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ABSTRACT
Graph neural networks (GNNs) are widely used for learning node embeddings in graphs, typically adopting a
message-passing scheme. This approach, however, leads to the neighbor explosion problem, with exponentially
growing computational and memory demands as layers increase. Graph sampling has become the predominant
method for scaling GNNss to large graphs, mitigating but not fully solving the issue. Pre-propagation GNNs (PP-
GNNis) represent a new class of models that decouple feature propagation from training through pre-processing,
addressing neighbor explosion in theory. Yet, their practical advantages and system-level optimizations remain
underexplored. This paper provides a comprehensive characterization of PP-GNNs, comparing them with graph-
sampling-based methods in training efficiency, scalability, and accuracy. While PP-GNNs achieve comparable
accuracy, we identify data loading as the key bottleneck for training efficiency and input expansion as a major
scalability challenge. To address these issues, we propose optimized data loading schemes and tailored training
methods that improve PP-GNN training throughput by an average of 15x over the PP-GNN baselines, with
speedup of up to 2 orders of magnitude compared to sampling-based GNNs on large graph benchmarks. Our

implementation is publicly available at https://github.com/cornell-zhang/preprop—gnn.

1 INTRODUCTION

Message-passing-based graph neural networks (MP-GNNs)
have become a cornerstone for graph representation learning,
achieving success in various tasks like node classification
(Velickovic et al., 2018; Wu et al., 2023; Kipf & Welling,
2017), link prediction (Zhang & Chen, 2018; Schiitt et al.,
2017), and graph clustering (Zhang et al., 2019; Ying et al.,
2018b; Tsitsulin et al., 2023). However, scaling MP-GNNs
to large graphs remains a significant challenge.

The message-passing framework (Gilmer et al., 2017) con-
sists of two iterative steps: (1) feature aggregation and (2)
transformation. Within this framework, each node collects
feature embeddings from its neighbors and then transforms
them using a learnable function. We show the architecture of
MP-GNN models in Figure 1. The main challenge in scaling
MP-GNNSs to large graphs stems from the “neighbor explo-
sion” problem (Hamilton et al., 2017), where nodes must re-
cursively collect embeddings from increasingly larger neigh-
borhoods across layers, causing the number of embeddings
to grow exponentially with each additional layer.

To address this challenge, various prior arts have introduced
sampling-based GNNss to reduce the compute and memory
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footprint during message passing. Those models encompass
node-wise sampling to limit neighborhood sizes per node
(Chen et al., 2017; Hamilton et al., 2017), layer-wise sam-
pling to reduce node counts per layer (Chen et al., 2018;
Zou et al., 2019), and graph-wise sampling to control over-
all subgraph size (Chiang et al., 2019; Zeng et al., 2020).
However, the sampling-based GNNs face several major lim-
itations. First, node-wise sampling methods only partially
mitigate the neighbor explosion problem, as their time com-
plexity still increases exponentially with the number of lay-
ers. More importantly, the sampling algorithms modify the
graph topology by design, which inevitably breaks the func-
tionality of computation graphs such as logic networks (Wu
et al., 2023) and dataflow graphs (Phothilimthana et al.,
2024), resulting in accuracy degradation on their down-
stream tasks (Deng et al., 2024).

To circumvent the limitations of MP-GNNs, a new class of
models known as pre-propagation GNNs (PP-GNNs) has
emerged to tackle the scalability issue from a different an-
gle (Wu et al., 2019; Frasca et al., 2020; Dong et al., 2021;
Zhang et al., 2022; Liao et al., 2022; Chen et al., 2020b;
Deng et al., 2024; Zhu & Koniusz, 2020). These models
perform feature aggregation in a preprocessing step, elim-
inating the need for this computationally expensive step
during model training. This approach theoretically offers
two advantages over MP-GNN:ss. First, by decoupling nodes
from interdependencies introduced by feature aggregation,
nodes are processed independently during training, effec-
tively addressing the neighbor explosion problem. Second,
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Figure 1. General structure of MP-GNN and PP-GNN models.

previous efforts (Huang et al., 2020) have shown that within
the message-passing framework, feature aggregation is typi-
cally more time-consuming than transformation due to its
sparse nature. By restricting training to dense computations,
PP-GNNss are expected to achieve greater efficiency. Impor-
tantly, the input data preprocessing is a one-time cost that
can be amortized across multiple rounds of hyperparameter
tuning and model architecture adjustments.

In this work, we conduct the first systematic characteri-
zation of PP-GNN models, comparing their training effi-
ciency, scalability, and accuracy with MP-GNN models. We
find that although PP-GNNs achieve comparable accuracy
as MP-GNNs on commonly used large graph benchmarks,
they do not exhibit clear training efficiency advantages over
MP-GNN s that leverage tailored system-level optimizations.

During our characterization, we identify two primary chal-
lenges for PP-GNN training: data loading as the major
efficiency bottleneck and input expansion as the main scal-
ability issue. Data loading, consisting of batch assembly
and data transfer, dominates training time due to lightweight
computations in PP-GNNs, and the input expansion prob-
lem stems from the architecture of PP-GNN models, where
the size of input features expands as more hops of neighbors
are used, potentially exceeding host memory capacity.

To address these challenges, we propose several system-
level optimizations. First, we introduce a customized data
loader with an efficient batch assembly operation to reduce
host-side data preparation overhead. Second, we design a
double-buffer-based data prefetching scheme to decouple
data loading from GPU-side computation. These optimiza-
tions significantly reduce data loading overhead while ad-
hering to the standard training method, stochastic gradient
descent with random reshuffling (SGD-RR) (Mishchenko
et al., 2020). Additionally, we propose chunk reshuffling,
which shuffles training data at a coarser granularity, enabling
bulk data transfer and more efficient GPU-side batch assem-
bly. Moreover, we leverage chunk reshuffling to extend
our training pipeline to leverage GPU direct storage (GDS)
(Thompson & Newburn, 2019) access, efficiently handling
input sizes exceeding host memory capacity.

We further integrate these optimizations into an automated

training configuration system for PP-GNNs, which detects
hardware configurations and determines the best data place-
ment and training strategies. With these system optimiza-
tions, PP-GNNs demonstrate significantly higher training
efficiency on various commonly used large graph bench-
marks, including those with up to 100 million nodes.

Our main contributions are as follows:

* We present the first comprehensive study comparing both
the training efficiency and accuracy of PP-GNNs and MP-
GNNs on commonly-used large graph benchmarks.

* We identify data loading as the critical efficiency bot-
tleneck and the input expansion problem as the major
scalability challenge for PP-GNN training.

* We propose various system-level optimizations to tackle
the two challenges, including efficient batch assembly
schemes, double-buffer-based data prefetching, and a tai-
lored chunk reshuffling training method. Additionally, we
propose an automated training configuration system for
PP-GNNs that accommodates various graph sizes based
on hardware configurations and a data placement policy.

* Our optimizations improve PP-GNN training efficiency
on average 15X compared to vanilla PP-GNN implemen-
tations and show comparable training efficiency when
fetching input data directly from the solid-state drives
(SSD) compared to from the host memory. After opti-
mization, compared to MP-GNN models with state-of-
the-art graph samplers, our optimized PP-GNNs achieve
on average 9.9 x and up to 2 orders of magnitude higher
training throughput with higher accuracy on large graphs.

2 PRELIMINARIES

This section introduces the key concepts related to GNNSs,
including the message-passing paradigm, graph sampling
algorithms, and PP-GNNs. We also introduce existing MP-
GNN training systems in this section.

2.1 Notations

In the following sections, we define a graph as G = (V, E),
where V is the node set and F is the edge set. We define
|V| = n as the total number of nodes in the graph and
|E| = m as the total number of edges. Each node v € V
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has a neighborhood set N (v). Let A € R™*"™ represent the
adjacency matrix and D € R"™*" represent the diagonal
degree matrix. X € R™*¥ denotes the input node feature
matrix with F' as the input feature dimension.

2.2 General Structure of MP-GNNs

In general, GNN models take in graph-related information,
such as the graph topology and node features, to learn latent
node embeddings. Most popular GNN models can be gener-
alized within the message-passing-based framework (Gilmer

et al., 2017), which is articulated in Eq. (1). Here, hg,k) de-

notes the embedding of node v in layer k, with hfﬁ) = T,.
I}, represents a transformation function, fj, an aggregation
function, and e, the edge attribute between nodes v and w.

