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Roadmaps with Gaps over Controllers:
Achieving Efficiency in Planning under Dynamics

Aravind Sivaramakrishnan, Sumanth Tangirala, Edgar Granados, Noah R. Carver, and Kostas E. Bekris

Abstract— This paper aims to improve the computational effi-
ciency of motion planning for mobile robots with non-trivial dy-
namics through the use of learned controllers. Offline, a system-
specific controller is first trained in an empty environment.
Then, for the target environment, the approach constructs a
data structure, a “‘Roadmap with Gaps,”’ to approximately learn
how to solve planning queries using the learned controller. The
roadmap nodes correspond to local regions. Edges correspond
to applications of the learned controller that approximately
connect these regions. Gaps arise as the controller does not
perfectly connect pairs of individual states along edges. Online,
given a query, a tree sampling-based motion planner uses the
roadmap so that the tree’s expansion is informed towards the
goal region. The tree expansion selects local subgoals given a
wavefront on the roadmap that guides towards the goal. When
the controller cannot reach a subgoal region, the planner resorts
to random exploration to maintain probabilistic completeness
and asymptotic optimality. The accompanying experimental
evaluation shows that the approach significantly improves the
computational efficiency of motion planning on various bench-
marks, including physics-based vehicular models on uneven
and varying friction terrains as well as a quadrotor under
air pressure effects. Website: https://prx—kinodynamic.
github.io/projects/rogue

I. INTRODUCTION

Kinodynamic motion planning allows mobile robots with
non-trivial dynamics to negotiate environments with obsta-
cles, such as a warehouse, or physical features, such as
uneven terrain and ice. The problem is challenging when
there is no local steering function available that connects
two states. Tree sampling-based planners [1] do not need a
steering function as they only forward propagate the system’s
dynamics. Some variants provide Asymptotic Optimality
(AO) by propagating randomly sampled controls [2]-[5].
While random controls provide theoretical properties, they
result in slow convergence to high-quality solutions in prac-
tice.

This work aims to improve the efficiency of such Al
kinodynamic planners [6], [7] by integrating controllers
trained via Reinforcement Learning (RL) [8]. Supervision
has also be used to train controllers that are then integrated
with planners [9]-[12]. This is often done, however, under
the assumption that a steering function is available for the
robot, which is not assumed here. While one may attempt to
solve planning problems directly with RL, this often suffers
from large training data requirements and requires careful
tuning of rewards [13]. Most RL solutions lack long-horizon
reasoning, which a planner provides.
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RLG solution cost: 79.01s

RoGuE (Ours) solution cost: 47.05s

Fig. 1: Solution trajectories (thick lines) and planning trees (thin
lines) for a MuSHR vehicle over an uneven terrain in MuJoCo. The
cost function is trajectory duration, which is impacted by the uneven
terrain. The proposed expansion method for kinodynamic planning
(left) leverages a “Roadmap with Gaps” to avoid difficult terrain
resulting in shorter duration solutions. The alternative expansion
(right), which samples random local goals, navigates the rough hills
less effectively. It results in a shorter distance path but a much
slower trajectory. Planning time was 60s for both methods.

Several recent works have leveraged RL to build an
abstract representation of the planning problem and search
for an optimal path between the start and the goal. Search on
the Replay Buffer (SoRB) [14] and Sparse Graphical Mem-
ory (SGM) [15] build a graph where the nodes correspond
to states visited by the RL agent during training. Similar
to SoRB and SGM, Deep Skill Graphs [16]-[18] builds a
graph representation, where nodes correspond to subgoals,
and edges correspond to control policies between them. A
common feature of these methods is that the control policy is
trained in the planning environment of interest. This requires
the learning algorithm to reason jointly about the system’s
dynamics and the obstacles present in the environment,
which is challenging for second-order systems [19].

Prior work by the authors integrates RL in kinodynamic
motion planning via a decoupled strategy [20], [21], where a
controller is first trained offline in an empty environment and
the learning process only deals with the system’s dynamics.
The absence of obstacles allows learning the controller
with significantly fewer data and only a sparse reward.
During online planning, these prior efforts engineer local
goals that bias expansion toward the global goal via manual
engineering. Designing, however, an informed local goal
procedure requires manual effort, which is undesirable and
may not work well across environments. Furthermore, the
local goals these procedures generate are unaware of the
trained controller’s reachability properties.

