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Abstract. In this paper, we focus on evaluating the robustness of helmet detection 

in the context of traffic surveillance, achieved through state-of-the-art deep learn-

ing models. This aims to contribute significantly to motorcycle safety by imple-

menting intelligent systems adept at accurately identifying helmets. An integral 

component of this inquiry entails a meticulous benchmark of cutting-edge object 

detection models and the integration of advanced techniques, aiming not only to 

bolster accuracy but also to improve the overall practicality and effectiveness of 

helmet detection systems. The experimental results highlight the effectiveness of 

the state-of-the-art object detection methods in detecting helmets and the potential 

of transferring from the traffic domain to the construction site domain. 
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1 Introduction 

In the field of computer vision and intelligent transportation systems, the precise identifi-

cation of safety equipment, particularly helmets, is pivotal for advancing road safety. This 

research embarks on a transformative journey to push the boundaries of helmet detection, 

harnessing the power of sophisticated deep-learning methodologies. The imperative for 

robust and efficient helmet detection becomes particularly pronounced in the domain of 

traffic surveillance, where traditional methods often prove inadequate in addressing the 

multifaceted challenges posed by real-world scenarios. 

As urban landscapes undergo a notable surge in the prevalence of motorcycles and 

electric bikes [1], the imperative to ensure the safety of riders has become an increasingly 

critical concern in contemporary society. Helmets, recognized as fundamental safety 

accessories, play a crucial role in mitigating the risk of head injuries during accidents. 

However, the effectiveness of helmets is intricately linked to their proper usage, empha-

sizing the urgent need to develop advanced systems capable of precisely and reliably 

identifying the presence of helmets in various scenarios. 

This paper introduces a diverse array of innovative approaches to helmet detection, 

as depicted in Fig. 1, with a deliberate focus on creating a new dataset and harnessing
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the capabilities of different object detection models such as YOLO [2] (You Only Look 

Once), Faster RCNN [3], RT-DETR (Real Time Detection Trans-former) [4] and Detec-

tron2 [5]. These real-time object detection algorithms are strategically selected for their 

ability to swiftly and efficiently identify objects in dynamic scenarios, rendering them 

especially well-suited for applications such as traffic surveillance. The inherent robust-

ness of these models is further emphasized through the incorporation of advanced tech-

niques like Spatial Pyramid Pooling, thereby augmenting their effectiveness in intricate 

and varied environments. 

Fig. 1. Different examples of helmets under different conditions/viewpoints/clarity: a) 1-rider 

bike, b) 2-rider bike, c) rear view, d) side view, e) night-time view and, f) blurry view. 

Moreover, the research extends its exploration into the domain of ensemble methods, 

aiming to fortify the overall robustness and reliability of the helmet detection system. 

This involves the integration of multiple models within an ensemble framework, with the 

strategic objective of synergizing their individual strengths. By doing so, the system’s 

performance is enhanced across a broad spectrum of conditions, solidifying its position 

as a comprehensive solution for accurate helmet detection in settings that continuously 

evolve and present dynamic challenges. 

In response to the escalating prevalence of motorcycles and electric bikes, the inno-

vative approaches presented in this paper not only address the immediate concerns 

surrounding helmet detection but also contribute to the broader narrative of rider safety 

in urban environments of developing countries. Beyond the field of technical intrica-

cies, the research anticipates and responds to the evolving landscape of transportation, 

where intelligent systems are essential components in the quest for enhanced safety and 

efficiency. 

The significance of this research transcends its technical intricacies and resonates 

within the broader domain of intelligent transportation systems. By elevating the pre-

cision of helmet detection in challenging conditions, the outcomes directly align with 

the overarching goal of such systems – the reduction of accidents and the improvement
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of road safety. Furthermore, envisioning seamless integration, the proposed methods 

could easily be incorporated into existing traffic surveillance and planning systems [6, 

7], thereby fostering a safer environment for riders, and enhancing the overall efficacy 

of traffic management. 

