Let (S,U) be a set system with VC-dimension d,
and universe size [U| = n. Then for every ¢ > 0, there exists an absolute constant ¢ such that a
random subset T C U of size cdei2 log% 18 an e-sample with probability at least % Concretely, T

‘% — %‘ < € for every S € § with probability at least %

satisfies

Let S be the family of sets consisting of all possible sets C' which are either (a) a strongly
connected component after deleting some vertex set F' of size at most k or (b) the union of all
but one strongly connected components after deleting some vertex set F' of size at most k. Then
it suffices to prove a VC-dimension bound of O(k) for this family of sets with the universe as the
vertex set - this would then directly imply Theorems 1.3 and 1.4 using Theorems 3.7 and 3.8. Thus
we will henceforth focus on upper-bounding the VC-dimension of the set system S.

Towards this, we consider a slightly different problem of reachability from a single source after
deleting k vertices.

Definition 3.9 (Single source reachability profile). Given a graph G, a source vertex s and a set of
sink vertices T' with s ¢ T', we define the single source reachability profile of s as Reachk(s,T’) =
{R%;}(F) NT' | F CV(G),|F| <k} In other words, Reach® (s, T") is the collection of subsets of T'
reachable from s after deleting some set of at most k vertices from G.

The next theorem bounds the size of Reach” (s, T").

Theorem 3.10. Given a graph G, source vertex s and sink vertices T', |Reach® (s, T")| < 4* (E;,L)

We prove Theorem 3.10 using our result on all-subset important separators, Theorem 1.1. We
do this as follows. Given s and 7", suppose there exists a set X of k vertices so that P C T” is the
subset of T” reachable from s in G\ X. Then in the following lemma, Lemma 3.11, we show that
there is in fact an s-(7"\ P) important separator X' of size < k, so that the subset of 7" reachable
from s in G\ X remains P. The bound on all-subset important separators will then imply the
bound on the reachability profile.

Lemma 3.11. Suppose there exists a set X of < k wvertices so that P C T’ is the subset of T'
reachable from s in G\ X. Then there is an s-(T"\ P) important separator X' of size < k, so that
the subset of T' reachable from s in G\ X remains P.
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Proof. Without loss of generality, we assume that X is a minimal s — (7" P) separator (otherwise
we consider the subset of X that is minimal, this still has the same reachability set P). Let X’ be
the vertex mincut between X and 7"\ P that is closest to 7"\ P. We have |X'| < |X| since X itself
is a vertex cut between X and 7"\ P.

We show that the reachability profile after removing X’ is also P. In other words, a vertex
t € T is reachable from s after removing X iff it is reachable after removing X’.

Consider some sink vertex t € T" \ P, so that ¢ is not reachable after removing X. Then, every
s—t path contains a vertex in X. Since X’ is a cut between X and 7"\ P, this path must also
contain a vertex in X’. This proves one direction.

Suppose that some vertex ¢t € T’ is not reachable after removing X’. Then, every s—t path
contains a vertex in X’. Suppose for contradiction that some s—t path does not contain a vertex
in X. Consider the prefix of the path leading to a vertex v in X’. Append to it a path from v to
T\ P that only contains one vertex in X’ (at the start) and no vertex of X. Such a path must
exist since X’ is a min-cut between X and 7"\ P. The result is a path from s to T'\ P that does
not contain a vertex in X. This contradicts the set P being the reachability profile after removing
X.

