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Abstract— Estimating the region of attraction (RoA) for a
robot controller is essential for safe application and controller
composition. Many existing methods require a closed-form
expression that limit applicability to data-driven controllers.
Methods that operate only over trajectory rollouts tend to
be data-hungry. In prior work, we have demonstrated that
topological tools based on Morse Graphs (directed acyclic graphs
that combinatorially represent the underlying nonlinear dy-
namics) offer data-efficient RoA estimation without needing an
analytical model. They struggle, however, with high-dimensional
systems as they operate over a state-space discretization. This
paper presents Morse Graph-aided discovery of Regions of
Attraction in a learned Latent Space (MORALS)∗∗. The approach
combines auto-encoding neural networks with Morse Graphs.
MORALS shows promising predictive capabilities in estimating
attractors and their RoAs for data-driven controllers operating
over high-dimensional systems, including a 67-dim humanoid
robot and a 96-dim 3-fingered manipulator. It first projects
the dynamics of the controlled system into a learned latent
space. Then, it constructs a reduced form of Morse Graphs
representing the bistability of the underlying dynamics, i.e.,
detecting when the controller results in a desired versus an
undesired behavior. The evaluation on high-dimensional robotic
datasets indicates data efficiency in RoA estimation.

I. INTRODUCTION

Given a controller for a robotic system, it is desirable to

estimate its region of attraction (RoA), i.e., a subset of the

system’s state space, such that all trajectories starting inside

this set converge to an equilibrium [1]. RoA estimation helps

understand the conditions under which the controller can

be safely applied to solve a task. It can also be used for

controller composition where the final RoA is larger than

the RoA of each component controller [2].

The authors introduced in prior work topological tools

based on Morse graphs [3]. Morse Graphs provide a finite,

combinatorial representation of the state space given access

to a discrete-time representation of the dynamics. They

correspond to directed acyclic graphs that provide a rigorous

description of attractors and RoAs at different levels of

resolution. They were introduced as data-efficient and more

accurate alternatives to estimate the RoAs of general robot

controllers, including data-driven ones. For systems with

unknown dynamics, they can be combined with surrogate
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Fig. 1: The 67-dim. state space of a bipedal humanoid robot
controlled by a Soft Actor-Critic (SAC) controller is encoded to
a 2-dim. learned latent space by MORALS, which then discovers
two attractors and their corresponding Regions of Attraction (RoAs)
in the latent space. Encoded final states A2, B2 are mapped
to a desired (dark green) and undesired attractor (dark purple)
respectively. Encoded initial states A1, B1 lie respectively in the
RoAs (light green and light purple) of the desired and undesired
attractors. The yellow region contains the separatrix (undecidable
region), indicating initial states may go to A2 (node 2 → node 1)
or B2 (node 2 → node 0). Best viewed in color.

modeling to identify the RoA for a goal set and describe the

global dynamic behavior of a controller [4].

Morse Graphs rely only on point-wise access to short

trajectories from each cell of a state space discretization.

Their accuracy depends significantly on the size of the dis-

cretization of the system’s state space. Thus, applying them

directly to high-dim. robotic systems, such as bipedal robots

(Fig 1), is computationally expensive or even infeasible. In

practice, however, the effect of a controller on a robotic

system, even a complex and high-dim. one is to restrict the

dynamics to a lower-dim. manifold. For example, simplified

models of either stiff [5] or compliant [6] inverted pendula

can result in controllers for a high-dim. bipedal robot. It may

thus be possible to derive meaningful conclusions about the

dynamics in the robot’s original high-dim. state space by first

identifying a lower-dim manifold given example trajectory

data and studying the dynamics of that manifold.

