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ABSTRACT

Graph neural networks (GNNs) are widely used for learning node embeddings in graphs, typically adopting a

message-passing scheme. This approach, however, leads to the neighbor explosion problem, with exponentially

growing computational and memory demands as layers increase. Graph sampling has become the predominant

method for scaling GNNs to large graphs, mitigating but not fully solving the issue. Pre-propagation GNNs (PP-

GNNs) represent a new class of models that decouple feature propagation from training through pre-processing,

addressing neighbor explosion in theory. Yet, their practical advantages and system-level optimizations remain

underexplored. This paper provides a comprehensive characterization of PP-GNNs, comparing them with graph-

sampling-based methods in training efficiency, scalability, and accuracy. While PP-GNNs achieve comparable

accuracy, we identify data loading as the key bottleneck for training efficiency and input expansion as a major

scalability challenge. To address these issues, we propose optimized data loading schemes and tailored training

methods that improve PP-GNN training throughput by an average of 15× over the PP-GNN baselines, with

speedup of up to 2 orders of magnitude compared to sampling-based GNNs on large graph benchmarks. Our

implementation is publicly available at https://github.com/cornell-zhang/preprop-gnn.

1 INTRODUCTION

Message-passing-based graph neural networks (MP-GNNs)

have become a cornerstone for graph representation learning,

achieving success in various tasks like node classification

(Veličković et al., 2018; Wu et al., 2023; Kipf & Welling,

2017), link prediction (Zhang & Chen, 2018; Schütt et al.,

2017), and graph clustering (Zhang et al., 2019; Ying et al.,

2018b; Tsitsulin et al., 2023). However, scaling MP-GNNs

to large graphs remains a significant challenge.

The message-passing framework (Gilmer et al., 2017) con-

sists of two iterative steps: (1) feature aggregation and (2)

transformation. Within this framework, each node collects

feature embeddings from its neighbors and then transforms

them using a learnable function. We show the architecture of

MP-GNN models in Figure 1. The main challenge in scaling

MP-GNNs to large graphs stems from the “neighbor explo-

sion” problem (Hamilton et al., 2017), where nodes must re-

cursively collect embeddings from increasingly larger neigh-

borhoods across layers, causing the number of embeddings

to grow exponentially with each additional layer.

To address this challenge, various prior arts have introduced

sampling-based GNNs to reduce the compute and memory
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footprint during message passing. Those models encompass

node-wise sampling to limit neighborhood sizes per node

(Chen et al., 2017; Hamilton et al., 2017), layer-wise sam-

pling to reduce node counts per layer (Chen et al., 2018;

Zou et al., 2019), and graph-wise sampling to control over-

all subgraph size (Chiang et al., 2019; Zeng et al., 2020).

However, the sampling-based GNNs face several major lim-

itations. First, node-wise sampling methods only partially

mitigate the neighbor explosion problem, as their time com-

plexity still increases exponentially with the number of lay-

ers. More importantly, the sampling algorithms modify the

graph topology by design, which inevitably breaks the func-

tionality of computation graphs such as logic networks (Wu

et al., 2023) and dataflow graphs (Phothilimthana et al.,

2024), resulting in accuracy degradation on their down-

stream tasks (Deng et al., 2024).

To circumvent the limitations of MP-GNNs, a new class of

models known as pre-propagation GNNs (PP-GNNs) has

emerged to tackle the scalability issue from a different an-

gle (Wu et al., 2019; Frasca et al., 2020; Dong et al., 2021;

Zhang et al., 2022; Liao et al., 2022; Chen et al., 2020b;

Deng et al., 2024; Zhu & Koniusz, 2020). These models

perform feature aggregation in a preprocessing step, elim-

inating the need for this computationally expensive step

during model training. This approach theoretically offers

two advantages over MP-GNNs. First, by decoupling nodes

from interdependencies introduced by feature aggregation,

nodes are processed independently during training, effec-

tively addressing the neighbor explosion problem. Second,
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Figure 1. General structure of MP-GNN and PP-GNN models.

previous efforts (Huang et al., 2020) have shown that within

the message-passing framework, feature aggregation is typi-

cally more time-consuming than transformation due to its

sparse nature. By restricting training to dense computations,

PP-GNNs are expected to achieve greater efficiency. Impor-

tantly, the input data preprocessing is a one-time cost that

can be amortized across multiple rounds of hyperparameter

tuning and model architecture adjustments.

In this work, we conduct the first systematic characteri-

zation of PP-GNN models, comparing their training effi-

ciency, scalability, and accuracy with MP-GNN models. We

find that although PP-GNNs achieve comparable accuracy

as MP-GNNs on commonly used large graph benchmarks,

they do not exhibit clear training efficiency advantages over

MP-GNNs that leverage tailored system-level optimizations.

During our characterization, we identify two primary chal-

lenges for PP-GNN training: data loading as the major

efficiency bottleneck and input expansion as the main scal-

ability issue. Data loading, consisting of batch assembly

and data transfer, dominates training time due to lightweight

computations in PP-GNNs, and the input expansion prob-

lem stems from the architecture of PP-GNN models, where

the size of input features expands as more hops of neighbors

are used, potentially exceeding host memory capacity.

To address these challenges, we propose several system-

level optimizations. First, we introduce a customized data

loader with an efficient batch assembly operation to reduce

host-side data preparation overhead. Second, we design a

double-buffer-based data prefetching scheme to decouple

data loading from GPU-side computation. These optimiza-

tions significantly reduce data loading overhead while ad-

hering to the standard training method, stochastic gradient

descent with random reshuffling (SGD-RR) (Mishchenko

et al., 2020). Additionally, we propose chunk reshuffling,

which shuffles training data at a coarser granularity, enabling

bulk data transfer and more efficient GPU-side batch assem-

bly. Moreover, we leverage chunk reshuffling to extend

our training pipeline to leverage GPU direct storage (GDS)

(Thompson & Newburn, 2019) access, efficiently handling

input sizes exceeding host memory capacity.