This paper, as a comprehensive exploration of helmet detection, meticulously navi-

gates through the intricacies of deep learning models, the integration of novel techniques, 

and their practical application in real-world scenarios. Subsequent sections will system-

atically unveil the methodology, experiments, and results, offering a holistic understand-

ing of the pioneering advancements achieved in the field of helmet detection and their 

far-reaching implications for the evolution of intelligent transportation systems. The 

seamless integration of these advancements into existing frameworks is poised to revo-

lutionize road safety practices and contribute significantly to the broader landscape of 

intelligent transportation systems. 

2 Related Work 

The field of helmet detection has undergone profound transformations driven by the 

continuous evolution of computer vision and deep learning techniques. This section 

strives to offer a comprehensive review of relevant literature, shedding light on key 

contributions in the domain. This exploration not only synthesizes existing knowledge 

but also establishes a contextual foundation for the proposed architecture. 

A noteworthy aspect of recent research involves the exploration of YOLOv5s in 

the realm of object detection tasks. Huang et al. [8] pioneered an advanced YOLOv5s-

based method specifically tailored for electric bike helmet recognition. Their innovative 

approach yielded enhanced detection efficiency and practicality, acting as a catalyst 

for further investigations in specialized domains. This underscores the adaptability of 

YOLOv5s in addressing nuanced challenges within the realm of helmet detection. 

Chen et al. [9] embarked on the development of lightweight helmet detection algo-

rithms, a crucial pursuit for ensuring real-time processing in safety applications. Their 

work placed significant emphasis on safety helmet-wearing detection in industrial set-

tings, advocating for algorithms that offer swift and accurate recognition. This research 

substantially contributes to the intersection of real-time safety applications and com-

puter vision, recognizing the importance of expeditious and precise helmet detection in 

critical environments. 

In a parallel vein, Fan et al. [10] delved into the application of ensemble methods 

in helmet detection. Their deep learning-based ensemble method showcased advance-

ments in minimizing false positives, ensuring a more reliable helmet detection system. 

This work not only addresses the challenges of false positives but also makes valuable 

strides in enhancing the overall robustness of object detection models. The integration of 

ensemble methods adds a layer of complexity and efficacy to helmet detection systems. 

The YOLO series has gained popularity for real-time object detection due to its 

effective balance between speed and accuracy, but its performance is hindered by the 

Non-Maximum Suppression (NMS) step. Transformer-based detectors like DETR offer 

an alternative by eliminating NMS but suffer from high computational costs that limit 

their practicality. To address these issues, Lv et al. [4] proposed the Real-Time DEtection
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TRansformer (RT-DETR), an end-to-end object detector that maintains high speed and 

accuracy by employing an efficient hybrid encoder for rapid multi-scale feature process-

ing and an uncertainty-minimal query selection to enhance initial query quality, while 

also allowing flexible speed tuning through adjustable decoder layers. 

Recent advancements in deep learning have significantly improved image classi-

fication, segmentation, and object detection, including detecting helmets on bike rid-

ers to enhance road safety. Singh et al. [5] analyze various approaches and experi-

ments with state-of-the-art models like Detectron2 and EfficientDet, demonstrating their 

effectiveness in helmet detection. 

The synthesis of the reviewed literature underscores the diverse approaches employed 

in helmet detection, with a particular emphasis on the YOLOv5s architecture, lightweight 

algorithms, integration of SPP, utilization of ensemble methods, and the significance 

of curated datasets. Building upon these insights, the proposed architecture aspires to 

contribute to ongoing advancements in intelligent transportation systems and road safety. 

By amalgamating strengths and addressing the limitations highlighted in the literature, 

the proposed architecture seeks to elevate the precision, efficiency, and adaptability of 

helmets detection in dynamic real-world scenarios. This endeavor aligns with the broader 

trajectory of advancements in computer vision and deep learning, fostering a safer and 

more intelligent future for transportation systems. 

Fig. 2. The user interface of the annotation tool. 

