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Abstract. The recognition of road surface materials has significant implications
for applications like enhanced navigation, traction and stability, predictive main-
tenance, safety considerations, transportation and infrastructure management, and
autonomous driving. In this paper, we aim to accurately identify various materi-
als used in road surfaces, including asphalt, bricks, cobblestone, gravel, among
others. To this end, we collected a comprehensive image dataset acquired from
dashboard cameras. Each image is annotated with a corresponding surface mate-
rial groundtruth. Following the data collection, we employed diffusion methods
to augment the training data for all surface material classes. Then, we propose a
segmentation-classification framework which isolates the road surfaces from sur-
rounding contexts such as buildings, vehicles, and pedestrians. Next, we introduce
the road surface sample extraction from the segmentation results. We conducted
experiments with various deep-learning models. The experimental results demon-
strate that our proposed framework can recognize road surface materials with a
high accuracy rate.
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1 Introduction

Road surfaces play a crucial role in transportation infrastructure by facilitating the smooth
flow of vehicles. The materials used in building roads play a significant role in deter-
mining their quality and durability. Precisely recognizing these substances is essential
for preserving, restoring, and organizing transportation systems. Material surface recog-
nition of roads is also important in the operation of autonomous vehicles (AVs). For
example, AVs can optimize navigation by identifying road materials like asphalt, soil,
or gravel, allowing them to adjust speed and path for better performance and safety.
Different surfaces offer varying traction and stability, enabling AVs to adapt driving
techniques, especially in adverse weather. Recognizing surface materials helps forecast
maintenance, as sensors detect road wear, enabling proactive repairs. Precise surface
identification aids localization and mapping, enhancing AVs’ positional accuracy, espe-
cially in GPS-limited or complex urban areas. Also, identifying materials also mitigates
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safety risks from surfaces prone to accidents during braking or cornering. Additionally,
AVs can boost energy efficiency by adjusting tire pressure or speed based on surface type.
There have been some works in literature [1-5] attempting to tackle this road surface
recognition problem. However, these works did not focus on the dashboard cameras. In
addition, they only focus on using the existing classifiers for the task.

In this paper, we focus on recognizing different types of road surface materials, rang-
ing from conventional materials such as asphalt, bricks, and soil to less popular choices
like cobblestone, and gravel from the perspective of dashboard cameras (dashcams). To
this end, we first collect an image dataset of road materials from dashcams. The data
collection phase was approached comprehensively by extracting frames from dashcams.
This multifaceted strategy ensured the acquisition of a diverse and representative dataset,
which is critical for the subsequent analysis and modeling phases of the research. Regard-
ing the computational framework, we propose a segmentation-classification model along
with road surface sample extraction for better recognition.

The remainder of this paper is organized as follows. Section 2 reviews the related
work. Section 3 and Sect. 4 introduce the collected dataset and the computational frame-
work, respectively. Section 5 presents the experimental results. Finally, Sect. 6 concludes
the paper and paves the way to the future work.

2 Related Work

There exist many works of recognizing road surface materials and anomalies using
deep learning in literature. Nolte et al. [1] utilized deep convolutional neural networks
(CNNss) for road surface classification, while Cheng et al. [2] employed deep learning
techniques to classify road surface conditions. Similarly, Balcerek et al. [3] utilized
CNN s for road surface classification, demonstrating the effectiveness of these models.
Rateke et al. [4] explored road surface classification with images from low-cost cameras.
Meanwhile, Tang and Breckon [5] focused on automatic road environment classification,
providing insights into the use of machine learning for surface identification. Zhao
et al. [6] implemented a road surface classifier aimed at vehicle driving assistance,
incorporating datasets, models, and deployment strategies.

In another work, Deepa and Sivasangari [7] proposed a hybrid deep learning frame-
work for detecting and classifying road damages, highlighting the importance of multi-
modal approaches. Agrawal et al. [8] combined road surface classification with pothole
detection using deep learning, illustrating practical applications. Menegazzo and Von
Wangenheim [9] compared classical and deep learning approaches for multi-contextual
real-world scenarios using inertial sensors for surface type classification. Paswan et al.
[10] introduced a framework for road scene and surface segmentation in unstructured
environments using computer vision and deep learning. Xu ez al. [11] and Zhang et al.
[12] focused on road extraction from high-resolution remote sensing imagery, employ-
ing deep learning techniques like deep residual U-net. Wang et al. [13] proposed a
neural-dynamic framework combining deep learning and finite state machines for road
network extraction. Park et al. [14] utilized a deep ensemble network with sensor feature
selection for road surface classification, while Lee er al. [15] implemented intelligent
tire sensor-based real-time classification using artificial neural networks.
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Fig. 1. Examples of 8 road surface material classes, namely, asphalt, bricks, cobblestone, gravel,
puddles, red soil, soil, and wet asphalt. (Color figure online)

