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Abstract— This paper aims to improve the computational effi-
ciency of motion planning for mobile robots with non-trivial dy-
namics through the use of learned controllers. Offline, a system-
specific controller is first trained in an empty environment.
Then, for the target environment, the approach constructs a
data structure, a “Roadmap with Gaps,” to approximately learn
how to solve planning queries using the learned controller. The
roadmap nodes correspond to local regions. Edges correspond
to applications of the learned controller that approximately
connect these regions. Gaps arise as the controller does not
perfectly connect pairs of individual states along edges. Online,
given a query, a tree sampling-based motion planner uses the
roadmap so that the tree’s expansion is informed towards the
goal region. The tree expansion selects local subgoals given a
wavefront on the roadmap that guides towards the goal. When
the controller cannot reach a subgoal region, the planner resorts
to random exploration to maintain probabilistic completeness
and asymptotic optimality. The accompanying experimental
evaluation shows that the approach significantly improves the
computational efficiency of motion planning on various bench-
marks, including physics-based vehicular models on uneven
and varying friction terrains as well as a quadrotor under
air pressure effects. Website: https://prx-kinodynamic.
github.io/projects/rogue

I. INTRODUCTION

Kinodynamic motion planning allows mobile robots with

non-trivial dynamics to negotiate environments with obsta-

cles, such as a warehouse, or physical features, such as

uneven terrain and ice. The problem is challenging when

there is no local steering function available that connects

two states. Tree sampling-based planners [1] do not need a

steering function as they only forward propagate the system’s

dynamics. Some variants provide Asymptotic Optimality

(AO) by propagating randomly sampled controls [2]–[5].

While random controls provide theoretical properties, they

result in slow convergence to high-quality solutions in prac-

tice.

This work aims to improve the efficiency of such AI

kinodynamic planners [6], [7] by integrating controllers

trained via Reinforcement Learning (RL) [8]. Supervision

has also be used to train controllers that are then integrated

with planners [9]–[12]. This is often done, however, under

the assumption that a steering function is available for the

robot, which is not assumed here. While one may attempt to

solve planning problems directly with RL, this often suffers

from large training data requirements and requires careful

tuning of rewards [13]. Most RL solutions lack long-horizon

reasoning, which a planner provides.
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RLG solution cost: 79.01sRoGuE (Ours) solution cost: 47.05s

Fig. 1: Solution trajectories (thick lines) and planning trees (thin
lines) for a MuSHR vehicle over an uneven terrain in MuJoCo. The
cost function is trajectory duration, which is impacted by the uneven
terrain. The proposed expansion method for kinodynamic planning
(left) leverages a “Roadmap with Gaps” to avoid difficult terrain
resulting in shorter duration solutions. The alternative expansion
(right), which samples random local goals, navigates the rough hills
less effectively. It results in a shorter distance path but a much
slower trajectory. Planning time was 60s for both methods.

Several recent works have leveraged RL to build an

abstract representation of the planning problem and search

for an optimal path between the start and the goal. Search on

the Replay Buffer (SoRB) [14] and Sparse Graphical Mem-

ory (SGM) [15] build a graph where the nodes correspond

to states visited by the RL agent during training. Similar

to SoRB and SGM, Deep Skill Graphs [16]–[18] builds a

graph representation, where nodes correspond to subgoals,

and edges correspond to control policies between them. A

common feature of these methods is that the control policy is

trained in the planning environment of interest. This requires

the learning algorithm to reason jointly about the system’s

dynamics and the obstacles present in the environment,

which is challenging for second-order systems [19].

Prior work by the authors integrates RL in kinodynamic

motion planning via a decoupled strategy [20], [21], where a

controller is first trained offline in an empty environment and

the learning process only deals with the system’s dynamics.

The absence of obstacles allows learning the controller

with significantly fewer data and only a sparse reward.

During online planning, these prior efforts engineer local

goals that bias expansion toward the global goal via manual

engineering. Designing, however, an informed local goal

procedure requires manual effort, which is undesirable and

may not work well across environments. Furthermore, the

local goals these procedures generate are unaware of the

trained controller’s reachability properties.

