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Abstract

Concept Bottleneck Models (CBMs) provide interpretable prediction by intro-
ducing an intermediate Concept Bottleneck Layer (CBL), which encodes human-
understandable concepts to explain models’ decision. Recent works proposed
to utilize Large Language Models and pre-trained Vision-Language Models to
automate the training of CBMs, making it more scalable and automated. However,
existing approaches still fall short in two aspects: First, the concepts predicted
by CBL often mismatch the input image, raising doubts about the faithfulness of
interpretation. Second, it has been shown that concept values encode unintended
information: even a set of random concepts could achieve comparable test accuracy
to state-of-the-art CBMs. To address these critical limitations, in this work, we
propose a novel framework called Vision-Language-Guided Concept Bottleneck
Model (VLG-CBM) to enable faithful interpretability with the benefits of boosted
performance. Our method leverages off-the-shelf open-domain grounded object de-
tectors to provide visually grounded concept annotation, which largely enhances the
faithfulness of concept prediction while further improving the model performance.
In addition, we propose a new metric called Number of Effective Concepts (NEC)
to control the information leakage and provide better interpretability. Extensive
evaluations across five standard benchmarks show that our method, VLG-CBM,
outperforms existing methods by at least 4.27% and up to 51.09% on Accuracy
at NEC=5 (denoted as ANEC-5), and by at least 0.45% and up to 29.78% on
average accuracy (denoted as ANEC-avg), while preserving both faithfulness and
interpretability of the learned concepts as demonstrated in extensive experiments?.

1 Introduction

As deep neural networks become popular in real-world applications, it is crucial to understand the
decision of these black-box models. One approach to provide interpretable decisions is the Concept
Bottleneck Model (CBM) [6], which introduced an intermediate concept layer to encode human-
understandable concepts. The model makes final predictions based on these concepts. Unfortunately,
one major limitation of this approach is that it requires concept annotations from human experts,
making it expensive and less applicable in practice as concept labels may not always be available.

Recently, a line of works utilized the powerful Vision-Language Models (VLMs) to replace manual
annotation [15, 27, 25]. They used Large Language Models (LLMs) to generate set of concepts,
and then trained the models in a post-hoc manner under the guidance of VLMs or neuron-level
interpretability tool [14]. By eliminating the expensive manual annotations, some of these CBMs
[15] could be scaled to large datasets such as ImageNet [18]. However, these CBMs [15, 27, 25] still
face two critical challenges:
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1. Challenge #1: Inaccurate concept prediction. The concept predictions in these CBMs
often contain factual errors i.e. the predicted concepts do not match the image. Moreover, as
concepts are generated by LLMs, there are some non-visual concepts, for example "loud
music" or "location" used in LF-CBM [15], which further hurt the faithfulness of concept
prediction.

2. Challenge #2: Information leakage. Recently, [13, 12] observed the information leakage
in CBMs through empirical experiments — they found that the concept prediction encodes
unintended information for downstream tasks, even if the concepts are irrelevant to the task.

In this paper, we propose a new framework called Vision-Language-Guided Concept Bottleneck
Model (VLG-CBM) to address these two major challenges. Our contributions are summarized below:

1. To address Challenge #1, we propose to use the open-domain grounded object detection
model to generate localized, visually recognizable concept annotations in Section 3. This
approach automatically filters the non-visual concepts. Furthermore, the location information
is utilized to augment the data. As far as we know, our VLG-CBM is the first end-to-end
pipeline to build CBM with vision guidance from open-vocabulary object detectors.

2. To address Challenge #2, we provide the first rigorous theoretical analysis which proves
that CBMs have serious issues on information leakage in Section 4.1, whereas previous
study on information leakage [12, 25] only provides empirical explanations. Building on our
theory, we further propose a new metric called the Number of Effective Concepts (NEC) in
Section 4.2, which facilitates fair comparison between different CBMs. We also show that

using NEC can help to effectively control information leakage and enhance interpretability
in our VLG-CBM.

3. We conduct a series of experiments in Section 5 and demonstrate that our VLG-CBM outper-
forms existing methods across 5 standard benchmarks by at least 4.27% and up to 51.09%
on Accuracy at NEC=5 (denoted as ANEC-5), and by at least 0.45% and up to 29.78%
on average accuracy across different NECs (denoted as ANEC-avg). Our learned CBM
achieves a high sparsity of 0.2% in the final layer even on large datasets including Places365,
preserving interpretability even with a large number of concepts. Additionally, we qualita-
tively demonstrate that our method provides more accurate concept attributions compared to
existing methods.

VLG-CBM provide accurate explanations while prior work provide /wrong/ explanations!
VLG-CBM (ours) LF-CBM LM4CV
1. short pointed beak (0.65) 1. 1.
2. blue head (0.21) 2. 2. grayish head, back, wings and tail with blue highlights (94.03)
3. green back (0.09) 3. 3. bright blue and orange plumage (91.44)
4. short stout bill (0.01) 4. 4. large red bill with a slightly hooked tip (89.09)
5. small songbird (0.01) 5. 5. distinctive white throat (-76.91)
Sum of other concepts (0.00)ady Sum of other concepts Sum of other concepts

1. blue gray wings (9.40) 1. ayellow head (1.96) 1. long, straight orange bill (141.48)

2. bright golden yellow plumage (1.31) 2. 2. large, orange bill with a black tip (100.07)
3. yellow head and breast (1.07) 3. orange legs (0.99) 3.

4. large conical bill (0.53) 4. yellow or orange plumage (0.80) 4. yellow and black plumage (84.85)
5. black mask on the face (0.26) 5 5

Sum of other concepts (0.00)ydy Sum of other concepts Sum of other concepts
1. small forked tail (7.22) 1. 1.
2. black and white wings (3.57) 2. 2.
3. small delicate body (2.75) 3. 3.
4. long slender beak (0.12) 4. yellow feet (1.12) 4. dark gray wings with pale gray edging (-78.55)
5. pointed beak (0.00) 5. 5. bright red head and nape (75.39)
Sum of other concepts (0.00) sy Sum of other concepts Sum of other concepts

Figure 1: We compare the decision explanation of VLG-CBM with existing methods by listing top-5
contributions for their decisions. Our observations include: (1) VLG-CBM provides concise and
accurate concept attribution for the decision; (2) LF-CBM [15] frequently uses negative concepts for
explanation, which is less informative; (3) LM4CV[25] attributes the decision to concepts that do not
match the images, a reason for this is that LM4CV uses a limited number of concepts, which hurts
CBM’s ability to explain diverse images; (4) Both LF-CBM and LM4CYV have a significant portion
of contribution from non-top concepts, making decisions less transparent. Full figure is in Appendix
Fig. D.1.