This work proposes a data structure, a Roadmap with
Gaps, that learns the approximate reachability of local
regions in a given environment given a controller. The
approach constructs a directed graph in the free configuration
space of the robot. An edge exists from a source node/region
to a target when the source node’s nominal state can reach the



target node’s termination set without collisions by applying
the controller. Gaps arise since the learned controller does
not connect any two exact states exactly. Given a new
planning query, a wavefront expressing the cost-to-goal on
this roadmap provides every node with the direction of
motion towards the goal. This roadmap guidance is integrated
with an AO tree sampling-based planner. During the tree
planner’s expansion, nodes that are closer to the global goal
given the roadmap guidance are prioritized.

The proposed approach provides a tradeoff. It incurs
an offline computational cost for pre-processing a known
environment and the robot’s dynamics to provide online
computational benefits for multiple planning queries in the
same workspace. At the same time it retains AO properties
and is an informed, efficient solution by understanding the
reachability properties of the learned controller and the
environment’s connectivity. Prior approaches that guide tree
sampling-based planners using graphical abstractions [22],
[23] do not provide desirable properties (e.g., AO) or do not
reason about the system’s dynamics. A related kinodynamic
planning approach introduced the Bundle of Edges (BoE)
notion [24] but relies on random control propagation, which
reduces efficiency.

In summary, this paper proposes the Roadmap-Guided
Expansion (RoGuE)-Tree method, which:

o Introduces the “Roadmap with Gaps,” a data structure
that approximately guides how a robot can navigate a target
environment given a controller, and

o Adapts an Asymptotically Optimal (AO) framework for
kinodynamic planning to utilize the “Roadmap with Gaps”.
The accompanying evaluation shows that RoGuE results

in lower-cost solutions faster than random propagation given

an AO sampling-based kinodynamic planner both on ana-

Iytically and physically simulated models in various envi-

ronments. This includes physics-based vehicular models on
uneven and varying friction terrains as well as a quadrotor
under air pressure effects.

bl

II. PRELIMINARIES

Consider a system with state space X and control space
U. X is divided into collision-free (Xy) and obstacle (X,)
subsets. The dynamics & = f(x,u) (where z € Xy, u € U)
govern the robot’s motions. The process f can be an analyt-
ical ordinary differential equation (ODE) or modeled via a
physics engine, e.g., MuJoCo [25]. A function M : X — Q
maps a state € X to its corresponding configuration space
point ¢ € Q (¢ = M(z)). The inverse mapping M~1(¢;)
returns a state z; € X by setting the dynamics term to some
nominal value (e.g., by setting all velocity terms to 0). A
distance function d(-, -) is defined over QQ, which corresponds
to a weighted Euclidean distance metric in SE(2).

A plan pr is a sequence of piecewise-constant controls
of duration 7T that induce a trajectory 7 € 7, where 7 :
[0,7] — Xy. Given a start state 9 € Xy and a goal set
Xg C Xy, a feasible motion planning problem admits a
solution trajectory of the form 7(0) = xo,7(T) € X¢. The
goal set is defined as X = {z € Xy | d(M(x),q¢) < €},

Offline

SAC + HER Roadmap with Gaps

Learned Controller
eplay
u, = n(x,, 4¢;)

Fig. 2: Stages of the proposed pipeline. Offline: A controller is
trained in an empty environment. The roadmap with gaps is built
over the robot’s free C-space in a target environment. Online: Given
a new query (o, r¢), a wavefront is computed over the roadmap.
At every iteration of the tree sampling-based planner, a local goal is
computed given the wavefront information, and a candidate control
is propagated towards the local goal via the trained controller.

or equivalently, B(qg, €) where € is a tolerance parameter. A
heuristic A : X — R* estimates the cost-to-go of an input
state « to the goal region X . Each solution trajectory has a
cost given by cost : 7 — RT. An optimal motion planning
problem aims to minimize the cost of the solution trajectory.
Sampling-Based Planning Framework: The framework

uses the forward propagation model f to explore Xy by
incrementally constructing a tree via sampling in U. Algo. 1
outlines the high-level operation of a sampling-based motion
planner (Tree-SBMP) that builds a tree of states rooted at the
initial state x until it reaches X¢.

