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Abstract. In this paper, we address the recognition of motion illusions in static 

images. To this end, we collect a new dataset containing images both with and 

without motion illusions. We then benchmark state-of-the-art deep learning mod-

els to determine the presence of illusions in the images. Additionally, we assess 

the role of color in the recognition process. The experimental results show that 

deep learning models are effective in identifying motion illusions, with superior 

performance on color images, highlighting the importance of color in analyzing 

motion within static images. 
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1 Introduction 

We have long been fascinated by motion illusions, the fascinating visual puzzles that 

play tricks on our eyes. This research takes a deep dive into the realm of motion illusions, 

aiming to advance our understanding of how machines interpret these visual phenomena 

[1]. Beyond the intrigue of optical illusions, the focus is on equipping computers with 

the ability to recognize and comprehend illusory motion patterns within static images as 

in Fig. 1. This introductory section sets the stage for two primary areas of exploration: 

the critical role of bespoke datasets in training effective machine learning models [2] 

and a preliminary observation hinting at the superiority of colored images over grayscale 

ones in motion illusion classification [3]. 

Motion illusions, such as the iconic rotating snakes or barber pole illusions, pose 

unique challenges for computational systems [4]. While human vision effortlessly nav-

igates these illusions, teaching machines to discern the intricacies of illusory motion 

demands a specialized focus. This research is positioned at the intersection of cognitive 

psychology and computer vision, seeking to unravel the mysteries of motion illusions 

and their computational interpretation. 

One of the critical revelations in our exploration lies in the recognition of the inad-

equacy of generic datasets in capturing the diverse nuances of motion illusions [5]. 

Consequently, we advocate for the creation of bespoke datasets, meticulously tailored to 

the specific characteristics of illusory motion [6]. These datasets serve as more than just
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training grounds for deep learning models; they offer insights into the features crucial 

for machines to discern illusory movement. The imperative here is to understand the 

impact of dataset specificity on model interpretability. 

While specific details about the employed models remain undisclosed in this section, 

our research delves into the intricacies of computational models when confronted with 

motion illusions [7]. Deep learning architectures, known for their prowess in pattern 

recognition, confront unique challenges in decoding illusory motion. The objective is 

to unravel the decision-making processes within these architectures when tasked with 

distinguishing illusory movement from static scenes. The aim is to offer insights that 

transcend the specifics of the models used, contributing to the broader discourse on the 

interpretability of deep learning in perceptual tasks. 

Fig. 1. An example of motion illusion in a static scene (image). 

In a preliminary observation, we allude to an intriguing finding – colored images 

potentially outperform their grayscale counterparts in the realm of motion illusion classi-

fication [8]. This observation sets the stage for deeper discussions later in the paper. The 

choice of image representation emerges as a critical factor, prompting questions about 

the role of color information in the computational interpretation of illusory motion. 

The subsequent sections of the paper unfold in a structured manner. Section 3 

delves into the methodology, providing insights into the creation of bespoke datasets 

and offering an overview of the deep learning models employed [9, 10]. Section 4 

presents our findings, including comparative analyses and insights into the impact of 

color imagery on model performance. Section 5 discusses the practical implications of 

our research, emphasizing its relevance in real-world applications [11], summarizing 

key contributions, and proposing avenues for future research. 

In essence, our research is a bridge between the cognitive complexities of motion 

illusions and the computational power of deep learning [12]. By advocating for special-

ized datasets and uncovering model intricacies, we aim to enrich the dialogue on the 

evolving landscape of visual perception in artificial intelligence.
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2 Related Work 

Motion illusions in static images have captivated researchers across cognitive psychology 

and computer vision, prompting a multidisciplinary exploration. This section delves into 

key contributions, laying the groundwork for our investigation and referencing ten studies 

not covered in the introduction. 

In a pioneering work, Johansson, G. [13] investigated the perceptual mechanisms 

underlying motion illusions, elucidating the intricacies of how the human visual system 

interprets dynamic phenomena. This foundational work serves as a compass, guiding 

our understanding of the cognitive processes involved in perceiving motion illusions. 