This work proposes Morse Graph-aided discovery of

Regions of Attraction in a learned Latent Space (MORALS),

which uses an autoencoding neural network as a lower-

dim. surrogate model of the underlying controlled dynam-

ics trained on robot trajectories. The network encodes the
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system’s high-dim. state space to a lower-dim latent one so

that the latent dynamics locally approximate the system’s

behavior in the original space. Then, a discretization of

the low-dim. space is used to compute a combinatorial

representation of the latent dynamics in the form of a Morse

Graph, i.e., a directed acyclic graph that provides a rigorous

description of the attractors and RoAs at different levels

of resolution. Finally, the Morse Graph is reduced into a

simpler graph representing the bistability in the dynamics,

i.e., identifying desired versus undesired behaviors of the

controller as shown in Fig 1. The experimental evaluation

considers a combination of analytical and physically sim-

ulated benchmarks, including for a 67-dim. humanoid, as

well as real-world robotic datasets - for a 96-dim 3-fingered

manipulator. Due to both dimensionality and non-availability

of the ground-truth model, it is infeasible to directly apply

the prior Morse Graph framework. Nevertheless, MORALS

achieves promising accuracy with significantly fewer data

requirements in estimating the desired RoA. To the best of

the authors’ knowledge, no competing methods currently can

perform this analysis for black-box controllers of such high-

dim. systems given only trajectory data.

II. RELATED WORK

Estimating the RoA of a control system is a hard problem

[7]. Multiple methods [8] rely on an analytical expression

and use linear matrix inequalities [9], [10] or sum-of-squares

solvers [2], [11], [12]. Traditional Lyapunov-based methods

are applicable [11], [13] but require an analytical model.

Even data-driven variants tend to require access to point-

wise evaluation of the dynamical model [14]. Conservative

approximation methods try to estimate the largest possible

set within the true RoA [15]–[18]. Gaussian Processes can

provide Lyapunov-like functions [19]. These methods typi-

cally suffer from high data requirements and estimation of a

single attractor.

Reachability analysis [1] and control barrier functions [20]

are popular alternatives. Reachability analysis can approxi-

mate the RoA of dynamical walkers [21] and together with

learning can maintain system safety over a given horizon

[22]. Using Gaussian Processes, a barrier function can be

learned to obtain safe policies [23], or identify areas needing

exploration for safe set expansion [24]. Controllers can also

be jointly trained alongside neural Lyapunov functions [25].

Prior knowledge of an attractor is a common requirement

for these approaches. In contrast, the proposed approach

can discover multiple if they exist. Alternative methods

also lack explainability, while MORALS provides a graphical

description of the dynamics.

Unsupervised representation learning helps extract a latent

representation of a robot’s state space and enforces the

dynamics in this learned space. Such efforts [26]–[28] tend

to focus on locally valid dynamics and do not study the

global dynamics. Latent Sampling-based Motion Planning

(L-SBMP) [29] enforces the latent dynamics via a reachabil-

ity Grammian. Similarly, Learning To Correspond Dynamical

Systems (L2CDS) [30] learns correspondences between pairs

of dynamical systems through a shared latent dynamical

system. MORALS uses an autoencoding architecture similar

to L-SBMP and L2CDS. Unlike L-SBMP, it does not learn

the latent dynamics for the system but focuses on the

controller studied. Unlike L2CDS, MORALS does not require

assumptions about the latent dynamical model and learns the

latent manifold directly from data.

III. PRELIMINARIES

This work aims to provide a data-efficient framework for

the analysis of the global dynamics of robot controllers based

on combinatorial dynamics and order theory [3], [31]–[33].

Consider a non-linear, continuous-time control system:

ẋ = f(x, u) (1)

where x(t) ∈ X ¦ R
N is the state at time t, X is a compact

set, u : X 7→ U ¦ R
M is a Lipschitz-continuous control as

defined by a deterministic control policy u(x), and f : X ×
U 7→ R

M is a Lipschitz-continuous function. Neither f(·)
nor u(x) are necessarily known analytically. For instance,

u(x) can be a function learned via a neural network.

A trajectory (or an orbit) of length τ > 0 is defined as

a sequence of states obtained by integrating Eq. 1 forward

in time. Let the image φτ : X → X denote the function

obtained by mapping every initial state x0 ∈ X to the end

state of a trajectory of length τ beginning at x0. A set A is

an attractor if there exists a neighborhood N of A such that

A = ω(N) :=
⋂

n∈Z+

cl

(

∞
⋃

k=n

φk
τ (N)

)

where φk
τ is the composition φτ ◦ · · · ◦ φτ (k times) and cl

is topological closure. For instance, attractors can be fixed

points, such as a desired goal that the control policy manages

to bring the system to; or limit cycles, such as a periodic

behavior of the system. A Region of Attraction (RoA) of an

attractor A is a neighborhood of A and a subset of B the

basin of attraction A, where B is the largest set of points

whose forward orbits converge to A, more specifically, the

maximal set B that satisfies A = ω(B). Given that f and

u are Lipschitz-continuous, φτ is too; also any RoA of Eq.