I Evaluation Flexibility | Interpretability

\

Method Control on Unlimited concept | Flexible  Accurate concept | Vision-guided  Interpretable

information leakage numbers backbone prediction concept filtering decision
Baselines:
LF-CBM[15] A v v A X A
LaBo[27] X v X A X A
LM4CV[25] v X X A A A
This work:
VLG-CBM v v v v v v

Table 1: Comparative analysis of methods based on evaluation, flexibility, and interpretability.
Here, v denotes the method satisfies the requirement, A denotes the method partially satisfies the
requirement, and x denotes the method does not satisfy the requirement. We compare with SOTA
methods including LF-CBM [15], Labo [27] and LM4CV [25].

2 Related work

Concept Bottleneck Model (CBM). The seminal paper [1] first proposed self-explaining models
by leveraging the idea of autoencoder to learn interpretable basis concepts in an unsupervised
manner without pre-specified concepts. Later, [6] proposed to learn interpretable concepts with
human specifications (labels) in the concept bottleneck layer (CBL), and coin the term Concept
Bottleneck Models (CBM). CBL is followed by a linear prediction layer, which maps concepts
to classes, enabling interpretable final decisions. Formally, let feature representation generated by
a frozen backbone represented by z = ¢(x), CBL concept prediction as g(z) = W,z, and the
final prediction layer as h(-) = Wrg(z) 4+ bp. The final class prediction of the CBM is given by
§=h(g(z)) = hogoo(x).

Under this setting, the key in training a CBM is obtaining an annotated {(image, concept)} paired
dataset for training concept bottleneck layer g. In [6], the authors used human-specified labels to
train the CBL in a supervised way. However, obtaining labels with human annotators could be very
tedious and costly. Recently, [15], [25], and [27] proposed to utilize Large Language Models (LLM)
to generate a set of concepts S, then train CBL by aligning image and concepts with the guidance
of vision language models (e.g. CLIP). For example, Oikarinen et al. [15] proposed LF-CBM to
train CBM by directly learning a mapping from the embedding space of backbone to concept values
in the CLIP space using cosine cubed loss function with the neuron interpretability tool[14], and
then mapping concepts to classes using sparse linear layer. [25] proposed LM4CYV, a task-guided
concept searching method that learns text embeddings in the CLIP space, and then maps the learned
embeddings to concepts obtained from LLM using nearest neighbor. Yang et al. [27] proposed
LaBo, using submodular optimization to reduce the concept set, followed by using CLIP backbone
for obtaining concept values. However, as we show in Sections 5.1 and 5.3 , these methods suffer
from multiple issues: (i) The concept prediction is often incorrect and does not capture the visual
attributes required for downstream class prediction (e.g. see Fig. 1 b )(ii) VLMs like CLIP suffer from
modality gap between image and text embeddings [9] resulting in encoding unintended information,
and even random concepts can achieve high accuracy [25]. To address these issues, we explicitly
ground the concepts on the training dataset using an open-domain object detection model and then
using the obtained concepts for learning CBL — this can ensure a more faithful representation of
fine-grained concepts and avoids the modality gap issues introduced by VLMs. Table 1 demonstrates
the superiority of VLG-CBM over existing methods [15, 25, 27] on properties including controlling
information leakage, flexibility to use any backbone, and accurate concept prediction.

There are some recent works aim at addressing the challenges of CBMs. Similar to us, Pham et al. [16]
uses an open-vocabulary object detection model to provide an explainable decision. However, their
model is directly adapted from an OWL-ViT model, while our VLG-CBM uses an open-vocabulary
object detection model to train a CBL over any base model, providing more flexibility. Additionally,
their model requires pretraining to get best performance, while our VLG-CBM could be applied
post-hoc to any pretrained model. Kim et al. [4] proposed to filter non-visual concepts by adding a
vision activation term to the concept selection step, whereas VLG-CBM uses an open-vocabulary
object detectors in multiple stage of CBM pipeline: for filtering non-visual concepts and the guiding
training of concept bottleneck layer. Sun et al. [20] aims at eliminating the information leakage,
and the authors evaluate the information leakage by measuring the performance drop speed after
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Figure 2: VLG-CBM pipeline: We design automated Vision+Language Guided approach to train
Concept Bottleneck Models.

removing top-contributing concepts. This metric can be controlled by our proposed NEC metric,
because the performance reach minimum after removing all contributing concepts. Roth et al. [17]
demonstrate that random words and characters achieve comparable CLIP zero-shot performance on
visual classification tasks. However, their work does not address information leakage problem and
is a very different setting from our work. To date, most of the CBMs focused on vision domains,
including this work. There are some recent work applying CBM approach to different domains
and different tasks, e.g. interpretable language models for text classifications [21, 22, 11] and for
continual learning [26]. We refer the interested readers to their papers for more details.

Open Domain Language Grounded Object Detection. Recent works, including GLIP [8], GLIPv2
[29], and GroundingDINO [10] detect objects in images in an open-vocabulary manner conditioned
on natural language queries. In this work we propose to utilize open-vocabulary object detectors for
automatically generating grounded concept dataset for training CBMs. This removes the need for
human labelers, which is costly, tedious, and does not scale to large datasets. Further, the detected
objects provide necessary vision-guidance for CBMs training as demonstrated in our experiments.

3 Method

In this section, we describe our novel automated approach to train a CBM with both Vision and
Language Guidance to ensure faithfulness, which is currently lacking in the field. Our approach,
abbreviated as VLG-CBM in the paper, generates an auxiliary dataset grounded on fine-grained
concepts present in images for training a sequential CBM. Section 3.1 describes our approach to
generating an auxiliary dataset used in training CBM, Section 3.2 describes our approach to training
concept bottleneck layer, and Section 3.3 describes the training of sparse layer to obtain class labels
from concepts in an interpretability-preservable manner. The overall pipeline is shown in Fig. 2.