This work proposes a data structure, a Roadmap with

Gaps, that learns the approximate reachability of local

regions in a given environment given a controller. The

approach constructs a directed graph in the free configuration

space of the robot. An edge exists from a source node/region

to a target when the source node’s nominal state can reach the
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target node’s termination set without collisions by applying

the controller. Gaps arise since the learned controller does

not connect any two exact states exactly. Given a new

planning query, a wavefront expressing the cost-to-goal on

this roadmap provides every node with the direction of

motion towards the goal. This roadmap guidance is integrated

with an AO tree sampling-based planner. During the tree

planner’s expansion, nodes that are closer to the global goal

given the roadmap guidance are prioritized.

The proposed approach provides a tradeoff. It incurs

an offline computational cost for pre-processing a known

environment and the robot’s dynamics to provide online

computational benefits for multiple planning queries in the

same workspace. At the same time it retains AO properties

and is an informed, efficient solution by understanding the

reachability properties of the learned controller and the

environment’s connectivity. Prior approaches that guide tree

sampling-based planners using graphical abstractions [22],

[23] do not provide desirable properties (e.g., AO) or do not

reason about the system’s dynamics. A related kinodynamic

planning approach introduced the Bundle of Edges (BoE)

notion [24] but relies on random control propagation, which

reduces efficiency.

In summary, this paper proposes the Roadmap-Guided

Expansion (RoGuE)-Tree method, which:

◦ Introduces the “Roadmap with Gaps,” a data structure

that approximately guides how a robot can navigate a target

environment given a controller, and

◦ Adapts an Asymptotically Optimal (AO) framework for

kinodynamic planning to utilize the “Roadmap with Gaps”.

The accompanying evaluation shows that RoGuE results

in lower-cost solutions faster than random propagation given

an AO sampling-based kinodynamic planner both on ana-

lytically and physically simulated models in various envi-

ronments. This includes physics-based vehicular models on

uneven and varying friction terrains as well as a quadrotor

under air pressure effects.

II. PRELIMINARIES

Consider a system with state space X and control space

U. X is divided into collision-free (Xf ) and obstacle (Xo)

subsets. The dynamics ẋ = f(x, u) (where x ∈ Xf , u ∈ U)

govern the robot’s motions. The process f can be an analyt-

ical ordinary differential equation (ODE) or modeled via a

physics engine, e.g., MuJoCo [25]. A function M : X → Q

maps a state x ∈ X to its corresponding configuration space

point q ∈ Q (q = M(x)). The inverse mapping M−1(qi)
returns a state xi ∈ X by setting the dynamics term to some

nominal value (e.g., by setting all velocity terms to 0). A

distance function d(·, ·) is defined over Q, which corresponds

to a weighted Euclidean distance metric in SE(2).

A plan pT is a sequence of piecewise-constant controls

of duration T that induce a trajectory Ä ∈ T , where Ä :
[0, T ] 7→ Xf . Given a start state x0 ∈ Xf and a goal set

XG ¢ Xf , a feasible motion planning problem admits a

solution trajectory of the form Ä(0) = x0, Ä(T ) ∈ XG. The

goal set is defined as XG = {x ∈ Xf | d(M(x), qG) < ϵ},

Fig. 2: Stages of the proposed pipeline. Offline: A controller is
trained in an empty environment. The roadmap with gaps is built
over the robot’s free C-space in a target environment. Online: Given
a new query (x0, xG), a wavefront is computed over the roadmap.
At every iteration of the tree sampling-based planner, a local goal is
computed given the wavefront information, and a candidate control
is propagated towards the local goal via the trained controller.

or equivalently, B(qG, ϵ) where ϵ is a tolerance parameter. A

heuristic h : X → R+ estimates the cost-to-go of an input

state x to the goal region XG. Each solution trajectory has a

cost given by cost : T → R+. An optimal motion planning

problem aims to minimize the cost of the solution trajectory.

Sampling-Based Planning Framework: The framework

uses the forward propagation model f to explore Xf by

incrementally constructing a tree via sampling in U. Algo. 1

outlines the high-level operation of a sampling-based motion

planner (Tree-SBMP) that builds a tree of states rooted at the

initial state x0 until it reaches XG.