(1) is an RoA under φτ . Thus, it is sufficient to analyze the

dynamics according to φτ to study Eq. (1), even if it is not

accessible and computable.

As a pedagogical example, consider the N -dim. bistable

system in Fig. 2: Given a state x = [x1, · · · , xN ] ∈ X =
X1×

∏N

i=2 Xi = [−3, 3]× [−2, 2]N−1, its image is given by

φτ (x) = arctan 4x1 ×
∏N

i=2 xi/2. Obtaining Morse graphs

and RoAs involves a four-step procedure:

1. State space decomposition and outer approximation of

φτ . The function φτ is approximated by decomposing X into

a collection of regions X . For instance, via a grid. Fig. 2 (left)

shows the intervals [−3, 3] and [−2, 2] decomposed into sub-

intervals a to e and fi to hi respectively. A grid will be the

Cartesian product {a, b, c, d, e} ×
∏N

i=2{fi, gi, hi}. Given a

region ξ ∈ X (i.e., a cell in the grid), the system is forward

propagated for multiple initial states within ξ for time τ to

identify regions reachable from ξ. Consider the sub-interval

b ×
∏

gi. The lines from the boundary of b ×
∏

gi depict
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Fig. 2: Example of N -dim. bistability (left and middle) and the learned dynamics on the 2-dim. encoded space (right). (left & middle) The

state space is X = X1 ×
∏

N

i=2
Xi where Xi = [−3, 3] × [−2, 2]N−1 and the dynamics φ : X → X is given by φ1(x) = arctan(4x)

plotted in black and φi(x) = x/2 plotted in red, where i = 2, . . . , N . The domains X1 = [−3, 3] and Xi = [−2, 2] are decomposed into
intervals a through e and fi, gi, hi, respectively. Forward propagation of B = b×

∏
gi is depicted by the lines from the boundary of b

and gi’s. F is a directed graph capturing reachable vertices from other vertices, (regions in {a, b, c, d, e} ×
∏

N

i=2
{fi, gi, hi}). Strongly

connected components of F result in CG(F). Finally, the Morse Graph MG(F) (nodes B, C, D) contains the attractors and expresses
their RoAs. (right) The N -dim. bistability dynamics are encoded into a 2-dim. latent space represented by a bistable Morse Graph RMG.

the forward propagation of the dynamics. This cell maps to

itself given the underlying dynamics.

2. Constructing combinatorial representation F of the

dynamics. The directed graph representation denoted as F
stores regions ξ ∈ X as vertices. Edges from ξ point to

regions reachable from ξ. In Fig. 2, the graph F contains

the following nodes/cells: B = {b} ×
∏N

i=2{gi}, C =

{c} ×
∏N

i=2{gi}, D = {d} ×
∏N

i=2{gi}, A = {a, b} ×
∏N

i=2{fi, gi, hi}\B, E = {d, e} ×
∏N

i=2{fi, gi, hi}\D and

F = {c}×
∏N

i=2{fi, gi, hi}\C. The edges (C,C) and (C,B)
express that C maps both to itself and to B.

3. Compute the Condensation Graph CG(F). Collapsing

all nodes that are part of strongly connected components

(SCCs) in F into a single node gives rise to the condensation

graph CG(F). Edges on CG(F) reflect reachability due to

the dynamics given a topological sort on F . In Fig. 2(left),

CG(F) is the subgraph with nodes A to F and all non-self

edges, i.e., CG(F) has no cycles. Since CG(F) is a directed

acyclic graph, it is a partially ordered set, i.e., a poset.