Finally, we show that X’ is an important s-(7" \ P) separator. By Lemma 2.6 it is enough to
show that X’ is closest to 7"\ P and that X’ is a minimal s-(7" \ P) separator. It follows from
the construction of X’ that X’ must be closest to 7"\ P. Thus it is enough to show that X’ is a
minimal s-(7"\ P) separator. Since X' is a min-cut between X and 7"\ P, for every vertex z’ € X',
there exists a path @) from some vertex 2 € X to some vertex ¢t € 7"\ P through 2’ that does not
contain any other vertex of X’. Since X is a minimal s-(7"\ P) separator, there is a path P’ from s
to each vertex x € X that does not include any other vertex from X. Further P’ does not contain
any vertex from X': if it contains some vertex y' € X', it must be the case that ¢y’ ¢ X. Then it
follows that there is a path from s to ' in G\ X. Since X’ is a min-cut between X and 7"\ P, there
is a path from each vertex of X’ to some vertex of 7"\ P that does not have any internal vertex
from X. In particular, there is a path from 3’ to some vertex of 77\ P which does not include any
vertex of X. This path, when appended to the path from s to ¢’ in G\ X, results in a path from
s to some vertex of 7"\ P which does not contain any vertex of X, which in turn contradicts the
fact that X is a cut between s and 7"\ P. Finally, appending P’ with @ gives a path from s to
t € T\ P that contains 2/, while containing no other vertex of X’. Since such a path exists for any
' € X', it follows that X’ is minimal, and hence X’ is an important s-7”\ P separator. O

Proof of Theorem 3.10. Suppose P € Reachk(s, T"). Lemma 3.11 implies that there is an important
s-(T"\ P) separator X so that the reachability set of s in G\ X is exactly P C T". Using Theorem 1.1

the number of such important separators is at most 4% (E;,L), and hence the number of such P is at
k(IT'| -
most 4 ( gzk)' O

Next, we show why Theorem 3.10 implies a VC-dimension bound.

Theorem 3.12. Let S be the family of sets over consisting of all possible sets C' which are either
(a) a strongly connected component after deleting some vertex set F of size at most k or (b) the
union of all but one strongly connected components after deleting some vertex set F' of size at most
k. Then the VC-dimension of S is O(k).

Proof. From the definition of VC-dimension, it is enough to show that there no set of size > dk
that can be shattered, for some constant d. Suppose a set of terminals T" can be shattered. We will
show that |T'| = O(k).
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Consider some P C T, with P # (), and suppose that after deleting some subset F' of vertices
of size at most k, some strongly connected component C' of G \ F satisfies C N T = P. Fix any
s€CNT,andlet T" = T\ {s}. Let G® denote the graph G with arcs reversed. Then by definition
of an SCC, P\ s is the exact subset of 7" reachable from s in both G \ F and G®\ F. But this
means P\ s = Py N P, for some P, € Reach¢(s,T") and P, € Reachf,x(s, T).

Together, we obtain that if P C T is C' NT for some SCC C after deleting some k vertices,
there must exist a vertex s € P such that P\ {s} = P, N P, for some P; € Reach% (s, T\ {s}) and
P, e Reach'g,R(s, T\ {s}). But then the number of choices for P is at most |T'|(4* (<‘T2L))2

Alternatively, suppose that P = C' N'T where C’ is the union of all but one strongly connected
component, say C*, after deleting some set F' of k vertices. Suppose P # T, so that C* N'T # ().
Consider some s’ € C*NT. Then it follows that (T'\ P)\ {s'} = Q1N Q2 where Q; € Reachf(s', T\
{§'}) and Q9 € Reacth(s’,T \ {s'}). But then the number of choices for 7'\ P is at most

T (4% ( gL))z, and hence the number of choices for P is at most |T|(4%( <‘€L))2
o ((4k (1T

Thus the total number of choices for P across both cases is at most 2|T(4%( Ly, ))?+2 (accounting
for P = () in the first case, and P = T in the second) which is not less than 2!”! only when |T| = O(k),
finishing the proof. U

4 FPT Algorithm for Finding Directed Balanced Separators

The goal of this section is to prove our result on DIRECTED BALANCED SEPARATOR.

Theorem 1.6. Given an instance of DIRECTED BALANCED SEPARATOR there is a randomized
algorithm, that for any € > 0, runs in time 90 (kmin{log 3 ,log k} log%/52)(m + n) and with constant
probability outputs either (a) a set of vertices (arcs) F' of size at most k such that every strongly
connected component of G\ F' has size at most (b+ €)n or (b) concludes correctly that there is no
b-balanced separator of size at most k.

We will crucially exploit our results on sample sets, Theorem 1.4. We will also need the following
result, which is about computing skew separators. The SKEW SEPARATOR problem is a special
case of DIRECTED MULTICUT.