We further integrate these optimizations into an automated

training configuration system for PP-GNNs, which detects

hardware configurations and determines the best data place-

ment and training strategies. With these system optimiza-

tions, PP-GNNs demonstrate significantly higher training

efficiency on various commonly used large graph bench-

marks, including those with up to 100 million nodes.

Our main contributions are as follows:

• We present the first comprehensive study comparing both

the training efficiency and accuracy of PP-GNNs and MP-

GNNs on commonly-used large graph benchmarks.

• We identify data loading as the critical efficiency bot-

tleneck and the input expansion problem as the major

scalability challenge for PP-GNN training.

• We propose various system-level optimizations to tackle

the two challenges, including efficient batch assembly

schemes, double-buffer-based data prefetching, and a tai-

lored chunk reshuffling training method. Additionally, we

propose an automated training configuration system for

PP-GNNs that accommodates various graph sizes based

on hardware configurations and a data placement policy.

• Our optimizations improve PP-GNN training efficiency

on average 15× compared to vanilla PP-GNN implemen-

tations and show comparable training efficiency when

fetching input data directly from the solid-state drives

(SSD) compared to from the host memory. After opti-

mization, compared to MP-GNN models with state-of-

the-art graph samplers, our optimized PP-GNNs achieve

on average 9.9× and up to 2 orders of magnitude higher

training throughput with higher accuracy on large graphs.

2 PRELIMINARIES

This section introduces the key concepts related to GNNs,

including the message-passing paradigm, graph sampling

algorithms, and PP-GNNs. We also introduce existing MP-

GNN training systems in this section.

2.1 Notations

In the following sections, we define a graph as G = (V,E),
where V is the node set and E is the edge set. We define

|V | = n as the total number of nodes in the graph and

|E| = m as the total number of edges. Each node v ∈ V
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has a neighborhood set N(v). Let A ∈ R
n×n represent the

adjacency matrix and D ∈ R
n×n represent the diagonal

degree matrix. X ∈ R
n×F denotes the input node feature

matrix with F as the input feature dimension.

2.2 General Structure of MP-GNNs

In general, GNN models take in graph-related information,
such as the graph topology and node features, to learn latent
node embeddings. Most popular GNN models can be gener-
alized within the message-passing-based framework (Gilmer

et al., 2017), which is articulated in Eq. (1). Here, h
(k)
v de-

notes the embedding of node v in layer k, with h
(0)
v = xv.

lk represents a transformation function, fk an aggregation
function, and evu the edge attribute between nodes v and u.

h
(k)
v = lk

(

h
(k−1)
v , fk

(

{(h(k−1)
u , evu) | ∀u ∈ N(v)}

))

(1)

Message passing occurs within the aggregation function

fk, where node v aggregates embeddings from its one-hop

neighbors, a process also known as feature propagation.

As indicated in Equation (1), the aggregation function is

applied recursively across layers, which can lead to the

neighbor explosion problem. Various GNN models are spe-

cific instances of this generalized framework. For example,

GraphSAGE (Hamilton et al., 2017) employs mean, Long

Short-Term Memory (LSTM), or pooling aggregators in its

aggregation function. The Graph Attention Network (GAT)

(Veličković et al., 2018) incorporates a learnable attention

mechanism to assign different weights to neighbors during

feature propagation. Both models employ a Multi-Layer

Perceptron (MLP) as the transformation function.

2.3 Graph Sampling

Graph sampling is a widely adopted technique to scale MP-

GNNs on large graphs, categorized into three types: node-

wise sampling (Chen et al., 2017; Hamilton et al., 2017;

Balin & Çatalyürek, 2024), layer-wise sampling (Chen et al.,

2018; Zou et al., 2019), and graph-wise sampling (Chiang

et al., 2019; Zeng et al., 2020). Node-wise samplers, such as

the one introduced in GraphSAGE (Hamilton et al., 2017),

limit neighborhood size during sampling but still face the

neighbor explosion problem, with node count growing ex-

ponentially by layer. Layer-wise sampling methods sample

a fixed number of nodes per layer, resulting in linear growth

but struggling with sparse connectivity. LADIES (Zou et al.,

2019) tackles this problem with layer-dependent sampling

for better connectivity. Graph-wise sampling methods, such

as GraphSAINT (Zeng et al., 2020), sample subgraphs with

a fixed number of nodes or edges, maintaining a subgraph

size independent of model depth while ensuring connection.

LABOR (Balin & Çatalyürek, 2024) is a State-of-The-Art

(SoTA) hybrid sampler combining the strength of both node-

wise and layer-wise sampling, leading to fewer nodes sam-

pled compared to node-wise samplers while maintaining an

adaptive nature to different graph sizes.

2.4 GNN Training Systems

In sampling-based GNN training, the primary bottleneck is

the graph sampling process, which includes node sampling

and feature extraction (Liu et al., 2023; Yang et al., 2022;

Lin et al., 2020). Various training systems have been de-

veloped to optimize this process by leveraging GPUs. For

instance, DGL (Wang, 2019) accelerates node sampling

and feature extraction on GPUs, provided the graph data

fits entirely into GPU memory. PaGraph (Lin et al., 2020)

utilizes GPU-based caching of node features while relying

on CPU for node sampling. GNNLab (Yang et al., 2022)

employs GPUs for both node sampling and feature caching.