W =1 (D, i (D e) | Y € N@})) - )

Message passing occurs within the aggregation function
fr, where node v aggregates embeddings from its one-hop
neighbors, a process also known as feature propagation.
As indicated in Equation (1), the aggregation function is
applied recursively across layers, which can lead to the
neighbor explosion problem. Various GNN models are spe-
cific instances of this generalized framework. For example,
GraphSAGE (Hamilton et al., 2017) employs mean, Long
Short-Term Memory (LSTM), or pooling aggregators in its
aggregation function. The Graph Attention Network (GAT)
(Velickovic et al., 2018) incorporates a learnable attention
mechanism to assign different weights to neighbors during
feature propagation. Both models employ a Multi-Layer
Perceptron (MLP) as the transformation function.

2.3 Graph Sampling

Graph sampling is a widely adopted technique to scale MP-
GNNSs on large graphs, categorized into three types: node-
wise sampling (Chen et al., 2017; Hamilton et al., 2017,
Balin & Catalytirek, 2024), layer-wise sampling (Chen et al.,
2018; Zou et al., 2019), and graph-wise sampling (Chiang
etal., 2019; Zeng et al., 2020). Node-wise samplers, such as
the one introduced in GraphSAGE (Hamilton et al., 2017),
limit neighborhood size during sampling but still face the
neighbor explosion problem, with node count growing ex-
ponentially by layer. Layer-wise sampling methods sample
a fixed number of nodes per layer, resulting in linear growth
but struggling with sparse connectivity. LADIES (Zou et al.,
2019) tackles this problem with layer-dependent sampling
for better connectivity. Graph-wise sampling methods, such
as GraphSAINT (Zeng et al., 2020), sample subgraphs with
a fixed number of nodes or edges, maintaining a subgraph
size independent of model depth while ensuring connection.
LABOR (Balin & Catalyiirek, 2024) is a State-of-The-Art
(SoTA) hybrid sampler combining the strength of both node-
wise and layer-wise sampling, leading to fewer nodes sam-
pled compared to node-wise samplers while maintaining an

adaptive nature to different graph sizes.

2.4 GNN Training Systems

In sampling-based GNN training, the primary bottleneck is
the graph sampling process, which includes node sampling
and feature extraction (Liu et al., 2023; Yang et al., 2022;
Lin et al., 2020). Various training systems have been de-
veloped to optimize this process by leveraging GPUs. For
instance, DGL (Wang, 2019) accelerates node sampling
and feature extraction on GPUs, provided the graph data
fits entirely into GPU memory. PaGraph (Lin et al., 2020)
utilizes GPU-based caching of node features while relying
on CPU for node sampling. GNNLab (Yang et al., 2022)
employs GPUs for both node sampling and feature caching.
These techniques can enhance MP-GNN training efficiency
in both single-GPU and multi-GPU environments. Addi-
tional strategies employed in these systems include the use
of NVLinks between GPUs to minimize communication
overhead (Cai et al., 2023), hardware-aware graph partition-
ing (Sun et al., 2023; Tan et al., 2023), and GPU kernel
optimizaitons (Huang et al., 2024; Wang, 2019).

2.5 Pre-propgation GNNs

PP-GNNs (Frasca et al., 2020; Deng et al., 2024; Zhang
et al., 2022; Chen et al., 2020b; Liao et al., 2024; 2022; Yu
et al., 2020; Wu et al., 2019) have recently emerged as a
promising approach to scaling GNN training. We show the
general structure of PP-GNN models in Figure 1. During
preprocessing, node features are aggregated in a manner
similar to feature propagation in MP-GNNgs, but instead of
relying directly on the adjacency matrix, operators derived
from the adjacency matrix are typically employed. From
a spectral perspective, these operators act as graph signal
filters applied to the input graph (Gasteiger et al., 2019).
Given that most MP-GNNs effectively perform low-pass
filtering on the input graph signal (Nt & Maehara, 2019),
PP-GNNs can achieve comparable accuracy by learning on
already filtered graph data. Like MP-GNNSs, node features
are propagated by multiplying the operators with the node
feature matrix, yielding features at different hops through
successive multiplications. The resulting node features are
then stored and reused in the training phase, where a dense
model is typically employed to learn node representations.

PP-GNN models can be generalized as follows:
Preprocess: S, = {X,BiX, ..., BEX}, k=1,...,K
@3

Train: H = 1(S1,...,S5k), Y =o(H) 3)

In Eq. (2), X denotes the input feature matrix, R represents
the number of hops, and By for k = 1,..., K are K opera-

tors. After preprocessing, we get K sets of node features,
denoted as S}, each of which consists of R + 1 matrices,
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corresponding to features that incorporate information from
up to R-hop neighbors, along with the original node features.
In Eq. (3), I(-) represents a specific learnable transforma-
tion function applied on all sets of S, which outputs a single
node embedding matrix H. An output function o(-) then
transforms H to the desired output shape.

For SGC (Wu et al., 2019), the operator is the normalized
adjacency matrix expressed as B = D 2AD 2, where
A =T+ Ais the adjacency matrix with self-loops, and
D is the corresponding diagonal degree matrix. o()is a
linear transformation while [(-) can be simplified as d; =
1if ¢ = r otherwise 0. For SIGN (Frasca et al., 2020), the
operator can be the normalized adjacency matrix or those
derived from Personalized PageRank (PPR) or Heat kernel
(Gasteiger et al., 2019). The transformation function I(-)
first concatenates matrices belonging to the same hop from
different operators and then learns 12 4+ 1 weight matrices
for each hop. The output function o(-) is an MLP. For
HOGA (Deng et al., 2024), the operator is captured by the
normalized adjacency matrix. The transformation function
adopts a transformer-like mechanism, which treats the R+ 1
input feature vectors of each node as R+ 1 tokens. An MLP
is employed as the output function.

3 PP-GNN CHARACTERIZATION

As an emerging family of GNN models, PP-GNNs have yet
to benefit from tailored system-level optimizations, raising
questions about their practical training efficiency and scal-
ability compared to MP-GNNs. Their model expressivity
on commonly-used graph datasets has not been thoroughly
explored either. In this section, we present a systematic
characterization of PP-GNNs, examining their theoretical
complexity, accuracy, training efficiency, and scalability.

3.1 Complexity Analysis

Table 1. Comparison of computational cost and memory complex-
ity among GNN models — Asymptotic complexities are shown
without Big O notation. For computational cost, red denotes fea-
ture propagation, and blue denotes feature transformation.

Model Training Memory Computational Cost
GraphSAGE | LbCTF + LF? LFnCT™ + LnCTF?
LADIES L?bF + LF? L?nFb+ L?nF?
GraphSAINT | LbF + LF? LnFb+ LnF?

LABOR LbC*F + LF? LFnC* ! + LnCL F?

SGC bF + F? nF?

SIGN LbF + LF? LnF?

HOGA LbF+LF2+Lb(7‘+1)2 Ln(r+])l72+LnF(r+])2

First, we compare the theoretical computational cost and
memory complexity of training PP-GNNs and MP-GNNs,
as listed in Table 1. In this table, we do not consider the
sampling process for MP-GNNs. Here b represents the mini-
batch size, and we assume the number of nodes sampled
per layer in LADIES and per subgraph in GraphSAINT

is the same as b; C' represents the neighborhood size per
node after sampling in GraphSAGE and LABOR, which is
usually much smaller than b. To simplify the analysis, we
assume the same dimension for the input layer and hidden
layers, using F' to denote both. Other notations used in the
complexity analysis are defined in Section 2.1.

There are two major components in the computational cost
for MP-GNNSs, one arising from feature propagation, de-
noted in red, and the other from feature transformation,
denoted in blue. Prior studies (Huang et al., 2020) suggest
that the former usually takes longer in practice due to its
sparse nature. According to the table, PP-GNNs are ex-
pected to significantly boost the training efficiency, as they
eliminate feature propagation from the training process.