Algorithm 1: Tree-SBMP(X, U, zo, X¢)

1 T« {1’0};

2 while fermination condition is not met do

3 Zsel ¢ SELECT-NODE(T);
U 4 EXPAND(Zg);
Tnew ¢ PROPAGATE (Tgel, U);
if (Isel — xnew) S Xf then

| EXTEND-TREE(T, Tl — Tnew);

Each iteration of Tree-SBMP selects an existing tree
node/state x to expand (Line 3). Then, it generates a control
sequence u and propagates it from x4 to obtain a new state
Tnew (Lines 4-5). The resulting edge is added to the tree if
not in collision (Lines 6-7). Upon termination (e.g., a time
threshold), if the tree has states in X, the best-found solu-
tion according to cost is returned. By varying how the key
operations in Algo. 1 are implemented, different variations
can be obtained. The specific variant this work adopts is
the informed and AO “Dominance-Informed Region Tree”
(DIRT) [4]. It uses an admissible state heuristic function h
to select nodes in an informed manner. If z,.,, improves upon
Tsel given h, then it is selected as the next zg. DIRT also
propagates a “blossom” of k controls at every iteration and
prioritizes the propagation of the edge that brings the robot
closer to the goal given the heuristic.

III. PROPOSED METHOD

The focus of this work is on line 4 of Algo. 1 above,
i.e., how to generate the control that is expanded out of



Tger. In particular, the method computes first a local goal
qi¢ and propagates a control u = (%, qi¢) that progresses
towards that local goal given a controller 7. The controller
is first applied at the selected node xy; € X and generates a
control sequence towards reaching the local goal g, without
considering obstacles.

Overall, the proposed method (Fig 2) has 2 offline stages:
(i) training a controller 7(x,q) in an obstacle-free envi-
ronment, and (ii) building a “Roadmap with Gaps” (V,€)
in the target environment given the available controller.
Finally, it has an online phase given a motion planning query
(20, z¢) in the target environment. Online, a sampling-based
kinodynamic planner expands a tree of feasible trajectories
guided by a wavefront function computed over the “Roadmap
with Gaps”.

A. Training a Controller offline

A goal-conditioned controller u = m(x, q) is first trained
via reinforcement learning to reach from an initial state x
to a goal set B(q,€), i.e., within an e distance of ¢. For
the training, this is attempted for any (z,q) € X x Q in
an empty environment of given dimensions. The training
process collects transitions (x, ut, C(2¢, q), T1+1,q), which
are stored in a replay buffer. The cost function C : X x Q —
{0,—1} has a value of C(x¢,q) = 0 iff z; € B(g,e),
and —1 otherwise. During each iteration, mini-batches of
transitions are sampled from the buffer. A Soft Actor-Critic
(SAC) [26] algorithm is employed, which minimizes the total
cost EIO,QGNXXQ[ZtT:OC (¢, q¢)]- Concurrently, Hindsight
Experience Replay (HER) [27] relabels some transitions with
alternative goals to provide additional training signals from
past experiences.

B. Building a Roadmap with Gaps offline

The proposed approach then builds a “Roadmap with
Gaps” (V,€) at the target environment, i.e., a graphical
representation where nodes V' correspond to configurations
¢; of the vehicle. Edges (g;,q;) € &€ exist between vertices
as long as the application (of maximum duration 7j,,y) of the
available controller 7(M~*(g;), g;) at a zero velocity state
M~Y(g;) of the initial configuration g; brings the system
within a hyperball B(g;, €) of the configuration g;.

The roadmap construction procedure (Fig 3) samples first
a set of configuration milestones {qi}ii‘l, which form the
vertices ) in the roadmap. In this work, the milestones are
chosen over a grid in Q. They are collision-checked and
verified to be in Q¢. Then, for the generation of edges &, the
procedure selects a random configuration ¢; € V and obtains
two sets: A and D. A is the set of all vertices ¢ € VV, whose
hyperballs B(q, €) can be reached from z; = M~!(g;) given
the controller 7. Similarly, D is the set of vertices ¢ € V,
where the state z = M~1(q) can reach the hyperball B(g;, ¢)
given the controller 7. Then, edges from g; to vertices in A
and edges from vertices in D to ¢; are added to the set £.