These techniques can enhance MP-GNN training efficiency

in both single-GPU and multi-GPU environments. Addi-

tional strategies employed in these systems include the use

of NVLinks between GPUs to minimize communication

overhead (Cai et al., 2023), hardware-aware graph partition-

ing (Sun et al., 2023; Tan et al., 2023), and GPU kernel

optimizaitons (Huang et al., 2024; Wang, 2019).

2.5 Pre-propgation GNNs

PP-GNNs (Frasca et al., 2020; Deng et al., 2024; Zhang

et al., 2022; Chen et al., 2020b; Liao et al., 2024; 2022; Yu

et al., 2020; Wu et al., 2019) have recently emerged as a

promising approach to scaling GNN training. We show the

general structure of PP-GNN models in Figure 1. During

preprocessing, node features are aggregated in a manner

similar to feature propagation in MP-GNNs, but instead of

relying directly on the adjacency matrix, operators derived

from the adjacency matrix are typically employed. From

a spectral perspective, these operators act as graph signal

filters applied to the input graph (Gasteiger et al., 2019).

Given that most MP-GNNs effectively perform low-pass

filtering on the input graph signal (Nt & Maehara, 2019),

PP-GNNs can achieve comparable accuracy by learning on

already filtered graph data. Like MP-GNNs, node features

are propagated by multiplying the operators with the node

feature matrix, yielding features at different hops through

successive multiplications. The resulting node features are

then stored and reused in the training phase, where a dense

model is typically employed to learn node representations.

PP-GNN models can be generalized as follows:

Preprocess: Sk = {X,BkX, . . . ,B
R

k X}, k = 1, . . . ,K
(2)

Train: H = l(S1, . . . , SK), Y = o(H) (3)

In Eq. (2), X denotes the input feature matrix, R represents

the number of hops, and Bk for k = 1, . . . ,K are K opera-

tors. After preprocessing, we get K sets of node features,

denoted as Sk, each of which consists of R + 1 matrices,
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exceeding the typical host memory capacity. Consequently,

randomly fetching features from the storage system during

training will result in severe training efficiency degrada-

tion due to low storage random read speed. Therefore, we

need system-level solutions to overcome the input expansion

problem of PP-GNNs on large graphs.

3.5 Pre-processing Overhead

Compared to MP-GNNs, PP-GNNs require an additional

preprocessing step. However, this preprocessing can be con-

sidered a one-time cost, as the processed data is stored and

reused throughout the training process. Table 2 presents

the preprocessing time for the datasets used in our evalua-

tion. Typically, training a GNN model involves hundreds

of epochs per run, and hyper-parameter tuning may require

tens or even hundreds of such runs. As shown in Table 2,

the preprocessing overhead is usually much smaller than

the time required for a single training run, and thus, can be

efficiently amortized over the entire training phase.

4 SYSTEM OPTIMIZATIONS

Our characterization reveals that data loading time signifi-

cantly dominates the training time of PP-GNNs. Typically,

data loading consists of two steps: batch assembly and data

transfer. During batch assembly, the data loader extracts

node vectors belonging to the current batch, and transfers

them to GPU in the following data transfer step. To reduce

the data loading overhead, a straightforward solution in-

volves loading input data into GPU memory to leverage its

high bandwidth. However, the input expansion problem lim-

its the feasibility of this approach, as GPU memory typically

has a much lower capacity compared to host memory.

To reduce the data loading overhead while maintaining the

input data in host memory, we propose several strategies.

First, we devise a custom data loader with efficient data in-

dexing to reduce the kernel launching overhead during batch

assembly (Section 4.1). Second, we introduce a double-

buffer-based data prefetching mechanism on GPU, which

largely hides data loading time by pipelining it with compu-

tation (Section 4.1). Last, we develop a chunk reshuffling

method that allows us to reorder batch assembly and data

transfer, enabling GPU-side batch assembly, taking advan-

tage of high GPU memory bandwidth (Section 4.2). More-

over, chunk reshuffling paves the way for scaling to large

graphs. By replacing host memory access with GPU direct

storage access, we can easily handle input sizes exceeding

the host memory capacity (Section 4.3).

4.1 Customized Data Loading

Upon profiling the PP-GNN baseline implementations, we

observe that the PyTorch data loader extracts node features

individually during batch assembly, resulting in frequent

kernel invocations on the host side. As a result, batch assem-

bly dominates the total training time, as depicted in Figure 6

(a). To mitigate the redundant kernel launching, we design

a customized data loader utilizing the index operator pro-

vided by PyTorch to copy the scattered node features into a

pinned tensor in host memory, which is then transferred to

the GPU asynchronously. This approach is feasible due to

the simplicity of the input data format, as PP-GNN inputs

are purely dense tensors. By launching the index opera-

tor only once per batch, we significantly reduce the kernel

launching overhead, as illustrated in Figure 6 (b).

Despite this improvement, batch assembly on the host side

still incurs significant time, potentially exceeding GPU com-

putation time. This is primarily due to the extraction of

scattered data in memory, limited by the host memory band-

width. A potential solution is to cache node features on

GPU to leverage its high memory bandwidth, as adopted

by many MP-GNN systems (Yang et al., 2022; Sun et al.,

2023). However, this approach is unsuitable for PP-GNNs,

as the training data lacks both temporal and spatial locality,

being accessed only once in a random order every epoch.