Algorithm 1: Tree-SBMP(X,U, x0, XG)

1 T← {x0};
2 while termination condition is not met do

3 xsel ← SELECT-NODE(T);
4 u← EXPAND(xsel);
5 xnew ← PROPAGATE(xsel, u);
6 if (xsel → xnew) ∈ Xf then

7 EXTEND-TREE(T, xsel → xnew);

Each iteration of Tree-SBMP selects an existing tree

node/state xsel to expand (Line 3). Then, it generates a control

sequence u and propagates it from xsel to obtain a new state

xnew (Lines 4-5). The resulting edge is added to the tree if

not in collision (Lines 6-7). Upon termination (e.g., a time

threshold), if the tree has states in XG, the best-found solu-

tion according to cost is returned. By varying how the key

operations in Algo. 1 are implemented, different variations

can be obtained. The specific variant this work adopts is

the informed and AO “Dominance-Informed Region Tree”

(DIRT) [4]. It uses an admissible state heuristic function h

to select nodes in an informed manner. If xnew improves upon

xsel given h, then it is selected as the next xsel. DIRT also

propagates a “blossom” of k controls at every iteration and

prioritizes the propagation of the edge that brings the robot

closer to the goal given the heuristic.

III. PROPOSED METHOD

The focus of this work is on line 4 of Algo. 1 above,

i.e., how to generate the control that is expanded out of



xsel. In particular, the method computes first a local goal

qlg and propagates a control u = Ã(xsel, qlg) that progresses

towards that local goal given a controller Ã. The controller

is first applied at the selected node xsel ∈ X and generates a

control sequence towards reaching the local goal qlg without

considering obstacles.

Overall, the proposed method (Fig 2) has 2 offline stages:

(i) training a controller Ã(x, q) in an obstacle-free envi-

ronment, and (ii) building a “Roadmap with Gaps” (V, E)
in the target environment given the available controller.

Finally, it has an online phase given a motion planning query

(x0, xG) in the target environment. Online, a sampling-based

kinodynamic planner expands a tree of feasible trajectories

guided by a wavefront function computed over the “Roadmap

with Gaps”.

A. Training a Controller offline

A goal-conditioned controller u = Ã(x, q) is first trained

via reinforcement learning to reach from an initial state x

to a goal set B(q, ϵ), i.e., within an ϵ distance of q. For

the training, this is attempted for any (x, q) ∈ X × Q in

an empty environment of given dimensions. The training

process collects transitions (xt, ut, C(xt, q), xt+1, q), which

are stored in a replay buffer. The cost function C : X×Q→
{0,−1} has a value of C(xt, q) = 0 iff xt ∈ B(q, ϵ),
and −1 otherwise. During each iteration, mini-batches of

transitions are sampled from the buffer. A Soft Actor-Critic

(SAC) [26] algorithm is employed, which minimizes the total

cost Ex0,qG∼X×Q[
∑T

t=0
C(xt, qG)]. Concurrently, Hindsight

Experience Replay (HER) [27] relabels some transitions with

alternative goals to provide additional training signals from

past experiences.

B. Building a Roadmap with Gaps offline

The proposed approach then builds a “Roadmap with

Gaps” (V, E) at the target environment, i.e., a graphical

representation where nodes V correspond to configurations

qi of the vehicle. Edges (qi, qj) ∈ E exist between vertices

as long as the application (of maximum duration Tmax) of the

available controller Ã(M−1(qi), qj) at a zero velocity state

M−1(qi) of the initial configuration qi brings the system

within a hyperball B(qj , ϵ) of the configuration qj .

The roadmap construction procedure (Fig 3) samples first

a set of configuration milestones {qi}
|N |
i=1, which form the

vertices V in the roadmap. In this work, the milestones are

chosen over a grid in Q. They are collision-checked and

verified to be in Qf . Then, for the generation of edges E , the

procedure selects a random configuration qi ∈ V and obtains

two sets: A and D. A is the set of all vertices q ∈ V, whose

hyperballs B(q, ϵ) can be reached from xi = M−1(qi) given

the controller Ã. Similarly, D is the set of vertices q ∈ V ,

where the state x = M−1(q) can reach the hyperball B(qi, ϵ)
given the controller Ã. Then, edges from qi to vertices in A

and edges from vertices in D to qi are added to the set E .