From the surface material recognition, Dogan and Ergen [16] introduced a mobile
CNN-based approach for pixel-wise road surface crack detection. Torbaghan et al. [17]
and Bhat et al. [18] reviewed road crack detection techniques, emphasizing automated
detection using ground-penetrating radar and various machine learning methods. Fan
et al. [19] used encoder-decoder architecture for automatic crack detection on pave-
ments. Chen and He [20] developed a novel U-shaped encoder-decoder network with an
attention mechanism for pixel-level crack detection and evaluation. Dhiman and Klette
[21] tackled pothole detection using computer vision and learning, while Alfarrarjeh
et al. [22] applied deep learning for road damage detection from smartphone images.
Meanwhile, Martinez-Rios et al. [23] reviewed vibration-based techniques for detecting
and classifying road surface anomalies. Ozoglu and Gokgoz [24] applied CNN methods
based on road vibration data for pothole detection. Rateke and Von Wangenheim [25]
extended their research to differentiate road surfaces considering surface damages. In
another work, Zhuravlev and Aksyonov [26] compared contour detection methods for
road surface damage, and Abbas and Ismael [27] automated pavement distress detection
using image processing techniques. Ayala et al. [28] enhanced building footprint and
road detection in high-resolution satellite imagery with deep learning. Kim et al. [29]
focused on deep learning-based underground object detection for urban road pavement,
providing insights into subsurface anomalies. Chen et al. [30] developed a road dam-
age detection algorithm based on an object detection network, showcasing advanced
methodologies in surface anomaly detection.

3 Dataset Collection

We encounter the first challenge regarding the data for model training and evaluation,
particularly in sourcing a diverse range of dashcam images representing different types
of road surfaces. The challenge poses a legitimate need to construct a new dataset for
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this research problem. Therefore, we first build a dataset of dash cams. In particular, we
collected the images for 8 classes, namely, asphalt, bricks, cobblestone, gravel, puddles,
red soil, soil, and wet asphalt. During the dataset construction, we meticulously collected
over 100 images for each class, ensuring a comprehensive representation of each surface
type. These images were sourced from multiple dashcam videos, including many from
YouTube videos. This approach not only expanded the variety of conditions captured but
also enhanced the dataset’s relevance and applicability to real-world situations. Figure 1
shows examples of different surface material classes. Table 1 shows the number of images
for each class for training, as well as testing. The strategic compilation of this dataset
facilitates our research, providing a solid foundation for training and benchmarking
models aimed at accurately identifying and classifying different road surfaces.

Table 1. The statistics of the collected dataset for road surface material recognition.

Class Training Testing Total
Asphalt 187 15 202
Bricks 226 20 246
Cobblestone 187 15 202
Gravel 175 15 190
Puddles 184 25 209
Red Soil 222 30 252
Soil 213 35 248
Wet Asphalt 177 15 192
Total 1571 170 1741

4 Computational Framework

The deep convolutional neural network (CNN) models such as LeNet [31], AlexNet [32],
VGG [33], ResNet [34], DenseNet [35] are popular for classification task. In this work,
we further extend the deep CNN with the side information such as the segmentation
results, road surface sampling, and data augmentation with diffusion [36]. The details
are listed below.

4.1 Segmentation-Classification Model

Instead of directly feeding the input image into the Convolutional Neural Network (CNN)
model, we first perform the image segmentation [37] on the input image. The segmen-
tation process divides the image into different semantic classes such as sky, tree, road,
grass, water, building, and mountain. The primary objective of image segmentation is
to assign a label to every pixel in the image, which effectively delineates the boundaries



Road Surface Material Recognition from Dashboard Cameras 363

and identifies various elements within the scene. By leveraging the results of image
segmentation, we can obtain detailed information about the different regions within the
image. Specifically, we use the segmentation results as side information to isolate and
separate the road-only area from the rest of the image. This isolated road-only area is
then extracted and prepared for further processing. Next, we feed this road-only area
into a deep CNN for classification purposes. This two-step process, involving initial
segmentation followed by focused classification, ensures that CNN receives input that is
more relevant and context-specific, potentially improving the accuracy and efficiency of
the classification task. Figure 2 illustrates the complete flowchart of our segmentation-
classification model, highlighting each step from initial image segmentation to the final
classification of the road-only area. This approach not only enhances the model’s perfor-
mance but also provides a more structured and organized way to handle complex image
data.

v Semantic
P Segmentation

e ———.

Segmentation
Input image Mask

Asphalt
Red Soil
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Concrete
Bricks o
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CobbleStone
Gravel

(3
Output Convolutional Neural Road only
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Fig. 2. The flowchart of the segmentation-classification model for the road surface material
recognition.

4.2 Road Surface Sample Extraction

Inspired by the road surface sample extraction in civil engineering which collects sam-
ples from road surfaces to analyze their material, composition, structure, and condition,
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we further extract the road surface in the image for a better classification. In particular,
we compute the image integral [38] of the segmentation mask. Note that the integral
image or summed-area table is a data structure that allows for quick and efficient calcu-
lation of the sum of pixel values within a rectangular region of an image. It speeds up
computations in tasks like object detection and feature extraction by enabling constant-
time area summations. Then, we extract the square block which contains the most pixels.
Figure 3 shows examples of the road surface samples extracted from input images by
using segmentation mask and image integral. Then, we extract the corresponding block
in the road image. Finally, we feed the extracted square block into the CNN model for
the classification.