3.1 Automated generation of auxiliary dataset

Here we describe our novel automated approach for generating labeled datasets for training CBMs.
Let f : X — )Y be the neural network mapping images to corresponding class labels, where
X = REXWX3 denotes the input image space and ) = {1,2,...,C} denotes the label space, C' is
the number of classes. Denote D = {(x;,y;)},x; € X,y; € Y the dataset used for training f, where
x; is the ¢-th image and y; is the corresponding label. Let .S be a set of natural-language concepts
describing the fine-level visual details from which classes are composed. We propose to generate a
modified and auxiliary dataset D’ from D such that each image contains finer-grained concepts that



are useful in predicting the classes, along with the target class. The overall process of obtaining the
modified dataset D’ can be divided into two steps:

* Language supervision from LLMs to generate a set of candidate concepts: We follow
the steps proposed in LF-CBM [15] for generating candidate concepts S, for each class ¢ by
prompting LLM to obtain visual features describing the class.

* Vision supervision from Open-domain Object Detectors to ground candidate concepts
to spatial information: We propose using Grounding-DINO[10] Swin-B, current state-of-
the-art grounded object detector, for obtaining bounding boxes of candidate concepts in
the dataset. For each image x; with class label ¢ and candidate concepts S., we prompt
Grounding DINO model with S, and obtain K; bounding boxes:

Bi = {(bj. t,55)} 1y, (1)

where b; € R?*? is the j-th bounding box coordinates, t; € R is the corresponding
confidence given by the model and s; € S, is the concept of this bounding box. We define
a confidence threshold 7" and remove bounding boxes with confidence less than 7" to get
filtered bounding boxes for each image:

B; = {(b,t,s) € B; | t > T}. )

After collecting bounding boxes for every image, we filter out the concepts that do not appear in any
bounding box, and get our final concept set S:

S={ses|3(,-s) e Ul B}. 3)
The one-hot encoded concept label vector o; € {0, 1}‘9 | for image ; is thus defined as:

1, if s; appears in B;,
i)j = . 4
(01); {O, otherwise. @

Our final concept-labeled dataset D’ for training CBM can be written as:

3.2 Training Concept Bottleneck Layer

After constructing the concept-labeled dataset D’, we now define our approach to train the concept
bottleneck layer for predicting the fine-grained concepts in the input image in a multi-label classifi-
cation setting. Let ¢ : X — R be a backbone that generates d-dimensional embeddings z = ¢(z)
for input image . Note that ¢(x) can be a pre-trained backbone or trained from scratch. Define g
to be the Concept Bottleneck Layer (CBL) which maps embeddings to concept logits. We train a
sequential CBM [6, 13] g(¢(z)) to predict concepts in an image using Binary Cross Entropy (BCE)
loss for multi-label prediction. Additionally, to improve the diversity of the concept-labeled dataset
D’, we augment the training dataset by cropping images to a randomly selected bounding box and
modifying the target one-hot vector to predict the concept corresponding to the bounding box. Our
optimization objective in terms of BCE loss can be written as:

|D’|
. 1
min Lepr, Lopr = D] ; BCE[g o ¢(x;),0i] (6)

3.3 Mapping Concept to Classes

In this section, we define our approach to training a sparse linear layer to obtain class labels from
concepts in an interpretability-preservable manner. Let h : R? — R be the sparse linear layer
with weight matrix Wy and bias by, which maps concept logits to class logits. We train the sparse
layer using the original dataset D by first obtaining concept logits from the trained CBL(frozen),
normalizing the concept logits with the mean and variance on training set, and then using them to
predict class logits. Our optimization objective in terms of Cross Entropy (CE) loss can be written as:

. 1
minLsy, Lsp = > CE[hogo¢(x),y]+ ARa, )

D] 4
(z,y)€ED



where Ro = (1 —a)3||Wp||3 + a||Wg||; is the elastic-net regularization [31] on weight matrix Wp,
A is a hyperparameter controlling regularization strength. We use GLM-SAGA[24] solver to solve
this optimization problem.

4 Unifying CBM evaluation with Number of Effective Concepts (NEC)

Besides training, another important challenge for CBM is: how to evaluate the semantic information
learned in the CBL? Conventionally, the classification accuracy for final class labels is an important
metric for evaluating CBMs, with the intuition that a good classification accuracy indicates that useful
semantic information is learned in the CBL. However, purely using accuracy as the evaluation metric
could be problematic, as it has been shown that information leakage exists in jointly or sequentially
trained CBM [13, 12]. That is to say, the CBL could contain unintended information that could be
used for downstream classification hence achieving high classification accuracy, even if the concept
is irrelevant to the task. In fact, recently [25] showed that, when increasing the number of concepts,
a randomly selected concept set could even approach the accuracy of the concept set chosen with
sophistication, supporting the existence of information leakage.

To better understand this phenomenon, in section 4.1, we conduct a first theoretical analysis to
investigate random CBL and its capability. To the best of our knowledge, this is the first formal
analysis of random CBL. Next, inspired by our theoretical result, we propose a new evaluation metric
for CBM, named NEC in section 4.2. NEC provides a way to control information leakage and
enhance the interpretability of model decisions.

4.1 Theoretical analysis of the Random CBL

We start by defining the notations. Denote & the number of concepts in CBL. We assume that the
CBL g consists of a single linear layer: g(z) = Wz, where W, € R¥*? and z € R?, and the final
layer h is also linear: ho g(z) = Wrg(z) + b, where Wr € RE** b € RC. This is the common
setting for CBMs. The following theorem suggests a surprising conclusion: a linear classifier upon
random (i.e. untrained) CBL could accurately approximate any linear classifier trained directly on
the representation, as the number of concepts in the CBL goes up.