Williams et al. [14] addressed challenges in creating specialized datasets for motion 

illusion studies, emphasizing the importance of tailored datasets to capture intricate 

variations in illusory motion patterns. Wang et al. [15] introduces objective methods for 

perceptual image quality assessment, focusing on quantifying the visibility of errors in 

distorted images. It proposes a structural similarity index, demonstrating its effectiveness 

through intuitive examples and subjective evaluations. 

Later, Watanabe et al. [12] demonstrate that DNNs accurately replicate the direction 

of illusory rotation but fail to detect motion components in negative control. The study 

sheds light on the capability of DNNs to simulate complex perceptual phenomena like 

illusory motion. Overall, the findings contribute to understanding the computational 

mechanisms underlying visual perception in neural networks. 

Kobayashi et al. [9] investigates the extraction of motion illusion-like patterns from 

photographs and artworks employing predictive deep neural networks. Their study 

demonstrates the successful replication of illusory motion observed in visual stimuli 

using deep learning techniques. By leveraging predictive deep neural networks, the 

research contributes to understanding and reproducing complex visual phenomena. 

Meanwhile, Luckiesh’s et al. [11] explored visual illusions, delving into their causes, 

characteristics, and practical applications. It provides a comprehensive study of visual 

illusions, offering insights into their underlying mechanisms and practical implications. 

This seminal work continues to be relevant for understanding the complexities of visual 

perception. Next, Sun et al. [16] explored multisensory integration in motion perception, 

shedding light on how combining visual and auditory cues influences the interpretation of 

motion illusions. This complements our understanding of motion illusions by incorporat-

ing a multisensory perspective. In another work, Nishida and Johnston [17] investigated 

neurophysiological correlates of motion illusions, providing insights into the neural 

mechanisms underlying the perception of dynamic visual phenomena. Understanding 

these correlates enriches the broader discussion on motion illusion recognition. 

Taylor et al. [18] explores how viewers perceive and physiologically respond to frac-

tal patterns in Jackson Pollock’s art. It discusses the positive responses to fractal patterns, 

indicating aesthetic appreciation and physiological engagement. By analyzing both per-

ceptual and physiological aspects, the research sheds light on the intricate relationship 

between art and human cognition. This investigation expands understanding of fractals’ 

impact on human experience. In summary, this related work section incorporates diverse 

perspectives from recent research, extending our understanding of motion illusion recog-

nition within static images. Each study contributes uniquely to our exploration, forming 

the mosaic of knowledge guiding our investigation.
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Fig. 2. The examples of motion images in our collected dataset. Please see the color figures in 

pdf with 400% zoom. 

3 Dataset Collection 

There are some efforts of collecting datasets [19] for motion illusion. However, these 

datasets are small and not well organized. The need for creating this dataset arises from 

the limited availability of publicly accessible datasets specifically designed for studying 

motion perception in static images. 

Therefore, in this work, we collect a new dataset, Motion Illusion in Static Scene, 

dubbed MISS. We use Google Image Search Engine [20] with different input keywords, 

for example, motion illusion, optical illusion, eye trick motion. Then, we use Google 

Lens [21] to find similar images to the ones we initially collected with keywords. To 

ensure the quality and relevance of the dataset, images were meticulously curated based 

on established criteria for motion illusion stimuli. Each image was assessed for its effec-

tiveness in eliciting the perception of motion through manual inspection and validation 

by seven individuals with normal vision and expertise in visual perception research. 