3.2 Accuracy

Conventional wisdom suggests that more scalable graph
learning approaches like PP-GNNs may compromise accu-
racy for improved scalability. However, the learning capa-
bilities of PP-GNN:ss are still not well understood and remain
an active area of research (Chen et al., 2020a). Meanwhile,
work from Deng et al. (Deng et al., 2024) shows that PP-
GNNs outperform MP-GNNs on several electronic design
automation tasks that require complete neighbor information
to infer functionality correctly. To this end, we investigate
the model accuracy of various approaches on widely used
large graph datasets, with detailed information in Table 2.
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Figure 2. Test accuracy of GNN models with different hop counts
or layer counts — LABOR and SAINT represent GraphSAGE with
the LABOR sampler and GraphSAINT node sampler, respectively.

Our evaluation indicates that, among sampling methods, the
LABOR sampler achieves the highest test accuracy across
most settings, while HOGA outperforms other PP-GNN
models in the majority of cases. Figure 2 illustrates the test
accuracy of GraphSAGE (Hamilton et al., 2017) employ-
ing two different samplers—LABOR (Balin & Catalyiirek,
2024) and GraphSAINT (Zeng et al., 2020)—as well as a
PP-GNN model, HOGA, across varying numbers of layers
or hops on three datasets. Complete results and hyperpa-
rameter settings are provided in Appendix A and D. From
Figure 2 we observe two trends: (1) PP-GNNs demonstrate
accuracy comparable to MP-GNNs, with LABOR serv-
ing as a representative; (2) Expanding the node receptive
field tends to improve test accuracy on large graphs—
unlike prior arts evaluated on small graphs, using 5/6 layers
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(hops) further improve accuracy in our experiments, which
is consistent with the trend seen in (Chiang et al., 2019).

3.3 Practial Training Efficiency

To evaluate the practical training efficiency, we compare MP-
GNNs and PP-GNNs from two perspectives: convergence
rate and epoch time.
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Figure 3. Convergence rate comparison among 4-layer(hop) MP-
GNNs and PP-GNNs— The number in the plot denotes the con-
vergence point where 99% of peak validation accuracy is reached.

Convergence Rate Comparison. The convergence rate
significantly impacts the end-to-end training time of a GNN
model. Since different models reach different peak accura-
cies even on the same dataset, to make a fair comparison,
we measure the convergence point as the epoch where each
model first reaches 99% of its peak validation accuracy. Fig-
ure 3 shows the convergence points of different MP-GNNs
and PP-GNNss with hyperparameters tuned for optimal accu-
racy, detailed in Appendix A. Complete results are provided
in Appendix B. Our results show that PP-GNNs have on par
or faster convergence rate than MP-GNNSs.

Epoch Time Comparison. For PP-GNNs, we implemented
SIGN (Frasca et al., 2020), HOGA (Deng et al., 2024),
and SGC (Wu et al., 2019) in PyTorch, which use the Py-
Torch data loader to decouple data preparation from model
training. For comparison, we also implemented MP-GNN
models with various graph sampling algorithms in DGL
(Wang, 2019), adhering to the structures described in their
original papers (Ying et al., 2018a; Velickovic et al., 2018;
Zou et al., 2019; Balin & Catalyiirek, 2024; Zeng et al.,
2020). Detailed settings are provided in Appendix A. With
DGL version 0.8 and later, the graph sampling process can
be GPU-accelerated. When input data is pinned in host
memory, DGL utilizes NVIDIA’s UVA (Schroeder, 2011)
technology, allowing GPU to access data on the host mem-
ory with zero-copy. Preloading the input data to GPU mem-
ory further reduces end-to-end training time due to the high
memory bandwidth available on GPU.

Figure 4 compares the epoch times among 3-layer MP-
GNNs (GraphSAGE with the LABOR sampler) and 3-hop
PP-GNNs (SIGN, HOGA, and SGC). The epoch time for
GraphSAGE is measured with a vanilla DGL implementa-
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Figure 4. Epoch time comparison of PP-GNNs and MP-GNNs—
PP-GNNs (HOGA, SIGN, and SGC) are shown with diagonal
hatching, while SAGE represents GraphSAGE with the LABOR
sampler, with UVA and preload indicating DGL optimizations.

tion with CPU-based graph sampling and two optimized
versions, denoted as SAGE-UVA and SAGE-Preload, rep-
resenting GPU-based graph sampling with the use of UVA
and input preloading, respectively. From Figure 4 we see
system-level optimizations significantly improve MP-GNN
training throughput. Consequently, despite theoretical ad-
vantages in computational cost (Table 1), vanilla PP-GNN
implementations take longer epoch time than MP-GNN5s
fully optimized in DGL.

HOGA
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Figure 5. Training time breakdown of PP-GNNSs on ogbn-products.

Further investigation reveals that the primary overhead in
the baseline implementation stems from data loading. Fig-
ure 5 shows the epoch time breakdown of three PP-GNN
models on the ogbn-products dataset, averaged across var-
ious hops. The figure highlights that computation is rela-
tively lightweight for PP-GNNs, which is represented as
the forward pass, backpropagation, and optimizer step in
the figure. In contrast, the epoch time is dominated by data
loading. Therefore, system-level optimizations that improve
data loading efficiency are crucial for PP-GNNs to achieve
their potential training efficiency advantages.

3.4 The Challenge of Input Expansion

Through our characterization, we identify a largely over-
looked issue in prior studies of PP-GNNs, which we term
the “input expansion problem.” From Eq. (3) we observe
that K(R + 1) input matrices are generated during pre-
processing, each representing an input feature matrix with
7 € R hop neighbor information from one of K operators.
Consequently, the input feature size is expanded to K (R+1)
times larger, as illustrated in Figure 1 (d). For instance, the
igb-large dataset (Khatua et al., 2023) takes 400 GB for
the input features. With a small R and K, like R = 3 and
K =1, the input data for PP-GNNs will expand to 1.6 TB,
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exceeding the typical host memory capacity. Consequently,
randomly fetching features from the storage system during
training will result in severe training efficiency degrada-
tion due to low storage random read speed. Therefore, we
need system-level solutions to overcome the input expansion
problem of PP-GNNs on large graphs.

3.5 Pre-processing Overhead

Compared to MP-GNNs, PP-GNNs require an additional
preprocessing step. However, this preprocessing can be con-
sidered a one-time cost, as the processed data is stored and
reused throughout the training process. Table 2 presents
the preprocessing time for the datasets used in our evalua-
tion. Typically, training a GNN model involves hundreds
of epochs per run, and hyper-parameter tuning may require
tens or even hundreds of such runs. As shown in Table 2,
the preprocessing overhead is usually much smaller than
the time required for a single training run, and thus, can be
efficiently amortized over the entire training phase.

4 SYSTEM OPTIMIZATIONS

Our characterization reveals that data loading time signifi-
cantly dominates the training time of PP-GNNs. Typically,
data loading consists of two steps: batch assembly and data
transfer. During batch assembly, the data loader extracts
node vectors belonging to the current batch, and transfers
them to GPU in the following data transfer step. To reduce
the data loading overhead, a straightforward solution in-
volves loading input data into GPU memory to leverage its
high bandwidth. However, the input expansion problem lim-
its the feasibility of this approach, as GPU memory typically
has a much lower capacity compared to host memory.

To reduce the data loading overhead while maintaining the
input data in host memory, we propose several strategies.
First, we devise a custom data loader with efficient data in-
dexing to reduce the kernel launching overhead during batch
assembly (Section 4.1). Second, we introduce a double-
buffer-based data prefetching mechanism on GPU, which
largely hides data loading time by pipelining it with compu-
tation (Section 4.1). Last, we develop a chunk reshuffling
method that allows us to reorder batch assembly and data
transfer, enabling GPU-side batch assembly, taking advan-
tage of high GPU memory bandwidth (Section 4.2). More-
over, chunk reshuffling paves the way for scaling to large
graphs. By replacing host memory access with GPU direct
storage access, we can easily handle input sizes exceeding
the host memory capacity (Section 4.3).

4.1 Customized Data Loading

Upon profiling the PP-GNN baseline implementations, we
observe that the PyTorch data loader extracts node features

individually during batch assembly, resulting in frequent
kernel invocations on the host side. As a result, batch assem-
bly dominates the total training time, as depicted in Figure 6
(a). To mitigate the redundant kernel launching, we design
a customized data loader utilizing the index operator pro-
vided by PyTorch to copy the scattered node features into a
pinned tensor in host memory, which is then transferred to
the GPU asynchronously. This approach is feasible due to
the simplicity of the input data format, as PP-GNN inputs
are purely dense tensors. By launching the index opera-
tor only once per batch, we significantly reduce the kernel
launching overhead, as illustrated in Figure 6 (b).