4. Compute the Morse Graph MG to detect attractors and

RoAs. A recurrent set is a SCC of CG(F) that contains at

least one edge. Then, the Morse graph MG(F) of F is the

subgraph of recurrent sets of CG(F). In Fig. 2(left), MG(F)
contains nodes B, C and D and the edges between them.

MG(F) captures both recurrent and non-recurrent dynamics.

Recurrent sets are vertices, and the minimal vertices contain

attractors of interest. Edges signify reachability between

these sets. In Fig. 2, there are 2 attractors: B and D. Cells

in A are in the RoA of B, and cells in E are in the RoA of

D. From cells in F and C, the system can end up in either

B or D, characterizing a bistability.

As a summary of prior results with the Morse Graph

approach, consider a pendulum governed by ml2θ̈ =
mGl sin θ − βθ̇ + u, given mass m, gravity G, pole length

l and friction coefficient β. It is controlled by a Linear

Quadratic Regulator (LQR) to stand upright. Table I reports

the RoA estimate accuracy (as a ratio over the volume of the

true RoA) for the above approach (MorseGraph) and al-

ternatives in the literature. Data efficiency is measured using

the total propagation steps required for the RoA estimate.

Both L-LQR and L-SOS are analytical methods that use

a linearized unconstrained form of the dynamics [34] to

obtain a Lyapunov function (LF). Lyapunov Neural Network

(L-NN) [18] is a machine learning tool for estimating RoAs.

Metric L-LQR L-SOS L-NN MorseGraph

Accuracy 70% 3% 98% 97%

Prop. steps − − 667.1M 120K

TABLE I: Accuracy and data efficiency of desired RoA estimate
for Pend (LQR) using different methods. L-LQR and L-SOS [3]
require the analytical form of the dynamics.

The above methods either require access to an analytical

model (L-LQR, L-SOS) or dynamics propagation from a

dense set of initial states (L-NN). This may not be possible

for complex and high-dim. robots or data-driven controllers

that do not admit a closed-form expression. As the dimension

of the underlying system increases, it becomes challenging

to apply the MorseGraph approach, even though it requires

6000× fewer data points than L-NN for a comparable RoA

estimate. This is due to the exponential increase in the num-

ber of discretization elements. The proposed framework deals

with this issue via unsupervised representation learning.

IV. PROPOSED METHOD

Given a high N -dim. state x, an encoder henc : X 7→
Z ¦ R

D(D < N) encodes x to a lower D-dim. latent state

z = henc(x). A decoder performs the inverse mapping x =
hdec(z). A latent dynamics function, hdyn : Z 7→ Z, expresses

the dynamics of the latent space. The proposed approach,

MORALS, incorporates an autoencoding network consisting

of henc, hdec, and hdyn, that can be trained from trajectory

rollouts of the underlying system. The architecture used is

shown in Fig. 3 (left). The trained networks are used to build

a combinatorial representation of the dynamics in the learned

latent space Z, which can be used to understand the RoAs



Fig. 3: (Left) The autoencoding neural network and loss functions used for training the encoder henc, decoder hdec, and the latent dynamics
hdyn. (Middle/Right) Visualizing the learned latent dynamics for a 4-dim. version of a pendulum (x, ẋ, y, ẏ) controlled by LQR. (Middle)
the ground-truth trajectory for the same initial conditions (circles). (Right) iteratively calling hdyn for a fixed number of timesteps. Both
plots capture the 3 true attractors (×). The right plot does not contain regions where the trajectories move from one RoA to another.

of the system in the original state space X . The method is

divided into the following steps:

1. Collect data from the system.

2. Train the neural networks henc, hdec and hdyn.

3. Compute the Morse Graph MG of the lower dim. system

with state space Z, whose initial condition is z0 = henc(x0)
and φZ

τ = hdyn ◦ · · · ◦ hdyn (τ times).

4. Given a new state x ∈ X , determine whether it is in the

desired RoA using MG.

1. Data Collection The method collects time series data

in the form of long trajectories from various initial states

in X . The data is partitioned into ordered pairs of the

form (x, Im(x)), where Im(x) = φτ (x). Denote by D =
{(xi, Imi(x))}ni=1 the robot trajectory data collected.