Instead, we implement a data prefetching scheme using dou-

ble buffers on GPU, as shown in Figure 6 (c). This approach

decouples data loading from GPU-side computation, en-

abling pipelining of these two steps. To achieve this, we

use separate threads on the host side for launching compute

kernels and data-loading-related kernels. On the GPU side,

different streams are utilized for data prefetching and com-

putation. As shown in Figure 6 (c), our prefetching scheme

effectively hides the batch assembly overhead.

4.2 Chunk Reshuffling

While double-buffer-based prefetching pipelines data load-

ing with computation, it fails to fully eliminate overhead

when data loading time exceeds computation time. This

overhead arises from (1) batch assembly, constrained by

host memory bandwidth, and (2) data transfer, limited by

the host-to-GPU interconnect. Since data transfer is already

optimized by Direct Memory Access (DMA) technique,

further reducing its duration is challenging.

To reduce batch assembly time, we propose a chunk reshuf-

fling training method. In this method, at the start of each

epoch, we reshuffle training data indices at the chunk level,

with each chunk comprising contiguous node features. Then,

we transfer individual chunks belonging to the current

batch from host memory to GPU and assemble chunks into

batches. This approach takes advantage of the significantly

higher DRAM bandwidth on GPU for batch assembly. Al-

though data transfer overhead increases as more DMA trans-

fer kernels are launched, this is minor provided the chunk

size is sufficiently large. The efficacy of this approach is
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Figure 6. System-level optimizations adopted in our work — For the case with input data residing in the host memory.

illustrated in Figure 6 (d). Lastly, chunk reshuffling can be

considered a form of insufficient shuffling scheme (Meng

et al., 2019; Nguyen et al., 2022), which is commonly used

in practice. In Section 6.2, our empirical results show that

chunk reshuffling has negligible impacts on test accuracy

and convergence rate for PP-GNNs.

4.3 Direct Storage Access

The input expansion problem can cause the preprocessed in-

put data of large graphs to exceed the host memory capacity.

A naı̈ve implementation fetching individual node features

from storage to the host would suffer from slow random

reads, resulting in significant data loading overhead.

Our chunk reshuffling method provides a foundation for

extending to storage-based training; reading chunks from

the storage system is significantly more efficient compared

to reading individual node features. By replacing host-

memory-reading operators with GPU direct storage access,

we retain the benefits of pipelined data loading and computa-

tion with our double-buffer-based data prefetching scheme.

In our implementation, we leverage the NVIDIA GDS tech-

nique (Thompson & Newburn, 2019) for direct storage ac-

cess, which automatically utilizes DMA engines and system

buffers, ensuring efficient data transfers under various sys-

tem configurations. To maximize the parallel processing

capabilities of modern storage systems and bus bandwidth

utilization, we split input features of different hops into

separate files, enabling parallel storage access requests.

5 AUTOMATED TRAINING

CONFIGURATION

Building on our system-level optimizations, we extend our

training pipeline to develop an automated configuration

system tailored for PP-GNNs. This system automates key

configurations, particularly for data placement and training

methods, optimizing PP-GNN training based on hardware

resources and model characteristics. Implemented in Py-

Torch, our system offers a user-friendly interface, allowing

integration of PP-GNN models without model-specific sys-

tem tweaking. Before training starts, our system assesses

the available hardware resources, including the number of

GPUs and GPU and host memory capacities. To determine

the minimum GPU memory space requirement for a specific

model, we adopt an approach similar to PaGraph (Lin et al.,

2020), where we conduct a one-time training session using

storage-based data loading to measure peak GPU memory

usage. Combining the information of input data size, our

configuration system automatically decides data placement

and corresponding training method, as detailed below.

GPU memory. Preloading input data to GPU memory is

prioritized due to its high bandwidth. For large datasets,

our system supports distributing data across multiple GPUs,

with the data loader fetching data in a locality-aware man-

ner (Yang & Cong, 2019) to adapt to SGD-RR. When

data is preloaded to GPU memory, our double-buffer-based

prefetching further enhances training efficiency. However,

with the high bandwidth of GPU memory, batch assembly

is not a bottleneck, making chunk reshuffling negligible for

performance. Thus, SGD-RR is preferred in this scenario.

Host Memory. When the input data exceeds GPU memory

capacity, it is placed in host memory. With chunk reshuf-

fling, the entire input data must be pinned in host memory

for non-blocking transfers. Otherwise, only a buffer pro-

portional to the mini-batch size is pinned. The configure

system defaults to SGD-RR for large data to avoid excessive

host memory pinning, unless specified by users.

Storage. When the input data exceeds the host memory

capacity, our system allows the GPU to fetch data directly

from the storage via NVIDIA GDS (Thompson & Newburn,

2019). Currently, we only support chunk reshuffling in this

scenario, since SGD-RR requires fine-grained data access,

significantly increasing data loading overhead.

The influence of data placement on training throughput is

evaluated in Appendix H.







Graph Learning at Scale: Characterizing and Optimizing Pre-Propagation GNNs

use their hardcoded neighbor samplers respectively. Infer-

ence of GNNLab relies on an older version of DGL which

CUDA12.1 does not support, hence we do not report the

test accuracy of GNNLab.

Table 3. Performance comparison on ogbn-papers100M, with test

accuracy averaged over 5 runs of 100 epochs each.