The dataset comprises a diverse range of images with motion exhibiting different 

patterns and configurations known to evoke the perception of motion in observers as 

shown in Fig. 2. These patterns include but are not limited to radial, concentric, spi-

ral, and grid-like structures that exploit visual processing mechanisms to create the 

illusion of movement. The MISS Dataset comprises not only images depicting motion 

illusions but also a significant portion of non-motion images as shown in Fig. 3. These 

non-motion images serve as crucial counterparts to their motion counterparts, providing 

essential context for comparison and model training. Captured from various sources and 

meticulously selected, the non-motion images encompass scenes devoid of any apparent 

motion or illusionary effects. Their inclusion ensures a balanced dataset representa-

tion, enabling models to discern between genuine motion illusions and static scenes 

accurately. By incorporating non-motion images, the dataset offers a comprehensive



Motion Analysis in Static Images 197

spectrum of visual stimuli, facilitating robust model training and evaluation for motion 

perception analysis. In total, the dataset consists of 600 high-resolution images, with 

an equal distribution between motion and non-motion categories in both the color and 

grayscale datasets. This balanced dataset composition ensures robustness and reliability 

in subsequent model training and evaluation processes. 

Fig. 3. The examples of non-motion images in our collected dataset. 

Moreover, to investigate the impact of color information on motion perception, the 

dataset was further processed to create a grayscale version. This grayscale dataset was 

derived from the original color images as in Fig. 4, resulting in another set of 600 

grayscale images. The utilization of this carefully curated dataset enables the exploration 

and analysis of the underlying mechanisms of motion perception in static images, facil-

itating the development and evaluation of machine learning models for motion illusion 

classification in both color and grayscale contexts. 

4 Experiments 

4.1 Model Training 

The experiments involved training multiple deep learning models, MobileNet [22], 

MobileNetV2 [23], ResNet50 [24], ResNetRS200 [25], Xception [26], EfficientNetB5 

[27], EfficientNetV2S [28], InceptionV3 [29], NASNetMobile [30], and NASNetLarge 

[30], on both the color and grayscale versions of the MISS dataset. The training process 

included feeding the models with the training dataset, comprising 272 motion images 

and 128 non-motion images for the color dataset, and an equivalent distribution for the
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grayscale dataset. Meanwhile, 100 images (50 motion and 50 non-motion images) are 

used for the validation set and 100 images 50 motion and 50 non-motion images) are 

used for the testing purpose. Stochastic gradient descent with momentum was utilized 

as the optimization algorithm, with the following update rule: 

θ{t+1} =θ t −α· ∇J (θt) +β·
(

θt −θ {t−1}

)

.

where θ_t is the parameter vector at iteration t, αis the learning rate, ∇J(θ_t) is the 

gradient of the loss function J with respect to θ_t, and βis the momentum term. 

The learning rate (α) was set to 0.001, and the momentum (β) was set to 0.9 to 

balance between fast convergence and avoiding oscillations. 

Fig. 4. Motion illusion in color (left) vs. grayscale (right). Please see the color figures in pdf with 

200% zoom. 

4.2 Performance Metrics 

After training, the models were evaluated on separate testing sets containing 50 motion 

and 50 non-motion images for both the color and grayscale datasets. Evaluation is done 

based on the testing accuracy, which was calculated from model predictions. 

The experimental results revealed the efficacy of the trained models in accurately 

classifying motion illusions in static images. In addition to testing accuracy, precision, 

recall, and F1-score metrics were calculated to provide a comprehensive evaluation of 

model performance. 

Precision measures the accuracy of positive predictions. It is calculated as the ratio of 

true positive predictions to the total number of positive predictions made by the model. 

Recall, also known as sensitivity or true positive rate, measures the proportion of 

actual positive instances that were correctly identified by the model. It is calculated as 

the ratio of true positive predictions to the total number of actual positive instances.
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Table 1. Experimental results on the collected dataset. Each model is tested on both color and 

grayscale images 

Model Dataset mAP 

MobileNet Colored 80% 

Grayscale 73% 

MobileNetV2 Colored 77.99% 

Grayscale 70.99% 

ResNet50 Colored 81% 

Grayscale 76.99% 

ResNetRS200 Colored 70.99% 

Grayscale 68% 

Xception Colored 68.99% 

Grayscale 63.99% 

EfficientNetB5 Colored 75% 

Grayscale 55% 

EfficientNetV2S Colored 74% 

Grayscale 67% 

InceptionV3 Colored 52.99% 

Grayscale 50% 

NASNetMobile Colored 72% 

Grayscale 54% 

NASNetLarge Colored 68.99% 

Grayscale 56% 

4.3 Experimental Results 

We aim to assess the performance of various deep learning models on detecting motion 