Definition 4.1 (SKEW SEPARATOR [CLLT08]). Given a directed graph G and a set of £ terminal
pairs {(si,ti) Yicjq) and an integer k, find a set of vertices F' of size at most k, so that G\ F has no
s; —t; path fori>j, i,j € [{].°

The analagous edge version, SKEW EDGE SEPARATOR can be defined similarly.

Theorem 4.2 (Extension of Theorem 8.41 of [CFK*15]). SKEW SEPARATOR and SKEW EDGE
SEPARATOR admit FPT algorithms running in time O(4F - k3 - (n 4+ m)).

Proof. Theorem 8.41 of [CFK™15] is for the edge version SKEW EDGE SEPARATOR. For the sake
of completeness, we reduce the vertex version to the edge version. The reduction is standard and
as follows.

Given an instance of SKEW SEPARATOR, we create an instance of SKEW EDGE SEPARATOR.
Define graph G’ as follows. For each vertex v € V(G), create two vertices v;, and vy, in V(G').
For every edge {u,v} € E(G), add an edge between uy,; and v;;, in E(G’). Finally, add an edge wu;,
t0 Upyt to E(G') for each u € V(G). The instance of SKEW EDGE SEPARATOR is then the graph
G’, the integer k and the set of pairs (s;,, ,t;,,,) for each i € [£].

®Again, we note that we can delete terminals as well to form the solution.
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We claim that there for any integer k', there is a solution to SKEW SEPARATOR of size at most
k' in G iff there is a solution to SKEW EDGE SEPARATOR of size at most k&’ in G’. First we prove
the forward direction. Let X be a set of vertices that forms a solution to the SKEW SEPARATOR
instance. Then clearly by our construction, the set of edges (%, Tout) for x € X forms a solution
to the SKEW EDGE SEPARATOR instance.

For the backward direction, let X’ be a set of edges that forms a solution in G’. If an edge in
X' is of the form (yout, Tin), we replace it by the edge (Yout, Yin), S0 that now every edge in X' is
of the form (Yout, Yin). Then let Y = {y | (Yin,Yout) € X'}. Clearly, |Y| < k, and Y must form a
solution in G for the SKEW SEPARATOR instance. O

Lemma 4.3. Let T be an (e, k) sample set. Suppose that the DIRECTED BALANCED SEPARATOR
instance is a YES-instance, so that there exists a set of vertices (arcs) F with |F| < k whose
deletion leaves every strongly connected component with at most bn wvertices. Then one can in
(’)(20(|T‘mm{log%’logm})m) time, find a set of vertices (arcs) F' with |F'| < k so that there is a
partition (X,Y) of G\ F' such that every SCC of G\ F' has size at most (b+ O(¢))n.

Proof. Broadly, our goal is to obtain a set of vertices (arcs) F’ with |F’| < k, so that in G\ F’,
every strongly connected component does not have more than (b+ €)|T’| terminals. The sample set
property would then imply that every strongly connected component of G\ F’ would have size at
most (b + 2€)n.

We proceed as follows. Let C be a strongly connected component of G\ F'. Then by the sample
set property, we must have |%|C’ NT| —|C|| < en, which in turn means that |C NT| < (b +¢€)|T|.
Consider the strongly connected components of G\ F.. They form a DAG. We sort this DAG in the
topological order - let (C1,C>...C}) be the ordering of strongly connected components such that
there is no arc from C; to C; whenever j > i, for 7,5 € [£].

e Case 1: We assume that log 7 < log |T'|. Partition the indices {1,2...¢} into t < } intervals
(s, ri];‘f:l as follows. Let [; := 1. For each 4, r; is defined as the smallest integer greater than
or equal to [; for which U;Z:ll C; contains at least b|T’| terminals. If no such integer exists,
then r; := ¢ and we set t :=i. If r; # £ we set l;11 := r; + 1 and continue.