Despite this improvement, batch assembly on the host side
still incurs significant time, potentially exceeding GPU com-
putation time. This is primarily due to the extraction of
scattered data in memory, limited by the host memory band-
width. A potential solution is to cache node features on
GPU to leverage its high memory bandwidth, as adopted
by many MP-GNN systems (Yang et al., 2022; Sun et al.,
2023). However, this approach is unsuitable for PP-GNNss,
as the training data lacks both temporal and spatial locality,
being accessed only once in a random order every epoch.
Instead, we implement a data prefetching scheme using dou-
ble buffers on GPU, as shown in Figure 6 (c). This approach
decouples data loading from GPU-side computation, en-
abling pipelining of these two steps. To achieve this, we
use separate threads on the host side for launching compute
kernels and data-loading-related kernels. On the GPU side,
different streams are utilized for data prefetching and com-
putation. As shown in Figure 6 (c), our prefetching scheme
effectively hides the batch assembly overhead.

4.2 Chunk Reshuffling

While double-buffer-based prefetching pipelines data load-
ing with computation, it fails to fully eliminate overhead
when data loading time exceeds computation time. This
overhead arises from (1) batch assembly, constrained by
host memory bandwidth, and (2) data transfer, limited by
the host-to-GPU interconnect. Since data transfer is already
optimized by Direct Memory Access (DMA) technique,
further reducing its duration is challenging.

To reduce batch assembly time, we propose a chunk reshuf-
fling training method. In this method, at the start of each
epoch, we reshuffle training data indices at the chunk level,
with each chunk comprising contiguous node features. Then,
we transfer individual chunks belonging to the current
batch from host memory to GPU and assemble chunks into
batches. This approach takes advantage of the significantly
higher DRAM bandwidth on GPU for batch assembly. Al-
though data transfer overhead increases as more DMA trans-
fer kernels are launched, this is minor provided the chunk
size is sufficiently large. The efficacy of this approach is
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Figure 6. System-level optimizations adopted in our work — For the case with input data residing in the host memory.

illustrated in Figure 6 (d). Lastly, chunk reshuffling can be
considered a form of insufficient shuffling scheme (Meng
et al., 2019; Nguyen et al., 2022), which is commonly used
in practice. In Section 6.2, our empirical results show that
chunk reshuffling has negligible impacts on test accuracy
and convergence rate for PP-GNNs.

4.3 Direct Storage Access

The input expansion problem can cause the preprocessed in-
put data of large graphs to exceed the host memory capacity.
A naive implementation fetching individual node features
from storage to the host would suffer from slow random
reads, resulting in significant data loading overhead.

Our chunk reshuffling method provides a foundation for
extending to storage-based training; reading chunks from
the storage system is significantly more efficient compared
to reading individual node features. By replacing host-
memory-reading operators with GPU direct storage access,
we retain the benefits of pipelined data loading and computa-
tion with our double-buffer-based data prefetching scheme.
In our implementation, we leverage the NVIDIA GDS tech-
nique (Thompson & Newburn, 2019) for direct storage ac-
cess, which automatically utilizes DMA engines and system
buffers, ensuring efficient data transfers under various sys-
tem configurations. To maximize the parallel processing
capabilities of modern storage systems and bus bandwidth
utilization, we split input features of different hops into
separate files, enabling parallel storage access requests.

5 AUTOMATED TRAINING
CONFIGURATION

Building on our system-level optimizations, we extend our
training pipeline to develop an automated configuration
system tailored for PP-GNNs. This system automates key
configurations, particularly for data placement and training
methods, optimizing PP-GNN training based on hardware
resources and model characteristics. Implemented in Py-
Torch, our system offers a user-friendly interface, allowing

integration of PP-GNN models without model-specific sys-
tem tweaking. Before training starts, our system assesses
the available hardware resources, including the number of
GPUs and GPU and host memory capacities. To determine
the minimum GPU memory space requirement for a specific
model, we adopt an approach similar to PaGraph (Lin et al.,
2020), where we conduct a one-time training session using
storage-based data loading to measure peak GPU memory
usage. Combining the information of input data size, our
configuration system automatically decides data placement
and corresponding training method, as detailed below.

GPU memory. Preloading input data to GPU memory is
prioritized due to its high bandwidth. For large datasets,
our system supports distributing data across multiple GPUs,
with the data loader fetching data in a locality-aware man-
ner (Yang & Cong, 2019) to adapt to SGD-RR. When
data is preloaded to GPU memory, our double-buffer-based
prefetching further enhances training efficiency. However,
with the high bandwidth of GPU memory, batch assembly
is not a bottleneck, making chunk reshuffling negligible for
performance. Thus, SGD-RR is preferred in this scenario.

Host Memory. When the input data exceeds GPU memory
capacity, it is placed in host memory. With chunk reshuf-
fling, the entire input data must be pinned in host memory
for non-blocking transfers. Otherwise, only a buffer pro-
portional to the mini-batch size is pinned. The configure
system defaults to SGD-RR for large data to avoid excessive
host memory pinning, unless specified by users.

Storage. When the input data exceeds the host memory
capacity, our system allows the GPU to fetch data directly
from the storage via NVIDIA GDS (Thompson & Newburn,
2019). Currently, we only support chunk reshuffling in this
scenario, since SGD-RR requires fine-grained data access,
significantly increasing data loading overhead.

The influence of data placement on training throughput is
evaluated in Appendix H.
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6 EVALUATION

Experiment Setup. We conduct the experiments on a Linux
server with two 3.0 GHz Intel Xeon CPUs, 380 GB RAM
and four RTX A6000 GPUs. Detailed hardware and soft-
ware configurations are provided in Appendix C.

Datasets.  We use three medium-sized graphs, ogbn-
products, pokec, and wiki, each with approximately 2 mil-
lion nodes for a detailed investigation of the accuracy-
efficiency trade-off between PP-GNNs and MP-GNNs.
While we classify these as medium-sized, it’s important
to note that these graphs are usually considered large graphs
in the GNN community (Chiang et al., 2019). We use three
large graphs, ognb-papersl100M, 1GB-meduim, and IGB-
large to investigate the scalability of PP-GNNs under dif-
ferent scenarios. The datasets are chosen from real-world
benchmarks including Open Graph Benchmark (OGB) (Hu
et al., 2020), Illinois Graph Benchmark (IGB) (Khatua et al.,
2023), and the Cornell non-homophilous benchmark (Lim
et al., 2021). The dataset attributes are listed in table 2. Our
paper focuses on node classification tasks, which serve as
the foundation for link and graph classification.

MP-GNN. We use GraphSAGE (Hamilton et al., 2017) and
GAT (Velickovic et al., 2018) as backbone models. We
employ the samplers from GraphSAGE (Hamilton et al.,
2017), LABOR (Balin & Catalyiirek, 2024), LADIES (Zou
et al., 2019) and GraphSAINT (Zeng et al., 2020) and refer
to them as Neighbor, LABOR, LADIES, and SAINT in the
following sections, respectively. GraphSAGE is set with a
hidden dimension of 256, using the mean aggregator, and
GAT is set with a hidden dimension of 128 per channel
across 4 channels. We adopt two commonly used 3-layer
fanout settings: [15 10 5] for GraphSAEG and [10 10 10]
for GAT. This configuration pushes GAT towards accuracy
and GraphSAGE towards efficiency, in line with the model
complexity and hidden dimension setting, and offers a bal-
anced view of the accuracy-efficiency trade-off of MP-GNN
models. Detailed hyperparameter settings are provided in
Appendix A.

PP-GNN. We choose SGC (Wu et al., 2019), SIGN (Frasca
et al., 2020), and HOGA (Deng et al., 2024) as our PP-
GNN models. SGC represents the simplest form of PP-
GNNSs, consisting of only one linear layer and using only
one input matrix. HOGA, which adopts a transformer-like
multi-head attention scheme, is a relatively complex PP-
GNN model with higher expressivity, while SIGN lies in
between. For these PP-GNNSs, we use a single operator: the
normalized adjacency matrix. For SIGN, we use 3 layers
with a hidden dimension of 512. For HOGA, we use a
hidden dimension of 256 for medium-sized graphs and 1024
for large graphs, with a single multi-head attention layer.
This configuration pushes HOGA towards accuracy and
SIGN towards efficiency. Detailed hyperparameter settings

are provided in Appendix A.