The application of the controller for the edge con-

struction, especially a learned one for a non-linear dy-

namical system, implies that for all edges (qi, qj) in the

roadmap, there is no guarantee that the resulting config-

uration qj can be achieved exactly from qi. Instead, the

corresponding edge only guarantees that the system will be

within a hyperball B(qG, ϵ) if it is initialized at M−1(qi).
Consequently, the edges of the

roadmap introduce “gaps” as high-

lighted by the figure. This issue

is exacerbated if the controller is

used to follow a sequence of edges

on the roadmap, e.g., (qi, qj) and

(qj , qk). Since the controller’s ap-

plication over the first edge can only

bring the system in the vicinity of qj , the application of the

controller corresponding to the second edge at the resulting

configuration may not even bring the system within an ϵ-

hyperball of qk. Consequently, paths on the “Roadmap with

Gaps” do not respect the dynamic constraints of the vehicle

and cannot be used to directly solve kinodynamic planning

problems. They can still provide, however, useful guidance

for a kinodynamic planner.

C. RoGuE: Guiding expansion via a roadmap with gaps

Algo. 2 describes the Roadmap-Guided Expansion

(RoGuE)-Tree method, which uses a “Roadmap with Gaps”

to guide the online expansion of an AO Tree Sampling-based

Motion Planner given a new query (x0, xG).
It first adds vertices q0 = M(x0) and qG = M(xG) to G.

Then, it adds edges from q0 to all vertices accessible from

it, i.e., the set of all vertices qi ∈ V such that applying

the controller from x0 for maximum duration Tmax returns

a collision-free trajectory Ä with M(Ä.end()) ∈ B(qi, ϵ).
Similarly, it adds edges to qG from all vertices that can access

the goal set XG.

A wavefront function W : V 7→ R+ is computed over the

vertices of the roadmap. Initially, the wavefront value for

all vertices is set to infinity. Then, the wavefront value of

the goal (W(qG)) is set to zero, and a backward search is

performed. Given the wavefront, every vertex in V now has

the notion of a successor associated with it, defined to be its

out-neighbor with minimumW value, i.e., Successor(v) =
argminV{W(v′) | (v, v′) ∈ E}. For a node with an infinite

cost-to-goal (because the roadmap does not provide it with

a path to the goal), its successor is undefined.

Algorithm 2: RoGuE-Tree (X,U, x0, xG, π, (V, E))

1 Add q0, qG to roadmap (V, E) as start and goal;

2 W ← GET-WAVEFRONT((V, E));
3 T← {x0};
4 while termination condition is not met do

5 xsel ← SELECT-NODE(T);
6 u← RoGuE(xsel,V,W, Ã);
7 xnew ← PROPAGATE(xsel, u);
8 if (xsel → xnew) ∈ Xf then

9 EXTEND-TREE(T, xsel → xnew);

RoGuE (Algo. 3, Fig 4) is an expansion procedure that



(a) (b) (c)
Fig. 3: (a) A Roadmap with Gaps consists of vertices (configurations, represented as dotted boxes). The roadmap’s directional edges (dotted
lines) correspond to where the controller was successfully executed from the source to the target configuration, given some tolerance. (b)
For a new planning query (x0, xG), the start q0 and goal qG are added to the roadmap. (c) Due to gaps, naively following the roadmap’s
shortest path to the goal may not be feasible.

Fig. 4: Roadmap-Guided Expansion (RoGuE): Given the roadmap
with gaps in an environment (transparent) and the current planning
tree (opaque), RoGuE selects informed local goals for the controller
π. The closest roadmap node qnear to the selected tree node xsel

is identified. Its successor is passed as the local goal qlg to the
controller. This expansion adds a new tree node xnew.

uses the roadmap wavefront information W to provide an

informed local goal to Ã. The first time a tree node xsel is

selected for expansion, RoGuE identifies the closest roadmap

node qnear ∈ V according to the distance function d(·, ·) (Line

2). It then queries the Successor(qnear) given the wavefront

W . If (qnear) is defined, it is provided as the local goal qlg to

the controller Ã (Lines 3-5). If the successor is not defined,

a random local goal in Q is provided (Line 6-7).