The application of the controller for the edge con-
struction, especially a learned one for a non-linear dy-
namical system, implies that for all edges (g;,q;) in the

roadmap, there is no guarantee that the resulting config-
uration ¢g; can be achieved exactly from g¢;. Instead, the
corresponding edge only guarantees that the system will be
within a hyperball B(qg,€) if it is initialized at M~ (g;).
Consequently, the edges of the The

roadmap introduce “gaps” as high-
lighted by the figure. This issue
is exacerbated if the controller is
used to follow a sequence of edges
on the roadmap, e.g., (¢;,¢;) and
(¢j,qx). Since the controller’s ap-
plication over the first edge can only
bring the system in the vicinity of g;, the application of the
controller corresponding to the second edge at the resulting
configuration may not even bring the system within an e-
hyperball of gj,. Consequently, paths on the “Roadmap with
Gaps” do not respect the dynamic constraints of the vehicle
and cannot be used to directly solve kinodynamic planning
problems. They can still provide, however, useful guidance
for a kinodynamic planner.

C. RoGuE: Guiding expansion via a roadmap with gaps

Algo. 2 describes the Roadmap-Guided Expansion
(RoGuE)-Tree method, which uses a “Roadmap with Gaps”
to guide the online expansion of an AO Tree Sampling-based
Motion Planner given a new query (xo, ).

It first adds vertices gy = M(zg) and q¢ = M(z¢) to G.
Then, it adds edges from ¢ to all vertices accessible from
it, i.e., the set of all vertices ¢; € )V such that applying
the controller from zy for maximum duration 7},,x returns
a collision-free trajectory 7 with M(7.end()) € B(g,e¢).
Similarly, it adds edges to g from all vertices that can access
the goal set Xg.

A wavefront function W : V — RT is computed over the
vertices of the roadmap. Initially, the wavefront value for
all vertices is set to infinity. Then, the wavefront value of
the goal (W(q¢)) is set to zero, and a backward search is
performed. Given the wavefront, every vertex in V now has
the notion of a successor associated with it, defined to be its
out-neighbor with minimum W value, i.e., Successor(v) =
arg min, {W(v') | (v,v") € £}. For a node with an infinite
cost-to-goal (because the roadmap does not provide it with
a path to the goal), its successor is undefined.

Algorithm 2: RoGuE-Tree (X,U, zo,zq,m, (V,E))

1 Add qo, g to roadmap (V, &) as start and goal;
2 W < GET-WAVEFRONT((V, £));

3T« {1‘0};

4 while termination condition is not met do

5 Zsel < SELECT-NODE(T);

6 U < ROGUE(Zge1, V, W, );

7 Tnew < PROPAGATE (L), 10);

8 if (1 = Zpew) € X¢ then

9 | EXTEND-TREE(T, Zgel — Tnew):

RoGuE (Algo. 3, Fig 4) is an expansion procedure that
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Fig. 3: (a) A Roadmap with Gaps consists of vertices (configurations, represented as dotted boxes). The roadmap’s directional edges (dotted
lines) correspond to where the controller was successfully executed from the source to the target configuration, given some tolerance. (b)
For a new planning query (zo, z¢), the start go and goal q¢ are added to the roadmap. (c) Due to gaps, naively following the roadmap’s

shortest path to the goal may not be feasible.

Fig. 4: Roadmap-Guided Expansion (RoGuE): Given the roadmap
with gaps in an environment (transparent) and the current planning
tree (opaque), RoGukE selects informed local goals for the controller
7. The closest roadmap node gnear to the selected tree node el
is identified. Its successor is passed as the local goal g to the
controller. This expansion adds a new tree node Znew.

uses the roadmap wavefront information WV to provide an
informed local goal to m. The first time a tree node g is
selected for expansion, RoGuE identifies the closest roadmap
node gnear € V according to the distance function d(-, -) (Line
2). It then queries the Successor(gnear) given the wavefront
W. If (gnear) is defined, it is provided as the local goal g to
the controller 7 (Lines 3-5). If the successor is not defined,
a random local goal in Q is provided (Line 6-7).