Theorem 4.1. Suppose ¥ € R* is the variance matrix of the representation z which is positive
definite, Az is the largest eigenvalue of ¥, and the weight matrix W, € RF*? is sampled i.i.d
Jfrom a standard Gaussian distribution. For any linear classifier f which is built directly on the
representation z, i.e. f : R? — R, f(z) = w' z + b, it could be approximated by another linear
classifier f on concept logits g(z) = Wez, i.e. f(2) =~ f(z) = " g(2) + b, with the expected square
error E(k) upper-bounded by

Anaz (1= EYJw|3, k< d;
< max d 29 )
£w < {)

Here E(k) = Ew, [min(w,g) E, {\f(z) - f(z)|2H denotes the average square error, w € RY,

®)

W € R¥, k is the number of concepts in CBL.

Remark 4.1. In Theorem 4.1, we consider a 1-D regression problem where we use a linear combination
of concept bottleneck neurons to approximate any linear function. The multi-class classification result
could be derived by applying Theorem 4.1 to each class logit (see Corollary A.1). From Eq. (8), we
could see that the expected error goes down linearly when concept number k increases, and achieves
0 when k£ > d, where d is the dimension of backbone representation z. This suggests that, even with
arandom CBL (i.e. W, is simply drawn from a standard Gaussian distribution without any training),
the classifier could still approximate the original classifier well and achieve good accuracy, when
concept number k is large enough. We defer the formal proof of Theorem 4.1 to Appendix A.

4.2 A New Evaluation Metric for CBM: Number of Effective Concepts (NEC)

Theorem 4.1 provides a formal theoretical explanation on [25]’s observation. Moreover, it raises a
concern on the evaluation of CBMs: model classification accuracy may not be a good metric for
evaluating the semantical information learned in CBL, because a random CBL could also achieve
high accuracy. To address this concern, we need to control the concept number k so that the



semantically meaningful CBLs can be distinguished with random CBLs w.r.t. the final classification
performance.

We notice that previous works mainly use two approaches to control k:

1. Control the total number of concepts: [25] used a more concise concept layer, i.e. reduce the
total number of concepts. However, this approach may miss some important concepts due to
limitations in total concept numbers. Additionally, they used a dense final layer which is
less interpretable for humans, as each decision is related to the whole concept set.

2. [15, 28] suggested using a sparse linear layer for final prediction to enhance interpretability.
Though sparsity is initially introduced to enhance interpretability, we note that this also
reduces the number of concepts used in the decision, thus controlling the information
leakage. However, the problem is, these works lack the quantification for sparsity, which is
necessary for fair comparison between methods.

To provide a unified metric for both approaches, we propose to measure the Number of Effective
Concepts (NEC) for final prediction as a sparsity metric. It is defined as

k
NEC(Wg) = o ZZ (Wg)ij # 0} 9)

Intuitively, NEC measures the average number of concepts the model uses to predict a class. Using
NEC to evaluate CBM provides the following benefits:

1. A smaller NEC reduces the information leakage. As shown in Fig. 3, with large NEC,
even random CBL could achieve near-optimal accuracy, suggesting potential leakage in
information. However, by reducing NEC, the accuracy of random concepts drops quickly.
This implies enforcing a small NEC could help to control information leakage.

2. A model with a smaller NEC provides more interpretable decision explanations. Humans
can recognize an object with several important visual features. However, models can utilize
tens or hundreds of concepts for the final prediction. By using a smaller NEC, the model’s
decision could be attributed mainly to several concepts, making it more interpretable to
human users.

3. NEC enables fair comparison between CBMs. Comparing the performance of CBMs has
long been a challenging problem, as different models use different numbers of concepts
and different styles of final layers (sparse/dense). NEC considers both, thus providing a fair
metric to compare different models.

Given these benefits, we suggest to control the NEC when comparing the performance of CBMs. In
Section 5, we provide experiments with controlled NEC, where we observed our VLG-CBM outper-

forms other baselines.
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Figure 3: Accuracy comparison between our VLG-CBM, LF-CBM[15] and randomly initialized
concept bottleneck layer under different NEC. The experiment is conducted on the CIFAR10 dataset.
From the results, we could see that (1) for NEC large enough, even a random CBL could achieve
near-optimal accuracy, supporting the existence of information leakage; (2) when NEC decreases,
the accuracy of LF-CBM and random weights begin to drop, while our VLG-CBM does not have
significant decrease.



5 Experiments

In this section, we conduct a series of experiments to evaluate our method, including illustrating
the faithfulness of concept prediction, interpretability of model decisions, and performance with
controlled NEC.

5.1 Performance comparison

Setup. Following prior work [15], we conduct experiments on five image recognition datasets:
CIFAR10, CIFAR100[7], CUB[23], Places365[30] and ImageNet[18]. For the choice of backbone,
we categorize the experiments into two categories:

1. CLIP backbone: For CLIP backbone, we choose CLIP-RNS50 for all datasets.

2. non-CLIP backbobe: We follow the choice of [15] to use ResNet-18[3] for CUB and
ResNet-50 (trained on ImageNet) for Places365 and ImageNet as the backbone.

The reason of this categorization is some previous works (e.g. LaBo[27] only supports CLIP
backbone.

Baselines. We compare our method with three major baselines when applicable: LF-CBM[15],
LaBo[27], and LM4CV[25]. These are SOTA methods for constructing scalable CBMs, with [15]
most flexible and [27, 25] limited by specific architecture and not available for certain dataset.
Additionally, we present the results from a randomly initialized CBL for comparison.

Metrics. As discussed in Section 4, in order to evaluate the final classification power of CBM, we
should acculate the Accuracy under specified NEC(ANEC). Therefore, we measure the following
two metrics:

1. Accuracy at NEC=5(ANEC-5): This metric is designed to show the performance of CBM
which could provide an interpretable prediction. We choose the number 5 so that human
users could easily inspect all concepts related to the decision without much effort.

2. Average accuracy(ANEC-avg): To evaluate the trade-off between interpretability and
performance, we also calculate the average accuracy under different NECs. In general,
higher NEC indicates a more complex model, which may achieve better performance but
also hurt interpretability. We choose six different levels: 5, 10, 15, 20, 25, 30 and measure
the average accuracy.