Fig. 3. Road surface sample was taken from the images by using the segmentation mask and the
image integral.

4.3 Data Augmentation with Diffusion

In order to improve the model training, we further augment the training data with dif-
fusion [36]. Specifically, we adopt innovative methodologies involving diffusion and
prompts to augment our dataset with images that closely resemble those obtained directly
from the internet. This approach aims to enhance the diversity and realism of our
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dataset, consequently improving the robustness and generalization capabilities of our
machine-learning models. In short, diffusion is an effective technique in image gen-
eration that involves iteratively applying noise to an image while gradually reducing
the noise level. This process simulates the gradual spread or diffusion of information
throughout an image, resulting in visually realistic yet novel variations. By providing
prompts related to road scenes, landscapes, or other relevant contexts, we steer the gen-
eration process toward producing images that align with our dataset’s target domain. By
combining diffusion and prompts methodologies, we systematically generate synthetic
images that closely mimic the characteristics and diversity of raw internet-acquired
images. These augmented images complement our existing dataset, enriching it with
additional variations and complexities that may not be adequately represented in the
original dataset alone (Fig. 4).

Fig. 4. Some augmented data generated by using diffusion for classifying road surface materials.

5 Experiments

5.1 Implementation and Experimental Settings

For the implementation, we consider various CNN models such as ResNet101 [34],
VGG16 [33], VGG19 [33], DenseNet169 [35], DenseNet121 [35], DenseNet201 [35],
and InceptionV3 [39]. We set the input image size to 255 x 255 for all of the models.
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Regarding the image integral, we opt to the size of 80 x 80 for the square block. We utilize
the fully convolutional network (FCN) [37] trained on SIFTFlow dataset [40] for image
segmentation component. The experiments are conducted on the newly collected dataset
as mentioned in Sect. 3. Regarding the performance metrics, we utilize the accuracy rate
which is common for the classification task as in [41, 42].

Table 2. The experimental results with different settings. The best, second best, and third best
are marked in red, green, blue, respectively. Note that all of the methods utilize diffusion for data
augmentation.

Model Full Image | Segmentation-Classification | Road Surface Sample Extraction
ResNet101 52.35 57.06 57.65
VGG19 69.41 75.88 77.06
VGG16 74.71 76.47 80.59
DenseNet169 | 77.06 78.24 81.18
DenseNet121 | 78.24 81.76 82.94
DenseNet201 | 76.47 84.12 85.88
InceptionV3 | 78.24 79.41 80.59

5.2 Experimental Results

Table 2 shows the results of different models on the collected dataset. We report the
results of the full input image, segmentation-classification model, and road surface sam-
ple extraction. Note that all the models use the data augmented from the diffusion.
The results clearly demonstrate a notable enhancement in accuracy when utilizing the
segmentation results to isolate the road-only areas. Across all models, training on iso-
lated roads yielded substantially higher accuracy compared to training on data containing
background details. This highlights the effectiveness of isolating roads from background
noise before training the models. By focusing solely on the road surfaces, the models were
able to achieve better performance in accurately identifying and classifying road surfaces.
This emphasizes the importance of preprocessing techniques such as segmentation in
enhancing the quality of training data and subsequently improving model performance.
DenseNet201 achieves the best results over baselines in both segmentation-classification
model and road surface sample extraction, i.e., 84.12 and 85.55. We can observe a huge
gain from the full image to road surface sample extraction, i.e., 76.47 vs. 85.55. This
clearly demonstrates the effectiveness of the proposed method.

We take a closer look at the performance of DenseNet201 by examining its confusion
matrix (as shown in Fig. 5). The model works extremely well in various classes such as
soil, puddles, or red soil. Meanwhile, there exist some classes that the model struggles
to, for example, asphalt or brick. This absolutely attracts our attention to these classes
for future work.
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Fig. 5. The confusion matrix of DenseNet201 on the benchmark dataset. The darker blue, the
better classification result. (Color figure online)

6 Conclusion and Future Work

In this paper, we tackle the task of accurately recognizing various road surface materials
such as asphalt, bricks, cobblestone, gravel, among others. By constructing a compre-
hensive image dataset from dashcam videos and annotating each image with the corre-
sponding surface material groundtruth, we introduce a solid foundation for this research
area. Our proposed segmentation-classification framework effectively isolates road sur-
faces from surrounding contexts, enhancing material identification precision. In addition,
the road surface sample extraction shows good performance. Experimental results from
various deep-learning models validate our framework’s efficacy, demonstrating its abil-
ity to recognize road surface materials with high accuracy. These findings highlight
the potential of our approach for enhanced navigation, traction and stability, predictive
maintenance, safety considerations, transportation and infrastructure management, and
autonomous driving.

In the future, we focus on enhancing road surface material identification by expanding
the dataset to include a broader range of materials and diverse environmental conditions,
such as different weather and lighting scenarios. We plan to explore unsupervised and
semi-supervised learning techniques to reduce dependency on annotated data. In addi-
tion, we are interested in collecting videos instead of video frames which requires more
storage and more computational cost.
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