For each terminal ¢t € T, we guess if ¢t € F', and if not, we guess i such that t € U;Z:lz C;. We
also guess if t € C;,. All these guesses together take time 90(Tllog 3)

We now create a SKEW SEPARATOR (SKEW EDGE SEPARATOR) instance as follows. Let T3 =
(Ui, C)\Cr,)NT and Tjp = Cp, NT for each i € [¢]. Observe that by construction, for any
i € [¢], both T}; and T;2 have at most (b+€)|T'| terminals. Next, contract T;; into a single vertex
ti1, and contract T;o into a single vertex t;o. Let GC denote the contracted graph. The instance
of SKEW SEPARATOR is the graph GC and the pairs {(t117 t12), (tlg, t21), (tgl, t22) o (tgl, tgg)}.
(If some T;; = (), we replace the pairs (t;—1.2,ti1), (ti1, ti2) by the single pair (t;_12,t2), we
omit this detail.)

SKEW SEPARATOR (SKEW EDGE SEPARATOR) then returns a set of vertices (arcs) F’ with
|F'| < k, so that in G \ F’, there is no path from t.,4, — tc,d, Whenever ¢y < ¢; or when
co = ¢1 and dy < dy, for ¢1,c0 € [f] and dy,dy € {1,2}. In particular, this means that no
strongly connected component of G\ F’ has more than (b + €)|T| terminals, since for any
c€ [f] and d € {1,2}, |Teq| < (b+ €)|T.

e Case 2: We now consider the case log > log [T, so that |T'| < $. Observe that in the above
analysis, the number of indices i satisfying C; N'T # 0 is at most |T'|. We guess the ordered
partition (Wi, Wa...W,,) of T'\ F’, where p < |T, such that for each j € [p], W; =C;NT
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where C; is the j* component in (Cy,Cy...Cy) satisfying C; N'T # (). In other words, we
guess the ordered partition of the terminal set induced by the strongly connected components
(C1,Cy...Cy) of G\ F. This can be accomplished in time |T'|IT1 = 2/T1og[T],

We now create a SKEW SEPARATOR (SKEW EDGE SEPARATOR) instance as follows. For each
J € [p], contract W; into a single vertex w;. Let H ¢ denote the contracted graph. The instance
of SKEW SEPARATOR is the graph H® and the pairs { (w1, ws), (w2, w3), (w3, ws) ... (wy_1,wp)}.

SKEW SEPARATOR (SKEW EDGE SEPARATOR) then returns a set of vertices (arcs) F’ with
|F'| < k, so that in G\ F”, there is no path from w., — w., whenever ¢2 < ¢;. In particular,
this means that no strongly connected component of G\ F’ has more than (b+€)|T| terminals,
since for any c € [p], |We| < (b+ €)|T.

Finally, by the property of (e, k) sample sets (Definition 3.3), in either case, it follows that since
any strongly connected component of G\ F’ has at most (b+ €)|T| terminals, it must have at most
(b+ 2¢)n vertices. Note that though the statement of Definition 3.3 only deals with the case when
F' is a set of vertices, we have the simple observation that if F” is a set of arcs and C is a strongly
connected component after deleting F’, it is also a strongly connected component after deleting the
endpoints of these arcs not in C. This completes the proof.

O

The proof of Theorem 1.6 now follows immediately from Theorem 1.4 and Lemma 4.3.

5 Approximation Algorithm for Directed Balanced Separators

In this section, the goal is to prove the following result, which shows a O(+/log k) approximation
for DIRECTED BALANCED SEPARATOR.

Theorem 5.1. There is an O(\/logk) approzimation to DIRECTED BALANCED SEPARATOR in
polynomial time. Formally, given an instance of DIRECTED BALANCED SEPARATOR with b = Q(1),
suppose there is a set of vertices (arcs) F with |F| < k, so that every strongly connected component
of G\ F has at most bn vertices. Then there is a polynomial time randomized algorithm that with
constant probability finds a set of vertices (arcs) F' with |F'| < O(k+/logk) so that in G\ F’, every
strongly connected component has size at most b'n for some b’ < 1 depending on b.