Algorithm 3: RoGuE (751, V, W, T)

1 if first time x is expanded then

2 Gnear < ClosestRoadmapNode(Zge, V);
3 Qg < Successor(gnear, W);

4 if qi, is defined then

5 ‘ U "T(xseb (Ilg);

6 else

7 | (@1, Q.sample());

9 | u < U.random-sample();
10 return u;

Following the informed operation of the DIRT planner
[4], when the roadmap cost-to-go value of a node is lower
than that of its parent’s, then the child node is immediately

reselected for expansion so that the tree can continue to make
progress along a promising path of the roadmap with gaps.

All (start, goal) pairs in the accompanying experiments
below are included as milestones during the roadmap con-
struction to reduce connection time during online planning.
Alternatively, the connection of start and goal configurations
to the roadmap lends itself to multi-threaded implemen-
tations. Or, similarly to the “roadmap cost-to-go” value
definition in Line 2 of Alg. 3, the closest roadmap nodes
can be used as surrogates for the corresponding start and
goal states.

Maintaining Asymptotic Optimality: As long as all tree
nodes have a non-zero probability of being selected for ex-
pansion, and the probability of an expansion being successful
from a node along the lowest-cost trajectory is non-zero, the
sampling-based tree planner remains AO. The node selection
process of RoGuE adopts that of the DIRT planner [4],
which, while informed, maintains a positive probability for
all tree nodes. Similarly, while RoGuE employs an initial set
of informed expansions from each node (given the roadmap
information), subsequent expansions apply random controls
from the set U (Algo 3, Line 8-9). In this way, the approach
retains the AO properties of DIRT [4].

In practice, when the informed processes of RoGuE guide
the selection and expansion of nodes along high quality
solutions, the method achieves an improved convergence
rate relative to alternatives that do not have access to the
roadmap information as the experimental evaluation below
shows. Showing this improvement in convergence rate is an
objective of future research efforts for this line of work.

IV. EXPERIMENTAL EVALUATION

The robot systems considered in the evaluation are: (i)
an analytically simulated second-order differential-drive, (ii)
an analytically simulated car-like vehicle (where dim(X) =
5,dim(U) = 2), (iii) a MuSHR car [28] physically simulated
using MuJoCo [25] (dim(X) = 27,dim(U) = 2), and (iv)
a Skydio X2 Autonomous Drone (dim(X) = 13,dim(U) =
4). For the drone, the distance function d(-,-) operates over
the (x,y,z) of its center of mass. For all systems, the
parameter € is set to the same value 0.5. All planning
experiments are implemented using the ML4KP software



library [29] and executed on a cluster with Intel(R) Xeon(R)
Gold 5220 CPU @ 2.20GHz and 512 GB of RAM.

Fig. 5: Physically simulated benchmarks using MuJoCo. Top: (L-R)
Maze, Terrain. Bottom: (L-R) Friction, Quadrotor.

Across experiments, the following metrics are measured
for every planner: (1) Average normalized cost of solutions
found over time, and (2) Ratio of experiments for which
solutions were found over time. For all planning problems,
the path cost is defined as the solution plan’s duration.
To better reflect the performance of different methods and
account for the difficulty of different planning problems, path
costs discovered by a method on each planning problem are
normalized by dividing by the best path cost ever found for
a problem across all planners.

Two comparison expansion functions are considered in
the evaluation: (a) Random uses a blossom expansion of
random controls in U, and (b) RLG samples Random Local
Goals as input to m and outputs the controls returned. In
terms of comparison motion planners, both an uninformed
Rapidly-exploring Randomized Tree (RRT) [1] and the in-
formed, AO DIRT planners are considered. For the Random
and RLG expansion strategies of DIRT, a blossom of 5
controls is implemented.