Baselines. Our PP-GNN baselines are implemented in Py-
Torch, leveraging PyTorch Dataloader for data loading.
The pin_memory attribute is enabled in DatalLoader
and 2 workers are used to achieve optimal performance.
For MP-GNNs, we implement them in DGL (Wang, 2019),
GNNLab (Yang et al., 2022), SALIENT++ (Kaler et al.,
2023) and Ginex (Park et al., 2022).

6.1 Accuracy-Efficiency Comparison
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Figure 7. Accuracy efficiency trade-off comparison among MP-
GNNs and PP-GNNs on wiki— The MP-GNN legend keys show
the backbone model and the graph sampler. *128’ in the labels
represents the additional hidden dimension setting.

This section compares the accuracy and training efficiency
of PP-GNNs and MP-GNNs after applying our proposed
system-level optimizations. Figure 7 shows the accuracy-
efficiency trade-offs of PP-GNNs and MP-GNNs on the
wiki dataset, with the Pareto frontier indicated in the upper
right direction. Diagrams for the ogbn-products and pokec
datasets are shown in Appendix D (Figure 11). Hyperpa-
rameter settings are detailed in Appendix A. The primary
variable in these experiments is the node receptive field,
defined as the number of layers in MP-GNNs and the num-
ber of hops in PP-GNNs. All experiments are conducted
on a single GPU with data preloaded into GPU memory.
GNNLab’s GPU-side input caching does not outperform
DGL preloading, and we present only DGL results.

Figure 7 and Figure 11 demonstrate that our optimizations
push the PP-GNNS to the Pareto frontier on all three datasets.
It also shows that HOGA and SIGN achieve comparable
accuracy to MP-GNNs with node-wise samplers, with sig-
nificantly higher training efficiency. SGC, while fastest
among all approaches, sacrifices substantial accuracy due
to not fully utilizing all the hops. Among all the graph sam-
pling approaches, the SOTA LABOR sampler achieves the
Pareto-optimum but still suffers from the neighbor explosion
problem to some extent. LADIES and SAINT overcome
this problem with a significant sacrifice in test accuracy,
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Table 2. Dataset statistics — This table summarizes key dataset statistics, with the last column showing the one-time cost of pre-processing,
as both wall-clock time and a proportion of a single training run, amortizable over multiple runs (details are provided in Appendix G).

Dataset #Nodes #Edges 9% Labeled . Sp h.t #lnput #Classes Size Pre—proces:smg T‘"Te A/ sec
(train/valid/test) ~ Features (graph/node) (compare to single training run)
ogbn-products 2,449,029 61,859,140 100% 0.08/0.02/0.9 100 47 0.9 GB/0.9 GB 51.8 (53%)
pokec 1,632,803 30,622,564 100% 0.5/0.25/0.25 65 2 0.5 GB/0.4 GB 27.59 (3%)
wiki 1,925,342 303,434,860 100% 0.5/0.25/0.25 600 5 4.5 GB/4.3 GB 122.79 (11%)
IGB-medium 10,000,000 120,077,694 100% 0.6/0.2/0.2 1024 19 1.8 GB/39.0 GB 386.63 (11%)
ogbn-papers100M 111,059,956  1,615,685,872 1.4% 0.78/0.08/0.14 128 172 24 GB/53 GB 507.8 (90%)
IGB-large 100,000,000 1,223,571,364 100% 0.6/0.2/0.2 1024 19 19 GB/400 GB 4521.5 (28%)

occupying the lower parts in the figures.

An important trend observed is that a larger node receptive
field enhances model accuracy (a pattern true for both MP-
GNNs and PP-GNNss, though the accuracy gains are more
pronounced in MP-GNNS5). Given that the training time of
PP-GNNss increases sub-linearly with additional hops, these
models become increasingly competitive in terms of training
efficiency as the node receptive field expands. For example,
on wiki, SIGN is 9 times faster than SAGE-LABOR with
2 layers or hops, and this advantage grows to 28 times
with 6 layers or hops. Moreover, we employ a smaller
hidden dimension setting, 128, across models besides their
original settings. Reducing the hidden dimension to 128,
MP-GNNSs experience up to 4% accuracy loss, while HOGA
and SIGN only see a 0.5% variation. With a smaller hidden
dimension of 128, SIGN is 136x faster than GAT with
a hidden dimension of 512 with 5 hops or layers, while
maintaining an accuracy advantage of 3.9% on the test set.

6.2 Influence of Chunk Reshuffling
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Figure 8. Validation accuracy of HOGA with 4 hops on three
datasets — The number in the legend denotes the chunk size.

In this section, we investigate the impact of our proposed
chunk reshuffling training method on model accuracy and
convergence rate using the three medium-sized graphs. For
PP-GNN models, we fix all the hyperparameters except the
chunk size, which is selected from 1, 1000, 2000, 4000,
8000. Figure 8 shows the validation accuracy of HOGA
with 4 hops. From the figure, we observe that for ogbn-
products, the variation in the training curves across different
chunk sizes is negligible, with mean test accuracy varying
by less than 0.1%. For pokec and wiki, although there are
some fluctuations in the training curves, the final test accu-

racy difference is less than 0.5%. This trend is consistent
across other PP-GNN models and hop settings, with com-
plete results in Appendix E. Consequently, in the following
sections, we use a chunk size of 8000, equal to the batch size,
when employing the chunk reshuffling training method.

6.3 Ablation Study
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Figure 9. Ablation study with input data in the host memory —
X-ticks show the dataset (O: ogbn-products, P: pokec, W: wiki)
and the PP-GNN model (HOGA, SIGN and SGC).

In this section, we evaluate the efficacy of our techniques for
improving data loading efficiency: efficient host-side batch
assembly, GPU-side double-buffer-based prefetching, and
chunk reshuffling with GPU-based data assembly. Figure
9 presents the normalized epoch time of various PP-GNN
models across different datasets, with data averaged over 2
to 6 hops and 100 epochs using the geometric mean.

Our results show that efficient host-side batch assembly
provides a 3.3 x speedup over the baseline implementation.
Adding double-buffer-based prefetching yields an additional
1.9x speedup. Further, chunk reshuffling with GPU-based
batch assembly delivers an additional 2.4 x speedup, result-
ing in a total 15x improvement over the baseline. More
detailed analysis can be referred to Appendix F.

6.4 Results on Large Graphs

We examine the training efficiency and scalability of dif-
ferent methods on three large graph datasets using Graph-
SAGE as the MP-GNN model, while HOGA and SIGN
as the PP-GNN models. In DGL, we adopt the LABOR
sampler, while in GNNLab, SALIENT++, and Ginex, we
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use their hardcoded neighbor samplers respectively. Infer-
ence of GNNLab relies on an older version of DGL which
CUDAI12.1 does not support, hence we do not report the
test accuracy of GNNLab.

Table 3. Performance comparison on ogbn-papers100M, with test
accuracy averaged over 5 runs of 100 epochs each.

der this setting, SALIENT++ encounters OOM issues with
a batch size of 8000, and we need to reduce the batch size to
1000. With a smaller batch size, SALIENT++ shows better
scalability, with sacrifice on training throughput. Across all
settings, PP-GNNs consistently outperform MP-GNNs with
4 GPUs, with up to 156 speedup.