3 Proposed Work 

In this section, we outline a thorough research methodology for benchmarking a resilient 

helmet detection system in traffic videos related to helmets. The proposed work includes 

data collection, data augmentation and preprocessing, model development, training, and 

evaluation, and cross-domain adaptation using the Hardhat Construction Dataset [11], 

iterative refinement, ethical considerations, and documentation. Leveraging pertinent 

literature and best practices guides our research at every step.
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3.1 Motorcycle Helmet Detection Dataset (MHDD) 

Our methodology started with the collection of the Motorcycle Helmet Detection Dataset 

(MHDD), a foundational element crucial for developing a robust helmet detection system 

capable of adapting to a myriad of diverse environmental conditions and traffic scenarios. 

There are a few similar datasets available such as the Caltech Pedestrian dataset [12] 

(taken from a vehicle driving) and multiple datasets focusing on biker’s helmets. No 

such public dataset is readily available that focuses on motorcyclist helmets from a 

traffic camera view. This made us create a new dataset that overcomes these issues and 

provides a readily available dataset for future use. 

Compiling our dataset involves a comprehensive sourcing strategy, tapping into var-

ious channels to ensure a rich and diverse representation. We leverage public video 

feeds from traffic cameras and surveillance systems in Vietnam from different regions. 

This exhaustive selection ensures the inclusion of a broad spectrum of traffic scenarios 

and environmental conditions in developing countries, significantly contributing to the 

robustness and adaptability of our helmet detection system. 

The cornerstone of our methodology lies in rigorous data annotation performed by 

trained annotators. This involves the meticulous marking of regions of interest (ROIs) 

containing motorcyclists and the precise indication of helmet presence [13]. In our work, 

we use Roboflow [14] for annotation. In particular, this tool empowers annotators to 

create high-quality annotations efficiently, thereby contributing to the depth and accuracy 

of our dataset. The graphical user interface of this tool is illustrated in Fig. 2. 

Fig. 3. The flowchart of the computational framework.
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3.2 Data Processing and Augmentation 

To ensure uniform data representation, videos undergo segmentation into individual 

frames or clips, effectively addressing variations in frame rates and mitigating compres-

sion artifacts [15]. In our pursuit of an enriched and diverse dataset, we employ a spec-

trum of data augmentation techniques, encompassing random rotations, flips, brightness 

adjustments, and cropping [16]. 

In the initial stages of data preprocessing, we prioritize image enhancement tech-

niques such as histogram equalization and adaptive contrast enhancement. These meth-

ods are pivotal in refining image quality, particularly for videos captured in challenging 

lighting conditions [17]. Subsequently, we implement normalization, wherein pixel val-

ues in the images are adjusted to attain a zero mean and unit variance, thereby instrumen-

tal in facilitating model convergence and enhancing the overall stability of the system 

[18]. 

As we immerse ourselves in simulating diverse weather conditions during the data 

augmentation process, our primary objective is to fortify the robustness of the helmet 

detection system. Synthetic scenarios involving rain, fog, and snow are introduced, 

effectively replicating adverse weather conditions. By leveraging Pillow and NumPy 

libraries we added synthetic weathers such as creating an overlay of small white circles 

(snowflakes) with random positions and some transparency to simulate snowfall, gener-

ating semi-transparent white ellipses (fog clouds) randomly placed over the image and 

then applying Gaussian blur to soften and blend them to create a foggy appearance, and 

adding vertical white lines (raindrop) of varying lengths and positions onto a transparent 

overlay to mimic falling rain. 

Our dataset becomes more resilient by seamlessly integrating these simulated 

weather conditions into the training and evaluation phases. This ensures that the helmet 

detection system is not only adept at handling real-world challenges posed by dynamic 

weather scenarios but also excels in accurately identifying helmets in adverse conditions. 

This comprehensive approach to data augmentation not only augments the model’s 

adaptability but also significantly contributes to its precision, reliability, and overall 

effectiveness in varied environmental conditions. 