Let F be the set of all final states of every trajectory in

the dataset. If the underlying system has the notion of a

“desired” attractor (such as the upright position for a bipedal

humanoid), each final state xT ∈ F is assigned a label

y(xT ) of +1 if it successfully achieves the desired task or 0
otherwise. This helps determine which attractors discovered

by MORALS in the learned latent manifold are desirable.

2. Network Architecture and Training Given a pair

(x, Im(x)), the encoder network henc maps it onto the latent

space to obtain (z, Imz(x)). The decoder network hdec acts

on z to obtain x̂, which is the reconstruction of input state x.

The latent dynamics network acts on z to produce the image

Imz(z) in the latent state. The decoder obtains ˆIm(x), the

reconstruction of the input Im(x) by acting on Imz(z).
Training attempts to minimize the following losses.

L1 = Ex∼D||x− hdec(henc(x))||
2
2 (2)

L2 = EIm(x)∼D||Im(x)− hdec(henc(Im(x)))||22 (3)

L3 = E(x,Im(x))∼D||hdyn(henc(x))− henc(Im(x))||22 (4)

L1 and L2 losses enforce that the reconstructed inputs

closely match the original ones by minimizing Euclidean

distance. L3 enforces the local dynamics of the latent space

by minimizing the Euclidean distance between the latent state

image and the encoded image.

All three neural networks are jointly trained to minimize

L = λ1L1+λ2L2+λ3L3, where λi, i ∈ [1, 2, 3] are weights

for each minimization objective. To ensure that the obtained

latent manifold is bounded, the output layers of henc and hdyn

are activated using the tanh activation. Thus, the obtained

latent manifold always lies inside [−1, 1]D.

Optional loss term using labeled data. Split the final states

of demonstrated trajectories into desirable and undesirable

sets: Fs = {x ∈ F|y(x) = +1} and Ff = {x ∈ F|y(x) =
0}. Then, an L4 loss can separates the encoded final states

in Fs from their counterparts in Ff :

L4 = Exs∼Fs,xf∼Ff
[σ(−c||henc(xs)− henc(xf )||)]. (5)

To ensure that the encoded final states do not lie on the

latent space boundaries, the sigmoid function σ(a) = 1
1−e−a

is used to upper-bound the distance between the encodings

of the desirable and undesirable final states. The constant c
is a scaling factor. The training procedure iterates between

minimizing the loss functions λ1L1+λ2L2+λ3L3 and λ4L4.

3. Morse Graph computation in the latent space The

uniform discretization Z of the latent space [−1, 1]D into
∏D

i=1 2
ki cubes of dimension D needs to be validated since

some cubes in Z may not correspond to a valid state in

X when decoded. To ensure a well-defined discretization of

Z, X is validated as follows: A set of valid random points

Px = {xi} in X is encoded to obtain Pz = {zi = henc(xi)}.

All boxes in Z that contain at least one point in Pz or are

immediate neighbors to a box containing a point in Pz are

validated. The set Px can also use states in the demonstrated

trajectory data D.

The input representation of the learned dynamics network

φZ
τ is generated by V (Z), the set of all corner points of

cubes in Z . The method computes the set of ordered pairs

Φτ (Z) := {(v, φτ (v)) | v ∈ V (Z)}, by calling hdyn(v)
for time τ from all v ∈ V (Z). Then, Φτ (Z) is used to

generate the combinatorial representation of the dynamics

of φZ
τ by approximating it as a combinatorial multivalued

map F : Z ⇒ Z , where vertices are n-cubes ξ ∈ Z . The

map F contains directed edges ξ → ξ′, ∀ ξ′ ∈ Φτ (ξ)



and the cubes obtained by F(ξ) are intended to capture

the image of φZ
τ (ξ). F is computed as follows: Given

z ∈ Z, let B(z, δ) = {z′ ∈ Z | ∥z − z′∥ f δ} denote

the δ-closed ball at state z. Define the diameter of ξ ∈ Z
by d(ξ) := maxz,z′∈ξ ∥z − z′∥ and the diameter of Z by

d := maxξ∈Z d(ξ). Note that for a uniform grid, d = d(ξ),
independently of the choice of ξ. Let V (ξ) be the set of

corner points of the cube ξ and

F(ξ) :=
{

ξ′ | ξ′ ∩B (φZ
τ (v), Ld/2) ̸= ∅ for v ∈ V (ξ)