Additional AO planners were considered for experimenta-
tion but it was difficult to provide useful results for them. The
Bundle of Edges (BoE) [24] approach failed to find solutions
while using a similarly-sized roadmap. The discontinuity-
bounded A* (dbA*) [30] relies on motion primitives, which
are not available, however, for the robots in the experiments
of this paper as they exhibit second-order dynamics. It is not
trivial for them to acquire effective motion primitives.

A. Results on analytically simulated benchmarks

In these experiments, the performance of the expansion
functions is measured on three sets of planning benchmarks
for the analytically simulated vehicular systems: (a) 8 prob-
lems in an environment with Narrow passages, (b) 6 prob-
lems in the Indoor environment from Arena-bench [31],
and (c) 8 problems in the Warehouse environment from
Bench-MR [32]. Figure 6 provides the numerical results.

Across all benchmarks, for the differential drive and car-
like dynamics, DIRT-RoGuE finds the lowest cost solu-
tions overall. It also is the only expansion strategy that

returns solutions in all trials. Among the RRT expansion
strategies, RRT-RoGuE achieves the highest success rate
across all benchmarks and the lowest cost solutions overall.
RRT-RoGUE also achieves comparable performance (both in
terms of success rate and solution quality) to the informed
DIRT-Random an DIRT-RLG planners. Both DIRT-RLG
and DIRT-Random fail to find solutions in all trials on
the Indoor and Warehouse benchmarks and are slow to
return solutions relative to DIRT-RoGuE.

In the Narrow benchmark, the shortest duration trajec-
tories must traverse all the narrow passages. So although
DIRT-Random and DIRT-RLG find solutions in all trials
for the second-order differential drive, DIRT—RoGuE returns
significantly lower-cost solutions much earlier.

Comparison to Kinematic Planning and Path Follow-
ing: A naive alternative to the proposed solution is to use the
configurations along a path on the roadmap as consecutive
local goals for a path following controller. For the car-like
system, a pose-reaching controller [33] was employed to

. . . kop

drive the robot to a given pose =\ koo + ks ),
where each k parameter is a gain term, p and « are the
distance and bearing to the local goal respectively, and [ is
the angle difference between « and the current angle. The
controller is tested on paths retrieved from the Roadmap with
Gaps for the benchmarks of Fig 6. Only 2 such executions,
however, returned collision-free trajectories. This is due to
(a) the environments containing multiple narrow passages
and (b) the paths returned by the roadmap still contain “gaps”
that the controller cannot easily negotiate. This motivates the
proposed solution and alternatives that are similarly obstacle-
aware and which reason about the robot’s dynamics.

B. Results on physically simulated benchmarks

The performance of the expansion functions is measured
on the following benchmarks for MuSHR: (a) navigating
a Maze from D4RL [34], (b) an environment with uneven
Terrain features [35], (c) and an environment with differ-
ent friction values (Friction). Note that the controller is
trained in an empty environment with flat terrain and friction.
The roadmap captures the traversability of different parts of
the environment using the controller. In the Quadrotor
benchmark, the X2 drone must navigate an indoor environ-
ment with pillars and air pressure effects.

Fig. 5 visualize the different environments in MuJoCo,
and Fig. 7 provides the experimental results. Only the DIRT
motion planner is reported in these experiments as the RRT-
based solutions cannot find a solution within the allotted
times. Since each call to the MuJoCo engine is expensive,
all expansion strategies use a blossom k = 1.

RoGuE finds the lowest cost solution across all bench-
marks. Both Random and RLG consistently fail to find
solutions across trials. Using the learned controller in RLG
does lead to improved solution quality relative to Random.
In both the Maze and Friction benchmarks, RoGuE
leverages the Roadmap with Gaps to find solutions across
trials quickly. RoGuE also returned the most solutions in the
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(c) Planning results on the Warehouse benchmark.
Fig. 6: Left and middle-left: higher success rate earlier is better. Right and middle-right: lower path cost is better. As more solutions are
discovered, additional solutions for harder problems are discovered, so in some cases, the average cost may increase over time. Each
problem instance is run 10 times to account for different random seeds.

Terrain benchmark given the same planning budget. In
the Quadrotor benchmark, RoGuE is the only expansion
method that discovers any solutions due to the tight place-
ment of obstacles and the speed of the X2 drone.