Layers
or Hops

Model
Training
System

Test
Acc (%)

Throughput (epoch/sec)

1 GPU 2 GPUs 4 GPUs

2
SAGE

DGL 64.43±0.19 0.12 - -
SALIENT++ 64.28±0.16 0.27 0.46 0.42

GNNLab - 0.72 0.71 1.33
SIGN Ours 65.70±0.09 2.94 3.23 6.62

HOGA Ours 66.19±0.08 0.53 0.77 1.54

3
SAGE

DGL 65.79±0.14 0.04 - -
SALIENT++ 65.67±0.06 0.05 0.10 0.10

GNNLab - 0.19 0.19 0.29
SIGN Ours 66.29±0.20 2.92 3.22 6.54

HOGA Ours 66.65±0.09 0.41 0.61 1.23

4
SAGE

DGL 66.44±0.17 0.02 - -
SALIENT++ 65.78±0.12 0.01 0.03 0.04

GNNLab - 0.06 0.07 0.10
SIGN Ours 66.36±0.05 2.86 3.13 6.25

HOGA Ours 66.86±0.11 0.36 0.54 1.09

First, the ogbn-papers100M graph dataset features instances

where labeled nodes constitute only a minor portion of

the total node count. For PP-GNNs, the input data size

after preprocessing is proportional to the number of labeled

nodes, while the information of unlabeled nodes is incor-

porated during preprocessing. Notably, the original input

features for ogbn-papers100M occupy 53 GB, but the la-

beled part only takes 0.8 GB per hop after preprocessing,

fitting comfortably into GPU memory. Conversely, MP-

GNNs require accessing the entire graph topology and all

input features during training, totaling 77 GB, which ex-

ceeds a single GPU’s capacity, making loading all input

data into GPU memory infeasible. For MP-GNNs, we use

DGL-UVA, SALIENT++, and GNNlab to evaluate their

training efficiency on the ogbn-papers100M dataset.

Table 3 shows training throughput and test accuracy under

100 epochs for different approaches with 2 to 4 hops or

layers. HOGA achieves the highest accuracy among all

methods, with up to 1.76% higher accuracy than SAGE.

DGL achieves higher accuracy than SALIENT++ due to

the adoption of the LABOR sampler. In terms of training

efficiency, SIGN and HOGA achieve up to 5× and 41×
higher throughput than GraphSAGE on a single GPU. Com-

pared to DGL-UVA, GNNLab improves training efficiency

by caching input features and graph topology on GPU, but

its hardcoded graph sampler produces larger subgraphs than

LABOR, offsetting its caching benefits as the number of lay-

ers increases. Due to the large graph size, we encounter out-

of-memory (OOM) issues when extending the DGL-UVA

to multiple GPUs. We employ SALIENT++ and GNNLab

in the scalability study. PP-GNNs achieve higher scalabil-

ity than MP-GNNs implemented in both SALIENT++ and

GNNLab. One exception is SALIENT++ with 4 layers. Un-

der this setting, SALIENT++ encounters OOM issues with

a batch size of 8000, and we need to reduce the batch size to

1000. With a smaller batch size, SALIENT++ shows better

scalability, with sacrifice on training throughput. Across all

settings, PP-GNNs consistently outperform MP-GNNs with

4 GPUs, with up to 156× speedup.

Table 4. Performance comparison on igb-medium, with test accu-

racy averaged over 5 runs of 20 epochs each.

Layers
or Hops

Model
Training
System

Test
Acc (%)

Throughput (epoch/min)

1 GPU 2 GPUs 4 GPUs

2

SAGE
DGL 75.44±0.02 0.35 0.39 0.77

GNNLab - 2.83 2.78 7.68

SIGN
Ours-RR 76.16±0.02 3.16 4.23 6.59
Ours-CR 76.17±0.02 9.35 6.04 11.13

HOGA
Ours-RR 76.08±0.03 2.22 4.03 5.99
Ours-CR 76.07±0.03 5.43 4.11 7.85

3
SAGE DGL 75.47±0.05 0.10 0.11 0.21
SIGN Ours-RR 76.17±0.02 2.44 3.42 4.87

HOGA Ours-RR 76.10±0.03 1.65 2.93 4.49

We use the igb-medium dataset to assess the training effi-

ciency of MP-GNNs and PP-GNNs in scenarios where the

dataset size exceeds GPU memory capacity. igb-medium

is fully labeled, with an input feature dimension of 1024,

occupying 40 GB for input features, exceeding the single

GPU memory capacity for both MP-GNNs and PP-GNNs.

Table 4 presents the training throughput and test accuracy

over 20 epochs for different approaches. PP-GNNs consis-

tently achieve higher test accuracy than MP-GNNs on this

dataset. In terms of training throughput, PP-GNNs with

chunk reshuffling significantly outperform other methods,

with up to 24× speedup compared to MP-GNNs with 3 hops

or layers. GNNLab performs comparably to PP-GNNs with

SDG-RR and outperforms DGL-UVA by a wide margin

due to its GPU-side input feature caching, which mitigates

the high data extraction and transformation demands of igb-

medium stemming from its large input feature dimension.

However, with more than 2 layers, GNNLab encounters

OOM issues from larger sampled subgraphs.

When scaling to 4 GPUs, PP-GNNs with SGD-RR show

similar scalability as MP-GNNs. Although PP-GNNs with

chunk reshuffling achieve higher training efficiency, they

demonstrate relatively less scalability, delivering only 1.27

× average speedup when using 4 GPUs, which is primarily

bottlenecked by host-to-GPU bandwidth, and using more

GPUs does not mitigate the problem. This issue is more

pronounced with direct storage access, as storage systems

typically have less bandwidth to the host or GPU. Therefore,

we only implement single GPU direct storage access.

Lastly, we utilize the igb-large dataset to demonstrate that

our proposed optimizations can effectively address the in-

put expansion problem when the input data size exceeds

the host memory capacity. For MP-GNNs, we adopt two

baselines, Ginex (Park et al., 2022) and DGL. Ginex is a
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Table 5. Performance comparison on igb-large, with test accuracy

reported under 3 epochs.