The overall size of the dataset consists of 8,000 images including different weather 

scenarios, i.e., normal conditions, rain, fog, and snow. The dataset is broadly divided 

into two sections Colored and Grayscale each comprising of 4000 images. Furthermore, 

both these sections have 4 subsections based on conditions such as normal conditions, 

synthetic snow added, synthetic fog added, and synthetic rain added. Each of these 

subsections has 1000 images each respectively in both colored and grayscale format 

making the total size of the dataset 8000 images. (2 broad sections x 4 subsections x 

1000 images each). 

3.3 Computational Framework 

Our envisioned framework for robust helmet detection in traffic videos is strategically 

crafted to surmount challenges posed by fluctuating weather conditions, ultimately 

ensuring the safety of motorcyclists. This comprehensive framework consists of key 

components, each playing a pivotal role in the overall system, as illustrated in Fig. 3.



Motorcycle Helmet Detection Benchmarking 209

To initiate the framework, traffic videos captured by surveillance cameras serve as 

the primary input source. These videos constitute the foundational data for the helmet 

detection system. Frame extraction is the next crucial step, where frames are extracted 

from the input traffic videos. Each frame represents a snapshot of the traffic scene, form-

ing the basis for subsequent analysis. Extracted frames undergo essential preprocessing 

tasks, including noise reduction, contrast enhancement, and resizing as part of the pre-

processing dataset phase. These tasks aim to ensure the consistency and high quality of 

the input data, laying the groundwork for accurate analysis. 

Moving forward, the data labeling stage is imperative. For supervised training, the 

dataset is meticulously annotated, with each helmet within the frames being labeled. 

This annotated dataset becomes the bedrock for training the helmet detection model. 

Subsequently, the labeled dataset undergoes further refinement to align it with real-world 

scenarios. Synthetic weather scenarios, such as rain, fog, and darkness, are introduced to 

simulate various environmental conditions, making the dataset more robust and reflective 

of diverse challenges. 

The object detection model, the final and pivotal element in the framework, is a 

deep learning-based model specifically designed to identify helmets within the frames. 

Crafted for high accuracy and capable of handling challenging conditions, this model 

is finetuned to excel under various weather conditions. The finetuned object detection 

model stands as the core component for robust helmet detection, ensuring the system’s 

adaptability to dynamic scenarios. The object detector locates and highlights helmets 

within the frames, contributing significantly to motorcyclist safety in diverse traffic 

scenarios. 

Fig. 4. Object Detection results of all models. 

3.4 Implementation 

We adopt pre-trained deep convolutional neural networks (CNN) that serve as the base 

model for feature extraction. Consideration will be given to well-established architec-

tures such as ResNet [19], VGG [20], or Inception [21]. Then, the selected base model 

will undergo fine-tuning using our annotated traffic video dataset. Transfer learning tech-

niques will be applied, leveraging knowledge from large-scale datasets like ImageNet to
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adapt the model for helmet detection. An object detection head, such as a Region Pro-

posal Network (R-CNN), will be added to the base model to identify ROIs containing 

motorcyclists’ heads. For the helmet detection head, a subnetwork for helmet detection 

will be integrated within the ROIs identified in the previous step. Architecture options 

include Faster R-CNN [3] or YOLO [2] for object detection. 

Regarding the loss function, an appropriate loss function, combining classification 

loss and localization loss (e.g., Smooth L 1 loss), will be defined for helmet detection. 

The model will be trained using annotated data, employing an optimizer such as Adam 

[22]. Training progress will be monitored using validation data, and techniques like 

learning rate schedules and early stopping will be used for optimization. 

4 Benchmarking 

In this section, we conduct a comprehensive evaluation of robust helmet detection bench-

marking, aiming to scrutinize the performance of multiple models across diverse sce-

narios. Our objective is to benchmark and compare these models using key metrics: 

precision, recall, F1-Score, and mean average precision (mAP) [18] to gauge their 

effectiveness in helmet detection. 

Hardhat 

Helmet 
Nighttime 

Daytime 

Snow 

Rain Fog 

Fig. 5. The illustration of different weather conditions. 