Our result is obtained by essentially following the algorithm of [ACMMO5] together with our
theorem on sample sets, Theorem 3.8. On a high level, the reason we get O(y/log k) approximation
comes down to the fact that one can find a balanced separator with respect to a sample set T,
which will automatically be a balanced separator for the entire graph as well due to the property
guaranteed by sample sets. Once we have this equivalence, in order to obtain a balanced separator
with respect to the set T', we now need to use the ARV structure theorem [ARV09] only on the
sample set vectors, which are at most |T'| in number. By Theorem 1.4 there is such a sample
set T of size at most O(k). This helps replace the O(y/logn) factor by O(y/logk). However, for
the sake of completeness and clarity we give the full algorithm by mostly following the algorithm
of [ACMMO5] with a few modifications/simplifications.

We will restrict our attention to edge cuts, as again the standard reduction in Theorem 4.2 can
easily reduce the vertex version to the edge version.

Notice that if a separator F' is b-balanced for some b = (1), then every strongly connected
component of G\ F' has size at most bn. This in turn means that using a prefix of the topological
order of the strongly connected components in G\ F, we can obtain sets A, B with |A|,|B| > ¢n
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for ¢ = %b, such that there are no arcs from A to B in G\ F. Thus, upto constant factors in the

balance, one can equivalently think of the DIRECTED BALANCED SEPARATOR problem as that of
finding a set of vertices (arcs) F with |F| < k and a partition A, B of G\ F, so that |A4|,|B| > ¢n
and there are no arcs from A to Bin G\ F.

Now we consider the terminal version of the problem, to which we will reduce via sample sets
later. Given a terminal set T', our revised goal is to solve the following problem: given a parameter
¢ = Q(1), find a set of edges F' with |F| < k so that there is a partition of G\ F' into A, B such that
|[ANT|,|BNT| > ¢|T| and there are no arcs from A to B in G\ F. In what follows, we will mostly
follow the algorithm of [ACMMO5] with small modifications which we state as and when required.

We assume that the vertices are labelled {1,2,...n}, and add a special vertex 0, which will be
a non-terminal and will be the reference vertex for the “A- side” of the cut. We start with the SDP
relaxation (extended in our case to the terminal version) in [ACMMO5] and follow their algorithm.

1 .
min 2 Z d(i,j)

e={i,j}EE(G)
|vil|* =1 Vi € [n]U {0}

lo; = v;l* + llv; — vell® > [lvi — vel|® Vi, 4,k € [n] U {0}

o = vl? = 4e(l = )TV
i<jig€T

Here the “directed distance” d(i, j) = |lv; —v;]|* +||vj; —vo||*> — ||vi —vo||? is as defined in [ACMMO5].
The cannonical solution for this SDP is obtained by setting v; = vy for each i € A and v; = —vyg
for each i € B.

Theorem 5.2 (ARV separation theorem [ARV09], as stated in [ACMMO5]). Given a set of £3
unit vectors v;, i € [n], such that 3, . |vi — v;||? > 4c(1 — c)n?, there exists a polynomial time
algorithm that finds disjoint sets L, R with |L|,|R| = Q(n) such that for any i € L,j € R, we have
[vi — vy > Q(1/V/Togn).

Now we follow Algorithm 4 of [ACMMO5]. Step 1 solves the SDP. In Step 2, given the vectors
from the SDP, we apply the ARV separation theorem to only the vectors v;, ¢ € T to find A =
L__ separated sets L and R. Concretely, we obtain disjoint sets L, R C T with |L|,|R| = Q(|T)

V/log|T|
so that ||v; — vj]|> > A for any i € L and j € R.
Next, we define 7 so that both LT = {i € L | jvg —v;|?> <72} and L™ = {i € L | |vg — v;|* > r?}

have more than % vertices. Note that such an r always exists. Once we fix r, we define RT = {i €

R||vo—vi|> <r?} and R~ = {i € R |vp — v3|* > r?} similarly. Finally, if |[RT| > ‘—g' we compute
a directed min-cut F' between R™ and L™, else we compute a directed min-cut F' between L™ and
R—.

Lemma 5.3. |F| < O(£SDP) and F is a b*-balanced separator with respect to T' for some b* < 1
depending on c, where SDP is the optimal SDP value.