Algorithm 3: RoGuE(xsel,V,W, Ã)

1 if first time xsel is expanded then

2 qnear ← ClosestRoadmapNode(xsel,V);
3 qlg ← Successor(qnear,W);
4 if qlg is defined then

5 u← Ã(xsel, qlg);
6 else

7 u← Ã(xsel,Q.sample());
8 else

9 u← U.random-sample();
10 return u;

Following the informed operation of the DIRT planner

[4], when the roadmap cost-to-go value of a node is lower

than that of its parent’s, then the child node is immediately

reselected for expansion so that the tree can continue to make

progress along a promising path of the roadmap with gaps.

All (start, goal) pairs in the accompanying experiments

below are included as milestones during the roadmap con-

struction to reduce connection time during online planning.

Alternatively, the connection of start and goal configurations

to the roadmap lends itself to multi-threaded implemen-

tations. Or, similarly to the “roadmap cost-to-go” value

definition in Line 2 of Alg. 3, the closest roadmap nodes

can be used as surrogates for the corresponding start and

goal states.

Maintaining Asymptotic Optimality: As long as all tree

nodes have a non-zero probability of being selected for ex-

pansion, and the probability of an expansion being successful

from a node along the lowest-cost trajectory is non-zero, the

sampling-based tree planner remains AO. The node selection

process of RoGuE adopts that of the DIRT planner [4],

which, while informed, maintains a positive probability for

all tree nodes. Similarly, while RoGuE employs an initial set

of informed expansions from each node (given the roadmap

information), subsequent expansions apply random controls

from the set U (Algo 3, Line 8-9). In this way, the approach

retains the AO properties of DIRT [4].

In practice, when the informed processes of RoGuE guide

the selection and expansion of nodes along high quality

solutions, the method achieves an improved convergence

rate relative to alternatives that do not have access to the

roadmap information as the experimental evaluation below

shows. Showing this improvement in convergence rate is an

objective of future research efforts for this line of work.

IV. EXPERIMENTAL EVALUATION

The robot systems considered in the evaluation are: (i)

an analytically simulated second-order differential-drive, (ii)

an analytically simulated car-like vehicle (where dim(X) =
5,dim(U) = 2), (iii) a MuSHR car [28] physically simulated

using MuJoCo [25] (dim(X) = 27,dim(U) = 2), and (iv)

a Skydio X2 Autonomous Drone (dim(X) = 13,dim(U) =
4). For the drone, the distance function d(·, ·) operates over

the (x, y, z) of its center of mass. For all systems, the

parameter ϵ is set to the same value 0.5. All planning

experiments are implemented using the ML4KP software



library [29] and executed on a cluster with Intel(R) Xeon(R)

Gold 5220 CPU @ 2.20GHz and 512 GB of RAM.

Fig. 5: Physically simulated benchmarks using MuJoCo. Top: (L-R)
Maze, Terrain. Bottom: (L-R) Friction, Quadrotor.

Across experiments, the following metrics are measured

for every planner: (1) Average normalized cost of solutions

found over time, and (2) Ratio of experiments for which

solutions were found over time. For all planning problems,

the path cost is defined as the solution plan’s duration.

To better reflect the performance of different methods and

account for the difficulty of different planning problems, path

costs discovered by a method on each planning problem are

normalized by dividing by the best path cost ever found for

a problem across all planners.

Two comparison expansion functions are considered in

the evaluation: (a) Random uses a blossom expansion of

random controls in U, and (b) RLG samples Random Local

Goals as input to Ã and outputs the controls returned. In

terms of comparison motion planners, both an uninformed

Rapidly-exploring Randomized Tree (RRT) [1] and the in-

formed, AO DIRT planners are considered. For the Random

and RLG expansion strategies of DIRT, a blossom of 5

controls is implemented.

Additional AO planners were considered for experimenta-

tion but it was difficult to provide useful results for them. The

Bundle of Edges (BoE) [24] approach failed to find solutions

while using a similarly-sized roadmap. The discontinuity-

bounded A* (dbA*) [30] relies on motion primitives, which

are not available, however, for the robots in the experiments

of this paper as they exhibit second-order dynamics. It is not

trivial for them to acquire effective motion primitives.