in static images, using both colored and grayscale datasets. According to Table 1. The  

models tested include MobileNet, MobileNetV2, ResNet50, ResNetRS200, Xception, 

EfficientNetB5, EfficientNetV2S, InceptionV3, NASNetMobile, and NASNetLarge. For 

evaluation, the mean Average Precision (mAP) was used as the primary performance 

metric. 

The results clearly indicate that models generally perform better on the colored 

dataset compared to the grayscale dataset. The drop in performance when switching to 

grayscale is observed across all models, though the extent of the performance degradation 

varies.
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Top Performing Model. ResNet50 achieved the highest mAP for both colored (81%) 

and grayscale (76.99%) datasets, making it the most robust across both image types. 

MobileNet also performed well, with 80% mAP on the colored dataset and a 7% drop 

when tested on the grayscale dataset. 

Performance Impact. EfficientNetB5 and NASNetMobile had the largest drops in per-

formance when switching to grayscale. EfficientNetB5, for example, went from 75% 

mAP on colored images to just 55% on grayscale. NASNetMobile also dropped signif-

icantly, from 72% on colored images to 54% on grayscale. These models seem to rely 

more on color information to understand motion in static images. 

Models that Adapt Well. Some models, like ResNet50 and MobileNetV2, showed 

smaller performance drops when trained on grayscale data. For instance, ResNet50 only 

dropped by about 4%, and MobileNetV2 by 7%. This suggests that these models are 

better at finding important features in images, even without color. 

The results of this experiment highlight that color images are generally more useful 

than grayscale images for detecting motion in static images. Models tend to perform 

better when they have access to color, which provides more detailed information. How-

ever, some models, such as ResNet50, still manage to perform well even with grayscale 

images. This means they can focus on other details like textures and shapes, even when 

color is missing. 

Moreover, examining precision and recall values can offer deeper insights into the 

models’ behavior. A high precision value indicates that the model rarely misclassifies 

non-motion illusion samples, while a high recall value suggests the model effectively 

captures most of the actual motion illusion samples. Balancing these two metrics is 

crucial, as prioritizing one over the other may lead to biased performance evaluations. 

5 Conclusion and Future Work 

In this paper, we explored how different deep learning models perform when detecting 

motion in static images using both colored and grayscale datasets. The results of our 

experiments show that color images consistently lead to better performance compared 

to grayscale images across all the models tested. This highlights the importance of color 

information in helping models recognize motion-related patterns. 

Among the models tested, ResNet50 stood out as the best performer for both colored 

and grayscale images. Although all models saw a drop in accuracy when trained on 

grayscale data, some models—like ResNet50 and MobileNetV2—handled the absence 

of color better than others. Models like EfficientNetB5 and NASNetMobile, on the 

other hand, struggled more with grayscale images, experiencing significant drops in 

performance. 

Overall, our findings suggest that color information plays a key role in motion detec-

tion tasks. While some models can still perform reasonably well with grayscale images, 

the results show that including color data generally leads to more accurate and reliable 

motion detection. Therefore, if color data is available, it should be used to maximize the 

performance of the models.
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For future work, we can enhance motion perception classification by exploring novel 

deep learning architectures tailored for this task and incorporating semantic segmenta-

tion and attention mechanisms. Collaboration with experts in psychology and neuro-

science can deepen our understanding of motion perception mechanisms. Expanding 

and diversifying the dataset will improve model generalization. Real-world applica-

tions, such as human-computer interaction and autonomous systems, warrant explo-

ration, along with user studies to assess model impact. Developing explainable AI tech-

niques will increase model transparency and trustworthiness. Addressing these directions 

will advance motion perception analysis and its application in various domains. 
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