Proof. Without loss of generality, we assume that |[RT| > @. The other case is symmetric. First,

observe that for any i € R*, j € L™, we have d(i,7) > A. This follows from the definition of
the sets RT and L~ which in particular means that |v; — vo|?> < r? and |v; — vg|?> > r? and hence
d(i, j) = [Jvi = vjl* + lJoj — vol* = [lvi = woll? = Jlvi — v;* = A.
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To show the bound on number of cut edges, we analyze the algorithm as follows. For sets U
and W, we define d(U, W) := min, ey wew d(u, w). Similarly, one can define d(U,w) := d(U, {w})
and d(u, W) = d({u}, W) for u,w € [n] U {0}. Pick a random threshold 7 € (0, %) at random and
consider the set X = {z | d(R",z) < 7}. Clearly X includes R, and does not include L~. Also
for each arc (a,b) such that @ € X and b ¢ X, we have d(a,b) > d(R*,b) — d(R*,a) since the
directed distance metric d satisfies the triangle inequality. It follows that the probability that the
edge (a,b) is cut is at most O(@) and hence the number of edges cut in expectation is at most
O(%). In particular, the (R*, L™ ) min-cut has size at most O(%).

Next, we show that this cut is b*- balanced with respect to T, for some b* < 1 depending only
on b. This follows directly from the description of the algorithm. Recall that the ARV separation
theorem ensures that |L|, |R| > Q.(|T|). Since |RT| > @ and by construction |L™| > @ and there
is no path from Rt to L™ in G\ F, the balance condition follows. O
Proof of Theorem 5.1. Given the directed graph G which forms the instance of DIRECTED BAL-
ANCED SEPARATOR, we first guess the value of k, so that there is a set of edges F' with |F| < k
so that each strongly connected component of G \ F' has size at most bn. Using a prefix of the
strongly connected components of G \ F, it follows that there is a partition X UY of V(G) so
that |X|,|Y| > ¢'n where ¢ = 5% and there is no arc from X to Y in G \ F. Next, construct
a (e, k) sample set T for some constant € < ¢/. With constant probability, T" is a sample set and
ITNX,ITNY| > (d—0(@)T| > c7,|T| Use the above algorithm and Lemma 5.3 with ¢ = %
to obtain a set of edges F’ with |F'| < O(ky/log|T|) that forms a balanced separator for 7. It
is clear that in G \ F’, every strongly connected component has at most b*|T| terminals where b*
depends only on ¢, as given by Lemma 5.3. We choose € small enough so that b* < 1 — 2¢. It
follows from Definition 3.3 that each strongly connected component has size at most (b* + €)n.
Finally, note that |T'| = O(k) (since € is a constant), hence /log |T'| = O(y/log k). This concludes
the proof.

O

6 Vertex Cut Sparsifiers

In this section, we present our result on vertex cut sparsifiers. We start with a few definitions.

Definition 6.1. Given a directed graph G, a set of terminals T C V(G), and an integer ¢, a
directed graph G' satisfying T C V(G') is said to be a (¢,T) vertex cut sparsifier for G if for any
partition AU B of T such that the size of the minimum A-B (vertex) cut in G is at most c, the
size of the A-B mincut is the same in G and G'.

Our next result gives our deterministic construction of vertex sparsifiers in directed graphs.

Theorem 1.9. Given a directed graph G, a set of terminals T and integer c, there is a deterministic
algorithm that runs in time O(Y(|T|,c)-(m+n)) and computes a (¢, T) vertex sparsifier G’ for G of
size at most Y(|T|, c), where (|T],c) = (g‘c) 2009 Additionally, G' satisfies T C V(G') C V(Q),
with the property that for every partition AUB of T and every subset X C V(G) with |X| < ¢, X is
an A-B important separator in G if and only if X C V(G') and X is an A-B important separator
in G'.

To prove this result, we use our result on important separators combined with the standard
approach of “closing” unnecessary vertices - given a graph G and a vertex v € V(G), applying the
closure operation to v gives the graph G’ with the vertex set V(G) \ {v}. The arc set of G’ is the
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same as that of G, except that it excludes all arcs incident on v, and for every pair of vertices (u, w)
such that u is an in-neighbour of v and w is an out-neighbour of v, we add the arc (u, w) to E(G").
Before we prove this result, we have the following basic observation. Recall that given a graph H
and sets S, Z C V(H), R%,(Z) denotes the set of vertices reachable from some vertex of S in H \ Z.