Layers /e  Training Test Throughput (epoch/sec) Table 4. Performance comparison on igh-medium, with test accu-
or Hops System Ace (%)
1GPU 2GPUs 4GPUs racy averaged over 5 runs of 20 epochs each.
DGL 64.43£0.19  0.12 - - — -
5 SAGE  SALIENT++ 6428+0.16 027 046 042 (ﬁafy[f,fs Model ]g;sl:';;g ACT:’(S f%) Throughput (epoch/min)
GNNLab - 0.72 0.71 1.33 1GPU 2GPUs 4GPUs
SIGN Ours 65.70£0.09  2.94 323 6.62
HOGA Ours 66.19+0.08  0.53 0.77 1.54 SAGE Ggﬁ‘ab 75 '44%0'02 222 g:;g %;
SAGE DGL 65.79+0.14  0.04 - - ) SIGN  Ous-RR 76162002 3.16 4723 6.59
3 SALIENT++  65.67+0.06  0.05 0.10 0.10 Ours-CR  76.17+0.02  9.35 6.04 11.13
GNNLab - 0.19 0.19 0.29 HoGa Ours-RR - 7608+0.03  2.22 4.03 5.99
SIGN Ours 66291020 292 322 6.54 Ours-CR  76.0740.03 543 4.11 7.85
HOGA Ours 66.65+0.09  0.41 0.61 1.23
SAGE  DGL 75474005  0.10 0.11 0.21
SAGE DGL 66.44:£0.17  0.02 - - 3 SIGN OursRR 76.17£0.02 244 342 1387
4 SALIENT++  65.78+0.12  0.01 0.03 0.04 HOGA Ours-RR  76.1040.03  1.65 2.93 4.49
GNNLab - 0.06 0.07 0.10
SIGN Ours 66.36£0.05  2.86 313 625
HOGA Ours 66.86+0.11 036 0.54 1.09

First, the ogbn-papers100M graph dataset features instances
where labeled nodes constitute only a minor portion of
the total node count. For PP-GNNs, the input data size
after preprocessing is proportional to the number of labeled
nodes, while the information of unlabeled nodes is incor-
porated during preprocessing. Notably, the original input
features for ogbn-papers100M occupy 53 GB, but the la-
beled part only takes 0.8 GB per hop after preprocessing,
fitting comfortably into GPU memory. Conversely, MP-
GNNs require accessing the entire graph topology and all
input features during training, totaling 77 GB, which ex-
ceeds a single GPU’s capacity, making loading all input
data into GPU memory infeasible. For MP-GNNs, we use
DGL-UVA, SALIENT++, and GNNIab to evaluate their
training efficiency on the ogbn-papers100M dataset.

Table 3 shows training throughput and test accuracy under
100 epochs for different approaches with 2 to 4 hops or
layers. HOGA achieves the highest accuracy among all
methods, with up to 1.76% higher accuracy than SAGE.
DGL achieves higher accuracy than SALIENT++ due to
the adoption of the LABOR sampler. In terms of training
efficiency, SIGN and HOGA achieve up to 5x and 41 x
higher throughput than GraphSAGE on a single GPU. Com-
pared to DGL-UVA, GNNLab improves training efficiency
by caching input features and graph topology on GPU, but
its hardcoded graph sampler produces larger subgraphs than
LABOR, offsetting its caching benefits as the number of lay-
ers increases. Due to the large graph size, we encounter out-
of-memory (OOM) issues when extending the DGL-UVA
to multiple GPUs. We employ SALIENT++ and GNNLab
in the scalability study. PP-GNNs achieve higher scalabil-
ity than MP-GNNs implemented in both SALIENT++ and
GNNLab. One exception is SALIENT++ with 4 layers. Un-

We use the igh-medium dataset to assess the training effi-
ciency of MP-GNNs and PP-GNNss in scenarios where the
dataset size exceeds GPU memory capacity. igh-medium
is fully labeled, with an input feature dimension of 1024,
occupying 40 GB for input features, exceeding the single
GPU memory capacity for both MP-GNNs and PP-GNNGs.

Table 4 presents the training throughput and test accuracy
over 20 epochs for different approaches. PP-GNNs consis-
tently achieve higher test accuracy than MP-GNNs on this
dataset. In terms of training throughput, PP-GNNs with
chunk reshuffling significantly outperform other methods,
with up to 24 x speedup compared to MP-GNNs with 3 hops
or layers. GNNLab performs comparably to PP-GNNs with
SDG-RR and outperforms DGL-UVA by a wide margin
due to its GPU-side input feature caching, which mitigates
the high data extraction and transformation demands of igh-
medium stemming from its large input feature dimension.
However, with more than 2 layers, GNNLab encounters
OOM issues from larger sampled subgraphs.

When scaling to 4 GPUs, PP-GNNs with SGD-RR show
similar scalability as MP-GNNs. Although PP-GNNs with
chunk reshuffling achieve higher training efficiency, they
demonstrate relatively less scalability, delivering only 1.27
x average speedup when using 4 GPUs, which is primarily
bottlenecked by host-to-GPU bandwidth, and using more
GPUs does not mitigate the problem. This issue is more
pronounced with direct storage access, as storage systems
typically have less bandwidth to the host or GPU. Therefore,
we only implement single GPU direct storage access.

Lastly, we utilize the igh-large dataset to demonstrate that
our proposed optimizations can effectively address the in-
put expansion problem when the input data size exceeds
the host memory capacity. For MP-GNNs, we adopt two
baselines, Ginex (Park et al., 2022) and DGL. Ginex is a
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Table 5. Performance comparison on igb-large, with test accuracy
reported under 3 epochs.

Layers Model Training Test Throughput
or Hops ode System  Accuracy (%) (epoch/hour)
DGL 63.07 0.77
) SAGE. —arex 63.09 0.65
SIGN Ours 64.41 10.52
HOGA Ours 64.42 8.58
DGL 62.85 0.17
5 SAGE. —Grex 6273 0.19
SIGN Ours 64.41 8.06
HOGA Ours 64.52 6.67

storage-based MP-GNN training system leveraging host-
side caching. For DGL, we employ the mmap technique
to map the input feature file into memory, which allows
DGL to access necessary data portions directly from stor-
age without loading the entire dataset into host memory.
After preprocessing, the input data for PP-GNNs occupies
approximately 1.6 TB with 1 kernel and 3 hops. Table 5
presents the training throughput and test accuracy for dif-
ferent approaches. We limit the number of epochs to 3 and
the number of runs to 1 due to the prolonged execution
time of MP-GNN, in line with the IGB official leaderboard.
Our results reveal that PP-GNNs achieve up to 42x greater
training throughput compared to MP-GNNs, highlighting
the superior performance of PP-GNN5s on ultra-large graphs.
Conversely, the excessive training time per epoch renders
detailed hyperparameter tuning impractical for MP-GNNS.

Compared to GraphSAGE, HOGA, and SIGN achieve train-
ing throughput improvements of up to 2 orders of magnitude,
with an average of 9.9x across three large graph datasets,
while maintaining superior accuracy. These results make
HOGA and SIGN compelling options for efficient learning
on large graphs.

7 CONCLUSIONS

This work presents the first comprehensive study comparing
the training efficiency and accuracy of PP-GNNs with MP-
GNNSs on large graph benchmarks. While PP-GNNs match
MP-GNNSs in accuracy, tailored system optimizations are
crucial for realizing their theoretical efficiency and scala-
bility. Our proposed optimizations help PP-GNNs achieve
on average 9.9 higher training throughput on large graph
datasets compared to MP-GNNs optimized in SOTA MP-
GNN training systems while maintaining higher accuracy.
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A HYPERPARAMETER SETTINGS

MP-GNN. For backbone MP-GNN models, we use the
DGL example implementations of GraphSAGE and GAT.
GraphSAGE is set with a hidden dimension of 256, using the
mean aggregator, and GAT is set with a hidden dimension
of 128 per channel across 4 channels.

For node-wise sampling methods, including Neighbor and
LABOR samplers, we adopt two commonly used 3-layer
fanout settings: [15 10 5] for GraphSAEG and [10 10 10]
for GAT. Building on the 3-layer setup, we extend it to 4,
5, and 6 layers with smaller fanout limits to avoid OOM
issues, using [15 10 5 3 3 3] for GraphSAGE and [10 10 10
5 5 5] for GAT. For 2-layer models, we adjust the fanout
to [15 10] for GraphSAGE and [10 10] for GAT for con-
sistency. This configuration pushes GAT towards accuracy
and GraphSAGE towards efficiency, in line with the model
complexity and hidden dimension setting, and offers a bal-
anced view of the accuracy-efficiency trade-off of MP-GNN
models. For LADIES, we set the nodes sampled per layer
to 512, following the largest node limitation used in their
original paper (Zou et al., 2019). For GraphSAINT, we use
the node sampler and set the node limitation to the same as
the batch size.