Layers
or Hops

Model
Training
System

Test
Accuracy (%)

Throughput
(epoch/hour)

2
SAGE

DGL 63.07 0.77
Ginex 63.09 0.65

SIGN Ours 64.41 10.52
HOGA Ours 64.42 8.58

3
SAGE

DGL 62.85 0.17
Ginex 62.73 0.19

SIGN Ours 64.41 8.06
HOGA Ours 64.52 6.67

storage-based MP-GNN training system leveraging host-

side caching. For DGL, we employ the mmap technique

to map the input feature file into memory, which allows

DGL to access necessary data portions directly from stor-

age without loading the entire dataset into host memory.

After preprocessing, the input data for PP-GNNs occupies

approximately 1.6 TB with 1 kernel and 3 hops. Table 5

presents the training throughput and test accuracy for dif-

ferent approaches. We limit the number of epochs to 3 and

the number of runs to 1 due to the prolonged execution

time of MP-GNNs, in line with the IGB official leaderboard.

Our results reveal that PP-GNNs achieve up to 42× greater

training throughput compared to MP-GNNs, highlighting

the superior performance of PP-GNNs on ultra-large graphs.

Conversely, the excessive training time per epoch renders

detailed hyperparameter tuning impractical for MP-GNNs.

Compared to GraphSAGE, HOGA, and SIGN achieve train-

ing throughput improvements of up to 2 orders of magnitude,

with an average of 9.9× across three large graph datasets,

while maintaining superior accuracy. These results make

HOGA and SIGN compelling options for efficient learning

on large graphs.

7 CONCLUSIONS

This work presents the first comprehensive study comparing

the training efficiency and accuracy of PP-GNNs with MP-

GNNs on large graph benchmarks. While PP-GNNs match

MP-GNNs in accuracy, tailored system optimizations are

crucial for realizing their theoretical efficiency and scala-

bility. Our proposed optimizations help PP-GNNs achieve

on average 9.9× higher training throughput on large graph

datasets compared to MP-GNNs optimized in SOTA MP-

GNN training systems while maintaining higher accuracy.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio,

P., and Bengio, Y. Graph Attention Networks. Interna-

tional Conference on Learning Representations (ICLR),

2018.

Wang, M. Y. Deep Graph Library: Towards Efficient and

Scalable Deep Learning on Graphs. ICLR workshop on

representation learning on graphs and manifolds, 2019.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-

berger, K. Simplifying Graph Convolutional Networks.

Int’l Conf. on Machine Learning (ICML), 2019.

Wu, N., Li, Y., Hao, C., Dai, S., Yu, C., and Xie, Y.

Gamora: Graph Learning Based Symbolic Reasoning

for Large-Scale Boolean Networks. Design Automation

Conf. (DAC), 2023.

Yang, C.-C. and Cong, G. Accelerating Data Loading in

Deep Neural Network Training. Int’l Conf. on High-

Performance Computing, Data, and Analytics (HiPC),

2019.

Yang, J., Tang, D., Song, X., Wang, L., Yin, Q., Chen, R.,

Yu, W., and Zhou, J. GNNLab: A Factored System for

Sample-Based GNN Training Over GPUs. European

Conf. on Computer Systems (EuroSys), 2022.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,

W. L., and Leskovec, J. Graph Convolutional Neural

Networks for Web-Scale Recommender Systems. ACM

SIGKDD Conf. on Knowledge Discovery & Data Mining

(KDD), 2018a.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and

Leskovec, J. Hierarchical Graph Representation Learning

with Differentiable Pooling. Conf. on Neural Information

Processing Systems (NeurIPS), 2018b.

Yu, L., Shen, J., Li, J., and Lerer, A. Scalable Graph Neu-

ral Networks for Heterogeneous Graphs. arXiv preprint

arXiv:2011.09679, 2020.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and

Prasanna, V. GraphSAINT: Graph Sampling Based In-

ductive Learning Method. International Conference on

Learning Representations (ICLR), 2020.

Zhang, M. and Chen, Y. Link Prediction Based on Graph

Neural Networks. Conf. on Neural Information Process-

ing Systems (NeurIPS), 2018.

Zhang, W., Yin, Z., Sheng, Z., Li, Y., Ouyang, W., Li, X.,

Tao, Y., Yang, Z., and Cui, B. Graph Attention Multi-

Layer Perceptron. ACM SIGKDD Conf. on Knowledge

Discovery & Data Mining (KDD), 2022.

Zhang, X., Liu, H., Li, Q., and Wu, X.-M. Attributed

Graph Clustering via Adaptive Graph Convolution. arXiv

preprint arXiv:1906.01210, 2019.

Zhu, H. and Koniusz, P. Simple Spectral Graph Convolution.

International Conference on Learning Representations

(ICLR), 2020.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu,

Q. Layer-Dependent Importance Sampling for Training

Deep and Large Graph Convolutional Networks. Conf. on

Neural Information Processing Systems (NeurIPS), 2019.

A HYPERPARAMETER SETTINGS

MP-GNN. For backbone MP-GNN models, we use the

DGL example implementations of GraphSAGE and GAT.

GraphSAGE is set with a hidden dimension of 256, using the

mean aggregator, and GAT is set with a hidden dimension

of 128 per channel across 4 channels.