Controlling NEC. As we discussed in Section 4, there are two approaches to control NEC: (1) using
a dense final layer and directly controlling the number of concepts and (2) training a sparse final layer
with appropriate sparsity. LM4CV[25] used the first approach, where the number of concepts could
be directly set as target NEC. For LF-CBM[15] and our VLG-CBM, the second approach is utilized:
To achieve target sparsity, we control the regularization strength A in GLM-SAGA. GLM-SAGA
provides a regularization path, which allows us to gradually reduce regularization strength and get a
series of weight matrices with different sparsity. Specifically, we start with \y = A4, Which gives
the sparsest weight. Then, we gradually reduce the A by A\;;; = a)\; until we achieve the desired
NEC. We choose the weight matrix with the closest NEC to our target and prune the weights from
smallest magnitude to largest to enforce accurate NEC. LaBo [27] did not provide a NEC control
method. Hence, we apply sparse final layer training of LaBo’s concept prediction to control NEC.

Results. We summarize the test results for with backbone in Table 2 and results with non-CLIP
backbones in Table 3. From the results, we could see that:

1. The accuracy at NEC = 5 provides a good metric for evaluating the semantic information in
CBL: As shown in the table, the accuracy of random CBL is much lower with NEC = 5,
which implies the information leakage is controlled and the accuracy could better reflect the
useful semantic information learned in the CBL.

2. The performance of LM4CYV is even worse than random CBL. An explanation to this is
LMA4CYV utilizes a dense final layer, which is intrinsically inefficient to interpret as each class
is connected to all the concepts, including the irrelevant ones. When limiting the NEC to a
small value to provide a concise explanation, the model has to largely reduce the concept
number which sacrifices the prediction power.



3. Our method significantly outperforms all the baselines at least 4.27% and up to 51.09% on
accuracy at NEC=5, and by at least 0.45% and up to 29.78% on average accuracy across
different NECs, illustrating both high performance and good interpretability.

Dataset \ CIFARI10 \ CIFAR100 \ ImageNet \ CUB

Metrics | ANEC-5 | ANEC-avg | ANEC-5 | ANEC-avg | ANEC-5 | ANEC-avg | ANEC-5 | ANEC-avg
Random | 67.55% | 7745% | 29.52% | 4721% | 18.04% | 39.63% | 2537% | 40.13%
LF-CBM 84.05% 85.43% 56.52% 62.24% 52.88% 62.24% 31.35% 52.70%
LM4CV 53.72% 69.02% 14.64% 36.70% 3.77% 26.65% 3.63% 15.25%
LaBo 78.69% 82.05% 44.82% 55.18% 24.27% 45.53% 41.97% 59.27%

VLG-CBM(Ours) | 88.55% 88.63% 65.73% 66.48 % 59.74% 62.70% 60.38 % 66.03%

Table 2: Performance comparison with CLIP-RN50 backbone. We compare our method with a
random baseline, LF-CBM[15], LM4CV[25] and LaBo[27]. The random baseline has 1024 neurons
for CIFAR10 and CIFAR100, 512 for CUB and 4096 for ImageNet.

Dataset | CUB | Places365 | ImageNet
Metrics | ANEC-5 | ANEC-avg | ANEC-5 | ANEC-avg | ANEC-5 | ANEC-avg
Random ‘ 68.91% ‘ 73.44% ‘ 17.57% ‘ 28.62% ‘ 41.49% ‘ 61.97%
LF-CBM 53.51% ‘ 69.11% ‘ 37.65% ‘ 42.10% ‘ 60.30% 67.92%
VLG-CBM (Ours) | 75.79% 75.82% 41.92% 42.55% 73.15% 73.98 %

Table 3: Performance comparison with non-CLIP backbone. We compare against LF-CBM[15] and
a random baseline, as LM4CV[25], LaBo[27] does not support non-CLIP backbone. The random
baseline has 512 neurons for CUB, 2048 for Places365, and 4096 for ImageNet.

5.2 Visualization of CBL neurons

In order to examine whether our CBL learns concepts aligned with human perception, we list the
top-5 activated images for example concept neurons on the model trained on the CUB dataset in
Fig. 4. As shown in the figure, our CBL faithfully captures the corresponding concept. We provide
more visualization results in Appendix K.

(c) Concept 117: brown or gray body

Figure 4: Top-5 activated images of example concepts neurons in VLG-CBM on CUB dataset.

5.3 Case study

In this section, we conduct a case study to compare the concept prediction between our VLG-CBM ,
LF-CBM [15] and LM4CV[25] as shown in Fig 1. We provide extended results and comparison with
LaBo [27] in Appendix G.2. For our method, we use the final layer with NEC = 5. We show that our
method provides more accurate concept prediction and more interpretable decisions for users.

Decision interpretability. We examine the explanation of each CBM model on example images
by showing the top-5 concept contributions. The contribution of each concept is calculated as the
product of the concept prediction value and corresponding weight. Formally, the contribution of



i-th concept to j-th class is defined as: Contribution(i, j) = g¢;(2) - (Wr);i. We pick the top-5
contributing concepts for the final predicted class and visualize it in Fig. 1. We could see that:

1. For other CBMs, a large portion of the final decision is attributed to the "Sum of other
features". This part hurts the interpretability of CBM, as it’s difficult for users to manually
inspect all these concepts in practice. We conduct further study on this in Section 5.4. Our
model, however, provides a concise explanation from a few concepts because we apply the
constraint NEC=5. This ensures users can understand model decisions without difficulties.

2. Our VLG-CBM provides explanation more aligned with human perception. From the
example, we can also see that our model explains the decision with clear visual concepts.
Other CBMs attribute the decision to non-visual concepts (e.g. LaBo), concepts that do not
match the image (e.g. LM4CV), or negative concepts (LF-CBM).

5.4 Do Top-5 concepts fully explain the decision?

Besides training a final layer with a small NEC, another common approach to provide a concise
explanation is showing only the top contribution concepts. However, we argue that this approach
may not faithfully explain the model’s behavior, as the non-top concepts also make a significant
contribution to the decision. To verify this, we conduct the following experiment: On the CUB dataset,
we prune the final weight matrix W to leave only the top-5 concepts for each class, whose weight
has the largest magnitude. Then, we use the pruned model to make predictions and compare them
with the prediction results from the original model. Table 4 shows results for our VLG-CBM which
uses NEC= 5 to control sparsity, and other three baselines, LaBo[27], LF-CBM[15] and LM4CV[25],
without any constraint on NEC. As shown in the table, for all three baselines, a large portion of
predictions changes after pruning. This suggests that without explicitly controlling NEC, only
showing top-5 contributing concepts does not faithfully explain all of the model decisions. Hence, we
recommend training the final layer with NEC controlled to obtain a concise and faithful explanation
as we proposed in Section 4.