Regarding batch size, the commonly used choices in the
literature include 512, 1024, 2000, 4000, and 8000. A larger
batch size helps reduce epoch time since the total number
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of sampled nodes is reduced, with increased memory re-
quirement and generally requires more epochs to converge.
In our experiments, we choose a batch size of 8000, which
leads to a higher training throughput of MP-GNNs while
permitting convergence under 400 epochs which is used as
the total number of epochs per run for the medium-sized
graphs.

In our accuracy-efficiency trade-off exploration, we fine-
tune two hyperparameters, the learning rate and dropout rate
on all datasets except igh-large. The learning rate is chosen
from [0.01, 0.001], and the dropout rate is chosen from [0.1,
0.2,0.3,0.4, 0.5, 0.6, 0.7]. Due to resource constraints, a
more thorough investigation of hyperparameters is left for
future work.

PP-GNN. For PP-GNN models, we follow the implemen-
tations from their official GitHub repos. For SIGN, we use
3 layers with a hidden dimension of 512. For HOGA, we
fine-tune the hidden dimension from two settings: 256 with
1 head or 64 with 4 heads, with a single multi-head attention
layer. On the three large graphs, we use a hidden dimen-
sion of 256 with 4 heads instead. For all three models, we
fine-tune the learning rate and dropout rate as for PP-GNN
models, chosen from [0.01 0.001] and [0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7], respectively. For a fair comparison, we set the
batch size the same as MP-GNNs to 8000. For operators,
we use only one kernel, the normalized adjacency matrix,
and choose between directed or undirected adjacency matrix
depending on which yields higher accuracy.

B CONVERGENCE COMPARISON

We compare the convergence rate of MP-GNN and PP-GNN
models on three medium-sized datasets under different lay-
ers or hops. The results for 2, 3, 5, and 6 layers (hops) are
shown in Figure 10. In Figure 10, we observe that PP-GNNs
consistently converge faster on the ogbn-products dataset.
On pokec, the convergence rates of MP-GNNs are compa-
rable to those of PP-GNNSs. For the wiki dataset, HOGA
achieves the fastest convergence, while GAT converges the
slowest, with SIGN performing similarly to GraphSAGE.
Overall, PP-GNNs demonstrate comparable or faster con-
vergence rates than MP-GNNs, which brings them even
more advantages compared to MP-GNNs when end-to-end
training time is considered.

C DETAILED EXPERIMENT ENVIRONMENT

We conduct the experiments on a Linux server with two 3.0
GHz Intel Xeon Gold 6248R CPUs (2x24 cores), 380 GB
RAM, four RTX A6000 GPUs (each with 48 GB of GPU
memory), and two Samsung PM9A3 SSDs (3.5 TB each
with 4x PCle 4.0 support). Regarding software versions, we
use PyTorch 2.0.1, DGL 2.1.0, and CUDA 12.1.

D ACCURACY-EFFICIENCY TRADE-OFF

The accuracy-efficiency trade-off diagrams on ogbn-
products and pokec are shown in Figure 11. For these
experiments, we fine-tune the models as described in Ap-
pendix A. The accuracy is averaged over 5 runs with 400
epochs each. We observe that PP-GNNs always lie on the
Pareto-Frontier in the diagrams after applying our proposed
system-level optimizations, showing significant training ef-
ficiency advantage. Regarding accuracy, HOGA and SIGN
achieve comparable accuracy as MP-GNNs with node-wise
samplers on these two datasets.

E CHUNK RESHUFFLING

Table 6. Test accuracy of HOGA and SIGN across different hops
and chunk sizes under pokec.

HOGA SIGN
Model Hops ChunkSize Acc/ % || Model Hops Chunk Size Acc/ %
1 79.32 1 79.20
1000 79.21 1000 79.03
HOGA 2 2000 79.43 SIGN 2 2000 79.15
4000 79.25 4000 79.12
8000 79.58 8000 79.13
1 80.27 1 80.96
1000 80.91 1000 80.95
HOGA 3 2000 80.22 SIGN 3 2000 80.92
4000 81.47 4000 80.94
8000 81.01 8000 80.55
1 81.79 1 80.80
1000 81.35 1000 80.88
HOGA 4 2000 81.85 SIGN 4 2000 80.90
4000 81.67 4000 80.83
8000 81.43 8000 80.82
1 81.65 1 81.01
1000 81.90 1000 80.99
HOGA 5 2000 81.64 SIGN 5 2000 80.73
4000 81.68 4000 80.63
8000 81.91 8000 80.87
1 81.51 1 80.90
1000 81.83 1000 80.67
HOGA 6 2000 81.82 SIGN 6 2000 80.72
4000 81.38 4000 80.54
8000 81.69 8000 80.64

We investigate the influence of chunk reshuffling on model
convergence rate and accuracy using three medium-sized
datasets, with a chunk size chosen from [1, 1000, 2000,
4000, 8000] while all other hyperparameters stay the same
as in the accuracy-efficiency tradeoff plots with a single run.
The complete results for 2, 3, 5, and 6 hops are shown in
Figure 12. From the figure, we observe that the validation ac-
curacy brought by chunk size is negligible on ogbn-products
and wiki. On pokec, the training process is less stable, shown
as fluctuations in the training curve, especially for SIGN.
However, we find the test accuracy chosen according to the
highest validation accuracy is relatively stable, as shown in
Table E. In the table, a chunk size of 1 equals SGD-RR, and
we can see the accuracy degradation brought by the chunk
reshuffling training method is less than 0.5%.

We also examine the effect of chunk reshuffling on a large
dataset, ogbn-papers100M, using a chunk size of 8000 under
2, 3, and 4 hops. For HOGA, the test accuracies are 66.09%,
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Figure 10. Convergence rate comparison among MP-GNNs and PP-GNNs— The number in the plot denotes the convergence point where

99% of peak validation accuracy is reached.

66.45%, and 66.75%, respectively, with a maximum drop of
0.2% compared to SGD-RR. For SIGN, the test accuracies
are 65.55%, 65.89%, and 66.12%, with at most a 0.4% drop.
These results further confirm that SGD-CR has a negligible
impact on the accuracy of PP-GNNs, even on large graphs
with over 100 million vertices.

F ABLATION STUDY

As demonstrated in Figure 9, our results highlight the signif-
icant benefits of double-buffer prefetching for datasets with
larger input feature dimensions, like wiki, and for simpler
PP-GNN models like SIGN and SGC, where data loading
takes a larger portion of training time. When input data
is preloaded to GPU memory, our results demonstrate that
the double-buffer-based data prefetching scheme offers an
average 1.33x speedup. However, since data loading is no
longer the bottleneck due to the high GPU memory band-
width, further applying chunk reshuffling does not yield
additional performance gains.

G PREPROCESSING OVERHEAD

In Table 7, we report the wall-clock pre-processing time for
the six graph datasets, expressed both in absolute terms and
as a proportion of the time for a single training run. The pre-
processing step is implemented in PyTorch and leverages a
single GPU, except igb-large and ogbn-papers100M, which
use CPU only. Consistent with our accuracy evaluations,

we utilize only one operator during data pre-processing.
Specifically, for ogbn-products, pokec, and wiki, we extract
6 hops of features; for ogbn-papers100M, 4 hops; and for
igb-medium and igb-large, 3 hops.

The wall-clock time for a complete training run is esti-
mated by multiplying the per-epoch time of HOGA at the
maximum hop number by the total number of epochs (de-
tailed in Table 7). From Appendix B, we observe that for
ogbn-products, 200 epochs suffice for HOGA and SIGN to
achieve convergence, while for pokec and wiki, 400 epochs
are necessary.