}

(6)

where L is selected to be an upper bound for the Lipschitz

constant Lτ of φZ
τ . Hence, the above definition of F satisfies:

Fmin(ξ) := {ξ′ ∈ X | ξ′ ∩ φτ (ξ) ̸= ∅} ¢ F(ξ) (7)

an outer approximation of φZ
τ . The versatility in defining

an outer approximation provides flexibility in incorporat-

ing safety constraints by adjusting the parameter L, which

bounds the Lipschitz constant Lτ .

a)

b)
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G

Fig. 4: a) A Morse
graph MG(F) for
the humanoid of
Fig. 1; b) bistable
Morse graph RMG

from Th. 4.1.

In general, no unique Morse graph can

be assigned to a dynamical system; in-

stead, the Morse graph provides a rigor-

ous language for describing the structure

of the dynamics at different levels of

resolution. The proposed method aims to

identify whether a given initial condition

will lead to success or failure for a pro-

vided controller. This can be codified via

a Morse graph RMG = ({G,U,R}, <r

) with the partially ordered set (poset)

structure G <r R, U <r R, where G
denotes success, U denotes failure, and

R denotes initial conditions which may lead to success or

failure. This Morse graph has two minimal states, G and U .

The number of nodes in the Morse graph MG(F) com-

puted using Alg. 1 from [3] with inputs (Z,Φτ (Z), L) is

typically more than 3 nodes. In particular, it has more than

2 leaf (minimal) nodes, thus providing a richer description of

dynamics than required. Nevertheless, as codified in the fol-

lowing theorem, the information from the poset (MG(F), <)
can be used to produce the desired Morse graph RMG.

Theorem 4.1: Define G as the set of minimal nodes of

the Morse graph MG(F) that correspond to successful final

states of the system. Define R := {b ∈ MG | g <
b for some g ∈ G} and set U = MG(F) \ (G ∪ R). Then

RMG = ({G,U,R}, <r) with the poset structure G <r R,

U <r R is a Morse graph for the system.

Proof. By [35] it is sufficient to observe (we leave this to

the reader) that the map ρ : (MG(F), <) → ({G,U,R}, <r)
given by identification of elements of MG(F) with elements

of RMG is an order-preserving map.

Fig. 4 depicts the Morse graph RMG = (G,U,R,< r)
from Theorem 4.1, which is obtained from a Morse graph of

the humanoid system exemplified by Fig. 1, where G = {5},

U = {0, 1, 2, 3, 4, 7, 8} and R = {6, 9, 10, 11}. RMG is also

shown in Fig. 1.

4. Obtaining the Regions of Attraction Theorem 1 in

[3] guarantees the existence and uniqueness of RoA(A)
for attractors A of MG(F) and Alg. 2 in [3] produces

RoA(A). The following theorem ensures that the RoAs found

by Algorithm 2 can be used to obtain RoAs associated to

the Morse graph RMG from Theorem 4.1. The proof is a

consequence of Alg. 2[3] and Theorem 4.1 here.

Theorem 4.2: Let F be an outer approximation of the

learned dynamics φZ
τ , MG(F) be the Morse graph for F , and

RMG = ({G,R,U}, <r) be the Morse graph from Theorem

4.1. Then RoA(A) and RoA(U) computed via MG(F) are

also regions of attraction of G and U in RMG, respectively.

After applying the proposed method to the pedagogical

example described in Section III and Fig. 2, the bistability is

obtained in the latent space as shown in Fig. 2(right). Notice

that the level of discretization required to construct the Morse

graph for the original space X is quite extensive, amounting

to 5 × 3N , approximately 2 million cubes for N = 12,

which in general is not well suitable for complex, high-dim.

systems. When RMG is computed on the latent space, how-

ever, the size of the required discretization is exponentially

reduced. For instance, in Fig.2(right) the discretization level

is 2K cubes. This is a reduction of 3 orders of magnitude

compared to the smallest discretization needed on X to find

the bistability of Fig. 2(left).