Method | VLG-CBM (Ours) | LF-CBM | LM4CV | LaBo
% changed decisions | 0.12% | 4921% | 98.34% | 81.40%

Table 4: Portion of model predictions that changes after pruning. The results suggest that for existing
methods (LF-CBM, LM4CYV, LaBo) without NEC control, a large portion of predictions changes with
top-5 concepts, implying potential risk when using top-5 contributions to explain model decisions.

6 Conclusion, Potential Limitations and Future work

In this work, we study how to improve the interpretability and performance of concept bottleneck
models. We introduce a novel approach VLG-CBM based on both vision and language guidance,
which successfully improves both the interpretability and utility of existing CBMs in prior work.
Additionally, our theoretical analysis show that information leakage may exist on even in the un-
trained CBLs, serving the foundations for our proposed new NEC-controlled metrics (ANEC-5 and
ANEC-avg). We show that NEC not only allow fair evaluation of CBMs but also can be used to
effectively control information leakage of CBM and ensure interpretability. Extensive experiments on
image classification benchmarks demonstrated our VLG-CBM largely outperform previous baselines
especially for small NEC, providing more interpretable decisions for users.

Despite the superior performance of VLG-CBM over prior work as demonstrated in extensive
experiments, one potential limitation is the dependence on large pretrained models (e.g. the success
of open-domain grounded object detection model that we use to enforce vision guidance). However,
prior work (e.g. LaBo, LM4CYV, LF-CBM) also shared similar limitation on the reliance of large
pre-trained models (e.g. CLIP). Nevertheless, it also means that our techniques have the potential
to be further improved with the advancement of large pre-trained models. In the future, we plan to
explore training CBL with even more vision guidance, such as using segmentation maps of concepts.

10



Acknowledgement

The authors thank the anonymous reviewers for valuable feedback on the manuscript. The authors are
partially supported by National Science Foundation awards CCF-2107189, I1S-2313105, 11S-24305309,
Hellman Fellowship, and Intel Rising Star Faculty Award. The authors also thank ACCESS for
support in this work.

References

[1] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
neural networks. Advances in neural information processing systems, 31, 2018.

[2] Morris L Eaton. Multivariate statistics: a vector space approach, volume 512. Wiley New
York, 1983.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[4] Injae Kim, Jongha Kim, Joonmyung Choi, and Hyunwoo J. Kim. Concept bottleneck with
visual concept filtering for explainable medical image classification, 2023. URL https:
//arxiv.org/abs/2308.11920.

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[6] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim,
and Percy Liang. Concept bottleneck models. In ICML, 2020.

[7] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[8] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, and Jianfeng Gao.
Grounded language-image pre-training, 2022.

[9] Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Zou. Mind the gap:
Understanding the modality gap in multi-modal contrastive representation learning, 2022.

[10] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

[11] Josh Magnus Ludan, Qing Lyu, Yue Yang, Liam Dugan, Mark Yatskar, and Chris Callison-
Burch. Interpretable-by-design text classification with iteratively generated concept bottleneck.
CoRR, 2023.

[12] Anita Mahinpei, Justin Clark, Isaac Lage, Finale Doshi-Velez, and Weiwei Pan. Promises and
pitfalls of black-box concept learning models. arXiv preprint arXiv:2106.13314, 2021.

[13] Andrei Margeloiu, Matthew Ashman, Umang Bhatt, Yanzhi Chen, Mateja Jamnik, and Adrian
Weller. Do concept bottleneck models learn as intended? arXiv preprint arXiv:2105.04289,
2021.

[14] Tuomas Oikarinen and Tsui-Wei Weng. Clip-dissect: Automatic description of neuron repre-
sentations in deep vision networks. In /CLR, 2023.

[15] Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept
bottleneck models. ICLR, 2023.

[16] Thang M Pham, Peijie Chen, Tin Nguyen, Seunghyun Yoon, Trung Bui, and Anh Nguyen.

Peeb: Part-based image classifiers with an explainable and editable language bottleneck. arXiv
preprint arXiv:2403.05297, 2024.

11


https://arxiv.org/abs/2308.11920
https://arxiv.org/abs/2308.11920

[17] Karsten Roth, Jae Myung Kim, A. Sophia Koepke, Oriol Vinyals, Cordelia Schmid, and Zeynep
Akata. Waffling around for performance: Visual classification with random words and broad
concepts, 2023. URL https://arxiv.org/abs/2306.07282.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

[19] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[20] Ao Sun, Yuanyuan Yuan, Pingchuan Ma, and Shuai Wang. Eliminating information leakage in
hard concept bottleneck models with supervised, hierarchical concept learning. arXiv preprint
arXiv:2402.05945, 2024.

[21] Chung-En Sun, Tuomas Oikarinen, and Tsui-Wei Weng. Crafting large language models for
enhanced interpretability. ICML Mechanistic Interpretability workshop, 2024.

[22] Zhen Tan, Lu Cheng, Song Wang, Yuan Bo, Jundong Li, and Huan Liu. Interpreting pretrained
language models via concept bottlenecks. CoRR, 2023.

[23] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

[24] Eric Wong, Shibani Santurkar, and Aleksander Madry. Leveraging sparse linear layers for
debuggable deep networks. In ICML, 2021.

[25] An Yan, Yu Wang, Yiwu Zhong, Chengyu Dong, Zexue He, Yujie Lu, William Yang Wang,
Jingbo Shang, and Julian McAuley. Learning concise and descriptive attributes for visual
recognition. In ICCV, 2023.

[26] Sin-Han Yang, Tuomas Oikarinen, and Tsui-Wei Weng. Concept-driven continual learning.
TMLR, 2024.

[27] Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark
Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable
image classification. In CVPR, 2023.

[28] Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. /CLR,
2023.

[29] Haotian* Zhang, Pengchuan* Zhang, Xiaowei Hu, Yen-Chun Chen, Liunian Harold Li, Xiyang
Dai, Lijuan Wang, Lu Yuan, Jeng-Neng Hwang, and Jianfeng Gao. Glipv2: Unifying localization
and vision-language understanding. arXiv preprint arXiv:2206.05836, 2022.