For larger datasets, we report the test accuracy under 100
epochs, 20 epochs, and 3 epochs for ogbn-papers100M, igh-
medium, and igb-large, respectively, in Section 6.4, due to
the prolonged training time of the MP-GNN baselines. For
PP-GNNs, we run both HOGA and SIGN for 400 epochs on
ogbn-papers100M, and plot their training curves as shown
in Figure 13. From the training curves, 200 epochs are
enough for HOGA and SIGN to achieve convergence. On
igb-medium, we further run 100 epochs for HOGA and
SIGN, observing a 0.1% increase in test accuracy, thus se-
lecting 100 epochs for the run time estimation. On igb-large,
we run 30 epochs, which yields a test accuracy increase of
0.5% for HOGA compared to 3 epochs. Therefore, we use
30 epochs as a conservative estimation for the run time. This
run time estimation does not account for minor factors, such
as data loading time during training, providing an idealized
comparison to pre-processing overhead.
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Table 7. Pre-processing Overhead Comparison

Wall Clock # Epochs in Estimated Preprocessing Time
Number . Epoch . . . .
Model of Hops Preprocessing Time (sec) A Single Training Time of Compared to A
Time (sec) Training Run A Single Run (sec)  Single Training Run
ogbn-products 6 51.8 0.49 200 98 53%
pokec 6 27.59 2.65 400 1060 3%
wiki 6 122.79 2.89 400 1156 11%
igb-medium 3 386.63 36.31 100 3631 11%
ogbn-papers100M 4 507.8 2.81 200 562 90%
igb-large 3 4521.5 539.5 30 16185 28%

From Table 7, we observe that the pre-processing overhead
is notably lower than that of a single training run, with
the exception of the ogbn-papers100M dataset. In ogbn-
papers100M, the labeled data is less than 1.4% of the total
nodes, meaning only around one million nodes are used
in training. However, the pre-processing step involves all
nodes, requiring matrix multiplication across over 111 mil-
lion nodes, which significantly increases the pre-processing
time relative to the epoch time. However, the preprocessing
time is still less than the time for a single run of training
and can be amortized during the hyperparameter tuning and
model adjustment processes, where tens or hundreds of runs
are usually required.

H DATA PLACEMENT STUDY

We evaluate the impact of input data locations on training
efficiency to validate our data placement policy. Figure
14 shows the normalized epoch time for various PP-GNN

models across different datasets, input data locations, and
training methods, averaged over 2 to 6 hops and 100 epochs
using the geometric mean.

Storing input data in GPU memory maximizes training ef-
ficiency due to its high bandwidth. When data is in host
memory with chunk reshuffling, the efficiency remains com-
parable to GPU memory preloading. Using SGD-RR with
data in host memory, training time increases moderately for
HOGA but significantly for SIGN and SGC compared to
chunk reshuffling. This is primarily due to the lighter-weight
computation in SIGN and SGC.

When data is read directly from SSD, HOGA'’s training time
is comparable to or even shorter than when data is read
from host memory with SGD-RR. This is due to efficient
bulk data transfer enabled by chunk reshuffling and GPU-
side double buffering, which largely hides SSD-to-GPU
transfer time. However, for SIGN and SGC, data transfer
time exceeds GPU computation time, resulting in a notable
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storage loading achieves 36% of the training efficiency of
GPU memory loading and 41% of host memory loading

with chunk reshuffling, while being 2% faster than host

memory loading with SGD-RR.

I DATA TRANSFER ANALYSIS

We analyze the total data transfer between disk, host, and
GPU memory during training. When no caching is applied,
PP-GNN models incur 1-2 orders of magnitude less data

CR for chunk reshuffling.

transfer compared to MP-GNN models, highlighting their

superior efficiency. This difference arises from the signifi-
cant node overlap among subgraphs in MP-GNN training.

We profiled the data volume of node features extracted dur-

ing MP-GNN subgraph construction as an estimate of data

transferred without caching. When caching is applied—such
as GPU-side caching of data from main memory, or host-
side caching of data from disk—the data transfer required by



Graph Learning at Scale: Characterizing and Optimizing Pre-Propagation GNNs

MP-GNN s can be greatly reduced. However, such caching
is less effective for PP-GNNSs, as they do not reuse training
data within a single epoch. For PP-GNN:s, the total data
transfer volume can be directly estimated from the number
of hops used.

The detailed profiling results are as follows:

* Medium-sized datasets (fitting in GPU memory):
PP-GNNs require 0.2—15 GB of data transfer, whereas
MP-GNNSs require 8 x—26x more.

e ogbn-papers100M: PP-GNNs load less than 3
GB from GPU memory, while MP-GNNs require
26 x—111x more data transfer from host memory.

¢ igh-medium: PP-GNNs transfer 70-93 GB from host
memory, while MP-GNNss transfer 23 x—65x more.

e igb-large: PP-GNNs transfer 720-960 GB from stor-
age, whereas MP-GNNs require 16x-55x more data.

These results emphasize the data transfer efficiency of PP-
GNNs. However, data transfer volume does not always
directly correspond to training throughput, as models may
be either memory-bound or compute-bound. For instance,
HOGA and SIGN load the same amount of training data, yet
their throughputs differ by more than 10x. When training
data is loaded from disk, the throughput advantage of PP-
GNNs more closely aligns with their reduced data transfer
volumes compared to MP-GNNSs, suggesting that both GNN
families are more likely constrained by storage bandwidth
in such scenarios.

J ARTIFACT APPENDIX
J.1 Abstract

This artifact includes the source code for the system-level
optimizations introduced in our paper, encompassing effi-
cient batch assembly, double-buffer-based data prefetching,
chunk reshuffling, and storage-based training. Additionally,
it provides an automated training configuration system.

Execution requires a machine with multiple NVIDIA GPUs,
NVIDIA GPU Direct Storage (GDS), and an SSD. The arti-
fact includes installation scripts for all dependencies. Due
to the computational and storage demands of large graph
benchmarks, we provide reproduction instructions for ex-
periments on the ogbn-products dataset. Experiments
on other datasets follow similar procedures.

J.2 Artifact Check-List (Meta-Information)
* Algorithm: Graph Neural Networks (GNNs)

¢ Dataset: ogbn—-products

* Hardware: x86 CPU, multiple NVIDIA GPUs, SSD

» Execution: Bash scripts for data preprocessing and training
e Metrics: Training throughput, accuracy

* Output: Standard output (stdout), log files

* Experiments: Single-GPU and multi-GPU training, auto-
mated training configuration

* Disk Space Requirement: 10 GB

* Workflow Preparation Time: 30 minutes
* Experiment Completion Time: 1 hour

e Publicly Available: Yes

* Code License: MIT License

* Frameworks Used: PyTorch, DGL, PyG

Archived (DOI): TBD

J.3 Description
J.3.1 Delivery Method

The artifact is available as a GitHub repository:

* Repository: <https://github.com/
cornell-zhang/preprop-gnn>

J.3.2 Hardware Dependencies
* x86 CPU

* Multiple NVIDIA GPUs
* SSD

J.3.3  Software Dependencies
¢ NVIDIA GDS (1.6.0 or higher)

* Python 3.9

L]

CUDA 11.8
e PyTorch 2.2.1

DGL 2.1.0

PyG 2.5.2

OGB 1.3.6
* IGB0.1.0

J.3.4 Datasets

(pokec, wiki,
IGB-medium, and

* ogbn-products
ogbn-papersl100M,
IGB-large supported)
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J4

1.

4.

J.5

Installation

Create a conda environment and install dependencies
using the provided script.

Install igb from its official GitHub repository.

Install two custom operators: async_fetch and
gds_read.

Detailed instructions are provided in the README . md.

Experiment Workflow

The workflow consists of four main parts:

1.

J.6

* Training

J.7

Preprocessing: Convert the dataset into a format suit-
able for PP-GNN training.

Single-GPU Experiments: Compare vanilla PP-GNN
training with our optimized pipeline, evaluating differ-
ent data placements:

* In GPU memory
* In host memory using SGD-RR or SGD-CR
* In storage

Multi-GPU Experiments: Evaluate training with data
in GPU and host memory using SGD-RR and SGD-CR.
Note that multi-GPU training does not support SGD.

Automated Training Configuration Experiments:
Test our automated system for optimizing training con-
figurations.

Evaluation and Expected Results

Accuracy results are stored in . /result. For HOAG
with 3 hops under 400 epochs with the default settings,
the test accuracy should be around 79.7%.

throughput results are stored in

./result/timing.

Expected training throughput ranking (single GPU):

GPU preloading =~ Host memory with
SGD-CR > Host memory with SGD-RR~
Storage

Multi-GPU scalability depends on the hardware con-
figuration.

Experiment Customization

Modify model_cfg. json to explore different mod-
els and hyperparameter settings. For instance, change
method to SIGN or SGC to explore these two models,
change training_hops to other numbers to exploring
using different hops.

* Update evaluation.sh to change GPU IDs and

GPUcap parameters to use different number of GPUs.