V. EXPERIMENTAL EVALUATION

Systems: Fig. 5 shows 3 of the considered systems in

the experiments in addition to the humanoid of Fig. 1.

In particular, the experiments consider: (1) A model of a

Pendulum (Pend) observed via the coordinates and velocity

of its mass [x, y, ẋ, ẏ]. (2) A Cartpole (CaPo) simulated

using MuJoCo [36] with state space [x, ẋ, cos θ, sin θ, θ̇].
(3) The Humanoid (GetUp) benchmark borrowed from the

literature [37] corresponds to a bipedal humanoid robot

attempting a stable standup gait. (4) TriFinger Robot Hand

(TriFi) is a real-world dataset of 3 fingers pushing a cube

towards a desired location. [38].

Fig. 5: (L-R) Analytical Pendulum, Cartpole simulated using Mu-
JoCo, real robot dataset collected using a TriFinger [38].

Controllers: Both analytical and learned controllers are

considered. LQR linearizes the system to compute a gain

k used in the control law u(xt) = −kxt. It is applied

on the Pend and CaPo systems. Soft Actor-Critic (SAC)

[39] and Proximal Policy Optimization (PPO) [40] are deep

reinforcement learning algorithms trained to maximize the

expected return Ex0
[
∑tmax

t=0 γ
tR(xt, ut)], where R : X×U 7→

R is a reward function that encodes the goal of the desired

task and γ is a discount factor. They are applied on the GetUp

and TriFi systems, respectively.

Setup: For the simulated systems, the datasets D are ob-

tained by rolling out trajectories using the controller. For

TriFi, the dataset is fixed. Given labeled training and test



datasets (Dtr,Dte - random split 4:1 of trajectories), the

autoencoder is trained on Dtr with multiple random seeds

for the same hyperparameters and dim(Z) = 2. henc, hdec, hdyn

are fully-connected multi-layered perceptions (MLPs) with

either 2 or 3 hidden layers depending on the benchmark.

All trials where MORALS discovered less than 2 attractors

were restarted. From the set of desirable final conditions in

the training set Ftr
f (as in Section IV), all RoAs containing

all the points {henc(x)|x ∈ F
tr
f } are identified as the

desired RoAs. Define I
te
s as the set of initial conditions in

Dte that succeed in the task and Î
te
s as the set of initial

conditions in Dte identified by MORALS to be inside the

desired RoA. The sets of unsuccessful initial conditions

I
te
f , Îtef are similarly defined. Table II reports the precision

P =
|Ites ∩Î

te
s |

|Îtes |
, recall R =

|Ites ∩Î
te
s |

|Ites | , and F-score F = 2PR
P+R

. It

also reports the number of trajectories |πtr| used for training

the autoencoder and the number |Dtr| of (x, Im(x)) pairs

obtained by applying a sliding window to the trajectory. All

metrics are reported on the testing set Dte after selecting the

best-performing hyperparameters on Dtr.

Benchmark dim(X) |πtr| |Dtr| P R F

Pend (LQR) 4 1024 20,480 94% 85% 89%

CaPo (LQR) 5 1440 143,281 86% 77% 81%

GetUp (SAC) 67 1000 326,384 91% 91% 91%

TriFi (PPO) 96 3072 460,806 90% 97% 93%

TABLE II: MORALS performance on benchmarks for dim(Z) = 2.

For Pend (LQR) and CaPo (LQR), 15 − 35% of initial

conditions in I
tr
s succeed in the task. The learned controllers

for GetUp (SAC) and TriFi (PPO) are more successful (80−
90% success rate). Across the benchmarks, MORALS returns

rather accurate estimates of the desired RoA.

Data Efficiency: Table III varies the number of trajectories

used to train the autoencoding network for the Pend (LQR)

benchmark (as a ratio of the available data). Increasing the

data used by MORALS during the training phase results in an

overall improvement in the desired RoA estimate.

Size P R F

10% 71% 58% 64%

50% 95% 79% 86%

100% 94% 85% 89%

TABLE III: Data-efficiency for
RoA estimate of Pend (LQR).