Lemma 6.2. Let A,Y C V(G) and let G’ be the graph obtained by applying the closure operation
on a vertex v € V(G). Also suppose v ¢ Y. Then,

1. R&,(Y) C RA(Y).
2. R&(Y)\ {v} C RG/(Y)

Proof. To prove the first part, consider a y € RA,(Y). Consider the path from some vertex a € A
to y in G’ \ Y. If this path uses an arc (21, 22) of G’ that is not an arc of G, then we use v to replace
this arc by the 3-path zjvzy and obtain a new path from a to y in G\ Y.

For the second part, similarly consider a y € RA(Y) \ {v}. Consider the path from some a € A
to y in G\ Y. If this path uses some arc that goes through v, consider the predecessor z; and
successor zg of v in this path: there must be an arc between z; and zo by the closure operation.
We replace the 3-path zjvze by the arc (21, 22) to obtain a path from a to y in G’ \ Y.

O

The next two lemmas show that applying the closure operation to a single vertex which is not
in any A-B important separator of size at most ¢, across all partitions AU B of T', preserves the set
of important separators. This in turn will imply that we can apply the closure operation at once
to all such vertices.

Lemma 6.3. Given a directed graph G, disjoint sets A, B and a vertexr v ¢ AU B which is not
in any A-B important separator of size < ¢, let G' be the graph obtained by closing v. Then if
X CV(@), |X| <c, is an important A-B separator in G', then it is an A-B important separator
in G as well.

Proof. We need to prove three things. First, that X is an A-B separator in (G. Second, it is
inclusion-wise minimal. Third, that X is not dominated by any other separator - that is, there does
not exist another separator Y with |Y| < |X| so that RA(X) C RA(Y).

First, X is a separator in G, for if not, an a-b path for dome a € A and b € B in G\ X would
imply such a path in G’ \ X by Lemma 6.2, a contradiction.

Next, if X \ {w} for some w € X is also an A-B separator in G, then it must be an A-B
separator in G as well: for if there is a a-b path in G’ \ (X \ {w}) for some w € X,a € A,b € B,
then there must be an a-b path in G\ (X \ {w}) as well by Lemma 6.2.

Finally, suppose Y is an important separator that dominates X in G. Observe that v ¢ Y.
First we show that Y is a separator in G’. This follows since an a-b path in G’ \ Y implies an a-b
path in G by Lemma 6.2.

Now we wish to prove that ¥ dominates X in G’ as well. Consider a vertex u € Rﬁl (X). Then
by Lemma 6.2 it is clear that u € RG(X) as well. But this means u € RG(Y), by our assumption.
This in turn means that v € RS (V). Thus R (X) € RG (Y). Finally, we note that X was an
inclusion-wise minimal separator in G’, and Y # X, therefore there must exist at least one vertex
of X that is reachable in R (V). This means that in fact R (X) € RS (Y), and we obtain that
Y dominates X in G’, a contradiction to the fact that X was important in G’. O

The next lemma is analogous and proves the other direction.
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Lemma 6.4. Given a directed graph G, disjoint sets A, B and a vertex v which is not in any A— B
important separator of size < ¢, let G' be the graph obtained by closing v. Then if X C V(G),
| X| < ¢ is an A-B important separator in G, then it is an A-B important separator in G' as well.

Proof. We need to prove three things. First, that X is an A-B separator in G’. Second, it is
inclusion-wise minimal. Third, that X is not dominated by any other separator - that is, there
does not exist another separator Y with |Y| < |X| so that R4,(X) € R4, (Y).

First, we show that X is an A-B separator in G’. If not, there is an a-b path in G’ \ X for some
a € A,b € B. But then there is an a-b path in G\ X by Lemma 6.2, a contradiction.

Second, suppose X \ {w} is an A-B separator in G’ for some w € X. Then X \ {w} is also
an A-B separator in G, for if there is an a-b path in G \ (X \ {w}), then such a path exists in
G\ (X \ {w}) as well by Lemma 6.2, again a contradiction.