Comparison to Deep RL solutions: Table I evaluates two
purely DRL-based strategies trained on the benchmarks of
Fig 5 in terms of success rate Succ, as well as offline cost
(O£ £1, in terms of # of calls made to the MuJoCo engine).
The offline cost of the DRL methods is reported when their
best performance is observed, and the success rate does not
improve after training for longer. The online costs Onl for
the sampling-based planners are also reported. The online
cost for the RL solutions is minimal. SAC+HER trains a goal-
conditioned controller © = w(x, q) directly in the planning
environment. The approach achieves a low success rate rela-
tive to the proposed kinodynamic planning solution. The low
success on Quadrotor can be attributed to the difficulty in
jointly learning the dynamics and obstacle avoidance. Due to
simpler dynamics, the performance is better on the Maze and

Friction benchmarks. H-SAC+HER follows a hierarchical
approach similar to RoGuE by training a policy to predict
local goals for the controller to reach at every step, i.e.,
¢z = ¢(z). This slightly improves the success rate relative to
SAC+HER on Quadrotor. The success rate is comparable
to SAC+HER in the Maze environment, while it is lower on
Friction. This indicates the difficulty of DRL strategies
in learning an informed local goal procedure, which the
Roadmap with Gaps captures via offline computation.

C. Ablation studies

Fig. 8 considers 3 roadmaps of different sizes by varying
the number of configurations /N during roadmap construc-
tion: Baseline (|V| 1088,|€] = 10911), Denser
(V] = 1360,|6] = 156936), and Sparser (|V|
688, |£] 4718). Planners using the Baseline and
Denser roadmaps find competitive solutions quickly, while
the Sparser roadmap cannot do so, motivating the use of
large roadmaps for RoGuE.
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Fig. 7: Evaluation on the physically simulated systems via MuJoCo. Each instance is executed 10 times with different random seeds. For

the Quadrotor, the Random and RLG strategies consistently fa

il to return solutions and hence their results are not displayed.

RoGuE SAC+HER H-SAC+HER Random RLG
Benchmark Offl Onl Succ Offl Succ Offl Succ Onl Succ Offl Onl Succ
Friction 2.5M 58.15 100% | 0.81M 35% 1.48M 13% 295.225 | 37.5% M 609.225 60%
Maze 2.05M | 241.62 | 100% | 0.54M 34% 1.74M 31% 623.57 58% M 693.73 87%
Quadrotor M 736.3 100% 1.3M 5% 1.01M 13% 14k 0% 100k 13.7k 0%

TABLE I: Comparing DRL approaches against SBMPs in terms of computation costs (# of calls made to the physics engine) and success
rate on the physically-simulated benchmarks.
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Fig. 9: Ablation experiments varying the max. edge duration.

Fig. 9 studies the effect of the maximum allowed edge
cost Tix on the online planner. Four different values of
Tmax are considered: Baseline (10s), Shorter (5s),
Longer (20s), and Longest (30s). The planner using the
Shorter roadmap underperforms, while the planners using
the other values find solutions quickly. As Tin.x increases, the
time taken by the planner to find solutions to all problems
increases slightly without significantly affecting the cost of
the returned solution. This suggests that while longer edges
may help find high-quality solutions, they may also suffer
due to the gaps in the roadmap.

V. CONCLUSION

This paper proposes a strategy that can benefit from
learned controllers to improve the efficiency of kinodynamic
planning for robots with significant dynamics. It utilizes a
controller trained offline in an empty environment. The target
environment is represented via a “Roadmap with Gaps” over
local regions and applications of the controller between them.
Given a wavefront over the roadmap for a specific goal, a tree
sampling-based motion planner generates informed subgoals
and uses the controller to reach them. When the controller
cannot reach a subgoal, the planner resorts to random ex-
ploration. Evaluation shows the significant improvement in
planning efficiency.



For higher-dimensional systems, the memory requirements
of the roadmap can be improved by considering sparse
representations [36]. Furthermore, learned reachability es-
timators can assist in efficient roadmap construction and
online queries. This work assumes an accurate model of the
environment and the robot, which complicates deployment
on real systems. This motivates integrating the proposed
motion planner with system identification, state estimation
and feedback control to track the planned trajectory.
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