A. Results on analytically simulated benchmarks

In these experiments, the performance of the expansion

functions is measured on three sets of planning benchmarks

for the analytically simulated vehicular systems: (a) 8 prob-

lems in an environment with Narrow passages, (b) 6 prob-

lems in the Indoor environment from Arena-bench [31],

and (c) 8 problems in the Warehouse environment from

Bench-MR [32]. Figure 6 provides the numerical results.

Across all benchmarks, for the differential drive and car-

like dynamics, DIRT-RoGuE finds the lowest cost solu-

tions overall. It also is the only expansion strategy that

returns solutions in all trials. Among the RRT expansion

strategies, RRT-RoGuE achieves the highest success rate

across all benchmarks and the lowest cost solutions overall.

RRT-RoGuE also achieves comparable performance (both in

terms of success rate and solution quality) to the informed

DIRT-Random an DIRT-RLG planners. Both DIRT-RLG

and DIRT-Random fail to find solutions in all trials on

the Indoor and Warehouse benchmarks and are slow to

return solutions relative to DIRT-RoGuE.

In the Narrow benchmark, the shortest duration trajec-

tories must traverse all the narrow passages. So although

DIRT-Random and DIRT-RLG find solutions in all trials

for the second-order differential drive, DIRT-RoGuE returns

significantly lower-cost solutions much earlier.

Comparison to Kinematic Planning and Path Follow-

ing: A naı̈ve alternative to the proposed solution is to use the

configurations along a path on the roadmap as consecutive

local goals for a path following controller. For the car-like

system, a pose-reaching controller [33] was employed to

drive the robot to a given pose

(

v

É

)

=

(

kρÄ

kα³+ kβ´

)

,

where each k parameter is a gain term, Ä and ³ are the

distance and bearing to the local goal respectively, and ´ is

the angle difference between ³ and the current angle. The

controller is tested on paths retrieved from the Roadmap with

Gaps for the benchmarks of Fig 6. Only 2 such executions,

however, returned collision-free trajectories. This is due to

(a) the environments containing multiple narrow passages

and (b) the paths returned by the roadmap still contain “gaps”

that the controller cannot easily negotiate. This motivates the

proposed solution and alternatives that are similarly obstacle-

aware and which reason about the robot’s dynamics.

B. Results on physically simulated benchmarks

The performance of the expansion functions is measured

on the following benchmarks for MuSHR: (a) navigating

a Maze from D4RL [34], (b) an environment with uneven

Terrain features [35], (c) and an environment with differ-

ent friction values (Friction). Note that the controller is

trained in an empty environment with flat terrain and friction.

The roadmap captures the traversability of different parts of

the environment using the controller. In the Quadrotor

benchmark, the X2 drone must navigate an indoor environ-

ment with pillars and air pressure effects.

Fig. 5 visualize the different environments in MuJoCo,

and Fig. 7 provides the experimental results. Only the DIRT

motion planner is reported in these experiments as the RRT-

based solutions cannot find a solution within the allotted

times. Since each call to the MuJoCo engine is expensive,

all expansion strategies use a blossom k = 1.

RoGuE finds the lowest cost solution across all bench-

marks. Both Random and RLG consistently fail to find

solutions across trials. Using the learned controller in RLG

does lead to improved solution quality relative to Random.

In both the Maze and Friction benchmarks, RoGuE

leverages the Roadmap with Gaps to find solutions across

trials quickly. RoGuE also returned the most solutions in the



(a) Planning results on the Narrow benchmark.

(b) Planning results on the Indoors benchmark.

(c) Planning results on the Warehouse benchmark.

Fig. 6: Left and middle-left: higher success rate earlier is better. Right and middle-right: lower path cost is better. As more solutions are
discovered, additional solutions for harder problems are discovered, so in some cases, the average cost may increase over time. Each
problem instance is run 10 times to account for different random seeds.

Terrain benchmark given the same planning budget. In

the Quadrotor benchmark, RoGuE is the only expansion

method that discovers any solutions due to the tight place-

ment of obstacles and the speed of the X2 drone.

Comparison to Deep RL solutions: Table I evaluates two

purely DRL-based strategies trained on the benchmarks of

Fig 5 in terms of success rate Succ, as well as offline cost

(Offl, in terms of # of calls made to the MuJoCo engine).