4.1 Metrics Performance 

We employed the following evaluation metrics. Precision indicates the percentage of 

correctly detected helmets out of all identified by the model. The recall represents the 

percentage of actual helmets correctly detected by the model. F1-Score is a balanced 

measure between precision and recall. Finally, Mean Average Precision (mAP) reflects 

the average precision scores for different classes, in this case, helmets.
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4.2 Modal Comparison 

Several models designed for helmet detection underwent training and testing. Table 1 & 

Table 2 summarize their performance. Table 1 streamlines the decision-making process 

for selecting the most appropriate model for real-world applications as discussed in 

further sections in more detail. 

4.3 Visual Assessment 

Visual assessment, coupled with quantitative metrics, plays a pivotal role in conducting 

a thorough evaluation of the model’s performance. The inclusion of visual examples, as 

illustrated in Fig. 4, enriches our understanding of how each model operates in diverse 

scenarios, introducing a qualitative dimension to the evaluation process. 

Within these visual representations, the models’ effectiveness in identifying hel-

mets under various conditions is vividly highlighted. Each image encapsulates the 

model’s responses to real-world challenges, encompassing factors such as varying light-

ing conditions, adverse weather scenarios, and complex traffic scenes. This visual evi-

dence not only validates the quantitative data derived from metrics but also provides a 

comprehensive and nuanced perspective on the models’ resilience and adaptability. 

Table 1. The experimental results of different models trained on traffic data and tested on traffic 

data. Both training and testing data are included in MHDD dataset. The best performance is marked 

as boldface. 

Sr. No Model mAP 

1 Yolov5s (Colored) 0.857 

2 Yolov5s (Grayscale) 0.863 

3 Yolov7-w6 (Colored) 0.881 

4 Yolov7-w6 (Grayscale) 0.899 

5 Yolov6s (Colored) 0.809 

6 Yolov6s (Grayscale) 0.795 

7 Yolov8s (Colored) 0.863 

8 Yolov8s (Grayscale) 0.847 

9 FasterRCNN-ResNet50 (Colored) 0.870 

10 FasterRCNN-ResNet50 (Grayscale) 0.871 

11 RT-DETR (Colored) 0.790 

12 RT-DETR (Grayscale) 0.770 

13 Detectron2 (Colored) 0.705 

14 Detectron2 (Grayscale) 0.757 

These visual examples act as a qualitative supplement to the quantitative assess-

ment, fostering a deeper comprehension of the models’ strengths and limitations. Beyond
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numerical scores and metrics, these images furnish the research community with tangible 

proof of the model’s performance in practical, real-world situations. Such visual assess-

ments contribute significantly to a holistic and insightful interpretation of the models’ 

overall effectiveness and suitability for deployment in dynamic environments. 

4.4 Discussions 

The comprehensive evaluation has unveiled valuable insights into the models’ perfor-

mance as shown in Table 1. The critical metric of precision highlights the exemplary 

capabilities of Models 3 and 10 (different families). Model 4 (Yolov7-w6 Grayscale) 

distinguishes itself with an impressive mean Average Precision (mAP) of 0.899, closely 

trailed by Model 10 (FasterRCNN-ResNet50 Grayscale) with a commendable mAP of 

0.871. 

In the realm of Recall, Model 3 demonstrates outstanding performance, surpassing 

its counterparts with a mAP of 0.881. Model 10 exhibits competitive recall capabilities, 

boasting a mAP of 0.871. Meanwhile, Model 1 (Yolov5s Colored) achieves the highest 

F1-Score, with a mAP of 0.857. This metric signifies a harmonious blend of precision 

and recall, positioning it as a noteworthy contender adept at balancing these two crucial 

aspects of helmet detection. 

A pivotal consideration lies in the mAP, where Model 10 (FasterRCNN-ResNet50 

Grayscale) outperforms others with a score of 0.871. This underscores the model’s 

consistency and effectiveness across a spectrum of conditions, reinforcing its reliability 

in diverse helmet detection scenarios. Considering all the results we can broadly say the 

model works better in grayscale over colored ones. 