Multiplier P R F

1× 91% 91% 91%

2× 92% 56% 70%

4× 92% 48% 63%

TABLE IV: Ablation on parame-
ter L for GetUp (SAC).

Selecting a suitable L-value: Table IV varies the parameter

L that bounds the Lipschitz constant for GetUp (SAC).

Increasing L makes the approach more conservative in

accepting positives. This improves precision by reducing the

occurrence of False Positives near the RoA’s boundary. It

comes at the cost of reduced recall, however.

Unlabeled Labeled

Benchmark P R F P R F

Pend (LQR) 94% 85% 89% 92% 59% 72%

CaPo (LQR) 85% 76% 80% 86% 77% 81%

GetUp (SAC) 91% 91% 91% 82% 76% 79%

TriFi (PPO) 90% 97% 93% 90% 94% 92%

TABLE V: Impact of loss term L4, which requires labeling.

Effect of supervised loss objective: Table V reports the

accuracy of the RoA estimate when the loss function using

labeled data as defined in Eqn. 5 is also used. The effect is

minimal indicating that MORALS does not need any labels

for which demonstration trajectories succeeded or not.

Dimensionality of Latent Space: Tables VI, VII study

the impact of dim(Z) for Pend (LQR) and GetUp (SAC).

MORALS recovers a significant portion of the RoA for Pend

(LQR) even for dim(Z) = 1 but the estimate improves for

dim(Z) = 2 as the true dynamics lie in a 2-dim. space. For

GetUp (SAC), the R and F scores improve for dim(Z)=3.

But this is due to the entire valid Z returned as the RoA

leading to more false positives and lower precision.

dim(Z) P R F

1 82% 86% 84%

2 94% 85% 89%

TABLE VI: Impact of dim(Z) for
Pend (LQR) RoA.

dim(Z) P R F

2 91% 91% 91%

3 89% 100% 94%

TABLE VII: Impact of dim(Z)
for GetUp (SAC) RoA.

Weaker controllers: Table VIII reports accuracy for more

complex versions of GetUp (SAC) and TriFi (PPO), where

the controller works in 50 − 65% of X . For GetUp, the

humanoid’s max velocity is limited. So some trajectories

are erroneously misclassified as failures as they do not

stabilize within the specified horizon, impacting the accuracy

of MORALS. The considered version of TriFi requires lifting

and transporting the cube to a target instead of the earlier

task of pushing. The cube’s pose is tracked by noisy cameras,

and some critical features may be missing from the dataset

resulting in a less accurate hdyn. On these benchmarks,

MORALS achieves high recall at the cost of misclassifying

multiple regions of the space as false positives.

Benchmark dim(X) |πtr| |Dtr| P R F

GetUp (SAC) 67 1000 326,384 78% 96% 86%

TriFi (PPO) 54 1915 574,831 65% 100% 78%

TABLE VIII: Quantitative evaluation for more complex versions of
GetUp (SAC) and TriFi (PPO) (dim(Z) = 2).

VI. DISCUSSION

MORALS assumes the dataset Dtr covers enough initial

conditions close to the boundary of success/failure RoAs

to approximate the true dynamics. Otherwise, the approach

cannot discover the separatrix of the bistable dynamics and

discovers only a single attractor. Furthermore, MORALS does

not use the decoder hdec to obtain the RoA. Future work will

explore using hdec in the high-dim. space with low-accuracy

predictions to mitigate False Positives. Finally, MORALS does

not provide a conservative estimate of the ground truth RoA

due to the stochasticity in training the autoencoder. It is

interesting to explore further how to maximize precision.

The RoAs discovered by MORALS for different controllers

of the same robotics system can be used to compose a hybrid

solution that succeeds in the task from a wider swath of

the state space. Given a fixed dataset of robotics transitions,

MORALS can discover the regions of the robot’s dynamics

from where task success is feasible, which has applications

in both safe controller learning [41] and safe motion planning

[42]. Future directions include learning safety regions for

constrained systems [25] and deployment in real robotic

systems, where challenges related to system dynamics ap-

proximation and data efficiency must be addressed.
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