The offline cost of the DRL methods is reported when their

best performance is observed, and the success rate does not

improve after training for longer. The online costs Onl for

the sampling-based planners are also reported. The online

cost for the RL solutions is minimal. SAC+HER trains a goal-

conditioned controller u = Ã(x, q) directly in the planning

environment. The approach achieves a low success rate rela-

tive to the proposed kinodynamic planning solution. The low

success on Quadrotor can be attributed to the difficulty in

jointly learning the dynamics and obstacle avoidance. Due to

simpler dynamics, the performance is better on the Maze and

Friction benchmarks. H-SAC+HER follows a hierarchical

approach similar to RoGuE by training a policy to predict

local goals for the controller to reach at every step, i.e.,

qlg = ϕ(x). This slightly improves the success rate relative to

SAC+HER on Quadrotor. The success rate is comparable

to SAC+HER in the Maze environment, while it is lower on

Friction. This indicates the difficulty of DRL strategies

in learning an informed local goal procedure, which the

Roadmap with Gaps captures via offline computation.

C. Ablation studies

Fig. 8 considers 3 roadmaps of different sizes by varying

the number of configurations N during roadmap construc-

tion: Baseline (|V| = 1088, |E| = 10911), Denser

(|V| = 1360, |E| = 156936), and Sparser (|V| =
688, |E| = 4718). Planners using the Baseline and

Denser roadmaps find competitive solutions quickly, while

the Sparser roadmap cannot do so, motivating the use of

large roadmaps for RoGuE.



Random and RLG do

not return solutions

(a) Success rates of the planners on each physically simulated benchmark. Higher success rate earlier is better.

Random and RLG do

not return solutions

(b) Solution quality of the planners on the physically simulated benchmarks. Lower values are better. As more solutions are discovered,
harder instances are resolved, so in some cases, the average cost may increase over time.

Fig. 7: Evaluation on the physically simulated systems via MuJoCo. Each instance is executed 10 times with different random seeds. For
the Quadrotor, the Random and RLG strategies consistently fail to return solutions and hence their results are not displayed.

RoGuE SAC+HER H-SAC+HER Random RLG

Benchmark Offl Onl Succ Offl Succ Offl Succ Onl Succ Offl Onl Succ

Friction 2.5M 58.15 100% 0.81M 35% 1.48M 13% 295.225 37.5% 1M 609.225 60%

Maze 2.05M 241.62 100% 0.54M 34% 1.74M 31% 623.57 58% 1M 693.73 87%

Quadrotor 1M 736.3 100% 1.3M 5% 1.01M 13% 14k 0% 100k 13.7k 0%

TABLE I: Comparing DRL approaches against SBMPs in terms of computation costs (# of calls made to the physics engine) and success
rate on the physically-simulated benchmarks.

Fig. 8: Ablation experiments for various roadmap sizes.

Fig. 9: Ablation experiments varying the max. edge duration.

Fig. 9 studies the effect of the maximum allowed edge

cost Tmax on the online planner. Four different values of

Tmax are considered: Baseline (10s), Shorter (5s),

Longer (20s), and Longest (30s). The planner using the

Shorter roadmap underperforms, while the planners using

the other values find solutions quickly. As Tmax increases, the

time taken by the planner to find solutions to all problems

increases slightly without significantly affecting the cost of

the returned solution. This suggests that while longer edges

may help find high-quality solutions, they may also suffer

due to the gaps in the roadmap.

V. CONCLUSION

This paper proposes a strategy that can benefit from

learned controllers to improve the efficiency of kinodynamic

planning for robots with significant dynamics. It utilizes a

controller trained offline in an empty environment. The target

environment is represented via a “Roadmap with Gaps” over

local regions and applications of the controller between them.

Given a wavefront over the roadmap for a specific goal, a tree

sampling-based motion planner generates informed subgoals

and uses the controller to reach them. When the controller

cannot reach a subgoal, the planner resorts to random ex-

ploration. Evaluation shows the significant improvement in

planning efficiency.



For higher-dimensional systems, the memory requirements

of the roadmap can be improved by considering sparse

representations [36]. Furthermore, learned reachability es-

timators can assist in efficient roadmap construction and

online queries. This work assumes an accurate model of the

environment and the robot, which complicates deployment

on real systems. This motivates integrating the proposed

motion planner with system identification, state estimation

and feedback control to track the planned trajectory.
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