Third, suppose that X is dominated by Y in G’. First, we show that Y is a separator in G.
This holds since any a-b path in G \ Y would imply an a-b path in G’ \' Y by Lemma 6.2.

Then we would like to show that X is dominated by Y in G as well. Pick some u € Rg(X). If
u # v, then it is clear that u € Rg/(X) as well by Lemma 6.2. Then u € Rg/(Y') by our assumption,
and it follows that u € Rg(Y') by Lemma 6.2. Now suppose v € Rg(X). Pick any in-neighbour
v* of v in G, so that v* in Rg(X). Then it follows that v* € Rg(Y') by our previous argument.
But v is an out-neighbour of v*, and v ¢ Y. Hence it follows that v € Rg(Y'). Thus it follows
that Rg(X) € Ra(Y). Also since X was an inclusion-wise minimal separator in G and Y # X, at
least one vertex of X must be reachable in G\ Y, which means that in fact Rg(X) C Re(Y') which
contradicts the fact that X is an important separator in G. O

Proof of Theorem 1.9. Given T, consider all pairs of subsets (A’, B') of T satisfying |A’| < k and
|B'| < 2k. Let Y be the union of all (A, B') important separators in G across all such (A, B').
Observe that Y] < 4'“(5‘,6) (i’;)

Apply the closure operation to every vertex of Z = V(G) \ Y simultaneously. More precisely,
define Z;, = {v € V(G) | (v,z2) € E(G)for somez € Z} and Z,,y = {v € V(G) | (z,v) €
E(G)for somez € Z}. Then in G, we delete the set of vertices Z, and add arcs (zin, Zout), Zin €
Zin,> Zout € Zout to obtain G’.

The correctness and running time of the algorithm follows from the soundness of Theorem 1.1,
Lemma 6.3 and Lemma 6.4. O
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A Appendix

Lemma 1.2. For any positive integer k, the following two statements hold.

1. There exist infinitely many positive integers c, such that for each c, there is a directed graph
Ger and disjoint subsets S, T C V(G) of vertices with |T| = ¢ and |S| =1 so that there are

at least (‘<Tk|) A-B important separators of size at most k across all choices AC S, BCT.

2. There exist infinitely many positive integers ¢, such that for each c, there is a directed graph
Ger and disjoint subsets S, T C V(G) of vertices with |S| = ¢ and |T| = k + 1 so that there
are at least (‘f,l) A-B important separators of size at most k across all choices AC S, BCT.

Proof. Essentially, we will construct undirected graphs: these graphs can be made directed simply
by adding for every undirected edge (u,v), the directed edges (u,v) and (v, u).

For the first part, consider the star on ¢+ 1 vertices for some ¢ > k. Let S consist of the single
center vertex, and let T' consist of all the leaves. Observe that for any 7" C T of size at most k, the
separator which consists of exactly the vertices T” is an important S-T" separator of size at most
k. Thus there are at least (@) such separators.

For the second part, consider again a star, but this time we blow up the center vertex to a clique
of size k + 1. Formally, consider the graph G on ¢+ k + 1 vertices, where T' C V(G) is a clique
of size k+ 1, and S C V(G) forms the remaining ¢ vertices. Each vertex of S is adjacent to each
vertex of T, and not adjacent to any vertex of S. Thus the graph is a star with a core T of size
k + 1 and c leaves which form the set S. Now for every subset S’ C S with |S’| < k, S’ itself forms
an S’-T important separator of size at most k. Thus there are at least (|<Sk‘) such separators. O

Lemma A.1 (Tight example for important separator preservation). There is a graph G, source
vertez s € V(QG), integer k, sink vertices B C V(G) with |B| = 2k and an s-B important separator
X CV(G) with |X| =k, such that X is not an s-B' important separator for any B’ C B.

Proof. Consider the graph in Figure 2. X is an important s-B separator of size 3. However,
clearly X is not an important s-B’ important separator for any B’ C B, since we must have
B’ N {bgi_1,b9;} < 1 for some i € [3] and this means that (X \ {u;}) Uwvg—1 or (X \ {u;}) Uwvy; is
an s-B’ separator closer to B’ than X, contradicting the importance of X.

O
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Figure 2: Tight example for important separator preservation.
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