For node-wise sampling methods, including Neighbor and

LABOR samplers, we adopt two commonly used 3-layer

fanout settings: [15 10 5] for GraphSAEG and [10 10 10]

for GAT. Building on the 3-layer setup, we extend it to 4,

5, and 6 layers with smaller fanout limits to avoid OOM

issues, using [15 10 5 3 3 3] for GraphSAGE and [10 10 10

5 5 5] for GAT. For 2-layer models, we adjust the fanout

to [15 10] for GraphSAGE and [10 10] for GAT for con-

sistency. This configuration pushes GAT towards accuracy

and GraphSAGE towards efficiency, in line with the model

complexity and hidden dimension setting, and offers a bal-

anced view of the accuracy-efficiency trade-off of MP-GNN

models. For LADIES, we set the nodes sampled per layer

to 512, following the largest node limitation used in their

original paper (Zou et al., 2019). For GraphSAINT, we use

the node sampler and set the node limitation to the same as

the batch size.

Regarding batch size, the commonly used choices in the

literature include 512, 1024, 2000, 4000, and 8000. A larger

batch size helps reduce epoch time since the total number
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of sampled nodes is reduced, with increased memory re-

quirement and generally requires more epochs to converge.

In our experiments, we choose a batch size of 8000, which

leads to a higher training throughput of MP-GNNs while

permitting convergence under 400 epochs which is used as

the total number of epochs per run for the medium-sized

graphs.

In our accuracy-efficiency trade-off exploration, we fine-

tune two hyperparameters, the learning rate and dropout rate

on all datasets except igb-large. The learning rate is chosen

from [0.01, 0.001], and the dropout rate is chosen from [0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7]. Due to resource constraints, a

more thorough investigation of hyperparameters is left for

future work.

PP-GNN. For PP-GNN models, we follow the implemen-

tations from their official GitHub repos. For SIGN, we use

3 layers with a hidden dimension of 512. For HOGA, we

fine-tune the hidden dimension from two settings: 256 with

1 head or 64 with 4 heads, with a single multi-head attention

layer. On the three large graphs, we use a hidden dimen-

sion of 256 with 4 heads instead. For all three models, we

fine-tune the learning rate and dropout rate as for PP-GNN

models, chosen from [0.01 0.001] and [0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7], respectively. For a fair comparison, we set the

batch size the same as MP-GNNs to 8000. For operators,

we use only one kernel, the normalized adjacency matrix,

and choose between directed or undirected adjacency matrix

depending on which yields higher accuracy.

B CONVERGENCE COMPARISON

We compare the convergence rate of MP-GNN and PP-GNN

models on three medium-sized datasets under different lay-

ers or hops. The results for 2, 3, 5, and 6 layers (hops) are

shown in Figure 10. In Figure 10, we observe that PP-GNNs

consistently converge faster on the ogbn-products dataset.

On pokec, the convergence rates of MP-GNNs are compa-

rable to those of PP-GNNs. For the wiki dataset, HOGA

achieves the fastest convergence, while GAT converges the

slowest, with SIGN performing similarly to GraphSAGE.

Overall, PP-GNNs demonstrate comparable or faster con-

vergence rates than MP-GNNs, which brings them even

more advantages compared to MP-GNNs when end-to-end

training time is considered.

C DETAILED EXPERIMENT ENVIRONMENT

We conduct the experiments on a Linux server with two 3.0

GHz Intel Xeon Gold 6248R CPUs (2x24 cores), 380 GB

RAM, four RTX A6000 GPUs (each with 48 GB of GPU

memory), and two Samsung PM9A3 SSDs (3.5 TB each

with 4x PCIe 4.0 support). Regarding software versions, we

use PyTorch 2.0.1, DGL 2.1.0, and CUDA 12.1.

D ACCURACY-EFFICIENCY TRADE-OFF

The accuracy-efficiency trade-off diagrams on ogbn-

products and pokec are shown in Figure 11. For these

experiments, we fine-tune the models as described in Ap-

pendix A. The accuracy is averaged over 5 runs with 400

epochs each. We observe that PP-GNNs always lie on the

Pareto-Frontier in the diagrams after applying our proposed

system-level optimizations, showing significant training ef-

ficiency advantage. Regarding accuracy, HOGA and SIGN

achieve comparable accuracy as MP-GNNs with node-wise

samplers on these two datasets.

E CHUNK RESHUFFLING

Table 6. Test accuracy of HOGA and SIGN across different hops

and chunk sizes under pokec.
HOGA SIGN

Model Hops Chunk Size Acc / % Model Hops Chunk Size Acc / %

HOGA 2

1 79.32

SIGN 2

1 79.20

1000 79.21 1000 79.03

2000 79.43 2000 79.15

4000 79.25 4000 79.12

8000 79.58 8000 79.13

HOGA 3

1 80.27

SIGN 3

1 80.96

1000 80.91 1000 80.95

2000 80.22 2000 80.92

4000 81.47 4000 80.94

8000 81.01 8000 80.55

HOGA 4

1 81.79

SIGN 4

1 80.80

1000 81.35 1000 80.88

2000 81.85 2000 80.90

4000 81.67 4000 80.83

8000 81.43 8000 80.82

HOGA 5

1 81.65

SIGN 5

1 81.01

1000 81.90 1000 80.99

2000 81.64 2000 80.73

4000 81.68 4000 80.63

8000 81.91 8000 80.87

HOGA 6

1 81.51

SIGN 6

1 80.90

1000 81.83 1000 80.67

2000 81.82 2000 80.72

4000 81.38 4000 80.54

8000 81.69 8000 80.64

We investigate the influence of chunk reshuffling on model

convergence rate and accuracy using three medium-sized

datasets, with a chunk size chosen from [1, 1000, 2000,

4000, 8000] while all other hyperparameters stay the same

as in the accuracy-efficiency tradeoff plots with a single run.