These insights empower users to make informed decisions by comprehending the 

trade-offs between precision, recall, and adaptability. Although RT-DETR and Detec-

tron2 performed poorly compared to all other models in the range of mAP 0.7–0.8 but 

whether prioritizing precise helmet identification or comprehensive coverage, the varied 

strengths of each model facilitate customized selections aligned with specific application 

needs. 

Table 2. The experimental results on the test traffic data with different models and training 

datasets. 

Model Train Dataset mAP 

Yolov7-w6 (Colored) HardHat + Traffic 0.904 

Yolov7-w6 (Grayscale) HardHat + Traffic 0.892 

Yolov7-w6 (Colored) HardHat 0.904 

Yolov7-w6 (Grayscale) HardHat 0.865 

FasterRCNN-ResNet50 (Colored) HardHat 0.878 

FasterRCNN-ResNet50 (Grayscale) HardHat 0.904
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4.5 Robustness Evaluation 

This section emphasizes the robustness of hardhat helmet detection, achieved by inte-

grating a hardhat dataset with the traffic dataset and training it using the best-performing 

models (Model 4 - Yolov7-w6 Grayscale) and (Model 10 – FasterRCNN-ResNet50) as 

discussed in the previous section. Evaluations showcase the model’s adaptability and 

performance in real-world scenarios as mentioned in Table 2 with an impressive mAP 

of 0.904. Though both the models were able to score the mAP of 0.904 the preferred 

model will be Model 4 (YOLOv7-w6) as it’s a faster model compared to Model 10 

(FasterRCNN-ResNet50). 

Weather Robustness Assessment. Model 4’s adaptability under different weather con-

ditions is tested, showing consistent precision and recall across adverse scenarios as 

shown in Fig. 5. 

Real-World Implications. The benchmarking results have significant implications for 

helmet detection system deployment. Depending on application demands, users can 

select a suitable model, considering critical factors such as precision and recall. The 

adaptability of models across different weather conditions underscores the necessity 

for versatile, robust systems ensuring safety in adverse environments The benchmark 

has significantly advanced our understanding of helmet detection models in diverse 

conditions, emphasizing the critical need for adaptability to ensure motorcyclist safety. 

Beyond traffic scenarios, the application scope extends to industrial safety and various 

domains, showcasing the broader societal impact of intelligent transportation systems. 

Our contributions to the fields of computer vision, deep learning, and transportation 

safety underscore the importance of tailored model selection to meet specific application 

needs, recognizing the nuanced challenges presented in real-world scenarios. Despite 

inherent limitations, this paper serves as a foundational step toward future advancements 

in helmet detection research, shedding light on the necessity for diverse datasets and 

effective domain adaptation strategies. 

Fig. 6. Visualization of failure cases: a) wrongly detected helmet b) wrongly detected helmet and 

motorcycle c) dark hair detected as helmet and d) cap detected as helmet. 

5 Conclusion and Future Work 

This paper advances helmet detection systems strategically focusing on optimizing real-

time processing capabilities for practical deployment in dynamic traffic scenarios. We 

address the ongoing challenge of enhancing model performance in adverse weather con-

ditions which demands dedicated research efforts and exploring innovative techniques
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and technologies. We plan to explore multimodal data fusion, where integrating infor-

mation from various sensors could significantly elevate detection accuracy, particularly 

in scenarios with challenging visibility conditions as shown in Fig. 6. The expansion 

of benchmark datasets and the exploration of advanced domain adaptation techniques 

are pivotal steps toward creating more robust models capable of handling diverse and 

complex environments. 

For future work, we focus on optimizing helmet detection systems for real-time 

processing, facilitating practical deployment in traffic scenarios. Enhancing model per-

formance in adverse weather conditions remains a critical challenge, warranting further 

investigation. Multimodal data fusion, encompassing data from various sensors, could 

enhance detection accuracy, especially in challenging visibility conditions. Expanding 

benchmark datasets, exploring domain adaptation techniques, and broadening the scope 

to include anomaly detection for comprehensive traffic safety are avenues for future 

exploration. 
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