[30] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A
10 million image database for scene recognition. /EEE transactions on pattern analysis and
machine intelligence, 40(6):1452-1464, 2017.

[31] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 67(2):301-320, 2005.

12


https://arxiv.org/abs/2306.07282

Appendix

Table of Contents

A

B

J

K

Proof of Theorem 4.1
Implementation details

Ablation Studies

C.1 Ablation study for confidence threshold . . . . . . .. .. ..

Evaluating annotations from Grounding DINO

Distribution of nonzero weights among class
Constructing model with specified NEC

Additional case study examples

G.1 Negative concepts in reasoning . . . . . . . . . . . . . ...
G.2 Impactof NEC. . . . ... ... .. ... . ... ...

Further discussion on decision explanations

H.1 Negative contributions . . . . . . ... ... ... ......

Additional experiment results

1.1  Generalizability to OOD datasets . . . . ... ........
.2 Ablationstudy . . . . .. ... ...

Human study

Visualizing VLG-CBM explanations

14

17

17
17

18

20

20

20
20
20

23
23

23
23
23

23

24

13



A Proof of Theorem 4.1

In this section, we present a formal definition of the expected square error in Theorem 4.1 and show
the proof. First, we define the square approximation error as

E. [If(z) - f2)) A1)

which is the average square distance between f(z) and f(z). Given a specific CBL W, we seek a
final layer w to minimize the square error:

g%&[ma—ﬂﬁﬂ. (A2)
For randomly Gaussian initialized 1., we care about the minimal error we could achieve on average.

Thus, for each W, we choose @ and b to achieve minimum approximation error, then take the
expectation over W, to define the expected square error as

E(k) =Ew,

mm&ﬂﬂ@—ﬂ@ﬂ} (A3)

(w,0)

Setting Suppose the representation z has variance ¥ € R%*? which is positive definite. The
weight matrix W, € R¥*? is sampled i.i.d from a standard Gaussian distribution. Here, we show
that any linear classifier which is built directly on representation z, i.e. f(z) = w 'z + b, could be

approximated by a linear classifier on concept logits g(z) = Wez, ie. f(z) ~ f(z) = w0 g(z) + b.
Theorem 4.1. Suppose ¥ € R4¥ is the variance matrix of the representation z which is positive
definite, Az is the largest eigenvalue of ¥, and the weight matrix W, € RF* is sampled i.i.d

from a standard Gaussian distribution. For any linear classifier f which is built directly on the
representation z, i.e. f : R? — R, f(z) = w'z + b, it could be approximated by another linear

classifier f on concept logits g(z) =Wez, ie f(z) = f(z) =w'g(z)+ b, with the expected square
error E(k) upper-bounded by

Anaz (1 = EYJw|3, k< d;
< mazxr d 29 )
B < {y e ®

Here E(k) = Ew, [min(mg) E. {\f(z) — f(z)|2H denotes the average square error, w € RY,
W € R¥, k is the number of concepts in CBL.

Proof. Based on the value of &k, we can consider two cases: (I) £ < d, and (IT) £ > d, and derive the
E(k) respectively.

Case (I): k£ < d. First, we consider under a fixed V., what is the minimum error we could
achieve. The expected approximation error is:
E. [If(z) = f(2)P| =E. [0z +b— (@7 Wez + )]
_E, [\(wT @ TW)z b z}ﬂ
) (A4)
=V, [(w— W @) 2]+ [Ez[(wT —@TW)2] +b— 13}

() ()

The last equality is from E(X?) = VX + (EX)2. The second term (x*) takes minimum 0 when
b=E.[(w" —@"W,)z] + b. The remaining question is to choose a proper @ to minimize (x).
Notice that

V. [(w—-W/S o) 2] = (w - W) @) S(w - W,/ w)

= |22 (w — W @)|3 (A.5)

= 22w, @ - BFwl,
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where ¥ is the covariance matrix of z, ¥2 is the principal square root of £, & € R4%d, ¥.2 ¢ RIxd,
Now the problem in Eq. (A.2) can be reduced to a linear least square problem:

min . [|£(2) — f(2)[2] = min||23 W0 - Shu (A6)
(w,b) w

Since X is positive definite, so is ¥2. Thus, the eigen decomposition of Y2 satisfies the following:
Yi = QT AQ, where Q € R%*? is an orthogonal matrix and A € R?*? is a diagonal matrix with
positive entries. With Gram—Schmidt process, we could derive QR factorization of W;r : WCT = QR,
where Q € R%* is orthogonal and R € R*** is upper triangular. Plugging above decomposition of
3 and VV(T , now we have

min |22 W, @ — S|} = min[|QTAQQRT — QT AQul)3

w

= n}%n |AQQRw — AQu||2 (Q is orthogonal, thus preserves 2-norm)

— min | A(QQRI — Qu)

< ngn A2 1QQRW — Qul|? (Since all entries of A are positive.)

=\ rrgn R — Q" wl|3 (Multiply by QT Q" preserves the norm)
(A7)

where A4, is the largest eigenvalue of $2. In short, we have derived the minimum square error for
a given W, which is upper bounded by

min [E. [|£(2) = ()] | < A2 min | R — Qw3 (A8)
(w,b) w

Secondly, we consider when W, is sampled i.i.d. from standard normal distribution, and
calculate the expected error. From above derivation,

Ew,

min E. [|f(2) - f<z>|2]] < X, E(rq) [min |RE — Qw3 (A.9)
(w,b) w

Note that since W,| = QR, the randomness in W, is reflected in @ and R. The matrices () and R
satisfies the following properties:

1. @ is a random rotation following uniform distribution. This is intuitive because standard
Gaussian distribution is rotation-invarant. For a formal statement and proof, we refer to
Proposition 7.2 of Eaton [2].

2. range(R) = span(ey, ez, - ,e;) with probability 1. Since rank(R) = rank(W,) and
W, is full rank with probability 1, rank(R) = min(k,d) = k with probability 1. From
upper-triangularity of R, we know that

range(R) C span(ey, ez, - ,ek). (A.10)
With probability 1, rank(R) = k, thus we conclude
range(R) = span(ey,eq, - ,ex). (A.11)

In the following derivation, since we only cares about the expectation, we omit "with
probability 1" for brevity.