The complete results for 2, 3, 5, and 6 hops are shown in

Figure 12. From the figure, we observe that the validation ac-

curacy brought by chunk size is negligible on ogbn-products

and wiki. On pokec, the training process is less stable, shown

as fluctuations in the training curve, especially for SIGN.

However, we find the test accuracy chosen according to the

highest validation accuracy is relatively stable, as shown in

Table E. In the table, a chunk size of 1 equals SGD-RR, and

we can see the accuracy degradation brought by the chunk

reshuffling training method is less than 0.5%.

We also examine the effect of chunk reshuffling on a large

dataset, ogbn-papers100M, using a chunk size of 8000 under

2, 3, and 4 hops. For HOGA, the test accuracies are 66.09%,
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MP-GNNs can be greatly reduced. However, such caching

is less effective for PP-GNNs, as they do not reuse training

data within a single epoch. For PP-GNNs, the total data

transfer volume can be directly estimated from the number

of hops used.

The detailed profiling results are as follows:

• Medium-sized datasets (fitting in GPU memory):

PP-GNNs require 0.2–15 GB of data transfer, whereas

MP-GNNs require 8×–26× more.

• ogbn-papers100M: PP-GNNs load less than 3

GB from GPU memory, while MP-GNNs require

26×–111× more data transfer from host memory.

• igb-medium: PP-GNNs transfer 70–93 GB from host

memory, while MP-GNNs transfer 23×–65× more.

• igb-large: PP-GNNs transfer 720–960 GB from stor-

age, whereas MP-GNNs require 16×–55× more data.

These results emphasize the data transfer efficiency of PP-

GNNs. However, data transfer volume does not always

directly correspond to training throughput, as models may

be either memory-bound or compute-bound. For instance,

HOGA and SIGN load the same amount of training data, yet

their throughputs differ by more than 10×. When training

data is loaded from disk, the throughput advantage of PP-

GNNs more closely aligns with their reduced data transfer

volumes compared to MP-GNNs, suggesting that both GNN

families are more likely constrained by storage bandwidth

in such scenarios.

J ARTIFACT APPENDIX

J.1 Abstract

This artifact includes the source code for the system-level

optimizations introduced in our paper, encompassing effi-

cient batch assembly, double-buffer-based data prefetching,

chunk reshuffling, and storage-based training. Additionally,

it provides an automated training configuration system.

Execution requires a machine with multiple NVIDIA GPUs,

NVIDIA GPU Direct Storage (GDS), and an SSD. The arti-

fact includes installation scripts for all dependencies. Due

to the computational and storage demands of large graph

benchmarks, we provide reproduction instructions for ex-

periments on the ogbn-products dataset. Experiments

on other datasets follow similar procedures.

J.2 Artifact Check-List (Meta-Information)

• Algorithm: Graph Neural Networks (GNNs)

• Dataset: ogbn-products

• Hardware: x86 CPU, multiple NVIDIA GPUs, SSD

• Execution: Bash scripts for data preprocessing and training

• Metrics: Training throughput, accuracy

• Output: Standard output (stdout), log files

• Experiments: Single-GPU and multi-GPU training, auto-
mated training configuration

• Disk Space Requirement: 10 GB

• Workflow Preparation Time: 30 minutes

• Experiment Completion Time: 1 hour

• Publicly Available: Yes

• Code License: MIT License

• Frameworks Used: PyTorch, DGL, PyG

• Archived (DOI): TBD

J.3 Description

J.3.1 Delivery Method

The artifact is available as a GitHub repository:

• Repository: <https://github.com/

cornell-zhang/preprop-gnn>

J.3.2 Hardware Dependencies

• x86 CPU

• Multiple NVIDIA GPUs

• SSD

J.3.3 Software Dependencies

• NVIDIA GDS (1.6.0 or higher)

• Python 3.9

• CUDA 11.8

• PyTorch 2.2.1

• DGL 2.1.0

• PyG 2.5.2

• OGB 1.3.6

• IGB 0.1.0

J.3.4 Datasets

• ogbn-products (pokec, wiki,

ogbn-papers100M, IGB-medium, and

IGB-large supported)
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J.4 Installation

1. Create a conda environment and install dependencies

using the provided script.

2. Install igb from its official GitHub repository.

3. Install two custom operators: async fetch and

gds read.

4. Detailed instructions are provided in the README.md.

J.5 Experiment Workflow

The workflow consists of four main parts:

1. Preprocessing: Convert the dataset into a format suit-

able for PP-GNN training.

2. Single-GPU Experiments: Compare vanilla PP-GNN

training with our optimized pipeline, evaluating differ-

ent data placements:

• In GPU memory

• In host memory using SGD-RR or SGD-CR

• In storage

3. Multi-GPU Experiments: Evaluate training with data

in GPU and host memory using SGD-RR and SGD-CR.

Note that multi-GPU training does not support SGD.

4. Automated Training Configuration Experiments:

Test our automated system for optimizing training con-

figurations.

J.6 Evaluation and Expected Results

• Accuracy results are stored in ./result. For HOAG

with 3 hops under 400 epochs with the default settings,

the test accuracy should be around 79.7%.

• Training throughput results are stored in

./result/timing.

• Expected training throughput ranking (single GPU):

GPU preloading ≈ Host memory with

SGD-CR > Host memory with SGD-RR ≈
Storage

• Multi-GPU scalability depends on the hardware con-

figuration.

J.7 Experiment Customization

• Modify model cfg.json to explore different mod-

els and hyperparameter settings. For instance, change

method to SIGN or SGC to explore these two models,

change training hops to other numbers to exploring

using different hops.

• Update evaluation.sh to change GPU IDs and

GPUcap parameters to use different number of GPUs.