From the above properties of () and R, the expectation term in the RHS of Eq. (A.9) can be derived
as:

Era) [min |RD - QTwl3] = Eqll(@w)ksallf (A.12)
This is because range(R) = span(e,ea, -+ ,ex), and k < d. Thus, ming || R — Q Tw||3 is the
squared distance from @ " w to subspace span(ey, e, -+ ,ex), which equals to the squared sum of

last d — k coordinates of Q " w.
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Because (Q is a random rotation, Q " w is uniformly distributed on a sphere with radius ||w||. Denote
v = Q "w. From symmetricity, we have

Evl=Ev2=-.-=Ev2 (A.13)
Furthermore, [[v]2 = [lw|2 gives 3¢, v2 = [w|2. Take expectation of both sides gives
S By 0?2 = |w]|3, thus E0? = E 02 = --- = Ev2 = ||w||3/d. The target quantity becomes
d
EQl(QTw)ky1all3 = Ey ( > ”2'2>
i=k+1
d
_ Z E. 02 (A.14)
i=k+1
d—k
= = w3
In conclusion, we derive an upper bound of approximation error for any linear function f:
: FroV12 2 k 2
Euw, |min . [1£G) = FP]| € X1 = 2l (A.15)

Look at the bound in Eq. (A.15): A2, is a constant regarding the scale of data; ||w||3 is a constant
k

regarding the norm of weight vector we want to approximate; (1 — ) is a linear term shows that the
expected square error goes down linearly when we increase the number of concepts &, and achieves
zero when k = d.

Case (I): k& > d. For the case that k > d, it could be derived from our main results that (k) = 0.

Additionally, with probability 1 we could find f(z:) = f(z) as will be derived below. As we discussed,
with probability 1, W, has full rank. Given that, we have

+ _
WiWez = z,

where W is the Moore-Penrose inverse of W... For any linear classifier f(z) = w'z + b. Let
W= (W>F)Tw, b= b, we have

fR)=w"g(z)+b=w"WiW.z4+b=w"2z+b= f(2)
and thus E(k) = 0. O

Corollary A.1. For f and f with C output classes, i.e. f : R* — RC, f ‘R4 = R w € RY,
W € R, the expected error upper-bound is

k
E(k) < CApaz(1 — E)||w|\§. (A.16)

Here E(k) = Ew, |min ;3 E. [|f(2) — f(z)HQ} denotes the average square error.

Remark A.2. The statement could be verified by applying Theorem 4.1 to each f; and fi output, then
summing up the error.
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B Implementation details

Computational resources and codes. Our experiments run on a server with 10 CPU cores, 64 GB
RAM, and 1 Nvidia 2080Ti GPU. Our implementation builds on the open-source implementation of
the LF-CBM [15] available: https://github.com/Trustworthy-ML-Lab/Label-free-CBM.
For training the final predictive layer, we use publicly available code for GLM-SAGA [24].

Hyperparameter tuning. We tune the hyperparameters for our method using 10% of the training
data as validation for the CIFAR10, CIFAR100, CUB and ImageNet datasets. For Places365, we
use 5% of the training data as validation. We use CLIP(RN50) image encoder as the backbone for
CIFAR10 and CIFAR100, Resnet-18[3] trained on CUB for CUB dataset, and Resnet-50 pretrained
for Places365 following setup similar to LF-CBM. We tune the CBL with Adam[5] optimizer with
learning rate 1 x 10~ and weight decay 1 x 10~5. The concept dataset obtained from GroundingDINO
is inherently unbalanced since there is a much lower proportion of positive datapoints for a concept.
Consequently, we scale the CBL loss by multiplying it with a positive value to balance the tradeoff
between precision and recall and improve the imbalance of positive data points. We set 7' = 0.15 in
Eq. (2) in all our experiments. We seed the random number generator with a fixed seed to ensure the
results can be reproduced.

C Ablation Studies

Confidence threshold | CUB200 \ Places365
Metrics | ANEC-5 | ANEC-avg | ANEC-5 | ANEC-avg
0.10 75.75% 75.75% 41.84% 42.50%
0.15 75.75% 75.73% 41.84% 42.51%
0.20 75.73% 75.73% 41.25% 42.15%

Table C.1: ANEC-5 and ANEC-avg for different confidence threshold 7.

C.1 Ablation study for confidence threshold

Confidence threshold 7" in Eq 2 filters concepts with bounding boxes’ confidence less than 7'. In this
experiment, we study the affect of T on the VLG-CBM’s accuracy. The results are shown in Table
C.1. We observe that ANEC-5 and ANEC-avg first increases (or stays constant) and then decreases.
We attribute this effect to to the fact that as T increases, the number of false-positive decreases leading
to better learning of concepts, however, as the number of annotations available for learning a concept
decreases.
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D Evaluating annotations from Grounding DINO

This section quantitatively evaluates concept annotations obtained from Grounding DINO. We use
CUB dataset for comparison which contains ground-truth for fine-grained concepts present in each
image. We use the label set from Koh et al. [6] which has 1:1 mapping with the ground-truth concepts
in the CUB dataset. We use precision and recall metric to measure the quality of annotations from
Grouding DINO for each concepts. Table D.1 present mean precision and mean recall value at
different confidence threshold. We observe that the obtained annotations have a very high recall i.e if
the concept is present in the image, grounding DINO is able to retrieve the object. The precision is
also sufficiently high though it suffers from a relatively higher false-positive detection rate compared
to false-negative detection rate. However, as demonstrated in our qualitative and quantitative studies
(Table 3, Fig 4, K.2, K.1) the effect of false-positive is minimal and VLG-CBMis able to faithfully
represent concepts in the Concept Bottleneck Layer.

Confidence threshold | Mean Precision | Mean Recall

0.10 0.7150 £ 0.07 | 0.9930 £ 0.08
0.15 0.7156 £0.07 | 0.9693 £0.11
0.20 0.7121 £0.10 | 0.8713 +£0.21

Table D.1: Quantitative evaluation of concepts obtained from Grounding DINO model with Mean
Precision and Recall for concepts at different confidence thresholds.
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